Merge tag 'ovl-update-6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/overlayfs/vfs
[linux-block.git] / drivers / nvme / host / rdma.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics RDMA host code.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <rdma/mr_pool.h>
11 #include <linux/err.h>
12 #include <linux/string.h>
13 #include <linux/atomic.h>
14 #include <linux/blk-mq.h>
15 #include <linux/blk-integrity.h>
16 #include <linux/types.h>
17 #include <linux/list.h>
18 #include <linux/mutex.h>
19 #include <linux/scatterlist.h>
20 #include <linux/nvme.h>
21 #include <asm/unaligned.h>
22
23 #include <rdma/ib_verbs.h>
24 #include <rdma/rdma_cm.h>
25 #include <linux/nvme-rdma.h>
26
27 #include "nvme.h"
28 #include "fabrics.h"
29
30
31 #define NVME_RDMA_CM_TIMEOUT_MS         3000            /* 3 second */
32
33 #define NVME_RDMA_MAX_SEGMENTS          256
34
35 #define NVME_RDMA_MAX_INLINE_SEGMENTS   4
36
37 #define NVME_RDMA_DATA_SGL_SIZE \
38         (sizeof(struct scatterlist) * NVME_INLINE_SG_CNT)
39 #define NVME_RDMA_METADATA_SGL_SIZE \
40         (sizeof(struct scatterlist) * NVME_INLINE_METADATA_SG_CNT)
41
42 struct nvme_rdma_device {
43         struct ib_device        *dev;
44         struct ib_pd            *pd;
45         struct kref             ref;
46         struct list_head        entry;
47         unsigned int            num_inline_segments;
48 };
49
50 struct nvme_rdma_qe {
51         struct ib_cqe           cqe;
52         void                    *data;
53         u64                     dma;
54 };
55
56 struct nvme_rdma_sgl {
57         int                     nents;
58         struct sg_table         sg_table;
59 };
60
61 struct nvme_rdma_queue;
62 struct nvme_rdma_request {
63         struct nvme_request     req;
64         struct ib_mr            *mr;
65         struct nvme_rdma_qe     sqe;
66         union nvme_result       result;
67         __le16                  status;
68         refcount_t              ref;
69         struct ib_sge           sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
70         u32                     num_sge;
71         struct ib_reg_wr        reg_wr;
72         struct ib_cqe           reg_cqe;
73         struct nvme_rdma_queue  *queue;
74         struct nvme_rdma_sgl    data_sgl;
75         struct nvme_rdma_sgl    *metadata_sgl;
76         bool                    use_sig_mr;
77 };
78
79 enum nvme_rdma_queue_flags {
80         NVME_RDMA_Q_ALLOCATED           = 0,
81         NVME_RDMA_Q_LIVE                = 1,
82         NVME_RDMA_Q_TR_READY            = 2,
83 };
84
85 struct nvme_rdma_queue {
86         struct nvme_rdma_qe     *rsp_ring;
87         int                     queue_size;
88         size_t                  cmnd_capsule_len;
89         struct nvme_rdma_ctrl   *ctrl;
90         struct nvme_rdma_device *device;
91         struct ib_cq            *ib_cq;
92         struct ib_qp            *qp;
93
94         unsigned long           flags;
95         struct rdma_cm_id       *cm_id;
96         int                     cm_error;
97         struct completion       cm_done;
98         bool                    pi_support;
99         int                     cq_size;
100         struct mutex            queue_lock;
101 };
102
103 struct nvme_rdma_ctrl {
104         /* read only in the hot path */
105         struct nvme_rdma_queue  *queues;
106
107         /* other member variables */
108         struct blk_mq_tag_set   tag_set;
109         struct work_struct      err_work;
110
111         struct nvme_rdma_qe     async_event_sqe;
112
113         struct delayed_work     reconnect_work;
114
115         struct list_head        list;
116
117         struct blk_mq_tag_set   admin_tag_set;
118         struct nvme_rdma_device *device;
119
120         u32                     max_fr_pages;
121
122         struct sockaddr_storage addr;
123         struct sockaddr_storage src_addr;
124
125         struct nvme_ctrl        ctrl;
126         bool                    use_inline_data;
127         u32                     io_queues[HCTX_MAX_TYPES];
128 };
129
130 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
131 {
132         return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
133 }
134
135 static LIST_HEAD(device_list);
136 static DEFINE_MUTEX(device_list_mutex);
137
138 static LIST_HEAD(nvme_rdma_ctrl_list);
139 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
140
141 /*
142  * Disabling this option makes small I/O goes faster, but is fundamentally
143  * unsafe.  With it turned off we will have to register a global rkey that
144  * allows read and write access to all physical memory.
145  */
146 static bool register_always = true;
147 module_param(register_always, bool, 0444);
148 MODULE_PARM_DESC(register_always,
149          "Use memory registration even for contiguous memory regions");
150
151 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
152                 struct rdma_cm_event *event);
153 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
154 static void nvme_rdma_complete_rq(struct request *rq);
155
156 static const struct blk_mq_ops nvme_rdma_mq_ops;
157 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
158
159 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
160 {
161         return queue - queue->ctrl->queues;
162 }
163
164 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
165 {
166         return nvme_rdma_queue_idx(queue) >
167                 queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
168                 queue->ctrl->io_queues[HCTX_TYPE_READ];
169 }
170
171 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
172 {
173         return queue->cmnd_capsule_len - sizeof(struct nvme_command);
174 }
175
176 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
177                 size_t capsule_size, enum dma_data_direction dir)
178 {
179         ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
180         kfree(qe->data);
181 }
182
183 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
184                 size_t capsule_size, enum dma_data_direction dir)
185 {
186         qe->data = kzalloc(capsule_size, GFP_KERNEL);
187         if (!qe->data)
188                 return -ENOMEM;
189
190         qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
191         if (ib_dma_mapping_error(ibdev, qe->dma)) {
192                 kfree(qe->data);
193                 qe->data = NULL;
194                 return -ENOMEM;
195         }
196
197         return 0;
198 }
199
200 static void nvme_rdma_free_ring(struct ib_device *ibdev,
201                 struct nvme_rdma_qe *ring, size_t ib_queue_size,
202                 size_t capsule_size, enum dma_data_direction dir)
203 {
204         int i;
205
206         for (i = 0; i < ib_queue_size; i++)
207                 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
208         kfree(ring);
209 }
210
211 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
212                 size_t ib_queue_size, size_t capsule_size,
213                 enum dma_data_direction dir)
214 {
215         struct nvme_rdma_qe *ring;
216         int i;
217
218         ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
219         if (!ring)
220                 return NULL;
221
222         /*
223          * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue
224          * lifetime. It's safe, since any chage in the underlying RDMA device
225          * will issue error recovery and queue re-creation.
226          */
227         for (i = 0; i < ib_queue_size; i++) {
228                 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
229                         goto out_free_ring;
230         }
231
232         return ring;
233
234 out_free_ring:
235         nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
236         return NULL;
237 }
238
239 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
240 {
241         pr_debug("QP event %s (%d)\n",
242                  ib_event_msg(event->event), event->event);
243
244 }
245
246 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
247 {
248         int ret;
249
250         ret = wait_for_completion_interruptible(&queue->cm_done);
251         if (ret)
252                 return ret;
253         WARN_ON_ONCE(queue->cm_error > 0);
254         return queue->cm_error;
255 }
256
257 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
258 {
259         struct nvme_rdma_device *dev = queue->device;
260         struct ib_qp_init_attr init_attr;
261         int ret;
262
263         memset(&init_attr, 0, sizeof(init_attr));
264         init_attr.event_handler = nvme_rdma_qp_event;
265         /* +1 for drain */
266         init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
267         /* +1 for drain */
268         init_attr.cap.max_recv_wr = queue->queue_size + 1;
269         init_attr.cap.max_recv_sge = 1;
270         init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
271         init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
272         init_attr.qp_type = IB_QPT_RC;
273         init_attr.send_cq = queue->ib_cq;
274         init_attr.recv_cq = queue->ib_cq;
275         if (queue->pi_support)
276                 init_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
277         init_attr.qp_context = queue;
278
279         ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
280
281         queue->qp = queue->cm_id->qp;
282         return ret;
283 }
284
285 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
286                 struct request *rq, unsigned int hctx_idx)
287 {
288         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
289
290         kfree(req->sqe.data);
291 }
292
293 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
294                 struct request *rq, unsigned int hctx_idx,
295                 unsigned int numa_node)
296 {
297         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(set->driver_data);
298         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
299         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
300         struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
301
302         nvme_req(rq)->ctrl = &ctrl->ctrl;
303         req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL);
304         if (!req->sqe.data)
305                 return -ENOMEM;
306
307         /* metadata nvme_rdma_sgl struct is located after command's data SGL */
308         if (queue->pi_support)
309                 req->metadata_sgl = (void *)nvme_req(rq) +
310                         sizeof(struct nvme_rdma_request) +
311                         NVME_RDMA_DATA_SGL_SIZE;
312
313         req->queue = queue;
314         nvme_req(rq)->cmd = req->sqe.data;
315
316         return 0;
317 }
318
319 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
320                 unsigned int hctx_idx)
321 {
322         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(data);
323         struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
324
325         BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
326
327         hctx->driver_data = queue;
328         return 0;
329 }
330
331 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
332                 unsigned int hctx_idx)
333 {
334         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(data);
335         struct nvme_rdma_queue *queue = &ctrl->queues[0];
336
337         BUG_ON(hctx_idx != 0);
338
339         hctx->driver_data = queue;
340         return 0;
341 }
342
343 static void nvme_rdma_free_dev(struct kref *ref)
344 {
345         struct nvme_rdma_device *ndev =
346                 container_of(ref, struct nvme_rdma_device, ref);
347
348         mutex_lock(&device_list_mutex);
349         list_del(&ndev->entry);
350         mutex_unlock(&device_list_mutex);
351
352         ib_dealloc_pd(ndev->pd);
353         kfree(ndev);
354 }
355
356 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
357 {
358         kref_put(&dev->ref, nvme_rdma_free_dev);
359 }
360
361 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
362 {
363         return kref_get_unless_zero(&dev->ref);
364 }
365
366 static struct nvme_rdma_device *
367 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
368 {
369         struct nvme_rdma_device *ndev;
370
371         mutex_lock(&device_list_mutex);
372         list_for_each_entry(ndev, &device_list, entry) {
373                 if (ndev->dev->node_guid == cm_id->device->node_guid &&
374                     nvme_rdma_dev_get(ndev))
375                         goto out_unlock;
376         }
377
378         ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
379         if (!ndev)
380                 goto out_err;
381
382         ndev->dev = cm_id->device;
383         kref_init(&ndev->ref);
384
385         ndev->pd = ib_alloc_pd(ndev->dev,
386                 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
387         if (IS_ERR(ndev->pd))
388                 goto out_free_dev;
389
390         if (!(ndev->dev->attrs.device_cap_flags &
391               IB_DEVICE_MEM_MGT_EXTENSIONS)) {
392                 dev_err(&ndev->dev->dev,
393                         "Memory registrations not supported.\n");
394                 goto out_free_pd;
395         }
396
397         ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
398                                         ndev->dev->attrs.max_send_sge - 1);
399         list_add(&ndev->entry, &device_list);
400 out_unlock:
401         mutex_unlock(&device_list_mutex);
402         return ndev;
403
404 out_free_pd:
405         ib_dealloc_pd(ndev->pd);
406 out_free_dev:
407         kfree(ndev);
408 out_err:
409         mutex_unlock(&device_list_mutex);
410         return NULL;
411 }
412
413 static void nvme_rdma_free_cq(struct nvme_rdma_queue *queue)
414 {
415         if (nvme_rdma_poll_queue(queue))
416                 ib_free_cq(queue->ib_cq);
417         else
418                 ib_cq_pool_put(queue->ib_cq, queue->cq_size);
419 }
420
421 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
422 {
423         struct nvme_rdma_device *dev;
424         struct ib_device *ibdev;
425
426         if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
427                 return;
428
429         dev = queue->device;
430         ibdev = dev->dev;
431
432         if (queue->pi_support)
433                 ib_mr_pool_destroy(queue->qp, &queue->qp->sig_mrs);
434         ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
435
436         /*
437          * The cm_id object might have been destroyed during RDMA connection
438          * establishment error flow to avoid getting other cma events, thus
439          * the destruction of the QP shouldn't use rdma_cm API.
