nvme: switch delete SQ/CQ to blk_execute_rq_nowait
[linux-2.6-block.git] / drivers / nvme / host / pci.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/bitops.h>
16 #include <linux/blkdev.h>
17 #include <linux/blk-mq.h>
18 #include <linux/cpu.h>
19 #include <linux/delay.h>
20 #include <linux/errno.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/hdreg.h>
24 #include <linux/idr.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kdev_t.h>
29 #include <linux/kthread.h>
30 #include <linux/kernel.h>
31 #include <linux/mm.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/mutex.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/ptrace.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/t10-pi.h>
41 #include <linux/types.h>
42 #include <linux/io-64-nonatomic-lo-hi.h>
43 #include <asm/unaligned.h>
44
45 #include "nvme.h"
46
47 #define NVME_Q_DEPTH            1024
48 #define NVME_AQ_DEPTH           256
49 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
50 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
51
52 unsigned char admin_timeout = 60;
53 module_param(admin_timeout, byte, 0644);
54 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
55
56 unsigned char nvme_io_timeout = 30;
57 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
58 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
59
60 unsigned char shutdown_timeout = 5;
61 module_param(shutdown_timeout, byte, 0644);
62 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
63
64 static int use_threaded_interrupts;
65 module_param(use_threaded_interrupts, int, 0);
66
67 static bool use_cmb_sqes = true;
68 module_param(use_cmb_sqes, bool, 0644);
69 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
70
71 static LIST_HEAD(dev_list);
72 static struct task_struct *nvme_thread;
73 static struct workqueue_struct *nvme_workq;
74 static wait_queue_head_t nvme_kthread_wait;
75
76 struct nvme_dev;
77 struct nvme_queue;
78 struct nvme_iod;
79
80 static int nvme_reset(struct nvme_dev *dev);
81 static void nvme_process_cq(struct nvme_queue *nvmeq);
82 static void nvme_unmap_data(struct nvme_dev *dev, struct nvme_iod *iod);
83 static void nvme_remove_dead_ctrl(struct nvme_dev *dev);
84 static void nvme_dev_shutdown(struct nvme_dev *dev);
85
86 struct async_cmd_info {
87         struct kthread_work work;
88         struct kthread_worker *worker;
89         int status;
90         void *ctx;
91 };
92
93 /*
94  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
95  */
96 struct nvme_dev {
97         struct list_head node;
98         struct nvme_queue **queues;
99         struct blk_mq_tag_set tagset;
100         struct blk_mq_tag_set admin_tagset;
101         u32 __iomem *dbs;
102         struct device *dev;
103         struct dma_pool *prp_page_pool;
104         struct dma_pool *prp_small_pool;
105         unsigned queue_count;
106         unsigned online_queues;
107         unsigned max_qid;
108         int q_depth;
109         u32 db_stride;
110         struct msix_entry *entry;
111         void __iomem *bar;
112         struct work_struct reset_work;
113         struct work_struct scan_work;
114         struct work_struct remove_work;
115         struct mutex shutdown_lock;
116         bool subsystem;
117         void __iomem *cmb;
118         dma_addr_t cmb_dma_addr;
119         u64 cmb_size;
120         u32 cmbsz;
121         unsigned long flags;
122 #define NVME_CTRL_RESETTING    0
123
124         struct nvme_ctrl ctrl;
125 };
126
127 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
128 {
129         return container_of(ctrl, struct nvme_dev, ctrl);
130 }
131
132 /*
133  * An NVM Express queue.  Each device has at least two (one for admin
134  * commands and one for I/O commands).
135  */
136 struct nvme_queue {
137         struct device *q_dmadev;
138         struct nvme_dev *dev;
139         char irqname[24];       /* nvme4294967295-65535\0 */
140         spinlock_t q_lock;
141         struct nvme_command *sq_cmds;
142         struct nvme_command __iomem *sq_cmds_io;
143         volatile struct nvme_completion *cqes;
144         struct blk_mq_tags **tags;
145         dma_addr_t sq_dma_addr;
146         dma_addr_t cq_dma_addr;
147         u32 __iomem *q_db;
148         u16 q_depth;
149         s16 cq_vector;
150         u16 sq_head;
151         u16 sq_tail;
152         u16 cq_head;
153         u16 qid;
154         u8 cq_phase;
155         u8 cqe_seen;
156         struct async_cmd_info cmdinfo;
157 };
158
159 /*
160  * The nvme_iod describes the data in an I/O, including the list of PRP
161  * entries.  You can't see it in this data structure because C doesn't let
162  * me express that.  Use nvme_alloc_iod to ensure there's enough space
163  * allocated to store the PRP list.
164  */
165 struct nvme_iod {
166         unsigned long private;  /* For the use of the submitter of the I/O */
167         int npages;             /* In the PRP list. 0 means small pool in use */
168         int offset;             /* Of PRP list */
169         int nents;              /* Used in scatterlist */
170         int length;             /* Of data, in bytes */
171         dma_addr_t first_dma;
172         struct scatterlist meta_sg[1]; /* metadata requires single contiguous buffer */
173         struct scatterlist sg[0];
174 };
175
176 /*
177  * Check we didin't inadvertently grow the command struct
178  */
179 static inline void _nvme_check_size(void)
180 {
181         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
182         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
183         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
184         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
185         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
186         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
187         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
188         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
189         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
190         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
191         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
192         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
193 }
194
195 typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
196                                                 struct nvme_completion *);
197
198 struct nvme_cmd_info {
199         nvme_completion_fn fn;
200         void *ctx;
201         int aborted;
202         struct nvme_queue *nvmeq;
203         struct nvme_iod iod[0];
204 };
205
206 /*
207  * Max size of iod being embedded in the request payload
208  */
209 #define NVME_INT_PAGES          2
210 #define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->ctrl.page_size)
211 #define NVME_INT_MASK           0x01
212
213 /*
214  * Will slightly overestimate the number of pages needed.  This is OK
215  * as it only leads to a small amount of wasted memory for the lifetime of
216  * the I/O.
217  */
218 static int nvme_npages(unsigned size, struct nvme_dev *dev)
219 {
220         unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
221                                       dev->ctrl.page_size);
222         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
223 }
224
225 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
226 {
227         unsigned int ret = sizeof(struct nvme_cmd_info);
228
229         ret += sizeof(struct nvme_iod);
230         ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
231         ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
232
233         return ret;
234 }
235
236 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
237                                 unsigned int hctx_idx)
238 {
239         struct nvme_dev *dev = data;
240         struct nvme_queue *nvmeq = dev->queues[0];
241
242         WARN_ON(hctx_idx != 0);
243         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
244         WARN_ON(nvmeq->tags);
245
246         hctx->driver_data = nvmeq;
247         nvmeq->tags = &dev->admin_tagset.tags[0];
248         return 0;
249 }
250
251 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
252 {
253         struct nvme_queue *nvmeq = hctx->driver_data;
254
255         nvmeq->tags = NULL;
256 }
257
258 static int nvme_admin_init_request(void *data, struct request *req,
259                                 unsigned int hctx_idx, unsigned int rq_idx,
260                                 unsigned int numa_node)
261 {
262         struct nvme_dev *dev = data;
263         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
264         struct nvme_queue *nvmeq = dev->queues[0];
265
266         BUG_ON(!nvmeq);
267         cmd->nvmeq = nvmeq;
268         return 0;
269 }
270
271 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
272                           unsigned int hctx_idx)
273 {
274         struct nvme_dev *dev = data;
275         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
276
277         if (!nvmeq->tags)
278                 nvmeq->tags = &dev->tagset.tags[hctx_idx];
279
280         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
281         hctx->driver_data = nvmeq;
282         return 0;
283 }
284
285 static int nvme_init_request(void *data, struct request *req,
286                                 unsigned int hctx_idx, unsigned int rq_idx,
287                                 unsigned int numa_node)
288 {
289         struct nvme_dev *dev = data;
290         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
291         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
292
293         BUG_ON(!nvmeq);
294         cmd->nvmeq = nvmeq;
295         return 0;
296 }
297
298 static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
299                                 nvme_completion_fn handler)
300 {
301         cmd->fn = handler;
302         cmd->ctx = ctx;
303         cmd->aborted = 0;
304         blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
305 }
306
307 static void *iod_get_private(struct nvme_iod *iod)
308 {
309         return (void *) (iod->private & ~0x1UL);
310 }
311
312 /*
313  * If bit 0 is set, the iod is embedded in the request payload.
