nvme-pci: propagate (some) errors from host memory buffer setup
[linux-2.6-block.git] / drivers / nvme / host / pci.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/dmi.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/mm.h>
25 #include <linux/module.h>
26 #include <linux/mutex.h>
27 #include <linux/pci.h>
28 #include <linux/poison.h>
29 #include <linux/t10-pi.h>
30 #include <linux/timer.h>
31 #include <linux/types.h>
32 #include <linux/io-64-nonatomic-lo-hi.h>
33 #include <asm/unaligned.h>
34 #include <linux/sed-opal.h>
35
36 #include "nvme.h"
37
38 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
39 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
40
41 /*
42  * We handle AEN commands ourselves and don't even let the
43  * block layer know about them.
44  */
45 #define NVME_AQ_BLKMQ_DEPTH     (NVME_AQ_DEPTH - NVME_NR_AERS)
46
47 static int use_threaded_interrupts;
48 module_param(use_threaded_interrupts, int, 0);
49
50 static bool use_cmb_sqes = true;
51 module_param(use_cmb_sqes, bool, 0644);
52 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
53
54 static unsigned int max_host_mem_size_mb = 128;
55 module_param(max_host_mem_size_mb, uint, 0444);
56 MODULE_PARM_DESC(max_host_mem_size_mb,
57         "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
58
59 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
60 static const struct kernel_param_ops io_queue_depth_ops = {
61         .set = io_queue_depth_set,
62         .get = param_get_int,
63 };
64
65 static int io_queue_depth = 1024;
66 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
67 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
68
69 struct nvme_dev;
70 struct nvme_queue;
71
72 static void nvme_process_cq(struct nvme_queue *nvmeq);
73 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
74
75 /*
76  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
77  */
78 struct nvme_dev {
79         struct nvme_queue **queues;
80         struct blk_mq_tag_set tagset;
81         struct blk_mq_tag_set admin_tagset;
82         u32 __iomem *dbs;
83         struct device *dev;
84         struct dma_pool *prp_page_pool;
85         struct dma_pool *prp_small_pool;
86         unsigned online_queues;
87         unsigned max_qid;
88         int q_depth;
89         u32 db_stride;
90         void __iomem *bar;
91         unsigned long bar_mapped_size;
92         struct work_struct remove_work;
93         struct mutex shutdown_lock;
94         bool subsystem;
95         void __iomem *cmb;
96         dma_addr_t cmb_dma_addr;
97         u64 cmb_size;
98         u32 cmbsz;
99         u32 cmbloc;
100         struct nvme_ctrl ctrl;
101         struct completion ioq_wait;
102
103         /* shadow doorbell buffer support: */
104         u32 *dbbuf_dbs;
105         dma_addr_t dbbuf_dbs_dma_addr;
106         u32 *dbbuf_eis;
107         dma_addr_t dbbuf_eis_dma_addr;
108
109         /* host memory buffer support: */
110         u64 host_mem_size;
111         u32 nr_host_mem_descs;
112         dma_addr_t host_mem_descs_dma;
113         struct nvme_host_mem_buf_desc *host_mem_descs;
114         void **host_mem_desc_bufs;
115 };
116
117 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
118 {
119         int n = 0, ret;
120
121         ret = kstrtoint(val, 10, &n);
122         if (ret != 0 || n < 2)
123                 return -EINVAL;
124
125         return param_set_int(val, kp);
126 }
127
128 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
129 {
130         return qid * 2 * stride;
131 }
132
133 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
134 {
135         return (qid * 2 + 1) * stride;
136 }
137
138 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
139 {
140         return container_of(ctrl, struct nvme_dev, ctrl);
141 }
142
143 /*
144  * An NVM Express queue.  Each device has at least two (one for admin
145  * commands and one for I/O commands).
146  */
147 struct nvme_queue {
148         struct device *q_dmadev;
149         struct nvme_dev *dev;
150         spinlock_t q_lock;
151         struct nvme_command *sq_cmds;
152         struct nvme_command __iomem *sq_cmds_io;
153         volatile struct nvme_completion *cqes;
154         struct blk_mq_tags **tags;
155         dma_addr_t sq_dma_addr;
156         dma_addr_t cq_dma_addr;
157         u32 __iomem *q_db;
158         u16 q_depth;
159         s16 cq_vector;
160         u16 sq_tail;
161         u16 cq_head;
162         u16 qid;
163         u8 cq_phase;
164         u8 cqe_seen;
165         u32 *dbbuf_sq_db;
166         u32 *dbbuf_cq_db;
167         u32 *dbbuf_sq_ei;
168         u32 *dbbuf_cq_ei;
169 };
170
171 /*
172  * The nvme_iod describes the data in an I/O, including the list of PRP
173  * entries.  You can't see it in this data structure because C doesn't let
174  * me express that.  Use nvme_init_iod to ensure there's enough space
175  * allocated to store the PRP list.