440          */
441         ib_destroy_qp(queue->qp);
442         nvme_rdma_free_cq(queue);
443
444         nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
445                         sizeof(struct nvme_completion), DMA_FROM_DEVICE);
446
447         nvme_rdma_dev_put(dev);
448 }
449
450 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev, bool pi_support)
451 {
452         u32 max_page_list_len;
453
454         if (pi_support)
455                 max_page_list_len = ibdev->attrs.max_pi_fast_reg_page_list_len;
456         else
457                 max_page_list_len = ibdev->attrs.max_fast_reg_page_list_len;
458
459         return min_t(u32, NVME_RDMA_MAX_SEGMENTS, max_page_list_len - 1);
460 }
461
462 static int nvme_rdma_create_cq(struct ib_device *ibdev,
463                 struct nvme_rdma_queue *queue)
464 {
465         int ret, comp_vector, idx = nvme_rdma_queue_idx(queue);
466
467         /*
468          * Spread I/O queues completion vectors according their queue index.
469          * Admin queues can always go on completion vector 0.
470          */
471         comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors;
472
473         /* Polling queues need direct cq polling context */
474         if (nvme_rdma_poll_queue(queue))
475                 queue->ib_cq = ib_alloc_cq(ibdev, queue, queue->cq_size,
476                                            comp_vector, IB_POLL_DIRECT);
477         else
478                 queue->ib_cq = ib_cq_pool_get(ibdev, queue->cq_size,
479                                               comp_vector, IB_POLL_SOFTIRQ);
480
481         if (IS_ERR(queue->ib_cq)) {
482                 ret = PTR_ERR(queue->ib_cq);
483                 return ret;
484         }
485
486         return 0;
487 }
488
489 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
490 {
491         struct ib_device *ibdev;
492         const int send_wr_factor = 3;                   /* MR, SEND, INV */
493         const int cq_factor = send_wr_factor + 1;       /* + RECV */
494         int ret, pages_per_mr;
495
496         queue->device = nvme_rdma_find_get_device(queue->cm_id);
497         if (!queue->device) {
498                 dev_err(queue->cm_id->device->dev.parent,
499                         "no client data found!\n");
500                 return -ECONNREFUSED;
501         }
502         ibdev = queue->device->dev;
503
504         /* +1 for ib_drain_qp */
505         queue->cq_size = cq_factor * queue->queue_size + 1;
506
507         ret = nvme_rdma_create_cq(ibdev, queue);
508         if (ret)
509                 goto out_put_dev;
510
511         ret = nvme_rdma_create_qp(queue, send_wr_factor);
512         if (ret)
513                 goto out_destroy_ib_cq;
514
515         queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
516                         sizeof(struct nvme_completion), DMA_FROM_DEVICE);
517         if (!queue->rsp_ring) {
518                 ret = -ENOMEM;
519                 goto out_destroy_qp;
520         }
521
522         /*
523          * Currently we don't use SG_GAPS MR's so if the first entry is
524          * misaligned we'll end up using two entries for a single data page,
525          * so one additional entry is required.
526          */
527         pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev, queue->pi_support) + 1;
528         ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
529                               queue->queue_size,
530                               IB_MR_TYPE_MEM_REG,
531                               pages_per_mr, 0);
532         if (ret) {
533                 dev_err(queue->ctrl->ctrl.device,
534                         "failed to initialize MR pool sized %d for QID %d\n",
535                         queue->queue_size, nvme_rdma_queue_idx(queue));
536                 goto out_destroy_ring;
537         }
538
539         if (queue->pi_support) {
540                 ret = ib_mr_pool_init(queue->qp, &queue->qp->sig_mrs,
541                                       queue->queue_size, IB_MR_TYPE_INTEGRITY,
542                                       pages_per_mr, pages_per_mr);
543                 if (ret) {
544                         dev_err(queue->ctrl->ctrl.device,
545                                 "failed to initialize PI MR pool sized %d for QID %d\n",
546                                 queue->queue_size, nvme_rdma_queue_idx(queue));
547                         goto out_destroy_mr_pool;
548                 }
549         }
550
551         set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
552
553         return 0;
554
555 out_destroy_mr_pool:
556         ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
557 out_destroy_ring:
558         nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
559                             sizeof(struct nvme_completion), DMA_FROM_DEVICE);
560 out_destroy_qp:
561         rdma_destroy_qp(queue->cm_id);
562 out_destroy_ib_cq:
563         nvme_rdma_free_cq(queue);
564 out_put_dev:
565         nvme_rdma_dev_put(queue->device);
566         return ret;
567 }
568
569 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
570                 int idx, size_t queue_size)
571 {
572         struct nvme_rdma_queue *queue;
573         struct sockaddr *src_addr = NULL;
574         int ret;
575
576         queue = &ctrl->queues[idx];
577         mutex_init(&queue->queue_lock);
578         queue->ctrl = ctrl;
579         if (idx && ctrl->ctrl.max_integrity_segments)
580                 queue->pi_support = true;
581         else
582                 queue->pi_support = false;
583         init_completion(&queue->cm_done);
584
585         if (idx > 0)
586                 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
587         else
588                 queue->cmnd_capsule_len = sizeof(struct nvme_command);
589
590         queue->queue_size = queue_size;
591
592         queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
593                         RDMA_PS_TCP, IB_QPT_RC);
594         if (IS_ERR(queue->cm_id)) {
595                 dev_info(ctrl->ctrl.device,
596                         "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
597                 ret = PTR_ERR(queue->cm_id);
598                 goto out_destroy_mutex;
599         }
600
601         if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
602                 src_addr = (struct sockaddr *)&ctrl->src_addr;
603
604         queue->cm_error = -ETIMEDOUT;
605         ret = rdma_resolve_addr(queue->cm_id, src_addr,
606                         (struct sockaddr *)&ctrl->addr,
607                         NVME_RDMA_CM_TIMEOUT_MS);
608         if (ret) {
609                 dev_info(ctrl->ctrl.device,
610                         "rdma_resolve_addr failed (%d).\n", ret);
611                 goto out_destroy_cm_id;
612         }
613
614         ret = nvme_rdma_wait_for_cm(queue);
615         if (ret) {
616                 dev_info(ctrl->ctrl.device,
617                         "rdma connection establishment failed (%d)\n", ret);
618                 goto out_destroy_cm_id;
619         }
620
621         set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
622
623         return 0;
624
625 out_destroy_cm_id:
626         rdma_destroy_id(queue->cm_id);
627         nvme_rdma_destroy_queue_ib(queue);
628 out_destroy_mutex:
629         mutex_destroy(&queue->queue_lock);
630         return ret;
631 }
632
633 static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
634 {
635         rdma_disconnect(queue->cm_id);
636         ib_drain_qp(queue->qp);
637 }
638
639 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
640 {
641         if (!test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
642                 return;
643
644         mutex_lock(&queue->queue_lock);
645         if (test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
646                 __nvme_rdma_stop_queue(queue);
647         mutex_unlock(&queue->queue_lock);
648 }
649
650 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
651 {
652         if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
653                 return;
654
655         rdma_destroy_id(queue->cm_id);
656         nvme_rdma_destroy_queue_ib(queue);
657         mutex_destroy(&queue->queue_lock);
658 }
659
660 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
661 {
662         int i;
663
664         for (i = 1; i < ctrl->ctrl.queue_count; i++)
665                 nvme_rdma_free_queue(&ctrl->queues[i]);
666 }
667
668 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
669 {
670         int i;
671
672         for (i = 1; i < ctrl->ctrl.queue_count; i++)
673                 nvme_rdma_stop_queue(&ctrl->queues[i]);