314  */
315 static bool iod_should_kfree(struct nvme_iod *iod)
316 {
317         return (iod->private & NVME_INT_MASK) == 0;
318 }
319
320 /* Special values must be less than 0x1000 */
321 #define CMD_CTX_BASE            ((void *)POISON_POINTER_DELTA)
322 #define CMD_CTX_CANCELLED       (0x30C + CMD_CTX_BASE)
323 #define CMD_CTX_COMPLETED       (0x310 + CMD_CTX_BASE)
324 #define CMD_CTX_INVALID         (0x314 + CMD_CTX_BASE)
325
326 static void special_completion(struct nvme_queue *nvmeq, void *ctx,
327                                                 struct nvme_completion *cqe)
328 {
329         if (ctx == CMD_CTX_CANCELLED)
330                 return;
331         if (ctx == CMD_CTX_COMPLETED) {
332                 dev_warn(nvmeq->q_dmadev,
333                                 "completed id %d twice on queue %d\n",
334                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
335                 return;
336         }
337         if (ctx == CMD_CTX_INVALID) {
338                 dev_warn(nvmeq->q_dmadev,
339                                 "invalid id %d completed on queue %d\n",
340                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
341                 return;
342         }
343         dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
344 }
345
346 static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
347 {
348         void *ctx;
349
350         if (fn)
351                 *fn = cmd->fn;
352         ctx = cmd->ctx;
353         cmd->fn = special_completion;
354         cmd->ctx = CMD_CTX_CANCELLED;
355         return ctx;
356 }
357
358 static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
359                                                 struct nvme_completion *cqe)
360 {
361         u32 result = le32_to_cpup(&cqe->result);
362         u16 status = le16_to_cpup(&cqe->status) >> 1;
363
364         if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
365                 ++nvmeq->dev->ctrl.event_limit;
366         if (status != NVME_SC_SUCCESS)
367                 return;
368
369         switch (result & 0xff07) {
370         case NVME_AER_NOTICE_NS_CHANGED:
371                 dev_info(nvmeq->q_dmadev, "rescanning\n");
372                 queue_work(nvme_workq, &nvmeq->dev->scan_work);
373         default:
374                 dev_warn(nvmeq->q_dmadev, "async event result %08x\n", result);
375         }
376 }
377
378 static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
379                                                 struct nvme_completion *cqe)
380 {
381         struct request *req = ctx;
382
383         u16 status = le16_to_cpup(&cqe->status) >> 1;
384         u32 result = le32_to_cpup(&cqe->result);
385
386         blk_mq_free_request(req);
387
388         dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
389         atomic_inc(&nvmeq->dev->ctrl.abort_limit);
390 }
391
392 static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
393                                   unsigned int tag)
394 {
395         struct request *req = blk_mq_tag_to_rq(*nvmeq->tags, tag);
396
397         return blk_mq_rq_to_pdu(req);
398 }
399
400 /*
401  * Called with local interrupts disabled and the q_lock held.  May not sleep.
402  */
403 static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
404                                                 nvme_completion_fn *fn)
405 {
406         struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
407         void *ctx;
408         if (tag >= nvmeq->q_depth) {
409                 *fn = special_completion;
410                 return CMD_CTX_INVALID;
411         }
412         if (fn)
413                 *fn = cmd->fn;
414         ctx = cmd->ctx;
415         cmd->fn = special_completion;
416         cmd->ctx = CMD_CTX_COMPLETED;
417         return ctx;
418 }
419
420 /**
421  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
422  * @nvmeq: The queue to use
423  * @cmd: The command to send
424  *
425  * Safe to use from interrupt context
426  */
427 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
428                                                 struct nvme_command *cmd)
429 {
430         u16 tail = nvmeq->sq_tail;
431
432         if (nvmeq->sq_cmds_io)
433                 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
434         else
435                 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
436
437         if (++tail == nvmeq->q_depth)
438                 tail = 0;
439         writel(tail, nvmeq->q_db);
440         nvmeq->sq_tail = tail;
441 }
442
443 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
444 {
445         unsigned long flags;
446         spin_lock_irqsave(&nvmeq->q_lock, flags);
447         __nvme_submit_cmd(nvmeq, cmd);
448         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
449 }
450
451 static __le64 **iod_list(struct nvme_iod *iod)
452 {
453         return ((void *)iod) + iod->offset;
454 }
455
456 static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
457                             unsigned nseg, unsigned long private)
458 {
459         iod->private = private;
460         iod->offset = offsetof(struct nvme_iod, sg[nseg]);
461         iod->npages = -1;
462         iod->length = nbytes;
463         iod->nents = 0;
464 }
465
466 static struct nvme_iod *
467 __nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
468                  unsigned long priv, gfp_t gfp)
469 {
470         struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
471                                 sizeof(__le64 *) * nvme_npages(bytes, dev) +
472                                 sizeof(struct scatterlist) * nseg, gfp);
473
474         if (iod)
475                 iod_init(iod, bytes, nseg, priv);
476
477         return iod;
478 }
479
480 static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
481                                        gfp_t gfp)
482 {
483         unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
484                                                 sizeof(struct nvme_dsm_range);
485         struct nvme_iod *iod;
486
487         if (rq->nr_phys_segments <= NVME_INT_PAGES &&
488             size <= NVME_INT_BYTES(dev)) {
489                 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
490
491                 iod = cmd->iod;
492                 iod_init(iod, size, rq->nr_phys_segments,
493                                 (unsigned long) rq | NVME_INT_MASK);
494                 return iod;
495         }
496
497         return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
498                                 (unsigned long) rq, gfp);
499 }
500
501 static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
502 {
503         const int last_prp = dev->ctrl.page_size / 8 - 1;
504         int i;
505         __le64 **list = iod_list(iod);
506         dma_addr_t prp_dma = iod->first_dma;
507
508         if (iod->npages == 0)
509                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
510         for (i = 0; i < iod->npages; i++) {
511                 __le64 *prp_list = list[i];
512                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
513                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
514                 prp_dma = next_prp_dma;
515         }
516
517         if (iod_should_kfree(iod))
518                 kfree(iod);
519 }
520
521 #ifdef CONFIG_BLK_DEV_INTEGRITY
522 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
523 {
524         if (be32_to_cpu(pi->ref_tag) == v)
525                 pi->ref_tag = cpu_to_be32(p);
526 }
527
528 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
529 {
530         if (be32_to_cpu(pi->ref_tag) == p)
531                 pi->ref_tag = cpu_to_be32(v);
532 }
533
534 /**
535  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
536  *
537  * The virtual start sector is the one that was originally submitted by the
538  * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
539  * start sector may be different. Remap protection information to match the
540  * physical LBA on writes, and back to the original seed on reads.
541  *
542  * Type 0 and 3 do not have a ref tag, so no remapping required.
543  */
544 static void nvme_dif_remap(struct request *req,
545                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
546 {
547         struct nvme_ns *ns = req->rq_disk->private_data;
548         struct bio_integrity_payload *bip;
549         struct t10_pi_tuple *pi;
550         void *p, *pmap;
551         u32 i, nlb, ts, phys, virt;
552
553         if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
554                 return;
555
556         bip = bio_integrity(req->bio);
557         if (!bip)
558                 return;
559
560         pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
561
562         p = pmap;
563         virt = bip_get_seed(bip);
564         phys = nvme_block_nr(ns, blk_rq_pos(req));
565         nlb = (blk_rq_bytes(req) >> ns->lba_shift);
566         ts = ns->disk->queue->integrity.tuple_size;
567
568         for (i = 0; i < nlb; i++, virt++, phys++) {
569                 pi = (struct t10_pi_tuple *)p;
570                 dif_swap(phys, virt, pi);
571                 p += ts;
572         }
573         kunmap_atomic(pmap);
574 }
575 #else /* CONFIG_BLK_DEV_INTEGRITY */
576 static void nvme_dif_remap(struct request *req,
577                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
578 {
579 }
580 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
581 {
582 }
583 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
584 {
585 }
586 #endif
587
588 static void req_completion(struct nvme_queue *nvmeq, void *ctx,
589                                                 struct nvme_completion *cqe)
590 {
591         struct nvme_iod *iod = ctx;
592         struct request *req = iod_get_private(iod);
593         struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
594         u16 status = le16_to_cpup(&cqe->status) >> 1;
595         int error = 0;
596
597         if (unlikely(status)) {
598                 if (nvme_req_needs_retry(req, status)) {
599                         nvme_unmap_data(nvmeq->dev, iod);
600                         nvme_requeue_req(req);
601                         return;
602                 }
603
604                 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
605                         if (cmd_rq->ctx == CMD_CTX_CANCELLED)
606                                 error = NVME_SC_CANCELLED;
607                         else
608                                 error = status;
609                 } else {
610                         error = nvme_error_status(status);
611                 }
612         }
613
614         if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
615                 u32 result = le32_to_cpup(&cqe->result);
616                 req->special = (void *)(uintptr_t)result;
617         }
618
619         if (cmd_rq->aborted)
620                 dev_warn(nvmeq->dev->dev,
621                         "completing aborted command with status:%04x\n",
622                         error);
623
624         nvme_unmap_data(nvmeq->dev, iod);
625         blk_mq_complete_request(req, error);
626 }
627
628 static bool nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod,
629                 int total_len)
630 {
631         struct dma_pool *pool;
632         int length = total_len;
633         struct scatterlist *sg = iod->sg;
634         int dma_len = sg_dma_len(sg);
635         u64 dma_addr = sg_dma_address(sg);
636         u32 page_size = dev->ctrl.page_size;
637         int offset = dma_addr & (page_size - 1);
638         __le64 *prp_list;
639         __le64 **list = iod_list(iod);
640         dma_addr_t prp_dma;
641         int nprps, i;
642
643         length -= (page_size - offset);
644         if (length <= 0)
645                 return true;
646
647         dma_len -= (page_size - offset);
648         if (dma_len) {
649                 dma_addr += (page_size - offset);
650         } else {
651                 sg = sg_next(sg);
652                 dma_addr = sg_dma_address(sg);
653                 dma_len = sg_dma_len(sg);
654         }
655
656         if (length <= page_size) {
657                 iod->first_dma = dma_addr;
658                 return true;
659         }
660
661         nprps = DIV_ROUND_UP(length, page_size);
662         if (nprps <= (256 / 8)) {
663                 pool = dev->prp_small_pool;
664                 iod->npages = 0;
665         } else {
666                 pool = dev->prp_page_pool;
667                 iod->npages = 1;
668         }
669
670         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
671         if (!prp_list) {
672                 iod->first_dma = dma_addr;
673                 iod->npages = -1;
674                 return false;
675         }
676         list[0] = prp_list;
677         iod->first_dma = prp_dma;
678         i = 0;
679         for (;;) {
680                 if (i == page_size >> 3) {
681                         __le64 *old_prp_list = prp_list;
682                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
683                         if (!prp_list)
684                                 return false;
685                         list[iod->npages++] = prp_list;
686                         prp_list[0] = old_prp_list[i - 1];
687                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
688                         i = 1;
689                 }
690                 prp_list[i++] = cpu_to_le64(dma_addr);
691                 dma_len -= page_size;
692                 dma_addr += page_size;
693                 length -= page_size;
694                 if (length <= 0)
695                         break;
696                 if (dma_len > 0)
697                         continue;
698                 BUG_ON(dma_len < 0);
699                 sg = sg_next(sg);
700                 dma_addr = sg_dma_address(sg);
701                 dma_len = sg_dma_len(sg);
702         }
703
704         return true;
705 }
706
707 static int nvme_map_data(struct nvme_dev *dev, struct nvme_iod *iod,
708                 struct nvme_command *cmnd)
709 {
710         struct request *req = iod_get_private(iod);
711         struct request_queue *q = req->q;
712         enum dma_data_direction dma_dir = rq_data_dir(req) ?
