d924008c39491fb109a3e529c79e6fec23dd34e7
[linux-2.6-block.git] / drivers / nvme / host / tcp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP host.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/crc32.h>
12 #include <linux/nvme-tcp.h>
13 #include <linux/nvme-keyring.h>
14 #include <net/sock.h>
15 #include <net/tcp.h>
16 #include <net/tls.h>
17 #include <net/tls_prot.h>
18 #include <net/handshake.h>
19 #include <linux/blk-mq.h>
20 #include <net/busy_poll.h>
21 #include <trace/events/sock.h>
22
23 #include "nvme.h"
24 #include "fabrics.h"
25
26 struct nvme_tcp_queue;
27
28 /* Define the socket priority to use for connections were it is desirable
29  * that the NIC consider performing optimized packet processing or filtering.
30  * A non-zero value being sufficient to indicate general consideration of any
31  * possible optimization.  Making it a module param allows for alternative
32  * values that may be unique for some NIC implementations.
33  */
34 static int so_priority;
35 module_param(so_priority, int, 0644);
36 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
37
38 /*
39  * Use the unbound workqueue for nvme_tcp_wq, then we can set the cpu affinity
40  * from sysfs.
41  */
42 static bool wq_unbound;
43 module_param(wq_unbound, bool, 0644);
44 MODULE_PARM_DESC(wq_unbound, "Use unbound workqueue for nvme-tcp IO context (default false)");
45
46 /*
47  * TLS handshake timeout
48  */
49 static int tls_handshake_timeout = 10;
50 #ifdef CONFIG_NVME_TCP_TLS
51 module_param(tls_handshake_timeout, int, 0644);
52 MODULE_PARM_DESC(tls_handshake_timeout,
53                  "nvme TLS handshake timeout in seconds (default 10)");
54 #endif
55
56 static atomic_t nvme_tcp_cpu_queues[NR_CPUS];
57
58 #ifdef CONFIG_DEBUG_LOCK_ALLOC
59 /* lockdep can detect a circular dependency of the form
60  *   sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock
61  * because dependencies are tracked for both nvme-tcp and user contexts. Using
62  * a separate class prevents lockdep from conflating nvme-tcp socket use with
63  * user-space socket API use.
64  */
65 static struct lock_class_key nvme_tcp_sk_key[2];
66 static struct lock_class_key nvme_tcp_slock_key[2];
67
68 static void nvme_tcp_reclassify_socket(struct socket *sock)
69 {
70         struct sock *sk = sock->sk;
71
72         if (WARN_ON_ONCE(!sock_allow_reclassification(sk)))
73                 return;
74
75         switch (sk->sk_family) {
76         case AF_INET:
77                 sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME",
78                                               &nvme_tcp_slock_key[0],
79                                               "sk_lock-AF_INET-NVME",
80                                               &nvme_tcp_sk_key[0]);
81                 break;
82         case AF_INET6:
83                 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME",
84                                               &nvme_tcp_slock_key[1],
85                                               "sk_lock-AF_INET6-NVME",
86                                               &nvme_tcp_sk_key[1]);
87                 break;
88         default:
89                 WARN_ON_ONCE(1);
90         }
91 }
92 #else
93 static void nvme_tcp_reclassify_socket(struct socket *sock) { }
94 #endif
95
96 enum nvme_tcp_send_state {
97         NVME_TCP_SEND_CMD_PDU = 0,
98         NVME_TCP_SEND_H2C_PDU,
99         NVME_TCP_SEND_DATA,
100         NVME_TCP_SEND_DDGST,
101 };
102
103 struct nvme_tcp_request {
104         struct nvme_request     req;
105         void                    *pdu;
106         struct nvme_tcp_queue   *queue;
107         u32                     data_len;
108         u32                     pdu_len;
109         u32                     pdu_sent;
110         u32                     h2cdata_left;
111         u32                     h2cdata_offset;
112         u16                     ttag;
113         __le16                  status;
114         struct list_head        entry;
115         struct llist_node       lentry;
116         __le32                  ddgst;
117
118         struct bio              *curr_bio;
119         struct iov_iter         iter;
120
121         /* send state */
122         size_t                  offset;
123         size_t                  data_sent;
124         enum nvme_tcp_send_state state;
125 };
126
127 enum nvme_tcp_queue_flags {
128         NVME_TCP_Q_ALLOCATED    = 0,
129         NVME_TCP_Q_LIVE         = 1,
130         NVME_TCP_Q_POLLING      = 2,
131         NVME_TCP_Q_IO_CPU_SET   = 3,
132 };
133
134 enum nvme_tcp_recv_state {
135         NVME_TCP_RECV_PDU = 0,
136         NVME_TCP_RECV_DATA,
137         NVME_TCP_RECV_DDGST,
138 };
139
140 struct nvme_tcp_ctrl;
141 struct nvme_tcp_queue {
142         struct socket           *sock;
143         struct work_struct      io_work;
144         int                     io_cpu;
145
146         struct mutex            queue_lock;
147         struct mutex            send_mutex;
148         struct llist_head       req_list;
149         struct list_head        send_list;
150
151         /* recv state */
152         void                    *pdu;
153         int                     pdu_remaining;
154         int                     pdu_offset;
155         size_t                  data_remaining;
156         size_t                  ddgst_remaining;
157         unsigned int            nr_cqe;
158
159         /* send state */
160         struct nvme_tcp_request *request;
161
162         u32                     maxh2cdata;
163         size_t                  cmnd_capsule_len;
164         struct nvme_tcp_ctrl    *ctrl;
165         unsigned long           flags;
166         bool                    rd_enabled;
167
168         bool                    hdr_digest;
169         bool                    data_digest;
170         bool                    tls_enabled;
171         u32                     rcv_crc;
172         u32                     snd_crc;
173         __le32                  exp_ddgst;
174         __le32                  recv_ddgst;
175         struct completion       tls_complete;
176         int                     tls_err;
177         struct page_frag_cache  pf_cache;
178
179         void (*state_change)(struct sock *);
180         void (*data_ready)(struct sock *);
181         void (*write_space)(struct sock *);
182 };
183
184 struct nvme_tcp_ctrl {
185         /* read only in the hot path */
186         struct nvme_tcp_queue   *queues;
187         struct blk_mq_tag_set   tag_set;
188
189         /* other member variables */
190         struct list_head        list;
191         struct blk_mq_tag_set   admin_tag_set;
192         struct sockaddr_storage addr;
193         struct sockaddr_storage src_addr;
194         struct nvme_ctrl        ctrl;
195
196         struct work_struct      err_work;
197         struct delayed_work     connect_work;
198         struct nvme_tcp_request async_req;
199         u32                     io_queues[HCTX_MAX_TYPES];
200 };
201
202 static LIST_HEAD(nvme_tcp_ctrl_list);
203 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
204 static struct workqueue_struct *nvme_tcp_wq;
205 static const struct blk_mq_ops nvme_tcp_mq_ops;
206 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
207 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
208
209 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
210 {
211         return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
212 }
213
214 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
215 {
216         return queue - queue->ctrl->queues;
217 }
218
219 static inline bool nvme_tcp_recv_pdu_supported(enum nvme_tcp_pdu_type type)
220 {
221         switch (type) {
222         case nvme_tcp_c2h_term:
223         case nvme_tcp_c2h_data:
224         case nvme_tcp_r2t:
225         case nvme_tcp_rsp:
226                 return true;
227         default:
228                 return false;
229         }
230 }
231
232 /*
233  * Check if the queue is TLS encrypted
234  */
235 static inline bool nvme_tcp_queue_tls(struct nvme_tcp_queue *queue)
236 {
237         if (!IS_ENABLED(CONFIG_NVME_TCP_TLS))
238                 return 0;
239
240         return queue->tls_enabled;
241 }
242
243 /*
244  * Check if TLS is configured for the controller.
245  */
246 static inline bool nvme_tcp_tls_configured(struct nvme_ctrl *ctrl)
247 {
248         if (!IS_ENABLED(CONFIG_NVME_TCP_TLS))
249                 return 0;
250
251         return ctrl->opts->tls || ctrl->opts->concat;
252 }
253
254 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
255 {
256         u32 queue_idx = nvme_tcp_queue_id(queue);
257
258         if (queue_idx == 0)
259                 return queue->ctrl->admin_tag_set.tags[queue_idx];
260         return queue->ctrl->tag_set.tags[queue_idx - 1];
261 }
262
263 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
264 {
265         return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
266 }
267
268 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
269 {
270         return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
271 }
272
273 static inline void *nvme_tcp_req_cmd_pdu(struct nvme_tcp_request *req)
274 {
275         return req->pdu;
276 }
277
278 static inline void *nvme_tcp_req_data_pdu(struct nvme_tcp_request *req)
279 {
280         /* use the pdu space in the back for the data pdu */
281         return req->pdu + sizeof(struct nvme_tcp_cmd_pdu) -
282                 sizeof(struct nvme_tcp_data_pdu);
283 }
284
285 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_request *req)
286 {
287         if (nvme_is_fabrics(req->req.cmd))
288                 return NVME_TCP_ADMIN_CCSZ;
289         return req->queue->cmnd_capsule_len - sizeof(struct nvme_command);
290 }
291
292 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
293 {
294         return req == &req->queue->ctrl->async_req;
295 }
296
297 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
298 {
299         struct request *rq;
300
301         if (unlikely(nvme_tcp_async_req(req)))
302                 return false; /* async events don't have a request */
303
304         rq = blk_mq_rq_from_pdu(req);
305
306         return rq_data_dir(rq) == WRITE && req->data_len &&
307                 req->data_len <= nvme_tcp_inline_data_size(req);
308 }
309
310 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
311 {
312         return req->iter.bvec->bv_page;
313 }
314
315 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
316 {
317         return req->iter.bvec->bv_offset + req->iter.iov_offset;
318 }
319
320 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
321 {
322         return min_t(size_t, iov_iter_single_seg_count(&req->iter),
323                         req->pdu_len - req->pdu_sent);
324 }
325
326 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
327 {
328         return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
329                         req->pdu_len - req->pdu_sent : 0;
330 }
331
332 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
333                 int len)
334 {
335         return nvme_tcp_pdu_data_left(req) <= len;
336 }
337
338 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
339                 unsigned int dir)
340 {
341         struct request *rq = blk_mq_rq_from_pdu(req);
342         struct bio_vec *vec;
343         unsigned int size;
344         int nr_bvec;
345         size_t offset;
346
347         if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
348                 vec = &rq->special_vec;
349                 nr_bvec = 1;
350                 size = blk_rq_payload_bytes(rq);
351                 offset = 0;
352         } else {
353                 struct bio *bio = req->curr_bio;
354                 struct bvec_iter bi;
355                 struct bio_vec bv;
356
357                 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
358                 nr_bvec = 0;
359                 bio_for_each_bvec(bv, bio, bi) {
360                         nr_bvec++;
361                 }
362                 size = bio->bi_iter.bi_size;
363                 offset = bio->bi_iter.bi_bvec_done;
364         }
365
366         iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size);
367         req->iter.iov_offset = offset;
368 }
369
370 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
371                 int len)
372 {
373         req->data_sent += len;
374         req->pdu_sent += len;
375         iov_iter_advance(&req->iter, len);
376         if (!iov_iter_count(&req->iter) &&
377             req->data_sent < req->data_len) {
378                 req->curr_bio = req->curr_bio->bi_next;
379                 nvme_tcp_init_iter(req, ITER_SOURCE);
380         }
381 }
382
383 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
384 {
385         int ret;
386
387         /* drain the send queue as much as we can... */
388         do {
389                 ret = nvme_tcp_try_send(queue);
390         } while (ret > 0);
391 }
392
393 static inline bool nvme_tcp_queue_has_pending(struct nvme_tcp_queue *queue)
394 {
395         return !list_empty(&queue->send_list) ||
396                 !llist_empty(&queue->req_list);
397 }
398
399 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
400 {
401         return !nvme_tcp_queue_tls(queue) &&
402                 nvme_tcp_queue_has_pending(queue);
403 }
404
405 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
406                 bool last)
407 {
408         struct nvme_tcp_queue *queue = req->queue;
409         bool empty;
410
411         empty = llist_add(&req->lentry, &queue->req_list) &&
412                 list_empty(&queue->send_list) && !queue->request;
413
414         /*
415          * if we're the first on the send_list and we can try to send
416          * directly, otherwise queue io_work. Also, only do that if we
417          * are on the same cpu, so we don't introduce contention.
