nvme-rdma: fix possible free of a non-allocated async event buffer
[linux-block.git] / drivers / nvme / host / rdma.c
1 /*
2  * NVMe over Fabrics RDMA host code.
3  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <rdma/mr_pool.h>
19 #include <linux/err.h>
20 #include <linux/string.h>
21 #include <linux/atomic.h>
22 #include <linux/blk-mq.h>
23 #include <linux/blk-mq-rdma.h>
24 #include <linux/types.h>
25 #include <linux/list.h>
26 #include <linux/mutex.h>
27 #include <linux/scatterlist.h>
28 #include <linux/nvme.h>
29 #include <asm/unaligned.h>
30
31 #include <rdma/ib_verbs.h>
32 #include <rdma/rdma_cm.h>
33 #include <linux/nvme-rdma.h>
34
35 #include "nvme.h"
36 #include "fabrics.h"
37
38
39 #define NVME_RDMA_CONNECT_TIMEOUT_MS    3000            /* 3 second */
40
41 #define NVME_RDMA_MAX_SEGMENTS          256
42
43 #define NVME_RDMA_MAX_INLINE_SEGMENTS   1
44
45 struct nvme_rdma_device {
46         struct ib_device        *dev;
47         struct ib_pd            *pd;
48         struct kref             ref;
49         struct list_head        entry;
50 };
51
52 struct nvme_rdma_qe {
53         struct ib_cqe           cqe;
54         void                    *data;
55         u64                     dma;
56 };
57
58 struct nvme_rdma_queue;
59 struct nvme_rdma_request {
60         struct nvme_request     req;
61         struct ib_mr            *mr;
62         struct nvme_rdma_qe     sqe;
63         union nvme_result       result;
64         __le16                  status;
65         refcount_t              ref;
66         struct ib_sge           sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
67         u32                     num_sge;
68         int                     nents;
69         struct ib_reg_wr        reg_wr;
70         struct ib_cqe           reg_cqe;
71         struct nvme_rdma_queue  *queue;
72         struct sg_table         sg_table;
73         struct scatterlist      first_sgl[];
74 };
75
76 enum nvme_rdma_queue_flags {
77         NVME_RDMA_Q_ALLOCATED           = 0,
78         NVME_RDMA_Q_LIVE                = 1,
79         NVME_RDMA_Q_TR_READY            = 2,
80 };
81
82 struct nvme_rdma_queue {
83         struct nvme_rdma_qe     *rsp_ring;
84         int                     queue_size;
85         size_t                  cmnd_capsule_len;
86         struct nvme_rdma_ctrl   *ctrl;
87         struct nvme_rdma_device *device;
88         struct ib_cq            *ib_cq;
89         struct ib_qp            *qp;
90
91         unsigned long           flags;
92         struct rdma_cm_id       *cm_id;
93         int                     cm_error;
94         struct completion       cm_done;
95 };
96
97 struct nvme_rdma_ctrl {
98         /* read only in the hot path */
99         struct nvme_rdma_queue  *queues;
100
101         /* other member variables */
102         struct blk_mq_tag_set   tag_set;
103         struct work_struct      err_work;
104
105         struct nvme_rdma_qe     async_event_sqe;
106
107         struct delayed_work     reconnect_work;
108
109         struct list_head        list;
110
111         struct blk_mq_tag_set   admin_tag_set;
112         struct nvme_rdma_device *device;
113
114         u32                     max_fr_pages;
115
116         struct sockaddr_storage addr;
117         struct sockaddr_storage src_addr;
118
119         struct nvme_ctrl        ctrl;
120 };
121
122 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
123 {
124         return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
125 }
126
127 static LIST_HEAD(device_list);
128 static DEFINE_MUTEX(device_list_mutex);
129
130 static LIST_HEAD(nvme_rdma_ctrl_list);
131 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
132
133 /*
134  * Disabling this option makes small I/O goes faster, but is fundamentally
135  * unsafe.  With it turned off we will have to register a global rkey that
136  * allows read and write access to all physical memory.
137  */
138 static bool register_always = true;
139 module_param(register_always, bool, 0444);
140 MODULE_PARM_DESC(register_always,
141          "Use memory registration even for contiguous memory regions");
142
143 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
144                 struct rdma_cm_event *event);
145 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
146
147 static const struct blk_mq_ops nvme_rdma_mq_ops;
148 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
149
150 /* XXX: really should move to a generic header sooner or later.. */
151 static inline void put_unaligned_le24(u32 val, u8 *p)
152 {
153         *p++ = val;
154         *p++ = val >> 8;
155         *p++ = val >> 16;
156 }
157
158 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
159 {
160         return queue - queue->ctrl->queues;
161 }
162
163 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
164 {
165         return queue->cmnd_capsule_len - sizeof(struct nvme_command);
166 }
167
168 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
169                 size_t capsule_size, enum dma_data_direction dir)
170 {
171         ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
172         kfree(qe->data);
173 }
174
175 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
176                 size_t capsule_size, enum dma_data_direction dir)
177 {
178         qe->data = kzalloc(capsule_size, GFP_KERNEL);
179         if (!qe->data)
180                 return -ENOMEM;
181
182         qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
183         if (ib_dma_mapping_error(ibdev, qe->dma)) {
184                 kfree(qe->data);
185                 return -ENOMEM;
186         }
187
188         return 0;
189 }
190
191 static void nvme_rdma_free_ring(struct ib_device *ibdev,
192                 struct nvme_rdma_qe *ring, size_t ib_queue_size,
193                 size_t capsule_size, enum dma_data_direction dir)
194 {
195         int i;
196
197         for (i = 0; i < ib_queue_size; i++)
198                 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
199         kfree(ring);
200 }
201
202 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
203                 size_t ib_queue_size, size_t capsule_size,
204                 enum dma_data_direction dir)
205 {
206         struct nvme_rdma_qe *ring;
207         int i;
208
209         ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
210         if (!ring)
211                 return NULL;
212
213         for (i = 0; i < ib_queue_size; i++) {
214                 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
215                         goto out_free_ring;
216         }
217
218         return ring;
219
220 out_free_ring:
221         nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
222         return NULL;
223 }
224
225 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
226 {
227         pr_debug("QP event %s (%d)\n",
228                  ib_event_msg(event->event), event->event);
229
230 }
231
232 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
233 {
234         wait_for_completion_interruptible_timeout(&queue->cm_done,
235                         msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
236         return queue->cm_error;
237 }
238
239 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
240 {
241         struct nvme_rdma_device *dev = queue->device;
242         struct ib_qp_init_attr init_attr;
243         int ret;
244
245         memset(&init_attr, 0, sizeof(init_attr));
246         init_attr.event_handler = nvme_rdma_qp_event;
247         /* +1 for drain */
248         init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
249         /* +1 for drain */
250         init_attr.cap.max_recv_wr = queue->queue_size + 1;
251         init_attr.cap.max_recv_sge = 1;
252         init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS;
253         init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
254         init_attr.qp_type = IB_QPT_RC;
255         init_attr.send_cq = queue->ib_cq;
256         init_attr.recv_cq = queue->ib_cq;
257
258         ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
259
260         queue->qp = queue->cm_id->qp;
261         return ret;
262 }
263
264 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
265                 struct request *rq, unsigned int hctx_idx)
266 {
267         struct nvme_rdma_ctrl *ctrl = set->driver_data;
268         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
269         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
270         struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
271         struct nvme_rdma_device *dev = queue->device;
272
273         nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
274                         DMA_TO_DEVICE);
275 }
276
277 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
278                 struct request *rq, unsigned int hctx_idx,
279                 unsigned int numa_node)
280 {
281         struct nvme_rdma_ctrl *ctrl = set->driver_data;
282         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
283         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
284         struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
285         struct nvme_rdma_device *dev = queue->device;
286         struct ib_device *ibdev = dev->dev;
287         int ret;
288
289         ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
290                         DMA_TO_DEVICE);
291         if (ret)
292                 return ret;
293
294         req->queue = queue;
295
296         return 0;
297 }
298
299 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
300                 unsigned int hctx_idx)
301 {
302         struct nvme_rdma_ctrl *ctrl = data;
303         struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
304
305         BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
306
307         hctx->driver_data = queue;
308         return 0;
309 }
310
311 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
312                 unsigned int hctx_idx)
313 {
314         struct nvme_rdma_ctrl *ctrl = data;
315         struct nvme_rdma_queue *queue = &ctrl->queues[0];
316
317         BUG_ON(hctx_idx != 0);
318
319         hctx->driver_data = queue;
320         return 0;
321 }
322
323 static void nvme_rdma_free_dev(struct kref *ref)
324 {
325         struct nvme_rdma_device *ndev =