713                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
714         int ret = BLK_MQ_RQ_QUEUE_ERROR;
715
716         sg_init_table(iod->sg, req->nr_phys_segments);
717         iod->nents = blk_rq_map_sg(q, req, iod->sg);
718         if (!iod->nents)
719                 goto out;
720
721         ret = BLK_MQ_RQ_QUEUE_BUSY;
722         if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
723                 goto out;
724
725         if (!nvme_setup_prps(dev, iod, blk_rq_bytes(req)))
726                 goto out_unmap;
727
728         ret = BLK_MQ_RQ_QUEUE_ERROR;
729         if (blk_integrity_rq(req)) {
730                 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
731                         goto out_unmap;
732
733                 sg_init_table(iod->meta_sg, 1);
734                 if (blk_rq_map_integrity_sg(q, req->bio, iod->meta_sg) != 1)
735                         goto out_unmap;
736
737                 if (rq_data_dir(req))
738                         nvme_dif_remap(req, nvme_dif_prep);
739
740                 if (!dma_map_sg(dev->dev, iod->meta_sg, 1, dma_dir))
741                         goto out_unmap;
742         }
743
744         cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
745         cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
746         if (blk_integrity_rq(req))
747                 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(iod->meta_sg));
748         return BLK_MQ_RQ_QUEUE_OK;
749
750 out_unmap:
751         dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
752 out:
753         return ret;
754 }
755
756 static void nvme_unmap_data(struct nvme_dev *dev, struct nvme_iod *iod)
757 {
758         struct request *req = iod_get_private(iod);
759         enum dma_data_direction dma_dir = rq_data_dir(req) ?
760                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
761
762         if (iod->nents) {
763                 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
764                 if (blk_integrity_rq(req)) {
765                         if (!rq_data_dir(req))
766                                 nvme_dif_remap(req, nvme_dif_complete);
767                         dma_unmap_sg(dev->dev, iod->meta_sg, 1, dma_dir);
768                 }
769         }
770
771         nvme_free_iod(dev, iod);
772 }
773
774 /*
775  * We reuse the small pool to allocate the 16-byte range here as it is not
776  * worth having a special pool for these or additional cases to handle freeing
777  * the iod.
778  */
779 static int nvme_setup_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
780                 struct nvme_iod *iod, struct nvme_command *cmnd)
781 {
782         struct request *req = iod_get_private(iod);
783         struct nvme_dsm_range *range;
784
785         range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
786                                                 &iod->first_dma);
787         if (!range)
788                 return BLK_MQ_RQ_QUEUE_BUSY;
789         iod_list(iod)[0] = (__le64 *)range;
790         iod->npages = 0;
791
792         range->cattr = cpu_to_le32(0);
793         range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
794         range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
795
796         memset(cmnd, 0, sizeof(*cmnd));
797         cmnd->dsm.opcode = nvme_cmd_dsm;
798         cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
799         cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
800         cmnd->dsm.nr = 0;
801         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
802         return BLK_MQ_RQ_QUEUE_OK;
803 }
804
805 /*
806  * NOTE: ns is NULL when called on the admin queue.
807  */
808 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
809                          const struct blk_mq_queue_data *bd)
810 {
811         struct nvme_ns *ns = hctx->queue->queuedata;
812         struct nvme_queue *nvmeq = hctx->driver_data;
813         struct nvme_dev *dev = nvmeq->dev;
814         struct request *req = bd->rq;
815         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
816         struct nvme_iod *iod;
817         struct nvme_command cmnd;
818         int ret = BLK_MQ_RQ_QUEUE_OK;
819
820         /*
821          * If formated with metadata, require the block layer provide a buffer
822          * unless this namespace is formated such that the metadata can be
823          * stripped/generated by the controller with PRACT=1.
824          */
825         if (ns && ns->ms && !blk_integrity_rq(req)) {
826                 if (!(ns->pi_type && ns->ms == 8) &&
827                                         req->cmd_type != REQ_TYPE_DRV_PRIV) {
828                         blk_mq_complete_request(req, -EFAULT);
829                         return BLK_MQ_RQ_QUEUE_OK;
830                 }
831         }
832
833         iod = nvme_alloc_iod(req, dev, GFP_ATOMIC);
834         if (!iod)
835                 return BLK_MQ_RQ_QUEUE_BUSY;
836
837         if (req->cmd_flags & REQ_DISCARD) {
838                 ret = nvme_setup_discard(nvmeq, ns, iod, &cmnd);
839         } else {
840                 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
841                         memcpy(&cmnd, req->cmd, sizeof(cmnd));
842                 else if (req->cmd_flags & REQ_FLUSH)
843                         nvme_setup_flush(ns, &cmnd);
844                 else
845                         nvme_setup_rw(ns, req, &cmnd);
846
847                 if (req->nr_phys_segments)
848                         ret = nvme_map_data(dev, iod, &cmnd);
849         }
850
851         if (ret)
852                 goto out;
853
854         cmnd.common.command_id = req->tag;
855         nvme_set_info(cmd, iod, req_completion);
856
857         spin_lock_irq(&nvmeq->q_lock);
858         __nvme_submit_cmd(nvmeq, &cmnd);
859         nvme_process_cq(nvmeq);
860         spin_unlock_irq(&nvmeq->q_lock);
861         return BLK_MQ_RQ_QUEUE_OK;
862 out:
863         nvme_free_iod(dev, iod);
864         return ret;
865 }
866
867 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
868 {
869         u16 head, phase;
870
871         head = nvmeq->cq_head;
872         phase = nvmeq->cq_phase;
873
874         for (;;) {
875                 void *ctx;
876                 nvme_completion_fn fn;
877                 struct nvme_completion cqe = nvmeq->cqes[head];
878                 if ((le16_to_cpu(cqe.status) & 1) != phase)
879                         break;
880                 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
881                 if (++head == nvmeq->q_depth) {
882                         head = 0;
883                         phase = !phase;
884                 }
885                 if (tag && *tag == cqe.command_id)
886                         *tag = -1;
887                 ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
888                 fn(nvmeq, ctx, &cqe);
889         }
890
891         /* If the controller ignores the cq head doorbell and continuously
892          * writes to the queue, it is theoretically possible to wrap around
893          * the queue twice and mistakenly return IRQ_NONE.  Linux only
894          * requires that 0.1% of your interrupts are handled, so this isn't
895          * a big problem.
896          */
897         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
898                 return;
899
900         if (likely(nvmeq->cq_vector >= 0))
901                 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
902         nvmeq->cq_head = head;
903         nvmeq->cq_phase = phase;
904
905         nvmeq->cqe_seen = 1;
906 }
907
908 static void nvme_process_cq(struct nvme_queue *nvmeq)
909 {
910         __nvme_process_cq(nvmeq, NULL);
911 }
912
913 static irqreturn_t nvme_irq(int irq, void *data)
914 {
915         irqreturn_t result;
916         struct nvme_queue *nvmeq = data;
917         spin_lock(&nvmeq->q_lock);
918         nvme_process_cq(nvmeq);
919         result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
920         nvmeq->cqe_seen = 0;
921         spin_unlock(&nvmeq->q_lock);
922         return result;
923 }
924
925 static irqreturn_t nvme_irq_check(int irq, void *data)
926 {
927         struct nvme_queue *nvmeq = data;
928         struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
929         if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
930                 return IRQ_NONE;
931         return IRQ_WAKE_THREAD;
932 }
933
934 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
935 {
936         struct nvme_queue *nvmeq = hctx->driver_data;
937
938         if ((le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
939             nvmeq->cq_phase) {
940                 spin_lock_irq(&nvmeq->q_lock);
941                 __nvme_process_cq(nvmeq, &tag);
942                 spin_unlock_irq(&nvmeq->q_lock);
943
944                 if (tag == -1)
945                         return 1;
946         }
947
948         return 0;
949 }
950
951 static int nvme_submit_async_admin_req(struct nvme_dev *dev)
952 {
953         struct nvme_queue *nvmeq = dev->queues[0];
954         struct nvme_command c;
955         struct nvme_cmd_info *cmd_info;
956         struct request *req;
957
958         req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE,
959                         BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED);
960         if (IS_ERR(req))
961                 return PTR_ERR(req);
962
963         req->cmd_flags |= REQ_NO_TIMEOUT;
964         cmd_info = blk_mq_rq_to_pdu(req);
965         nvme_set_info(cmd_info, NULL, async_req_completion);
966
967         memset(&c, 0, sizeof(c));
968         c.common.opcode = nvme_admin_async_event;
969         c.common.command_id = req->tag;
970
971         blk_mq_free_request(req);
972         __nvme_submit_cmd(nvmeq, &c);
973         return 0;
974 }
975
976 static void async_cmd_info_endio(struct request *req, int error)
977 {
978         struct async_cmd_info *cmdinfo = req->end_io_data;
979
980         cmdinfo->status = req->errors;
981         queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
982         blk_mq_free_request(req);
983 }
984
985 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
986 {
987         struct nvme_command c;
988
989         memset(&c, 0, sizeof(c));
990         c.delete_queue.opcode = opcode;
991         c.delete_queue.qid = cpu_to_le16(id);
992
993         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
994 }
995
996 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
997                                                 struct nvme_queue *nvmeq)
998 {
999         struct nvme_command c;
1000         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1001
1002         /*
1003          * Note: we (ab)use the fact the the prp fields survive if no data
1004          * is attached to the request.