418          */
419         if (queue->io_cpu == raw_smp_processor_id() &&
420             empty && mutex_trylock(&queue->send_mutex)) {
421                 nvme_tcp_send_all(queue);
422                 mutex_unlock(&queue->send_mutex);
423         }
424
425         if (last && nvme_tcp_queue_has_pending(queue))
426                 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
427 }
428
429 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
430 {
431         struct nvme_tcp_request *req;
432         struct llist_node *node;
433
434         for (node = llist_del_all(&queue->req_list); node; node = node->next) {
435                 req = llist_entry(node, struct nvme_tcp_request, lentry);
436                 list_add(&req->entry, &queue->send_list);
437         }
438 }
439
440 static inline struct nvme_tcp_request *
441 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
442 {
443         struct nvme_tcp_request *req;
444
445         req = list_first_entry_or_null(&queue->send_list,
446                         struct nvme_tcp_request, entry);
447         if (!req) {
448                 nvme_tcp_process_req_list(queue);
449                 req = list_first_entry_or_null(&queue->send_list,
450                                 struct nvme_tcp_request, entry);
451                 if (unlikely(!req))
452                         return NULL;
453         }
454
455         list_del_init(&req->entry);
456         init_llist_node(&req->lentry);
457         return req;
458 }
459
460 #define NVME_TCP_CRC_SEED (~0)
461
462 static inline void nvme_tcp_ddgst_update(u32 *crcp,
463                 struct page *page, size_t off, size_t len)
464 {
465         page += off / PAGE_SIZE;
466         off %= PAGE_SIZE;
467         while (len) {
468                 const void *vaddr = kmap_local_page(page);
469                 size_t n = min(len, (size_t)PAGE_SIZE - off);
470
471                 *crcp = crc32c(*crcp, vaddr + off, n);
472                 kunmap_local(vaddr);
473                 page++;
474                 off = 0;
475                 len -= n;
476         }
477 }
478
479 static inline __le32 nvme_tcp_ddgst_final(u32 crc)
480 {
481         return cpu_to_le32(~crc);
482 }
483
484 static inline __le32 nvme_tcp_hdgst(const void *pdu, size_t len)
485 {
486         return cpu_to_le32(~crc32c(NVME_TCP_CRC_SEED, pdu, len));
487 }
488
489 static inline void nvme_tcp_set_hdgst(void *pdu, size_t len)
490 {
491         *(__le32 *)(pdu + len) = nvme_tcp_hdgst(pdu, len);
492 }
493
494 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
495                 void *pdu, size_t pdu_len)
496 {
497         struct nvme_tcp_hdr *hdr = pdu;
498         __le32 recv_digest;
499         __le32 exp_digest;
500
501         if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
502                 dev_err(queue->ctrl->ctrl.device,
503                         "queue %d: header digest flag is cleared\n",
504                         nvme_tcp_queue_id(queue));
505                 return -EPROTO;
506         }
507
508         recv_digest = *(__le32 *)(pdu + hdr->hlen);
509         exp_digest = nvme_tcp_hdgst(pdu, pdu_len);
510         if (recv_digest != exp_digest) {
511                 dev_err(queue->ctrl->ctrl.device,
512                         "header digest error: recv %#x expected %#x\n",
513                         le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
514                 return -EIO;
515         }
516
517         return 0;
518 }
519
520 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
521 {
522         struct nvme_tcp_hdr *hdr = pdu;
523         u8 digest_len = nvme_tcp_hdgst_len(queue);
524         u32 len;
525
526         len = le32_to_cpu(hdr->plen) - hdr->hlen -
527                 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
528
529         if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
530                 dev_err(queue->ctrl->ctrl.device,
531                         "queue %d: data digest flag is cleared\n",
532                 nvme_tcp_queue_id(queue));
533                 return -EPROTO;
534         }
535         queue->rcv_crc = NVME_TCP_CRC_SEED;
536
537         return 0;
538 }
539
540 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
541                 struct request *rq, unsigned int hctx_idx)
542 {
543         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
544
545         page_frag_free(req->pdu);
546 }
547
548 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
549                 struct request *rq, unsigned int hctx_idx,
550                 unsigned int numa_node)
551 {
552         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
553         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
554         struct nvme_tcp_cmd_pdu *pdu;
555         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
556         struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
557         u8 hdgst = nvme_tcp_hdgst_len(queue);
558
559         req->pdu = page_frag_alloc(&queue->pf_cache,
560                 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
561                 GFP_KERNEL | __GFP_ZERO);
562         if (!req->pdu)
563                 return -ENOMEM;
564
565         pdu = req->pdu;
566         req->queue = queue;
567         nvme_req(rq)->ctrl = &ctrl->ctrl;
568         nvme_req(rq)->cmd = &pdu->cmd;
569         init_llist_node(&req->lentry);
570         INIT_LIST_HEAD(&req->entry);
571
572         return 0;
573 }
574
575 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
576                 unsigned int hctx_idx)
577 {
578         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
579         struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
580
581         hctx->driver_data = queue;
582         return 0;
583 }
584
585 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
586                 unsigned int hctx_idx)
587 {
588         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
589         struct nvme_tcp_queue *queue = &ctrl->queues[0];
590
591         hctx->driver_data = queue;
592         return 0;
593 }
594
595 static enum nvme_tcp_recv_state
596 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
597 {
598         return  (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
599                 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
600                 NVME_TCP_RECV_DATA;
601 }
602
603 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
604 {
605         queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
606                                 nvme_tcp_hdgst_len(queue);
607         queue->pdu_offset = 0;
608         queue->data_remaining = -1;
609         queue->ddgst_remaining = 0;
610 }
611
612 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
613 {
614         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
615                 return;
616
617         dev_warn(ctrl->device, "starting error recovery\n");
618         queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
619 }
620
621 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
622                 struct nvme_completion *cqe)
623 {
624         struct nvme_tcp_request *req;
625         struct request *rq;
626
627         rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id);
628         if (!rq) {
629                 dev_err(queue->ctrl->ctrl.device,
630                         "got bad cqe.command_id %#x on queue %d\n",
631                         cqe->command_id, nvme_tcp_queue_id(queue));
632                 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
633                 return -EINVAL;
634         }
635
636         req = blk_mq_rq_to_pdu(rq);
637         if (req->status == cpu_to_le16(NVME_SC_SUCCESS))
638                 req->status = cqe->status;
639
640         if (!nvme_try_complete_req(rq, req->status, cqe->result))
641                 nvme_complete_rq(rq);
642         queue->nr_cqe++;
643
644         return 0;
645 }
646
647 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
648                 struct nvme_tcp_data_pdu *pdu)
649 {
650         struct request *rq;
651
652         rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
653         if (!rq) {
654                 dev_err(queue->ctrl->ctrl.device,
655                         "got bad c2hdata.command_id %#x on queue %d\n",
656                         pdu->command_id, nvme_tcp_queue_id(queue));
657                 return -ENOENT;
658         }
659
660         if (!blk_rq_payload_bytes(rq)) {
661                 dev_err(queue->ctrl->ctrl.device,
662                         "queue %d tag %#x unexpected data\n",
663                         nvme_tcp_queue_id(queue), rq->tag);
664                 return -EIO;
665         }
666
667         queue->data_remaining = le32_to_cpu(pdu->data_length);
668
669         if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
670             unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
671                 dev_err(queue->ctrl->ctrl.device,
672                         "queue %d tag %#x SUCCESS set but not last PDU\n",
673                         nvme_tcp_queue_id(queue), rq->tag);
674                 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
675                 return -EPROTO;
676         }
677
678         return 0;
679 }
680
681 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
682                 struct nvme_tcp_rsp_pdu *pdu)
683 {
684         struct nvme_completion *cqe = &pdu->cqe;
685         int ret = 0;
686
687         /*
688          * AEN requests are special as they don't time out and can
689          * survive any kind of queue freeze and often don't respond to
690          * aborts.  We don't even bother to allocate a struct request
691          * for them but rather special case them here.
692          */
693         if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
694                                      cqe->command_id)))
695                 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
696                                 &cqe->result);
697         else
698                 ret = nvme_tcp_process_nvme_cqe(queue, cqe);
699
700         return ret;
701 }
702
703 static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req)
704 {
705         struct nvme_tcp_data_pdu *data = nvme_tcp_req_data_pdu(req);
706         struct nvme_tcp_queue *queue = req->queue;
707         struct request *rq = blk_mq_rq_from_pdu(req);
708         u32 h2cdata_sent = req->pdu_len;
709         u8 hdgst = nvme_tcp_hdgst_len(queue);
710         u8 ddgst = nvme_tcp_ddgst_len(queue);
711
712         req->state = NVME_TCP_SEND_H2C_PDU;
713         req->offset = 0;
714         req->pdu_len = min(req->h2cdata_left, queue->maxh2cdata);
715         req->pdu_sent = 0;
716         req->h2cdata_left -= req->pdu_len;
717         req->h2cdata_offset += h2cdata_sent;
718
719         memset(data, 0, sizeof(*data));
720         data->hdr.type = nvme_tcp_h2c_data;
721         if (!req->h2cdata_left)
722                 data->hdr.flags = NVME_TCP_F_DATA_LAST;
723         if (queue->hdr_digest)
724                 data->hdr.flags |= NVME_TCP_F_HDGST;
725         if (queue->data_digest)
726                 data->hdr.flags |= NVME_TCP_F_DDGST;
727         data->hdr.hlen = sizeof(*data);
728         data->hdr.pdo = data->hdr.hlen + hdgst;
729         data->hdr.plen =
730                 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
731         data->ttag = req->ttag;
732         data->command_id = nvme_cid(rq);
733         data->data_offset = cpu_to_le32(req->h2cdata_offset);
734         data->data_length = cpu_to_le32(req->pdu_len);
735 }
736
737 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
738                 struct nvme_tcp_r2t_pdu *pdu)
739 {
740         struct nvme_tcp_request *req;
741         struct request *rq;
742         u32 r2t_length = le32_to_cpu(pdu->r2t_length);
743         u32 r2t_offset = le32_to_cpu(pdu->r2t_offset);
744
745         rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
746         if (!rq) {
747                 dev_err(queue->ctrl->ctrl.device,
748                         "got bad r2t.command_id %#x on queue %d\n",
749                         pdu->command_id, nvme_tcp_queue_id(queue));
750                 return -ENOENT;
751         }
752         req = blk_mq_rq_to_pdu(rq);
753
754         if (unlikely(!r2t_length)) {
755                 dev_err(queue->ctrl->ctrl.device,
756                         "req %d r2t len is %u, probably a bug...\n",
757                         rq->tag, r2t_length);
758                 return -EPROTO;
759         }
760
761         if (unlikely(req->data_sent + r2t_length > req->data_len)) {
762                 dev_err(queue->ctrl->ctrl.device,
763                         "req %d r2t len %u exceeded data len %u (%zu sent)\n",
764                         rq->tag, r2t_length, req->data_len, req->data_sent);
765                 return -EPROTO;
766         }
767
768         if (unlikely(r2t_offset < req->data_sent)) {
769                 dev_err(queue->ctrl->ctrl.device,
770                         "req %d unexpected r2t offset %u (expected %zu)\n",
771                         rq->tag, r2t_offset, req->data_sent);
772                 return -EPROTO;
773         }
774
775         if (llist_on_list(&req->lentry) ||
776             !list_empty(&req->entry)) {
777                 dev_err(queue->ctrl->ctrl.device,
778                         "req %d unexpected r2t while processing request\n",
779                         rq->tag);
780                 return -EPROTO;
781         }
782
783         req->pdu_len = 0;
784         req->h2cdata_left = r2t_length;
785         req->h2cdata_offset = r2t_offset;
786         req->ttag = pdu->ttag;
787
788         nvme_tcp_setup_h2c_data_pdu(req);
789
790         llist_add(&req->lentry, &queue->req_list);
791         queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
792
793         return 0;
794 }
795
796 static void nvme_tcp_handle_c2h_term(struct nvme_tcp_queue *queue,
797                 struct nvme_tcp_term_pdu *pdu)
798 {
799         u16 fes;
800         const char *msg;
801         u32 plen = le32_to_cpu(pdu->hdr.plen);
802
803         static const char * const msg_table[] = {
804                 [NVME_TCP_FES_INVALID_PDU_HDR] = "Invalid PDU Header Field",
805                 [NVME_TCP_FES_PDU_SEQ_ERR] = "PDU Sequence Error",
806                 [NVME_TCP_FES_HDR_DIGEST_ERR] = "Header Digest Error",
807                 [NVME_TCP_FES_DATA_OUT_OF_RANGE] = "Data Transfer Out Of Range",
808                 [NVME_TCP_FES_DATA_LIMIT_EXCEEDED] = "Data Transfer Limit Exceeded",
809                 [NVME_TCP_FES_UNSUPPORTED_PARAM] = "Unsupported Parameter",
810         };
811
812         if (plen < NVME_TCP_MIN_C2HTERM_PLEN ||
813             plen > NVME_TCP_MAX_C2HTERM_PLEN) {
814                 dev_err(queue->ctrl->ctrl.device,
815                         "Received a malformed C2HTermReq PDU (plen = %u)\n",
816                         plen);
817                 return;
818         }
819
820         fes = le16_to_cpu(pdu->fes);
821         if (fes && fes < ARRAY_SIZE(msg_table))
822                 msg = msg_table[fes];
823         else
824                 msg = "Unknown";
825
826         dev_err(queue->ctrl->ctrl.device,
827                 "Received C2HTermReq (FES = %s)\n", msg);
828 }
829
830 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
831                 unsigned int *offset, size_t *len)
832 {
833         struct nvme_tcp_hdr *hdr;
834         char *pdu = queue->pdu;
835         size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
836         int ret;
837
838         ret = skb_copy_bits(skb, *offset,
839                 &pdu[queue->pdu_offset], rcv_len);
840         if (unlikely(ret))
841                 return ret;
842
843         queue->pdu_remaining -= rcv_len;
844         queue->pdu_offset += rcv_len;
845         *offset += rcv_len;
846         *len -= rcv_len;
847         if (queue->pdu_remaining)
848                 return 0;
849
850         hdr = queue->pdu;
851         if (unlikely(hdr->hlen != sizeof(struct nvme_tcp_rsp_pdu))) {
852                 if (!nvme_tcp_recv_pdu_supported(hdr->type))
853                         goto unsupported_pdu;
854
855                 dev_err(queue->ctrl->ctrl.device,
856                         "pdu type %d has unexpected header length (%d)\n",
857                         hdr->type, hdr->hlen);
858                 return -EPROTO;
859         }
860
861         if (unlikely(hdr->type == nvme_tcp_c2h_term)) {
862                 /*
863                  * C2HTermReq never includes Header or Data digests.
