1 // SPDX-License-Identifier: GPL-2.0
3 * NVMe over Fabrics TCP host.
4 * Copyright (c) 2018 Lightbits Labs. All rights reserved.
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/crc32.h>
12 #include <linux/nvme-tcp.h>
13 #include <linux/nvme-keyring.h>
17 #include <net/tls_prot.h>
18 #include <net/handshake.h>
19 #include <linux/blk-mq.h>
20 #include <net/busy_poll.h>
21 #include <trace/events/sock.h>
26 struct nvme_tcp_queue;
28 /* Define the socket priority to use for connections were it is desirable
29 * that the NIC consider performing optimized packet processing or filtering.
30 * A non-zero value being sufficient to indicate general consideration of any
31 * possible optimization. Making it a module param allows for alternative
32 * values that may be unique for some NIC implementations.
34 static int so_priority;
35 module_param(so_priority, int, 0644);
36 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
39 * Use the unbound workqueue for nvme_tcp_wq, then we can set the cpu affinity
42 static bool wq_unbound;
43 module_param(wq_unbound, bool, 0644);
44 MODULE_PARM_DESC(wq_unbound, "Use unbound workqueue for nvme-tcp IO context (default false)");
47 * TLS handshake timeout
49 static int tls_handshake_timeout = 10;
50 #ifdef CONFIG_NVME_TCP_TLS
51 module_param(tls_handshake_timeout, int, 0644);
52 MODULE_PARM_DESC(tls_handshake_timeout,
53 "nvme TLS handshake timeout in seconds (default 10)");
56 static atomic_t nvme_tcp_cpu_queues[NR_CPUS];
58 #ifdef CONFIG_DEBUG_LOCK_ALLOC
59 /* lockdep can detect a circular dependency of the form
60 * sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock
61 * because dependencies are tracked for both nvme-tcp and user contexts. Using
62 * a separate class prevents lockdep from conflating nvme-tcp socket use with
63 * user-space socket API use.
65 static struct lock_class_key nvme_tcp_sk_key[2];
66 static struct lock_class_key nvme_tcp_slock_key[2];
68 static void nvme_tcp_reclassify_socket(struct socket *sock)
70 struct sock *sk = sock->sk;
72 if (WARN_ON_ONCE(!sock_allow_reclassification(sk)))
75 switch (sk->sk_family) {
77 sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME",
78 &nvme_tcp_slock_key[0],
79 "sk_lock-AF_INET-NVME",
83 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME",
84 &nvme_tcp_slock_key[1],
85 "sk_lock-AF_INET6-NVME",
93 static void nvme_tcp_reclassify_socket(struct socket *sock) { }
96 enum nvme_tcp_send_state {
97 NVME_TCP_SEND_CMD_PDU = 0,
98 NVME_TCP_SEND_H2C_PDU,
103 struct nvme_tcp_request {
104 struct nvme_request req;
106 struct nvme_tcp_queue *queue;
114 struct list_head entry;
115 struct llist_node lentry;
118 struct bio *curr_bio;
119 struct iov_iter iter;
124 enum nvme_tcp_send_state state;
127 enum nvme_tcp_queue_flags {
128 NVME_TCP_Q_ALLOCATED = 0,
130 NVME_TCP_Q_POLLING = 2,
131 NVME_TCP_Q_IO_CPU_SET = 3,
134 enum nvme_tcp_recv_state {
135 NVME_TCP_RECV_PDU = 0,
140 struct nvme_tcp_ctrl;
141 struct nvme_tcp_queue {
143 struct work_struct io_work;
146 struct mutex queue_lock;
147 struct mutex send_mutex;
148 struct llist_head req_list;
149 struct list_head send_list;
155 size_t data_remaining;
156 size_t ddgst_remaining;
160 struct nvme_tcp_request *request;
163 size_t cmnd_capsule_len;
164 struct nvme_tcp_ctrl *ctrl;
175 struct completion tls_complete;
177 struct page_frag_cache pf_cache;
179 void (*state_change)(struct sock *);
180 void (*data_ready)(struct sock *);
181 void (*write_space)(struct sock *);
184 struct nvme_tcp_ctrl {
185 /* read only in the hot path */
186 struct nvme_tcp_queue *queues;
187 struct blk_mq_tag_set tag_set;
189 /* other member variables */
190 struct list_head list;
191 struct blk_mq_tag_set admin_tag_set;
192 struct sockaddr_storage addr;
193 struct sockaddr_storage src_addr;
194 struct nvme_ctrl ctrl;
196 struct work_struct err_work;
197 struct delayed_work connect_work;
198 struct nvme_tcp_request async_req;
199 u32 io_queues[HCTX_MAX_TYPES];
202 static LIST_HEAD(nvme_tcp_ctrl_list);
203 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
204 static struct workqueue_struct *nvme_tcp_wq;
205 static const struct blk_mq_ops nvme_tcp_mq_ops;
206 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
207 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
209 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
211 return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
214 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
216 return queue - queue->ctrl->queues;
219 static inline bool nvme_tcp_recv_pdu_supported(enum nvme_tcp_pdu_type type)
222 case nvme_tcp_c2h_term:
223 case nvme_tcp_c2h_data:
233 * Check if the queue is TLS encrypted
235 static inline bool nvme_tcp_queue_tls(struct nvme_tcp_queue *queue)
237 if (!IS_ENABLED(CONFIG_NVME_TCP_TLS))
240 return queue->tls_enabled;
244 * Check if TLS is configured for the controller.
246 static inline bool nvme_tcp_tls_configured(struct nvme_ctrl *ctrl)
248 if (!IS_ENABLED(CONFIG_NVME_TCP_TLS))
251 return ctrl->opts->tls || ctrl->opts->concat;
254 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
256 u32 queue_idx = nvme_tcp_queue_id(queue);
259 return queue->ctrl->admin_tag_set.tags[queue_idx];
260 return queue->ctrl->tag_set.tags[queue_idx - 1];
263 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
265 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
268 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
270 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
273 static inline void *nvme_tcp_req_cmd_pdu(struct nvme_tcp_request *req)
278 static inline void *nvme_tcp_req_data_pdu(struct nvme_tcp_request *req)
280 /* use the pdu space in the back for the data pdu */
281 return req->pdu + sizeof(struct nvme_tcp_cmd_pdu) -
282 sizeof(struct nvme_tcp_data_pdu);
285 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_request *req)
287 if (nvme_is_fabrics(req->req.cmd))
288 return NVME_TCP_ADMIN_CCSZ;
289 return req->queue->cmnd_capsule_len - sizeof(struct nvme_command);
292 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
294 return req == &req->queue->ctrl->async_req;
297 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
301 if (unlikely(nvme_tcp_async_req(req)))
302 return false; /* async events don't have a request */
304 rq = blk_mq_rq_from_pdu(req);
306 return rq_data_dir(rq) == WRITE && req->data_len &&
307 req->data_len <= nvme_tcp_inline_data_size(req);
310 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
312 return req->iter.bvec->bv_page;
315 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
317 return req->iter.bvec->bv_offset + req->iter.iov_offset;
320 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
322 return min_t(size_t, iov_iter_single_seg_count(&req->iter),
323 req->pdu_len - req->pdu_sent);
326 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
328 return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
329 req->pdu_len - req->pdu_sent : 0;
332 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
335 return nvme_tcp_pdu_data_left(req) <= len;
338 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
341 struct request *rq = blk_mq_rq_from_pdu(req);
347 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
348 vec = &rq->special_vec;
350 size = blk_rq_payload_bytes(rq);
353 struct bio *bio = req->curr_bio;
357 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
359 bio_for_each_bvec(bv, bio, bi) {
362 size = bio->bi_iter.bi_size;
363 offset = bio->bi_iter.bi_bvec_done;
366 iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size);
367 req->iter.iov_offset = offset;
370 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
373 req->data_sent += len;
374 req->pdu_sent += len;
375 iov_iter_advance(&req->iter, len);
376 if (!iov_iter_count(&req->iter) &&
377 req->data_sent < req->data_len) {
378 req->curr_bio = req->curr_bio->bi_next;
379 nvme_tcp_init_iter(req, ITER_SOURCE);
383 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
387 /* drain the send queue as much as we can... */
389 ret = nvme_tcp_try_send(queue);
393 static inline bool nvme_tcp_queue_has_pending(struct nvme_tcp_queue *queue)
395 return !list_empty(&queue->send_list) ||
396 !llist_empty(&queue->req_list);
399 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
401 return !nvme_tcp_queue_tls(queue) &&
402 nvme_tcp_queue_has_pending(queue);
405 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
408 struct nvme_tcp_queue *queue = req->queue;
411 empty = llist_add(&req->lentry, &queue->req_list) &&
412 list_empty(&queue->send_list) && !queue->request;
415 * if we're the first on the send_list and we can try to send
416 * directly, otherwise queue io_work. Also, only do that if we
417 * are on the same cpu, so we don't introduce contention.