1005          */
1006         memset(&c, 0, sizeof(c));
1007         c.create_cq.opcode = nvme_admin_create_cq;
1008         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1009         c.create_cq.cqid = cpu_to_le16(qid);
1010         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1011         c.create_cq.cq_flags = cpu_to_le16(flags);
1012         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1013
1014         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1015 }
1016
1017 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1018                                                 struct nvme_queue *nvmeq)
1019 {
1020         struct nvme_command c;
1021         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1022
1023         /*
1024          * Note: we (ab)use the fact the the prp fields survive if no data
1025          * is attached to the request.
1026          */
1027         memset(&c, 0, sizeof(c));
1028         c.create_sq.opcode = nvme_admin_create_sq;
1029         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1030         c.create_sq.sqid = cpu_to_le16(qid);
1031         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1032         c.create_sq.sq_flags = cpu_to_le16(flags);
1033         c.create_sq.cqid = cpu_to_le16(qid);
1034
1035         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1036 }
1037
1038 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1039 {
1040         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1041 }
1042
1043 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1044 {
1045         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1046 }
1047
1048 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1049 {
1050         struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1051         struct nvme_queue *nvmeq = cmd_rq->nvmeq;
1052         struct nvme_dev *dev = nvmeq->dev;
1053         struct request *abort_req;
1054         struct nvme_cmd_info *abort_cmd;
1055         struct nvme_command cmd;
1056
1057         /*
1058          * Shutdown immediately if controller times out while starting. The
1059          * reset work will see the pci device disabled when it gets the forced
1060          * cancellation error. All outstanding requests are completed on
1061          * shutdown, so we return BLK_EH_HANDLED.
1062          */
1063         if (test_bit(NVME_CTRL_RESETTING, &dev->flags)) {
1064                 dev_warn(dev->dev,
1065                          "I/O %d QID %d timeout, disable controller\n",
1066                          req->tag, nvmeq->qid);
1067                 nvme_dev_shutdown(dev);
1068                 req->errors = NVME_SC_CANCELLED;
1069                 return BLK_EH_HANDLED;
1070         }
1071
1072         /*
1073          * Shutdown the controller immediately and schedule a reset if the
1074          * command was already aborted once before and still hasn't been
1075          * returned to the driver, or if this is the admin queue.
1076          */
1077         if (!nvmeq->qid || cmd_rq->aborted) {
1078                 dev_warn(dev->dev,
1079                          "I/O %d QID %d timeout, reset controller\n",
1080                          req->tag, nvmeq->qid);
1081                 nvme_dev_shutdown(dev);
1082                 queue_work(nvme_workq, &dev->reset_work);
1083
1084                 /*
1085                  * Mark the request as handled, since the inline shutdown
1086                  * forces all outstanding requests to complete.
1087                  */
1088                 req->errors = NVME_SC_CANCELLED;
1089                 return BLK_EH_HANDLED;
1090         }
1091
1092         if (atomic_dec_and_test(&dev->ctrl.abort_limit))
1093                 return BLK_EH_RESET_TIMER;
1094
1095         abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE,
1096                         BLK_MQ_REQ_NOWAIT);
1097         if (IS_ERR(abort_req)) {
1098                 atomic_inc(&dev->ctrl.abort_limit);
1099                 return BLK_EH_RESET_TIMER;
1100         }
1101
1102         abort_cmd = blk_mq_rq_to_pdu(abort_req);
1103         nvme_set_info(abort_cmd, abort_req, abort_completion);
1104
1105         memset(&cmd, 0, sizeof(cmd));
1106         cmd.abort.opcode = nvme_admin_abort_cmd;
1107         cmd.abort.cid = req->tag;
1108         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1109         cmd.abort.command_id = abort_req->tag;
1110
1111         cmd_rq->aborted = 1;
1112
1113         dev_warn(nvmeq->q_dmadev, "I/O %d QID %d timeout, aborting\n",
1114                                  req->tag, nvmeq->qid);
1115         nvme_submit_cmd(dev->queues[0], &cmd);
1116
1117         /*
1118          * The aborted req will be completed on receiving the abort req.
1119          * We enable the timer again. If hit twice, it'll cause a device reset,
1120          * as the device then is in a faulty state.
1121          */
1122         return BLK_EH_RESET_TIMER;
1123 }
1124
1125 static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
1126 {
1127         struct nvme_queue *nvmeq = data;
1128         void *ctx;
1129         nvme_completion_fn fn;
1130         struct nvme_cmd_info *cmd;
1131         struct nvme_completion cqe;
1132
1133         if (!blk_mq_request_started(req))
1134                 return;
1135
1136         cmd = blk_mq_rq_to_pdu(req);
1137
1138         if (cmd->ctx == CMD_CTX_CANCELLED)
1139                 return;
1140
1141         if (blk_queue_dying(req->q))
1142                 cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1143         else
1144                 cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1145
1146
1147         dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1148                                                 req->tag, nvmeq->qid);
1149         ctx = cancel_cmd_info(cmd, &fn);
1150         fn(nvmeq, ctx, &cqe);
1151 }
1152
1153 static void nvme_free_queue(struct nvme_queue *nvmeq)
1154 {
1155         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1156                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1157         if (nvmeq->sq_cmds)
1158                 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1159                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1160         kfree(nvmeq);
1161 }
1162
1163 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1164 {
1165         int i;
1166
1167         for (i = dev->queue_count - 1; i >= lowest; i--) {
1168                 struct nvme_queue *nvmeq = dev->queues[i];
1169                 dev->queue_count--;
1170                 dev->queues[i] = NULL;
1171                 nvme_free_queue(nvmeq);
1172         }
1173 }
1174
1175 /**
1176  * nvme_suspend_queue - put queue into suspended state
1177  * @nvmeq - queue to suspend
1178  */
1179 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1180 {
1181         int vector;
1182
1183         spin_lock_irq(&nvmeq->q_lock);
1184         if (nvmeq->cq_vector == -1) {
1185                 spin_unlock_irq(&nvmeq->q_lock);
1186                 return 1;
1187         }
1188         vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1189         nvmeq->dev->online_queues--;
1190         nvmeq->cq_vector = -1;
1191         spin_unlock_irq(&nvmeq->q_lock);
1192
1193         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1194                 blk_mq_freeze_queue_start(nvmeq->dev->ctrl.admin_q);
1195
1196         irq_set_affinity_hint(vector, NULL);
1197         free_irq(vector, nvmeq);
1198
1199         return 0;
1200 }
1201
1202 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1203 {
1204         spin_lock_irq(&nvmeq->q_lock);
1205         if (nvmeq->tags && *nvmeq->tags)
1206                 blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
1207         spin_unlock_irq(&nvmeq->q_lock);
1208 }
1209
1210 static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1211 {
1212         struct nvme_queue *nvmeq = dev->queues[qid];
1213
1214         if (!nvmeq)
1215                 return;
1216         if (nvme_suspend_queue(nvmeq))
1217                 return;
1218
1219         /* Don't tell the adapter to delete the admin queue.