176  */
177 struct nvme_iod {
178         struct nvme_request req;
179         struct nvme_queue *nvmeq;
180         int aborted;
181         int npages;             /* In the PRP list. 0 means small pool in use */
182         int nents;              /* Used in scatterlist */
183         int length;             /* Of data, in bytes */
184         dma_addr_t first_dma;
185         struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
186         struct scatterlist *sg;
187         struct scatterlist inline_sg[0];
188 };
189
190 /*
191  * Check we didin't inadvertently grow the command struct
192  */
193 static inline void _nvme_check_size(void)
194 {
195         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
196         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
197         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
198         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
199         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
200         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
201         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
202         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
203         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
204         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
205         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
206         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
207         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
208 }
209
210 static inline unsigned int nvme_dbbuf_size(u32 stride)
211 {
212         return ((num_possible_cpus() + 1) * 8 * stride);
213 }
214
215 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
216 {
217         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
218
219         if (dev->dbbuf_dbs)
220                 return 0;
221
222         dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
223                                             &dev->dbbuf_dbs_dma_addr,
224                                             GFP_KERNEL);
225         if (!dev->dbbuf_dbs)
226                 return -ENOMEM;
227         dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
228                                             &dev->dbbuf_eis_dma_addr,
229                                             GFP_KERNEL);
230         if (!dev->dbbuf_eis) {
231                 dma_free_coherent(dev->dev, mem_size,
232                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
233                 dev->dbbuf_dbs = NULL;
234                 return -ENOMEM;
235         }
236
237         return 0;
238 }
239
240 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
241 {
242         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
243
244         if (dev->dbbuf_dbs) {
245                 dma_free_coherent(dev->dev, mem_size,
246                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
247                 dev->dbbuf_dbs = NULL;
248         }
249         if (dev->dbbuf_eis) {
250                 dma_free_coherent(dev->dev, mem_size,
251                                   dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
252                 dev->dbbuf_eis = NULL;
253         }
254 }
255
256 static void nvme_dbbuf_init(struct nvme_dev *dev,
257                             struct nvme_queue *nvmeq, int qid)
258 {
259         if (!dev->dbbuf_dbs || !qid)
260                 return;
261
262         nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
263         nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
264         nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
265         nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
266 }
267
268 static void nvme_dbbuf_set(struct nvme_dev *dev)
269 {
270         struct nvme_command c;
271
272         if (!dev->dbbuf_dbs)
273                 return;
274
275         memset(&c, 0, sizeof(c));
276         c.dbbuf.opcode = nvme_admin_dbbuf;
277         c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
278         c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
279
280         if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
281                 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
282                 /* Free memory and continue on */
283                 nvme_dbbuf_dma_free(dev);
284         }
285 }
286
287 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
288 {
289         return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
290 }
291
292 /* Update dbbuf and return true if an MMIO is required */
293 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
294                                               volatile u32 *dbbuf_ei)
295 {
296         if (dbbuf_db) {
297                 u16 old_value;
298
299                 /*
300                  * Ensure that the queue is written before updating
301                  * the doorbell in memory
302                  */
303                 wmb();
304
305                 old_value = *dbbuf_db;
306                 *dbbuf_db = value;
307
308                 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
309                         return false;
310         }
311
312         return true;
313 }
314
315 /*
316  * Max size of iod being embedded in the request payload
317  */
318 #define NVME_INT_PAGES          2
319 #define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->ctrl.page_size)
320
321 /*
322  * Will slightly overestimate the number of pages needed.  This is OK
323  * as it only leads to a small amount of wasted memory for the lifetime of
324  * the I/O.