864                  * Skip the checks.
865                  */
866                 nvme_tcp_handle_c2h_term(queue, (void *)queue->pdu);
867                 return -EINVAL;
868         }
869
870         if (queue->hdr_digest) {
871                 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
872                 if (unlikely(ret))
873                         return ret;
874         }
875
876
877         if (queue->data_digest) {
878                 ret = nvme_tcp_check_ddgst(queue, queue->pdu);
879                 if (unlikely(ret))
880                         return ret;
881         }
882
883         switch (hdr->type) {
884         case nvme_tcp_c2h_data:
885                 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
886         case nvme_tcp_rsp:
887                 nvme_tcp_init_recv_ctx(queue);
888                 return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
889         case nvme_tcp_r2t:
890                 nvme_tcp_init_recv_ctx(queue);
891                 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
892         default:
893                 goto unsupported_pdu;
894         }
895
896 unsupported_pdu:
897         dev_err(queue->ctrl->ctrl.device,
898                 "unsupported pdu type (%d)\n", hdr->type);
899         return -EINVAL;
900 }
901
902 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
903 {
904         union nvme_result res = {};
905
906         if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
907                 nvme_complete_rq(rq);
908 }
909
910 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
911                               unsigned int *offset, size_t *len)
912 {
913         struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
914         struct request *rq =
915                 nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
916         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
917
918         while (true) {
919                 int recv_len, ret;
920
921                 recv_len = min_t(size_t, *len, queue->data_remaining);
922                 if (!recv_len)
923                         break;
924
925                 if (!iov_iter_count(&req->iter)) {
926                         req->curr_bio = req->curr_bio->bi_next;
927
928                         /*
929                          * If we don`t have any bios it means that controller
930                          * sent more data than we requested, hence error
931                          */
932                         if (!req->curr_bio) {
933                                 dev_err(queue->ctrl->ctrl.device,
934                                         "queue %d no space in request %#x",
935                                         nvme_tcp_queue_id(queue), rq->tag);
936                                 nvme_tcp_init_recv_ctx(queue);
937                                 return -EIO;
938                         }
939                         nvme_tcp_init_iter(req, ITER_DEST);
940                 }
941
942                 /* we can read only from what is left in this bio */
943                 recv_len = min_t(size_t, recv_len,
944                                 iov_iter_count(&req->iter));
945
946                 if (queue->data_digest)
947                         ret = skb_copy_and_crc32c_datagram_iter(skb, *offset,
948                                 &req->iter, recv_len, &queue->rcv_crc);
949                 else
950                         ret = skb_copy_datagram_iter(skb, *offset,
951                                         &req->iter, recv_len);
952                 if (ret) {
953                         dev_err(queue->ctrl->ctrl.device,
954                                 "queue %d failed to copy request %#x data",
955                                 nvme_tcp_queue_id(queue), rq->tag);
956                         return ret;
957                 }
958
959                 *len -= recv_len;
960                 *offset += recv_len;
961                 queue->data_remaining -= recv_len;
962         }
963
964         if (!queue->data_remaining) {
965                 if (queue->data_digest) {
966                         queue->exp_ddgst = nvme_tcp_ddgst_final(queue->rcv_crc);
967                         queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
968                 } else {
969                         if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
970                                 nvme_tcp_end_request(rq,
971                                                 le16_to_cpu(req->status));
972                                 queue->nr_cqe++;
973                         }
974                         nvme_tcp_init_recv_ctx(queue);
975                 }
976         }
977
978         return 0;
979 }
980
981 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
982                 struct sk_buff *skb, unsigned int *offset, size_t *len)
983 {
984         struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
985         char *ddgst = (char *)&queue->recv_ddgst;
986         size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
987         off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
988         int ret;
989
990         ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
991         if (unlikely(ret))
992                 return ret;
993
994         queue->ddgst_remaining -= recv_len;
995         *offset += recv_len;
996         *len -= recv_len;
997         if (queue->ddgst_remaining)
998                 return 0;
999
1000         if (queue->recv_ddgst != queue->exp_ddgst) {
1001                 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
1002                                         pdu->command_id);
1003                 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
1004
1005                 req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR);
1006
1007                 dev_err(queue->ctrl->ctrl.device,
1008                         "data digest error: recv %#x expected %#x\n",
1009                         le32_to_cpu(queue->recv_ddgst),
1010                         le32_to_cpu(queue->exp_ddgst));
1011         }
1012
1013         if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
1014                 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
1015                                         pdu->command_id);
1016                 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
1017
1018                 nvme_tcp_end_request(rq, le16_to_cpu(req->status));
1019                 queue->nr_cqe++;
1020         }
1021
1022         nvme_tcp_init_recv_ctx(queue);
1023         return 0;
1024 }
1025
1026 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
1027                              unsigned int offset, size_t len)
1028 {
1029         struct nvme_tcp_queue *queue = desc->arg.data;
1030         size_t consumed = len;
1031         int result;
1032
1033         if (unlikely(!queue->rd_enabled))
1034                 return -EFAULT;
1035
1036         while (len) {
1037                 switch (nvme_tcp_recv_state(queue)) {
1038                 case NVME_TCP_RECV_PDU:
1039                         result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
1040                         break;
1041                 case NVME_TCP_RECV_DATA:
1042                         result = nvme_tcp_recv_data(queue, skb, &offset, &len);
1043                         break;
1044                 case NVME_TCP_RECV_DDGST:
1045                         result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
1046                         break;
1047                 default:
1048                         result = -EFAULT;
1049                 }
1050                 if (result) {
1051                         dev_err(queue->ctrl->ctrl.device,
1052                                 "receive failed:  %d\n", result);
1053                         queue->rd_enabled = false;
1054                         nvme_tcp_error_recovery(&queue->ctrl->ctrl);
1055                         return result;
1056                 }
1057         }
1058
1059         return consumed;
1060 }
1061
1062 static void nvme_tcp_data_ready(struct sock *sk)
1063 {
1064         struct nvme_tcp_queue *queue;
1065
1066         trace_sk_data_ready(sk);
1067
1068         read_lock_bh(&sk->sk_callback_lock);
1069         queue = sk->sk_user_data;
1070         if (likely(queue && queue->rd_enabled) &&
1071             !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
1072                 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1073         read_unlock_bh(&sk->sk_callback_lock);
1074 }
1075
1076 static void nvme_tcp_write_space(struct sock *sk)
1077 {
1078         struct nvme_tcp_queue *queue;
1079
1080         read_lock_bh(&sk->sk_callback_lock);
1081         queue = sk->sk_user_data;
1082         if (likely(queue && sk_stream_is_writeable(sk))) {
1083                 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1084                 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1085         }
1086         read_unlock_bh(&sk->sk_callback_lock);
1087 }
1088
1089 static void nvme_tcp_state_change(struct sock *sk)
1090 {
1091         struct nvme_tcp_queue *queue;
1092
1093         read_lock_bh(&sk->sk_callback_lock);
1094         queue = sk->sk_user_data;
1095         if (!queue)
1096                 goto done;
1097
1098         switch (sk->sk_state) {
1099         case TCP_CLOSE:
1100         case TCP_CLOSE_WAIT:
1101         case TCP_LAST_ACK:
1102         case TCP_FIN_WAIT1:
1103         case TCP_FIN_WAIT2:
1104                 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
1105                 break;
1106         default:
1107                 dev_info(queue->ctrl->ctrl.device,
1108                         "queue %d socket state %d\n",
1109                         nvme_tcp_queue_id(queue), sk->sk_state);
1110         }
1111
1112         queue->state_change(sk);
1113 done:
1114         read_unlock_bh(&sk->sk_callback_lock);
1115 }
1116
1117 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
1118 {
1119         queue->request = NULL;
1120 }
1121
1122 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
1123 {
1124         if (nvme_tcp_async_req(req)) {
1125                 union nvme_result res = {};
1126
1127                 nvme_complete_async_event(&req->queue->ctrl->ctrl,
1128                                 cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res);
1129         } else {
1130                 nvme_tcp_end_request(blk_mq_rq_from_pdu(req),
1131                                 NVME_SC_HOST_PATH_ERROR);
1132         }
1133 }
1134
1135 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
1136 {
1137         struct nvme_tcp_queue *queue = req->queue;
1138         int req_data_len = req->data_len;
1139         u32 h2cdata_left = req->h2cdata_left;
1140
1141         while (true) {
1142                 struct bio_vec bvec;
1143                 struct msghdr msg = {
1144                         .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES,
1145                 };
1146                 struct page *page = nvme_tcp_req_cur_page(req);
1147                 size_t offset = nvme_tcp_req_cur_offset(req);
1148                 size_t len = nvme_tcp_req_cur_length(req);
1149                 bool last = nvme_tcp_pdu_last_send(req, len);
1150                 int req_data_sent = req->data_sent;
1151                 int ret;
1152
1153                 if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
1154                         msg.msg_flags |= MSG_EOR;
1155                 else
1156                         msg.msg_flags |= MSG_MORE;
1157
1158                 if (!sendpages_ok(page, len, offset))
1159                         msg.msg_flags &= ~MSG_SPLICE_PAGES;
1160
1161                 bvec_set_page(&bvec, page, len, offset);
1162                 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1163                 ret = sock_sendmsg(queue->sock, &msg);
1164                 if (ret <= 0)
1165                         return ret;
1166
1167                 if (queue->data_digest)
1168                         nvme_tcp_ddgst_update(&queue->snd_crc, page,
1169                                         offset, ret);
1170
1171                 /*
1172                  * update the request iterator except for the last payload send
1173                  * in the request where we don't want to modify it as we may
1174                  * compete with the RX path completing the request.
