Merge tag 'imx-drm-next-2017-10-18' of git://git.pengutronix.de/git/pza/linux into...
[linux-2.6-block.git] / drivers / nvme / host / pci.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/dmi.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/mm.h>
25 #include <linux/module.h>
26 #include <linux/mutex.h>
27 #include <linux/once.h>
28 #include <linux/pci.h>
29 #include <linux/poison.h>
30 #include <linux/t10-pi.h>
31 #include <linux/timer.h>
32 #include <linux/types.h>
33 #include <linux/io-64-nonatomic-lo-hi.h>
34 #include <asm/unaligned.h>
35 #include <linux/sed-opal.h>
36
37 #include "nvme.h"
38
39 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
40 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
41
42 /*
43  * We handle AEN commands ourselves and don't even let the
44  * block layer know about them.
45  */
46 #define NVME_AQ_BLKMQ_DEPTH     (NVME_AQ_DEPTH - NVME_NR_AERS)
47
48 static int use_threaded_interrupts;
49 module_param(use_threaded_interrupts, int, 0);
50
51 static bool use_cmb_sqes = true;
52 module_param(use_cmb_sqes, bool, 0644);
53 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
54
55 static unsigned int max_host_mem_size_mb = 128;
56 module_param(max_host_mem_size_mb, uint, 0444);
57 MODULE_PARM_DESC(max_host_mem_size_mb,
58         "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
59
60 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
61 static const struct kernel_param_ops io_queue_depth_ops = {
62         .set = io_queue_depth_set,
63         .get = param_get_int,
64 };
65
66 static int io_queue_depth = 1024;
67 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
68 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
69
70 struct nvme_dev;
71 struct nvme_queue;
72
73 static void nvme_process_cq(struct nvme_queue *nvmeq);
74 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
75
76 /*
77  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
78  */
79 struct nvme_dev {
80         struct nvme_queue **queues;
81         struct blk_mq_tag_set tagset;
82         struct blk_mq_tag_set admin_tagset;
83         u32 __iomem *dbs;
84         struct device *dev;
85         struct dma_pool *prp_page_pool;
86         struct dma_pool *prp_small_pool;
87         unsigned online_queues;
88         unsigned max_qid;
89         int q_depth;
90         u32 db_stride;
91         void __iomem *bar;
92         unsigned long bar_mapped_size;
93         struct work_struct remove_work;
94         struct mutex shutdown_lock;
95         bool subsystem;
96         void __iomem *cmb;
97         pci_bus_addr_t cmb_bus_addr;
98         u64 cmb_size;
99         u32 cmbsz;
100         u32 cmbloc;
101         struct nvme_ctrl ctrl;
102         struct completion ioq_wait;
103
104         /* shadow doorbell buffer support: */
105         u32 *dbbuf_dbs;
106         dma_addr_t dbbuf_dbs_dma_addr;
107         u32 *dbbuf_eis;
108         dma_addr_t dbbuf_eis_dma_addr;
109
110         /* host memory buffer support: */
111         u64 host_mem_size;
112         u32 nr_host_mem_descs;
113         dma_addr_t host_mem_descs_dma;
114         struct nvme_host_mem_buf_desc *host_mem_descs;
115         void **host_mem_desc_bufs;
116 };
117
118 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
119 {
120         int n = 0, ret;
121
122         ret = kstrtoint(val, 10, &n);
123         if (ret != 0 || n < 2)
124                 return -EINVAL;
125
126         return param_set_int(val, kp);
127 }
128
129 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
130 {
131         return qid * 2 * stride;
132 }
133
134 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
135 {
136         return (qid * 2 + 1) * stride;
137 }
138
139 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
140 {
141         return container_of(ctrl, struct nvme_dev, ctrl);
142 }
143
144 /*
145  * An NVM Express queue.  Each device has at least two (one for admin
146  * commands and one for I/O commands).
147  */
148 struct nvme_queue {
149         struct device *q_dmadev;
150         struct nvme_dev *dev;
151         spinlock_t q_lock;
152         struct nvme_command *sq_cmds;
153         struct nvme_command __iomem *sq_cmds_io;
154         volatile struct nvme_completion *cqes;
155         struct blk_mq_tags **tags;
156         dma_addr_t sq_dma_addr;
157         dma_addr_t cq_dma_addr;
158         u32 __iomem *q_db;
159         u16 q_depth;
160         s16 cq_vector;
161         u16 sq_tail;
162         u16 cq_head;
163         u16 qid;
164         u8 cq_phase;
165         u8 cqe_seen;
166         u32 *dbbuf_sq_db;
167         u32 *dbbuf_cq_db;
168         u32 *dbbuf_sq_ei;
169         u32 *dbbuf_cq_ei;
170 };
171
172 /*
173  * The nvme_iod describes the data in an I/O, including the list of PRP
174  * entries.  You can't see it in this data structure because C doesn't let
175  * me express that.  Use nvme_init_iod to ensure there's enough space
176  * allocated to store the PRP list.
177  */
178 struct nvme_iod {
179         struct nvme_request req;
180         struct nvme_queue *nvmeq;
181         int aborted;
182         int npages;             /* In the PRP list. 0 means small pool in use */
183         int nents;              /* Used in scatterlist */
184         int length;             /* Of data, in bytes */
185         dma_addr_t first_dma;
186         struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
187         struct scatterlist *sg;
188         struct scatterlist inline_sg[0];
189 };
190
191 /*
192  * Check we didin't inadvertently grow the command struct
193  */
194 static inline void _nvme_check_size(void)
195 {
196         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
197         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
198         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
199         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
200         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
201         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
202         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
203         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
204         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
205         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
206         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
207         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
208         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
209 }
210
211 static inline unsigned int nvme_dbbuf_size(u32 stride)
212 {
213         return ((num_possible_cpus() + 1) * 8 * stride);
214 }
215
216 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
217 {
218         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
219
220         if (dev->dbbuf_dbs)
221                 return 0;
222
223         dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
224                                             &dev->dbbuf_dbs_dma_addr,
225                                             GFP_KERNEL);
226         if (!dev->dbbuf_dbs)
227                 return -ENOMEM;
228         dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
229                                             &dev->dbbuf_eis_dma_addr,
230                                             GFP_KERNEL);
231         if (!dev->dbbuf_eis) {
232                 dma_free_coherent(dev->dev, mem_size,
233                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
234                 dev->dbbuf_dbs = NULL;
235                 return -ENOMEM;
236         }
237
238         return 0;
239 }
240
241 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
242 {
243         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
244
245         if (dev->dbbuf_dbs) {
246                 dma_free_coherent(dev->dev, mem_size,
247                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
248                 dev->dbbuf_dbs = NULL;
249         }
250         if (dev->dbbuf_eis) {
251                 dma_free_coherent(dev->dev, mem_size,
252                                   dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
253                 dev->dbbuf_eis = NULL;
254         }
255 }
256
257 static void nvme_dbbuf_init(struct nvme_dev *dev,
258                             struct nvme_queue *nvmeq, int qid)
259 {
260         if (!dev->dbbuf_dbs || !qid)
261                 return;
262
263         nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
264         nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
265         nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
266         nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
267 }
268
269 static void nvme_dbbuf_set(struct nvme_dev *dev)
270 {
271         struct nvme_command c;
272
273         if (!dev->dbbuf_dbs)
274                 return;
275
276         memset(&c, 0, sizeof(c));
277         c.dbbuf.opcode = nvme_admin_dbbuf;
278         c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
279         c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
280
281         if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
282                 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
283                 /* Free memory and continue on */
284                 nvme_dbbuf_dma_free(dev);
285         }
286 }
287
288 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
289 {
290         return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
291 }
292
293 /* Update dbbuf and return true if an MMIO is required */
294 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
295                                               volatile u32 *dbbuf_ei)
296 {
297         if (dbbuf_db) {
298                 u16 old_value;
299
300                 /*
301                  * Ensure that the queue is written before updating
302                  * the doorbell in memory
303                  */
304                 wmb();
305
306                 old_value = *dbbuf_db;
307                 *dbbuf_db = value;
308
309                 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
310                         return false;
311         }
312
313         return true;
314 }
315
316 /*
317  * Max size of iod being embedded in the request payload
318  */
319 #define NVME_INT_PAGES          2
320 #define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->ctrl.page_size)
321
322 /*
323  * Will slightly overestimate the number of pages needed.  This is OK
324  * as it only leads to a small amount of wasted memory for the lifetime of
325  * the I/O.