325  */
326 static int nvme_npages(unsigned size, struct nvme_dev *dev)
327 {
328         unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
329                                       dev->ctrl.page_size);
330         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
331 }
332
333 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
334                 unsigned int size, unsigned int nseg)
335 {
336         return sizeof(__le64 *) * nvme_npages(size, dev) +
337                         sizeof(struct scatterlist) * nseg;
338 }
339
340 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
341 {
342         return sizeof(struct nvme_iod) +
343                 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
344 }
345
346 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
347                                 unsigned int hctx_idx)
348 {
349         struct nvme_dev *dev = data;
350         struct nvme_queue *nvmeq = dev->queues[0];
351
352         WARN_ON(hctx_idx != 0);
353         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
354         WARN_ON(nvmeq->tags);
355
356         hctx->driver_data = nvmeq;
357         nvmeq->tags = &dev->admin_tagset.tags[0];
358         return 0;
359 }
360
361 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
362 {
363         struct nvme_queue *nvmeq = hctx->driver_data;
364
365         nvmeq->tags = NULL;
366 }
367
368 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
369                           unsigned int hctx_idx)
370 {
371         struct nvme_dev *dev = data;
372         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
373
374         if (!nvmeq->tags)
375                 nvmeq->tags = &dev->tagset.tags[hctx_idx];
376
377         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
378         hctx->driver_data = nvmeq;
379         return 0;
380 }
381
382 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
383                 unsigned int hctx_idx, unsigned int numa_node)
384 {
385         struct nvme_dev *dev = set->driver_data;
386         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
387         int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
388         struct nvme_queue *nvmeq = dev->queues[queue_idx];
389
390         BUG_ON(!nvmeq);
391         iod->nvmeq = nvmeq;
392         return 0;
393 }
394
395 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
396 {
397         struct nvme_dev *dev = set->driver_data;
398
399         return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
400 }
401
402 /**
403  * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
404  * @nvmeq: The queue to use
405  * @cmd: The command to send
406  *
407  * Safe to use from interrupt context
408  */
409 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
410                                                 struct nvme_command *cmd)
411 {
412         u16 tail = nvmeq->sq_tail;
413
414         if (nvmeq->sq_cmds_io)
415                 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
416         else
417                 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
418
419         if (++tail == nvmeq->q_depth)
420                 tail = 0;
421         if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db,
422                                               nvmeq->dbbuf_sq_ei))
423                 writel(tail, nvmeq->q_db);
424         nvmeq->sq_tail = tail;
425 }
426
427 static __le64 **iod_list(struct request *req)
428 {
429         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
430         return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
431 }
432
433 static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
434 {
435         struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
436         int nseg = blk_rq_nr_phys_segments(rq);
437         unsigned int size = blk_rq_payload_bytes(rq);
438
439         if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
440                 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
441                 if (!iod->sg)
442                         return BLK_STS_RESOURCE;
443         } else {
444                 iod->sg = iod->inline_sg;
445         }
446
447         iod->aborted = 0;
448         iod->npages = -1;
449         iod->nents = 0;
450         iod->length = size;
451
452         return BLK_STS_OK;
453 }
454
455 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
456 {
457         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
458         const int last_prp = dev->ctrl.page_size / 8 - 1;
459         int i;
460         __le64 **list = iod_list(req);
461         dma_addr_t prp_dma = iod->first_dma;
462
463         if (iod->npages == 0)
464                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
465         for (i = 0; i < iod->npages; i++) {
466                 __le64 *prp_list = list[i];
467                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
468                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
469                 prp_dma = next_prp_dma;
470         }
471
472         if (iod->sg != iod->inline_sg)
473                 kfree(iod->sg);
474 }
475
476 #ifdef CONFIG_BLK_DEV_INTEGRITY
477 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
478 {
479         if (be32_to_cpu(pi->ref_tag) == v)
480                 pi->ref_tag = cpu_to_be32(p);
481 }
482
483 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
484 {
485         if (be32_to_cpu(pi->ref_tag) == p)
486                 pi->ref_tag = cpu_to_be32(v);
487 }
488
489 /**
490  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
491  *
492  * The virtual start sector is the one that was originally submitted by the
493  * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
494  * start sector may be different. Remap protection information to match the
495  * physical LBA on writes, and back to the original seed on reads.
496  *
497  * Type 0 and 3 do not have a ref tag, so no remapping required.
498  */
499 static void nvme_dif_remap(struct request *req,
500                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
501 {
502         struct nvme_ns *ns = req->rq_disk->private_data;
503         struct bio_integrity_payload *bip;
504         struct t10_pi_tuple *pi;
505         void *p, *pmap;
506         u32 i, nlb, ts, phys, virt;
507
508         if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
509                 return;
510
511         bip = bio_integrity(req->bio);
512         if (!bip)
513                 return;
514
515         pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
516
517         p = pmap;
518         virt = bip_get_seed(bip);
519         phys = nvme_block_nr(ns, blk_rq_pos(req));
520         nlb = (blk_rq_bytes(req) >> ns->lba_shift);
521         ts = ns->disk->queue->integrity.tuple_size;
522
523         for (i = 0; i < nlb; i++, virt++, phys++) {
524                 pi = (struct t10_pi_tuple *)p;