419 if (queue->io_cpu == raw_smp_processor_id() &&
420 empty && mutex_trylock(&queue->send_mutex)) {
421 nvme_tcp_send_all(queue);
422 mutex_unlock(&queue->send_mutex);
425 if (last && nvme_tcp_queue_has_pending(queue))
426 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
429 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
431 struct nvme_tcp_request *req;
432 struct llist_node *node;
434 for (node = llist_del_all(&queue->req_list); node; node = node->next) {
435 req = llist_entry(node, struct nvme_tcp_request, lentry);
436 list_add(&req->entry, &queue->send_list);
440 static inline struct nvme_tcp_request *
441 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
443 struct nvme_tcp_request *req;
445 req = list_first_entry_or_null(&queue->send_list,
446 struct nvme_tcp_request, entry);
448 nvme_tcp_process_req_list(queue);
449 req = list_first_entry_or_null(&queue->send_list,
450 struct nvme_tcp_request, entry);
455 list_del_init(&req->entry);
456 init_llist_node(&req->lentry);
460 #define NVME_TCP_CRC_SEED (~0)
462 static inline void nvme_tcp_ddgst_update(u32 *crcp,
463 struct page *page, size_t off, size_t len)
465 page += off / PAGE_SIZE;
468 const void *vaddr = kmap_local_page(page);
469 size_t n = min(len, (size_t)PAGE_SIZE - off);
471 *crcp = crc32c(*crcp, vaddr + off, n);
479 static inline __le32 nvme_tcp_ddgst_final(u32 crc)
481 return cpu_to_le32(~crc);
484 static inline __le32 nvme_tcp_hdgst(const void *pdu, size_t len)
486 return cpu_to_le32(~crc32c(NVME_TCP_CRC_SEED, pdu, len));
489 static inline void nvme_tcp_set_hdgst(void *pdu, size_t len)
491 *(__le32 *)(pdu + len) = nvme_tcp_hdgst(pdu, len);
494 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
495 void *pdu, size_t pdu_len)
497 struct nvme_tcp_hdr *hdr = pdu;
501 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
502 dev_err(queue->ctrl->ctrl.device,
503 "queue %d: header digest flag is cleared\n",
504 nvme_tcp_queue_id(queue));
508 recv_digest = *(__le32 *)(pdu + hdr->hlen);
509 exp_digest = nvme_tcp_hdgst(pdu, pdu_len);
510 if (recv_digest != exp_digest) {
511 dev_err(queue->ctrl->ctrl.device,
512 "header digest error: recv %#x expected %#x\n",
513 le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
520 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
522 struct nvme_tcp_hdr *hdr = pdu;
523 u8 digest_len = nvme_tcp_hdgst_len(queue);
526 len = le32_to_cpu(hdr->plen) - hdr->hlen -
527 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
529 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
530 dev_err(queue->ctrl->ctrl.device,
531 "queue %d: data digest flag is cleared\n",
532 nvme_tcp_queue_id(queue));
535 queue->rcv_crc = NVME_TCP_CRC_SEED;
540 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
541 struct request *rq, unsigned int hctx_idx)
543 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
545 page_frag_free(req->pdu);
548 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
549 struct request *rq, unsigned int hctx_idx,
550 unsigned int numa_node)
552 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
553 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
554 struct nvme_tcp_cmd_pdu *pdu;
555 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
556 struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
557 u8 hdgst = nvme_tcp_hdgst_len(queue);
559 req->pdu = page_frag_alloc(&queue->pf_cache,
560 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
561 GFP_KERNEL | __GFP_ZERO);
567 nvme_req(rq)->ctrl = &ctrl->ctrl;
568 nvme_req(rq)->cmd = &pdu->cmd;
569 init_llist_node(&req->lentry);
570 INIT_LIST_HEAD(&req->entry);
575 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
576 unsigned int hctx_idx)
578 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
579 struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
581 hctx->driver_data = queue;
585 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
586 unsigned int hctx_idx)
588 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
589 struct nvme_tcp_queue *queue = &ctrl->queues[0];
591 hctx->driver_data = queue;
595 static enum nvme_tcp_recv_state
596 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
598 return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
599 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
603 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
605 queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
606 nvme_tcp_hdgst_len(queue);
607 queue->pdu_offset = 0;
608 queue->data_remaining = -1;
609 queue->ddgst_remaining = 0;
612 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
614 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
617 dev_warn(ctrl->device, "starting error recovery\n");
618 queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
621 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
622 struct nvme_completion *cqe)
624 struct nvme_tcp_request *req;
627 rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id);
629 dev_err(queue->ctrl->ctrl.device,
630 "got bad cqe.command_id %#x on queue %d\n",
631 cqe->command_id, nvme_tcp_queue_id(queue));
632 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
636 req = blk_mq_rq_to_pdu(rq);
637 if (req->status == cpu_to_le16(NVME_SC_SUCCESS))
638 req->status = cqe->status;
640 if (!nvme_try_complete_req(rq, req->status, cqe->result))
641 nvme_complete_rq(rq);
647 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
648 struct nvme_tcp_data_pdu *pdu)
652 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
654 dev_err(queue->ctrl->ctrl.device,
655 "got bad c2hdata.command_id %#x on queue %d\n",
656 pdu->command_id, nvme_tcp_queue_id(queue));
660 if (!blk_rq_payload_bytes(rq)) {
661 dev_err(queue->ctrl->ctrl.device,
662 "queue %d tag %#x unexpected data\n",
663 nvme_tcp_queue_id(queue), rq->tag);
667 queue->data_remaining = le32_to_cpu(pdu->data_length);
669 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
670 unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
671 dev_err(queue->ctrl->ctrl.device,
672 "queue %d tag %#x SUCCESS set but not last PDU\n",
673 nvme_tcp_queue_id(queue), rq->tag);
674 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
681 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
682 struct nvme_tcp_rsp_pdu *pdu)
684 struct nvme_completion *cqe = &pdu->cqe;
688 * AEN requests are special as they don't time out and can
689 * survive any kind of queue freeze and often don't respond to
690 * aborts. We don't even bother to allocate a struct request
691 * for them but rather special case them here.
693 if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
695 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
698 ret = nvme_tcp_process_nvme_cqe(queue, cqe);
703 static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req)
705 struct nvme_tcp_data_pdu *data = nvme_tcp_req_data_pdu(req);
706 struct nvme_tcp_queue *queue = req->queue;
707 struct request *rq = blk_mq_rq_from_pdu(req);
708 u32 h2cdata_sent = req->pdu_len;
709 u8 hdgst = nvme_tcp_hdgst_len(queue);
710 u8 ddgst = nvme_tcp_ddgst_len(queue);
712 req->state = NVME_TCP_SEND_H2C_PDU;
714 req->pdu_len = min(req->h2cdata_left, queue->maxh2cdata);
716 req->h2cdata_left -= req->pdu_len;
717 req->h2cdata_offset += h2cdata_sent;
719 memset(data, 0, sizeof(*data));
720 data->hdr.type = nvme_tcp_h2c_data;
721 if (!req->h2cdata_left)
722 data->hdr.flags = NVME_TCP_F_DATA_LAST;
723 if (queue->hdr_digest)
724 data->hdr.flags |= NVME_TCP_F_HDGST;
725 if (queue->data_digest)
726 data->hdr.flags |= NVME_TCP_F_DDGST;
727 data->hdr.hlen = sizeof(*data);
728 data->hdr.pdo = data->hdr.hlen + hdgst;
730 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
731 data->ttag = req->ttag;
732 data->command_id = nvme_cid(rq);
733 data->data_offset = cpu_to_le32(req->h2cdata_offset);
734 data->data_length = cpu_to_le32(req->pdu_len);
737 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
738 struct nvme_tcp_r2t_pdu *pdu)
740 struct nvme_tcp_request *req;
742 u32 r2t_length = le32_to_cpu(pdu->r2t_length);
743 u32 r2t_offset = le32_to_cpu(pdu->r2t_offset);
745 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
747 dev_err(queue->ctrl->ctrl.device,
748 "got bad r2t.command_id %#x on queue %d\n",
749 pdu->command_id, nvme_tcp_queue_id(queue));
752 req = blk_mq_rq_to_pdu(rq);
754 if (unlikely(!r2t_length)) {
755 dev_err(queue->ctrl->ctrl.device,
756 "req %d r2t len is %u, probably a bug...\n",
757 rq->tag, r2t_length);
761 if (unlikely(req->data_sent + r2t_length > req->data_len)) {
762 dev_err(queue->ctrl->ctrl.device,
763 "req %d r2t len %u exceeded data len %u (%zu sent)\n",
764 rq->tag, r2t_length, req->data_len, req->data_sent);
768 if (unlikely(r2t_offset < req->data_sent)) {
769 dev_err(queue->ctrl->ctrl.device,
770 "req %d unexpected r2t offset %u (expected %zu)\n",
771 rq->tag, r2t_offset, req->data_sent);
775 if (llist_on_list(&req->lentry) ||
776 !list_empty(&req->entry)) {
777 dev_err(queue->ctrl->ctrl.device,
778 "req %d unexpected r2t while processing request\n",
784 req->h2cdata_left = r2t_length;
785 req->h2cdata_offset = r2t_offset;
786 req->ttag = pdu->ttag;
788 nvme_tcp_setup_h2c_data_pdu(req);
790 llist_add(&req->lentry, &queue->req_list);
791 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
796 static void nvme_tcp_handle_c2h_term(struct nvme_tcp_queue *queue,
797 struct nvme_tcp_term_pdu *pdu)
801 u32 plen = le32_to_cpu(pdu->hdr.plen);
803 static const char * const msg_table[] = {
804 [NVME_TCP_FES_INVALID_PDU_HDR] = "Invalid PDU Header Field",
805 [NVME_TCP_FES_PDU_SEQ_ERR] = "PDU Sequence Error",
806 [NVME_TCP_FES_HDR_DIGEST_ERR] = "Header Digest Error",
807 [NVME_TCP_FES_DATA_OUT_OF_RANGE] = "Data Transfer Out Of Range",
808 [NVME_TCP_FES_DATA_LIMIT_EXCEEDED] = "Data Transfer Limit Exceeded",
809 [NVME_TCP_FES_UNSUPPORTED_PARAM] = "Unsupported Parameter",
812 if (plen < NVME_TCP_MIN_C2HTERM_PLEN ||
813 plen > NVME_TCP_MAX_C2HTERM_PLEN) {
814 dev_err(queue->ctrl->ctrl.device,
815 "Received a malformed C2HTermReq PDU (plen = %u)\n",
820 fes = le16_to_cpu(pdu->fes);
821 if (fes && fes < ARRAY_SIZE(msg_table))
822 msg = msg_table[fes];
826 dev_err(queue->ctrl->ctrl.device,
827 "Received C2HTermReq (FES = %s)\n", msg);
830 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
831 unsigned int *offset, size_t *len)
833 struct nvme_tcp_hdr *hdr;
834 char *pdu = queue->pdu;
835 size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
838 ret = skb_copy_bits(skb, *offset,
839 &pdu[queue->pdu_offset], rcv_len);
843 queue->pdu_remaining -= rcv_len;
844 queue->pdu_offset += rcv_len;
847 if (queue->pdu_remaining)
851 if (unlikely(hdr->hlen != sizeof(struct nvme_tcp_rsp_pdu))) {
852 if (!nvme_tcp_recv_pdu_supported(hdr->type))
853 goto unsupported_pdu;
855 dev_err(queue->ctrl->ctrl.device,
856 "pdu type %d has unexpected header length (%d)\n",
857 hdr->type, hdr->hlen);
861 if (unlikely(hdr->type == nvme_tcp_c2h_term)) {
863 * C2HTermReq never includes Header or Data digests.