326                 container_of(ref, struct nvme_rdma_device, ref);
327
328         mutex_lock(&device_list_mutex);
329         list_del(&ndev->entry);
330         mutex_unlock(&device_list_mutex);
331
332         ib_dealloc_pd(ndev->pd);
333         kfree(ndev);
334 }
335
336 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
337 {
338         kref_put(&dev->ref, nvme_rdma_free_dev);
339 }
340
341 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
342 {
343         return kref_get_unless_zero(&dev->ref);
344 }
345
346 static struct nvme_rdma_device *
347 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
348 {
349         struct nvme_rdma_device *ndev;
350
351         mutex_lock(&device_list_mutex);
352         list_for_each_entry(ndev, &device_list, entry) {
353                 if (ndev->dev->node_guid == cm_id->device->node_guid &&
354                     nvme_rdma_dev_get(ndev))
355                         goto out_unlock;
356         }
357
358         ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
359         if (!ndev)
360                 goto out_err;
361
362         ndev->dev = cm_id->device;
363         kref_init(&ndev->ref);
364
365         ndev->pd = ib_alloc_pd(ndev->dev,
366                 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
367         if (IS_ERR(ndev->pd))
368                 goto out_free_dev;
369
370         if (!(ndev->dev->attrs.device_cap_flags &
371               IB_DEVICE_MEM_MGT_EXTENSIONS)) {
372                 dev_err(&ndev->dev->dev,
373                         "Memory registrations not supported.\n");
374                 goto out_free_pd;
375         }
376
377         list_add(&ndev->entry, &device_list);
378 out_unlock:
379         mutex_unlock(&device_list_mutex);
380         return ndev;
381
382 out_free_pd:
383         ib_dealloc_pd(ndev->pd);
384 out_free_dev:
385         kfree(ndev);
386 out_err:
387         mutex_unlock(&device_list_mutex);
388         return NULL;
389 }
390
391 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
392 {
393         struct nvme_rdma_device *dev;
394         struct ib_device *ibdev;
395
396         if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
397                 return;
398
399         dev = queue->device;
400         ibdev = dev->dev;
401
402         ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
403
404         /*
405          * The cm_id object might have been destroyed during RDMA connection
406          * establishment error flow to avoid getting other cma events, thus
407          * the destruction of the QP shouldn't use rdma_cm API.
408          */
409         ib_destroy_qp(queue->qp);
410         ib_free_cq(queue->ib_cq);
411
412         nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
413                         sizeof(struct nvme_completion), DMA_FROM_DEVICE);
414
415         nvme_rdma_dev_put(dev);
416 }
417
418 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev)
419 {
420         return min_t(u32, NVME_RDMA_MAX_SEGMENTS,
421                      ibdev->attrs.max_fast_reg_page_list_len);
422 }
423
424 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
425 {
426         struct ib_device *ibdev;
427         const int send_wr_factor = 3;                   /* MR, SEND, INV */
428         const int cq_factor = send_wr_factor + 1;       /* + RECV */
429         int comp_vector, idx = nvme_rdma_queue_idx(queue);
430         int ret;
431
432         queue->device = nvme_rdma_find_get_device(queue->cm_id);
433         if (!queue->device) {
434                 dev_err(queue->cm_id->device->dev.parent,
435                         "no client data found!\n");
436                 return -ECONNREFUSED;
437         }
438         ibdev = queue->device->dev;
439
440         /*
441          * Spread I/O queues completion vectors according their queue index.
442          * Admin queues can always go on completion vector 0.
443          */
444         comp_vector = idx == 0 ? idx : idx - 1;
445
446         /* +1 for ib_stop_cq */
447         queue->ib_cq = ib_alloc_cq(ibdev, queue,
448                                 cq_factor * queue->queue_size + 1,
449                                 comp_vector, IB_POLL_SOFTIRQ);
450         if (IS_ERR(queue->ib_cq)) {
451                 ret = PTR_ERR(queue->ib_cq);
452                 goto out_put_dev;
453         }
454
455         ret = nvme_rdma_create_qp(queue, send_wr_factor);
456         if (ret)
457                 goto out_destroy_ib_cq;
458
459         queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
460                         sizeof(struct nvme_completion), DMA_FROM_DEVICE);
461         if (!queue->rsp_ring) {
462                 ret = -ENOMEM;
463                 goto out_destroy_qp;
464         }
465
466         ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
467                               queue->queue_size,
468                               IB_MR_TYPE_MEM_REG,
469                               nvme_rdma_get_max_fr_pages(ibdev));
470         if (ret) {
471                 dev_err(queue->ctrl->ctrl.device,
472                         "failed to initialize MR pool sized %d for QID %d\n",
473                         queue->queue_size, idx);
474                 goto out_destroy_ring;
475         }
476
477         set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
478
479         return 0;
480
481 out_destroy_ring:
482         nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
483                             sizeof(struct nvme_completion), DMA_FROM_DEVICE);
484 out_destroy_qp:
485         rdma_destroy_qp(queue->cm_id);
486 out_destroy_ib_cq:
487         ib_free_cq(queue->ib_cq);
488 out_put_dev:
489         nvme_rdma_dev_put(queue->device);
490         return ret;
491 }
492
493 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
494                 int idx, size_t queue_size)
495 {
496         struct nvme_rdma_queue *queue;
497         struct sockaddr *src_addr = NULL;
498         int ret;
499
500         queue = &ctrl->queues[idx];
501         queue->ctrl = ctrl;
502         init_completion(&queue->cm_done);
503
504         if (idx > 0)
505                 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
506         else
507                 queue->cmnd_capsule_len = sizeof(struct nvme_command);
508
509         queue->queue_size = queue_size;
510
511         queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
512                         RDMA_PS_TCP, IB_QPT_RC);
513         if (IS_ERR(queue->cm_id)) {
514                 dev_info(ctrl->ctrl.device,
515                         "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
516                 return PTR_ERR(queue->cm_id);
517         }
518
519         if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
520                 src_addr = (struct sockaddr *)&ctrl->src_addr;
521
522         queue->cm_error = -ETIMEDOUT;
523         ret = rdma_resolve_addr(queue->cm_id, src_addr,
524                         (struct sockaddr *)&ctrl->addr,
525                         NVME_RDMA_CONNECT_TIMEOUT_MS);
526         if (ret) {
527                 dev_info(ctrl->ctrl.device,
528                         "rdma_resolve_addr failed (%d).\n", ret);
529                 goto out_destroy_cm_id;
530         }
531
532         ret = nvme_rdma_wait_for_cm(queue);
533         if (ret) {
534                 dev_info(ctrl->ctrl.device,
535                         "rdma connection establishment failed (%d)\n", ret);
536                 goto out_destroy_cm_id;
537         }
538
539         set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
540
541         return 0;
542
543 out_destroy_cm_id:
544         rdma_destroy_id(queue->cm_id);
545         nvme_rdma_destroy_queue_ib(queue);
546         return ret;
547 }
548
549 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
550 {
551         if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
552                 return;
553
554         rdma_disconnect(queue->cm_id);
555         ib_drain_qp(queue->qp);
556 }
557
558 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
559 {
560         if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
561                 return;
562
563         nvme_rdma_destroy_queue_ib(queue);
564         rdma_destroy_id(queue->cm_id);
565 }
566
567 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
568 {
569         int i;
570
571         for (i = 1; i < ctrl->ctrl.queue_count; i++)
572                 nvme_rdma_free_queue(&ctrl->queues[i]);
573 }
574
575 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
576 {
577         int i;
578
579         for (i = 1; i < ctrl->ctrl.queue_count; i++)
580                 nvme_rdma_stop_queue(&ctrl->queues[i]);
581 }
582
583 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
584 {
585         int ret;
586
587         if (idx)
588                 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx);
589         else
590                 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
591
592         if (!ret)
593                 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[idx].flags);
594         else
595                 dev_info(ctrl->ctrl.device,
596                         "failed to connect queue: %d ret=%d\n", idx, ret);
597         return ret;
598 }
599
600 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
601 {
602         int i, ret = 0;
603
604         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
605                 ret = nvme_rdma_start_queue(ctrl, i);
606                 if (ret)
607                         goto out_stop_queues;
608         }
609
610         return 0;
611
612 out_stop_queues:
613         for (i--; i >= 1; i--)
614                 nvme_rdma_stop_queue(&ctrl->queues[i]);
615         return ret;
616 }
617
618 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
619 {
620         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
621         struct ib_device *ibdev = ctrl->device->dev;
622         unsigned int nr_io_queues;
623         int i, ret;
624
625         nr_io_queues = min(opts->nr_io_queues, num_online_cpus());
626
627         /*
628          * we map queues according to the device irq vectors for
629          * optimal locality so we don't need more queues than
630          * completion vectors.