674 }
675
676 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
677 {
678         struct nvme_rdma_queue *queue = &ctrl->queues[idx];
679         int ret;
680
681         if (idx)
682                 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx);
683         else
684                 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
685
686         if (!ret) {
687                 set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
688         } else {
689                 if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
690                         __nvme_rdma_stop_queue(queue);
691                 dev_info(ctrl->ctrl.device,
692                         "failed to connect queue: %d ret=%d\n", idx, ret);
693         }
694         return ret;
695 }
696
697 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl,
698                                      int first, int last)
699 {
700         int i, ret = 0;
701
702         for (i = first; i < last; i++) {
703                 ret = nvme_rdma_start_queue(ctrl, i);
704                 if (ret)
705                         goto out_stop_queues;
706         }
707
708         return 0;
709
710 out_stop_queues:
711         for (i--; i >= first; i--)
712                 nvme_rdma_stop_queue(&ctrl->queues[i]);
713         return ret;
714 }
715
716 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
717 {
718         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
719         unsigned int nr_io_queues;
720         int i, ret;
721
722         nr_io_queues = nvmf_nr_io_queues(opts);
723         ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
724         if (ret)
725                 return ret;
726
727         if (nr_io_queues == 0) {
728                 dev_err(ctrl->ctrl.device,
729                         "unable to set any I/O queues\n");
730                 return -ENOMEM;
731         }
732
733         ctrl->ctrl.queue_count = nr_io_queues + 1;
734         dev_info(ctrl->ctrl.device,
735                 "creating %d I/O queues.\n", nr_io_queues);
736
737         nvmf_set_io_queues(opts, nr_io_queues, ctrl->io_queues);
738         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
739                 ret = nvme_rdma_alloc_queue(ctrl, i,
740                                 ctrl->ctrl.sqsize + 1);
741                 if (ret)
742                         goto out_free_queues;
743         }
744
745         return 0;
746
747 out_free_queues:
748         for (i--; i >= 1; i--)
749                 nvme_rdma_free_queue(&ctrl->queues[i]);
750
751         return ret;
752 }
753
754 static int nvme_rdma_alloc_tag_set(struct nvme_ctrl *ctrl)
755 {
756         unsigned int cmd_size = sizeof(struct nvme_rdma_request) +
757                                 NVME_RDMA_DATA_SGL_SIZE;
758
759         if (ctrl->max_integrity_segments)
760                 cmd_size += sizeof(struct nvme_rdma_sgl) +
761                             NVME_RDMA_METADATA_SGL_SIZE;
762
763         return nvme_alloc_io_tag_set(ctrl, &to_rdma_ctrl(ctrl)->tag_set,
764                         &nvme_rdma_mq_ops,
765                         ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2,
766                         cmd_size);
767 }
768
769 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl)
770 {
771         if (ctrl->async_event_sqe.data) {
772                 cancel_work_sync(&ctrl->ctrl.async_event_work);
773                 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
774                                 sizeof(struct nvme_command), DMA_TO_DEVICE);
775                 ctrl->async_event_sqe.data = NULL;
776         }
777         nvme_rdma_free_queue(&ctrl->queues[0]);
778 }
779
780 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
781                 bool new)
782 {
783         bool pi_capable = false;
784         int error;
785
786         error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
787         if (error)
788                 return error;
789
790         ctrl->device = ctrl->queues[0].device;
791         ctrl->ctrl.numa_node = ibdev_to_node(ctrl->device->dev);
792
793         /* T10-PI support */
794         if (ctrl->device->dev->attrs.kernel_cap_flags &
795             IBK_INTEGRITY_HANDOVER)
796                 pi_capable = true;
797
798         ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev,
799                                                         pi_capable);
800
801         /*
802          * Bind the async event SQE DMA mapping to the admin queue lifetime.
803          * It's safe, since any chage in the underlying RDMA device will issue
804          * error recovery and queue re-creation.
805          */
806         error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
807                         sizeof(struct nvme_command), DMA_TO_DEVICE);
808         if (error)
809                 goto out_free_queue;
810
811         if (new) {
812                 error = nvme_alloc_admin_tag_set(&ctrl->ctrl,
813                                 &ctrl->admin_tag_set, &nvme_rdma_admin_mq_ops,
814                                 sizeof(struct nvme_rdma_request) +
815                                 NVME_RDMA_DATA_SGL_SIZE);
816                 if (error)
817                         goto out_free_async_qe;
818
819         }
820
821         error = nvme_rdma_start_queue(ctrl, 0);
822         if (error)
823                 goto out_remove_admin_tag_set;
824
825         error = nvme_enable_ctrl(&ctrl->ctrl);
826         if (error)
827                 goto out_stop_queue;
828
829         ctrl->ctrl.max_segments = ctrl->max_fr_pages;
830         ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9);
831         if (pi_capable)
832                 ctrl->ctrl.max_integrity_segments = ctrl->max_fr_pages;
833         else
834                 ctrl->ctrl.max_integrity_segments = 0;
835
836         nvme_unquiesce_admin_queue(&ctrl->ctrl);
837
838         error = nvme_init_ctrl_finish(&ctrl->ctrl, false);
839         if (error)
840                 goto out_quiesce_queue;
841
842         return 0;
843
844 out_quiesce_queue:
845         nvme_quiesce_admin_queue(&ctrl->ctrl);
846         blk_sync_queue(ctrl->ctrl.admin_q);
847 out_stop_queue:
848         nvme_rdma_stop_queue(&ctrl->queues[0]);
849         nvme_cancel_admin_tagset(&ctrl->ctrl);
850 out_remove_admin_tag_set:
851         if (new)
852                 nvme_remove_admin_tag_set(&ctrl->ctrl);
853 out_free_async_qe:
854         if (ctrl->async_event_sqe.data) {
855                 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
856                         sizeof(struct nvme_command), DMA_TO_DEVICE);
857                 ctrl->async_event_sqe.data = NULL;
858         }
859 out_free_queue:
860         nvme_rdma_free_queue(&ctrl->queues[0]);
861         return error;
862 }
863
864 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
865 {
866         int ret, nr_queues;
867
868         ret = nvme_rdma_alloc_io_queues(ctrl);
869         if (ret)
870                 return ret;
871
872         if (new) {
873                 ret = nvme_rdma_alloc_tag_set(&ctrl->ctrl);
874                 if (ret)
875                         goto out_free_io_queues;
876         }
877
878         /*
879          * Only start IO queues for which we have allocated the tagset
880          * and limitted it to the available queues. On reconnects, the
881          * queue number might have changed.
882          */
883         nr_queues = min(ctrl->tag_set.nr_hw_queues + 1, ctrl->ctrl.queue_count);
884         ret = nvme_rdma_start_io_queues(ctrl, 1, nr_queues);
885         if (ret)
886                 goto out_cleanup_tagset;
887
888         if (!new) {
889                 nvme_start_freeze(&ctrl->ctrl);
890                 nvme_unquiesce_io_queues(&ctrl->ctrl);
891                 if (!nvme_wait_freeze_timeout(&ctrl->ctrl, NVME_IO_TIMEOUT)) {
892                         /*
893                          * If we timed out waiting for freeze we are likely to
894                          * be stuck.  Fail the controller initialization just
895                          * to be safe.
896                          */
897                         ret = -ENODEV;
898                         nvme_unfreeze(&ctrl->ctrl);
899                         goto out_wait_freeze_timed_out;
900                 }
901                 blk_mq_update_nr_hw_queues(ctrl->ctrl.tagset,
902                         ctrl->ctrl.queue_count - 1);
903                 nvme_unfreeze(&ctrl->ctrl);
904         }
905
906         /*
907          * If the number of queues has increased (reconnect case)
908          * start all new queues now.