866 nvme_tcp_handle_c2h_term(queue, (void *)queue->pdu);
870 if (queue->hdr_digest) {
871 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
877 if (queue->data_digest) {
878 ret = nvme_tcp_check_ddgst(queue, queue->pdu);
884 case nvme_tcp_c2h_data:
885 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
887 nvme_tcp_init_recv_ctx(queue);
888 return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
890 nvme_tcp_init_recv_ctx(queue);
891 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
893 goto unsupported_pdu;
897 dev_err(queue->ctrl->ctrl.device,
898 "unsupported pdu type (%d)\n", hdr->type);
902 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
904 union nvme_result res = {};
906 if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
907 nvme_complete_rq(rq);
910 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
911 unsigned int *offset, size_t *len)
913 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
915 nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
916 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
921 recv_len = min_t(size_t, *len, queue->data_remaining);
925 if (!iov_iter_count(&req->iter)) {
926 req->curr_bio = req->curr_bio->bi_next;
929 * If we don`t have any bios it means that controller
930 * sent more data than we requested, hence error
932 if (!req->curr_bio) {
933 dev_err(queue->ctrl->ctrl.device,
934 "queue %d no space in request %#x",
935 nvme_tcp_queue_id(queue), rq->tag);
936 nvme_tcp_init_recv_ctx(queue);
939 nvme_tcp_init_iter(req, ITER_DEST);
942 /* we can read only from what is left in this bio */
943 recv_len = min_t(size_t, recv_len,
944 iov_iter_count(&req->iter));
946 if (queue->data_digest)
947 ret = skb_copy_and_crc32c_datagram_iter(skb, *offset,
948 &req->iter, recv_len, &queue->rcv_crc);
950 ret = skb_copy_datagram_iter(skb, *offset,
951 &req->iter, recv_len);
953 dev_err(queue->ctrl->ctrl.device,
954 "queue %d failed to copy request %#x data",
955 nvme_tcp_queue_id(queue), rq->tag);
961 queue->data_remaining -= recv_len;
964 if (!queue->data_remaining) {
965 if (queue->data_digest) {
966 queue->exp_ddgst = nvme_tcp_ddgst_final(queue->rcv_crc);
967 queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
969 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
970 nvme_tcp_end_request(rq,
971 le16_to_cpu(req->status));
974 nvme_tcp_init_recv_ctx(queue);
981 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
982 struct sk_buff *skb, unsigned int *offset, size_t *len)
984 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
985 char *ddgst = (char *)&queue->recv_ddgst;
986 size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
987 off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
990 ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
994 queue->ddgst_remaining -= recv_len;
997 if (queue->ddgst_remaining)
1000 if (queue->recv_ddgst != queue->exp_ddgst) {
1001 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
1003 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
1005 req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR);
1007 dev_err(queue->ctrl->ctrl.device,
1008 "data digest error: recv %#x expected %#x\n",
1009 le32_to_cpu(queue->recv_ddgst),
1010 le32_to_cpu(queue->exp_ddgst));
1013 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
1014 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
1016 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
1018 nvme_tcp_end_request(rq, le16_to_cpu(req->status));
1022 nvme_tcp_init_recv_ctx(queue);
1026 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
1027 unsigned int offset, size_t len)
1029 struct nvme_tcp_queue *queue = desc->arg.data;
1030 size_t consumed = len;
1033 if (unlikely(!queue->rd_enabled))
1037 switch (nvme_tcp_recv_state(queue)) {
1038 case NVME_TCP_RECV_PDU:
1039 result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
1041 case NVME_TCP_RECV_DATA:
1042 result = nvme_tcp_recv_data(queue, skb, &offset, &len);
1044 case NVME_TCP_RECV_DDGST:
1045 result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
1051 dev_err(queue->ctrl->ctrl.device,
1052 "receive failed: %d\n", result);
1053 queue->rd_enabled = false;
1054 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
1062 static void nvme_tcp_data_ready(struct sock *sk)
1064 struct nvme_tcp_queue *queue;
1066 trace_sk_data_ready(sk);
1068 read_lock_bh(&sk->sk_callback_lock);
1069 queue = sk->sk_user_data;
1070 if (likely(queue && queue->rd_enabled) &&
1071 !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
1072 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1073 read_unlock_bh(&sk->sk_callback_lock);
1076 static void nvme_tcp_write_space(struct sock *sk)
1078 struct nvme_tcp_queue *queue;
1080 read_lock_bh(&sk->sk_callback_lock);
1081 queue = sk->sk_user_data;
1082 if (likely(queue && sk_stream_is_writeable(sk))) {
1083 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1084 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1086 read_unlock_bh(&sk->sk_callback_lock);
1089 static void nvme_tcp_state_change(struct sock *sk)
1091 struct nvme_tcp_queue *queue;
1093 read_lock_bh(&sk->sk_callback_lock);
1094 queue = sk->sk_user_data;
1098 switch (sk->sk_state) {
1100 case TCP_CLOSE_WAIT:
1104 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
1107 dev_info(queue->ctrl->ctrl.device,
1108 "queue %d socket state %d\n",
1109 nvme_tcp_queue_id(queue), sk->sk_state);
1112 queue->state_change(sk);
1114 read_unlock_bh(&sk->sk_callback_lock);
1117 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
1119 queue->request = NULL;
1122 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
1124 if (nvme_tcp_async_req(req)) {
1125 union nvme_result res = {};
1127 nvme_complete_async_event(&req->queue->ctrl->ctrl,
1128 cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res);
1130 nvme_tcp_end_request(blk_mq_rq_from_pdu(req),
1131 NVME_SC_HOST_PATH_ERROR);
1135 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
1137 struct nvme_tcp_queue *queue = req->queue;
1138 int req_data_len = req->data_len;
1139 u32 h2cdata_left = req->h2cdata_left;
1142 struct bio_vec bvec;
1143 struct msghdr msg = {
1144 .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES,
1146 struct page *page = nvme_tcp_req_cur_page(req);
1147 size_t offset = nvme_tcp_req_cur_offset(req);
1148 size_t len = nvme_tcp_req_cur_length(req);
1149 bool last = nvme_tcp_pdu_last_send(req, len);
1150 int req_data_sent = req->data_sent;
1153 if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
1154 msg.msg_flags |= MSG_EOR;
1156 msg.msg_flags |= MSG_MORE;
1158 if (!sendpages_ok(page, len, offset))
1159 msg.msg_flags &= ~MSG_SPLICE_PAGES;
1161 bvec_set_page(&bvec, page, len, offset);
1162 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1163 ret = sock_sendmsg(queue->sock, &msg);
1167 if (queue->data_digest)
1168 nvme_tcp_ddgst_update(&queue->snd_crc, page,
1172 * update the request iterator except for the last payload send
1173 * in the request where we don't want to modify it as we may
1174 * compete with the RX path completing the request.