631          */
632         nr_io_queues = min_t(unsigned int, nr_io_queues,
633                                 ibdev->num_comp_vectors);
634
635         ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
636         if (ret)
637                 return ret;
638
639         ctrl->ctrl.queue_count = nr_io_queues + 1;
640         if (ctrl->ctrl.queue_count < 2)
641                 return 0;
642
643         dev_info(ctrl->ctrl.device,
644                 "creating %d I/O queues.\n", nr_io_queues);
645
646         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
647                 ret = nvme_rdma_alloc_queue(ctrl, i,
648                                 ctrl->ctrl.sqsize + 1);
649                 if (ret)
650                         goto out_free_queues;
651         }
652
653         return 0;
654
655 out_free_queues:
656         for (i--; i >= 1; i--)
657                 nvme_rdma_free_queue(&ctrl->queues[i]);
658
659         return ret;
660 }
661
662 static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl,
663                 struct blk_mq_tag_set *set)
664 {
665         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
666
667         blk_mq_free_tag_set(set);
668         nvme_rdma_dev_put(ctrl->device);
669 }
670
671 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
672                 bool admin)
673 {
674         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
675         struct blk_mq_tag_set *set;
676         int ret;
677
678         if (admin) {
679                 set = &ctrl->admin_tag_set;
680                 memset(set, 0, sizeof(*set));
681                 set->ops = &nvme_rdma_admin_mq_ops;
682                 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
683                 set->reserved_tags = 2; /* connect + keep-alive */
684                 set->numa_node = NUMA_NO_NODE;
685                 set->cmd_size = sizeof(struct nvme_rdma_request) +
686                         SG_CHUNK_SIZE * sizeof(struct scatterlist);
687                 set->driver_data = ctrl;
688                 set->nr_hw_queues = 1;
689                 set->timeout = ADMIN_TIMEOUT;
690                 set->flags = BLK_MQ_F_NO_SCHED;
691         } else {
692                 set = &ctrl->tag_set;
693                 memset(set, 0, sizeof(*set));
694                 set->ops = &nvme_rdma_mq_ops;
695                 set->queue_depth = nctrl->opts->queue_size;
696                 set->reserved_tags = 1; /* fabric connect */
697                 set->numa_node = NUMA_NO_NODE;
698                 set->flags = BLK_MQ_F_SHOULD_MERGE;
699                 set->cmd_size = sizeof(struct nvme_rdma_request) +
700                         SG_CHUNK_SIZE * sizeof(struct scatterlist);
701                 set->driver_data = ctrl;
702                 set->nr_hw_queues = nctrl->queue_count - 1;
703                 set->timeout = NVME_IO_TIMEOUT;
704         }
705
706         ret = blk_mq_alloc_tag_set(set);
707         if (ret)
708                 goto out;
709
710         /*
711          * We need a reference on the device as long as the tag_set is alive,
712          * as the MRs in the request structures need a valid ib_device.
713          */
714         ret = nvme_rdma_dev_get(ctrl->device);
715         if (!ret) {
716                 ret = -EINVAL;
717                 goto out_free_tagset;
718         }
719
720         return set;
721
722 out_free_tagset:
723         blk_mq_free_tag_set(set);
724 out:
725         return ERR_PTR(ret);
726 }
727
728 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
729                 bool remove)
730 {
731         nvme_rdma_stop_queue(&ctrl->queues[0]);
732         if (remove) {
733                 blk_cleanup_queue(ctrl->ctrl.admin_q);
734                 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
735         }
736         nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
737                 sizeof(struct nvme_command), DMA_TO_DEVICE);
738         nvme_rdma_free_queue(&ctrl->queues[0]);
739 }
740
741 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
742                 bool new)
743 {
744         int error;
745
746         error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
747         if (error)
748                 return error;
749
750         ctrl->device = ctrl->queues[0].device;
751
752         ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev);
753
754         error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
755                         sizeof(struct nvme_command), DMA_TO_DEVICE);
756         if (error)
757                 goto out_free_queue;
758
759         if (new) {
760                 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
761                 if (IS_ERR(ctrl->ctrl.admin_tagset)) {
762                         error = PTR_ERR(ctrl->ctrl.admin_tagset);
763                         goto out_free_async_qe;
764                 }
765
766                 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
767                 if (IS_ERR(ctrl->ctrl.admin_q)) {
768                         error = PTR_ERR(ctrl->ctrl.admin_q);
769                         goto out_free_tagset;
770                 }
771         }
772
773         error = nvme_rdma_start_queue(ctrl, 0);
774         if (error)
775                 goto out_cleanup_queue;
776
777         error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP,
778                         &ctrl->ctrl.cap);
779         if (error) {
780                 dev_err(ctrl->ctrl.device,
781                         "prop_get NVME_REG_CAP failed\n");
782                 goto out_stop_queue;
783         }
784
785         ctrl->ctrl.sqsize =
786                 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
787
788         error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
789         if (error)
790                 goto out_stop_queue;
791
792         ctrl->ctrl.max_hw_sectors =
793                 (ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9);
794
795         error = nvme_init_identify(&ctrl->ctrl);
796         if (error)
797                 goto out_stop_queue;
798
799         return 0;
800
801 out_stop_queue:
802         nvme_rdma_stop_queue(&ctrl->queues[0]);
803 out_cleanup_queue:
804         if (new)
805                 blk_cleanup_queue(ctrl->ctrl.admin_q);
806 out_free_tagset:
807         if (new)
808                 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
809 out_free_async_qe:
810         nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
811                 sizeof(struct nvme_command), DMA_TO_DEVICE);
812 out_free_queue:
813         nvme_rdma_free_queue(&ctrl->queues[0]);
814         return error;
815 }
816
817 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
818                 bool remove)
819 {
820         nvme_rdma_stop_io_queues(ctrl);
821         if (remove) {
822                 blk_cleanup_queue(ctrl->ctrl.connect_q);
823                 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
824         }
825         nvme_rdma_free_io_queues(ctrl);
826 }
827
828 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
829 {
830         int ret;
831
832         ret = nvme_rdma_alloc_io_queues(ctrl);
833         if (ret)
834                 return ret;
835
836         if (new) {
837                 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
838                 if (IS_ERR(ctrl->ctrl.tagset)) {
839                         ret = PTR_ERR(ctrl->ctrl.tagset);
840                         goto out_free_io_queues;
841                 }
842
843                 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
844                 if (IS_ERR(ctrl->ctrl.connect_q)) {
845                         ret = PTR_ERR(ctrl->ctrl.connect_q);
846                         goto out_free_tag_set;
847                 }
848         } else {
849                 blk_mq_update_nr_hw_queues(&ctrl->tag_set,
850                         ctrl->ctrl.queue_count - 1);
851         }
852
853         ret = nvme_rdma_start_io_queues(ctrl);
854         if (ret)
855                 goto out_cleanup_connect_q;
856
857         return 0;
858
859 out_cleanup_connect_q:
860         if (new)
861                 blk_cleanup_queue(ctrl->ctrl.connect_q);
862 out_free_tag_set:
863         if (new)
864                 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
865 out_free_io_queues:
866         nvme_rdma_free_io_queues(ctrl);
867         return ret;
868 }
869
870 static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl)
871 {
872         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
873
874         cancel_work_sync(&ctrl->err_work);
875         cancel_delayed_work_sync(&ctrl->reconnect_work);
876 }
877
878 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
879 {
880         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
881
882         if (list_empty(&ctrl->list))
883                 goto free_ctrl;
884
885         mutex_lock(&nvme_rdma_ctrl_mutex);
886         list_del(&ctrl->list);
887         mutex_unlock(&nvme_rdma_ctrl_mutex);