525                 dif_swap(phys, virt, pi);
526                 p += ts;
527         }
528         kunmap_atomic(pmap);
529 }
530 #else /* CONFIG_BLK_DEV_INTEGRITY */
531 static void nvme_dif_remap(struct request *req,
532                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
533 {
534 }
535 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
536 {
537 }
538 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
539 {
540 }
541 #endif
542
543 static blk_status_t nvme_setup_prps(struct nvme_dev *dev, struct request *req)
544 {
545         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
546         struct dma_pool *pool;
547         int length = blk_rq_payload_bytes(req);
548         struct scatterlist *sg = iod->sg;
549         int dma_len = sg_dma_len(sg);
550         u64 dma_addr = sg_dma_address(sg);
551         u32 page_size = dev->ctrl.page_size;
552         int offset = dma_addr & (page_size - 1);
553         __le64 *prp_list;
554         __le64 **list = iod_list(req);
555         dma_addr_t prp_dma;
556         int nprps, i;
557
558         length -= (page_size - offset);
559         if (length <= 0) {
560                 iod->first_dma = 0;
561                 return BLK_STS_OK;
562         }
563
564         dma_len -= (page_size - offset);
565         if (dma_len) {
566                 dma_addr += (page_size - offset);
567         } else {
568                 sg = sg_next(sg);
569                 dma_addr = sg_dma_address(sg);
570                 dma_len = sg_dma_len(sg);
571         }
572
573         if (length <= page_size) {
574                 iod->first_dma = dma_addr;
575                 return BLK_STS_OK;
576         }
577
578         nprps = DIV_ROUND_UP(length, page_size);
579         if (nprps <= (256 / 8)) {
580                 pool = dev->prp_small_pool;
581                 iod->npages = 0;
582         } else {
583                 pool = dev->prp_page_pool;
584                 iod->npages = 1;
585         }
586
587         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
588         if (!prp_list) {
589                 iod->first_dma = dma_addr;
590                 iod->npages = -1;
591                 return BLK_STS_RESOURCE;
592         }
593         list[0] = prp_list;
594         iod->first_dma = prp_dma;
595         i = 0;
596         for (;;) {
597                 if (i == page_size >> 3) {
598                         __le64 *old_prp_list = prp_list;
599                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
600                         if (!prp_list)
601                                 return BLK_STS_RESOURCE;
602                         list[iod->npages++] = prp_list;
603                         prp_list[0] = old_prp_list[i - 1];
604                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
605                         i = 1;
606                 }
607                 prp_list[i++] = cpu_to_le64(dma_addr);
608                 dma_len -= page_size;
609                 dma_addr += page_size;
610                 length -= page_size;
611                 if (length <= 0)
612                         break;
613                 if (dma_len > 0)
614                         continue;
615                 if (unlikely(dma_len < 0))
616                         goto bad_sgl;
617                 sg = sg_next(sg);
618                 dma_addr = sg_dma_address(sg);
619                 dma_len = sg_dma_len(sg);
620         }
621
622         return BLK_STS_OK;
623
624  bad_sgl:
625         if (WARN_ONCE(1, "Invalid SGL for payload:%d nents:%d\n",
626                                 blk_rq_payload_bytes(req), iod->nents)) {
627                 for_each_sg(iod->sg, sg, iod->nents, i) {
628                         dma_addr_t phys = sg_phys(sg);
629                         pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
630                                "dma_address:%pad dma_length:%d\n", i, &phys,
631                                         sg->offset, sg->length,
632                                         &sg_dma_address(sg),
633                                         sg_dma_len(sg));
634                 }
635         }
636         return BLK_STS_IOERR;
637
638 }
639
640 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
641                 struct nvme_command *cmnd)
642 {
643         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
644         struct request_queue *q = req->q;
645         enum dma_data_direction dma_dir = rq_data_dir(req) ?
646                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
647         blk_status_t ret = BLK_STS_IOERR;
648
649         sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
650         iod->nents = blk_rq_map_sg(q, req, iod->sg);
651         if (!iod->nents)
652                 goto out;
653
654         ret = BLK_STS_RESOURCE;
655         if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
656                                 DMA_ATTR_NO_WARN))
657                 goto out;
658
659         ret = nvme_setup_prps(dev, req);
660         if (ret != BLK_STS_OK)
661                 goto out_unmap;
662
663         ret = BLK_STS_IOERR;
664         if (blk_integrity_rq(req)) {
665                 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
666                         goto out_unmap;
667
668                 sg_init_table(&iod->meta_sg, 1);
669                 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
670                         goto out_unmap;
671
672                 if (req_op(req) == REQ_OP_WRITE)
673                         nvme_dif_remap(req, nvme_dif_prep);
674
675                 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
676                         goto out_unmap;
677         }
678
679         cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
680         cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
681         if (blk_integrity_rq(req))
682                 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
683         return BLK_STS_OK;
684
685 out_unmap:
686         dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
687 out:
688         return ret;
689 }
690
691 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
692 {
693         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
694         enum dma_data_direction dma_dir = rq_data_dir(req) ?
695                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
696
697         if (iod->nents) {
698                 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
699                 if (blk_integrity_rq(req)) {
700                         if (req_op(req) == REQ_OP_READ)
701                                 nvme_dif_remap(req, nvme_dif_complete);
702                         dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
703                 }
704         }
705
706         nvme_cleanup_cmd(req);
707         nvme_free_iod(dev, req);
708 }
709
710 /*
711  * NOTE: ns is NULL when called on the admin queue.