326  */
327 static int nvme_npages(unsigned size, struct nvme_dev *dev)
328 {
329         unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
330                                       dev->ctrl.page_size);
331         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
332 }
333
334 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
335                 unsigned int size, unsigned int nseg)
336 {
337         return sizeof(__le64 *) * nvme_npages(size, dev) +
338                         sizeof(struct scatterlist) * nseg;
339 }
340
341 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
342 {
343         return sizeof(struct nvme_iod) +
344                 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
345 }
346
347 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
348                                 unsigned int hctx_idx)
349 {
350         struct nvme_dev *dev = data;
351         struct nvme_queue *nvmeq = dev->queues[0];
352
353         WARN_ON(hctx_idx != 0);
354         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
355         WARN_ON(nvmeq->tags);
356
357         hctx->driver_data = nvmeq;
358         nvmeq->tags = &dev->admin_tagset.tags[0];
359         return 0;
360 }
361
362 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
363 {
364         struct nvme_queue *nvmeq = hctx->driver_data;
365
366         nvmeq->tags = NULL;
367 }
368
369 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
370                           unsigned int hctx_idx)
371 {
372         struct nvme_dev *dev = data;
373         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
374
375         if (!nvmeq->tags)
376                 nvmeq->tags = &dev->tagset.tags[hctx_idx];
377
378         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
379         hctx->driver_data = nvmeq;
380         return 0;
381 }
382
383 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
384                 unsigned int hctx_idx, unsigned int numa_node)
385 {
386         struct nvme_dev *dev = set->driver_data;
387         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
388         int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
389         struct nvme_queue *nvmeq = dev->queues[queue_idx];
390
391         BUG_ON(!nvmeq);
392         iod->nvmeq = nvmeq;
393         return 0;
394 }
395
396 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
397 {
398         struct nvme_dev *dev = set->driver_data;
399
400         return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
401 }
402
403 /**
404  * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
405  * @nvmeq: The queue to use
406  * @cmd: The command to send
407  *
408  * Safe to use from interrupt context
409  */
410 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
411                                                 struct nvme_command *cmd)
412 {
413         u16 tail = nvmeq->sq_tail;
414
415         if (nvmeq->sq_cmds_io)
416                 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
417         else
418                 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
419
420         if (++tail == nvmeq->q_depth)
421                 tail = 0;
422         if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db,
423                                               nvmeq->dbbuf_sq_ei))
424                 writel(tail, nvmeq->q_db);
425         nvmeq->sq_tail = tail;
426 }
427
428 static __le64 **iod_list(struct request *req)
429 {
430         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
431         return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
432 }
433
434 static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
435 {
436         struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
437         int nseg = blk_rq_nr_phys_segments(rq);
438         unsigned int size = blk_rq_payload_bytes(rq);
439
440         if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
441                 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
442                 if (!iod->sg)
443                         return BLK_STS_RESOURCE;
444         } else {
445                 iod->sg = iod->inline_sg;
446         }
447
448         iod->aborted = 0;
449         iod->npages = -1;
450         iod->nents = 0;
451         iod->length = size;
452
453         return BLK_STS_OK;
454 }
455
456 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
457 {
458         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
459         const int last_prp = dev->ctrl.page_size / 8 - 1;
460         int i;
461         __le64 **list = iod_list(req);
462         dma_addr_t prp_dma = iod->first_dma;
463
464         if (iod->npages == 0)
465                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
466         for (i = 0; i < iod->npages; i++) {
467                 __le64 *prp_list = list[i];
468                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
469                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
470                 prp_dma = next_prp_dma;
471         }
472
473         if (iod->sg != iod->inline_sg)
474                 kfree(iod->sg);
475 }
476
477 #ifdef CONFIG_BLK_DEV_INTEGRITY
478 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
479 {
480         if (be32_to_cpu(pi->ref_tag) == v)
481                 pi->ref_tag = cpu_to_be32(p);
482 }
483
484 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
485 {
486         if (be32_to_cpu(pi->ref_tag) == p)
487                 pi->ref_tag = cpu_to_be32(v);
488 }
489
490 /**
491  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
492  *
493  * The virtual start sector is the one that was originally submitted by the
494  * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
495  * start sector may be different. Remap protection information to match the
496  * physical LBA on writes, and back to the original seed on reads.
497  *
498  * Type 0 and 3 do not have a ref tag, so no remapping required.
499  */
500 static void nvme_dif_remap(struct request *req,
501                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
502 {
503         struct nvme_ns *ns = req->rq_disk->private_data;
504         struct bio_integrity_payload *bip;
505         struct t10_pi_tuple *pi;
506         void *p, *pmap;
507         u32 i, nlb, ts, phys, virt;
508
509         if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
510                 return;
511
512         bip = bio_integrity(req->bio);
513         if (!bip)
514                 return;
515
516         pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
517
518         p = pmap;
519         virt = bip_get_seed(bip);
520         phys = nvme_block_nr(ns, blk_rq_pos(req));
521         nlb = (blk_rq_bytes(req) >> ns->lba_shift);
522         ts = ns->disk->queue->integrity.tuple_size;
523
524         for (i = 0; i < nlb; i++, virt++, phys++) {
525                 pi = (struct t10_pi_tuple *)p;
526                 dif_swap(phys, virt, pi);
527                 p += ts;
528         }
529         kunmap_atomic(pmap);
530 }
531 #else /* CONFIG_BLK_DEV_INTEGRITY */
532 static void nvme_dif_remap(struct request *req,
533                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
534 {
535 }
536 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
537 {
538 }
539 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
540 {
541 }
542 #endif
543
544 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
545 {
546         int i;
547         struct scatterlist *sg;
548
549         for_each_sg(sgl, sg, nents, i) {
550                 dma_addr_t phys = sg_phys(sg);
551                 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
552                         "dma_address:%pad dma_length:%d\n",
553                         i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
554                         sg_dma_len(sg));
555         }
556 }
557
558 static blk_status_t nvme_setup_prps(struct nvme_dev *dev, struct request *req)
559 {
560         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
561         struct dma_pool *pool;
562         int length = blk_rq_payload_bytes(req);
563         struct scatterlist *sg = iod->sg;
564         int dma_len = sg_dma_len(sg);
565         u64 dma_addr = sg_dma_address(sg);
566         u32 page_size = dev->ctrl.page_size;
567         int offset = dma_addr & (page_size - 1);
568         __le64 *prp_list;
569         __le64 **list = iod_list(req);
570         dma_addr_t prp_dma;
571         int nprps, i;
572
573         length -= (page_size - offset);
574         if (length <= 0) {
575                 iod->first_dma = 0;
576                 return BLK_STS_OK;
577         }
578
579         dma_len -= (page_size - offset);
580         if (dma_len) {
581                 dma_addr += (page_size - offset);
582         } else {
583                 sg = sg_next(sg);
584                 dma_addr = sg_dma_address(sg);
585                 dma_len = sg_dma_len(sg);
586         }
587
588         if (length <= page_size) {
589                 iod->first_dma = dma_addr;
590                 return BLK_STS_OK;
591         }
592
593         nprps = DIV_ROUND_UP(length, page_size);
594         if (nprps <= (256 / 8)) {
595                 pool = dev->prp_small_pool;
596                 iod->npages = 0;
597         } else {
598                 pool = dev->prp_page_pool;
599                 iod->npages = 1;
600         }
601
602         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
603         if (!prp_list) {
604                 iod->first_dma = dma_addr;
605                 iod->npages = -1;
606                 return BLK_STS_RESOURCE;
607         }
608         list[0] = prp_list;
609         iod->first_dma = prp_dma;
610         i = 0;
611         for (;;) {
612                 if (i == page_size >> 3) {
613                         __le64 *old_prp_list = prp_list;
614                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
615                         if (!prp_list)
616                                 return BLK_STS_RESOURCE;
617                         list[iod->npages++] = prp_list;
618                         prp_list[0] = old_prp_list[i - 1];
619                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
620                         i = 1;
621                 }
622                 prp_list[i++] = cpu_to_le64(dma_addr);
623                 dma_len -= page_size;
624                 dma_addr += page_size;
625                 length -= page_size;
626                 if (length <= 0)
627                         break;
628                 if (dma_len > 0)
629                         continue;
630                 if (unlikely(dma_len < 0))
631                         goto bad_sgl;
632                 sg = sg_next(sg);
633                 dma_addr = sg_dma_address(sg);
634                 dma_len = sg_dma_len(sg);
635         }
636
637         return BLK_STS_OK;
638
639  bad_sgl:
640         WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
641                         "Invalid SGL for payload:%d nents:%d\n",
642                         blk_rq_payload_bytes(req), iod->nents);
643         return BLK_STS_IOERR;
644 }
645
646 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
647                 struct nvme_command *cmnd)
648 {
649         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
650         struct request_queue *q = req->q;
651         enum dma_data_direction dma_dir = rq_data_dir(req) ?
652                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
653         blk_status_t ret = BLK_STS_IOERR;
654
655         sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
656         iod->nents = blk_rq_map_sg(q, req, iod->sg);
657         if (!iod->nents)
658                 goto out;
659
660         ret = BLK_STS_RESOURCE;
661         if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
662                                 DMA_ATTR_NO_WARN))
663                 goto out;
664
665         ret = nvme_setup_prps(dev, req);
666         if (ret != BLK_STS_OK)
667                 goto out_unmap;
668
669         ret = BLK_STS_IOERR;
670         if (blk_integrity_rq(req)) {
671                 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
672                         goto out_unmap;
673
674                 sg_init_table(&iod->meta_sg, 1);
675                 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
676                         goto out_unmap;
677
678                 if (req_op(req) == REQ_OP_WRITE)
679                         nvme_dif_remap(req, nvme_dif_prep);
680
681                 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
682                         goto out_unmap;
683         }
684
685         cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
686         cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
687         if (blk_integrity_rq(req))
688                 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
689         return BLK_STS_OK;
690
691 out_unmap:
692         dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
693 out:
694         return ret;
695 }
696
697 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
698 {
699         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
700         enum dma_data_direction dma_dir = rq_data_dir(req) ?
701                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
702
703         if (iod->nents) {
704                 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
705                 if (blk_integrity_rq(req)) {
706                         if (req_op(req) == REQ_OP_READ)
707                                 nvme_dif_remap(req, nvme_dif_complete);
708                         dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
709                 }
710         }
711
712         nvme_cleanup_cmd(req);
713         nvme_free_iod(dev, req);
714 }
715
716 /*
717  * NOTE: ns is NULL when called on the admin queue.