1220          * Don't tell a removed adapter to delete IO queues. */
1221         if (qid && readl(dev->bar + NVME_REG_CSTS) != -1) {
1222                 adapter_delete_sq(dev, qid);
1223                 adapter_delete_cq(dev, qid);
1224         }
1225
1226         spin_lock_irq(&nvmeq->q_lock);
1227         nvme_process_cq(nvmeq);
1228         spin_unlock_irq(&nvmeq->q_lock);
1229 }
1230
1231 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1232                                 int entry_size)
1233 {
1234         int q_depth = dev->q_depth;
1235         unsigned q_size_aligned = roundup(q_depth * entry_size,
1236                                           dev->ctrl.page_size);
1237
1238         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1239                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1240                 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1241                 q_depth = div_u64(mem_per_q, entry_size);
1242
1243                 /*
1244                  * Ensure the reduced q_depth is above some threshold where it
1245                  * would be better to map queues in system memory with the
1246                  * original depth
1247                  */
1248                 if (q_depth < 64)
1249                         return -ENOMEM;
1250         }
1251
1252         return q_depth;
1253 }
1254
1255 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1256                                 int qid, int depth)
1257 {
1258         if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1259                 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1260                                                       dev->ctrl.page_size);
1261                 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1262                 nvmeq->sq_cmds_io = dev->cmb + offset;
1263         } else {
1264                 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1265                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
1266                 if (!nvmeq->sq_cmds)
1267                         return -ENOMEM;
1268         }
1269
1270         return 0;
1271 }
1272
1273 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1274                                                         int depth)
1275 {
1276         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1277         if (!nvmeq)
1278                 return NULL;
1279
1280         nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1281                                           &nvmeq->cq_dma_addr, GFP_KERNEL);
1282         if (!nvmeq->cqes)
1283                 goto free_nvmeq;
1284
1285         if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1286                 goto free_cqdma;
1287
1288         nvmeq->q_dmadev = dev->dev;
1289         nvmeq->dev = dev;
1290         snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1291                         dev->ctrl.instance, qid);
1292         spin_lock_init(&nvmeq->q_lock);
1293         nvmeq->cq_head = 0;
1294         nvmeq->cq_phase = 1;
1295         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1296         nvmeq->q_depth = depth;
1297         nvmeq->qid = qid;
1298         nvmeq->cq_vector = -1;
1299         dev->queues[qid] = nvmeq;
1300
1301         /* make sure queue descriptor is set before queue count, for kthread */
1302         mb();
1303         dev->queue_count++;
1304
1305         return nvmeq;
1306
1307  free_cqdma:
1308         dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1309                                                         nvmeq->cq_dma_addr);
1310  free_nvmeq:
1311         kfree(nvmeq);
1312         return NULL;
1313 }
1314
1315 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1316                                                         const char *name)
1317 {
1318         if (use_threaded_interrupts)
1319                 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1320                                         nvme_irq_check, nvme_irq, IRQF_SHARED,
1321                                         name, nvmeq);
1322         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1323                                 IRQF_SHARED, name, nvmeq);
1324 }
1325
1326 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1327 {
1328         struct nvme_dev *dev = nvmeq->dev;
1329
1330         spin_lock_irq(&nvmeq->q_lock);
1331         nvmeq->sq_tail = 0;
1332         nvmeq->cq_head = 0;
1333         nvmeq->cq_phase = 1;
1334         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1335         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1336         dev->online_queues++;
1337         spin_unlock_irq(&nvmeq->q_lock);
1338 }
1339
1340 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1341 {
1342         struct nvme_dev *dev = nvmeq->dev;
1343         int result;
1344
1345         nvmeq->cq_vector = qid - 1;
1346         result = adapter_alloc_cq(dev, qid, nvmeq);
1347         if (result < 0)
1348                 return result;
1349
1350         result = adapter_alloc_sq(dev, qid, nvmeq);
1351         if (result < 0)
1352                 goto release_cq;
1353
1354         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1355         if (result < 0)
1356                 goto release_sq;
1357
1358         nvme_init_queue(nvmeq, qid);
1359         return result;
1360
1361  release_sq:
1362         adapter_delete_sq(dev, qid);
1363  release_cq:
1364         adapter_delete_cq(dev, qid);
1365         return result;
1366 }
1367
1368 static struct blk_mq_ops nvme_mq_admin_ops = {
1369         .queue_rq       = nvme_queue_rq,
1370         .map_queue      = blk_mq_map_queue,
1371         .init_hctx      = nvme_admin_init_hctx,
1372         .exit_hctx      = nvme_admin_exit_hctx,
1373         .init_request   = nvme_admin_init_request,
1374         .timeout        = nvme_timeout,
1375 };
1376
1377 static struct blk_mq_ops nvme_mq_ops = {
1378         .queue_rq       = nvme_queue_rq,
1379         .map_queue      = blk_mq_map_queue,
1380         .init_hctx      = nvme_init_hctx,
1381         .init_request   = nvme_init_request,
1382         .timeout        = nvme_timeout,
1383         .poll           = nvme_poll,
1384 };
1385
1386 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1387 {
1388         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1389                 blk_cleanup_queue(dev->ctrl.admin_q);
1390                 blk_mq_free_tag_set(&dev->admin_tagset);
1391         }
1392 }
1393
1394 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1395 {
1396         if (!dev->ctrl.admin_q) {
1397                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1398                 dev->admin_tagset.nr_hw_queues = 1;
1399                 dev->admin_tagset.queue_depth = NVME_AQ_DEPTH;
1400                 dev->admin_tagset.reserved_tags = 1;
1401                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1402                 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1403                 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1404                 dev->admin_tagset.driver_data = dev;
1405
1406                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1407                         return -ENOMEM;
1408
1409                 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1410                 if (IS_ERR(dev->ctrl.admin_q)) {
1411                         blk_mq_free_tag_set(&dev->admin_tagset);
1412                         return -ENOMEM;
1413                 }
1414                 if (!blk_get_queue(dev->ctrl.admin_q)) {
1415                         nvme_dev_remove_admin(dev);
1416                         dev->ctrl.admin_q = NULL;
1417                         return -ENODEV;
1418                 }
1419         } else
1420                 blk_mq_unfreeze_queue(dev->ctrl.admin_q);
1421
1422         return 0;
1423 }
1424
1425 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1426 {
1427         int result;
1428         u32 aqa;
1429         u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1430         struct nvme_queue *nvmeq;
1431
1432         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
1433                                                 NVME_CAP_NSSRC(cap) : 0;
1434
1435         if (dev->subsystem &&
1436             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1437                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1438
1439         result = nvme_disable_ctrl(&dev->ctrl, cap);
1440         if (result < 0)
1441                 return result;
1442
1443         nvmeq = dev->queues[0];
1444         if (!nvmeq) {
1445                 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1446                 if (!nvmeq)
1447                         return -ENOMEM;
1448         }
1449
1450         aqa = nvmeq->q_depth - 1;
1451         aqa |= aqa << 16;
1452
1453         writel(aqa, dev->bar + NVME_REG_AQA);
1454         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1455         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1456
1457         result = nvme_enable_ctrl(&dev->ctrl, cap);
1458         if (result)
1459                 goto free_nvmeq;
1460
1461         nvmeq->cq_vector = 0;
1462         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1463         if (result) {
1464                 nvmeq->cq_vector = -1;
1465                 goto free_nvmeq;
1466         }
1467
1468         return result;
1469
1470  free_nvmeq:
1471         nvme_free_queues(dev, 0);
1472         return result;
1473 }
1474
1475 static int nvme_kthread(void *data)
1476 {
1477         struct nvme_dev *dev, *next;
1478
1479         while (!kthread_should_stop()) {
1480                 set_current_state(TASK_INTERRUPTIBLE);
1481                 spin_lock(&dev_list_lock);
1482                 list_for_each_entry_safe(dev, next, &dev_list, node) {
1483                         int i;
1484                         u32 csts = readl(dev->bar + NVME_REG_CSTS);
1485
1486                         /*
1487                          * Skip controllers currently under reset.
1488                          */
1489                         if (work_pending(&dev->reset_work) || work_busy(&dev->reset_work))
1490                                 continue;
1491
1492                         if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) ||
1493                                                         csts & NVME_CSTS_CFS) {
1494                                 if (queue_work(nvme_workq, &dev->reset_work)) {
1495                                         dev_warn(dev->dev,
1496                                                 "Failed status: %x, reset controller\n",
1497                                                 readl(dev->bar + NVME_REG_CSTS));
1498                                 }
1499                                 continue;
1500                         }
1501                         for (i = 0; i < dev->queue_count; i++) {
1502                                 struct nvme_queue *nvmeq = dev->queues[i];
1503                                 if (!nvmeq)
1504                                         continue;
1505                                 spin_lock_irq(&nvmeq->q_lock);
1506                                 nvme_process_cq(nvmeq);
1507
1508                                 while (i == 0 && dev->ctrl.event_limit > 0) {
1509                                         if (nvme_submit_async_admin_req(dev))
1510                                                 break;
1511                                         dev->ctrl.event_limit--;
1512                                 }
1513                                 spin_unlock_irq(&nvmeq->q_lock);
1514                         }
1515                 }
1516                 spin_unlock(&dev_list_lock);
1517                 schedule_timeout(round_jiffies_relative(HZ));
1518         }
1519         return 0;
1520 }
1521
1522 static int nvme_create_io_queues(struct nvme_dev *dev)
1523 {
1524         unsigned i;
1525         int ret = 0;
1526
1527         for (i = dev->queue_count; i <= dev->max_qid; i++) {
1528                 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1529                         ret = -ENOMEM;
1530                         break;
1531                 }
1532         }
1533
1534         for (i = dev->online_queues; i <= dev->queue_count - 1; i++) {
1535                 ret = nvme_create_queue(dev->queues[i], i);
1536                 if (ret) {
1537                         nvme_free_queues(dev, i);
1538                         break;
1539                 }
1540         }
1541
1542         /*
1543          * Ignore failing Create SQ/CQ commands, we can continue with less
1544          * than the desired aount of queues, and even a controller without
1545          * I/O queues an still be used to issue admin commands.  This might
1546          * be useful to upgrade a buggy firmware for example.