1176 if (req_data_sent + ret < req_data_len)
1177 nvme_tcp_advance_req(req, ret);
1179 /* fully successful last send in current PDU */
1180 if (last && ret == len) {
1181 if (queue->data_digest) {
1183 nvme_tcp_ddgst_final(queue->snd_crc);
1184 req->state = NVME_TCP_SEND_DDGST;
1188 nvme_tcp_setup_h2c_data_pdu(req);
1190 nvme_tcp_done_send_req(queue);
1198 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
1200 struct nvme_tcp_queue *queue = req->queue;
1201 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
1202 struct bio_vec bvec;
1203 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
1204 bool inline_data = nvme_tcp_has_inline_data(req);
1205 u8 hdgst = nvme_tcp_hdgst_len(queue);
1206 int len = sizeof(*pdu) + hdgst - req->offset;
1209 if (inline_data || nvme_tcp_queue_more(queue))
1210 msg.msg_flags |= MSG_MORE;
1212 msg.msg_flags |= MSG_EOR;
1214 if (queue->hdr_digest && !req->offset)
1215 nvme_tcp_set_hdgst(pdu, sizeof(*pdu));
1217 bvec_set_virt(&bvec, (void *)pdu + req->offset, len);
1218 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1219 ret = sock_sendmsg(queue->sock, &msg);
1220 if (unlikely(ret <= 0))
1226 req->state = NVME_TCP_SEND_DATA;
1227 if (queue->data_digest)
1228 queue->snd_crc = NVME_TCP_CRC_SEED;
1230 nvme_tcp_done_send_req(queue);
1239 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
1241 struct nvme_tcp_queue *queue = req->queue;
1242 struct nvme_tcp_data_pdu *pdu = nvme_tcp_req_data_pdu(req);
1243 struct bio_vec bvec;
1244 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_MORE, };
1245 u8 hdgst = nvme_tcp_hdgst_len(queue);
1246 int len = sizeof(*pdu) - req->offset + hdgst;
1249 if (queue->hdr_digest && !req->offset)
1250 nvme_tcp_set_hdgst(pdu, sizeof(*pdu));
1252 if (!req->h2cdata_left)
1253 msg.msg_flags |= MSG_SPLICE_PAGES;
1255 bvec_set_virt(&bvec, (void *)pdu + req->offset, len);
1256 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1257 ret = sock_sendmsg(queue->sock, &msg);
1258 if (unlikely(ret <= 0))
1263 req->state = NVME_TCP_SEND_DATA;
1264 if (queue->data_digest)
1265 queue->snd_crc = NVME_TCP_CRC_SEED;
1273 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1275 struct nvme_tcp_queue *queue = req->queue;
1276 size_t offset = req->offset;
1277 u32 h2cdata_left = req->h2cdata_left;
1279 struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1281 .iov_base = (u8 *)&req->ddgst + req->offset,
1282 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1285 if (nvme_tcp_queue_more(queue))
1286 msg.msg_flags |= MSG_MORE;
1288 msg.msg_flags |= MSG_EOR;
1290 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1291 if (unlikely(ret <= 0))
1294 if (offset + ret == NVME_TCP_DIGEST_LENGTH) {
1296 nvme_tcp_setup_h2c_data_pdu(req);
1298 nvme_tcp_done_send_req(queue);
1306 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1308 struct nvme_tcp_request *req;
1309 unsigned int noreclaim_flag;
1312 if (!queue->request) {
1313 queue->request = nvme_tcp_fetch_request(queue);
1314 if (!queue->request)
1317 req = queue->request;
1319 noreclaim_flag = memalloc_noreclaim_save();
1320 if (req->state == NVME_TCP_SEND_CMD_PDU) {
1321 ret = nvme_tcp_try_send_cmd_pdu(req);
1324 if (!nvme_tcp_has_inline_data(req))
1328 if (req->state == NVME_TCP_SEND_H2C_PDU) {
1329 ret = nvme_tcp_try_send_data_pdu(req);
1334 if (req->state == NVME_TCP_SEND_DATA) {
1335 ret = nvme_tcp_try_send_data(req);
1340 if (req->state == NVME_TCP_SEND_DDGST)
1341 ret = nvme_tcp_try_send_ddgst(req);
1343 if (ret == -EAGAIN) {
1345 } else if (ret < 0) {
1346 dev_err(queue->ctrl->ctrl.device,
1347 "failed to send request %d\n", ret);
1348 nvme_tcp_fail_request(queue->request);
1349 nvme_tcp_done_send_req(queue);
1352 memalloc_noreclaim_restore(noreclaim_flag);
1356 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1358 struct socket *sock = queue->sock;
1359 struct sock *sk = sock->sk;
1360 read_descriptor_t rd_desc;
1363 rd_desc.arg.data = queue;
1367 consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1369 return consumed == -EAGAIN ? 0 : consumed;
1372 static void nvme_tcp_io_work(struct work_struct *w)
1374 struct nvme_tcp_queue *queue =
1375 container_of(w, struct nvme_tcp_queue, io_work);
1376 unsigned long deadline = jiffies + msecs_to_jiffies(1);
1379 bool pending = false;
1382 if (mutex_trylock(&queue->send_mutex)) {
1383 result = nvme_tcp_try_send(queue);
1384 mutex_unlock(&queue->send_mutex);
1387 else if (unlikely(result < 0))
1391 result = nvme_tcp_try_recv(queue);
1394 else if (unlikely(result < 0))
1397 /* did we get some space after spending time in recv? */
1398 if (nvme_tcp_queue_has_pending(queue) &&
1399 sk_stream_is_writeable(queue->sock->sk))
1402 if (!pending || !queue->rd_enabled)
1405 } while (!time_after(jiffies, deadline)); /* quota is exhausted */
1407 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1410 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1412 struct nvme_tcp_request *async = &ctrl->async_req;
1414 page_frag_free(async->pdu);
1417 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1419 struct nvme_tcp_queue *queue = &ctrl->queues[0];
1420 struct nvme_tcp_request *async = &ctrl->async_req;
1421 u8 hdgst = nvme_tcp_hdgst_len(queue);
1423 async->pdu = page_frag_alloc(&queue->pf_cache,
1424 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1425 GFP_KERNEL | __GFP_ZERO);
1429 async->queue = &ctrl->queues[0];
1433 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1435 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1436 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1437 unsigned int noreclaim_flag;
1439 if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1442 page_frag_cache_drain(&queue->pf_cache);
1444 noreclaim_flag = memalloc_noreclaim_save();
1445 /* ->sock will be released by fput() */
1446 fput(queue->sock->file);
1448 memalloc_noreclaim_restore(noreclaim_flag);
1451 mutex_destroy(&queue->send_mutex);
1452 mutex_destroy(&queue->queue_lock);
1455 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1457 struct nvme_tcp_icreq_pdu *icreq;
1458 struct nvme_tcp_icresp_pdu *icresp;
1459 char cbuf[CMSG_LEN(sizeof(char))] = {};
1461 struct msghdr msg = {};
1463 bool ctrl_hdgst, ctrl_ddgst;
1467 icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1471 icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1477 icreq->hdr.type = nvme_tcp_icreq;
1478 icreq->hdr.hlen = sizeof(*icreq);
1480 icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1481 icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1482 icreq->maxr2t = 0; /* single inflight r2t supported */
1483 icreq->hpda = 0; /* no alignment constraint */
1484 if (queue->hdr_digest)
1485 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1486 if (queue->data_digest)
1487 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1489 iov.iov_base = icreq;
1490 iov.iov_len = sizeof(*icreq);
1491 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1493 pr_warn("queue %d: failed to send icreq, error %d\n",
1494 nvme_tcp_queue_id(queue), ret);
1498 memset(&msg, 0, sizeof(msg));
1499 iov.iov_base = icresp;
1500 iov.iov_len = sizeof(*icresp);
1501 if (nvme_tcp_queue_tls(queue)) {
1502 msg.msg_control = cbuf;
1503 msg.msg_controllen = sizeof(cbuf);
1505 msg.msg_flags = MSG_WAITALL;
1506 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1507 iov.iov_len, msg.msg_flags);
1508 if (ret >= 0 && ret < sizeof(*icresp))
1511 pr_warn("queue %d: failed to receive icresp, error %d\n",
1512 nvme_tcp_queue_id(queue), ret);
1516 if (nvme_tcp_queue_tls(queue)) {
1517 ctype = tls_get_record_type(queue->sock->sk,
1518 (struct cmsghdr *)cbuf);
1519 if (ctype != TLS_RECORD_TYPE_DATA) {
1520 pr_err("queue %d: unhandled TLS record %d\n",
1521 nvme_tcp_queue_id(queue), ctype);
1526 if (icresp->hdr.type != nvme_tcp_icresp) {
1527 pr_err("queue %d: bad type returned %d\n",
1528 nvme_tcp_queue_id(queue), icresp->hdr.type);
1532 if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1533 pr_err("queue %d: bad pdu length returned %d\n",
1534 nvme_tcp_queue_id(queue), icresp->hdr.plen);
1538 if (icresp->pfv != NVME_TCP_PFV_1_0) {
1539 pr_err("queue %d: bad pfv returned %d\n",
1540 nvme_tcp_queue_id(queue), icresp->pfv);
1544 ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1545 if ((queue->data_digest && !ctrl_ddgst) ||
1546 (!queue->data_digest && ctrl_ddgst)) {
1547 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1548 nvme_tcp_queue_id(queue),
1549 queue->data_digest ? "enabled" : "disabled",
1550 ctrl_ddgst ? "enabled" : "disabled");
1554 ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1555 if ((queue->hdr_digest && !ctrl_hdgst) ||
1556 (!queue->hdr_digest && ctrl_hdgst)) {
1557 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1558 nvme_tcp_queue_id(queue),
1559 queue->hdr_digest ? "enabled" : "disabled",
1560 ctrl_hdgst ? "enabled" : "disabled");
1564 if (icresp->cpda != 0) {
1565 pr_err("queue %d: unsupported cpda returned %d\n",
1566 nvme_tcp_queue_id(queue), icresp->cpda);
1570 maxh2cdata = le32_to_cpu(icresp->maxdata);
1571 if ((maxh2cdata % 4) || (maxh2cdata < NVME_TCP_MIN_MAXH2CDATA)) {
1572 pr_err("queue %d: invalid maxh2cdata returned %u\n",
1573 nvme_tcp_queue_id(queue), maxh2cdata);
1576 queue->maxh2cdata = maxh2cdata;
1586 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1588 return nvme_tcp_queue_id(queue) == 0;
1591 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1593 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1594 int qid = nvme_tcp_queue_id(queue);
1596 return !nvme_tcp_admin_queue(queue) &&
1597 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1600 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1602 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1603 int qid = nvme_tcp_queue_id(queue);
1605 return !nvme_tcp_admin_queue(queue) &&
1606 !nvme_tcp_default_queue(queue) &&
1607 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1608 ctrl->io_queues[HCTX_TYPE_READ];
1611 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1613 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1614 int qid = nvme_tcp_queue_id(queue);
1616 return !nvme_tcp_admin_queue(queue) &&
1617 !nvme_tcp_default_queue(queue) &&
1618 !nvme_tcp_read_queue(queue) &&
1619 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1620 ctrl->io_queues[HCTX_TYPE_READ] +
1621 ctrl->io_queues[HCTX_TYPE_POLL];
1625 * Track the number of queues assigned to each cpu using a global per-cpu
1626 * counter and select the least used cpu from the mq_map. Our goal is to spread
1627 * different controllers I/O threads across different cpu cores.