712  */
713 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
714                          const struct blk_mq_queue_data *bd)
715 {
716         struct nvme_ns *ns = hctx->queue->queuedata;
717         struct nvme_queue *nvmeq = hctx->driver_data;
718         struct nvme_dev *dev = nvmeq->dev;
719         struct request *req = bd->rq;
720         struct nvme_command cmnd;
721         blk_status_t ret;
722
723         ret = nvme_setup_cmd(ns, req, &cmnd);
724         if (ret)
725                 return ret;
726
727         ret = nvme_init_iod(req, dev);
728         if (ret)
729                 goto out_free_cmd;
730
731         if (blk_rq_nr_phys_segments(req)) {
732                 ret = nvme_map_data(dev, req, &cmnd);
733                 if (ret)
734                         goto out_cleanup_iod;
735         }
736
737         blk_mq_start_request(req);
738
739         spin_lock_irq(&nvmeq->q_lock);
740         if (unlikely(nvmeq->cq_vector < 0)) {
741                 ret = BLK_STS_IOERR;
742                 spin_unlock_irq(&nvmeq->q_lock);
743                 goto out_cleanup_iod;
744         }
745         __nvme_submit_cmd(nvmeq, &cmnd);
746         nvme_process_cq(nvmeq);
747         spin_unlock_irq(&nvmeq->q_lock);
748         return BLK_STS_OK;
749 out_cleanup_iod:
750         nvme_free_iod(dev, req);
751 out_free_cmd:
752         nvme_cleanup_cmd(req);
753         return ret;
754 }
755
756 static void nvme_pci_complete_rq(struct request *req)
757 {
758         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
759
760         nvme_unmap_data(iod->nvmeq->dev, req);
761         nvme_complete_rq(req);
762 }
763
764 /* We read the CQE phase first to check if the rest of the entry is valid */
765 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
766                 u16 phase)
767 {
768         return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
769 }
770
771 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
772 {
773         u16 head = nvmeq->cq_head;
774
775         if (likely(nvmeq->cq_vector >= 0)) {
776                 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
777                                                       nvmeq->dbbuf_cq_ei))
778                         writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
779         }
780 }
781
782 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
783                 struct nvme_completion *cqe)
784 {
785         struct request *req;
786
787         if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
788                 dev_warn(nvmeq->dev->ctrl.device,
789                         "invalid id %d completed on queue %d\n",
790                         cqe->command_id, le16_to_cpu(cqe->sq_id));
791                 return;
792         }
793
794         /*
795          * AEN requests are special as they don't time out and can
796          * survive any kind of queue freeze and often don't respond to
797          * aborts.  We don't even bother to allocate a struct request
798          * for them but rather special case them here.
799          */
800         if (unlikely(nvmeq->qid == 0 &&
801                         cqe->command_id >= NVME_AQ_BLKMQ_DEPTH)) {
802                 nvme_complete_async_event(&nvmeq->dev->ctrl,
803                                 cqe->status, &cqe->result);
804                 return;
805         }
806
807         nvmeq->cqe_seen = 1;
808         req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
809         nvme_end_request(req, cqe->status, cqe->result);
810 }
811
812 static inline bool nvme_read_cqe(struct nvme_queue *nvmeq,
813                 struct nvme_completion *cqe)
814 {
815         if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
816                 *cqe = nvmeq->cqes[nvmeq->cq_head];
817
818                 if (++nvmeq->cq_head == nvmeq->q_depth) {
819                         nvmeq->cq_head = 0;
820                         nvmeq->cq_phase = !nvmeq->cq_phase;
821                 }
822                 return true;
823         }
824         return false;
825 }
826
827 static void nvme_process_cq(struct nvme_queue *nvmeq)
828 {
829         struct nvme_completion cqe;
830         int consumed = 0;
831
832         while (nvme_read_cqe(nvmeq, &cqe)) {
833                 nvme_handle_cqe(nvmeq, &cqe);
834                 consumed++;
835         }
836
837         if (consumed)
838                 nvme_ring_cq_doorbell(nvmeq);
839 }
840
841 static irqreturn_t nvme_irq(int irq, void *data)
842 {
843         irqreturn_t result;
844         struct nvme_queue *nvmeq = data;
845         spin_lock(&nvmeq->q_lock);
846         nvme_process_cq(nvmeq);
847         result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
848         nvmeq->cqe_seen = 0;
849         spin_unlock(&nvmeq->q_lock);
850         return result;
851 }
852
853 static irqreturn_t nvme_irq_check(int irq, void *data)
854 {
855         struct nvme_queue *nvmeq = data;
856         if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
857                 return IRQ_WAKE_THREAD;
858         return IRQ_NONE;
859 }
860
861 static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
862 {
863         struct nvme_completion cqe;
864         int found = 0, consumed = 0;
865
866         if (!nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
867                 return 0;
868
869         spin_lock_irq(&nvmeq->q_lock);
870         while (nvme_read_cqe(nvmeq, &cqe)) {
871                 nvme_handle_cqe(nvmeq, &cqe);
872                 consumed++;
873
874                 if (tag == cqe.command_id) {
875                         found = 1;
876                         break;
877                 }
878        }
879
880         if (consumed)
881                 nvme_ring_cq_doorbell(nvmeq);
882         spin_unlock_irq(&nvmeq->q_lock);
883
884         return found;
885 }
886
887 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
888 {
889         struct nvme_queue *nvmeq = hctx->driver_data;
890
891         return __nvme_poll(nvmeq, tag);
892 }
893
894 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
895 {
896         struct nvme_dev *dev = to_nvme_dev(ctrl);
897         struct nvme_queue *nvmeq = dev->queues[0];
898         struct nvme_command c;
899
900         memset(&c, 0, sizeof(c));
901         c.common.opcode = nvme_admin_async_event;
902         c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
903
904         spin_lock_irq(&nvmeq->q_lock);
905         __nvme_submit_cmd(nvmeq, &c);
906         spin_unlock_irq(&nvmeq->q_lock);
907 }
908
909 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
910 {
911         struct nvme_command c;
912
913         memset(&c, 0, sizeof(c));
914         c.delete_queue.opcode = opcode;
915         c.delete_queue.qid = cpu_to_le16(id);
916
917         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
918 }
919
920 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
921                                                 struct nvme_queue *nvmeq)
922 {
923         struct nvme_command c;
924         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
925
926         /*
927          * Note: we (ab)use the fact the the prp fields survive if no data
928          * is attached to the request.