888
889         nvmf_free_options(nctrl->opts);
890 free_ctrl:
891         kfree(ctrl->queues);
892         kfree(ctrl);
893 }
894
895 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
896 {
897         /* If we are resetting/deleting then do nothing */
898         if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
899                 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
900                         ctrl->ctrl.state == NVME_CTRL_LIVE);
901                 return;
902         }
903
904         if (nvmf_should_reconnect(&ctrl->ctrl)) {
905                 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
906                         ctrl->ctrl.opts->reconnect_delay);
907                 queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
908                                 ctrl->ctrl.opts->reconnect_delay * HZ);
909         } else {
910                 nvme_delete_ctrl(&ctrl->ctrl);
911         }
912 }
913
914 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
915 {
916         struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
917                         struct nvme_rdma_ctrl, reconnect_work);
918         bool changed;
919         int ret;
920
921         ++ctrl->ctrl.nr_reconnects;
922
923         ret = nvme_rdma_configure_admin_queue(ctrl, false);
924         if (ret)
925                 goto requeue;
926
927         if (ctrl->ctrl.queue_count > 1) {
928                 ret = nvme_rdma_configure_io_queues(ctrl, false);
929                 if (ret)
930                         goto destroy_admin;
931         }
932
933         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
934         if (!changed) {
935                 /* state change failure is ok if we're in DELETING state */
936                 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
937                 return;
938         }
939
940         nvme_start_ctrl(&ctrl->ctrl);
941
942         dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
943                         ctrl->ctrl.nr_reconnects);
944
945         ctrl->ctrl.nr_reconnects = 0;
946
947         return;
948
949 destroy_admin:
950         nvme_rdma_destroy_admin_queue(ctrl, false);
951 requeue:
952         dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
953                         ctrl->ctrl.nr_reconnects);
954         nvme_rdma_reconnect_or_remove(ctrl);
955 }
956
957 static void nvme_rdma_error_recovery_work(struct work_struct *work)
958 {
959         struct nvme_rdma_ctrl *ctrl = container_of(work,
960                         struct nvme_rdma_ctrl, err_work);
961
962         nvme_stop_keep_alive(&ctrl->ctrl);
963
964         if (ctrl->ctrl.queue_count > 1) {
965                 nvme_stop_queues(&ctrl->ctrl);
966                 blk_mq_tagset_busy_iter(&ctrl->tag_set,
967                                         nvme_cancel_request, &ctrl->ctrl);
968                 nvme_rdma_destroy_io_queues(ctrl, false);
969         }
970
971         blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
972         blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
973                                 nvme_cancel_request, &ctrl->ctrl);
974         nvme_rdma_destroy_admin_queue(ctrl, false);
975
976         /*
977          * queues are not a live anymore, so restart the queues to fail fast
978          * new IO
979          */
980         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
981         nvme_start_queues(&ctrl->ctrl);
982
983         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
984                 /* state change failure is ok if we're in DELETING state */
985                 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
986                 return;
987         }
988
989         nvme_rdma_reconnect_or_remove(ctrl);
990 }
991
992 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
993 {
994         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
995                 return;
996
997         queue_work(nvme_wq, &ctrl->err_work);
998 }
999
1000 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1001                 const char *op)
1002 {
1003         struct nvme_rdma_queue *queue = cq->cq_context;
1004         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1005
1006         if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1007                 dev_info(ctrl->ctrl.device,
1008                              "%s for CQE 0x%p failed with status %s (%d)\n",
1009                              op, wc->wr_cqe,
1010                              ib_wc_status_msg(wc->status), wc->status);
1011         nvme_rdma_error_recovery(ctrl);
1012 }
1013
1014 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1015 {
1016         if (unlikely(wc->status != IB_WC_SUCCESS))
1017                 nvme_rdma_wr_error(cq, wc, "MEMREG");
1018 }
1019
1020 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1021 {
1022         struct nvme_rdma_request *req =
1023                 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1024         struct request *rq = blk_mq_rq_from_pdu(req);
1025
1026         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1027                 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1028                 return;
1029         }
1030
1031         if (refcount_dec_and_test(&req->ref))
1032                 nvme_end_request(rq, req->status, req->result);
1033
1034 }
1035
1036 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1037                 struct nvme_rdma_request *req)
1038 {
1039         struct ib_send_wr *bad_wr;
1040         struct ib_send_wr wr = {
1041                 .opcode             = IB_WR_LOCAL_INV,
1042                 .next               = NULL,
1043                 .num_sge            = 0,
1044                 .send_flags         = IB_SEND_SIGNALED,
1045                 .ex.invalidate_rkey = req->mr->rkey,
1046         };
1047
1048         req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1049         wr.wr_cqe = &req->reg_cqe;
1050
1051         return ib_post_send(queue->qp, &wr, &bad_wr);
1052 }
1053
1054 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1055                 struct request *rq)
1056 {
1057         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1058         struct nvme_rdma_device *dev = queue->device;
1059         struct ib_device *ibdev = dev->dev;
1060
1061         if (!blk_rq_payload_bytes(rq))
1062                 return;
1063
1064         if (req->mr) {
1065                 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1066                 req->mr = NULL;
1067         }
1068
1069         ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1070                         req->nents, rq_data_dir(rq) ==
1071                                     WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1072
1073         nvme_cleanup_cmd(rq);
1074         sg_free_table_chained(&req->sg_table, true);
1075 }
1076
1077 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1078 {
1079         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1080
1081         sg->addr = 0;
1082         put_unaligned_le24(0, sg->length);
1083         put_unaligned_le32(0, sg->key);
1084         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1085         return 0;
1086 }
1087
1088 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1089                 struct nvme_rdma_request *req, struct nvme_command *c)
1090 {
1091         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1092
1093         req->sge[1].addr = sg_dma_address(req->sg_table.sgl);
1094         req->sge[1].length = sg_dma_len(req->sg_table.sgl);
1095         req->sge[1].lkey = queue->device->pd->local_dma_lkey;
1096
1097         sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1098         sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl));
1099         sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1100
1101         req->num_sge++;
1102         return 0;
1103 }
1104
1105 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1106                 struct nvme_rdma_request *req, struct nvme_command *c)
1107 {
1108         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1109
1110         sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
1111         put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
1112         put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1113         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1114         return 0;
1115 }
1116
1117 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1118                 struct nvme_rdma_request *req, struct nvme_command *c,
1119                 int count)
1120 {
1121         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1122         int nr;
1123
1124         req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1125         if (WARN_ON_ONCE(!req->mr))
1126                 return -EAGAIN;
1127
1128         /*
1129          * Align the MR to a 4K page size to match the ctrl page size and
1130          * the block virtual boundary.