718  */
719 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
720                          const struct blk_mq_queue_data *bd)
721 {
722         struct nvme_ns *ns = hctx->queue->queuedata;
723         struct nvme_queue *nvmeq = hctx->driver_data;
724         struct nvme_dev *dev = nvmeq->dev;
725         struct request *req = bd->rq;
726         struct nvme_command cmnd;
727         blk_status_t ret;
728
729         ret = nvme_setup_cmd(ns, req, &cmnd);
730         if (ret)
731                 return ret;
732
733         ret = nvme_init_iod(req, dev);
734         if (ret)
735                 goto out_free_cmd;
736
737         if (blk_rq_nr_phys_segments(req)) {
738                 ret = nvme_map_data(dev, req, &cmnd);
739                 if (ret)
740                         goto out_cleanup_iod;
741         }
742
743         blk_mq_start_request(req);
744
745         spin_lock_irq(&nvmeq->q_lock);
746         if (unlikely(nvmeq->cq_vector < 0)) {
747                 ret = BLK_STS_IOERR;
748                 spin_unlock_irq(&nvmeq->q_lock);
749                 goto out_cleanup_iod;
750         }
751         __nvme_submit_cmd(nvmeq, &cmnd);
752         nvme_process_cq(nvmeq);
753         spin_unlock_irq(&nvmeq->q_lock);
754         return BLK_STS_OK;
755 out_cleanup_iod:
756         nvme_free_iod(dev, req);
757 out_free_cmd:
758         nvme_cleanup_cmd(req);
759         return ret;
760 }
761
762 static void nvme_pci_complete_rq(struct request *req)
763 {
764         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
765
766         nvme_unmap_data(iod->nvmeq->dev, req);
767         nvme_complete_rq(req);
768 }
769
770 /* We read the CQE phase first to check if the rest of the entry is valid */
771 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
772                 u16 phase)
773 {
774         return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
775 }
776
777 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
778 {
779         u16 head = nvmeq->cq_head;
780
781         if (likely(nvmeq->cq_vector >= 0)) {
782                 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
783                                                       nvmeq->dbbuf_cq_ei))
784                         writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
785         }
786 }
787
788 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
789                 struct nvme_completion *cqe)
790 {
791         struct request *req;
792
793         if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
794                 dev_warn(nvmeq->dev->ctrl.device,
795                         "invalid id %d completed on queue %d\n",
796                         cqe->command_id, le16_to_cpu(cqe->sq_id));
797                 return;
798         }
799
800         /*
801          * AEN requests are special as they don't time out and can
802          * survive any kind of queue freeze and often don't respond to
803          * aborts.  We don't even bother to allocate a struct request
804          * for them but rather special case them here.
805          */
806         if (unlikely(nvmeq->qid == 0 &&
807                         cqe->command_id >= NVME_AQ_BLKMQ_DEPTH)) {
808                 nvme_complete_async_event(&nvmeq->dev->ctrl,
809                                 cqe->status, &cqe->result);
810                 return;
811         }
812
813         nvmeq->cqe_seen = 1;
814         req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
815         nvme_end_request(req, cqe->status, cqe->result);
816 }
817
818 static inline bool nvme_read_cqe(struct nvme_queue *nvmeq,
819                 struct nvme_completion *cqe)
820 {
821         if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
822                 *cqe = nvmeq->cqes[nvmeq->cq_head];
823
824                 if (++nvmeq->cq_head == nvmeq->q_depth) {
825                         nvmeq->cq_head = 0;
826                         nvmeq->cq_phase = !nvmeq->cq_phase;
827                 }
828                 return true;
829         }
830         return false;
831 }
832
833 static void nvme_process_cq(struct nvme_queue *nvmeq)
834 {
835         struct nvme_completion cqe;
836         int consumed = 0;
837
838         while (nvme_read_cqe(nvmeq, &cqe)) {
839                 nvme_handle_cqe(nvmeq, &cqe);
840                 consumed++;
841         }
842
843         if (consumed)
844                 nvme_ring_cq_doorbell(nvmeq);
845 }
846
847 static irqreturn_t nvme_irq(int irq, void *data)
848 {
849         irqreturn_t result;
850         struct nvme_queue *nvmeq = data;
851         spin_lock(&nvmeq->q_lock);
852         nvme_process_cq(nvmeq);
853         result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
854         nvmeq->cqe_seen = 0;
855         spin_unlock(&nvmeq->q_lock);
856         return result;
857 }
858
859 static irqreturn_t nvme_irq_check(int irq, void *data)
860 {
861         struct nvme_queue *nvmeq = data;
862         if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
863                 return IRQ_WAKE_THREAD;
864         return IRQ_NONE;
865 }
866
867 static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
868 {
869         struct nvme_completion cqe;
870         int found = 0, consumed = 0;
871
872         if (!nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
873                 return 0;
874
875         spin_lock_irq(&nvmeq->q_lock);
876         while (nvme_read_cqe(nvmeq, &cqe)) {
877                 nvme_handle_cqe(nvmeq, &cqe);
878                 consumed++;
879
880                 if (tag == cqe.command_id) {
881                         found = 1;
882                         break;
883                 }
884        }
885
886         if (consumed)
887                 nvme_ring_cq_doorbell(nvmeq);
888         spin_unlock_irq(&nvmeq->q_lock);
889
890         return found;
891 }
892
893 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
894 {
895         struct nvme_queue *nvmeq = hctx->driver_data;
896
897         return __nvme_poll(nvmeq, tag);
898 }
899
900 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
901 {
902         struct nvme_dev *dev = to_nvme_dev(ctrl);
903         struct nvme_queue *nvmeq = dev->queues[0];
904         struct nvme_command c;
905
906         memset(&c, 0, sizeof(c));
907         c.common.opcode = nvme_admin_async_event;
908         c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
909
910         spin_lock_irq(&nvmeq->q_lock);
911         __nvme_submit_cmd(nvmeq, &c);
912         spin_unlock_irq(&nvmeq->q_lock);
913 }
914
915 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
916 {
917         struct nvme_command c;
918
919         memset(&c, 0, sizeof(c));
920         c.delete_queue.opcode = opcode;
921         c.delete_queue.qid = cpu_to_le16(id);
922
923         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
924 }
925
926 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
927                                                 struct nvme_queue *nvmeq)
928 {
929         struct nvme_command c;
930         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
931
932         /*
933          * Note: we (ab)use the fact the the prp fields survive if no data
934          * is attached to the request.
935          */
936         memset(&c, 0, sizeof(c));
937         c.create_cq.opcode = nvme_admin_create_cq;
938         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
939         c.create_cq.cqid = cpu_to_le16(qid);
940         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
941         c.create_cq.cq_flags = cpu_to_le16(flags);
942         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
943
944         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
945 }
946
947 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
948                                                 struct nvme_queue *nvmeq)
949 {
950         struct nvme_command c;
951         int flags = NVME_QUEUE_PHYS_CONTIG;
952
953         /*
954          * Note: we (ab)use the fact the the prp fields survive if no data
955          * is attached to the request.
956          */
957         memset(&c, 0, sizeof(c));
958         c.create_sq.opcode = nvme_admin_create_sq;
959         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
960         c.create_sq.sqid = cpu_to_le16(qid);
961         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
962         c.create_sq.sq_flags = cpu_to_le16(flags);
963         c.create_sq.cqid = cpu_to_le16(qid);
964
965         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
966 }
967
968 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
969 {
970         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
971 }
972
973 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
974 {
975         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
976 }
977
978 static void abort_endio(struct request *req, blk_status_t error)
979 {
980         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
981         struct nvme_queue *nvmeq = iod->nvmeq;
982
983         dev_warn(nvmeq->dev->ctrl.device,
984                  "Abort status: 0x%x", nvme_req(req)->status);
985         atomic_inc(&nvmeq->dev->ctrl.abort_limit);
986         blk_mq_free_request(req);
987 }
988
989 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
990 {
991
992         /* If true, indicates loss of adapter communication, possibly by a
993          * NVMe Subsystem reset.
994          */
995         bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
996
997         /* If there is a reset ongoing, we shouldn't reset again. */
998         if (dev->ctrl.state == NVME_CTRL_RESETTING)
999                 return false;
1000
1001         /* We shouldn't reset unless the controller is on fatal error state
1002          * _or_ if we lost the communication with it.
1003          */
1004         if (!(csts & NVME_CSTS_CFS) && !nssro)
1005                 return false;
1006
1007         /* If PCI error recovery process is happening, we cannot reset or
1008          * the recovery mechanism will surely fail.
1009          */
1010         if (pci_channel_offline(to_pci_dev(dev->dev)))
1011                 return false;
1012
1013         return true;
1014 }
1015
1016 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1017 {
1018         /* Read a config register to help see what died. */
1019         u16 pci_status;
1020         int result;
1021
1022         result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1023                                       &pci_status);
1024         if (result == PCIBIOS_SUCCESSFUL)
1025                 dev_warn(dev->ctrl.device,
1026                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1027                          csts, pci_status);
1028         else
1029                 dev_warn(dev->ctrl.device,
1030                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1031                          csts, result);
1032 }
1033
1034 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1035 {
1036         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1037         struct nvme_queue *nvmeq = iod->nvmeq;
1038         struct nvme_dev *dev = nvmeq->dev;
1039         struct request *abort_req;
1040         struct nvme_command cmd;
1041         u32 csts = readl(dev->bar + NVME_REG_CSTS);
1042
1043         /*
1044          * Reset immediately if the controller is failed
1045          */
1046         if (nvme_should_reset(dev, csts)) {
1047                 nvme_warn_reset(dev, csts);
1048                 nvme_dev_disable(dev, false);
1049                 nvme_reset_ctrl(&dev->ctrl);
1050                 return BLK_EH_HANDLED;
1051         }
1052
1053         /*
1054          * Did we miss an interrupt?