1547          */
1548         return ret >= 0 ? 0 : ret;
1549 }
1550
1551 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1552 {
1553         u64 szu, size, offset;
1554         u32 cmbloc;
1555         resource_size_t bar_size;
1556         struct pci_dev *pdev = to_pci_dev(dev->dev);
1557         void __iomem *cmb;
1558         dma_addr_t dma_addr;
1559
1560         if (!use_cmb_sqes)
1561                 return NULL;
1562
1563         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1564         if (!(NVME_CMB_SZ(dev->cmbsz)))
1565                 return NULL;
1566
1567         cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1568
1569         szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1570         size = szu * NVME_CMB_SZ(dev->cmbsz);
1571         offset = szu * NVME_CMB_OFST(cmbloc);
1572         bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1573
1574         if (offset > bar_size)
1575                 return NULL;
1576
1577         /*
1578          * Controllers may support a CMB size larger than their BAR,
1579          * for example, due to being behind a bridge. Reduce the CMB to
1580          * the reported size of the BAR
1581          */
1582         if (size > bar_size - offset)
1583                 size = bar_size - offset;
1584
1585         dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1586         cmb = ioremap_wc(dma_addr, size);
1587         if (!cmb)
1588                 return NULL;
1589
1590         dev->cmb_dma_addr = dma_addr;
1591         dev->cmb_size = size;
1592         return cmb;
1593 }
1594
1595 static inline void nvme_release_cmb(struct nvme_dev *dev)
1596 {
1597         if (dev->cmb) {
1598                 iounmap(dev->cmb);
1599                 dev->cmb = NULL;
1600         }
1601 }
1602
1603 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1604 {
1605         return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1606 }
1607
1608 static int nvme_setup_io_queues(struct nvme_dev *dev)
1609 {
1610         struct nvme_queue *adminq = dev->queues[0];
1611         struct pci_dev *pdev = to_pci_dev(dev->dev);
1612         int result, i, vecs, nr_io_queues, size;
1613
1614         nr_io_queues = num_possible_cpus();
1615         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1616         if (result < 0)
1617                 return result;
1618
1619         /*
1620          * Degraded controllers might return an error when setting the queue
1621          * count.  We still want to be able to bring them online and offer
1622          * access to the admin queue, as that might be only way to fix them up.
1623          */
1624         if (result > 0) {
1625                 dev_err(dev->dev, "Could not set queue count (%d)\n", result);
1626                 nr_io_queues = 0;
1627                 result = 0;
1628         }
1629
1630         if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1631                 result = nvme_cmb_qdepth(dev, nr_io_queues,
1632                                 sizeof(struct nvme_command));
1633                 if (result > 0)
1634                         dev->q_depth = result;
1635                 else
1636                         nvme_release_cmb(dev);
1637         }
1638
1639         size = db_bar_size(dev, nr_io_queues);
1640         if (size > 8192) {
1641                 iounmap(dev->bar);
1642                 do {
1643                         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1644                         if (dev->bar)
1645                                 break;
1646                         if (!--nr_io_queues)
1647                                 return -ENOMEM;
1648                         size = db_bar_size(dev, nr_io_queues);
1649                 } while (1);
1650                 dev->dbs = dev->bar + 4096;
1651                 adminq->q_db = dev->dbs;
1652         }
1653
1654         /* Deregister the admin queue's interrupt */
1655         free_irq(dev->entry[0].vector, adminq);
1656
1657         /*
1658          * If we enable msix early due to not intx, disable it again before
1659          * setting up the full range we need.
1660          */
1661         if (!pdev->irq)
1662                 pci_disable_msix(pdev);
1663
1664         for (i = 0; i < nr_io_queues; i++)
1665                 dev->entry[i].entry = i;
1666         vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
1667         if (vecs < 0) {
1668                 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
1669                 if (vecs < 0) {
1670                         vecs = 1;
1671                 } else {
1672                         for (i = 0; i < vecs; i++)
1673                                 dev->entry[i].vector = i + pdev->irq;
1674                 }
1675         }
1676
1677         /*
1678          * Should investigate if there's a performance win from allocating
1679          * more queues than interrupt vectors; it might allow the submission
1680          * path to scale better, even if the receive path is limited by the
1681          * number of interrupts.
1682          */
1683         nr_io_queues = vecs;
1684         dev->max_qid = nr_io_queues;
1685
1686         result = queue_request_irq(dev, adminq, adminq->irqname);
1687         if (result) {
1688                 adminq->cq_vector = -1;
1689                 goto free_queues;
1690         }
1691
1692         /* Free previously allocated queues that are no longer usable */
1693         nvme_free_queues(dev, nr_io_queues + 1);
1694         return nvme_create_io_queues(dev);
1695
1696  free_queues:
1697         nvme_free_queues(dev, 1);
1698         return result;
1699 }
1700
1701 static void nvme_set_irq_hints(struct nvme_dev *dev)
1702 {
1703         struct nvme_queue *nvmeq;
1704         int i;
1705
1706         for (i = 0; i < dev->online_queues; i++) {
1707                 nvmeq = dev->queues[i];
1708
1709                 if (!nvmeq->tags || !(*nvmeq->tags))
1710                         continue;
1711
1712                 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1713                                         blk_mq_tags_cpumask(*nvmeq->tags));
1714         }
1715 }
1716
1717 static void nvme_dev_scan(struct work_struct *work)
1718 {
1719         struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
1720
1721         if (!dev->tagset.tags)
1722                 return;
1723         nvme_scan_namespaces(&dev->ctrl);
1724         nvme_set_irq_hints(dev);
1725 }
1726
1727 /*
1728  * Return: error value if an error occurred setting up the queues or calling
1729  * Identify Device.  0 if these succeeded, even if adding some of the
1730  * namespaces failed.  At the moment, these failures are silent.  TBD which
1731  * failures should be reported.
1732  */
1733 static int nvme_dev_add(struct nvme_dev *dev)
1734 {
1735         if (!dev->ctrl.tagset) {
1736                 dev->tagset.ops = &nvme_mq_ops;
1737                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1738                 dev->tagset.timeout = NVME_IO_TIMEOUT;
1739                 dev->tagset.numa_node = dev_to_node(dev->dev);
1740                 dev->tagset.queue_depth =
1741                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1742                 dev->tagset.cmd_size = nvme_cmd_size(dev);
1743                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1744                 dev->tagset.driver_data = dev;
1745
1746                 if (blk_mq_alloc_tag_set(&dev->tagset))
1747                         return 0;
1748                 dev->ctrl.tagset = &dev->tagset;
1749         }
1750         queue_work(nvme_workq, &dev->scan_work);
1751         return 0;
1752 }
1753
1754 static int nvme_dev_map(struct nvme_dev *dev)
1755 {
1756         u64 cap;
1757         int bars, result = -ENOMEM;
1758         struct pci_dev *pdev = to_pci_dev(dev->dev);
1759
1760         if (pci_enable_device_mem(pdev))
1761                 return result;
1762
1763         dev->entry[0].vector = pdev->irq;
1764         pci_set_master(pdev);
1765         bars = pci_select_bars(pdev, IORESOURCE_MEM);
1766         if (!bars)
1767                 goto disable_pci;
1768
1769         if (pci_request_selected_regions(pdev, bars, "nvme"))
1770                 goto disable_pci;
1771
1772         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1773             dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1774                 goto disable;
1775
1776         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1777         if (!dev->bar)
1778                 goto disable;
1779
1780         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1781                 result = -ENODEV;
1782                 goto unmap;
1783         }
1784
1785         /*
1786          * Some devices don't advertse INTx interrupts, pre-enable a single
1787          * MSIX vec for setup. We'll adjust this later.
1788          */
1789         if (!pdev->irq) {
1790                 result = pci_enable_msix(pdev, dev->entry, 1);
1791                 if (result < 0)
1792                         goto unmap;
1793         }
1794
1795         cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1796
1797         dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1798         dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1799         dev->dbs = dev->bar + 4096;
1800         if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
1801                 dev->cmb = nvme_map_cmb(dev);
1802
1803         return 0;
1804
1805  unmap:
1806         iounmap(dev->bar);
1807         dev->bar = NULL;
1808  disable:
1809         pci_release_regions(pdev);
1810  disable_pci:
1811         pci_disable_device(pdev);
1812         return result;
1813 }
1814
1815 static void nvme_dev_unmap(struct nvme_dev *dev)
1816 {
1817         struct pci_dev *pdev = to_pci_dev(dev->dev);
1818
1819         if (pdev->msi_enabled)
1820                 pci_disable_msi(pdev);
1821         else if (pdev->msix_enabled)
1822                 pci_disable_msix(pdev);
1823
1824         if (dev->bar) {
1825                 iounmap(dev->bar);
1826                 dev->bar = NULL;
1827                 pci_release_regions(pdev);
1828         }
1829
1830         if (pci_is_enabled(pdev))
1831                 pci_disable_device(pdev);
1832 }
1833
1834 struct nvme_delq_ctx {
1835         struct task_struct *waiter;
1836         struct kthread_worker *worker;
1837         atomic_t refcount;
1838 };
1839
1840 static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
1841 {
1842         dq->waiter = current;
1843         mb();
1844
1845         for (;;) {
1846                 set_current_state(TASK_KILLABLE);
1847                 if (!atomic_read(&dq->refcount))
1848                         break;
1849                 if (!schedule_timeout(ADMIN_TIMEOUT) ||
1850                                         fatal_signal_pending(current)) {
1851                         /*
1852                          * Disable the controller first since we can't trust it
1853                          * at this point, but leave the admin queue enabled
1854                          * until all queue deletion requests are flushed.
1855                          * FIXME: This may take a while if there are more h/w
1856                          * queues than admin tags.