1131          */
1132         nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K);
1133         if (unlikely(nr < count)) {
1134                 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1135                 req->mr = NULL;
1136                 if (nr < 0)
1137                         return nr;
1138                 return -EINVAL;
1139         }
1140
1141         ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1142
1143         req->reg_cqe.done = nvme_rdma_memreg_done;
1144         memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1145         req->reg_wr.wr.opcode = IB_WR_REG_MR;
1146         req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1147         req->reg_wr.wr.num_sge = 0;
1148         req->reg_wr.mr = req->mr;
1149         req->reg_wr.key = req->mr->rkey;
1150         req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1151                              IB_ACCESS_REMOTE_READ |
1152                              IB_ACCESS_REMOTE_WRITE;
1153
1154         sg->addr = cpu_to_le64(req->mr->iova);
1155         put_unaligned_le24(req->mr->length, sg->length);
1156         put_unaligned_le32(req->mr->rkey, sg->key);
1157         sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1158                         NVME_SGL_FMT_INVALIDATE;
1159
1160         return 0;
1161 }
1162
1163 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1164                 struct request *rq, struct nvme_command *c)
1165 {
1166         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1167         struct nvme_rdma_device *dev = queue->device;
1168         struct ib_device *ibdev = dev->dev;
1169         int count, ret;
1170
1171         req->num_sge = 1;
1172         refcount_set(&req->ref, 2); /* send and recv completions */
1173
1174         c->common.flags |= NVME_CMD_SGL_METABUF;
1175
1176         if (!blk_rq_payload_bytes(rq))
1177                 return nvme_rdma_set_sg_null(c);
1178
1179         req->sg_table.sgl = req->first_sgl;
1180         ret = sg_alloc_table_chained(&req->sg_table,
1181                         blk_rq_nr_phys_segments(rq), req->sg_table.sgl);
1182         if (ret)
1183                 return -ENOMEM;
1184
1185         req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
1186
1187         count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
1188                     rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1189         if (unlikely(count <= 0)) {
1190                 ret = -EIO;
1191                 goto out_free_table;
1192         }
1193
1194         if (count == 1) {
1195                 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1196                     blk_rq_payload_bytes(rq) <=
1197                                 nvme_rdma_inline_data_size(queue)) {
1198                         ret = nvme_rdma_map_sg_inline(queue, req, c);
1199                         goto out;
1200                 }
1201
1202                 if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1203                         ret = nvme_rdma_map_sg_single(queue, req, c);
1204                         goto out;
1205                 }
1206         }
1207
1208         ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1209 out:
1210         if (unlikely(ret))
1211                 goto out_unmap_sg;
1212
1213         return 0;
1214
1215 out_unmap_sg:
1216         ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1217                         req->nents, rq_data_dir(rq) ==
1218                         WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1219 out_free_table:
1220         sg_free_table_chained(&req->sg_table, true);
1221         return ret;
1222 }
1223
1224 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1225 {
1226         struct nvme_rdma_qe *qe =
1227                 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1228         struct nvme_rdma_request *req =
1229                 container_of(qe, struct nvme_rdma_request, sqe);
1230         struct request *rq = blk_mq_rq_from_pdu(req);
1231
1232         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1233                 nvme_rdma_wr_error(cq, wc, "SEND");
1234                 return;
1235         }
1236
1237         if (refcount_dec_and_test(&req->ref))
1238                 nvme_end_request(rq, req->status, req->result);
1239 }
1240
1241 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1242                 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1243                 struct ib_send_wr *first)
1244 {
1245         struct ib_send_wr wr, *bad_wr;
1246         int ret;
1247
1248         sge->addr   = qe->dma;
1249         sge->length = sizeof(struct nvme_command),
1250         sge->lkey   = queue->device->pd->local_dma_lkey;
1251
1252         wr.next       = NULL;
1253         wr.wr_cqe     = &qe->cqe;
1254         wr.sg_list    = sge;
1255         wr.num_sge    = num_sge;
1256         wr.opcode     = IB_WR_SEND;
1257         wr.send_flags = IB_SEND_SIGNALED;
1258
1259         if (first)
1260                 first->next = &wr;
1261         else
1262                 first = &wr;
1263
1264         ret = ib_post_send(queue->qp, first, &bad_wr);
1265         if (unlikely(ret)) {
1266                 dev_err(queue->ctrl->ctrl.device,
1267                              "%s failed with error code %d\n", __func__, ret);
1268         }
1269         return ret;
1270 }
1271
1272 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1273                 struct nvme_rdma_qe *qe)
1274 {
1275         struct ib_recv_wr wr, *bad_wr;
1276         struct ib_sge list;
1277         int ret;
1278
1279         list.addr   = qe->dma;
1280         list.length = sizeof(struct nvme_completion);
1281         list.lkey   = queue->device->pd->local_dma_lkey;
1282
1283         qe->cqe.done = nvme_rdma_recv_done;
1284
1285         wr.next     = NULL;
1286         wr.wr_cqe   = &qe->cqe;
1287         wr.sg_list  = &list;
1288         wr.num_sge  = 1;
1289
1290         ret = ib_post_recv(queue->qp, &wr, &bad_wr);
1291         if (unlikely(ret)) {
1292                 dev_err(queue->ctrl->ctrl.device,
1293                         "%s failed with error code %d\n", __func__, ret);
1294         }
1295         return ret;
1296 }
1297
1298 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1299 {
1300         u32 queue_idx = nvme_rdma_queue_idx(queue);
1301
1302         if (queue_idx == 0)
1303                 return queue->ctrl->admin_tag_set.tags[queue_idx];
1304         return queue->ctrl->tag_set.tags[queue_idx - 1];
1305 }
1306
1307 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1308 {
1309         if (unlikely(wc->status != IB_WC_SUCCESS))
1310                 nvme_rdma_wr_error(cq, wc, "ASYNC");
1311 }
1312
1313 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1314 {
1315         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1316         struct nvme_rdma_queue *queue = &ctrl->queues[0];
1317         struct ib_device *dev = queue->device->dev;
1318         struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1319         struct nvme_command *cmd = sqe->data;
1320         struct ib_sge sge;
1321         int ret;
1322
1323         ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1324
1325         memset(cmd, 0, sizeof(*cmd));
1326         cmd->common.opcode = nvme_admin_async_event;
1327         cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1328         cmd->common.flags |= NVME_CMD_SGL_METABUF;
1329         nvme_rdma_set_sg_null(cmd);
1330
1331         sqe->cqe.done = nvme_rdma_async_done;
1332
1333         ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1334                         DMA_TO_DEVICE);
1335
1336         ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1337         WARN_ON_ONCE(ret);
1338 }
1339
1340 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1341                 struct nvme_completion *cqe, struct ib_wc *wc, int tag)
1342 {
1343         struct request *rq;
1344         struct nvme_rdma_request *req;
1345         int ret = 0;
1346
1347         rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1348         if (!rq) {
1349                 dev_err(queue->ctrl->ctrl.device,
1350                         "tag 0x%x on QP %#x not found\n",
1351                         cqe->command_id, queue->qp->qp_num);
1352                 nvme_rdma_error_recovery(queue->ctrl);
1353                 return ret;
1354         }
1355         req = blk_mq_rq_to_pdu(rq);
1356
1357         req->status = cqe->status;
1358         req->result = cqe->result;
1359
1360         if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1361                 if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) {
1362                         dev_err(queue->ctrl->ctrl.device,
1363                                 "Bogus remote invalidation for rkey %#x\n",
1364                                 req->mr->rkey);
1365                         nvme_rdma_error_recovery(queue->ctrl);
1366                 }
1367         } else if (req->mr) {
1368                 ret = nvme_rdma_inv_rkey(queue, req);
1369                 if (unlikely(ret < 0)) {
1370                         dev_err(queue->ctrl->ctrl.device,
1371                                 "Queueing INV WR for rkey %#x failed (%d)\n",
1372                                 req->mr->rkey, ret);
1373                         nvme_rdma_error_recovery(queue->ctrl);
1374                 }
1375                 /* the local invalidation completion will end the request */
1376                 return 0;
1377         }
1378
1379         if (refcount_dec_and_test(&req->ref)) {
1380                 if (rq->tag == tag)
1381                         ret = 1;
1382                 nvme_end_request(rq, req->status, req->result);
1383         }
1384
1385         return ret;
1386 }
1387
1388 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
1389 {
1390         struct nvme_rdma_qe *qe =
1391                 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1392         struct nvme_rdma_queue *queue = cq->cq_context;
1393         struct ib_device *ibdev = queue->device->dev;
1394         struct nvme_completion *cqe = qe->data;
1395         const size_t len = sizeof(struct nvme_completion);
1396         int ret = 0;
1397
1398         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1399                 nvme_rdma_wr_error(cq, wc, "RECV");
1400                 return 0;
1401         }
1402
1403         ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1404         /*
1405          * AEN requests are special as they don't time out and can
1406          * survive any kind of queue freeze and often don't respond to
1407          * aborts.  We don't even bother to allocate a struct request
1408          * for them but rather special case them here.