1629 * Note that the accounting is not 100% perfect, but we don't need to be, we're
1630 * simply putting our best effort to select the best candidate cpu core that we
1631 * find at any given point.
1633 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1635 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1636 struct blk_mq_tag_set *set = &ctrl->tag_set;
1637 int qid = nvme_tcp_queue_id(queue) - 1;
1638 unsigned int *mq_map = NULL;
1639 int cpu, min_queues = INT_MAX, io_cpu;
1644 if (nvme_tcp_default_queue(queue))
1645 mq_map = set->map[HCTX_TYPE_DEFAULT].mq_map;
1646 else if (nvme_tcp_read_queue(queue))
1647 mq_map = set->map[HCTX_TYPE_READ].mq_map;
1648 else if (nvme_tcp_poll_queue(queue))
1649 mq_map = set->map[HCTX_TYPE_POLL].mq_map;
1651 if (WARN_ON(!mq_map))
1654 /* Search for the least used cpu from the mq_map */
1655 io_cpu = WORK_CPU_UNBOUND;
1656 for_each_online_cpu(cpu) {
1657 int num_queues = atomic_read(&nvme_tcp_cpu_queues[cpu]);
1659 if (mq_map[cpu] != qid)
1661 if (num_queues < min_queues) {
1663 min_queues = num_queues;
1666 if (io_cpu != WORK_CPU_UNBOUND) {
1667 queue->io_cpu = io_cpu;
1668 atomic_inc(&nvme_tcp_cpu_queues[io_cpu]);
1669 set_bit(NVME_TCP_Q_IO_CPU_SET, &queue->flags);
1672 dev_dbg(ctrl->ctrl.device, "queue %d: using cpu %d\n",
1673 qid, queue->io_cpu);
1676 static void nvme_tcp_tls_done(void *data, int status, key_serial_t pskid)
1678 struct nvme_tcp_queue *queue = data;
1679 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1680 int qid = nvme_tcp_queue_id(queue);
1681 struct key *tls_key;
1683 dev_dbg(ctrl->ctrl.device, "queue %d: TLS handshake done, key %x, status %d\n",
1684 qid, pskid, status);
1687 queue->tls_err = -status;
1691 tls_key = nvme_tls_key_lookup(pskid);
1692 if (IS_ERR(tls_key)) {
1693 dev_warn(ctrl->ctrl.device, "queue %d: Invalid key %x\n",
1695 queue->tls_err = -ENOKEY;
1697 queue->tls_enabled = true;
1699 ctrl->ctrl.tls_pskid = key_serial(tls_key);
1705 complete(&queue->tls_complete);
1708 static int nvme_tcp_start_tls(struct nvme_ctrl *nctrl,
1709 struct nvme_tcp_queue *queue,
1712 int qid = nvme_tcp_queue_id(queue);
1714 struct tls_handshake_args args;
1715 unsigned long tmo = tls_handshake_timeout * HZ;
1716 key_serial_t keyring = nvme_keyring_id();
1718 dev_dbg(nctrl->device, "queue %d: start TLS with key %x\n",
1720 memset(&args, 0, sizeof(args));
1721 args.ta_sock = queue->sock;
1722 args.ta_done = nvme_tcp_tls_done;
1723 args.ta_data = queue;
1724 args.ta_my_peerids[0] = pskid;
1725 args.ta_num_peerids = 1;
1726 if (nctrl->opts->keyring)
1727 keyring = key_serial(nctrl->opts->keyring);
1728 args.ta_keyring = keyring;
1729 args.ta_timeout_ms = tls_handshake_timeout * 1000;
1730 queue->tls_err = -EOPNOTSUPP;
1731 init_completion(&queue->tls_complete);
1732 ret = tls_client_hello_psk(&args, GFP_KERNEL);
1734 dev_err(nctrl->device, "queue %d: failed to start TLS: %d\n",
1738 ret = wait_for_completion_interruptible_timeout(&queue->tls_complete, tmo);
1743 dev_err(nctrl->device,
1744 "queue %d: TLS handshake failed, error %d\n",
1746 tls_handshake_cancel(queue->sock->sk);
1748 dev_dbg(nctrl->device,
1749 "queue %d: TLS handshake complete, error %d\n",
1750 qid, queue->tls_err);
1751 ret = queue->tls_err;
1756 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, int qid,
1759 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1760 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1761 int ret, rcv_pdu_size;
1762 struct file *sock_file;
1764 mutex_init(&queue->queue_lock);
1766 init_llist_head(&queue->req_list);
1767 INIT_LIST_HEAD(&queue->send_list);
1768 mutex_init(&queue->send_mutex);
1769 INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1772 queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1774 queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1775 NVME_TCP_ADMIN_CCSZ;
1777 ret = sock_create_kern(current->nsproxy->net_ns,
1778 ctrl->addr.ss_family, SOCK_STREAM,
1779 IPPROTO_TCP, &queue->sock);
1781 dev_err(nctrl->device,
1782 "failed to create socket: %d\n", ret);
1783 goto err_destroy_mutex;
1786 sock_file = sock_alloc_file(queue->sock, O_CLOEXEC, NULL);
1787 if (IS_ERR(sock_file)) {
1788 ret = PTR_ERR(sock_file);
1789 goto err_destroy_mutex;
1792 sk_net_refcnt_upgrade(queue->sock->sk);
1793 nvme_tcp_reclassify_socket(queue->sock);
1795 /* Single syn retry */
1796 tcp_sock_set_syncnt(queue->sock->sk, 1);
1798 /* Set TCP no delay */
1799 tcp_sock_set_nodelay(queue->sock->sk);
1802 * Cleanup whatever is sitting in the TCP transmit queue on socket
1803 * close. This is done to prevent stale data from being sent should
1804 * the network connection be restored before TCP times out.
1806 sock_no_linger(queue->sock->sk);
1808 if (so_priority > 0)
1809 sock_set_priority(queue->sock->sk, so_priority);
1811 /* Set socket type of service */
1812 if (nctrl->opts->tos >= 0)
1813 ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1815 /* Set 10 seconds timeout for icresp recvmsg */
1816 queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1818 queue->sock->sk->sk_allocation = GFP_ATOMIC;
1819 queue->sock->sk->sk_use_task_frag = false;
1820 queue->io_cpu = WORK_CPU_UNBOUND;
1821 queue->request = NULL;
1822 queue->data_remaining = 0;
1823 queue->ddgst_remaining = 0;
1824 queue->pdu_remaining = 0;
1825 queue->pdu_offset = 0;
1826 sk_set_memalloc(queue->sock->sk);
1828 if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1829 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1830 sizeof(ctrl->src_addr));
1832 dev_err(nctrl->device,
1833 "failed to bind queue %d socket %d\n",
1839 if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) {
1840 char *iface = nctrl->opts->host_iface;
1841 sockptr_t optval = KERNEL_SOCKPTR(iface);
1843 ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE,
1844 optval, strlen(iface));
1846 dev_err(nctrl->device,
1847 "failed to bind to interface %s queue %d err %d\n",
1853 queue->hdr_digest = nctrl->opts->hdr_digest;
1854 queue->data_digest = nctrl->opts->data_digest;
1856 rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1857 nvme_tcp_hdgst_len(queue);
1858 queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1864 dev_dbg(nctrl->device, "connecting queue %d\n",
1865 nvme_tcp_queue_id(queue));
1867 ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1868 sizeof(ctrl->addr), 0);
1870 dev_err(nctrl->device,
1871 "failed to connect socket: %d\n", ret);
1875 /* If PSKs are configured try to start TLS */
1876 if (nvme_tcp_tls_configured(nctrl) && pskid) {
1877 ret = nvme_tcp_start_tls(nctrl, queue, pskid);
1879 goto err_init_connect;
1882 ret = nvme_tcp_init_connection(queue);
1884 goto err_init_connect;
1886 set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1891 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1895 /* ->sock will be released by fput() */
1896 fput(queue->sock->file);
1899 mutex_destroy(&queue->send_mutex);
1900 mutex_destroy(&queue->queue_lock);
1904 static void nvme_tcp_restore_sock_ops(struct nvme_tcp_queue *queue)
1906 struct socket *sock = queue->sock;
1908 write_lock_bh(&sock->sk->sk_callback_lock);
1909 sock->sk->sk_user_data = NULL;
1910 sock->sk->sk_data_ready = queue->data_ready;
1911 sock->sk->sk_state_change = queue->state_change;
1912 sock->sk->sk_write_space = queue->write_space;
1913 write_unlock_bh(&sock->sk->sk_callback_lock);
1916 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1918 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1919 nvme_tcp_restore_sock_ops(queue);
1920 cancel_work_sync(&queue->io_work);
1923 static void nvme_tcp_stop_queue_nowait(struct nvme_ctrl *nctrl, int qid)
1925 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1926 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1928 if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1931 if (test_and_clear_bit(NVME_TCP_Q_IO_CPU_SET, &queue->flags))
1932 atomic_dec(&nvme_tcp_cpu_queues[queue->io_cpu]);
1934 mutex_lock(&queue->queue_lock);
1935 if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1936 __nvme_tcp_stop_queue(queue);
1937 /* Stopping the queue will disable TLS */
1938 queue->tls_enabled = false;
1939 mutex_unlock(&queue->queue_lock);
1942 static void nvme_tcp_wait_queue(struct nvme_ctrl *nctrl, int qid)
1944 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1945 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1948 while (timeout > 0) {
1949 if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags) ||