1175                  */
1176                 if (req_data_sent + ret < req_data_len)
1177                         nvme_tcp_advance_req(req, ret);
1178
1179                 /* fully successful last send in current PDU */
1180                 if (last && ret == len) {
1181                         if (queue->data_digest) {
1182                                 req->ddgst =
1183                                         nvme_tcp_ddgst_final(queue->snd_crc);
1184                                 req->state = NVME_TCP_SEND_DDGST;
1185                                 req->offset = 0;
1186                         } else {
1187                                 if (h2cdata_left)
1188                                         nvme_tcp_setup_h2c_data_pdu(req);
1189                                 else
1190                                         nvme_tcp_done_send_req(queue);
1191                         }
1192                         return 1;
1193                 }
1194         }
1195         return -EAGAIN;
1196 }
1197
1198 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
1199 {
1200         struct nvme_tcp_queue *queue = req->queue;
1201         struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
1202         struct bio_vec bvec;
1203         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
1204         bool inline_data = nvme_tcp_has_inline_data(req);
1205         u8 hdgst = nvme_tcp_hdgst_len(queue);
1206         int len = sizeof(*pdu) + hdgst - req->offset;
1207         int ret;
1208
1209         if (inline_data || nvme_tcp_queue_more(queue))
1210                 msg.msg_flags |= MSG_MORE;
1211         else
1212                 msg.msg_flags |= MSG_EOR;
1213
1214         if (queue->hdr_digest && !req->offset)
1215                 nvme_tcp_set_hdgst(pdu, sizeof(*pdu));
1216
1217         bvec_set_virt(&bvec, (void *)pdu + req->offset, len);
1218         iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1219         ret = sock_sendmsg(queue->sock, &msg);
1220         if (unlikely(ret <= 0))
1221                 return ret;
1222
1223         len -= ret;
1224         if (!len) {
1225                 if (inline_data) {
1226                         req->state = NVME_TCP_SEND_DATA;
1227                         if (queue->data_digest)
1228                                 queue->snd_crc = NVME_TCP_CRC_SEED;
1229                 } else {
1230                         nvme_tcp_done_send_req(queue);
1231                 }
1232                 return 1;
1233         }
1234         req->offset += ret;
1235
1236         return -EAGAIN;
1237 }
1238
1239 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
1240 {
1241         struct nvme_tcp_queue *queue = req->queue;
1242         struct nvme_tcp_data_pdu *pdu = nvme_tcp_req_data_pdu(req);
1243         struct bio_vec bvec;
1244         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_MORE, };
1245         u8 hdgst = nvme_tcp_hdgst_len(queue);
1246         int len = sizeof(*pdu) - req->offset + hdgst;
1247         int ret;
1248
1249         if (queue->hdr_digest && !req->offset)
1250                 nvme_tcp_set_hdgst(pdu, sizeof(*pdu));
1251
1252         if (!req->h2cdata_left)
1253                 msg.msg_flags |= MSG_SPLICE_PAGES;
1254
1255         bvec_set_virt(&bvec, (void *)pdu + req->offset, len);
1256         iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1257         ret = sock_sendmsg(queue->sock, &msg);
1258         if (unlikely(ret <= 0))
1259                 return ret;
1260
1261         len -= ret;
1262         if (!len) {
1263                 req->state = NVME_TCP_SEND_DATA;
1264                 if (queue->data_digest)
1265                         queue->snd_crc = NVME_TCP_CRC_SEED;
1266                 return 1;
1267         }
1268         req->offset += ret;
1269
1270         return -EAGAIN;
1271 }
1272
1273 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1274 {
1275         struct nvme_tcp_queue *queue = req->queue;
1276         size_t offset = req->offset;
1277         u32 h2cdata_left = req->h2cdata_left;
1278         int ret;
1279         struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1280         struct kvec iov = {
1281                 .iov_base = (u8 *)&req->ddgst + req->offset,
1282                 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1283         };
1284
1285         if (nvme_tcp_queue_more(queue))
1286                 msg.msg_flags |= MSG_MORE;
1287         else
1288                 msg.msg_flags |= MSG_EOR;
1289
1290         ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1291         if (unlikely(ret <= 0))
1292                 return ret;
1293
1294         if (offset + ret == NVME_TCP_DIGEST_LENGTH) {
1295                 if (h2cdata_left)
1296                         nvme_tcp_setup_h2c_data_pdu(req);
1297                 else
1298                         nvme_tcp_done_send_req(queue);
1299                 return 1;
1300         }
1301
1302         req->offset += ret;
1303         return -EAGAIN;
1304 }
1305
1306 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1307 {
1308         struct nvme_tcp_request *req;
1309         unsigned int noreclaim_flag;
1310         int ret = 1;
1311
1312         if (!queue->request) {
1313                 queue->request = nvme_tcp_fetch_request(queue);
1314                 if (!queue->request)
1315                         return 0;
1316         }
1317         req = queue->request;
1318
1319         noreclaim_flag = memalloc_noreclaim_save();
1320         if (req->state == NVME_TCP_SEND_CMD_PDU) {
1321                 ret = nvme_tcp_try_send_cmd_pdu(req);
1322                 if (ret <= 0)
1323                         goto done;
1324                 if (!nvme_tcp_has_inline_data(req))
1325                         goto out;
1326         }
1327
1328         if (req->state == NVME_TCP_SEND_H2C_PDU) {
1329                 ret = nvme_tcp_try_send_data_pdu(req);
1330                 if (ret <= 0)
1331                         goto done;
1332         }
1333
1334         if (req->state == NVME_TCP_SEND_DATA) {
1335                 ret = nvme_tcp_try_send_data(req);
1336                 if (ret <= 0)
1337                         goto done;
1338         }
1339
1340         if (req->state == NVME_TCP_SEND_DDGST)
1341                 ret = nvme_tcp_try_send_ddgst(req);
1342 done:
1343         if (ret == -EAGAIN) {
1344                 ret = 0;
1345         } else if (ret < 0) {
1346                 dev_err(queue->ctrl->ctrl.device,
1347                         "failed to send request %d\n", ret);
1348                 nvme_tcp_fail_request(queue->request);
1349                 nvme_tcp_done_send_req(queue);
1350         }
1351 out:
1352         memalloc_noreclaim_restore(noreclaim_flag);
1353         return ret;
1354 }
1355
1356 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1357 {
1358         struct socket *sock = queue->sock;
1359         struct sock *sk = sock->sk;
1360         read_descriptor_t rd_desc;
1361         int consumed;
1362
1363         rd_desc.arg.data = queue;
1364         rd_desc.count = 1;
1365         lock_sock(sk);
1366         queue->nr_cqe = 0;
1367         consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1368         release_sock(sk);
1369         return consumed == -EAGAIN ? 0 : consumed;
1370 }
1371
1372 static void nvme_tcp_io_work(struct work_struct *w)
1373 {
1374         struct nvme_tcp_queue *queue =
1375                 container_of(w, struct nvme_tcp_queue, io_work);
1376         unsigned long deadline = jiffies + msecs_to_jiffies(1);
1377
1378         do {
1379                 bool pending = false;
1380                 int result;
1381
1382                 if (mutex_trylock(&queue->send_mutex)) {
1383                         result = nvme_tcp_try_send(queue);
1384                         mutex_unlock(&queue->send_mutex);
1385                         if (result > 0)
1386                                 pending = true;
1387                         else if (unlikely(result < 0))
1388                                 break;
1389                 }
1390
1391                 result = nvme_tcp_try_recv(queue);
1392                 if (result > 0)
1393                         pending = true;
1394                 else if (unlikely(result < 0))
1395                         return;
1396
1397                 /* did we get some space after spending time in recv? */
1398                 if (nvme_tcp_queue_has_pending(queue) &&
1399                     sk_stream_is_writeable(queue->sock->sk))
1400                         pending = true;
1401
1402                 if (!pending || !queue->rd_enabled)
1403                         return;
1404
1405         } while (!time_after(jiffies, deadline)); /* quota is exhausted */
1406
1407         queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1408 }
1409
1410 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1411 {
1412         struct nvme_tcp_request *async = &ctrl->async_req;
1413
1414         page_frag_free(async->pdu);
1415 }
1416
1417 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1418 {
1419         struct nvme_tcp_queue *queue = &ctrl->queues[0];
1420         struct nvme_tcp_request *async = &ctrl->async_req;
1421         u8 hdgst = nvme_tcp_hdgst_len(queue);
1422
1423         async->pdu = page_frag_alloc(&queue->pf_cache,
1424                 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1425                 GFP_KERNEL | __GFP_ZERO);
1426         if (!async->pdu)
1427                 return -ENOMEM;
1428
1429         async->queue = &ctrl->queues[0];
1430         return 0;
1431 }
1432
1433 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1434 {
1435         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1436         struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1437         unsigned int noreclaim_flag;
1438
1439         if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1440                 return;
1441
1442         page_frag_cache_drain(&queue->pf_cache);
1443
1444         noreclaim_flag = memalloc_noreclaim_save();
1445         /* ->sock will be released by fput() */
1446         fput(queue->sock->file);
1447         queue->sock = NULL;
1448         memalloc_noreclaim_restore(noreclaim_flag);
1449
1450         kfree(queue->pdu);
1451         mutex_destroy(&queue->send_mutex);
1452         mutex_destroy(&queue->queue_lock);
1453 }
1454
1455 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1456 {
1457         struct nvme_tcp_icreq_pdu *icreq;
1458         struct nvme_tcp_icresp_pdu *icresp;
1459         char cbuf[CMSG_LEN(sizeof(char))] = {};
1460         u8 ctype;
1461         struct msghdr msg = {};
1462         struct kvec iov;
1463         bool ctrl_hdgst, ctrl_ddgst;
1464         u32 maxh2cdata;
1465         int ret;
1466
1467         icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1468         if (!icreq)
1469                 return -ENOMEM;
1470
1471         icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1472         if (!icresp) {
1473                 ret = -ENOMEM;
1474                 goto free_icreq;
1475         }
1476
1477         icreq->hdr.type = nvme_tcp_icreq;
1478         icreq->hdr.hlen = sizeof(*icreq);
1479         icreq->hdr.pdo = 0;
1480         icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1481         icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1482         icreq->maxr2t = 0; /* single inflight r2t supported */
1483         icreq->hpda = 0; /* no alignment constraint */
1484         if (queue->hdr_digest)
1485                 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1486         if (queue->data_digest)
1487                 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1488
1489         iov.iov_base = icreq;
1490         iov.iov_len = sizeof(*icreq);
1491         ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1492         if (ret < 0) {
1493                 pr_warn("queue %d: failed to send icreq, error %d\n",
1494                         nvme_tcp_queue_id(queue), ret);
1495                 goto free_icresp;
1496         }
1497
1498         memset(&msg, 0, sizeof(msg));
1499         iov.iov_base = icresp;
1500         iov.iov_len = sizeof(*icresp);
1501         if (nvme_tcp_queue_tls(queue)) {
1502                 msg.msg_control = cbuf;
1503                 msg.msg_controllen = sizeof(cbuf);
1504         }
1505         msg.msg_flags = MSG_WAITALL;
1506         ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1507                         iov.iov_len, msg.msg_flags);
1508         if (ret >= 0 && ret < sizeof(*icresp))
1509                 ret = -ECONNRESET;
1510         if (ret < 0) {
1511                 pr_warn("queue %d: failed to receive icresp, error %d\n",
1512                         nvme_tcp_queue_id(queue), ret);
1513                 goto free_icresp;
1514         }
1515         ret = -ENOTCONN;
1516         if (nvme_tcp_queue_tls(queue)) {
1517                 ctype = tls_get_record_type(queue->sock->sk,
1518                                             (struct cmsghdr *)cbuf);
1519                 if (ctype != TLS_RECORD_TYPE_DATA) {
1520                         pr_err("queue %d: unhandled TLS record %d\n",
1521                                nvme_tcp_queue_id(queue), ctype);
1522                         goto free_icresp;
1523                 }
1524         }
1525         ret = -EINVAL;
1526         if (icresp->hdr.type != nvme_tcp_icresp) {
1527                 pr_err("queue %d: bad type returned %d\n",
1528                         nvme_tcp_queue_id(queue), icresp->hdr.type);
1529                 goto free_icresp;
1530         }
1531
1532         if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1533                 pr_err("queue %d: bad pdu length returned %d\n",
1534                         nvme_tcp_queue_id(queue), icresp->hdr.plen);
1535                 goto free_icresp;
1536         }
1537
1538         if (icresp->pfv != NVME_TCP_PFV_1_0) {
1539                 pr_err("queue %d: bad pfv returned %d\n",
1540                         nvme_tcp_queue_id(queue), icresp->pfv);
1541                 goto free_icresp;
1542         }
1543
1544         ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1545         if ((queue->data_digest && !ctrl_ddgst) ||
1546             (!queue->data_digest && ctrl_ddgst)) {
1547                 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1548                         nvme_tcp_queue_id(queue),
1549                         queue->data_digest ? "enabled" : "disabled",
1550                         ctrl_ddgst ? "enabled" : "disabled");
1551                 goto free_icresp;
1552         }
1553
1554         ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1555         if ((queue->hdr_digest && !ctrl_hdgst) ||
1556             (!queue->hdr_digest && ctrl_hdgst)) {
1557                 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1558                         nvme_tcp_queue_id(queue),
1559                         queue->hdr_digest ? "enabled" : "disabled",
1560                         ctrl_hdgst ? "enabled" : "disabled");
1561                 goto free_icresp;
1562         }
1563
1564         if (icresp->cpda != 0) {
1565                 pr_err("queue %d: unsupported cpda returned %d\n",
1566                         nvme_tcp_queue_id(queue), icresp->cpda);
1567                 goto free_icresp;
1568         }
1569
1570         maxh2cdata = le32_to_cpu(icresp->maxdata);
1571         if ((maxh2cdata % 4) || (maxh2cdata < NVME_TCP_MIN_MAXH2CDATA)) {
1572                 pr_err("queue %d: invalid maxh2cdata returned %u\n",
1573                        nvme_tcp_queue_id(queue), maxh2cdata);
1574                 goto free_icresp;
1575         }
1576         queue->maxh2cdata = maxh2cdata;
1577
1578         ret = 0;
1579 free_icresp:
1580         kfree(icresp);
1581 free_icreq:
1582         kfree(icreq);
1583         return ret;
1584 }
1585
1586 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1587 {
1588         return nvme_tcp_queue_id(queue) == 0;
1589 }
1590
1591 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1592 {
1593         struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1594         int qid = nvme_tcp_queue_id(queue);
1595
1596         return !nvme_tcp_admin_queue(queue) &&
1597                 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1598 }
1599
1600 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1601 {
1602         struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1603         int qid = nvme_tcp_queue_id(queue);
1604
1605         return !nvme_tcp_admin_queue(queue) &&
1606                 !nvme_tcp_default_queue(queue) &&
1607                 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1608                           ctrl->io_queues[HCTX_TYPE_READ];
1609 }
1610
1611 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1612 {
1613         struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1614         int qid = nvme_tcp_queue_id(queue);
1615
1616         return !nvme_tcp_admin_queue(queue) &&
1617                 !nvme_tcp_default_queue(queue) &&
1618                 !nvme_tcp_read_queue(queue) &&
1619                 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1620                           ctrl->io_queues[HCTX_TYPE_READ] +
1621                           ctrl->io_queues[HCTX_TYPE_POLL];
1622 }
1623
1624 /*
1625  * Track the number of queues assigned to each cpu using a global per-cpu
1626  * counter and select the least used cpu from the mq_map. Our goal is to spread
1627  * different controllers I/O threads across different cpu cores.