1055          */
1056         if (__nvme_poll(nvmeq, req->tag)) {
1057                 dev_warn(dev->ctrl.device,
1058                          "I/O %d QID %d timeout, completion polled\n",
1059                          req->tag, nvmeq->qid);
1060                 return BLK_EH_HANDLED;
1061         }
1062
1063         /*
1064          * Shutdown immediately if controller times out while starting. The
1065          * reset work will see the pci device disabled when it gets the forced
1066          * cancellation error. All outstanding requests are completed on
1067          * shutdown, so we return BLK_EH_HANDLED.
1068          */
1069         if (dev->ctrl.state == NVME_CTRL_RESETTING) {
1070                 dev_warn(dev->ctrl.device,
1071                          "I/O %d QID %d timeout, disable controller\n",
1072                          req->tag, nvmeq->qid);
1073                 nvme_dev_disable(dev, false);
1074                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1075                 return BLK_EH_HANDLED;
1076         }
1077
1078         /*
1079          * Shutdown the controller immediately and schedule a reset if the
1080          * command was already aborted once before and still hasn't been
1081          * returned to the driver, or if this is the admin queue.
1082          */
1083         if (!nvmeq->qid || iod->aborted) {
1084                 dev_warn(dev->ctrl.device,
1085                          "I/O %d QID %d timeout, reset controller\n",
1086                          req->tag, nvmeq->qid);
1087                 nvme_dev_disable(dev, false);
1088                 nvme_reset_ctrl(&dev->ctrl);
1089
1090                 /*
1091                  * Mark the request as handled, since the inline shutdown
1092                  * forces all outstanding requests to complete.
1093                  */
1094                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1095                 return BLK_EH_HANDLED;
1096         }
1097
1098         if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1099                 atomic_inc(&dev->ctrl.abort_limit);
1100                 return BLK_EH_RESET_TIMER;
1101         }
1102         iod->aborted = 1;
1103
1104         memset(&cmd, 0, sizeof(cmd));
1105         cmd.abort.opcode = nvme_admin_abort_cmd;
1106         cmd.abort.cid = req->tag;
1107         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1108
1109         dev_warn(nvmeq->dev->ctrl.device,
1110                 "I/O %d QID %d timeout, aborting\n",
1111                  req->tag, nvmeq->qid);
1112
1113         abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1114                         BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1115         if (IS_ERR(abort_req)) {
1116                 atomic_inc(&dev->ctrl.abort_limit);
1117                 return BLK_EH_RESET_TIMER;
1118         }
1119
1120         abort_req->timeout = ADMIN_TIMEOUT;
1121         abort_req->end_io_data = NULL;
1122         blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1123
1124         /*
1125          * The aborted req will be completed on receiving the abort req.
1126          * We enable the timer again. If hit twice, it'll cause a device reset,
1127          * as the device then is in a faulty state.
1128          */
1129         return BLK_EH_RESET_TIMER;
1130 }
1131
1132 static void nvme_free_queue(struct nvme_queue *nvmeq)
1133 {
1134         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1135                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1136         if (nvmeq->sq_cmds)
1137                 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1138                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1139         kfree(nvmeq);
1140 }
1141
1142 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1143 {
1144         int i;
1145
1146         for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1147                 struct nvme_queue *nvmeq = dev->queues[i];
1148                 dev->ctrl.queue_count--;
1149                 dev->queues[i] = NULL;
1150                 nvme_free_queue(nvmeq);
1151         }
1152 }
1153
1154 /**
1155  * nvme_suspend_queue - put queue into suspended state
1156  * @nvmeq - queue to suspend
1157  */
1158 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1159 {
1160         int vector;
1161
1162         spin_lock_irq(&nvmeq->q_lock);
1163         if (nvmeq->cq_vector == -1) {
1164                 spin_unlock_irq(&nvmeq->q_lock);
1165                 return 1;
1166         }
1167         vector = nvmeq->cq_vector;
1168         nvmeq->dev->online_queues--;
1169         nvmeq->cq_vector = -1;
1170         spin_unlock_irq(&nvmeq->q_lock);
1171
1172         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1173                 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1174
1175         pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
1176
1177         return 0;
1178 }
1179
1180 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1181 {
1182         struct nvme_queue *nvmeq = dev->queues[0];
1183
1184         if (!nvmeq)
1185                 return;
1186         if (nvme_suspend_queue(nvmeq))
1187                 return;
1188
1189         if (shutdown)
1190                 nvme_shutdown_ctrl(&dev->ctrl);
1191         else
1192                 nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1193
1194         spin_lock_irq(&nvmeq->q_lock);
1195         nvme_process_cq(nvmeq);
1196         spin_unlock_irq(&nvmeq->q_lock);
1197 }
1198
1199 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1200                                 int entry_size)
1201 {
1202         int q_depth = dev->q_depth;
1203         unsigned q_size_aligned = roundup(q_depth * entry_size,
1204                                           dev->ctrl.page_size);
1205
1206         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1207                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1208                 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1209                 q_depth = div_u64(mem_per_q, entry_size);
1210
1211                 /*
1212                  * Ensure the reduced q_depth is above some threshold where it
1213                  * would be better to map queues in system memory with the
1214                  * original depth
1215                  */
1216                 if (q_depth < 64)
1217                         return -ENOMEM;
1218         }
1219
1220         return q_depth;
1221 }
1222
1223 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1224                                 int qid, int depth)
1225 {
1226         if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1227                 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1228                                                       dev->ctrl.page_size);
1229                 nvmeq->sq_dma_addr = dev->cmb_bus_addr + offset;
1230                 nvmeq->sq_cmds_io = dev->cmb + offset;
1231         } else {
1232                 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1233                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
1234                 if (!nvmeq->sq_cmds)
1235                         return -ENOMEM;
1236         }
1237
1238         return 0;
1239 }
1240
1241 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1242                                                         int depth, int node)
1243 {
1244         struct nvme_queue *nvmeq = kzalloc_node(sizeof(*nvmeq), GFP_KERNEL,
1245                                                         node);
1246         if (!nvmeq)
1247                 return NULL;
1248
1249         nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1250                                           &nvmeq->cq_dma_addr, GFP_KERNEL);
1251         if (!nvmeq->cqes)
1252                 goto free_nvmeq;
1253
1254         if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1255                 goto free_cqdma;
1256
1257         nvmeq->q_dmadev = dev->dev;
1258         nvmeq->dev = dev;
1259         spin_lock_init(&nvmeq->q_lock);
1260         nvmeq->cq_head = 0;
1261         nvmeq->cq_phase = 1;
1262         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1263         nvmeq->q_depth = depth;
1264         nvmeq->qid = qid;
1265         nvmeq->cq_vector = -1;
1266         dev->queues[qid] = nvmeq;
1267         dev->ctrl.queue_count++;
1268
1269         return nvmeq;
1270
1271  free_cqdma:
1272         dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1273                                                         nvmeq->cq_dma_addr);
1274  free_nvmeq:
1275         kfree(nvmeq);
1276         return NULL;
1277 }
1278
1279 static int queue_request_irq(struct nvme_queue *nvmeq)
1280 {
1281         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1282         int nr = nvmeq->dev->ctrl.instance;
1283
1284         if (use_threaded_interrupts) {
1285                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1286                                 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1287         } else {
1288                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1289                                 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1290         }
1291 }
1292
1293 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1294 {
1295         struct nvme_dev *dev = nvmeq->dev;
1296
1297         spin_lock_irq(&nvmeq->q_lock);
1298         nvmeq->sq_tail = 0;
1299         nvmeq->cq_head = 0;
1300         nvmeq->cq_phase = 1;
1301         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1302         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1303         nvme_dbbuf_init(dev, nvmeq, qid);
1304         dev->online_queues++;
1305         spin_unlock_irq(&nvmeq->q_lock);
1306 }
1307
1308 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1309 {
1310         struct nvme_dev *dev = nvmeq->dev;
1311         int result;
1312
1313         nvmeq->cq_vector = qid - 1;
1314         result = adapter_alloc_cq(dev, qid, nvmeq);
1315         if (result < 0)
1316                 return result;
1317
1318         result = adapter_alloc_sq(dev, qid, nvmeq);
1319         if (result < 0)
1320                 goto release_cq;
1321
1322         nvme_init_queue(nvmeq, qid);
1323         result = queue_request_irq(nvmeq);
1324         if (result < 0)
1325                 goto release_sq;
1326
1327         return result;
1328
1329  release_sq:
1330         adapter_delete_sq(dev, qid);
1331  release_cq:
1332         adapter_delete_cq(dev, qid);
1333         return result;
1334 }
1335
1336 static const struct blk_mq_ops nvme_mq_admin_ops = {
1337         .queue_rq       = nvme_queue_rq,
1338         .complete       = nvme_pci_complete_rq,
1339         .init_hctx      = nvme_admin_init_hctx,
1340         .exit_hctx      = nvme_admin_exit_hctx,
1341         .init_request   = nvme_init_request,
1342         .timeout        = nvme_timeout,
1343 };
1344
1345 static const struct blk_mq_ops nvme_mq_ops = {
1346         .queue_rq       = nvme_queue_rq,
1347         .complete       = nvme_pci_complete_rq,
1348         .init_hctx      = nvme_init_hctx,
1349         .init_request   = nvme_init_request,
1350         .map_queues     = nvme_pci_map_queues,
1351         .timeout        = nvme_timeout,
1352         .poll           = nvme_poll,
1353 };
1354
1355 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1356 {
1357         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1358                 /*
1359                  * If the controller was reset during removal, it's possible
1360                  * user requests may be waiting on a stopped queue. Start the
1361                  * queue to flush these to completion.