929          */
930         memset(&c, 0, sizeof(c));
931         c.create_cq.opcode = nvme_admin_create_cq;
932         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
933         c.create_cq.cqid = cpu_to_le16(qid);
934         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
935         c.create_cq.cq_flags = cpu_to_le16(flags);
936         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
937
938         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
939 }
940
941 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
942                                                 struct nvme_queue *nvmeq)
943 {
944         struct nvme_command c;
945         int flags = NVME_QUEUE_PHYS_CONTIG;
946
947         /*
948          * Note: we (ab)use the fact the the prp fields survive if no data
949          * is attached to the request.
950          */
951         memset(&c, 0, sizeof(c));
952         c.create_sq.opcode = nvme_admin_create_sq;
953         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
954         c.create_sq.sqid = cpu_to_le16(qid);
955         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
956         c.create_sq.sq_flags = cpu_to_le16(flags);
957         c.create_sq.cqid = cpu_to_le16(qid);
958
959         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
960 }
961
962 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
963 {
964         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
965 }
966
967 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
968 {
969         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
970 }
971
972 static void abort_endio(struct request *req, blk_status_t error)
973 {
974         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
975         struct nvme_queue *nvmeq = iod->nvmeq;
976
977         dev_warn(nvmeq->dev->ctrl.device,
978                  "Abort status: 0x%x", nvme_req(req)->status);
979         atomic_inc(&nvmeq->dev->ctrl.abort_limit);
980         blk_mq_free_request(req);
981 }
982
983 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
984 {
985
986         /* If true, indicates loss of adapter communication, possibly by a
987          * NVMe Subsystem reset.
988          */
989         bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
990
991         /* If there is a reset ongoing, we shouldn't reset again. */
992         if (dev->ctrl.state == NVME_CTRL_RESETTING)
993                 return false;
994
995         /* We shouldn't reset unless the controller is on fatal error state
996          * _or_ if we lost the communication with it.
997          */
998         if (!(csts & NVME_CSTS_CFS) && !nssro)
999                 return false;
1000
1001         /* If PCI error recovery process is happening, we cannot reset or
1002          * the recovery mechanism will surely fail.
1003          */
1004         if (pci_channel_offline(to_pci_dev(dev->dev)))
1005                 return false;
1006
1007         return true;
1008 }
1009
1010 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1011 {
1012         /* Read a config register to help see what died. */
1013         u16 pci_status;
1014         int result;
1015
1016         result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1017                                       &pci_status);
1018         if (result == PCIBIOS_SUCCESSFUL)
1019                 dev_warn(dev->ctrl.device,
1020                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1021                          csts, pci_status);
1022         else
1023                 dev_warn(dev->ctrl.device,
1024                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1025                          csts, result);
1026 }
1027
1028 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1029 {
1030         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1031         struct nvme_queue *nvmeq = iod->nvmeq;
1032         struct nvme_dev *dev = nvmeq->dev;
1033         struct request *abort_req;
1034         struct nvme_command cmd;
1035         u32 csts = readl(dev->bar + NVME_REG_CSTS);
1036
1037         /*
1038          * Reset immediately if the controller is failed
1039          */
1040         if (nvme_should_reset(dev, csts)) {
1041                 nvme_warn_reset(dev, csts);
1042                 nvme_dev_disable(dev, false);
1043                 nvme_reset_ctrl(&dev->ctrl);
1044                 return BLK_EH_HANDLED;
1045         }
1046
1047         /*
1048          * Did we miss an interrupt?
1049          */
1050         if (__nvme_poll(nvmeq, req->tag)) {
1051                 dev_warn(dev->ctrl.device,
1052                          "I/O %d QID %d timeout, completion polled\n",
1053                          req->tag, nvmeq->qid);
1054                 return BLK_EH_HANDLED;
1055         }
1056
1057         /*
1058          * Shutdown immediately if controller times out while starting. The
1059          * reset work will see the pci device disabled when it gets the forced
1060          * cancellation error. All outstanding requests are completed on
1061          * shutdown, so we return BLK_EH_HANDLED.