1628  *
1629  * Note that the accounting is not 100% perfect, but we don't need to be, we're
1630  * simply putting our best effort to select the best candidate cpu core that we
1631  * find at any given point.
1632  */
1633 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1634 {
1635         struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1636         struct blk_mq_tag_set *set = &ctrl->tag_set;
1637         int qid = nvme_tcp_queue_id(queue) - 1;
1638         unsigned int *mq_map = NULL;
1639         int cpu, min_queues = INT_MAX, io_cpu;
1640
1641         if (wq_unbound)
1642                 goto out;
1643
1644         if (nvme_tcp_default_queue(queue))
1645                 mq_map = set->map[HCTX_TYPE_DEFAULT].mq_map;
1646         else if (nvme_tcp_read_queue(queue))
1647                 mq_map = set->map[HCTX_TYPE_READ].mq_map;
1648         else if (nvme_tcp_poll_queue(queue))
1649                 mq_map = set->map[HCTX_TYPE_POLL].mq_map;
1650
1651         if (WARN_ON(!mq_map))
1652                 goto out;
1653
1654         /* Search for the least used cpu from the mq_map */
1655         io_cpu = WORK_CPU_UNBOUND;
1656         for_each_online_cpu(cpu) {
1657                 int num_queues = atomic_read(&nvme_tcp_cpu_queues[cpu]);
1658
1659                 if (mq_map[cpu] != qid)
1660                         continue;
1661                 if (num_queues < min_queues) {
1662                         io_cpu = cpu;
1663                         min_queues = num_queues;
1664                 }
1665         }
1666         if (io_cpu != WORK_CPU_UNBOUND) {
1667                 queue->io_cpu = io_cpu;
1668                 atomic_inc(&nvme_tcp_cpu_queues[io_cpu]);
1669                 set_bit(NVME_TCP_Q_IO_CPU_SET, &queue->flags);
1670         }
1671 out:
1672         dev_dbg(ctrl->ctrl.device, "queue %d: using cpu %d\n",
1673                 qid, queue->io_cpu);
1674 }
1675
1676 static void nvme_tcp_tls_done(void *data, int status, key_serial_t pskid)
1677 {
1678         struct nvme_tcp_queue *queue = data;
1679         struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1680         int qid = nvme_tcp_queue_id(queue);
1681         struct key *tls_key;
1682
1683         dev_dbg(ctrl->ctrl.device, "queue %d: TLS handshake done, key %x, status %d\n",
1684                 qid, pskid, status);
1685
1686         if (status) {
1687                 queue->tls_err = -status;
1688                 goto out_complete;
1689         }
1690
1691         tls_key = nvme_tls_key_lookup(pskid);
1692         if (IS_ERR(tls_key)) {
1693                 dev_warn(ctrl->ctrl.device, "queue %d: Invalid key %x\n",
1694                          qid, pskid);
1695                 queue->tls_err = -ENOKEY;
1696         } else {
1697                 queue->tls_enabled = true;
1698                 if (qid == 0)
1699                         ctrl->ctrl.tls_pskid = key_serial(tls_key);
1700                 key_put(tls_key);
1701                 queue->tls_err = 0;
1702         }
1703
1704 out_complete:
1705         complete(&queue->tls_complete);
1706 }
1707
1708 static int nvme_tcp_start_tls(struct nvme_ctrl *nctrl,
1709                               struct nvme_tcp_queue *queue,
1710                               key_serial_t pskid)
1711 {
1712         int qid = nvme_tcp_queue_id(queue);
1713         int ret;
1714         struct tls_handshake_args args;
1715         unsigned long tmo = tls_handshake_timeout * HZ;
1716         key_serial_t keyring = nvme_keyring_id();
1717
1718         dev_dbg(nctrl->device, "queue %d: start TLS with key %x\n",
1719                 qid, pskid);
1720         memset(&args, 0, sizeof(args));
1721         args.ta_sock = queue->sock;
1722         args.ta_done = nvme_tcp_tls_done;
1723         args.ta_data = queue;
1724         args.ta_my_peerids[0] = pskid;
1725         args.ta_num_peerids = 1;
1726         if (nctrl->opts->keyring)
1727                 keyring = key_serial(nctrl->opts->keyring);
1728         args.ta_keyring = keyring;
1729         args.ta_timeout_ms = tls_handshake_timeout * 1000;
1730         queue->tls_err = -EOPNOTSUPP;
1731         init_completion(&queue->tls_complete);
1732         ret = tls_client_hello_psk(&args, GFP_KERNEL);
1733         if (ret) {
1734                 dev_err(nctrl->device, "queue %d: failed to start TLS: %d\n",
1735                         qid, ret);
1736                 return ret;
1737         }
1738         ret = wait_for_completion_interruptible_timeout(&queue->tls_complete, tmo);
1739         if (ret <= 0) {
1740                 if (ret == 0)
1741                         ret = -ETIMEDOUT;
1742
1743                 dev_err(nctrl->device,
1744                         "queue %d: TLS handshake failed, error %d\n",
1745                         qid, ret);
1746                 tls_handshake_cancel(queue->sock->sk);
1747         } else {
1748                 dev_dbg(nctrl->device,
1749                         "queue %d: TLS handshake complete, error %d\n",
1750                         qid, queue->tls_err);
1751                 ret = queue->tls_err;
1752         }
1753         return ret;
1754 }
1755
1756 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, int qid,
1757                                 key_serial_t pskid)
1758 {
1759         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1760         struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1761         int ret, rcv_pdu_size;
1762         struct file *sock_file;
1763
1764         mutex_init(&queue->queue_lock);
1765         queue->ctrl = ctrl;
1766         init_llist_head(&queue->req_list);
1767         INIT_LIST_HEAD(&queue->send_list);
1768         mutex_init(&queue->send_mutex);
1769         INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1770
1771         if (qid > 0)
1772                 queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1773         else
1774                 queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1775                                                 NVME_TCP_ADMIN_CCSZ;
1776
1777         ret = sock_create_kern(current->nsproxy->net_ns,
1778                         ctrl->addr.ss_family, SOCK_STREAM,
1779                         IPPROTO_TCP, &queue->sock);
1780         if (ret) {
1781                 dev_err(nctrl->device,
1782                         "failed to create socket: %d\n", ret);
1783                 goto err_destroy_mutex;
1784         }
1785
1786         sock_file = sock_alloc_file(queue->sock, O_CLOEXEC, NULL);
1787         if (IS_ERR(sock_file)) {
1788                 ret = PTR_ERR(sock_file);
1789                 goto err_destroy_mutex;
1790         }
1791
1792         sk_net_refcnt_upgrade(queue->sock->sk);
1793         nvme_tcp_reclassify_socket(queue->sock);
1794
1795         /* Single syn retry */
1796         tcp_sock_set_syncnt(queue->sock->sk, 1);
1797
1798         /* Set TCP no delay */
1799         tcp_sock_set_nodelay(queue->sock->sk);
1800
1801         /*
1802          * Cleanup whatever is sitting in the TCP transmit queue on socket
1803          * close. This is done to prevent stale data from being sent should
1804          * the network connection be restored before TCP times out.
1805          */
1806         sock_no_linger(queue->sock->sk);
1807
1808         if (so_priority > 0)
1809                 sock_set_priority(queue->sock->sk, so_priority);
1810
1811         /* Set socket type of service */
1812         if (nctrl->opts->tos >= 0)
1813                 ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1814
1815         /* Set 10 seconds timeout for icresp recvmsg */
1816         queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1817
1818         queue->sock->sk->sk_allocation = GFP_ATOMIC;
1819         queue->sock->sk->sk_use_task_frag = false;
1820         queue->io_cpu = WORK_CPU_UNBOUND;
1821         queue->request = NULL;
1822         queue->data_remaining = 0;
1823         queue->ddgst_remaining = 0;
1824         queue->pdu_remaining = 0;
1825         queue->pdu_offset = 0;
1826         sk_set_memalloc(queue->sock->sk);
1827
1828         if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1829                 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1830                         sizeof(ctrl->src_addr));
1831                 if (ret) {
1832                         dev_err(nctrl->device,
1833                                 "failed to bind queue %d socket %d\n",
1834                                 qid, ret);
1835                         goto err_sock;
1836                 }
1837         }
1838
1839         if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) {
1840                 char *iface = nctrl->opts->host_iface;
1841                 sockptr_t optval = KERNEL_SOCKPTR(iface);
1842
1843                 ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE,
1844                                       optval, strlen(iface));
1845                 if (ret) {
1846                         dev_err(nctrl->device,
1847                           "failed to bind to interface %s queue %d err %d\n",
1848                           iface, qid, ret);
1849                         goto err_sock;
1850                 }
1851         }
1852
1853         queue->hdr_digest = nctrl->opts->hdr_digest;
1854         queue->data_digest = nctrl->opts->data_digest;
1855
1856         rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1857                         nvme_tcp_hdgst_len(queue);
1858         queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1859         if (!queue->pdu) {
1860                 ret = -ENOMEM;
1861                 goto err_sock;
1862         }
1863
1864         dev_dbg(nctrl->device, "connecting queue %d\n",
1865                         nvme_tcp_queue_id(queue));
1866
1867         ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1868                 sizeof(ctrl->addr), 0);
1869         if (ret) {
1870                 dev_err(nctrl->device,
1871                         "failed to connect socket: %d\n", ret);
1872                 goto err_rcv_pdu;
1873         }
1874
1875         /* If PSKs are configured try to start TLS */
1876         if (nvme_tcp_tls_configured(nctrl) && pskid) {
1877                 ret = nvme_tcp_start_tls(nctrl, queue, pskid);
1878                 if (ret)
1879                         goto err_init_connect;
1880         }
1881
1882         ret = nvme_tcp_init_connection(queue);
1883         if (ret)
1884                 goto err_init_connect;
1885
1886         set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1887
1888         return 0;
1889
1890 err_init_connect:
1891         kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1892 err_rcv_pdu:
1893         kfree(queue->pdu);
1894 err_sock:
1895         /* ->sock will be released by fput() */
1896         fput(queue->sock->file);
1897         queue->sock = NULL;
1898 err_destroy_mutex:
1899         mutex_destroy(&queue->send_mutex);
1900         mutex_destroy(&queue->queue_lock);
1901         return ret;
1902 }
1903
1904 static void nvme_tcp_restore_sock_ops(struct nvme_tcp_queue *queue)
1905 {
1906         struct socket *sock = queue->sock;
1907
1908         write_lock_bh(&sock->sk->sk_callback_lock);
1909         sock->sk->sk_user_data  = NULL;
1910         sock->sk->sk_data_ready = queue->data_ready;
1911         sock->sk->sk_state_change = queue->state_change;
1912         sock->sk->sk_write_space  = queue->write_space;
1913         write_unlock_bh(&sock->sk->sk_callback_lock);
1914 }
1915
1916 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1917 {
1918         kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1919         nvme_tcp_restore_sock_ops(queue);
1920         cancel_work_sync(&queue->io_work);
1921 }
1922
1923 static void nvme_tcp_stop_queue_nowait(struct nvme_ctrl *nctrl, int qid)
1924 {
1925         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1926         struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1927
1928         if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1929                 return;
1930
1931         if (test_and_clear_bit(NVME_TCP_Q_IO_CPU_SET, &queue->flags))
1932                 atomic_dec(&nvme_tcp_cpu_queues[queue->io_cpu]);
1933
1934         mutex_lock(&queue->queue_lock);
1935         if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1936                 __nvme_tcp_stop_queue(queue);
1937         /* Stopping the queue will disable TLS */
1938         queue->tls_enabled = false;
1939         mutex_unlock(&queue->queue_lock);
1940 }
1941
1942 static void nvme_tcp_wait_queue(struct nvme_ctrl *nctrl, int qid)
1943 {
1944         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1945         struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1946         int timeout = 100;
1947
1948         while (timeout > 0) {
1949                 if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags) ||
1950                     !sk_wmem_alloc_get(queue->sock->sk))
1951                         return;
1952                 msleep(2);
1953                 timeout -= 2;
1954         }
1955         dev_warn(nctrl->device,
1956                  "qid %d: timeout draining sock wmem allocation expired\n",
1957                  qid);
1958 }
1959
1960 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1961 {
1962         nvme_tcp_stop_queue_nowait(nctrl, qid);
1963         nvme_tcp_wait_queue(nctrl, qid);
1964 }
1965
1966
1967 static void nvme_tcp_setup_sock_ops(struct nvme_tcp_queue *queue)
1968 {
1969         write_lock_bh(&queue->sock->sk->sk_callback_lock);
1970         queue->sock->sk->sk_user_data = queue;