1362                  */
1363                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1364                 blk_cleanup_queue(dev->ctrl.admin_q);
1365                 blk_mq_free_tag_set(&dev->admin_tagset);
1366         }
1367 }
1368
1369 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1370 {
1371         if (!dev->ctrl.admin_q) {
1372                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1373                 dev->admin_tagset.nr_hw_queues = 1;
1374
1375                 /*
1376                  * Subtract one to leave an empty queue entry for 'Full Queue'
1377                  * condition. See NVM-Express 1.2 specification, section 4.1.2.
1378                  */
1379                 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1380                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1381                 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1382                 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1383                 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1384                 dev->admin_tagset.driver_data = dev;
1385
1386                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1387                         return -ENOMEM;
1388                 dev->ctrl.admin_tagset = &dev->admin_tagset;
1389
1390                 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1391                 if (IS_ERR(dev->ctrl.admin_q)) {
1392                         blk_mq_free_tag_set(&dev->admin_tagset);
1393                         return -ENOMEM;
1394                 }
1395                 if (!blk_get_queue(dev->ctrl.admin_q)) {
1396                         nvme_dev_remove_admin(dev);
1397                         dev->ctrl.admin_q = NULL;
1398                         return -ENODEV;
1399                 }
1400         } else
1401                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1402
1403         return 0;
1404 }
1405
1406 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1407 {
1408         return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1409 }
1410
1411 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1412 {
1413         struct pci_dev *pdev = to_pci_dev(dev->dev);
1414
1415         if (size <= dev->bar_mapped_size)
1416                 return 0;
1417         if (size > pci_resource_len(pdev, 0))
1418                 return -ENOMEM;
1419         if (dev->bar)
1420                 iounmap(dev->bar);
1421         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1422         if (!dev->bar) {
1423                 dev->bar_mapped_size = 0;
1424                 return -ENOMEM;
1425         }
1426         dev->bar_mapped_size = size;
1427         dev->dbs = dev->bar + NVME_REG_DBS;
1428
1429         return 0;
1430 }
1431
1432 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1433 {
1434         int result;
1435         u32 aqa;
1436         struct nvme_queue *nvmeq;
1437
1438         result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1439         if (result < 0)
1440                 return result;
1441
1442         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1443                                 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1444
1445         if (dev->subsystem &&
1446             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1447                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1448
1449         result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1450         if (result < 0)
1451                 return result;
1452
1453         nvmeq = dev->queues[0];
1454         if (!nvmeq) {
1455                 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH,
1456                                         dev_to_node(dev->dev));
1457                 if (!nvmeq)
1458                         return -ENOMEM;
1459         }
1460
1461         aqa = nvmeq->q_depth - 1;
1462         aqa |= aqa << 16;
1463
1464         writel(aqa, dev->bar + NVME_REG_AQA);
1465         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1466         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1467
1468         result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
1469         if (result)
1470                 return result;
1471
1472         nvmeq->cq_vector = 0;
1473         nvme_init_queue(nvmeq, 0);
1474         result = queue_request_irq(nvmeq);
1475         if (result) {
1476                 nvmeq->cq_vector = -1;
1477                 return result;
1478         }
1479
1480         return result;
1481 }
1482
1483 static int nvme_create_io_queues(struct nvme_dev *dev)
1484 {
1485         unsigned i, max;
1486         int ret = 0;
1487
1488         for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1489                 /* vector == qid - 1, match nvme_create_queue */
1490                 if (!nvme_alloc_queue(dev, i, dev->q_depth,
1491                      pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) {
1492                         ret = -ENOMEM;
1493                         break;
1494                 }
1495         }
1496
1497         max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1498         for (i = dev->online_queues; i <= max; i++) {
1499                 ret = nvme_create_queue(dev->queues[i], i);
1500                 if (ret)
1501                         break;
1502         }
1503
1504         /*
1505          * Ignore failing Create SQ/CQ commands, we can continue with less
1506          * than the desired aount of queues, and even a controller without
1507          * I/O queues an still be used to issue admin commands.  This might
1508          * be useful to upgrade a buggy firmware for example.
1509          */
1510         return ret >= 0 ? 0 : ret;
1511 }
1512
1513 static ssize_t nvme_cmb_show(struct device *dev,
1514                              struct device_attribute *attr,
1515                              char *buf)
1516 {
1517         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1518
1519         return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1520                        ndev->cmbloc, ndev->cmbsz);
1521 }
1522 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1523
1524 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1525 {
1526         u64 szu, size, offset;
1527         resource_size_t bar_size;
1528         struct pci_dev *pdev = to_pci_dev(dev->dev);
1529         void __iomem *cmb;
1530         int bar;
1531
1532         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1533         if (!(NVME_CMB_SZ(dev->cmbsz)))
1534                 return NULL;
1535         dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1536
1537         if (!use_cmb_sqes)
1538                 return NULL;
1539
1540         szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1541         size = szu * NVME_CMB_SZ(dev->cmbsz);
1542         offset = szu * NVME_CMB_OFST(dev->cmbloc);
1543         bar = NVME_CMB_BIR(dev->cmbloc);
1544         bar_size = pci_resource_len(pdev, bar);
1545
1546         if (offset > bar_size)
1547                 return NULL;
1548
1549         /*
1550          * Controllers may support a CMB size larger than their BAR,
1551          * for example, due to being behind a bridge. Reduce the CMB to
1552          * the reported size of the BAR
1553          */
1554         if (size > bar_size - offset)
1555                 size = bar_size - offset;
1556
1557         cmb = ioremap_wc(pci_resource_start(pdev, bar) + offset, size);
1558         if (!cmb)
1559                 return NULL;
1560
1561         dev->cmb_bus_addr = pci_bus_address(pdev, bar) + offset;
1562         dev->cmb_size = size;
1563         return cmb;
1564 }
1565
1566 static inline void nvme_release_cmb(struct nvme_dev *dev)
1567 {
1568         if (dev->cmb) {
1569                 iounmap(dev->cmb);
1570                 dev->cmb = NULL;
1571                 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1572                                              &dev_attr_cmb.attr, NULL);
1573                 dev->cmbsz = 0;
1574         }
1575 }
1576
1577 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1578 {
1579         u64 dma_addr = dev->host_mem_descs_dma;
1580         struct nvme_command c;
1581         int ret;
1582
1583         memset(&c, 0, sizeof(c));
1584         c.features.opcode       = nvme_admin_set_features;
1585         c.features.fid          = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1586         c.features.dword11      = cpu_to_le32(bits);
1587         c.features.dword12      = cpu_to_le32(dev->host_mem_size >>
1588                                               ilog2(dev->ctrl.page_size));
1589         c.features.dword13      = cpu_to_le32(lower_32_bits(dma_addr));
1590         c.features.dword14      = cpu_to_le32(upper_32_bits(dma_addr));
1591         c.features.dword15      = cpu_to_le32(dev->nr_host_mem_descs);
1592
1593         ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1594         if (ret) {
1595                 dev_warn(dev->ctrl.device,
1596                          "failed to set host mem (err %d, flags %#x).\n",
1597                          ret, bits);
1598         }
1599         return ret;
1600 }
1601
1602 static void nvme_free_host_mem(struct nvme_dev *dev)
1603 {
1604         int i;
1605
1606         for (i = 0; i < dev->nr_host_mem_descs; i++) {
1607                 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1608                 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1609
1610                 dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
1611                                 le64_to_cpu(desc->addr));
1612         }
1613
1614         kfree(dev->host_mem_desc_bufs);
1615         dev->host_mem_desc_bufs = NULL;
1616         dma_free_coherent(dev->dev,
1617                         dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1618                         dev->host_mem_descs, dev->host_mem_descs_dma);
1619         dev->host_mem_descs = NULL;
1620 }
1621
1622 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1623                 u32 chunk_size)
1624 {
1625         struct nvme_host_mem_buf_desc *descs;
1626         u32 max_entries, len;
1627         dma_addr_t descs_dma;
1628         int i = 0;
1629         void **bufs;
1630         u64 size = 0, tmp;
1631
1632         tmp = (preferred + chunk_size - 1);
1633         do_div(tmp, chunk_size);
1634         max_entries = tmp;
1635
1636         if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1637                 max_entries = dev->ctrl.hmmaxd;
1638
1639         descs = dma_zalloc_coherent(dev->dev, max_entries * sizeof(*descs),
1640                         &descs_dma, GFP_KERNEL);
1641         if (!descs)
1642                 goto out;
1643
1644         bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1645         if (!bufs)
1646                 goto out_free_descs;
1647
1648         for (size = 0; size < preferred; size += len) {
1649                 dma_addr_t dma_addr;
1650
1651                 len = min_t(u64, chunk_size, preferred - size);
1652                 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1653                                 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1654                 if (!bufs[i])
1655                         break;
1656
1657                 descs[i].addr = cpu_to_le64(dma_addr);
1658                 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1659                 i++;
1660         }
1661
1662         if (!size)
1663                 goto out_free_bufs;
1664
1665         dev->nr_host_mem_descs = i;
1666         dev->host_mem_size = size;
1667         dev->host_mem_descs = descs;
1668         dev->host_mem_descs_dma = descs_dma;
1669         dev->host_mem_desc_bufs = bufs;
1670         return 0;
1671
1672 out_free_bufs:
1673         while (--i >= 0) {
1674                 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1675
1676                 dma_free_coherent(dev->dev, size, bufs[i],
1677                                 le64_to_cpu(descs[i].addr));
1678         }
1679
1680         kfree(bufs);
1681 out_free_descs:
1682         dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1683                         descs_dma);
1684 out:
1685         dev->host_mem_descs = NULL;
1686         return -ENOMEM;
1687 }
1688
1689 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1690 {
1691         u32 chunk_size;
1692
1693         /* start big and work our way down */
1694         for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1695              chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1696              chunk_size /= 2) {
1697                 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1698                         if (!min || dev->host_mem_size >= min)
1699                                 return 0;
1700                         nvme_free_host_mem(dev);
1701                 }
1702         }
1703
1704         return -ENOMEM;
1705 }
1706
1707 static int nvme_setup_host_mem(struct nvme_dev *dev)
1708 {
1709         u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1710         u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1711         u64 min = (u64)dev->ctrl.hmmin * 4096;
1712         u32 enable_bits = NVME_HOST_MEM_ENABLE;
1713         int ret = 0;
1714
1715         preferred = min(preferred, max);
1716         if (min > max) {
1717                 dev_warn(dev->ctrl.device,
1718                         "min host memory (%lld MiB) above limit (%d MiB).\n",
1719                         min >> ilog2(SZ_1M), max_host_mem_size_mb);
1720                 nvme_free_host_mem(dev);
1721                 return 0;
1722         }
1723
1724         /*
1725          * If we already have a buffer allocated check if we can reuse it.