909          */
910         ret = nvme_rdma_start_io_queues(ctrl, nr_queues,
911                                         ctrl->tag_set.nr_hw_queues + 1);
912         if (ret)
913                 goto out_wait_freeze_timed_out;
914
915         return 0;
916
917 out_wait_freeze_timed_out:
918         nvme_quiesce_io_queues(&ctrl->ctrl);
919         nvme_sync_io_queues(&ctrl->ctrl);
920         nvme_rdma_stop_io_queues(ctrl);
921 out_cleanup_tagset:
922         nvme_cancel_tagset(&ctrl->ctrl);
923         if (new)
924                 nvme_remove_io_tag_set(&ctrl->ctrl);
925 out_free_io_queues:
926         nvme_rdma_free_io_queues(ctrl);
927         return ret;
928 }
929
930 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
931                 bool remove)
932 {
933         nvme_quiesce_admin_queue(&ctrl->ctrl);
934         blk_sync_queue(ctrl->ctrl.admin_q);
935         nvme_rdma_stop_queue(&ctrl->queues[0]);
936         nvme_cancel_admin_tagset(&ctrl->ctrl);
937         if (remove) {
938                 nvme_unquiesce_admin_queue(&ctrl->ctrl);
939                 nvme_remove_admin_tag_set(&ctrl->ctrl);
940         }
941         nvme_rdma_destroy_admin_queue(ctrl);
942 }
943
944 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
945                 bool remove)
946 {
947         if (ctrl->ctrl.queue_count > 1) {
948                 nvme_quiesce_io_queues(&ctrl->ctrl);
949                 nvme_sync_io_queues(&ctrl->ctrl);
950                 nvme_rdma_stop_io_queues(ctrl);
951                 nvme_cancel_tagset(&ctrl->ctrl);
952                 if (remove) {
953                         nvme_unquiesce_io_queues(&ctrl->ctrl);
954                         nvme_remove_io_tag_set(&ctrl->ctrl);
955                 }
956                 nvme_rdma_free_io_queues(ctrl);
957         }
958 }
959
960 static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl)
961 {
962         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
963
964         flush_work(&ctrl->err_work);
965         cancel_delayed_work_sync(&ctrl->reconnect_work);
966 }
967
968 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
969 {
970         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
971
972         if (list_empty(&ctrl->list))
973                 goto free_ctrl;
974
975         mutex_lock(&nvme_rdma_ctrl_mutex);
976         list_del(&ctrl->list);
977         mutex_unlock(&nvme_rdma_ctrl_mutex);
978
979         nvmf_free_options(nctrl->opts);
980 free_ctrl:
981         kfree(ctrl->queues);
982         kfree(ctrl);
983 }
984
985 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
986 {
987         enum nvme_ctrl_state state = nvme_ctrl_state(&ctrl->ctrl);
988
989         /* If we are resetting/deleting then do nothing */
990         if (state != NVME_CTRL_CONNECTING) {
991                 WARN_ON_ONCE(state == NVME_CTRL_NEW || state == NVME_CTRL_LIVE);
992                 return;
993         }
994
995         if (nvmf_should_reconnect(&ctrl->ctrl)) {
996                 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
997                         ctrl->ctrl.opts->reconnect_delay);
998                 queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
999                                 ctrl->ctrl.opts->reconnect_delay * HZ);
1000         } else {
1001                 nvme_delete_ctrl(&ctrl->ctrl);
1002         }
1003 }
1004
1005 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
1006 {
1007         int ret;
1008         bool changed;
1009
1010         ret = nvme_rdma_configure_admin_queue(ctrl, new);
1011         if (ret)
1012                 return ret;
1013
1014         if (ctrl->ctrl.icdoff) {
1015                 ret = -EOPNOTSUPP;
1016                 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1017                 goto destroy_admin;
1018         }
1019
1020         if (!(ctrl->ctrl.sgls & (1 << 2))) {
1021                 ret = -EOPNOTSUPP;
1022                 dev_err(ctrl->ctrl.device,
1023                         "Mandatory keyed sgls are not supported!\n");
1024                 goto destroy_admin;
1025         }
1026
1027         if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
1028                 dev_warn(ctrl->ctrl.device,
1029                         "queue_size %zu > ctrl sqsize %u, clamping down\n",
1030                         ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
1031         }
1032
1033         if (ctrl->ctrl.sqsize + 1 > NVME_RDMA_MAX_QUEUE_SIZE) {
1034                 dev_warn(ctrl->ctrl.device,
1035                         "ctrl sqsize %u > max queue size %u, clamping down\n",
1036                         ctrl->ctrl.sqsize + 1, NVME_RDMA_MAX_QUEUE_SIZE);
1037                 ctrl->ctrl.sqsize = NVME_RDMA_MAX_QUEUE_SIZE - 1;
1038         }
1039
1040         if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
1041                 dev_warn(ctrl->ctrl.device,
1042                         "sqsize %u > ctrl maxcmd %u, clamping down\n",
1043                         ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
1044                 ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
1045         }
1046
1047         if (ctrl->ctrl.sgls & (1 << 20))
1048                 ctrl->use_inline_data = true;
1049
1050         if (ctrl->ctrl.queue_count > 1) {
1051                 ret = nvme_rdma_configure_io_queues(ctrl, new);
1052                 if (ret)
1053                         goto destroy_admin;
1054         }
1055
1056         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1057         if (!changed) {
1058                 /*
1059                  * state change failure is ok if we started ctrl delete,
1060                  * unless we're during creation of a new controller to
1061                  * avoid races with teardown flow.
1062                  */
1063                 enum nvme_ctrl_state state = nvme_ctrl_state(&ctrl->ctrl);
1064
1065                 WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
1066                              state != NVME_CTRL_DELETING_NOIO);
1067                 WARN_ON_ONCE(new);
1068                 ret = -EINVAL;
1069                 goto destroy_io;
1070         }
1071
1072         nvme_start_ctrl(&ctrl->ctrl);
1073         return 0;
1074
1075 destroy_io:
1076         if (ctrl->ctrl.queue_count > 1) {
1077                 nvme_quiesce_io_queues(&ctrl->ctrl);
1078                 nvme_sync_io_queues(&ctrl->ctrl);
1079                 nvme_rdma_stop_io_queues(ctrl);
1080                 nvme_cancel_tagset(&ctrl->ctrl);
1081                 if (new)
1082                         nvme_remove_io_tag_set(&ctrl->ctrl);
1083                 nvme_rdma_free_io_queues(ctrl);
1084         }
1085 destroy_admin:
1086         nvme_stop_keep_alive(&ctrl->ctrl);
1087         nvme_quiesce_admin_queue(&ctrl->ctrl);
1088         blk_sync_queue(ctrl->ctrl.admin_q);
1089         nvme_rdma_stop_queue(&ctrl->queues[0]);
1090         nvme_cancel_admin_tagset(&ctrl->ctrl);
1091         if (new)
1092                 nvme_remove_admin_tag_set(&ctrl->ctrl);
1093         nvme_rdma_destroy_admin_queue(ctrl);
1094         return ret;
1095 }
1096
1097 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1098 {
1099         struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1100                         struct nvme_rdma_ctrl, reconnect_work);
1101
1102         ++ctrl->ctrl.nr_reconnects;
1103
1104         if (nvme_rdma_setup_ctrl(ctrl, false))
1105                 goto requeue;
1106
1107         dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1108                         ctrl->ctrl.nr_reconnects);
1109
1110         ctrl->ctrl.nr_reconnects = 0;
1111
1112         return;
1113
1114 requeue:
1115         dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1116                         ctrl->ctrl.nr_reconnects);
1117         nvme_rdma_reconnect_or_remove(ctrl);
1118 }
1119
1120 static void nvme_rdma_error_recovery_work(struct work_struct *work)
1121 {
1122         struct nvme_rdma_ctrl *ctrl = container_of(work,
1123                         struct nvme_rdma_ctrl, err_work);
1124
1125         nvme_stop_keep_alive(&ctrl->ctrl);
1126         flush_work(&ctrl->ctrl.async_event_work);
1127         nvme_rdma_teardown_io_queues(ctrl, false);
1128         nvme_unquiesce_io_queues(&ctrl->ctrl);
1129         nvme_rdma_teardown_admin_queue(ctrl, false);
1130         nvme_unquiesce_admin_queue(&ctrl->ctrl);
1131         nvme_auth_stop(&ctrl->ctrl);
1132
1133         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1134                 /* state change failure is ok if we started ctrl delete */
1135                 enum nvme_ctrl_state state = nvme_ctrl_state(&ctrl->ctrl);
1136
1137                 WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
1138                              state != NVME_CTRL_DELETING_NOIO);
1139                 return;
1140         }
1141
1142         nvme_rdma_reconnect_or_remove(ctrl);
1143 }
1144
1145 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1146 {
1147         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1148                 return;
1149
1150         dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1151         queue_work(nvme_reset_wq, &ctrl->err_work);
1152 }
1153
1154 static void nvme_rdma_end_request(struct nvme_rdma_request *req)
1155 {
1156         struct request *rq = blk_mq_rq_from_pdu(req);
1157
1158         if (!refcount_dec_and_test(&req->ref))
1159                 return;
1160         if (!nvme_try_complete_req(rq, req->status, req->result))
1161                 nvme_rdma_complete_rq(rq);
1162 }
1163
1164 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1165                 const char *op)
1166 {
1167         struct nvme_rdma_queue *queue = wc->qp->qp_context;
1168         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1169
1170         if (nvme_ctrl_state(&ctrl->ctrl) == NVME_CTRL_LIVE)
1171                 dev_info(ctrl->ctrl.device,
1172                              "%s for CQE 0x%p failed with status %s (%d)\n",
1173                              op, wc->wr_cqe,
1174                              ib_wc_status_msg(wc->status), wc->status);
1175         nvme_rdma_error_recovery(ctrl);
1176 }
1177
1178 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1179 {
1180         if (unlikely(wc->status != IB_WC_SUCCESS))
1181                 nvme_rdma_wr_error(cq, wc, "MEMREG");
1182 }
1183
1184 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1185 {
1186         struct nvme_rdma_request *req =
1187                 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1188
1189         if (unlikely(wc->status != IB_WC_SUCCESS))
1190                 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1191         else
1192                 nvme_rdma_end_request(req);
1193 }
1194
1195 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1196                 struct nvme_rdma_request *req)
1197 {
1198         struct ib_send_wr wr = {
1199                 .opcode             = IB_WR_LOCAL_INV,
1200                 .next               = NULL,
1201                 .num_sge            = 0,
1202                 .send_flags         = IB_SEND_SIGNALED,
1203                 .ex.invalidate_rkey = req->mr->rkey,
1204         };
1205
1206         req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1207         wr.wr_cqe = &req->reg_cqe;
1208
1209         return ib_post_send(queue->qp, &wr, NULL);
1210 }
1211
1212 static void nvme_rdma_dma_unmap_req(struct ib_device *ibdev, struct request *rq)
1213 {
1214         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1215
1216         if (blk_integrity_rq(rq)) {
1217                 ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
1218                                 req->metadata_sgl->nents, rq_dma_dir(rq));
1219                 sg_free_table_chained(&req->metadata_sgl->sg_table,
1220                                       NVME_INLINE_METADATA_SG_CNT);
1221         }
1222
1223         ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1224                         rq_dma_dir(rq));
1225         sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1226 }
1227
1228 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1229                 struct request *rq)
1230 {
1231         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1232         struct nvme_rdma_device *dev = queue->device;
1233         struct ib_device *ibdev = dev->dev;
1234         struct list_head *pool = &queue->qp->rdma_mrs;
1235
1236         if (!blk_rq_nr_phys_segments(rq))
1237                 return;
1238
1239         if (req->use_sig_mr)
1240                 pool = &queue->qp->sig_mrs;
1241
1242         if (req->mr) {
1243                 ib_mr_pool_put(queue->qp, pool, req->mr);
1244                 req->mr = NULL;
1245         }
1246
1247         nvme_rdma_dma_unmap_req(ibdev, rq);
1248 }
1249
1250 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1251 {
1252         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1253
1254         sg->addr = 0;
1255         put_unaligned_le24(0, sg->length);
1256         put_unaligned_le32(0, sg->key);
1257         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1258         return 0;
1259 }
1260
1261 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1262                 struct nvme_rdma_request *req, struct nvme_command *c,
1263                 int count)
1264 {
1265         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1266         struct ib_sge *sge = &req->sge[1];
1267         struct scatterlist *sgl;
1268         u32 len = 0;
1269         int i;
1270
1271         for_each_sg(req->data_sgl.sg_table.sgl, sgl, count, i) {
1272                 sge->addr = sg_dma_address(sgl);
1273                 sge->length = sg_dma_len(sgl);
1274                 sge->lkey = queue->device->pd->local_dma_lkey;
1275                 len += sge->length;
1276                 sge++;
1277         }
1278
1279         sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1280         sg->length = cpu_to_le32(len);
1281         sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1282
1283         req->num_sge += count;
1284         return 0;
1285 }
1286
1287 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1288                 struct nvme_rdma_request *req, struct nvme_command *c)
1289 {
1290         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1291
1292         sg->addr = cpu_to_le64(sg_dma_address(req->data_sgl.sg_table.sgl));
1293         put_unaligned_le24(sg_dma_len(req->data_sgl.sg_table.sgl), sg->length);
1294         put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1295         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1296         return 0;
1297 }
1298
1299 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1300                 struct nvme_rdma_request *req, struct nvme_command *c,
1301                 int count)
1302 {
1303         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1304         int nr;
1305
1306         req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1307         if (WARN_ON_ONCE(!req->mr))
1308                 return -EAGAIN;
1309
1310         /*
1311          * Align the MR to a 4K page size to match the ctrl page size and
1312          * the block virtual boundary.