1950 !sk_wmem_alloc_get(queue->sock->sk))
1955 dev_warn(nctrl->device,
1956 "qid %d: timeout draining sock wmem allocation expired\n",
1960 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1962 nvme_tcp_stop_queue_nowait(nctrl, qid);
1963 nvme_tcp_wait_queue(nctrl, qid);
1967 static void nvme_tcp_setup_sock_ops(struct nvme_tcp_queue *queue)
1969 write_lock_bh(&queue->sock->sk->sk_callback_lock);
1970 queue->sock->sk->sk_user_data = queue;
1971 queue->state_change = queue->sock->sk->sk_state_change;
1972 queue->data_ready = queue->sock->sk->sk_data_ready;
1973 queue->write_space = queue->sock->sk->sk_write_space;
1974 queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1975 queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1976 queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1977 #ifdef CONFIG_NET_RX_BUSY_POLL
1978 queue->sock->sk->sk_ll_usec = 1;
1980 write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1983 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1985 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1986 struct nvme_tcp_queue *queue = &ctrl->queues[idx];
1989 queue->rd_enabled = true;
1990 nvme_tcp_init_recv_ctx(queue);
1991 nvme_tcp_setup_sock_ops(queue);
1994 nvme_tcp_set_queue_io_cpu(queue);
1995 ret = nvmf_connect_io_queue(nctrl, idx);
1997 ret = nvmf_connect_admin_queue(nctrl);
2000 set_bit(NVME_TCP_Q_LIVE, &queue->flags);
2002 if (test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
2003 __nvme_tcp_stop_queue(queue);
2004 dev_err(nctrl->device,
2005 "failed to connect queue: %d ret=%d\n", idx, ret);
2010 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
2012 if (to_tcp_ctrl(ctrl)->async_req.pdu) {
2013 cancel_work_sync(&ctrl->async_event_work);
2014 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
2015 to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
2018 nvme_tcp_free_queue(ctrl, 0);
2021 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
2025 for (i = 1; i < ctrl->queue_count; i++)
2026 nvme_tcp_free_queue(ctrl, i);
2029 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
2033 for (i = 1; i < ctrl->queue_count; i++)
2034 nvme_tcp_stop_queue_nowait(ctrl, i);
2035 for (i = 1; i < ctrl->queue_count; i++)
2036 nvme_tcp_wait_queue(ctrl, i);
2039 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl,
2040 int first, int last)
2044 for (i = first; i < last; i++) {
2045 ret = nvme_tcp_start_queue(ctrl, i);
2047 goto out_stop_queues;
2053 for (i--; i >= first; i--)
2054 nvme_tcp_stop_queue(ctrl, i);
2058 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
2061 key_serial_t pskid = 0;
2063 if (nvme_tcp_tls_configured(ctrl)) {
2064 if (ctrl->opts->tls_key)
2065 pskid = key_serial(ctrl->opts->tls_key);
2066 else if (ctrl->opts->tls) {
2067 pskid = nvme_tls_psk_default(ctrl->opts->keyring,
2068 ctrl->opts->host->nqn,
2069 ctrl->opts->subsysnqn);
2071 dev_err(ctrl->device, "no valid PSK found\n");
2077 ret = nvme_tcp_alloc_queue(ctrl, 0, pskid);
2081 ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
2083 goto out_free_queue;
2088 nvme_tcp_free_queue(ctrl, 0);
2092 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
2096 if (nvme_tcp_tls_configured(ctrl)) {
2097 if (ctrl->opts->concat) {
2099 * The generated PSK is stored in the
2102 if (!ctrl->opts->tls_key) {
2103 dev_err(ctrl->device, "no PSK generated\n");
2106 if (ctrl->tls_pskid &&
2107 ctrl->tls_pskid != key_serial(ctrl->opts->tls_key)) {
2108 dev_err(ctrl->device, "Stale PSK id %08x\n", ctrl->tls_pskid);
2109 ctrl->tls_pskid = 0;
2111 } else if (!ctrl->tls_pskid) {
2112 dev_err(ctrl->device, "no PSK negotiated\n");
2117 for (i = 1; i < ctrl->queue_count; i++) {
2118 ret = nvme_tcp_alloc_queue(ctrl, i,
2121 goto out_free_queues;
2127 for (i--; i >= 1; i--)
2128 nvme_tcp_free_queue(ctrl, i);
2133 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
2135 unsigned int nr_io_queues;
2138 nr_io_queues = nvmf_nr_io_queues(ctrl->opts);
2139 ret = nvme_set_queue_count(ctrl, &nr_io_queues);
2143 if (nr_io_queues == 0) {
2144 dev_err(ctrl->device,
2145 "unable to set any I/O queues\n");
2149 ctrl->queue_count = nr_io_queues + 1;
2150 dev_info(ctrl->device,
2151 "creating %d I/O queues.\n", nr_io_queues);
2153 nvmf_set_io_queues(ctrl->opts, nr_io_queues,
2154 to_tcp_ctrl(ctrl)->io_queues);
2155 return __nvme_tcp_alloc_io_queues(ctrl);
2158 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
2162 ret = nvme_tcp_alloc_io_queues(ctrl);
2167 ret = nvme_alloc_io_tag_set(ctrl, &to_tcp_ctrl(ctrl)->tag_set,
2169 ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2,
2170 sizeof(struct nvme_tcp_request));
2172 goto out_free_io_queues;
2176 * Only start IO queues for which we have allocated the tagset
2177 * and limitted it to the available queues. On reconnects, the
2178 * queue number might have changed.
2180 nr_queues = min(ctrl->tagset->nr_hw_queues + 1, ctrl->queue_count);
2181 ret = nvme_tcp_start_io_queues(ctrl, 1, nr_queues);
2183 goto out_cleanup_connect_q;
2186 nvme_start_freeze(ctrl);
2187 nvme_unquiesce_io_queues(ctrl);
2188 if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
2190 * If we timed out waiting for freeze we are likely to
2191 * be stuck. Fail the controller initialization just
2195 nvme_unfreeze(ctrl);
2196 goto out_wait_freeze_timed_out;
2198 blk_mq_update_nr_hw_queues(ctrl->tagset,
2199 ctrl->queue_count - 1);
2200 nvme_unfreeze(ctrl);
2204 * If the number of queues has increased (reconnect case)
2205 * start all new queues now.
2207 ret = nvme_tcp_start_io_queues(ctrl, nr_queues,
2208 ctrl->tagset->nr_hw_queues + 1);
2210 goto out_wait_freeze_timed_out;
2214 out_wait_freeze_timed_out:
2215 nvme_quiesce_io_queues(ctrl);
2216 nvme_sync_io_queues(ctrl);
2217 nvme_tcp_stop_io_queues(ctrl);
2218 out_cleanup_connect_q:
2219 nvme_cancel_tagset(ctrl);
2221 nvme_remove_io_tag_set(ctrl);
2223 nvme_tcp_free_io_queues(ctrl);
2227 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
2231 error = nvme_tcp_alloc_admin_queue(ctrl);
2236 error = nvme_alloc_admin_tag_set(ctrl,
2237 &to_tcp_ctrl(ctrl)->admin_tag_set,
2238 &nvme_tcp_admin_mq_ops,
2239 sizeof(struct nvme_tcp_request));
2241 goto out_free_queue;
2244 error = nvme_tcp_start_queue(ctrl, 0);
2246 goto out_cleanup_tagset;
2248 error = nvme_enable_ctrl(ctrl);
2250 goto out_stop_queue;
2252 nvme_unquiesce_admin_queue(ctrl);
2254 error = nvme_init_ctrl_finish(ctrl, false);
2256 goto out_quiesce_queue;
2261 nvme_quiesce_admin_queue(ctrl);
2262 blk_sync_queue(ctrl->admin_q);
2264 nvme_tcp_stop_queue(ctrl, 0);
2265 nvme_cancel_admin_tagset(ctrl);
2268 nvme_remove_admin_tag_set(ctrl);
2270 nvme_tcp_free_admin_queue(ctrl);
2274 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
2277 nvme_quiesce_admin_queue(ctrl);
2278 blk_sync_queue(ctrl->admin_q);
2279 nvme_tcp_stop_queue(ctrl, 0);
2280 nvme_cancel_admin_tagset(ctrl);
2282 nvme_unquiesce_admin_queue(ctrl);
2283 nvme_remove_admin_tag_set(ctrl);
2285 nvme_tcp_free_admin_queue(ctrl);
2286 if (ctrl->tls_pskid) {
2287 dev_dbg(ctrl->device, "Wipe negotiated TLS_PSK %08x\n",
2289 ctrl->tls_pskid = 0;
2293 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
2296 if (ctrl->queue_count <= 1)
2298 nvme_quiesce_io_queues(ctrl);
2299 nvme_sync_io_queues(ctrl);
2300 nvme_tcp_stop_io_queues(ctrl);
2301 nvme_cancel_tagset(ctrl);
2303 nvme_unquiesce_io_queues(ctrl);
2304 nvme_remove_io_tag_set(ctrl);
2306 nvme_tcp_free_io_queues(ctrl);
2309 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl,
2312 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2314 /* If we are resetting/deleting then do nothing */
2315 if (state != NVME_CTRL_CONNECTING) {
2316 WARN_ON_ONCE(state == NVME_CTRL_NEW || state == NVME_CTRL_LIVE);
2320 if (nvmf_should_reconnect(ctrl, status)) {
2321 dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
2322 ctrl->opts->reconnect_delay);
2323 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
2324 ctrl->opts->reconnect_delay * HZ);
2326 dev_info(ctrl->device, "Removing controller (%d)...\n",
2328 nvme_delete_ctrl(ctrl);
2333 * The TLS key is set by secure concatenation after negotiation has been
2334 * completed on the admin queue. We need to revoke the key when:
2335 * - concatenation is enabled (otherwise it's a static key set by the user)
2337 * - the generated key is present in ctrl->tls_key (otherwise there's nothing
2340 * - a valid PSK key ID has been set in ctrl->tls_pskid (otherwise TLS
2341 * negotiation has not run).