1726          */
1727         if (dev->host_mem_descs) {
1728                 if (dev->host_mem_size >= min)
1729                         enable_bits |= NVME_HOST_MEM_RETURN;
1730                 else
1731                         nvme_free_host_mem(dev);
1732         }
1733
1734         if (!dev->host_mem_descs) {
1735                 if (nvme_alloc_host_mem(dev, min, preferred)) {
1736                         dev_warn(dev->ctrl.device,
1737                                 "failed to allocate host memory buffer.\n");
1738                         return 0; /* controller must work without HMB */
1739                 }
1740
1741                 dev_info(dev->ctrl.device,
1742                         "allocated %lld MiB host memory buffer.\n",
1743                         dev->host_mem_size >> ilog2(SZ_1M));
1744         }
1745
1746         ret = nvme_set_host_mem(dev, enable_bits);
1747         if (ret)
1748                 nvme_free_host_mem(dev);
1749         return ret;
1750 }
1751
1752 static int nvme_setup_io_queues(struct nvme_dev *dev)
1753 {
1754         struct nvme_queue *adminq = dev->queues[0];
1755         struct pci_dev *pdev = to_pci_dev(dev->dev);
1756         int result, nr_io_queues;
1757         unsigned long size;
1758
1759         nr_io_queues = num_present_cpus();
1760         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1761         if (result < 0)
1762                 return result;
1763
1764         if (nr_io_queues == 0)
1765                 return 0;
1766
1767         if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1768                 result = nvme_cmb_qdepth(dev, nr_io_queues,
1769                                 sizeof(struct nvme_command));
1770                 if (result > 0)
1771                         dev->q_depth = result;
1772                 else
1773                         nvme_release_cmb(dev);
1774         }
1775
1776         do {
1777                 size = db_bar_size(dev, nr_io_queues);
1778                 result = nvme_remap_bar(dev, size);
1779                 if (!result)
1780                         break;
1781                 if (!--nr_io_queues)
1782                         return -ENOMEM;
1783         } while (1);
1784         adminq->q_db = dev->dbs;
1785
1786         /* Deregister the admin queue's interrupt */
1787         pci_free_irq(pdev, 0, adminq);
1788
1789         /*
1790          * If we enable msix early due to not intx, disable it again before
1791          * setting up the full range we need.
1792          */
1793         pci_free_irq_vectors(pdev);
1794         nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1795                         PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1796         if (nr_io_queues <= 0)
1797                 return -EIO;
1798         dev->max_qid = nr_io_queues;
1799
1800         /*
1801          * Should investigate if there's a performance win from allocating
1802          * more queues than interrupt vectors; it might allow the submission
1803          * path to scale better, even if the receive path is limited by the
1804          * number of interrupts.
1805          */
1806
1807         result = queue_request_irq(adminq);
1808         if (result) {
1809                 adminq->cq_vector = -1;
1810                 return result;
1811         }
1812         return nvme_create_io_queues(dev);
1813 }
1814
1815 static void nvme_del_queue_end(struct request *req, blk_status_t error)
1816 {
1817         struct nvme_queue *nvmeq = req->end_io_data;
1818
1819         blk_mq_free_request(req);
1820         complete(&nvmeq->dev->ioq_wait);
1821 }
1822
1823 static void nvme_del_cq_end(struct request *req, blk_status_t error)
1824 {
1825         struct nvme_queue *nvmeq = req->end_io_data;
1826
1827         if (!error) {
1828                 unsigned long flags;
1829
1830                 /*
1831                  * We might be called with the AQ q_lock held
1832                  * and the I/O queue q_lock should always
1833                  * nest inside the AQ one.
1834                  */
1835                 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1836                                         SINGLE_DEPTH_NESTING);
1837                 nvme_process_cq(nvmeq);
1838                 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1839         }
1840
1841         nvme_del_queue_end(req, error);
1842 }
1843
1844 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1845 {
1846         struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1847         struct request *req;
1848         struct nvme_command cmd;
1849
1850         memset(&cmd, 0, sizeof(cmd));
1851         cmd.delete_queue.opcode = opcode;
1852         cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1853
1854         req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1855         if (IS_ERR(req))
1856                 return PTR_ERR(req);
1857
1858         req->timeout = ADMIN_TIMEOUT;
1859         req->end_io_data = nvmeq;
1860
1861         blk_execute_rq_nowait(q, NULL, req, false,
1862                         opcode == nvme_admin_delete_cq ?
1863                                 nvme_del_cq_end : nvme_del_queue_end);
1864         return 0;
1865 }
1866
1867 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
1868 {
1869         int pass;
1870         unsigned long timeout;
1871         u8 opcode = nvme_admin_delete_sq;
1872
1873         for (pass = 0; pass < 2; pass++) {
1874                 int sent = 0, i = queues;
1875
1876                 reinit_completion(&dev->ioq_wait);
1877  retry:
1878                 timeout = ADMIN_TIMEOUT;
1879                 for (; i > 0; i--, sent++)
1880                         if (nvme_delete_queue(dev->queues[i], opcode))
1881                                 break;
1882
1883                 while (sent--) {
1884                         timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1885                         if (timeout == 0)
1886                                 return;
1887                         if (i)
1888                                 goto retry;
1889                 }
1890                 opcode = nvme_admin_delete_cq;
1891         }
1892 }
1893
1894 /*
1895  * Return: error value if an error occurred setting up the queues or calling
1896  * Identify Device.  0 if these succeeded, even if adding some of the
1897  * namespaces failed.  At the moment, these failures are silent.  TBD which
1898  * failures should be reported.
1899  */
1900 static int nvme_dev_add(struct nvme_dev *dev)
1901 {
1902         if (!dev->ctrl.tagset) {
1903                 dev->tagset.ops = &nvme_mq_ops;
1904                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1905                 dev->tagset.timeout = NVME_IO_TIMEOUT;
1906                 dev->tagset.numa_node = dev_to_node(dev->dev);
1907                 dev->tagset.queue_depth =
1908                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1909                 dev->tagset.cmd_size = nvme_cmd_size(dev);
1910                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1911                 dev->tagset.driver_data = dev;
1912
1913                 if (blk_mq_alloc_tag_set(&dev->tagset))
1914                         return 0;
1915                 dev->ctrl.tagset = &dev->tagset;
1916
1917                 nvme_dbbuf_set(dev);
1918         } else {
1919                 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1920
1921                 /* Free previously allocated queues that are no longer usable */
1922                 nvme_free_queues(dev, dev->online_queues);
1923         }
1924
1925         return 0;
1926 }
1927
1928 static int nvme_pci_enable(struct nvme_dev *dev)
1929 {
1930         int result = -ENOMEM;
1931         struct pci_dev *pdev = to_pci_dev(dev->dev);
1932
1933         if (pci_enable_device_mem(pdev))
1934                 return result;
1935
1936         pci_set_master(pdev);
1937
1938         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1939             dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1940                 goto disable;
1941
1942         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1943                 result = -ENODEV;
1944                 goto disable;
1945         }
1946
1947         /*
1948          * Some devices and/or platforms don't advertise or work with INTx
1949          * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1950          * adjust this later.
1951          */
1952         result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1953         if (result < 0)
1954                 return result;
1955
1956         dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1957
1958         dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
1959                                 io_queue_depth);
1960         dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
1961         dev->dbs = dev->bar + 4096;
1962
1963         /*
1964          * Temporary fix for the Apple controller found in the MacBook8,1 and
1965          * some MacBook7,1 to avoid controller resets and data loss.