1971         queue->state_change = queue->sock->sk->sk_state_change;
1972         queue->data_ready = queue->sock->sk->sk_data_ready;
1973         queue->write_space = queue->sock->sk->sk_write_space;
1974         queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1975         queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1976         queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1977 #ifdef CONFIG_NET_RX_BUSY_POLL
1978         queue->sock->sk->sk_ll_usec = 1;
1979 #endif
1980         write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1981 }
1982
1983 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1984 {
1985         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1986         struct nvme_tcp_queue *queue = &ctrl->queues[idx];
1987         int ret;
1988
1989         queue->rd_enabled = true;
1990         nvme_tcp_init_recv_ctx(queue);
1991         nvme_tcp_setup_sock_ops(queue);
1992
1993         if (idx) {
1994                 nvme_tcp_set_queue_io_cpu(queue);
1995                 ret = nvmf_connect_io_queue(nctrl, idx);
1996         } else
1997                 ret = nvmf_connect_admin_queue(nctrl);
1998
1999         if (!ret) {
2000                 set_bit(NVME_TCP_Q_LIVE, &queue->flags);
2001         } else {
2002                 if (test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
2003                         __nvme_tcp_stop_queue(queue);
2004                 dev_err(nctrl->device,
2005                         "failed to connect queue: %d ret=%d\n", idx, ret);
2006         }
2007         return ret;
2008 }
2009
2010 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
2011 {
2012         if (to_tcp_ctrl(ctrl)->async_req.pdu) {
2013                 cancel_work_sync(&ctrl->async_event_work);
2014                 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
2015                 to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
2016         }
2017
2018         nvme_tcp_free_queue(ctrl, 0);
2019 }
2020
2021 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
2022 {
2023         int i;
2024
2025         for (i = 1; i < ctrl->queue_count; i++)
2026                 nvme_tcp_free_queue(ctrl, i);
2027 }
2028
2029 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
2030 {
2031         int i;
2032
2033         for (i = 1; i < ctrl->queue_count; i++)
2034                 nvme_tcp_stop_queue_nowait(ctrl, i);
2035         for (i = 1; i < ctrl->queue_count; i++)
2036                 nvme_tcp_wait_queue(ctrl, i);
2037 }
2038
2039 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl,
2040                                     int first, int last)
2041 {
2042         int i, ret;
2043
2044         for (i = first; i < last; i++) {
2045                 ret = nvme_tcp_start_queue(ctrl, i);
2046                 if (ret)
2047                         goto out_stop_queues;
2048         }
2049
2050         return 0;
2051
2052 out_stop_queues:
2053         for (i--; i >= first; i--)
2054                 nvme_tcp_stop_queue(ctrl, i);
2055         return ret;
2056 }
2057
2058 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
2059 {
2060         int ret;
2061         key_serial_t pskid = 0;
2062
2063         if (nvme_tcp_tls_configured(ctrl)) {
2064                 if (ctrl->opts->tls_key)
2065                         pskid = key_serial(ctrl->opts->tls_key);
2066                 else if (ctrl->opts->tls) {
2067                         pskid = nvme_tls_psk_default(ctrl->opts->keyring,
2068                                                       ctrl->opts->host->nqn,
2069                                                       ctrl->opts->subsysnqn);
2070                         if (!pskid) {
2071                                 dev_err(ctrl->device, "no valid PSK found\n");
2072                                 return -ENOKEY;
2073                         }
2074                 }
2075         }
2076
2077         ret = nvme_tcp_alloc_queue(ctrl, 0, pskid);
2078         if (ret)
2079                 return ret;
2080
2081         ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
2082         if (ret)
2083                 goto out_free_queue;
2084
2085         return 0;
2086
2087 out_free_queue:
2088         nvme_tcp_free_queue(ctrl, 0);
2089         return ret;
2090 }
2091
2092 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
2093 {
2094         int i, ret;
2095
2096         if (nvme_tcp_tls_configured(ctrl)) {
2097                 if (ctrl->opts->concat) {
2098                         /*
2099                          * The generated PSK is stored in the
2100                          * fabric options
2101                          */
2102                         if (!ctrl->opts->tls_key) {
2103                                 dev_err(ctrl->device, "no PSK generated\n");
2104                                 return -ENOKEY;
2105                         }
2106                         if (ctrl->tls_pskid &&
2107                             ctrl->tls_pskid != key_serial(ctrl->opts->tls_key)) {
2108                                 dev_err(ctrl->device, "Stale PSK id %08x\n", ctrl->tls_pskid);
2109                                 ctrl->tls_pskid = 0;
2110                         }
2111                 } else if (!ctrl->tls_pskid) {
2112                         dev_err(ctrl->device, "no PSK negotiated\n");
2113                         return -ENOKEY;
2114                 }
2115         }
2116
2117         for (i = 1; i < ctrl->queue_count; i++) {
2118                 ret = nvme_tcp_alloc_queue(ctrl, i,
2119                                 ctrl->tls_pskid);
2120                 if (ret)
2121                         goto out_free_queues;
2122         }
2123
2124         return 0;
2125
2126 out_free_queues:
2127         for (i--; i >= 1; i--)
2128                 nvme_tcp_free_queue(ctrl, i);
2129
2130         return ret;
2131 }
2132
2133 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
2134 {
2135         unsigned int nr_io_queues;
2136         int ret;
2137
2138         nr_io_queues = nvmf_nr_io_queues(ctrl->opts);
2139         ret = nvme_set_queue_count(ctrl, &nr_io_queues);
2140         if (ret)
2141                 return ret;
2142
2143         if (nr_io_queues == 0) {
2144                 dev_err(ctrl->device,
2145                         "unable to set any I/O queues\n");
2146                 return -ENOMEM;
2147         }
2148
2149         ctrl->queue_count = nr_io_queues + 1;
2150         dev_info(ctrl->device,
2151                 "creating %d I/O queues.\n", nr_io_queues);
2152
2153         nvmf_set_io_queues(ctrl->opts, nr_io_queues,
2154                            to_tcp_ctrl(ctrl)->io_queues);
2155         return __nvme_tcp_alloc_io_queues(ctrl);
2156 }
2157
2158 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
2159 {
2160         int ret, nr_queues;
2161
2162         ret = nvme_tcp_alloc_io_queues(ctrl);
2163         if (ret)
2164                 return ret;
2165
2166         if (new) {
2167                 ret = nvme_alloc_io_tag_set(ctrl, &to_tcp_ctrl(ctrl)->tag_set,
2168                                 &nvme_tcp_mq_ops,
2169                                 ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2,
2170                                 sizeof(struct nvme_tcp_request));
2171                 if (ret)
2172                         goto out_free_io_queues;
2173         }
2174
2175         /*
2176          * Only start IO queues for which we have allocated the tagset
2177          * and limitted it to the available queues. On reconnects, the
2178          * queue number might have changed.
2179          */
2180         nr_queues = min(ctrl->tagset->nr_hw_queues + 1, ctrl->queue_count);
2181         ret = nvme_tcp_start_io_queues(ctrl, 1, nr_queues);
2182         if (ret)
2183                 goto out_cleanup_connect_q;
2184
2185         if (!new) {
2186                 nvme_start_freeze(ctrl);
2187                 nvme_unquiesce_io_queues(ctrl);
2188                 if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
2189                         /*
2190                          * If we timed out waiting for freeze we are likely to
2191                          * be stuck.  Fail the controller initialization just
2192                          * to be safe.
2193                          */
2194                         ret = -ENODEV;
2195                         nvme_unfreeze(ctrl);
2196                         goto out_wait_freeze_timed_out;
2197                 }
2198                 blk_mq_update_nr_hw_queues(ctrl->tagset,
2199                         ctrl->queue_count - 1);
2200                 nvme_unfreeze(ctrl);
2201         }
2202
2203         /*
2204          * If the number of queues has increased (reconnect case)
2205          * start all new queues now.
2206          */
2207         ret = nvme_tcp_start_io_queues(ctrl, nr_queues,
2208                                        ctrl->tagset->nr_hw_queues + 1);
2209         if (ret)
2210                 goto out_wait_freeze_timed_out;
2211
2212         return 0;
2213
2214 out_wait_freeze_timed_out:
2215         nvme_quiesce_io_queues(ctrl);
2216         nvme_sync_io_queues(ctrl);
2217         nvme_tcp_stop_io_queues(ctrl);
2218 out_cleanup_connect_q:
2219         nvme_cancel_tagset(ctrl);
2220         if (new)
2221                 nvme_remove_io_tag_set(ctrl);
2222 out_free_io_queues:
2223         nvme_tcp_free_io_queues(ctrl);
2224         return ret;
2225 }
2226
2227 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
2228 {
2229         int error;
2230
2231         error = nvme_tcp_alloc_admin_queue(ctrl);
2232         if (error)
2233                 return error;
2234
2235         if (new) {
2236                 error = nvme_alloc_admin_tag_set(ctrl,
2237                                 &to_tcp_ctrl(ctrl)->admin_tag_set,
2238                                 &nvme_tcp_admin_mq_ops,
2239                                 sizeof(struct nvme_tcp_request));
2240                 if (error)
2241                         goto out_free_queue;
2242         }
2243
2244         error = nvme_tcp_start_queue(ctrl, 0);
2245         if (error)
2246                 goto out_cleanup_tagset;
2247
2248         error = nvme_enable_ctrl(ctrl);
2249         if (error)
2250                 goto out_stop_queue;
2251
2252         nvme_unquiesce_admin_queue(ctrl);
2253
2254         error = nvme_init_ctrl_finish(ctrl, false);
2255         if (error)
2256                 goto out_quiesce_queue;
2257
2258         return 0;
2259
2260 out_quiesce_queue:
2261         nvme_quiesce_admin_queue(ctrl);
2262         blk_sync_queue(ctrl->admin_q);
2263 out_stop_queue:
2264         nvme_tcp_stop_queue(ctrl, 0);
2265         nvme_cancel_admin_tagset(ctrl);
2266 out_cleanup_tagset:
2267         if (new)
2268                 nvme_remove_admin_tag_set(ctrl);
2269 out_free_queue:
2270         nvme_tcp_free_admin_queue(ctrl);
2271         return error;
2272 }
2273
2274 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
2275                 bool remove)
2276 {
2277         nvme_quiesce_admin_queue(ctrl);
2278         blk_sync_queue(ctrl->admin_q);
2279         nvme_tcp_stop_queue(ctrl, 0);
2280         nvme_cancel_admin_tagset(ctrl);
2281         if (remove) {
2282                 nvme_unquiesce_admin_queue(ctrl);
2283                 nvme_remove_admin_tag_set(ctrl);
2284         }
2285         nvme_tcp_free_admin_queue(ctrl);
2286         if (ctrl->tls_pskid) {
2287                 dev_dbg(ctrl->device, "Wipe negotiated TLS_PSK %08x\n",
2288                         ctrl->tls_pskid);
2289                 ctrl->tls_pskid = 0;
2290         }
2291 }
2292
2293 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
2294                 bool remove)
2295 {
2296         if (ctrl->queue_count <= 1)
2297                 return;
2298         nvme_quiesce_io_queues(ctrl);
2299         nvme_sync_io_queues(ctrl);
2300         nvme_tcp_stop_io_queues(ctrl);
2301         nvme_cancel_tagset(ctrl);
2302         if (remove) {
2303                 nvme_unquiesce_io_queues(ctrl);
2304                 nvme_remove_io_tag_set(ctrl);
2305         }
2306         nvme_tcp_free_io_queues(ctrl);
2307 }
2308
2309 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl,
2310                 int status)
2311 {
2312         enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2313
2314         /* If we are resetting/deleting then do nothing */
2315         if (state != NVME_CTRL_CONNECTING) {
2316                 WARN_ON_ONCE(state == NVME_CTRL_NEW || state == NVME_CTRL_LIVE);
2317                 return;
2318         }
2319
2320         if (nvmf_should_reconnect(ctrl, status)) {
2321                 dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
2322                         ctrl->opts->reconnect_delay);
2323                 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
2324                                 ctrl->opts->reconnect_delay * HZ);
2325         } else {
2326                 dev_info(ctrl->device, "Removing controller (%d)...\n",
2327                          status);
2328                 nvme_delete_ctrl(ctrl);
2329         }
2330 }
2331
2332 /*
2333  * The TLS key is set by secure concatenation after negotiation has been
2334  * completed on the admin queue. We need to revoke the key when:
2335  * - concatenation is enabled (otherwise it's a static key set by the user)
2336  * and
2337  * - the generated key is present in ctrl->tls_key (otherwise there's nothing
2338  *   to revoke)
2339  * and
2340  * - a valid PSK key ID has been set in ctrl->tls_pskid (otherwise TLS
2341  *   negotiation has not run).