1857                          */
1858                         set_current_state(TASK_RUNNING);
1859                         nvme_disable_ctrl(&dev->ctrl,
1860                                 lo_hi_readq(dev->bar + NVME_REG_CAP));
1861                         nvme_clear_queue(dev->queues[0]);
1862                         flush_kthread_worker(dq->worker);
1863                         nvme_disable_queue(dev, 0);
1864                         return;
1865                 }
1866         }
1867         set_current_state(TASK_RUNNING);
1868 }
1869
1870 static void nvme_put_dq(struct nvme_delq_ctx *dq)
1871 {
1872         atomic_dec(&dq->refcount);
1873         if (dq->waiter)
1874                 wake_up_process(dq->waiter);
1875 }
1876
1877 static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
1878 {
1879         atomic_inc(&dq->refcount);
1880         return dq;
1881 }
1882
1883 static void nvme_del_queue_end(struct nvme_queue *nvmeq)
1884 {
1885         struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
1886         nvme_put_dq(dq);
1887
1888         spin_lock_irq(&nvmeq->q_lock);
1889         nvme_process_cq(nvmeq);
1890         spin_unlock_irq(&nvmeq->q_lock);
1891 }
1892
1893 static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
1894                                                 kthread_work_func_t fn)
1895 {
1896         struct request *req;
1897         struct nvme_command c;
1898
1899         memset(&c, 0, sizeof(c));
1900         c.delete_queue.opcode = opcode;
1901         c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1902
1903         init_kthread_work(&nvmeq->cmdinfo.work, fn);
1904
1905         req = nvme_alloc_request(nvmeq->dev->ctrl.admin_q, &c, 0);
1906         if (IS_ERR(req))
1907                 return PTR_ERR(req);
1908
1909         req->timeout = ADMIN_TIMEOUT;
1910         req->end_io_data = &nvmeq->cmdinfo;
1911         blk_execute_rq_nowait(req->q, NULL, req, 0, async_cmd_info_endio);
1912         return 0;
1913 }
1914
1915 static void nvme_del_cq_work_handler(struct kthread_work *work)
1916 {
1917         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
1918                                                         cmdinfo.work);
1919         nvme_del_queue_end(nvmeq);
1920 }
1921
1922 static int nvme_delete_cq(struct nvme_queue *nvmeq)
1923 {
1924         return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
1925                                                 nvme_del_cq_work_handler);
1926 }
1927
1928 static void nvme_del_sq_work_handler(struct kthread_work *work)
1929 {
1930         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
1931                                                         cmdinfo.work);
1932         int status = nvmeq->cmdinfo.status;
1933
1934         if (!status)
1935                 status = nvme_delete_cq(nvmeq);
1936         if (status)
1937                 nvme_del_queue_end(nvmeq);
1938 }
1939
1940 static int nvme_delete_sq(struct nvme_queue *nvmeq)
1941 {
1942         return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
1943                                                 nvme_del_sq_work_handler);
1944 }
1945
1946 static void nvme_del_queue_start(struct kthread_work *work)
1947 {
1948         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
1949                                                         cmdinfo.work);
1950         if (nvme_delete_sq(nvmeq))
1951                 nvme_del_queue_end(nvmeq);
1952 }
1953
1954 static void nvme_disable_io_queues(struct nvme_dev *dev)
1955 {
1956         int i;
1957         DEFINE_KTHREAD_WORKER_ONSTACK(worker);
1958         struct nvme_delq_ctx dq;
1959         struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
1960                                         &worker, "nvme%d", dev->ctrl.instance);
1961
1962         if (IS_ERR(kworker_task)) {
1963                 dev_err(dev->dev,
1964                         "Failed to create queue del task\n");
1965                 for (i = dev->queue_count - 1; i > 0; i--)
1966                         nvme_disable_queue(dev, i);
1967                 return;
1968         }
1969
1970         dq.waiter = NULL;
1971         atomic_set(&dq.refcount, 0);
1972         dq.worker = &worker;
1973         for (i = dev->queue_count - 1; i > 0; i--) {
1974                 struct nvme_queue *nvmeq = dev->queues[i];
1975
1976                 if (nvme_suspend_queue(nvmeq))
1977                         continue;
1978                 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
1979                 nvmeq->cmdinfo.worker = dq.worker;
1980                 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
1981                 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
1982         }
1983         nvme_wait_dq(&dq, dev);
1984         kthread_stop(kworker_task);
1985 }
1986
1987 static int nvme_dev_list_add(struct nvme_dev *dev)
1988 {
1989         bool start_thread = false;
1990
1991         spin_lock(&dev_list_lock);
1992         if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
1993                 start_thread = true;
1994                 nvme_thread = NULL;
1995         }
1996         list_add(&dev->node, &dev_list);
1997         spin_unlock(&dev_list_lock);
1998
1999         if (start_thread) {
2000                 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2001                 wake_up_all(&nvme_kthread_wait);
2002         } else
2003                 wait_event_killable(nvme_kthread_wait, nvme_thread);
2004
2005         if (IS_ERR_OR_NULL(nvme_thread))
2006                 return nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2007
2008         return 0;
2009 }
2010
2011 /*
2012 * Remove the node from the device list and check
2013 * for whether or not we need to stop the nvme_thread.
2014 */
2015 static void nvme_dev_list_remove(struct nvme_dev *dev)
2016 {
2017         struct task_struct *tmp = NULL;
2018
2019         spin_lock(&dev_list_lock);
2020         list_del_init(&dev->node);
2021         if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2022                 tmp = nvme_thread;
2023                 nvme_thread = NULL;
2024         }
2025         spin_unlock(&dev_list_lock);
2026
2027         if (tmp)
2028                 kthread_stop(tmp);
2029 }
2030
2031 static void nvme_freeze_queues(struct nvme_dev *dev)
2032 {
2033         struct nvme_ns *ns;
2034
2035         list_for_each_entry(ns, &dev->ctrl.namespaces, list) {
2036                 blk_mq_freeze_queue_start(ns->queue);
2037
2038                 spin_lock_irq(ns->queue->queue_lock);
2039                 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
2040                 spin_unlock_irq(ns->queue->queue_lock);
2041
2042                 blk_mq_cancel_requeue_work(ns->queue);
2043                 blk_mq_stop_hw_queues(ns->queue);
2044         }
2045 }
2046
2047 static void nvme_unfreeze_queues(struct nvme_dev *dev)
2048 {
2049         struct nvme_ns *ns;
2050
2051         list_for_each_entry(ns, &dev->ctrl.namespaces, list) {
2052                 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2053                 blk_mq_unfreeze_queue(ns->queue);
2054                 blk_mq_start_stopped_hw_queues(ns->queue, true);
2055                 blk_mq_kick_requeue_list(ns->queue);
2056         }
2057 }
2058
2059 static void nvme_dev_shutdown(struct nvme_dev *dev)
2060 {
2061         int i;
2062         u32 csts = -1;
2063
2064         nvme_dev_list_remove(dev);
2065
2066         mutex_lock(&dev->shutdown_lock);
2067         if (dev->bar) {
2068                 nvme_freeze_queues(dev);
2069                 csts = readl(dev->bar + NVME_REG_CSTS);
2070         }
2071         if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
2072                 for (i = dev->queue_count - 1; i >= 0; i--) {
2073                         struct nvme_queue *nvmeq = dev->queues[i];
2074                         nvme_suspend_queue(nvmeq);
2075                 }
2076         } else {
2077                 nvme_disable_io_queues(dev);
2078                 nvme_shutdown_ctrl(&dev->ctrl);
2079                 nvme_disable_queue(dev, 0);
2080         }
2081         nvme_dev_unmap(dev);
2082
2083         for (i = dev->queue_count - 1; i >= 0; i--)
2084                 nvme_clear_queue(dev->queues[i]);
2085         mutex_unlock(&dev->shutdown_lock);
2086 }
2087
2088 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2089 {
2090         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2091                                                 PAGE_SIZE, PAGE_SIZE, 0);
2092         if (!dev->prp_page_pool)
2093                 return -ENOMEM;
2094
2095         /* Optimisation for I/Os between 4k and 128k */
2096         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2097                                                 256, 256, 0);
2098         if (!dev->prp_small_pool) {
2099                 dma_pool_destroy(dev->prp_page_pool);
2100                 return -ENOMEM;
2101         }
2102         return 0;
2103 }
2104
2105 static void nvme_release_prp_pools(struct nvme_dev *dev)
2106 {
2107         dma_pool_destroy(dev->prp_page_pool);
2108         dma_pool_destroy(dev->prp_small_pool);
2109 }
2110
2111 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2112 {
2113         struct nvme_dev *dev = to_nvme_dev(ctrl);
2114
2115         put_device(dev->dev);
2116         if (dev->tagset.tags)
2117                 blk_mq_free_tag_set(&dev->tagset);
2118         if (dev->ctrl.admin_q)
2119                 blk_put_queue(dev->ctrl.admin_q);
2120         kfree(dev->queues);
2121         kfree(dev->entry);
2122         kfree(dev);
2123 }
2124
2125 static void nvme_reset_work(struct work_struct *work)
2126 {
2127         struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
2128         int result;
2129
2130         if (WARN_ON(test_bit(NVME_CTRL_RESETTING, &dev->flags)))
2131                 goto out;
2132
2133         /*
2134          * If we're called to reset a live controller first shut it down before
2135          * moving on.
2136          */
2137         if (dev->bar)
2138                 nvme_dev_shutdown(dev);
2139
2140         set_bit(NVME_CTRL_RESETTING, &dev->flags);
2141
2142         result = nvme_dev_map(dev);
2143         if (result)
2144                 goto out;
2145
2146         result = nvme_configure_admin_queue(dev);
2147         if (result)
2148                 goto unmap;
2149
2150         nvme_init_queue(dev->queues[0], 0);
2151         result = nvme_alloc_admin_tags(dev);
2152         if (result)
2153                 goto disable;
2154
2155         result = nvme_init_identify(&dev->ctrl);
2156         if (result)
2157                 goto free_tags;
2158
2159         result = nvme_setup_io_queues(dev);
2160         if (result)
2161                 goto free_tags;
2162
2163         dev->ctrl.event_limit = 1;
2164
2165         result = nvme_dev_list_add(dev);
2166         if (result)
2167                 goto remove;
2168
2169         /*
2170          * Keep the controller around but remove all namespaces if we don't have
2171          * any working I/O queue.