1313          */
1314         nr = ib_map_mr_sg(req->mr, req->data_sgl.sg_table.sgl, count, NULL,
1315                           SZ_4K);
1316         if (unlikely(nr < count)) {
1317                 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1318                 req->mr = NULL;
1319                 if (nr < 0)
1320                         return nr;
1321                 return -EINVAL;
1322         }
1323
1324         ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1325
1326         req->reg_cqe.done = nvme_rdma_memreg_done;
1327         memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1328         req->reg_wr.wr.opcode = IB_WR_REG_MR;
1329         req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1330         req->reg_wr.wr.num_sge = 0;
1331         req->reg_wr.mr = req->mr;
1332         req->reg_wr.key = req->mr->rkey;
1333         req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1334                              IB_ACCESS_REMOTE_READ |
1335                              IB_ACCESS_REMOTE_WRITE;
1336
1337         sg->addr = cpu_to_le64(req->mr->iova);
1338         put_unaligned_le24(req->mr->length, sg->length);
1339         put_unaligned_le32(req->mr->rkey, sg->key);
1340         sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1341                         NVME_SGL_FMT_INVALIDATE;
1342
1343         return 0;
1344 }
1345
1346 static void nvme_rdma_set_sig_domain(struct blk_integrity *bi,
1347                 struct nvme_command *cmd, struct ib_sig_domain *domain,
1348                 u16 control, u8 pi_type)
1349 {
1350         domain->sig_type = IB_SIG_TYPE_T10_DIF;
1351         domain->sig.dif.bg_type = IB_T10DIF_CRC;
1352         domain->sig.dif.pi_interval = 1 << bi->interval_exp;
1353         domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
1354         if (control & NVME_RW_PRINFO_PRCHK_REF)
1355                 domain->sig.dif.ref_remap = true;
1356
1357         domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
1358         domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
1359         domain->sig.dif.app_escape = true;
1360         if (pi_type == NVME_NS_DPS_PI_TYPE3)
1361                 domain->sig.dif.ref_escape = true;
1362 }
1363
1364 static void nvme_rdma_set_sig_attrs(struct blk_integrity *bi,
1365                 struct nvme_command *cmd, struct ib_sig_attrs *sig_attrs,
1366                 u8 pi_type)
1367 {
1368         u16 control = le16_to_cpu(cmd->rw.control);
1369
1370         memset(sig_attrs, 0, sizeof(*sig_attrs));
1371         if (control & NVME_RW_PRINFO_PRACT) {
1372                 /* for WRITE_INSERT/READ_STRIP no memory domain */
1373                 sig_attrs->mem.sig_type = IB_SIG_TYPE_NONE;
1374                 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1375                                          pi_type);
1376                 /* Clear the PRACT bit since HCA will generate/verify the PI */
1377                 control &= ~NVME_RW_PRINFO_PRACT;
1378                 cmd->rw.control = cpu_to_le16(control);
1379         } else {
1380                 /* for WRITE_PASS/READ_PASS both wire/memory domains exist */
1381                 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1382                                          pi_type);
1383                 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
1384                                          pi_type);
1385         }
1386 }
1387
1388 static void nvme_rdma_set_prot_checks(struct nvme_command *cmd, u8 *mask)
1389 {
1390         *mask = 0;
1391         if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_REF)
1392                 *mask |= IB_SIG_CHECK_REFTAG;
1393         if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_GUARD)
1394                 *mask |= IB_SIG_CHECK_GUARD;
1395 }
1396
1397 static void nvme_rdma_sig_done(struct ib_cq *cq, struct ib_wc *wc)
1398 {
1399         if (unlikely(wc->status != IB_WC_SUCCESS))
1400                 nvme_rdma_wr_error(cq, wc, "SIG");
1401 }
1402
1403 static int nvme_rdma_map_sg_pi(struct nvme_rdma_queue *queue,
1404                 struct nvme_rdma_request *req, struct nvme_command *c,
1405                 int count, int pi_count)
1406 {
1407         struct nvme_rdma_sgl *sgl = &req->data_sgl;
1408         struct ib_reg_wr *wr = &req->reg_wr;
1409         struct request *rq = blk_mq_rq_from_pdu(req);
1410         struct nvme_ns *ns = rq->q->queuedata;
1411         struct bio *bio = rq->bio;
1412         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1413         int nr;
1414
1415         req->mr = ib_mr_pool_get(queue->qp, &queue->qp->sig_mrs);
1416         if (WARN_ON_ONCE(!req->mr))
1417                 return -EAGAIN;
1418
1419         nr = ib_map_mr_sg_pi(req->mr, sgl->sg_table.sgl, count, NULL,
1420                              req->metadata_sgl->sg_table.sgl, pi_count, NULL,
1421                              SZ_4K);
1422         if (unlikely(nr))
1423                 goto mr_put;
1424
1425         nvme_rdma_set_sig_attrs(blk_get_integrity(bio->bi_bdev->bd_disk), c,
1426                                 req->mr->sig_attrs, ns->pi_type);
1427         nvme_rdma_set_prot_checks(c, &req->mr->sig_attrs->check_mask);
1428
1429         ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1430
1431         req->reg_cqe.done = nvme_rdma_sig_done;
1432         memset(wr, 0, sizeof(*wr));
1433         wr->wr.opcode = IB_WR_REG_MR_INTEGRITY;
1434         wr->wr.wr_cqe = &req->reg_cqe;
1435         wr->wr.num_sge = 0;
1436         wr->wr.send_flags = 0;
1437         wr->mr = req->mr;
1438         wr->key = req->mr->rkey;
1439         wr->access = IB_ACCESS_LOCAL_WRITE |
1440                      IB_ACCESS_REMOTE_READ |
1441                      IB_ACCESS_REMOTE_WRITE;
1442
1443         sg->addr = cpu_to_le64(req->mr->iova);
1444         put_unaligned_le24(req->mr->length, sg->length);
1445         put_unaligned_le32(req->mr->rkey, sg->key);
1446         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1447
1448         return 0;
1449
1450 mr_put:
1451         ib_mr_pool_put(queue->qp, &queue->qp->sig_mrs, req->mr);
1452         req->mr = NULL;
1453         if (nr < 0)
1454                 return nr;
1455         return -EINVAL;
1456 }
1457
1458 static int nvme_rdma_dma_map_req(struct ib_device *ibdev, struct request *rq,
1459                 int *count, int *pi_count)
1460 {
1461         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1462         int ret;
1463
1464         req->data_sgl.sg_table.sgl = (struct scatterlist *)(req + 1);
1465         ret = sg_alloc_table_chained(&req->data_sgl.sg_table,
1466                         blk_rq_nr_phys_segments(rq), req->data_sgl.sg_table.sgl,
1467                         NVME_INLINE_SG_CNT);
1468         if (ret)
1469                 return -ENOMEM;
1470
1471         req->data_sgl.nents = blk_rq_map_sg(rq->q, rq,
1472                                             req->data_sgl.sg_table.sgl);
1473
1474         *count = ib_dma_map_sg(ibdev, req->data_sgl.sg_table.sgl,
1475                                req->data_sgl.nents, rq_dma_dir(rq));
1476         if (unlikely(*count <= 0)) {
1477                 ret = -EIO;
1478                 goto out_free_table;
1479         }
1480
1481         if (blk_integrity_rq(rq)) {
1482                 req->metadata_sgl->sg_table.sgl =
1483                         (struct scatterlist *)(req->metadata_sgl + 1);
1484                 ret = sg_alloc_table_chained(&req->metadata_sgl->sg_table,
1485                                 blk_rq_count_integrity_sg(rq->q, rq->bio),
1486                                 req->metadata_sgl->sg_table.sgl,
1487                                 NVME_INLINE_METADATA_SG_CNT);
1488                 if (unlikely(ret)) {
1489                         ret = -ENOMEM;
1490                         goto out_unmap_sg;
1491                 }
1492
1493                 req->metadata_sgl->nents = blk_rq_map_integrity_sg(rq->q,
1494                                 rq->bio, req->metadata_sgl->sg_table.sgl);
1495                 *pi_count = ib_dma_map_sg(ibdev,
1496                                           req->metadata_sgl->sg_table.sgl,
1497                                           req->metadata_sgl->nents,
1498                                           rq_dma_dir(rq));
1499                 if (unlikely(*pi_count <= 0)) {
1500                         ret = -EIO;
1501                         goto out_free_pi_table;
1502                 }
1503         }
1504
1505         return 0;
1506
1507 out_free_pi_table:
1508         sg_free_table_chained(&req->metadata_sgl->sg_table,
1509                               NVME_INLINE_METADATA_SG_CNT);
1510 out_unmap_sg:
1511         ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1512                         rq_dma_dir(rq));
1513 out_free_table:
1514         sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1515         return ret;
1516 }
1517
1518 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1519                 struct request *rq, struct nvme_command *c)
1520 {
1521         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1522         struct nvme_rdma_device *dev = queue->device;
1523         struct ib_device *ibdev = dev->dev;
1524         int pi_count = 0;
1525         int count, ret;
1526
1527         req->num_sge = 1;
1528         refcount_set(&req->ref, 2); /* send and recv completions */
1529
1530         c->common.flags |= NVME_CMD_SGL_METABUF;
1531
1532         if (!blk_rq_nr_phys_segments(rq))
1533                 return nvme_rdma_set_sg_null(c);
1534
1535         ret = nvme_rdma_dma_map_req(ibdev, rq, &count, &pi_count);
1536         if (unlikely(ret))
1537                 return ret;
1538
1539         if (req->use_sig_mr) {
1540                 ret = nvme_rdma_map_sg_pi(queue, req, c, count, pi_count);
1541                 goto out;
1542         }
1543
1544         if (count <= dev->num_inline_segments) {
1545                 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1546                     queue->ctrl->use_inline_data &&
1547                     blk_rq_payload_bytes(rq) <=
1548                                 nvme_rdma_inline_data_size(queue)) {
1549                         ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1550                         goto out;
1551                 }
1552
1553                 if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1554                         ret = nvme_rdma_map_sg_single(queue, req, c);
1555                         goto out;
1556                 }
1557         }
1558
1559         ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1560 out:
1561         if (unlikely(ret))
1562                 goto out_dma_unmap_req;
1563
1564         return 0;
1565