1409          */
1410         if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1411                         cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH))
1412                 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1413                                 &cqe->result);
1414         else
1415                 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
1416         ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1417
1418         nvme_rdma_post_recv(queue, qe);
1419         return ret;
1420 }
1421
1422 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1423 {
1424         __nvme_rdma_recv_done(cq, wc, -1);
1425 }
1426
1427 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1428 {
1429         int ret, i;
1430
1431         for (i = 0; i < queue->queue_size; i++) {
1432                 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1433                 if (ret)
1434                         goto out_destroy_queue_ib;
1435         }
1436
1437         return 0;
1438
1439 out_destroy_queue_ib:
1440         nvme_rdma_destroy_queue_ib(queue);
1441         return ret;
1442 }
1443
1444 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1445                 struct rdma_cm_event *ev)
1446 {
1447         struct rdma_cm_id *cm_id = queue->cm_id;
1448         int status = ev->status;
1449         const char *rej_msg;
1450         const struct nvme_rdma_cm_rej *rej_data;
1451         u8 rej_data_len;
1452
1453         rej_msg = rdma_reject_msg(cm_id, status);
1454         rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1455
1456         if (rej_data && rej_data_len >= sizeof(u16)) {
1457                 u16 sts = le16_to_cpu(rej_data->sts);
1458
1459                 dev_err(queue->ctrl->ctrl.device,
1460                       "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1461                       status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1462         } else {
1463                 dev_err(queue->ctrl->ctrl.device,
1464                         "Connect rejected: status %d (%s).\n", status, rej_msg);
1465         }
1466
1467         return -ECONNRESET;
1468 }
1469
1470 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1471 {
1472         int ret;
1473
1474         ret = nvme_rdma_create_queue_ib(queue);
1475         if (ret)
1476                 return ret;
1477
1478         ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1479         if (ret) {
1480                 dev_err(queue->ctrl->ctrl.device,
1481                         "rdma_resolve_route failed (%d).\n",
1482                         queue->cm_error);
1483                 goto out_destroy_queue;
1484         }
1485
1486         return 0;
1487
1488 out_destroy_queue:
1489         nvme_rdma_destroy_queue_ib(queue);
1490         return ret;
1491 }
1492
1493 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1494 {
1495         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1496         struct rdma_conn_param param = { };
1497         struct nvme_rdma_cm_req priv = { };
1498         int ret;
1499
1500         param.qp_num = queue->qp->qp_num;
1501         param.flow_control = 1;
1502
1503         param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1504         /* maximum retry count */
1505         param.retry_count = 7;
1506         param.rnr_retry_count = 7;
1507         param.private_data = &priv;
1508         param.private_data_len = sizeof(priv);
1509
1510         priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1511         priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1512         /*
1513          * set the admin queue depth to the minimum size
1514          * specified by the Fabrics standard.
1515          */
1516         if (priv.qid == 0) {
1517                 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1518                 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1519         } else {
1520                 /*
1521                  * current interpretation of the fabrics spec
1522                  * is at minimum you make hrqsize sqsize+1, or a
1523                  * 1's based representation of sqsize.
1524                  */
1525                 priv.hrqsize = cpu_to_le16(queue->queue_size);
1526                 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1527         }
1528
1529         ret = rdma_connect(queue->cm_id, &param);
1530         if (ret) {
1531                 dev_err(ctrl->ctrl.device,
1532                         "rdma_connect failed (%d).\n", ret);
1533                 goto out_destroy_queue_ib;
1534         }
1535
1536         return 0;
1537
1538 out_destroy_queue_ib:
1539         nvme_rdma_destroy_queue_ib(queue);
1540         return ret;
1541 }
1542
1543 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1544                 struct rdma_cm_event *ev)
1545 {
1546         struct nvme_rdma_queue *queue = cm_id->context;
1547         int cm_error = 0;
1548
1549         dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1550                 rdma_event_msg(ev->event), ev->event,
1551                 ev->status, cm_id);
1552
1553         switch (ev->event) {
1554         case RDMA_CM_EVENT_ADDR_RESOLVED:
1555                 cm_error = nvme_rdma_addr_resolved(queue);
1556                 break;
1557         case RDMA_CM_EVENT_ROUTE_RESOLVED:
1558                 cm_error = nvme_rdma_route_resolved(queue);
1559                 break;
1560         case RDMA_CM_EVENT_ESTABLISHED:
1561                 queue->cm_error = nvme_rdma_conn_established(queue);
1562                 /* complete cm_done regardless of success/failure */
1563                 complete(&queue->cm_done);
1564                 return 0;
1565         case RDMA_CM_EVENT_REJECTED:
1566                 nvme_rdma_destroy_queue_ib(queue);
1567                 cm_error = nvme_rdma_conn_rejected(queue, ev);
1568                 break;
1569         case RDMA_CM_EVENT_ROUTE_ERROR:
1570         case RDMA_CM_EVENT_CONNECT_ERROR:
1571         case RDMA_CM_EVENT_UNREACHABLE:
1572                 nvme_rdma_destroy_queue_ib(queue);
1573         case RDMA_CM_EVENT_ADDR_ERROR:
1574                 dev_dbg(queue->ctrl->ctrl.device,
1575                         "CM error event %d\n", ev->event);
1576                 cm_error = -ECONNRESET;
1577                 break;
1578         case RDMA_CM_EVENT_DISCONNECTED:
1579         case RDMA_CM_EVENT_ADDR_CHANGE:
1580         case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1581                 dev_dbg(queue->ctrl->ctrl.device,
1582                         "disconnect received - connection closed\n");
1583                 nvme_rdma_error_recovery(queue->ctrl);
1584                 break;
1585         case RDMA_CM_EVENT_DEVICE_REMOVAL:
1586                 /* device removal is handled via the ib_client API */
1587                 break;
1588         default:
1589                 dev_err(queue->ctrl->ctrl.device,
1590                         "Unexpected RDMA CM event (%d)\n", ev->event);
1591                 nvme_rdma_error_recovery(queue->ctrl);
1592                 break;
1593         }
1594
1595         if (cm_error) {
1596                 queue->cm_error = cm_error;
1597                 complete(&queue->cm_done);
1598         }
1599
1600         return 0;
1601 }
1602
1603 static enum blk_eh_timer_return
1604 nvme_rdma_timeout(struct request *rq, bool reserved)
1605 {
1606         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1607
1608         dev_warn(req->queue->ctrl->ctrl.device,
1609                  "I/O %d QID %d timeout, reset controller\n",
1610                  rq->tag, nvme_rdma_queue_idx(req->queue));
1611
1612         /* queue error recovery */
1613         nvme_rdma_error_recovery(req->queue->ctrl);
1614
1615         /* fail with DNR on cmd timeout */
1616         nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1617
1618         return BLK_EH_DONE;
1619 }
1620
1621 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1622                 const struct blk_mq_queue_data *bd)
1623 {
1624         struct nvme_ns *ns = hctx->queue->queuedata;
1625         struct nvme_rdma_queue *queue = hctx->driver_data;
1626         struct request *rq = bd->rq;
1627         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1628         struct nvme_rdma_qe *sqe = &req->sqe;
1629         struct nvme_command *c = sqe->data;
1630         struct ib_device *dev;
1631         bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
1632         blk_status_t ret;
1633         int err;
1634
1635         WARN_ON_ONCE(rq->tag < 0);
1636
1637         if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