1966          */
1967         if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1968                 dev->q_depth = 2;
1969                 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
1970                         "set queue depth=%u to work around controller resets\n",
1971                         dev->q_depth);
1972         } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
1973                    (pdev->device == 0xa821 || pdev->device == 0xa822) &&
1974                    NVME_CAP_MQES(dev->ctrl.cap) == 0) {
1975                 dev->q_depth = 64;
1976                 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
1977                         "set queue depth=%u\n", dev->q_depth);
1978         }
1979
1980         /*
1981          * CMBs can currently only exist on >=1.2 PCIe devices. We only
1982          * populate sysfs if a CMB is implemented. Since nvme_dev_attrs_group
1983          * has no name we can pass NULL as final argument to
1984          * sysfs_add_file_to_group.
1985          */
1986
1987         if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
1988                 dev->cmb = nvme_map_cmb(dev);
1989                 if (dev->cmb) {
1990                         if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1991                                                     &dev_attr_cmb.attr, NULL))
1992                                 dev_warn(dev->ctrl.device,
1993                                          "failed to add sysfs attribute for CMB\n");
1994                 }
1995         }
1996
1997         pci_enable_pcie_error_reporting(pdev);
1998         pci_save_state(pdev);
1999         return 0;
2000
2001  disable:
2002         pci_disable_device(pdev);
2003         return result;
2004 }
2005
2006 static void nvme_dev_unmap(struct nvme_dev *dev)
2007 {
2008         if (dev->bar)
2009                 iounmap(dev->bar);
2010         pci_release_mem_regions(to_pci_dev(dev->dev));
2011 }
2012
2013 static void nvme_pci_disable(struct nvme_dev *dev)
2014 {
2015         struct pci_dev *pdev = to_pci_dev(dev->dev);
2016
2017         nvme_release_cmb(dev);
2018         pci_free_irq_vectors(pdev);
2019
2020         if (pci_is_enabled(pdev)) {
2021                 pci_disable_pcie_error_reporting(pdev);
2022                 pci_disable_device(pdev);
2023         }
2024 }
2025
2026 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2027 {
2028         int i, queues;
2029         bool dead = true;
2030         struct pci_dev *pdev = to_pci_dev(dev->dev);
2031
2032         mutex_lock(&dev->shutdown_lock);
2033         if (pci_is_enabled(pdev)) {
2034                 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2035
2036                 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2037                     dev->ctrl.state == NVME_CTRL_RESETTING)
2038                         nvme_start_freeze(&dev->ctrl);
2039                 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2040                         pdev->error_state  != pci_channel_io_normal);
2041         }
2042
2043         /*
2044          * Give the controller a chance to complete all entered requests if
2045          * doing a safe shutdown.
2046          */
2047         if (!dead) {
2048                 if (shutdown)
2049                         nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2050
2051                 /*
2052                  * If the controller is still alive tell it to stop using the
2053                  * host memory buffer.  In theory the shutdown / reset should
2054                  * make sure that it doesn't access the host memoery anymore,
2055                  * but I'd rather be safe than sorry..
2056                  */
2057                 if (dev->host_mem_descs)
2058                         nvme_set_host_mem(dev, 0);
2059
2060         }
2061         nvme_stop_queues(&dev->ctrl);
2062
2063         queues = dev->online_queues - 1;
2064         for (i = dev->ctrl.queue_count - 1; i > 0; i--)
2065                 nvme_suspend_queue(dev->queues[i]);
2066
2067         if (dead) {
2068                 /* A device might become IO incapable very soon during
2069                  * probe, before the admin queue is configured. Thus,
2070                  * queue_count can be 0 here.
2071                  */
2072                 if (dev->ctrl.queue_count)
2073                         nvme_suspend_queue(dev->queues[0]);
2074         } else {
2075                 nvme_disable_io_queues(dev, queues);
2076                 nvme_disable_admin_queue(dev, shutdown);
2077         }
2078         nvme_pci_disable(dev);
2079
2080         blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2081         blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2082
2083         /*
2084          * The driver will not be starting up queues again if shutting down so
2085          * must flush all entered requests to their failed completion to avoid
2086          * deadlocking blk-mq hot-cpu notifier.
2087          */
2088         if (shutdown)
2089                 nvme_start_queues(&dev->ctrl);
2090         mutex_unlock(&dev->shutdown_lock);
2091 }
2092
2093 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2094 {
2095         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2096                                                 PAGE_SIZE, PAGE_SIZE, 0);
2097         if (!dev->prp_page_pool)
2098                 return -ENOMEM;
2099
2100         /* Optimisation for I/Os between 4k and 128k */
2101         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2102                                                 256, 256, 0);
2103         if (!dev->prp_small_pool) {
2104                 dma_pool_destroy(dev->prp_page_pool);
2105                 return -ENOMEM;
2106         }
2107         return 0;
2108 }
2109
2110 static void nvme_release_prp_pools(struct nvme_dev *dev)
2111 {
2112         dma_pool_destroy(dev->prp_page_pool);
2113         dma_pool_destroy(dev->prp_small_pool);
2114 }
2115
2116 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2117 {
2118         struct nvme_dev *dev = to_nvme_dev(ctrl);
2119
2120         nvme_dbbuf_dma_free(dev);
2121         put_device(dev->dev);
2122         if (dev->tagset.tags)
2123                 blk_mq_free_tag_set(&dev->tagset);
2124         if (dev->ctrl.admin_q)
2125                 blk_put_queue(dev->ctrl.admin_q);
2126         kfree(dev->queues);
2127         free_opal_dev(dev->ctrl.opal_dev);
2128         kfree(dev);
2129 }
2130
2131 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2132 {
2133         dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
2134
2135         kref_get(&dev->ctrl.kref);
2136         nvme_dev_disable(dev, false);
2137         if (!schedule_work(&dev->remove_work))
2138                 nvme_put_ctrl(&dev->ctrl);
2139 }
2140
2141 static void nvme_reset_work(struct work_struct *work)
2142 {
2143         struct nvme_dev *dev =
2144                 container_of(work, struct nvme_dev, ctrl.reset_work);
2145         bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2146         int result = -ENODEV;
2147
2148         if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
2149                 goto out;
2150
2151         /*
2152          * If we're called to reset a live controller first shut it down before
2153          * moving on.
2154          */
2155         if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2156                 nvme_dev_disable(dev, false);
2157
2158         result = nvme_pci_enable(dev);
2159         if (result)
2160                 goto out;
2161
2162         result = nvme_pci_configure_admin_queue(dev);
2163         if (result)
2164                 goto out;
2165
2166         result = nvme_alloc_admin_tags(dev);
2167         if (result)
2168                 goto out;
2169
2170         result = nvme_init_identify(&dev->ctrl);
2171         if (result)
2172                 goto out;
2173
2174         if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2175                 if (!dev->ctrl.opal_dev)
2176                         dev->ctrl.opal_dev =
2177                                 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2178                 else if (was_suspend)
2179                         opal_unlock_from_suspend(dev->ctrl.opal_dev);
2180         } else {
2181                 free_opal_dev(dev->ctrl.opal_dev);
2182                 dev->ctrl.opal_dev = NULL;
2183         }
2184
2185         if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2186                 result = nvme_dbbuf_dma_alloc(dev);
2187                 if (result)
2188                         dev_warn(dev->dev,
2189                                  "unable to allocate dma for dbbuf\n");
2190         }
2191
2192         if (dev->ctrl.hmpre) {
2193                 result = nvme_setup_host_mem(dev);
2194                 if (result < 0)
2195                         goto out;
2196         }
2197
2198         result = nvme_setup_io_queues(dev);
2199         if (result)
2200                 goto out;
2201
2202         /*
2203          * Keep the controller around but remove all namespaces if we don't have
2204          * any working I/O queue.
2205          */
2206         if (dev->online_queues < 2) {
2207                 dev_warn(dev->ctrl.device, "IO queues not created\n");
2208                 nvme_kill_queues(&dev->ctrl);
2209                 nvme_remove_namespaces(&dev->ctrl);
2210         } else {
2211                 nvme_start_queues(&dev->ctrl);
2212                 nvme_wait_freeze(&dev->ctrl);
2213                 nvme_dev_add(dev);
2214                 nvme_unfreeze(&dev->ctrl);
2215         }
2216
2217         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2218                 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
2219                 goto out;
2220         }
2221
2222         nvme_start_ctrl(&dev->ctrl);
2223         return;
2224
2225  out:
2226         nvme_remove_dead_ctrl(dev, result);
2227 }
2228
2229 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2230 {
2231         struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2232         struct pci_dev *pdev = to_pci_dev(dev->dev);
2233
2234         nvme_kill_queues(&dev->ctrl);
2235         if (pci_get_drvdata(pdev))
2236                 device_release_driver(&pdev->dev);
2237         nvme_put_ctrl(&dev->ctrl);
2238 }
2239
2240 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2241 {
2242         *val = readl(to_nvme_dev(ctrl)->bar + off);
2243         return 0;
2244 }
2245
2246 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2247 {
2248         writel(val, to_nvme_dev(ctrl)->bar + off);
2249         return 0;
2250 }
2251
2252 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2253 {
2254         *val = readq(to_nvme_dev(ctrl)->bar + off);
2255         return 0;
2256 }
2257
2258 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2259         .name                   = "pcie",
2260         .module                 = THIS_MODULE,
2261         .flags                  = NVME_F_METADATA_SUPPORTED,
2262         .reg_read32             = nvme_pci_reg_read32,
2263         .reg_write32            = nvme_pci_reg_write32,
2264         .reg_read64             = nvme_pci_reg_read64,
2265         .free_ctrl              = nvme_pci_free_ctrl,
2266         .submit_async_event     = nvme_pci_submit_async_event,
2267 };
2268
2269 static int nvme_dev_map(struct nvme_dev *dev)
2270 {
2271         struct pci_dev *pdev = to_pci_dev(dev->dev);
2272
2273         if (pci_request_mem_regions(pdev, "nvme"))
2274                 return -ENODEV;
2275
2276         if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2277                 goto release;
2278
2279         return 0;
2280   release:
2281         pci_release_mem_regions(pdev);
2282         return -ENODEV;
2283 }
2284
2285 static unsigned long check_dell_samsung_bug(struct pci_dev *pdev)
2286 {
2287         if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2288                 /*
2289                  * Several Samsung devices seem to drop off the PCIe bus
2290                  * randomly when APST is on and uses the deepest sleep state.