1566 out_dma_unmap_req:
1567         nvme_rdma_dma_unmap_req(ibdev, rq);
1568         return ret;
1569 }
1570
1571 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1572 {
1573         struct nvme_rdma_qe *qe =
1574                 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1575         struct nvme_rdma_request *req =
1576                 container_of(qe, struct nvme_rdma_request, sqe);
1577
1578         if (unlikely(wc->status != IB_WC_SUCCESS))
1579                 nvme_rdma_wr_error(cq, wc, "SEND");
1580         else
1581                 nvme_rdma_end_request(req);
1582 }
1583
1584 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1585                 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1586                 struct ib_send_wr *first)
1587 {
1588         struct ib_send_wr wr;
1589         int ret;
1590
1591         sge->addr   = qe->dma;
1592         sge->length = sizeof(struct nvme_command);
1593         sge->lkey   = queue->device->pd->local_dma_lkey;
1594
1595         wr.next       = NULL;
1596         wr.wr_cqe     = &qe->cqe;
1597         wr.sg_list    = sge;
1598         wr.num_sge    = num_sge;
1599         wr.opcode     = IB_WR_SEND;
1600         wr.send_flags = IB_SEND_SIGNALED;
1601
1602         if (first)
1603                 first->next = &wr;
1604         else
1605                 first = &wr;
1606
1607         ret = ib_post_send(queue->qp, first, NULL);
1608         if (unlikely(ret)) {
1609                 dev_err(queue->ctrl->ctrl.device,
1610                              "%s failed with error code %d\n", __func__, ret);
1611         }
1612         return ret;
1613 }
1614
1615 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1616                 struct nvme_rdma_qe *qe)
1617 {
1618         struct ib_recv_wr wr;
1619         struct ib_sge list;
1620         int ret;
1621
1622         list.addr   = qe->dma;
1623         list.length = sizeof(struct nvme_completion);
1624         list.lkey   = queue->device->pd->local_dma_lkey;
1625
1626         qe->cqe.done = nvme_rdma_recv_done;
1627
1628         wr.next     = NULL;
1629         wr.wr_cqe   = &qe->cqe;
1630         wr.sg_list  = &list;
1631         wr.num_sge  = 1;
1632
1633         ret = ib_post_recv(queue->qp, &wr, NULL);
1634         if (unlikely(ret)) {
1635                 dev_err(queue->ctrl->ctrl.device,
1636                         "%s failed with error code %d\n", __func__, ret);
1637         }
1638         return ret;
1639 }
1640
1641 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1642 {
1643         u32 queue_idx = nvme_rdma_queue_idx(queue);
1644
1645         if (queue_idx == 0)
1646                 return queue->ctrl->admin_tag_set.tags[queue_idx];
1647         return queue->ctrl->tag_set.tags[queue_idx - 1];
1648 }
1649
1650 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1651 {
1652         if (unlikely(wc->status != IB_WC_SUCCESS))
1653                 nvme_rdma_wr_error(cq, wc, "ASYNC");
1654 }
1655
1656 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1657 {
1658         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1659         struct nvme_rdma_queue *queue = &ctrl->queues[0];
1660         struct ib_device *dev = queue->device->dev;
1661         struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1662         struct nvme_command *cmd = sqe->data;
1663         struct ib_sge sge;
1664         int ret;
1665
1666         ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1667
1668         memset(cmd, 0, sizeof(*cmd));
1669         cmd->common.opcode = nvme_admin_async_event;
1670         cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1671         cmd->common.flags |= NVME_CMD_SGL_METABUF;
1672         nvme_rdma_set_sg_null(cmd);
1673
1674         sqe->cqe.done = nvme_rdma_async_done;
1675
1676         ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1677                         DMA_TO_DEVICE);
1678
1679         ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1680         WARN_ON_ONCE(ret);
1681 }
1682
1683 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1684                 struct nvme_completion *cqe, struct ib_wc *wc)
1685 {
1686         struct request *rq;
1687         struct nvme_rdma_request *req;
1688
1689         rq = nvme_find_rq(nvme_rdma_tagset(queue), cqe->command_id);
1690         if (!rq) {
1691                 dev_err(queue->ctrl->ctrl.device,
1692                         "got bad command_id %#x on QP %#x\n",
1693                         cqe->command_id, queue->qp->qp_num);
1694                 nvme_rdma_error_recovery(queue->ctrl);
1695                 return;
1696         }
1697         req = blk_mq_rq_to_pdu(rq);
1698
1699         req->status = cqe->status;
1700         req->result = cqe->result;
1701
1702         if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1703                 if (unlikely(!req->mr ||
1704                              wc->ex.invalidate_rkey != req->mr->rkey)) {
1705                         dev_err(queue->ctrl->ctrl.device,
1706                                 "Bogus remote invalidation for rkey %#x\n",
1707                                 req->mr ? req->mr->rkey : 0);
1708                         nvme_rdma_error_recovery(queue->ctrl);
1709                 }
1710         } else if (req->mr) {
1711                 int ret;
1712
1713                 ret = nvme_rdma_inv_rkey(queue, req);
1714                 if (unlikely(ret < 0)) {
1715                         dev_err(queue->ctrl->ctrl.device,
1716                                 "Queueing INV WR for rkey %#x failed (%d)\n",
1717                                 req->mr->rkey, ret);
1718                         nvme_rdma_error_recovery(queue->ctrl);
1719                 }
1720                 /* the local invalidation completion will end the request */
1721                 return;
1722         }
1723
1724         nvme_rdma_end_request(req);
1725 }
1726
1727 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1728 {
1729         struct nvme_rdma_qe *qe =
1730                 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1731         struct nvme_rdma_queue *queue = wc->qp->qp_context;
1732         struct ib_device *ibdev = queue->device->dev;
1733         struct nvme_completion *cqe = qe->data;
1734         const size_t len = sizeof(struct nvme_completion);
1735
1736         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1737                 nvme_rdma_wr_error(cq, wc, "RECV");
1738                 return;
1739         }
1740
1741         /* sanity checking for received data length */
1742         if (unlikely(wc->byte_len < len)) {
1743                 dev_err(queue->ctrl->ctrl.device,
1744                         "Unexpected nvme completion length(%d)\n", wc->byte_len);
1745                 nvme_rdma_error_recovery(queue->ctrl);
1746                 return;
1747         }
1748
1749         ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1750         /*
1751          * AEN requests are special as they don't time out and can
1752          * survive any kind of queue freeze and often don't respond to
1753          * aborts.  We don't even bother to allocate a struct request
1754          * for them but rather special case them here.
1755          */
1756         if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue),
1757                                      cqe->command_id)))
1758                 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1759                                 &cqe->result);
1760         else
1761                 nvme_rdma_process_nvme_rsp(queue, cqe, wc);
1762         ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1763
1764         nvme_rdma_post_recv(queue, qe);
1765 }
1766
1767 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1768 {
1769         int ret, i;
1770
1771         for (i = 0; i < queue->queue_size; i++) {
1772                 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1773                 if (ret)
1774                         return ret;
1775         }
1776
1777         return 0;
1778 }
1779
1780 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1781                 struct rdma_cm_event *ev)
1782 {
1783         struct rdma_cm_id *cm_id = queue->cm_id;
1784         int status = ev->status;
1785         const char *rej_msg;
1786         const struct nvme_rdma_cm_rej *rej_data;
1787         u8 rej_data_len;
1788
1789         rej_msg = rdma_reject_msg(cm_id, status);
1790         rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1791
1792         if (rej_data && rej_data_len >= sizeof(u16)) {
1793                 u16 sts = le16_to_cpu(rej_data->sts);
1794
1795                 dev_err(queue->ctrl->ctrl.device,
1796                       "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1797                       status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1798         } else {
1799                 dev_err(queue->ctrl->ctrl.device,
1800                         "Connect rejected: status %d (%s).\n", status, rej_msg);
1801         }
1802
1803         return -ECONNRESET;
1804 }
1805
1806 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1807 {
1808         struct nvme_ctrl *ctrl = &queue->ctrl->ctrl;
1809         int ret;
1810
1811         ret = nvme_rdma_create_queue_ib(queue);
1812         if (ret)
1813                 return ret;
1814
1815         if (ctrl->opts->tos >= 0)
1816                 rdma_set_service_type(queue->cm_id, ctrl->opts->tos);
1817         ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CM_TIMEOUT_MS);
1818         if (ret) {
1819                 dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n",
1820                         queue->cm_error);
1821                 goto out_destroy_queue;
1822         }
1823
1824         return 0;
1825
1826 out_destroy_queue:
1827         nvme_rdma_destroy_queue_ib(queue);
1828         return ret;
1829 }
1830
1831 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1832 {
1833         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1834         struct rdma_conn_param param = { };
1835         struct nvme_rdma_cm_req priv = { };
1836         int ret;
1837
1838         param.qp_num = queue->qp->qp_num;
1839         param.flow_control = 1;
1840
1841         param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1842         /* maximum retry count */
1843         param.retry_count = 7;
1844         param.rnr_retry_count = 7;
1845         param.private_data = &priv;
1846         param.private_data_len = sizeof(priv);
1847
1848         priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1849         priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1850         /*
1851          * set the admin queue depth to the minimum size
1852          * specified by the Fabrics standard.