1062          */
1063         if (dev->ctrl.state == NVME_CTRL_RESETTING) {
1064                 dev_warn(dev->ctrl.device,
1065                          "I/O %d QID %d timeout, disable controller\n",
1066                          req->tag, nvmeq->qid);
1067                 nvme_dev_disable(dev, false);
1068                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1069                 return BLK_EH_HANDLED;
1070         }
1071
1072         /*
1073          * Shutdown the controller immediately and schedule a reset if the
1074          * command was already aborted once before and still hasn't been
1075          * returned to the driver, or if this is the admin queue.
1076          */
1077         if (!nvmeq->qid || iod->aborted) {
1078                 dev_warn(dev->ctrl.device,
1079                          "I/O %d QID %d timeout, reset controller\n",
1080                          req->tag, nvmeq->qid);
1081                 nvme_dev_disable(dev, false);
1082                 nvme_reset_ctrl(&dev->ctrl);
1083
1084                 /*
1085                  * Mark the request as handled, since the inline shutdown
1086                  * forces all outstanding requests to complete.
1087                  */
1088                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1089                 return BLK_EH_HANDLED;
1090         }
1091
1092         if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1093                 atomic_inc(&dev->ctrl.abort_limit);
1094                 return BLK_EH_RESET_TIMER;
1095         }
1096         iod->aborted = 1;
1097
1098         memset(&cmd, 0, sizeof(cmd));
1099         cmd.abort.opcode = nvme_admin_abort_cmd;
1100         cmd.abort.cid = req->tag;
1101         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1102
1103         dev_warn(nvmeq->dev->ctrl.device,
1104                 "I/O %d QID %d timeout, aborting\n",
1105                  req->tag, nvmeq->qid);
1106
1107         abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1108                         BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1109         if (IS_ERR(abort_req)) {
1110                 atomic_inc(&dev->ctrl.abort_limit);
1111                 return BLK_EH_RESET_TIMER;
1112         }
1113
1114         abort_req->timeout = ADMIN_TIMEOUT;
1115         abort_req->end_io_data = NULL;
1116         blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1117
1118         /*
1119          * The aborted req will be completed on receiving the abort req.
1120          * We enable the timer again. If hit twice, it'll cause a device reset,
1121          * as the device then is in a faulty state.
1122          */
1123         return BLK_EH_RESET_TIMER;
1124 }
1125
1126 static void nvme_free_queue(struct nvme_queue *nvmeq)
1127 {
1128         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1129                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1130         if (nvmeq->sq_cmds)
1131                 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1132                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1133         kfree(nvmeq);
1134 }
1135
1136 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1137 {
1138         int i;
1139
1140         for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1141                 struct nvme_queue *nvmeq = dev->queues[i];
1142                 dev->ctrl.queue_count--;
1143                 dev->queues[i] = NULL;
1144                 nvme_free_queue(nvmeq);
1145         }
1146 }
1147
1148 /**
1149  * nvme_suspend_queue - put queue into suspended state
1150  * @nvmeq - queue to suspend
1151  */
1152 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1153 {
1154         int vector;
1155
1156         spin_lock_irq(&nvmeq->q_lock);
1157         if (nvmeq->cq_vector == -1) {
1158                 spin_unlock_irq(&nvmeq->q_lock);
1159                 return 1;
1160         }
1161         vector = nvmeq->cq_vector;
1162         nvmeq->dev->online_queues--;
1163         nvmeq->cq_vector = -1;
1164         spin_unlock_irq(&nvmeq->q_lock);
1165
1166         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1167                 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1168
1169         pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
1170
1171         return 0;
1172 }
1173
1174 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1175 {
1176         struct nvme_queue *nvmeq = dev->queues[0];
1177
1178         if (!nvmeq)
1179                 return;
1180         if (nvme_suspend_queue(nvmeq))
1181                 return;
1182
1183         if (shutdown)
1184                 nvme_shutdown_ctrl(&dev->ctrl);
1185         else
1186                 nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1187
1188         spin_lock_irq(&nvmeq->q_lock);
1189         nvme_process_cq(nvmeq);
1190         spin_unlock_irq(&nvmeq->q_lock);
1191 }
1192
1193 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1194                                 int entry_size)
1195 {
1196         int q_depth = dev->q_depth;
1197         unsigned q_size_aligned = roundup(q_depth * entry_size,
1198                                           dev->ctrl.page_size);
1199
1200         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1201                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1202                 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1203                 q_depth = div_u64(mem_per_q, entry_size);
1204
1205                 /*
1206                  * Ensure the reduced q_depth is above some threshold where it
1207                  * would be better to map queues in system memory with the
1208                  * original depth
1209                  */
1210                 if (q_depth < 64)
1211                         return -ENOMEM;
1212         }
1213
1214         return q_depth;
1215 }
1216
1217 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1218                                 int qid, int depth)
1219 {
1220         if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1221                 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1222                                                       dev->ctrl.page_size);
1223                 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1224                 nvmeq->sq_cmds_io = dev->cmb + offset;