2172          */
2173         if (dev->online_queues < 2) {
2174                 dev_warn(dev->dev, "IO queues not created\n");
2175                 nvme_remove_namespaces(&dev->ctrl);
2176         } else {
2177                 nvme_unfreeze_queues(dev);
2178                 nvme_dev_add(dev);
2179         }
2180
2181         clear_bit(NVME_CTRL_RESETTING, &dev->flags);
2182         return;
2183
2184  remove:
2185         nvme_dev_list_remove(dev);
2186  free_tags:
2187         nvme_dev_remove_admin(dev);
2188         blk_put_queue(dev->ctrl.admin_q);
2189         dev->ctrl.admin_q = NULL;
2190         dev->queues[0]->tags = NULL;
2191  disable:
2192         nvme_disable_queue(dev, 0);
2193  unmap:
2194         nvme_dev_unmap(dev);
2195  out:
2196         nvme_remove_dead_ctrl(dev);
2197 }
2198
2199 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2200 {
2201         struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2202         struct pci_dev *pdev = to_pci_dev(dev->dev);
2203
2204         if (pci_get_drvdata(pdev))
2205                 pci_stop_and_remove_bus_device_locked(pdev);
2206         nvme_put_ctrl(&dev->ctrl);
2207 }
2208
2209 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2210 {
2211         dev_warn(dev->dev, "Removing after probe failure\n");
2212         kref_get(&dev->ctrl.kref);
2213         if (!schedule_work(&dev->remove_work))
2214                 nvme_put_ctrl(&dev->ctrl);
2215 }
2216
2217 static int nvme_reset(struct nvme_dev *dev)
2218 {
2219         if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
2220                 return -ENODEV;
2221
2222         if (!queue_work(nvme_workq, &dev->reset_work))
2223                 return -EBUSY;
2224
2225         flush_work(&dev->reset_work);
2226         return 0;
2227 }
2228
2229 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2230 {
2231         *val = readl(to_nvme_dev(ctrl)->bar + off);
2232         return 0;
2233 }
2234
2235 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2236 {
2237         writel(val, to_nvme_dev(ctrl)->bar + off);
2238         return 0;
2239 }
2240
2241 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2242 {
2243         *val = readq(to_nvme_dev(ctrl)->bar + off);
2244         return 0;
2245 }
2246
2247 static bool nvme_pci_io_incapable(struct nvme_ctrl *ctrl)
2248 {
2249         struct nvme_dev *dev = to_nvme_dev(ctrl);
2250
2251         return !dev->bar || dev->online_queues < 2;
2252 }
2253
2254 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
2255 {
2256         return nvme_reset(to_nvme_dev(ctrl));
2257 }
2258
2259 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2260         .reg_read32             = nvme_pci_reg_read32,
2261         .reg_write32            = nvme_pci_reg_write32,
2262         .reg_read64             = nvme_pci_reg_read64,
2263         .io_incapable           = nvme_pci_io_incapable,
2264         .reset_ctrl             = nvme_pci_reset_ctrl,
2265         .free_ctrl              = nvme_pci_free_ctrl,
2266 };
2267
2268 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2269 {
2270         int node, result = -ENOMEM;
2271         struct nvme_dev *dev;
2272
2273         node = dev_to_node(&pdev->dev);
2274         if (node == NUMA_NO_NODE)
2275                 set_dev_node(&pdev->dev, 0);
2276
2277         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2278         if (!dev)
2279                 return -ENOMEM;
2280         dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2281                                                         GFP_KERNEL, node);
2282         if (!dev->entry)
2283                 goto free;
2284         dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2285                                                         GFP_KERNEL, node);
2286         if (!dev->queues)
2287                 goto free;
2288
2289         dev->dev = get_device(&pdev->dev);
2290         pci_set_drvdata(pdev, dev);
2291
2292         INIT_LIST_HEAD(&dev->node);
2293         INIT_WORK(&dev->scan_work, nvme_dev_scan);
2294         INIT_WORK(&dev->reset_work, nvme_reset_work);
2295         INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2296         mutex_init(&dev->shutdown_lock);
2297
2298         result = nvme_setup_prp_pools(dev);
2299         if (result)
2300                 goto put_pci;
2301
2302         result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2303                         id->driver_data);
2304         if (result)
2305                 goto release_pools;
2306
2307         queue_work(nvme_workq, &dev->reset_work);
2308         return 0;
2309
2310  release_pools:
2311         nvme_release_prp_pools(dev);
2312  put_pci:
2313         put_device(dev->dev);
2314  free:
2315         kfree(dev->queues);
2316         kfree(dev->entry);
2317         kfree(dev);
2318         return result;
2319 }
2320
2321 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2322 {
2323         struct nvme_dev *dev = pci_get_drvdata(pdev);
2324
2325         if (prepare)
2326                 nvme_dev_shutdown(dev);
2327         else
2328                 queue_work(nvme_workq, &dev->reset_work);
2329 }
2330
2331 static void nvme_shutdown(struct pci_dev *pdev)
2332 {
2333         struct nvme_dev *dev = pci_get_drvdata(pdev);
2334         nvme_dev_shutdown(dev);
2335 }
2336
2337 static void nvme_remove(struct pci_dev *pdev)
2338 {
2339         struct nvme_dev *dev = pci_get_drvdata(pdev);
2340
2341         spin_lock(&dev_list_lock);
2342         list_del_init(&dev->node);
2343         spin_unlock(&dev_list_lock);
2344
2345         pci_set_drvdata(pdev, NULL);
2346         flush_work(&dev->reset_work);
2347         flush_work(&dev->scan_work);
2348         nvme_remove_namespaces(&dev->ctrl);
2349         nvme_uninit_ctrl(&dev->ctrl);
2350         nvme_dev_shutdown(dev);
2351         nvme_dev_remove_admin(dev);
2352         nvme_free_queues(dev, 0);
2353         nvme_release_cmb(dev);
2354         nvme_release_prp_pools(dev);
2355         nvme_put_ctrl(&dev->ctrl);
2356 }
2357
2358 /* These functions are yet to be implemented */
2359 #define nvme_error_detected NULL
2360 #define nvme_dump_registers NULL
2361 #define nvme_link_reset NULL
2362 #define nvme_slot_reset NULL
2363 #define nvme_error_resume NULL
2364
2365 #ifdef CONFIG_PM_SLEEP
2366 static int nvme_suspend(struct device *dev)
2367 {
2368         struct pci_dev *pdev = to_pci_dev(dev);
2369         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2370
2371         nvme_dev_shutdown(ndev);
2372         return 0;
2373 }
2374
2375 static int nvme_resume(struct device *dev)
2376 {
2377         struct pci_dev *pdev = to_pci_dev(dev);
2378         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2379
2380         queue_work(nvme_workq, &ndev->reset_work);
2381         return 0;
2382 }
2383 #endif
2384
2385 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2386
2387 static const struct pci_error_handlers nvme_err_handler = {
2388         .error_detected = nvme_error_detected,
2389         .mmio_enabled   = nvme_dump_registers,
2390         .link_reset     = nvme_link_reset,
2391         .slot_reset     = nvme_slot_reset,
2392         .resume         = nvme_error_resume,
2393         .reset_notify   = nvme_reset_notify,
2394 };
2395
2396 /* Move to pci_ids.h later */
2397 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
2398
2399 static const struct pci_device_id nvme_id_table[] = {
2400         { PCI_VDEVICE(INTEL, 0x0953),
2401                 .driver_data = NVME_QUIRK_STRIPE_SIZE, },
2402         { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
2403                 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2404         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2405         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2406         { 0, }
2407 };
2408 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2409
2410 static struct pci_driver nvme_driver = {
2411         .name           = "nvme",
2412         .id_table       = nvme_id_table,
2413         .probe          = nvme_probe,
2414         .remove         = nvme_remove,
2415         .shutdown       = nvme_shutdown,
2416         .driver         = {
2417                 .pm     = &nvme_dev_pm_ops,
2418         },
2419         .err_handler    = &nvme_err_handler,
2420 };
2421
2422 static int __init nvme_init(void)
2423 {
2424         int result;
2425
2426         init_waitqueue_head(&nvme_kthread_wait);
2427
2428         nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2429         if (!nvme_workq)
2430                 return -ENOMEM;
2431
2432         result = nvme_core_init();
2433         if (result < 0)
2434                 goto kill_workq;
2435
2436         result = pci_register_driver(&nvme_driver);
2437         if (result)
2438                 goto core_exit;
2439         return 0;
2440
2441  core_exit:
2442         nvme_core_exit();
2443  kill_workq:
2444         destroy_workqueue(nvme_workq);
2445         return result;
2446 }
2447
2448 static void __exit nvme_exit(void)
2449 {
2450         pci_unregister_driver(&nvme_driver);
2451         nvme_core_exit();
2452         destroy_workqueue(nvme_workq);
2453         BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
2454         _nvme_check_size();
2455 }
2456
2457 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2458 MODULE_LICENSE("GPL");
2459 MODULE_VERSION("1.0");
2460 module_init(nvme_init);
2461 module_exit(nvme_exit);