1853          */
1854         if (priv.qid == 0) {
1855                 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1856                 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1857         } else {
1858                 /*
1859                  * current interpretation of the fabrics spec
1860                  * is at minimum you make hrqsize sqsize+1, or a
1861                  * 1's based representation of sqsize.
1862                  */
1863                 priv.hrqsize = cpu_to_le16(queue->queue_size);
1864                 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1865         }
1866
1867         ret = rdma_connect_locked(queue->cm_id, &param);
1868         if (ret) {
1869                 dev_err(ctrl->ctrl.device,
1870                         "rdma_connect_locked failed (%d).\n", ret);
1871                 return ret;
1872         }
1873
1874         return 0;
1875 }
1876
1877 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1878                 struct rdma_cm_event *ev)
1879 {
1880         struct nvme_rdma_queue *queue = cm_id->context;
1881         int cm_error = 0;
1882
1883         dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1884                 rdma_event_msg(ev->event), ev->event,
1885                 ev->status, cm_id);
1886
1887         switch (ev->event) {
1888         case RDMA_CM_EVENT_ADDR_RESOLVED:
1889                 cm_error = nvme_rdma_addr_resolved(queue);
1890                 break;
1891         case RDMA_CM_EVENT_ROUTE_RESOLVED:
1892                 cm_error = nvme_rdma_route_resolved(queue);
1893                 break;
1894         case RDMA_CM_EVENT_ESTABLISHED:
1895                 queue->cm_error = nvme_rdma_conn_established(queue);
1896                 /* complete cm_done regardless of success/failure */
1897                 complete(&queue->cm_done);
1898                 return 0;
1899         case RDMA_CM_EVENT_REJECTED:
1900                 cm_error = nvme_rdma_conn_rejected(queue, ev);
1901                 break;
1902         case RDMA_CM_EVENT_ROUTE_ERROR:
1903         case RDMA_CM_EVENT_CONNECT_ERROR:
1904         case RDMA_CM_EVENT_UNREACHABLE:
1905         case RDMA_CM_EVENT_ADDR_ERROR:
1906                 dev_dbg(queue->ctrl->ctrl.device,
1907                         "CM error event %d\n", ev->event);
1908                 cm_error = -ECONNRESET;
1909                 break;
1910         case RDMA_CM_EVENT_DISCONNECTED:
1911         case RDMA_CM_EVENT_ADDR_CHANGE:
1912         case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1913                 dev_dbg(queue->ctrl->ctrl.device,
1914                         "disconnect received - connection closed\n");
1915                 nvme_rdma_error_recovery(queue->ctrl);
1916                 break;
1917         case RDMA_CM_EVENT_DEVICE_REMOVAL:
1918                 /* device removal is handled via the ib_client API */
1919                 break;
1920         default:
1921                 dev_err(queue->ctrl->ctrl.device,
1922                         "Unexpected RDMA CM event (%d)\n", ev->event);
1923                 nvme_rdma_error_recovery(queue->ctrl);
1924                 break;
1925         }
1926
1927         if (cm_error) {
1928                 queue->cm_error = cm_error;
1929                 complete(&queue->cm_done);
1930         }
1931
1932         return 0;
1933 }
1934
1935 static void nvme_rdma_complete_timed_out(struct request *rq)
1936 {
1937         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1938         struct nvme_rdma_queue *queue = req->queue;
1939
1940         nvme_rdma_stop_queue(queue);
1941         nvmf_complete_timed_out_request(rq);
1942 }
1943
1944 static enum blk_eh_timer_return nvme_rdma_timeout(struct request *rq)
1945 {
1946         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1947         struct nvme_rdma_queue *queue = req->queue;
1948         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1949
1950         dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
1951                  rq->tag, nvme_rdma_queue_idx(queue));
1952
1953         if (nvme_ctrl_state(&ctrl->ctrl) != NVME_CTRL_LIVE) {
1954                 /*
1955                  * If we are resetting, connecting or deleting we should
1956                  * complete immediately because we may block controller
1957                  * teardown or setup sequence
1958                  * - ctrl disable/shutdown fabrics requests
1959                  * - connect requests
1960                  * - initialization admin requests
1961                  * - I/O requests that entered after unquiescing and
1962                  *   the controller stopped responding
1963                  *
1964                  * All other requests should be cancelled by the error
1965                  * recovery work, so it's fine that we fail it here.
1966                  */
1967                 nvme_rdma_complete_timed_out(rq);
1968                 return BLK_EH_DONE;
1969         }
1970
1971         /*
1972          * LIVE state should trigger the normal error recovery which will
1973          * handle completing this request.
1974          */
1975         nvme_rdma_error_recovery(ctrl);
1976         return BLK_EH_RESET_TIMER;
1977 }
1978
1979 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1980                 const struct blk_mq_queue_data *bd)
1981 {
1982         struct nvme_ns *ns = hctx->queue->queuedata;
1983         struct nvme_rdma_queue *queue = hctx->driver_data;
1984         struct request *rq = bd->rq;
1985         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1986         struct nvme_rdma_qe *sqe = &req->sqe;
1987         struct nvme_command *c = nvme_req(rq)->cmd;
1988         struct ib_device *dev;
1989         bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
1990         blk_status_t ret;
1991         int err;
1992
1993         WARN_ON_ONCE(rq->tag < 0);
1994
1995         if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
1996                 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
1997
1998         dev = queue->device->dev;
1999
2000         req->sqe.dma = ib_dma_map_single(dev, req->sqe.data,
2001                                          sizeof(struct nvme_command),
2002                                          DMA_TO_DEVICE);
2003         err = ib_dma_mapping_error(dev, req->sqe.dma);
2004         if (unlikely(err))
2005                 return BLK_STS_RESOURCE;
2006
2007         ib_dma_sync_single_for_cpu(dev, sqe->dma,
2008                         sizeof(struct nvme_command), DMA_TO_DEVICE);
2009
2010         ret = nvme_setup_cmd(ns, rq);
2011         if (ret)
2012                 goto unmap_qe;
2013
2014         nvme_start_request(rq);
2015
2016         if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2017             queue->pi_support &&
2018             (c->common.opcode == nvme_cmd_write ||
2019              c->common.opcode == nvme_cmd_read) &&
2020             nvme_ns_has_pi(ns))
2021                 req->use_sig_mr = true;
2022         else
2023                 req->use_sig_mr = false;
2024
2025         err = nvme_rdma_map_data(queue, rq, c);
2026         if (unlikely(err < 0)) {
2027                 dev_err(queue->ctrl->ctrl.device,
2028                              "Failed to map data (%d)\n", err);
2029                 goto err;
2030         }
2031
2032         sqe->cqe.done = nvme_rdma_send_done;
2033
2034         ib_dma_sync_single_for_device(dev, sqe->dma,
2035                         sizeof(struct nvme_command), DMA_TO_DEVICE);
2036
2037         err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
2038                         req->mr ? &req->reg_wr.wr : NULL);
2039         if (unlikely(err))
2040                 goto err_unmap;
2041
2042         return BLK_STS_OK;
2043
2044 err_unmap:
2045         nvme_rdma_unmap_data(queue, rq);
2046 err:
2047         if (err == -EIO)
2048                 ret = nvme_host_path_error(rq);
2049         else if (err == -ENOMEM || err == -EAGAIN)
2050                 ret = BLK_STS_RESOURCE;
2051         else
2052                 ret = BLK_STS_IOERR;
2053         nvme_cleanup_cmd(rq);
2054 unmap_qe:
2055         ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command),
2056                             DMA_TO_DEVICE);
2057         return ret;
2058 }
2059
2060 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
2061 {
2062         struct nvme_rdma_queue *queue = hctx->driver_data;
2063
2064         return ib_process_cq_direct(queue->ib_cq, -1);
2065 }
2066
2067 static void nvme_rdma_check_pi_status(struct nvme_rdma_request *req)
2068 {
2069         struct request *rq = blk_mq_rq_from_pdu(req);
2070         struct ib_mr_status mr_status;
2071         int ret;
2072
2073         ret = ib_check_mr_status(req->mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
2074         if (ret) {
2075                 pr_err("ib_check_mr_status failed, ret %d\n", ret);
2076                 nvme_req(rq)->status = NVME_SC_INVALID_PI;
2077                 return;
2078         }
2079
2080         if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
2081                 switch (mr_status.sig_err.err_type) {
2082                 case IB_SIG_BAD_GUARD:
2083                         nvme_req(rq)->status = NVME_SC_GUARD_CHECK;
2084                         break;
2085                 case IB_SIG_BAD_REFTAG:
2086                         nvme_req(rq)->status = NVME_SC_REFTAG_CHECK;
2087                         break;
2088                 case IB_SIG_BAD_APPTAG:
2089                         nvme_req(rq)->status = NVME_SC_APPTAG_CHECK;
2090                         break;
2091                 }
2092                 pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
2093                        mr_status.sig_err.err_type, mr_status.sig_err.expected,
2094                        mr_status.sig_err.actual);
2095         }
2096 }
2097
2098 static void nvme_rdma_complete_rq(struct request *rq)
2099 {
2100         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2101         struct nvme_rdma_queue *queue = req->queue;
2102         struct ib_device *ibdev = queue->device->dev;
2103
2104         if (req->use_sig_mr)
2105                 nvme_rdma_check_pi_status(req);
2106
2107         nvme_rdma_unmap_data(queue, rq);
2108         ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command),
2109                             DMA_TO_DEVICE);
2110         nvme_complete_rq(rq);
2111 }
2112
2113 static void nvme_rdma_map_queues(struct blk_mq_tag_set *set)
2114 {