2343 * We cannot always revoke the key as nvme_tcp_alloc_admin_queue() is called
2344 * twice during secure concatenation, once on a 'normal' connection to run the
2345 * DH-HMAC-CHAP negotiation (which generates the key, so it _must not_ be set),
2346 * and once after the negotiation (which uses the key, so it _must_ be set).
2348 static bool nvme_tcp_key_revoke_needed(struct nvme_ctrl *ctrl)
2350 return ctrl->opts->concat && ctrl->opts->tls_key && ctrl->tls_pskid;
2353 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
2355 struct nvmf_ctrl_options *opts = ctrl->opts;
2358 ret = nvme_tcp_configure_admin_queue(ctrl, new);
2362 if (ctrl->opts->concat && !ctrl->tls_pskid) {
2363 /* See comments for nvme_tcp_key_revoke_needed() */
2364 dev_dbg(ctrl->device, "restart admin queue for secure concatenation\n");
2365 nvme_stop_keep_alive(ctrl);
2366 nvme_tcp_teardown_admin_queue(ctrl, false);
2367 ret = nvme_tcp_configure_admin_queue(ctrl, false);
2374 dev_err(ctrl->device, "icdoff is not supported!\n");
2378 if (!nvme_ctrl_sgl_supported(ctrl)) {
2380 dev_err(ctrl->device, "Mandatory sgls are not supported!\n");
2384 if (opts->queue_size > ctrl->sqsize + 1)
2385 dev_warn(ctrl->device,
2386 "queue_size %zu > ctrl sqsize %u, clamping down\n",
2387 opts->queue_size, ctrl->sqsize + 1);
2389 if (ctrl->sqsize + 1 > ctrl->maxcmd) {
2390 dev_warn(ctrl->device,
2391 "sqsize %u > ctrl maxcmd %u, clamping down\n",
2392 ctrl->sqsize + 1, ctrl->maxcmd);
2393 ctrl->sqsize = ctrl->maxcmd - 1;
2396 if (ctrl->queue_count > 1) {
2397 ret = nvme_tcp_configure_io_queues(ctrl, new);
2402 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
2404 * state change failure is ok if we started ctrl delete,
2405 * unless we're during creation of a new controller to
2406 * avoid races with teardown flow.
2408 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2410 WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2411 state != NVME_CTRL_DELETING_NOIO);
2417 nvme_start_ctrl(ctrl);
2421 if (ctrl->queue_count > 1) {
2422 nvme_quiesce_io_queues(ctrl);
2423 nvme_sync_io_queues(ctrl);
2424 nvme_tcp_stop_io_queues(ctrl);
2425 nvme_cancel_tagset(ctrl);
2427 nvme_remove_io_tag_set(ctrl);
2428 nvme_tcp_free_io_queues(ctrl);
2431 nvme_stop_keep_alive(ctrl);
2432 nvme_tcp_teardown_admin_queue(ctrl, new);
2436 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
2438 struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2439 struct nvme_tcp_ctrl, connect_work);
2440 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2443 ++ctrl->nr_reconnects;
2445 ret = nvme_tcp_setup_ctrl(ctrl, false);
2449 dev_info(ctrl->device, "Successfully reconnected (attempt %d/%d)\n",
2450 ctrl->nr_reconnects, ctrl->opts->max_reconnects);
2452 ctrl->nr_reconnects = 0;
2457 dev_info(ctrl->device, "Failed reconnect attempt %d/%d\n",
2458 ctrl->nr_reconnects, ctrl->opts->max_reconnects);
2459 nvme_tcp_reconnect_or_remove(ctrl, ret);
2462 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2464 struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2465 struct nvme_tcp_ctrl, err_work);
2466 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2468 if (nvme_tcp_key_revoke_needed(ctrl))
2469 nvme_auth_revoke_tls_key(ctrl);
2470 nvme_stop_keep_alive(ctrl);
2471 flush_work(&ctrl->async_event_work);
2472 nvme_tcp_teardown_io_queues(ctrl, false);
2473 /* unquiesce to fail fast pending requests */
2474 nvme_unquiesce_io_queues(ctrl);
2475 nvme_tcp_teardown_admin_queue(ctrl, false);
2476 nvme_unquiesce_admin_queue(ctrl);
2477 nvme_auth_stop(ctrl);
2479 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2480 /* state change failure is ok if we started ctrl delete */
2481 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2483 WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2484 state != NVME_CTRL_DELETING_NOIO);
2488 nvme_tcp_reconnect_or_remove(ctrl, 0);
2491 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2493 nvme_tcp_teardown_io_queues(ctrl, shutdown);
2494 nvme_quiesce_admin_queue(ctrl);
2495 nvme_disable_ctrl(ctrl, shutdown);
2496 nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2499 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2501 nvme_tcp_teardown_ctrl(ctrl, true);
2504 static void nvme_reset_ctrl_work(struct work_struct *work)
2506 struct nvme_ctrl *ctrl =
2507 container_of(work, struct nvme_ctrl, reset_work);
2510 if (nvme_tcp_key_revoke_needed(ctrl))
2511 nvme_auth_revoke_tls_key(ctrl);
2512 nvme_stop_ctrl(ctrl);
2513 nvme_tcp_teardown_ctrl(ctrl, false);
2515 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2516 /* state change failure is ok if we started ctrl delete */
2517 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2519 WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2520 state != NVME_CTRL_DELETING_NOIO);
2524 ret = nvme_tcp_setup_ctrl(ctrl, false);
2531 ++ctrl->nr_reconnects;
2532 nvme_tcp_reconnect_or_remove(ctrl, ret);
2535 static void nvme_tcp_stop_ctrl(struct nvme_ctrl *ctrl)
2537 flush_work(&to_tcp_ctrl(ctrl)->err_work);
2538 cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2541 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2543 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2545 if (list_empty(&ctrl->list))
2548 mutex_lock(&nvme_tcp_ctrl_mutex);
2549 list_del(&ctrl->list);
2550 mutex_unlock(&nvme_tcp_ctrl_mutex);
2552 nvmf_free_options(nctrl->opts);
2554 kfree(ctrl->queues);
2558 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2560 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2564 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2565 NVME_SGL_FMT_TRANSPORT_A;
2568 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2569 struct nvme_command *c, u32 data_len)
2571 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2573 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2574 sg->length = cpu_to_le32(data_len);
2575 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2578 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2581 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2584 sg->length = cpu_to_le32(data_len);
2585 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2586 NVME_SGL_FMT_TRANSPORT_A;
2589 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2591 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2592 struct nvme_tcp_queue *queue = &ctrl->queues[0];
2593 struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2594 struct nvme_command *cmd = &pdu->cmd;
2595 u8 hdgst = nvme_tcp_hdgst_len(queue);
2597 memset(pdu, 0, sizeof(*pdu));
2598 pdu->hdr.type = nvme_tcp_cmd;
2599 if (queue->hdr_digest)
2600 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2601 pdu->hdr.hlen = sizeof(*pdu);
2602 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2604 cmd->common.opcode = nvme_admin_async_event;
2605 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2606 cmd->common.flags |= NVME_CMD_SGL_METABUF;
2607 nvme_tcp_set_sg_null(cmd);
2609 ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2610 ctrl->async_req.offset = 0;
2611 ctrl->async_req.curr_bio = NULL;
2612 ctrl->async_req.data_len = 0;
2613 init_llist_node(&ctrl->async_req.lentry);
2614 INIT_LIST_HEAD(&ctrl->async_req.entry);
2616 nvme_tcp_queue_request(&ctrl->async_req, true);
2619 static void nvme_tcp_complete_timed_out(struct request *rq)
2621 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2622 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2624 nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2625 nvmf_complete_timed_out_request(rq);
2628 static enum blk_eh_timer_return nvme_tcp_timeout(struct request *rq)
2630 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2631 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2632 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2633 struct nvme_command *cmd = &pdu->cmd;
2634 int qid = nvme_tcp_queue_id(req->queue);
2636 dev_warn(ctrl->device,
2637 "I/O tag %d (%04x) type %d opcode %#x (%s) QID %d timeout\n",
2638 rq->tag, nvme_cid(rq), pdu->hdr.type, cmd->common.opcode,
2639 nvme_fabrics_opcode_str(qid, cmd), qid);
2641 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) {
2643 * If we are resetting, connecting or deleting we should
2644 * complete immediately because we may block controller
2645 * teardown or setup sequence
2646 * - ctrl disable/shutdown fabrics requests
2647 * - connect requests
2648 * - initialization admin requests
2649 * - I/O requests that entered after unquiescing and
2650 * the controller stopped responding
2652 * All other requests should be cancelled by the error
2653 * recovery work, so it's fine that we fail it here.
2655 nvme_tcp_complete_timed_out(rq);
2660 * LIVE state should trigger the normal error recovery which will
2661 * handle completing this request.
2663 nvme_tcp_error_recovery(ctrl);
2664 return BLK_EH_RESET_TIMER;
2667 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2670 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2671 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2672 struct nvme_command *c = &pdu->cmd;
2674 c->common.flags |= NVME_CMD_SGL_METABUF;
2676 if (!blk_rq_nr_phys_segments(rq))
2677 nvme_tcp_set_sg_null(c);
2678 else if (rq_data_dir(rq) == WRITE &&
2679 req->data_len <= nvme_tcp_inline_data_size(req))
2680 nvme_tcp_set_sg_inline(queue, c, req->data_len);
2682 nvme_tcp_set_sg_host_data(c, req->data_len);
2687 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2690 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2691 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2692 struct nvme_tcp_queue *queue = req->queue;
2693 u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2696 ret = nvme_setup_cmd(ns, rq);
2700 req->state = NVME_TCP_SEND_CMD_PDU;
2701 req->status = cpu_to_le16(NVME_SC_SUCCESS);
2706 req->h2cdata_left = 0;
2707 req->data_len = blk_rq_nr_phys_segments(rq) ?