1638                 return nvmf_fail_nonready_command(rq);
1639
1640         dev = queue->device->dev;
1641         ib_dma_sync_single_for_cpu(dev, sqe->dma,
1642                         sizeof(struct nvme_command), DMA_TO_DEVICE);
1643
1644         ret = nvme_setup_cmd(ns, rq, c);
1645         if (ret)
1646                 return ret;
1647
1648         blk_mq_start_request(rq);
1649
1650         err = nvme_rdma_map_data(queue, rq, c);
1651         if (unlikely(err < 0)) {
1652                 dev_err(queue->ctrl->ctrl.device,
1653                              "Failed to map data (%d)\n", err);
1654                 nvme_cleanup_cmd(rq);
1655                 goto err;
1656         }
1657
1658         sqe->cqe.done = nvme_rdma_send_done;
1659
1660         ib_dma_sync_single_for_device(dev, sqe->dma,
1661                         sizeof(struct nvme_command), DMA_TO_DEVICE);
1662
1663         err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1664                         req->mr ? &req->reg_wr.wr : NULL);
1665         if (unlikely(err)) {
1666                 nvme_rdma_unmap_data(queue, rq);
1667                 goto err;
1668         }
1669
1670         return BLK_STS_OK;
1671 err:
1672         if (err == -ENOMEM || err == -EAGAIN)
1673                 return BLK_STS_RESOURCE;
1674         return BLK_STS_IOERR;
1675 }
1676
1677 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1678 {
1679         struct nvme_rdma_queue *queue = hctx->driver_data;
1680         struct ib_cq *cq = queue->ib_cq;
1681         struct ib_wc wc;
1682         int found = 0;
1683
1684         while (ib_poll_cq(cq, 1, &wc) > 0) {
1685                 struct ib_cqe *cqe = wc.wr_cqe;
1686
1687                 if (cqe) {
1688                         if (cqe->done == nvme_rdma_recv_done)
1689                                 found |= __nvme_rdma_recv_done(cq, &wc, tag);
1690                         else
1691                                 cqe->done(cq, &wc);
1692                 }
1693         }
1694
1695         return found;
1696 }
1697
1698 static void nvme_rdma_complete_rq(struct request *rq)
1699 {
1700         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1701
1702         nvme_rdma_unmap_data(req->queue, rq);
1703         nvme_complete_rq(rq);
1704 }
1705
1706 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
1707 {
1708         struct nvme_rdma_ctrl *ctrl = set->driver_data;
1709
1710         return blk_mq_rdma_map_queues(set, ctrl->device->dev, 0);
1711 }
1712
1713 static const struct blk_mq_ops nvme_rdma_mq_ops = {
1714         .queue_rq       = nvme_rdma_queue_rq,
1715         .complete       = nvme_rdma_complete_rq,
1716         .init_request   = nvme_rdma_init_request,
1717         .exit_request   = nvme_rdma_exit_request,
1718         .init_hctx      = nvme_rdma_init_hctx,
1719         .poll           = nvme_rdma_poll,
1720         .timeout        = nvme_rdma_timeout,
1721         .map_queues     = nvme_rdma_map_queues,
1722 };
1723
1724 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1725         .queue_rq       = nvme_rdma_queue_rq,
1726         .complete       = nvme_rdma_complete_rq,
1727         .init_request   = nvme_rdma_init_request,
1728         .exit_request   = nvme_rdma_exit_request,
1729         .init_hctx      = nvme_rdma_init_admin_hctx,
1730         .timeout        = nvme_rdma_timeout,
1731 };
1732
1733 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1734 {
1735         if (ctrl->ctrl.queue_count > 1) {
1736                 nvme_stop_queues(&ctrl->ctrl);
1737                 blk_mq_tagset_busy_iter(&ctrl->tag_set,
1738                                         nvme_cancel_request, &ctrl->ctrl);
1739                 nvme_rdma_destroy_io_queues(ctrl, shutdown);
1740         }
1741
1742         if (shutdown)
1743                 nvme_shutdown_ctrl(&ctrl->ctrl);
1744         else
1745                 nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
1746
1747         blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
1748         blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
1749                                 nvme_cancel_request, &ctrl->ctrl);
1750         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1751         nvme_rdma_destroy_admin_queue(ctrl, shutdown);
1752 }
1753
1754 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
1755 {
1756         nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
1757 }
1758
1759 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1760 {
1761         struct nvme_rdma_ctrl *ctrl =
1762                 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
1763         int ret;
1764         bool changed;
1765
1766         nvme_stop_ctrl(&ctrl->ctrl);
1767         nvme_rdma_shutdown_ctrl(ctrl, false);
1768
1769         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1770                 /* state change failure should never happen */
1771                 WARN_ON_ONCE(1);
1772                 return;
1773         }
1774
1775         ret = nvme_rdma_configure_admin_queue(ctrl, false);
1776         if (ret)
1777                 goto out_fail;
1778
1779         if (ctrl->ctrl.queue_count > 1) {
1780                 ret = nvme_rdma_configure_io_queues(ctrl, false);
1781                 if (ret)
1782                         goto out_fail;
1783         }
1784
1785         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1786         if (!changed) {
1787                 /* state change failure is ok if we're in DELETING state */
1788                 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1789                 return;
1790         }
1791
1792         nvme_start_ctrl(&ctrl->ctrl);
1793
1794         return;
1795
1796 out_fail:
1797         ++ctrl->ctrl.nr_reconnects;
1798         nvme_rdma_reconnect_or_remove(ctrl);
1799 }
1800
1801 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1802         .name                   = "rdma",
1803         .module                 = THIS_MODULE,
1804         .flags                  = NVME_F_FABRICS,
1805         .reg_read32             = nvmf_reg_read32,
1806         .reg_read64             = nvmf_reg_read64,
1807         .reg_write32            = nvmf_reg_write32,
1808         .free_ctrl              = nvme_rdma_free_ctrl,
1809         .submit_async_event     = nvme_rdma_submit_async_event,
1810         .delete_ctrl            = nvme_rdma_delete_ctrl,
1811         .get_address            = nvmf_get_address,
1812         .stop_ctrl              = nvme_rdma_stop_ctrl,
1813 };
1814
1815 static inline bool
1816 __nvme_rdma_options_match(struct nvme_rdma_ctrl *ctrl,
1817         struct nvmf_ctrl_options *opts)
1818 {
1819         char *stdport = __stringify(NVME_RDMA_IP_PORT);
1820
1821
1822         if (!nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts) ||
1823             strcmp(opts->traddr, ctrl->ctrl.opts->traddr))
1824                 return false;
1825
1826         if (opts->mask & NVMF_OPT_TRSVCID &&
1827             ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) {
1828                 if (strcmp(opts->trsvcid, ctrl->ctrl.opts->trsvcid))
1829                         return false;
1830         } else if (opts->mask & NVMF_OPT_TRSVCID) {
1831                 if (strcmp(opts->trsvcid, stdport))
1832                         return false;
1833         } else if (ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) {
1834                 if (strcmp(stdport, ctrl->ctrl.opts->trsvcid))
1835                         return false;
1836         }
1837         /* else, it's a match as both have stdport. Fall to next checks */
1838
1839         /*
1840          * checking the local address is rough. In most cases, one
1841          * is not specified and the host port is selected by the stack.
1842          *
1843          * Assume no match if:
1844          *  local address is specified and address is not the same
1845          *  local address is not specified but remote is, or vice versa
1846          *    (admin using specific host_traddr when it matters).
1847          */
1848         if (opts->mask & NVMF_OPT_HOST_TRADDR &&
1849             ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) {
1850                 if (strcmp(opts->host_traddr, ctrl->ctrl.opts->host_traddr))
1851                         return false;
1852         } else if (opts->mask & NVMF_OPT_HOST_TRADDR ||
1853                    ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
1854                 return false;
1855         /*
1856          * if neither controller had an host port specified, assume it's
1857          * a match as everything else matched.