2342  *
2343  * We cannot always revoke the key as nvme_tcp_alloc_admin_queue() is called
2344  * twice during secure concatenation, once on a 'normal' connection to run the
2345  * DH-HMAC-CHAP negotiation (which generates the key, so it _must not_ be set),
2346  * and once after the negotiation (which uses the key, so it _must_ be set).
2347  */
2348 static bool nvme_tcp_key_revoke_needed(struct nvme_ctrl *ctrl)
2349 {
2350         return ctrl->opts->concat && ctrl->opts->tls_key && ctrl->tls_pskid;
2351 }
2352
2353 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
2354 {
2355         struct nvmf_ctrl_options *opts = ctrl->opts;
2356         int ret;
2357
2358         ret = nvme_tcp_configure_admin_queue(ctrl, new);
2359         if (ret)
2360                 return ret;
2361
2362         if (ctrl->opts->concat && !ctrl->tls_pskid) {
2363                 /* See comments for nvme_tcp_key_revoke_needed() */
2364                 dev_dbg(ctrl->device, "restart admin queue for secure concatenation\n");
2365                 nvme_stop_keep_alive(ctrl);
2366                 nvme_tcp_teardown_admin_queue(ctrl, false);
2367                 ret = nvme_tcp_configure_admin_queue(ctrl, false);
2368                 if (ret)
2369                         goto destroy_admin;
2370         }
2371
2372         if (ctrl->icdoff) {
2373                 ret = -EOPNOTSUPP;
2374                 dev_err(ctrl->device, "icdoff is not supported!\n");
2375                 goto destroy_admin;
2376         }
2377
2378         if (!nvme_ctrl_sgl_supported(ctrl)) {
2379                 ret = -EOPNOTSUPP;
2380                 dev_err(ctrl->device, "Mandatory sgls are not supported!\n");
2381                 goto destroy_admin;
2382         }
2383
2384         if (opts->queue_size > ctrl->sqsize + 1)
2385                 dev_warn(ctrl->device,
2386                         "queue_size %zu > ctrl sqsize %u, clamping down\n",
2387                         opts->queue_size, ctrl->sqsize + 1);
2388
2389         if (ctrl->sqsize + 1 > ctrl->maxcmd) {
2390                 dev_warn(ctrl->device,
2391                         "sqsize %u > ctrl maxcmd %u, clamping down\n",
2392                         ctrl->sqsize + 1, ctrl->maxcmd);
2393                 ctrl->sqsize = ctrl->maxcmd - 1;
2394         }
2395
2396         if (ctrl->queue_count > 1) {
2397                 ret = nvme_tcp_configure_io_queues(ctrl, new);
2398                 if (ret)
2399                         goto destroy_admin;
2400         }
2401
2402         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
2403                 /*
2404                  * state change failure is ok if we started ctrl delete,
2405                  * unless we're during creation of a new controller to
2406                  * avoid races with teardown flow.
2407                  */
2408                 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2409
2410                 WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2411                              state != NVME_CTRL_DELETING_NOIO);
2412                 WARN_ON_ONCE(new);
2413                 ret = -EINVAL;
2414                 goto destroy_io;
2415         }
2416
2417         nvme_start_ctrl(ctrl);
2418         return 0;
2419
2420 destroy_io:
2421         if (ctrl->queue_count > 1) {
2422                 nvme_quiesce_io_queues(ctrl);
2423                 nvme_sync_io_queues(ctrl);
2424                 nvme_tcp_stop_io_queues(ctrl);
2425                 nvme_cancel_tagset(ctrl);
2426                 if (new)
2427                         nvme_remove_io_tag_set(ctrl);
2428                 nvme_tcp_free_io_queues(ctrl);
2429         }
2430 destroy_admin:
2431         nvme_stop_keep_alive(ctrl);
2432         nvme_tcp_teardown_admin_queue(ctrl, new);
2433         return ret;
2434 }
2435
2436 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
2437 {
2438         struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2439                         struct nvme_tcp_ctrl, connect_work);
2440         struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2441         int ret;
2442
2443         ++ctrl->nr_reconnects;
2444
2445         ret = nvme_tcp_setup_ctrl(ctrl, false);
2446         if (ret)
2447                 goto requeue;
2448
2449         dev_info(ctrl->device, "Successfully reconnected (attempt %d/%d)\n",
2450                  ctrl->nr_reconnects, ctrl->opts->max_reconnects);
2451
2452         ctrl->nr_reconnects = 0;
2453
2454         return;
2455
2456 requeue:
2457         dev_info(ctrl->device, "Failed reconnect attempt %d/%d\n",
2458                  ctrl->nr_reconnects, ctrl->opts->max_reconnects);
2459         nvme_tcp_reconnect_or_remove(ctrl, ret);
2460 }
2461
2462 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2463 {
2464         struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2465                                 struct nvme_tcp_ctrl, err_work);
2466         struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2467
2468         if (nvme_tcp_key_revoke_needed(ctrl))
2469                 nvme_auth_revoke_tls_key(ctrl);
2470         nvme_stop_keep_alive(ctrl);
2471         flush_work(&ctrl->async_event_work);
2472         nvme_tcp_teardown_io_queues(ctrl, false);
2473         /* unquiesce to fail fast pending requests */
2474         nvme_unquiesce_io_queues(ctrl);
2475         nvme_tcp_teardown_admin_queue(ctrl, false);
2476         nvme_unquiesce_admin_queue(ctrl);
2477         nvme_auth_stop(ctrl);
2478
2479         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2480                 /* state change failure is ok if we started ctrl delete */
2481                 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2482
2483                 WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2484                              state != NVME_CTRL_DELETING_NOIO);
2485                 return;
2486         }
2487
2488         nvme_tcp_reconnect_or_remove(ctrl, 0);
2489 }
2490
2491 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2492 {
2493         nvme_tcp_teardown_io_queues(ctrl, shutdown);
2494         nvme_quiesce_admin_queue(ctrl);
2495         nvme_disable_ctrl(ctrl, shutdown);
2496         nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2497 }
2498
2499 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2500 {
2501         nvme_tcp_teardown_ctrl(ctrl, true);
2502 }
2503
2504 static void nvme_reset_ctrl_work(struct work_struct *work)
2505 {
2506         struct nvme_ctrl *ctrl =
2507                 container_of(work, struct nvme_ctrl, reset_work);
2508         int ret;
2509
2510         if (nvme_tcp_key_revoke_needed(ctrl))
2511                 nvme_auth_revoke_tls_key(ctrl);
2512         nvme_stop_ctrl(ctrl);
2513         nvme_tcp_teardown_ctrl(ctrl, false);
2514
2515         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2516                 /* state change failure is ok if we started ctrl delete */
2517                 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2518
2519                 WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2520                              state != NVME_CTRL_DELETING_NOIO);
2521                 return;
2522         }
2523
2524         ret = nvme_tcp_setup_ctrl(ctrl, false);
2525         if (ret)
2526                 goto out_fail;
2527
2528         return;
2529
2530 out_fail:
2531         ++ctrl->nr_reconnects;
2532         nvme_tcp_reconnect_or_remove(ctrl, ret);
2533 }
2534
2535 static void nvme_tcp_stop_ctrl(struct nvme_ctrl *ctrl)
2536 {
2537         flush_work(&to_tcp_ctrl(ctrl)->err_work);
2538         cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2539 }
2540
2541 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2542 {
2543         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2544
2545         if (list_empty(&ctrl->list))
2546                 goto free_ctrl;
2547
2548         mutex_lock(&nvme_tcp_ctrl_mutex);
2549         list_del(&ctrl->list);
2550         mutex_unlock(&nvme_tcp_ctrl_mutex);
2551
2552         nvmf_free_options(nctrl->opts);
2553 free_ctrl:
2554         kfree(ctrl->queues);
2555         kfree(ctrl);
2556 }
2557
2558 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2559 {
2560         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2561
2562         sg->addr = 0;
2563         sg->length = 0;
2564         sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2565                         NVME_SGL_FMT_TRANSPORT_A;
2566 }
2567
2568 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2569                 struct nvme_command *c, u32 data_len)
2570 {
2571         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2572
2573         sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2574         sg->length = cpu_to_le32(data_len);
2575         sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2576 }
2577
2578 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2579                 u32 data_len)
2580 {
2581         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2582
2583         sg->addr = 0;
2584         sg->length = cpu_to_le32(data_len);
2585         sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2586                         NVME_SGL_FMT_TRANSPORT_A;
2587 }
2588
2589 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2590 {
2591         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2592         struct nvme_tcp_queue *queue = &ctrl->queues[0];
2593         struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2594         struct nvme_command *cmd = &pdu->cmd;
2595         u8 hdgst = nvme_tcp_hdgst_len(queue);
2596
2597         memset(pdu, 0, sizeof(*pdu));
2598         pdu->hdr.type = nvme_tcp_cmd;
2599         if (queue->hdr_digest)
2600                 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2601         pdu->hdr.hlen = sizeof(*pdu);
2602         pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2603
2604         cmd->common.opcode = nvme_admin_async_event;
2605         cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2606         cmd->common.flags |= NVME_CMD_SGL_METABUF;
2607         nvme_tcp_set_sg_null(cmd);
2608
2609         ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2610         ctrl->async_req.offset = 0;
2611         ctrl->async_req.curr_bio = NULL;
2612         ctrl->async_req.data_len = 0;
2613         init_llist_node(&ctrl->async_req.lentry);
2614         INIT_LIST_HEAD(&ctrl->async_req.entry);
2615
2616         nvme_tcp_queue_request(&ctrl->async_req, true);
2617 }
2618
2619 static void nvme_tcp_complete_timed_out(struct request *rq)
2620 {
2621         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2622         struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2623
2624         nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2625         nvmf_complete_timed_out_request(rq);
2626 }
2627
2628 static enum blk_eh_timer_return nvme_tcp_timeout(struct request *rq)
2629 {
2630         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2631         struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2632         struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2633         struct nvme_command *cmd = &pdu->cmd;
2634         int qid = nvme_tcp_queue_id(req->queue);
2635
2636         dev_warn(ctrl->device,
2637                  "I/O tag %d (%04x) type %d opcode %#x (%s) QID %d timeout\n",
2638                  rq->tag, nvme_cid(rq), pdu->hdr.type, cmd->common.opcode,
2639                  nvme_fabrics_opcode_str(qid, cmd), qid);
2640
2641         if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) {
2642                 /*
2643                  * If we are resetting, connecting or deleting we should
2644                  * complete immediately because we may block controller
2645                  * teardown or setup sequence
2646                  * - ctrl disable/shutdown fabrics requests
2647                  * - connect requests
2648                  * - initialization admin requests
2649                  * - I/O requests that entered after unquiescing and
2650                  *   the controller stopped responding
2651                  *
2652                  * All other requests should be cancelled by the error
2653                  * recovery work, so it's fine that we fail it here.
2654                  */
2655                 nvme_tcp_complete_timed_out(rq);
2656                 return BLK_EH_DONE;
2657         }
2658
2659         /*
2660          * LIVE state should trigger the normal error recovery which will
2661          * handle completing this request.
2662          */
2663         nvme_tcp_error_recovery(ctrl);
2664         return BLK_EH_RESET_TIMER;
2665 }
2666
2667 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2668                         struct request *rq)
2669 {
2670         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2671         struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2672         struct nvme_command *c = &pdu->cmd;
2673
2674         c->common.flags |= NVME_CMD_SGL_METABUF;
2675
2676         if (!blk_rq_nr_phys_segments(rq))
2677                 nvme_tcp_set_sg_null(c);
2678         else if (rq_data_dir(rq) == WRITE &&
2679             req->data_len <= nvme_tcp_inline_data_size(req))
2680                 nvme_tcp_set_sg_inline(queue, c, req->data_len);
2681         else
2682                 nvme_tcp_set_sg_host_data(c, req->data_len);
2683
2684         return 0;
2685 }
2686
2687 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2688                 struct request *rq)
2689 {
2690         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2691         struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2692         struct nvme_tcp_queue *queue = req->queue;
2693         u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2694         blk_status_t ret;
2695
2696         ret = nvme_setup_cmd(ns, rq);
2697         if (ret)
2698                 return ret;
2699
2700         req->state = NVME_TCP_SEND_CMD_PDU;
2701         req->status = cpu_to_le16(NVME_SC_SUCCESS);
2702         req->offset = 0;
2703         req->data_sent = 0;
2704         req->pdu_len = 0;
2705         req->pdu_sent = 0;
2706         req->h2cdata_left = 0;
2707         req->data_len = blk_rq_nr_phys_segments(rq) ?