2115         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(set->driver_data);
2116
2117         nvmf_map_queues(set, &ctrl->ctrl, ctrl->io_queues);
2118 }
2119
2120 static const struct blk_mq_ops nvme_rdma_mq_ops = {
2121         .queue_rq       = nvme_rdma_queue_rq,
2122         .complete       = nvme_rdma_complete_rq,
2123         .init_request   = nvme_rdma_init_request,
2124         .exit_request   = nvme_rdma_exit_request,
2125         .init_hctx      = nvme_rdma_init_hctx,
2126         .timeout        = nvme_rdma_timeout,
2127         .map_queues     = nvme_rdma_map_queues,
2128         .poll           = nvme_rdma_poll,
2129 };
2130
2131 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
2132         .queue_rq       = nvme_rdma_queue_rq,
2133         .complete       = nvme_rdma_complete_rq,
2134         .init_request   = nvme_rdma_init_request,
2135         .exit_request   = nvme_rdma_exit_request,
2136         .init_hctx      = nvme_rdma_init_admin_hctx,
2137         .timeout        = nvme_rdma_timeout,
2138 };
2139
2140 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
2141 {
2142         nvme_rdma_teardown_io_queues(ctrl, shutdown);
2143         nvme_quiesce_admin_queue(&ctrl->ctrl);
2144         nvme_disable_ctrl(&ctrl->ctrl, shutdown);
2145         nvme_rdma_teardown_admin_queue(ctrl, shutdown);
2146 }
2147
2148 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
2149 {
2150         nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
2151 }
2152
2153 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
2154 {
2155         struct nvme_rdma_ctrl *ctrl =
2156                 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
2157
2158         nvme_stop_ctrl(&ctrl->ctrl);
2159         nvme_rdma_shutdown_ctrl(ctrl, false);
2160
2161         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2162                 /* state change failure should never happen */
2163                 WARN_ON_ONCE(1);
2164                 return;
2165         }
2166
2167         if (nvme_rdma_setup_ctrl(ctrl, false))
2168                 goto out_fail;
2169
2170         return;
2171
2172 out_fail:
2173         ++ctrl->ctrl.nr_reconnects;
2174         nvme_rdma_reconnect_or_remove(ctrl);
2175 }
2176
2177 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
2178         .name                   = "rdma",
2179         .module                 = THIS_MODULE,
2180         .flags                  = NVME_F_FABRICS | NVME_F_METADATA_SUPPORTED,
2181         .reg_read32             = nvmf_reg_read32,
2182         .reg_read64             = nvmf_reg_read64,
2183         .reg_write32            = nvmf_reg_write32,
2184         .free_ctrl              = nvme_rdma_free_ctrl,
2185         .submit_async_event     = nvme_rdma_submit_async_event,
2186         .delete_ctrl            = nvme_rdma_delete_ctrl,
2187         .get_address            = nvmf_get_address,
2188         .stop_ctrl              = nvme_rdma_stop_ctrl,
2189 };
2190
2191 /*
2192  * Fails a connection request if it matches an existing controller
2193  * (association) with the same tuple:
2194  * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
2195  *
2196  * if local address is not specified in the request, it will match an
2197  * existing controller with all the other parameters the same and no
2198  * local port address specified as well.
2199  *
2200  * The ports don't need to be compared as they are intrinsically
2201  * already matched by the port pointers supplied.
2202  */
2203 static bool
2204 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
2205 {
2206         struct nvme_rdma_ctrl *ctrl;
2207         bool found = false;
2208
2209         mutex_lock(&nvme_rdma_ctrl_mutex);
2210         list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2211                 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2212                 if (found)
2213                         break;
2214         }
2215         mutex_unlock(&nvme_rdma_ctrl_mutex);
2216
2217         return found;
2218 }
2219
2220 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
2221                 struct nvmf_ctrl_options *opts)
2222 {
2223         struct nvme_rdma_ctrl *ctrl;
2224         int ret;
2225         bool changed;
2226
2227         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2228         if (!ctrl)
2229                 return ERR_PTR(-ENOMEM);
2230         ctrl->ctrl.opts = opts;
2231         INIT_LIST_HEAD(&ctrl->list);
2232
2233         if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2234                 opts->trsvcid =
2235                         kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
2236                 if (!opts->trsvcid) {
2237                         ret = -ENOMEM;
2238                         goto out_free_ctrl;
2239                 }
2240                 opts->mask |= NVMF_OPT_TRSVCID;
2241         }
2242
2243         ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2244                         opts->traddr, opts->trsvcid, &ctrl->addr);
2245         if (ret) {
2246                 pr_err("malformed address passed: %s:%s\n",
2247                         opts->traddr, opts->trsvcid);
2248                 goto out_free_ctrl;
2249         }
2250
2251         if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2252                 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2253                         opts->host_traddr, NULL, &ctrl->src_addr);
2254                 if (ret) {
2255                         pr_err("malformed src address passed: %s\n",
2256                                opts->host_traddr);
2257                         goto out_free_ctrl;
2258                 }
2259         }
2260
2261         if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
2262                 ret = -EALREADY;
2263                 goto out_free_ctrl;
2264         }
2265
2266         INIT_DELAYED_WORK(&ctrl->reconnect_work,
2267                         nvme_rdma_reconnect_ctrl_work);
2268         INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
2269         INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
2270
2271         ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2272                                 opts->nr_poll_queues + 1;
2273         ctrl->ctrl.sqsize = opts->queue_size - 1;
2274         ctrl->ctrl.kato = opts->kato;
2275
2276         ret = -ENOMEM;
2277         ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2278                                 GFP_KERNEL);
2279         if (!ctrl->queues)
2280                 goto out_free_ctrl;
2281
2282         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
2283                                 0 /* no quirks, we're perfect! */);
2284         if (ret)
2285                 goto out_kfree_queues;
2286
2287         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
2288         WARN_ON_ONCE(!changed);
2289
2290         ret = nvme_rdma_setup_ctrl(ctrl, true);
2291         if (ret)
2292                 goto out_uninit_ctrl;
2293
2294         dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2295                 nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr);
2296
2297         mutex_lock(&nvme_rdma_ctrl_mutex);
2298         list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2299         mutex_unlock(&nvme_rdma_ctrl_mutex);
2300
2301         return &ctrl->ctrl;
2302
2303 out_uninit_ctrl:
2304         nvme_uninit_ctrl(&ctrl->ctrl);
2305         nvme_put_ctrl(&ctrl->ctrl);
2306         if (ret > 0)
2307                 ret = -EIO;
2308         return ERR_PTR(ret);
2309 out_kfree_queues:
2310         kfree(ctrl->queues);
2311 out_free_ctrl:
2312         kfree(ctrl);
2313         return ERR_PTR(ret);
2314 }
2315
2316 static struct nvmf_transport_ops nvme_rdma_transport = {
2317         .name           = "rdma",
2318         .module         = THIS_MODULE,
2319         .required_opts  = NVMF_OPT_TRADDR,
2320         .allowed_opts   = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2321                           NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2322                           NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2323                           NVMF_OPT_TOS,
2324         .create_ctrl    = nvme_rdma_create_ctrl,
2325 };
2326
2327 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2328 {
2329         struct nvme_rdma_ctrl *ctrl;
2330         struct nvme_rdma_device *ndev;
2331         bool found = false;
2332
2333         mutex_lock(&device_list_mutex);
2334         list_for_each_entry(ndev, &device_list, entry) {
2335                 if (ndev->dev == ib_device) {
2336                         found = true;
2337                         break;
2338                 }
2339         }
2340         mutex_unlock(&device_list_mutex);
2341
2342         if (!found)
2343                 return;
2344
2345         /* Delete all controllers using this device */
2346         mutex_lock(&nvme_rdma_ctrl_mutex);
2347         list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2348                 if (ctrl->device->dev != ib_device)
2349                         continue;
2350                 nvme_delete_ctrl(&ctrl->ctrl);
2351         }
2352         mutex_unlock(&nvme_rdma_ctrl_mutex);
2353
2354         flush_workqueue(nvme_delete_wq);
2355 }
2356
2357 static struct ib_client nvme_rdma_ib_client = {
2358         .name   = "nvme_rdma",
2359         .remove = nvme_rdma_remove_one
2360 };
2361
2362 static int __init nvme_rdma_init_module(void)
2363 {
2364         int ret;
2365
2366         ret = ib_register_client(&nvme_rdma_ib_client);
2367         if (ret)
2368                 return ret;
2369
2370         ret = nvmf_register_transport(&nvme_rdma_transport);
2371         if (ret)
2372                 goto err_unreg_client;
2373
2374         return 0;
2375
2376 err_unreg_client:
2377         ib_unregister_client(&nvme_rdma_ib_client);
2378         return ret;
2379 }
2380
2381 static void __exit nvme_rdma_cleanup_module(void)
2382 {
2383         struct nvme_rdma_ctrl *ctrl;
2384
2385         nvmf_unregister_transport(&nvme_rdma_transport);
2386         ib_unregister_client(&nvme_rdma_ib_client);
2387
2388         mutex_lock(&nvme_rdma_ctrl_mutex);
2389         list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
2390                 nvme_delete_ctrl(&ctrl->ctrl);
2391         mutex_unlock(&nvme_rdma_ctrl_mutex);
2392         flush_workqueue(nvme_delete_wq);
2393 }
2394
2395 module_init(nvme_rdma_init_module);
2396 module_exit(nvme_rdma_cleanup_module);
2397
2398 MODULE_LICENSE("GPL v2");