2291                  * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2292                  * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2293                  * 950 PRO 256GB", but it seems to be restricted to two Dell
2294                  * laptops.
2295                  */
2296                 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2297                     (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2298                      dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2299                         return NVME_QUIRK_NO_DEEPEST_PS;
2300         }
2301
2302         return 0;
2303 }
2304
2305 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2306 {
2307         int node, result = -ENOMEM;
2308         struct nvme_dev *dev;
2309         unsigned long quirks = id->driver_data;
2310
2311         node = dev_to_node(&pdev->dev);
2312         if (node == NUMA_NO_NODE)
2313                 set_dev_node(&pdev->dev, first_memory_node);
2314
2315         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2316         if (!dev)
2317                 return -ENOMEM;
2318         dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2319                                                         GFP_KERNEL, node);
2320         if (!dev->queues)
2321                 goto free;
2322
2323         dev->dev = get_device(&pdev->dev);
2324         pci_set_drvdata(pdev, dev);
2325
2326         result = nvme_dev_map(dev);
2327         if (result)
2328                 goto put_pci;
2329
2330         INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2331         INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2332         mutex_init(&dev->shutdown_lock);
2333         init_completion(&dev->ioq_wait);
2334
2335         result = nvme_setup_prp_pools(dev);
2336         if (result)
2337                 goto unmap;
2338
2339         quirks |= check_dell_samsung_bug(pdev);
2340
2341         result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2342                         quirks);
2343         if (result)
2344                 goto release_pools;
2345
2346         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING);
2347         dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2348
2349         queue_work(nvme_wq, &dev->ctrl.reset_work);
2350         return 0;
2351
2352  release_pools:
2353         nvme_release_prp_pools(dev);
2354  unmap:
2355         nvme_dev_unmap(dev);
2356  put_pci:
2357         put_device(dev->dev);
2358  free:
2359         kfree(dev->queues);
2360         kfree(dev);
2361         return result;
2362 }
2363
2364 static void nvme_reset_prepare(struct pci_dev *pdev)
2365 {
2366         struct nvme_dev *dev = pci_get_drvdata(pdev);
2367         nvme_dev_disable(dev, false);
2368 }
2369
2370 static void nvme_reset_done(struct pci_dev *pdev)
2371 {
2372         struct nvme_dev *dev = pci_get_drvdata(pdev);
2373         nvme_reset_ctrl(&dev->ctrl);
2374 }
2375
2376 static void nvme_shutdown(struct pci_dev *pdev)
2377 {
2378         struct nvme_dev *dev = pci_get_drvdata(pdev);
2379         nvme_dev_disable(dev, true);
2380 }
2381
2382 /*
2383  * The driver's remove may be called on a device in a partially initialized
2384  * state. This function must not have any dependencies on the device state in
2385  * order to proceed.
2386  */
2387 static void nvme_remove(struct pci_dev *pdev)
2388 {
2389         struct nvme_dev *dev = pci_get_drvdata(pdev);
2390
2391         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2392
2393         cancel_work_sync(&dev->ctrl.reset_work);
2394         pci_set_drvdata(pdev, NULL);
2395
2396         if (!pci_device_is_present(pdev)) {
2397                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2398                 nvme_dev_disable(dev, false);
2399         }
2400
2401         flush_work(&dev->ctrl.reset_work);
2402         nvme_stop_ctrl(&dev->ctrl);
2403         nvme_remove_namespaces(&dev->ctrl);
2404         nvme_dev_disable(dev, true);
2405         nvme_free_host_mem(dev);
2406         nvme_dev_remove_admin(dev);
2407         nvme_free_queues(dev, 0);
2408         nvme_uninit_ctrl(&dev->ctrl);
2409         nvme_release_prp_pools(dev);
2410         nvme_dev_unmap(dev);
2411         nvme_put_ctrl(&dev->ctrl);
2412 }
2413
2414 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2415 {
2416         int ret = 0;
2417
2418         if (numvfs == 0) {
2419                 if (pci_vfs_assigned(pdev)) {
2420                         dev_warn(&pdev->dev,
2421                                 "Cannot disable SR-IOV VFs while assigned\n");
2422                         return -EPERM;
2423                 }
2424                 pci_disable_sriov(pdev);
2425                 return 0;
2426         }
2427
2428         ret = pci_enable_sriov(pdev, numvfs);
2429         return ret ? ret : numvfs;
2430 }
2431
2432 #ifdef CONFIG_PM_SLEEP
2433 static int nvme_suspend(struct device *dev)
2434 {
2435         struct pci_dev *pdev = to_pci_dev(dev);
2436         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2437
2438         nvme_dev_disable(ndev, true);
2439         return 0;
2440 }
2441
2442 static int nvme_resume(struct device *dev)
2443 {
2444         struct pci_dev *pdev = to_pci_dev(dev);
2445         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2446
2447         nvme_reset_ctrl(&ndev->ctrl);
2448         return 0;
2449 }
2450 #endif
2451
2452 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2453
2454 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2455                                                 pci_channel_state_t state)
2456 {
2457         struct nvme_dev *dev = pci_get_drvdata(pdev);
2458
2459         /*
2460          * A frozen channel requires a reset. When detected, this method will
2461          * shutdown the controller to quiesce. The controller will be restarted
2462          * after the slot reset through driver's slot_reset callback.
2463          */
2464         switch (state) {
2465         case pci_channel_io_normal:
2466                 return PCI_ERS_RESULT_CAN_RECOVER;
2467         case pci_channel_io_frozen:
2468                 dev_warn(dev->ctrl.device,
2469                         "frozen state error detected, reset controller\n");
2470                 nvme_dev_disable(dev, false);
2471                 return PCI_ERS_RESULT_NEED_RESET;
2472         case pci_channel_io_perm_failure:
2473                 dev_warn(dev->ctrl.device,
2474                         "failure state error detected, request disconnect\n");
2475                 return PCI_ERS_RESULT_DISCONNECT;
2476         }
2477         return PCI_ERS_RESULT_NEED_RESET;
2478 }
2479
2480 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2481 {
2482         struct nvme_dev *dev = pci_get_drvdata(pdev);
2483
2484         dev_info(dev->ctrl.device, "restart after slot reset\n");
2485         pci_restore_state(pdev);
2486         nvme_reset_ctrl(&dev->ctrl);
2487         return PCI_ERS_RESULT_RECOVERED;
2488 }
2489
2490 static void nvme_error_resume(struct pci_dev *pdev)
2491 {
2492         pci_cleanup_aer_uncorrect_error_status(pdev);
2493 }
2494
2495 static const struct pci_error_handlers nvme_err_handler = {
2496         .error_detected = nvme_error_detected,
2497         .slot_reset     = nvme_slot_reset,
2498         .resume         = nvme_error_resume,
2499         .reset_prepare  = nvme_reset_prepare,
2500         .reset_done     = nvme_reset_done,
2501 };
2502
2503 static const struct pci_device_id nvme_id_table[] = {
2504         { PCI_VDEVICE(INTEL, 0x0953),
2505                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2506                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2507         { PCI_VDEVICE(INTEL, 0x0a53),
2508                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2509                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2510         { PCI_VDEVICE(INTEL, 0x0a54),
2511                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2512                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2513         { PCI_VDEVICE(INTEL, 0x0a55),
2514                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2515                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2516         { PCI_VDEVICE(INTEL, 0xf1a5),   /* Intel 600P/P3100 */
2517                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS },
2518         { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
2519                 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2520         { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
2521                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2522         { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
2523                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2524         { PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
2525                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2526         { PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
2527                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2528         { PCI_DEVICE(0x1d1d, 0x1f1f),   /* LighNVM qemu device */
2529                 .driver_data = NVME_QUIRK_LIGHTNVM, },
2530         { PCI_DEVICE(0x1d1d, 0x2807),   /* CNEX WL */
2531                 .driver_data = NVME_QUIRK_LIGHTNVM, },
2532         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2533         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2534         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2535         { 0, }
2536 };
2537 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2538
2539 static struct pci_driver nvme_driver = {
2540         .name           = "nvme",
2541         .id_table       = nvme_id_table,
2542         .probe          = nvme_probe,
2543         .remove         = nvme_remove,
2544         .shutdown       = nvme_shutdown,
2545         .driver         = {
2546                 .pm     = &nvme_dev_pm_ops,
2547         },
2548         .sriov_configure = nvme_pci_sriov_configure,
2549         .err_handler    = &nvme_err_handler,
2550 };
2551
2552 static int __init nvme_init(void)
2553 {
2554         return pci_register_driver(&nvme_driver);
2555 }
2556
2557 static void __exit nvme_exit(void)
2558 {
2559         pci_unregister_driver(&nvme_driver);
2560         _nvme_check_size();
2561 }
2562
2563 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2564 MODULE_LICENSE("GPL");
2565 MODULE_VERSION("1.0");
2566 module_init(nvme_init);
2567 module_exit(nvme_exit);