2708                                 blk_rq_payload_bytes(rq) : 0;
2709         req->curr_bio = rq->bio;
2710         if (req->curr_bio && req->data_len)
2711                 nvme_tcp_init_iter(req, rq_data_dir(rq));
2712
2713         if (rq_data_dir(rq) == WRITE &&
2714             req->data_len <= nvme_tcp_inline_data_size(req))
2715                 req->pdu_len = req->data_len;
2716
2717         pdu->hdr.type = nvme_tcp_cmd;
2718         pdu->hdr.flags = 0;
2719         if (queue->hdr_digest)
2720                 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2721         if (queue->data_digest && req->pdu_len) {
2722                 pdu->hdr.flags |= NVME_TCP_F_DDGST;
2723                 ddgst = nvme_tcp_ddgst_len(queue);
2724         }
2725         pdu->hdr.hlen = sizeof(*pdu);
2726         pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2727         pdu->hdr.plen =
2728                 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2729
2730         ret = nvme_tcp_map_data(queue, rq);
2731         if (unlikely(ret)) {
2732                 nvme_cleanup_cmd(rq);
2733                 dev_err(queue->ctrl->ctrl.device,
2734                         "Failed to map data (%d)\n", ret);
2735                 return ret;
2736         }
2737
2738         return 0;
2739 }
2740
2741 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2742 {
2743         struct nvme_tcp_queue *queue = hctx->driver_data;
2744
2745         if (!llist_empty(&queue->req_list))
2746                 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2747 }
2748
2749 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2750                 const struct blk_mq_queue_data *bd)
2751 {
2752         struct nvme_ns *ns = hctx->queue->queuedata;
2753         struct nvme_tcp_queue *queue = hctx->driver_data;
2754         struct request *rq = bd->rq;
2755         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2756         bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2757         blk_status_t ret;
2758
2759         if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2760                 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2761
2762         ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2763         if (unlikely(ret))
2764                 return ret;
2765
2766         nvme_start_request(rq);
2767
2768         nvme_tcp_queue_request(req, bd->last);
2769
2770         return BLK_STS_OK;
2771 }
2772
2773 static void nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2774 {
2775         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
2776
2777         nvmf_map_queues(set, &ctrl->ctrl, ctrl->io_queues);
2778 }
2779
2780 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
2781 {
2782         struct nvme_tcp_queue *queue = hctx->driver_data;
2783         struct sock *sk = queue->sock->sk;
2784         int ret;
2785
2786         if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2787                 return 0;
2788
2789         set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2790         if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2791                 sk_busy_loop(sk, true);
2792         ret = nvme_tcp_try_recv(queue);
2793         clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2794         return ret < 0 ? ret : queue->nr_cqe;
2795 }
2796
2797 static int nvme_tcp_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2798 {
2799         struct nvme_tcp_queue *queue = &to_tcp_ctrl(ctrl)->queues[0];
2800         struct sockaddr_storage src_addr;
2801         int ret, len;
2802
2803         len = nvmf_get_address(ctrl, buf, size);
2804
2805         if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2806                 return len;
2807
2808         mutex_lock(&queue->queue_lock);
2809
2810         ret = kernel_getsockname(queue->sock, (struct sockaddr *)&src_addr);
2811         if (ret > 0) {
2812                 if (len > 0)
2813                         len--; /* strip trailing newline */
2814                 len += scnprintf(buf + len, size - len, "%ssrc_addr=%pISc\n",
2815                                 (len) ? "," : "", &src_addr);
2816         }
2817
2818         mutex_unlock(&queue->queue_lock);
2819
2820         return len;
2821 }
2822
2823 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2824         .queue_rq       = nvme_tcp_queue_rq,
2825         .commit_rqs     = nvme_tcp_commit_rqs,
2826         .complete       = nvme_complete_rq,
2827         .init_request   = nvme_tcp_init_request,
2828         .exit_request   = nvme_tcp_exit_request,
2829         .init_hctx      = nvme_tcp_init_hctx,
2830         .timeout        = nvme_tcp_timeout,
2831         .map_queues     = nvme_tcp_map_queues,
2832         .poll           = nvme_tcp_poll,
2833 };
2834
2835 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2836         .queue_rq       = nvme_tcp_queue_rq,
2837         .complete       = nvme_complete_rq,
2838         .init_request   = nvme_tcp_init_request,
2839         .exit_request   = nvme_tcp_exit_request,
2840         .init_hctx      = nvme_tcp_init_admin_hctx,
2841         .timeout        = nvme_tcp_timeout,
2842 };
2843
2844 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2845         .name                   = "tcp",
2846         .module                 = THIS_MODULE,
2847         .flags                  = NVME_F_FABRICS | NVME_F_BLOCKING,
2848         .reg_read32             = nvmf_reg_read32,
2849         .reg_read64             = nvmf_reg_read64,
2850         .reg_write32            = nvmf_reg_write32,
2851         .subsystem_reset        = nvmf_subsystem_reset,
2852         .free_ctrl              = nvme_tcp_free_ctrl,
2853         .submit_async_event     = nvme_tcp_submit_async_event,
2854         .delete_ctrl            = nvme_tcp_delete_ctrl,
2855         .get_address            = nvme_tcp_get_address,
2856         .stop_ctrl              = nvme_tcp_stop_ctrl,
2857 };
2858
2859 static bool
2860 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2861 {
2862         struct nvme_tcp_ctrl *ctrl;
2863         bool found = false;
2864
2865         mutex_lock(&nvme_tcp_ctrl_mutex);
2866         list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2867                 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2868                 if (found)
2869                         break;
2870         }
2871         mutex_unlock(&nvme_tcp_ctrl_mutex);
2872
2873         return found;
2874 }
2875
2876 static struct nvme_tcp_ctrl *nvme_tcp_alloc_ctrl(struct device *dev,
2877                 struct nvmf_ctrl_options *opts)
2878 {
2879         struct nvme_tcp_ctrl *ctrl;
2880         int ret;
2881
2882         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2883         if (!ctrl)
2884                 return ERR_PTR(-ENOMEM);
2885
2886         INIT_LIST_HEAD(&ctrl->list);
2887         ctrl->ctrl.opts = opts;
2888         ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2889                                 opts->nr_poll_queues + 1;
2890         ctrl->ctrl.sqsize = opts->queue_size - 1;
2891         ctrl->ctrl.kato = opts->kato;
2892
2893         INIT_DELAYED_WORK(&ctrl->connect_work,
2894                         nvme_tcp_reconnect_ctrl_work);
2895         INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2896         INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2897
2898         if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2899                 opts->trsvcid =
2900                         kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2901                 if (!opts->trsvcid) {
2902                         ret = -ENOMEM;
2903                         goto out_free_ctrl;
2904                 }
2905                 opts->mask |= NVMF_OPT_TRSVCID;
2906         }
2907
2908         ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2909                         opts->traddr, opts->trsvcid, &ctrl->addr);
2910         if (ret) {
2911                 pr_err("malformed address passed: %s:%s\n",
2912                         opts->traddr, opts->trsvcid);
2913                 goto out_free_ctrl;
2914         }
2915
2916         if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2917                 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2918                         opts->host_traddr, NULL, &ctrl->src_addr);
2919                 if (ret) {
2920                         pr_err("malformed src address passed: %s\n",
2921                                opts->host_traddr);
2922                         goto out_free_ctrl;
2923                 }
2924         }
2925
2926         if (opts->mask & NVMF_OPT_HOST_IFACE) {
2927                 if (!__dev_get_by_name(&init_net, opts->host_iface)) {
2928                         pr_err("invalid interface passed: %s\n",
2929                                opts->host_iface);
2930                         ret = -ENODEV;
2931                         goto out_free_ctrl;
2932                 }
2933         }
2934
2935         if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2936                 ret = -EALREADY;
2937                 goto out_free_ctrl;
2938         }
2939
2940         ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2941                                 GFP_KERNEL);
2942         if (!ctrl->queues) {
2943                 ret = -ENOMEM;
2944                 goto out_free_ctrl;
2945         }
2946
2947         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2948         if (ret)
2949                 goto out_kfree_queues;
2950
2951         return ctrl;
2952 out_kfree_queues:
2953         kfree(ctrl->queues);
2954 out_free_ctrl:
2955         kfree(ctrl);
2956         return ERR_PTR(ret);
2957 }
2958
2959 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2960                 struct nvmf_ctrl_options *opts)
2961 {
2962         struct nvme_tcp_ctrl *ctrl;
2963         int ret;
2964
2965         ctrl = nvme_tcp_alloc_ctrl(dev, opts);
2966         if (IS_ERR(ctrl))
2967                 return ERR_CAST(ctrl);
2968
2969         ret = nvme_add_ctrl(&ctrl->ctrl);
2970         if (ret)
2971                 goto out_put_ctrl;
2972
2973         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2974                 WARN_ON_ONCE(1);
2975                 ret = -EINTR;
2976                 goto out_uninit_ctrl;
2977         }
2978
2979         ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2980         if (ret)
2981                 goto out_uninit_ctrl;
2982
2983         dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp, hostnqn: %s\n",
2984                 nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr, opts->host->nqn);
2985
2986         mutex_lock(&nvme_tcp_ctrl_mutex);
2987         list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2988         mutex_unlock(&nvme_tcp_ctrl_mutex);
2989
2990         return &ctrl->ctrl;
2991
2992 out_uninit_ctrl:
2993         nvme_uninit_ctrl(&ctrl->ctrl);
2994 out_put_ctrl:
2995         nvme_put_ctrl(&ctrl->ctrl);
2996         if (ret > 0)
2997                 ret = -EIO;
2998         return ERR_PTR(ret);
2999 }
3000
3001 static struct nvmf_transport_ops nvme_tcp_transport = {
3002         .name           = "tcp",
3003         .module         = THIS_MODULE,
3004         .required_opts  = NVMF_OPT_TRADDR,
3005         .allowed_opts   = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
3006                           NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
3007                           NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
3008                           NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
3009                           NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE | NVMF_OPT_TLS |
3010                           NVMF_OPT_KEYRING | NVMF_OPT_TLS_KEY | NVMF_OPT_CONCAT,
3011         .create_ctrl    = nvme_tcp_create_ctrl,
3012 };
3013
3014 static int __init nvme_tcp_init_module(void)
3015 {
3016         unsigned int wq_flags = WQ_MEM_RECLAIM | WQ_HIGHPRI | WQ_SYSFS;
3017         int cpu;
3018
3019         BUILD_BUG_ON(sizeof(struct nvme_tcp_hdr) != 8);
3020         BUILD_BUG_ON(sizeof(struct nvme_tcp_cmd_pdu) != 72);
3021         BUILD_BUG_ON(sizeof(struct nvme_tcp_data_pdu) != 24);
3022         BUILD_BUG_ON(sizeof(struct nvme_tcp_rsp_pdu) != 24);
3023         BUILD_BUG_ON(sizeof(struct nvme_tcp_r2t_pdu) != 24);
3024         BUILD_BUG_ON(sizeof(struct nvme_tcp_icreq_pdu) != 128);
3025         BUILD_BUG_ON(sizeof(struct nvme_tcp_icresp_pdu) != 128);
3026         BUILD_BUG_ON(sizeof(struct nvme_tcp_term_pdu) != 24);
3027
3028         if (wq_unbound)
3029                 wq_flags |= WQ_UNBOUND;
3030
3031         nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq", wq_flags, 0);
3032         if (!nvme_tcp_wq)
3033                 return -ENOMEM;
3034
3035         for_each_possible_cpu(cpu)
3036                 atomic_set(&nvme_tcp_cpu_queues[cpu], 0);
3037
3038         nvmf_register_transport(&nvme_tcp_transport);
3039         return 0;
3040 }
3041
3042 static void __exit nvme_tcp_cleanup_module(void)
3043 {
3044         struct nvme_tcp_ctrl *ctrl;
3045
3046         nvmf_unregister_transport(&nvme_tcp_transport);
3047
3048         mutex_lock(&nvme_tcp_ctrl_mutex);
3049         list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
3050                 nvme_delete_ctrl(&ctrl->ctrl);
3051         mutex_unlock(&nvme_tcp_ctrl_mutex);
3052         flush_workqueue(nvme_delete_wq);
3053
3054         destroy_workqueue(nvme_tcp_wq);
3055 }
3056
3057 module_init(nvme_tcp_init_module);
3058 module_exit(nvme_tcp_cleanup_module);
3059
3060 MODULE_DESCRIPTION("NVMe host TCP transport driver");
3061 MODULE_LICENSE("GPL v2");