2708 blk_rq_payload_bytes(rq) : 0;
2709 req->curr_bio = rq->bio;
2710 if (req->curr_bio && req->data_len)
2711 nvme_tcp_init_iter(req, rq_data_dir(rq));
2713 if (rq_data_dir(rq) == WRITE &&
2714 req->data_len <= nvme_tcp_inline_data_size(req))
2715 req->pdu_len = req->data_len;
2717 pdu->hdr.type = nvme_tcp_cmd;
2719 if (queue->hdr_digest)
2720 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2721 if (queue->data_digest && req->pdu_len) {
2722 pdu->hdr.flags |= NVME_TCP_F_DDGST;
2723 ddgst = nvme_tcp_ddgst_len(queue);
2725 pdu->hdr.hlen = sizeof(*pdu);
2726 pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2728 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2730 ret = nvme_tcp_map_data(queue, rq);
2731 if (unlikely(ret)) {
2732 nvme_cleanup_cmd(rq);
2733 dev_err(queue->ctrl->ctrl.device,
2734 "Failed to map data (%d)\n", ret);
2741 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2743 struct nvme_tcp_queue *queue = hctx->driver_data;
2745 if (!llist_empty(&queue->req_list))
2746 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2749 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2750 const struct blk_mq_queue_data *bd)
2752 struct nvme_ns *ns = hctx->queue->queuedata;
2753 struct nvme_tcp_queue *queue = hctx->driver_data;
2754 struct request *rq = bd->rq;
2755 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2756 bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2759 if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2760 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2762 ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2766 nvme_start_request(rq);
2768 nvme_tcp_queue_request(req, bd->last);
2773 static void nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2775 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
2777 nvmf_map_queues(set, &ctrl->ctrl, ctrl->io_queues);
2780 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
2782 struct nvme_tcp_queue *queue = hctx->driver_data;
2783 struct sock *sk = queue->sock->sk;
2786 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2789 set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2790 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2791 sk_busy_loop(sk, true);
2792 ret = nvme_tcp_try_recv(queue);
2793 clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2794 return ret < 0 ? ret : queue->nr_cqe;
2797 static int nvme_tcp_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2799 struct nvme_tcp_queue *queue = &to_tcp_ctrl(ctrl)->queues[0];
2800 struct sockaddr_storage src_addr;
2803 len = nvmf_get_address(ctrl, buf, size);
2805 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2808 mutex_lock(&queue->queue_lock);
2810 ret = kernel_getsockname(queue->sock, (struct sockaddr *)&src_addr);
2813 len--; /* strip trailing newline */
2814 len += scnprintf(buf + len, size - len, "%ssrc_addr=%pISc\n",
2815 (len) ? "," : "", &src_addr);
2818 mutex_unlock(&queue->queue_lock);
2823 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2824 .queue_rq = nvme_tcp_queue_rq,
2825 .commit_rqs = nvme_tcp_commit_rqs,
2826 .complete = nvme_complete_rq,
2827 .init_request = nvme_tcp_init_request,
2828 .exit_request = nvme_tcp_exit_request,
2829 .init_hctx = nvme_tcp_init_hctx,
2830 .timeout = nvme_tcp_timeout,
2831 .map_queues = nvme_tcp_map_queues,
2832 .poll = nvme_tcp_poll,
2835 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2836 .queue_rq = nvme_tcp_queue_rq,
2837 .complete = nvme_complete_rq,
2838 .init_request = nvme_tcp_init_request,
2839 .exit_request = nvme_tcp_exit_request,
2840 .init_hctx = nvme_tcp_init_admin_hctx,
2841 .timeout = nvme_tcp_timeout,
2844 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2846 .module = THIS_MODULE,
2847 .flags = NVME_F_FABRICS | NVME_F_BLOCKING,
2848 .reg_read32 = nvmf_reg_read32,
2849 .reg_read64 = nvmf_reg_read64,
2850 .reg_write32 = nvmf_reg_write32,
2851 .subsystem_reset = nvmf_subsystem_reset,
2852 .free_ctrl = nvme_tcp_free_ctrl,
2853 .submit_async_event = nvme_tcp_submit_async_event,
2854 .delete_ctrl = nvme_tcp_delete_ctrl,
2855 .get_address = nvme_tcp_get_address,
2856 .stop_ctrl = nvme_tcp_stop_ctrl,
2860 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2862 struct nvme_tcp_ctrl *ctrl;
2865 mutex_lock(&nvme_tcp_ctrl_mutex);
2866 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2867 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2871 mutex_unlock(&nvme_tcp_ctrl_mutex);
2876 static struct nvme_tcp_ctrl *nvme_tcp_alloc_ctrl(struct device *dev,
2877 struct nvmf_ctrl_options *opts)
2879 struct nvme_tcp_ctrl *ctrl;
2882 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2884 return ERR_PTR(-ENOMEM);
2886 INIT_LIST_HEAD(&ctrl->list);
2887 ctrl->ctrl.opts = opts;
2888 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2889 opts->nr_poll_queues + 1;
2890 ctrl->ctrl.sqsize = opts->queue_size - 1;
2891 ctrl->ctrl.kato = opts->kato;
2893 INIT_DELAYED_WORK(&ctrl->connect_work,
2894 nvme_tcp_reconnect_ctrl_work);
2895 INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2896 INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2898 if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2900 kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2901 if (!opts->trsvcid) {
2905 opts->mask |= NVMF_OPT_TRSVCID;
2908 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2909 opts->traddr, opts->trsvcid, &ctrl->addr);
2911 pr_err("malformed address passed: %s:%s\n",
2912 opts->traddr, opts->trsvcid);
2916 if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2917 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2918 opts->host_traddr, NULL, &ctrl->src_addr);
2920 pr_err("malformed src address passed: %s\n",
2926 if (opts->mask & NVMF_OPT_HOST_IFACE) {
2927 if (!__dev_get_by_name(&init_net, opts->host_iface)) {
2928 pr_err("invalid interface passed: %s\n",
2935 if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2940 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2942 if (!ctrl->queues) {
2947 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2949 goto out_kfree_queues;
2953 kfree(ctrl->queues);
2956 return ERR_PTR(ret);
2959 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2960 struct nvmf_ctrl_options *opts)
2962 struct nvme_tcp_ctrl *ctrl;
2965 ctrl = nvme_tcp_alloc_ctrl(dev, opts);
2967 return ERR_CAST(ctrl);
2969 ret = nvme_add_ctrl(&ctrl->ctrl);
2973 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2976 goto out_uninit_ctrl;
2979 ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2981 goto out_uninit_ctrl;
2983 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp, hostnqn: %s\n",
2984 nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr, opts->host->nqn);
2986 mutex_lock(&nvme_tcp_ctrl_mutex);
2987 list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2988 mutex_unlock(&nvme_tcp_ctrl_mutex);
2993 nvme_uninit_ctrl(&ctrl->ctrl);
2995 nvme_put_ctrl(&ctrl->ctrl);
2998 return ERR_PTR(ret);
3001 static struct nvmf_transport_ops nvme_tcp_transport = {
3003 .module = THIS_MODULE,
3004 .required_opts = NVMF_OPT_TRADDR,
3005 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
3006 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
3007 NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
3008 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
3009 NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE | NVMF_OPT_TLS |
3010 NVMF_OPT_KEYRING | NVMF_OPT_TLS_KEY | NVMF_OPT_CONCAT,
3011 .create_ctrl = nvme_tcp_create_ctrl,
3014 static int __init nvme_tcp_init_module(void)
3016 unsigned int wq_flags = WQ_MEM_RECLAIM | WQ_HIGHPRI | WQ_SYSFS;
3019 BUILD_BUG_ON(sizeof(struct nvme_tcp_hdr) != 8);
3020 BUILD_BUG_ON(sizeof(struct nvme_tcp_cmd_pdu) != 72);
3021 BUILD_BUG_ON(sizeof(struct nvme_tcp_data_pdu) != 24);
3022 BUILD_BUG_ON(sizeof(struct nvme_tcp_rsp_pdu) != 24);
3023 BUILD_BUG_ON(sizeof(struct nvme_tcp_r2t_pdu) != 24);
3024 BUILD_BUG_ON(sizeof(struct nvme_tcp_icreq_pdu) != 128);
3025 BUILD_BUG_ON(sizeof(struct nvme_tcp_icresp_pdu) != 128);
3026 BUILD_BUG_ON(sizeof(struct nvme_tcp_term_pdu) != 24);
3029 wq_flags |= WQ_UNBOUND;
3031 nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq", wq_flags, 0);
3035 for_each_possible_cpu(cpu)
3036 atomic_set(&nvme_tcp_cpu_queues[cpu], 0);
3038 nvmf_register_transport(&nvme_tcp_transport);
3042 static void __exit nvme_tcp_cleanup_module(void)
3044 struct nvme_tcp_ctrl *ctrl;
3046 nvmf_unregister_transport(&nvme_tcp_transport);
3048 mutex_lock(&nvme_tcp_ctrl_mutex);
3049 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
3050 nvme_delete_ctrl(&ctrl->ctrl);
3051 mutex_unlock(&nvme_tcp_ctrl_mutex);
3052 flush_workqueue(nvme_delete_wq);
3054 destroy_workqueue(nvme_tcp_wq);
3057 module_init(nvme_tcp_init_module);
3058 module_exit(nvme_tcp_cleanup_module);
3060 MODULE_DESCRIPTION("NVMe host TCP transport driver");
3061 MODULE_LICENSE("GPL v2");