1858          */
1859
1860         return true;
1861 }
1862
1863 /*
1864  * Fails a connection request if it matches an existing controller
1865  * (association) with the same tuple:
1866  * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
1867  *
1868  * if local address is not specified in the request, it will match an
1869  * existing controller with all the other parameters the same and no
1870  * local port address specified as well.
1871  *
1872  * The ports don't need to be compared as they are intrinsically
1873  * already matched by the port pointers supplied.
1874  */
1875 static bool
1876 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
1877 {
1878         struct nvme_rdma_ctrl *ctrl;
1879         bool found = false;
1880
1881         mutex_lock(&nvme_rdma_ctrl_mutex);
1882         list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
1883                 found = __nvme_rdma_options_match(ctrl, opts);
1884                 if (found)
1885                         break;
1886         }
1887         mutex_unlock(&nvme_rdma_ctrl_mutex);
1888
1889         return found;
1890 }
1891
1892 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1893                 struct nvmf_ctrl_options *opts)
1894 {
1895         struct nvme_rdma_ctrl *ctrl;
1896         int ret;
1897         bool changed;
1898         char *port;
1899
1900         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1901         if (!ctrl)
1902                 return ERR_PTR(-ENOMEM);
1903         ctrl->ctrl.opts = opts;
1904         INIT_LIST_HEAD(&ctrl->list);
1905
1906         if (opts->mask & NVMF_OPT_TRSVCID)
1907                 port = opts->trsvcid;
1908         else
1909                 port = __stringify(NVME_RDMA_IP_PORT);
1910
1911         ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1912                         opts->traddr, port, &ctrl->addr);
1913         if (ret) {
1914                 pr_err("malformed address passed: %s:%s\n", opts->traddr, port);
1915                 goto out_free_ctrl;
1916         }
1917
1918         if (opts->mask & NVMF_OPT_HOST_TRADDR) {
1919                 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1920                         opts->host_traddr, NULL, &ctrl->src_addr);
1921                 if (ret) {
1922                         pr_err("malformed src address passed: %s\n",
1923                                opts->host_traddr);
1924                         goto out_free_ctrl;
1925                 }
1926         }
1927
1928         if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
1929                 ret = -EALREADY;
1930                 goto out_free_ctrl;
1931         }
1932
1933         INIT_DELAYED_WORK(&ctrl->reconnect_work,
1934                         nvme_rdma_reconnect_ctrl_work);
1935         INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1936         INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
1937
1938         ctrl->ctrl.queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
1939         ctrl->ctrl.sqsize = opts->queue_size - 1;
1940         ctrl->ctrl.kato = opts->kato;
1941
1942         ret = -ENOMEM;
1943         ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
1944                                 GFP_KERNEL);
1945         if (!ctrl->queues)
1946                 goto out_free_ctrl;
1947
1948         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
1949                                 0 /* no quirks, we're perfect! */);
1950         if (ret)
1951                 goto out_kfree_queues;
1952
1953         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
1954         WARN_ON_ONCE(!changed);
1955
1956         ret = nvme_rdma_configure_admin_queue(ctrl, true);
1957         if (ret)
1958                 goto out_uninit_ctrl;
1959
1960         /* sanity check icdoff */
1961         if (ctrl->ctrl.icdoff) {
1962                 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1963                 ret = -EINVAL;
1964                 goto out_remove_admin_queue;
1965         }
1966
1967         /* sanity check keyed sgls */
1968         if (!(ctrl->ctrl.sgls & (1 << 2))) {
1969                 dev_err(ctrl->ctrl.device,
1970                         "Mandatory keyed sgls are not supported!\n");
1971                 ret = -EINVAL;
1972                 goto out_remove_admin_queue;
1973         }
1974
1975         if (opts->queue_size > ctrl->ctrl.maxcmd) {
1976                 /* warn if maxcmd is lower than queue_size */
1977                 dev_warn(ctrl->ctrl.device,
1978                         "queue_size %zu > ctrl maxcmd %u, clamping down\n",
1979                         opts->queue_size, ctrl->ctrl.maxcmd);
1980                 opts->queue_size = ctrl->ctrl.maxcmd;
1981         }
1982
1983         if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
1984                 /* warn if sqsize is lower than queue_size */
1985                 dev_warn(ctrl->ctrl.device,
1986                         "queue_size %zu > ctrl sqsize %u, clamping down\n",
1987                         opts->queue_size, ctrl->ctrl.sqsize + 1);
1988                 opts->queue_size = ctrl->ctrl.sqsize + 1;
1989         }
1990
1991         if (opts->nr_io_queues) {
1992                 ret = nvme_rdma_configure_io_queues(ctrl, true);
1993                 if (ret)
1994                         goto out_remove_admin_queue;
1995         }
1996
1997         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1998         WARN_ON_ONCE(!changed);
1999
2000         dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2001                 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2002
2003         nvme_get_ctrl(&ctrl->ctrl);
2004
2005         mutex_lock(&nvme_rdma_ctrl_mutex);
2006         list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2007         mutex_unlock(&nvme_rdma_ctrl_mutex);
2008
2009         nvme_start_ctrl(&ctrl->ctrl);
2010
2011         return &ctrl->ctrl;
2012
2013 out_remove_admin_queue:
2014         nvme_rdma_destroy_admin_queue(ctrl, true);
2015 out_uninit_ctrl:
2016         nvme_uninit_ctrl(&ctrl->ctrl);
2017         nvme_put_ctrl(&ctrl->ctrl);
2018         if (ret > 0)
2019                 ret = -EIO;
2020         return ERR_PTR(ret);
2021 out_kfree_queues:
2022         kfree(ctrl->queues);
2023 out_free_ctrl:
2024         kfree(ctrl);
2025         return ERR_PTR(ret);
2026 }
2027
2028 static struct nvmf_transport_ops nvme_rdma_transport = {
2029         .name           = "rdma",
2030         .module         = THIS_MODULE,
2031         .required_opts  = NVMF_OPT_TRADDR,
2032         .allowed_opts   = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2033                           NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO,
2034         .create_ctrl    = nvme_rdma_create_ctrl,
2035 };
2036
2037 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2038 {
2039         struct nvme_rdma_ctrl *ctrl;
2040         struct nvme_rdma_device *ndev;
2041         bool found = false;
2042
2043         mutex_lock(&device_list_mutex);
2044         list_for_each_entry(ndev, &device_list, entry) {
2045                 if (ndev->dev == ib_device) {
2046                         found = true;
2047                         break;
2048                 }
2049         }
2050         mutex_unlock(&device_list_mutex);
2051
2052         if (!found)
2053                 return;
2054
2055         /* Delete all controllers using this device */
2056         mutex_lock(&nvme_rdma_ctrl_mutex);
2057         list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2058                 if (ctrl->device->dev != ib_device)
2059                         continue;
2060                 nvme_delete_ctrl(&ctrl->ctrl);
2061         }
2062         mutex_unlock(&nvme_rdma_ctrl_mutex);
2063
2064         flush_workqueue(nvme_delete_wq);
2065 }
2066
2067 static struct ib_client nvme_rdma_ib_client = {
2068         .name   = "nvme_rdma",
2069         .remove = nvme_rdma_remove_one
2070 };
2071
2072 static int __init nvme_rdma_init_module(void)
2073 {
2074         int ret;
2075
2076         ret = ib_register_client(&nvme_rdma_ib_client);
2077         if (ret)
2078                 return ret;
2079
2080         ret = nvmf_register_transport(&nvme_rdma_transport);
2081         if (ret)
2082                 goto err_unreg_client;
2083
2084         return 0;
2085
2086 err_unreg_client:
2087         ib_unregister_client(&nvme_rdma_ib_client);
2088         return ret;
2089 }
2090
2091 static void __exit nvme_rdma_cleanup_module(void)
2092 {
2093         nvmf_unregister_transport(&nvme_rdma_transport);
2094         ib_unregister_client(&nvme_rdma_ib_client);
2095 }
2096
2097 module_init(nvme_rdma_init_module);
2098 module_exit(nvme_rdma_cleanup_module);
2099
2100 MODULE_LICENSE("GPL v2");