1225         } else {
1226                 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1227                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
1228                 if (!nvmeq->sq_cmds)
1229                         return -ENOMEM;
1230         }
1231
1232         return 0;
1233 }
1234
1235 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1236                                                         int depth, int node)
1237 {
1238         struct nvme_queue *nvmeq = kzalloc_node(sizeof(*nvmeq), GFP_KERNEL,
1239                                                         node);
1240         if (!nvmeq)
1241                 return NULL;
1242
1243         nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1244                                           &nvmeq->cq_dma_addr, GFP_KERNEL);
1245         if (!nvmeq->cqes)
1246                 goto free_nvmeq;
1247
1248         if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1249                 goto free_cqdma;
1250
1251         nvmeq->q_dmadev = dev->dev;
1252         nvmeq->dev = dev;
1253         spin_lock_init(&nvmeq->q_lock);
1254         nvmeq->cq_head = 0;
1255         nvmeq->cq_phase = 1;
1256         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1257         nvmeq->q_depth = depth;
1258         nvmeq->qid = qid;
1259         nvmeq->cq_vector = -1;
1260         dev->queues[qid] = nvmeq;
1261         dev->ctrl.queue_count++;
1262
1263         return nvmeq;
1264
1265  free_cqdma:
1266         dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1267                                                         nvmeq->cq_dma_addr);
1268  free_nvmeq:
1269         kfree(nvmeq);
1270         return NULL;
1271 }
1272
1273 static int queue_request_irq(struct nvme_queue *nvmeq)
1274 {
1275         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1276         int nr = nvmeq->dev->ctrl.instance;
1277
1278         if (use_threaded_interrupts) {
1279                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1280                                 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1281         } else {
1282                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1283                                 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1284         }
1285 }
1286
1287 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1288 {
1289         struct nvme_dev *dev = nvmeq->dev;
1290
1291         spin_lock_irq(&nvmeq->q_lock);
1292         nvmeq->sq_tail = 0;
1293         nvmeq->cq_head = 0;
1294         nvmeq->cq_phase = 1;
1295         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1296         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1297         nvme_dbbuf_init(dev, nvmeq, qid);
1298         dev->online_queues++;
1299         spin_unlock_irq(&nvmeq->q_lock);
1300 }
1301
1302 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1303 {
1304         struct nvme_dev *dev = nvmeq->dev;
1305         int result;
1306
1307         nvmeq->cq_vector = qid - 1;
1308         result = adapter_alloc_cq(dev, qid, nvmeq);
1309         if (result < 0)
1310                 return result;
1311
1312         result = adapter_alloc_sq(dev, qid, nvmeq);
1313         if (result < 0)
1314                 goto release_cq;
1315
1316         result = queue_request_irq(nvmeq);
1317         if (result < 0)
1318                 goto release_sq;
1319
1320         nvme_init_queue(nvmeq, qid);
1321         return result;
1322
1323  release_sq:
1324         adapter_delete_sq(dev, qid);
1325  release_cq:
1326         adapter_delete_cq(dev, qid);
1327         return result;
1328 }
1329
1330 static const struct blk_mq_ops nvme_mq_admin_ops = {
1331         .queue_rq       = nvme_queue_rq,
1332         .complete       = nvme_pci_complete_rq,
1333         .init_hctx      = nvme_admin_init_hctx,
1334         .exit_hctx      = nvme_admin_exit_hctx,
1335         .init_request   = nvme_init_request,
1336         .timeout        = nvme_timeout,
1337 };
1338
1339 static const struct blk_mq_ops nvme_mq_ops = {
1340         .queue_rq       = nvme_queue_rq,
1341         .complete       = nvme_pci_complete_rq,
1342         .init_hctx      = nvme_init_hctx,
1343         .init_request   = nvme_init_request,
1344         .map_queues     = nvme_pci_map_queues,
1345         .timeout        = nvme_timeout,
1346         .poll           = nvme_poll,
1347 };
1348
1349 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1350 {
1351         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1352                 /*
1353                  * If the controller was reset during removal, it's possible
1354                  * user requests may be waiting on a stopped queue. Start the
1355                  * queue to flush these to completion.
1356                  */
1357                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1358                 blk_cleanup_queue(dev->ctrl.admin_q);
1359                 blk_mq_free_tag_set(&dev->admin_tagset);
1360         }
1361 }
1362
1363 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1364 {
1365         if (!dev->ctrl.admin_q) {
1366                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1367                 dev->admin_tagset.nr_hw_queues = 1;
1368
1369                 /*
1370                  * Subtract one to leave an empty queue entry for 'Full Queue'
1371                  * condition. See NVM-Express 1.2 specification, section 4.1.2.
1372                  */
1373                 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1374                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1375                 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1376                 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1377                 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1378                 dev->admin_tagset.driver_data = dev;
1379
1380                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1381                         return -ENOMEM;
1382                 dev->ctrl.admin_tagset = &dev->admin_tagset;
1383
1384                 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1385                 if (IS_ERR(dev->ctrl.admin_q)) {
1386                         blk_mq_free_tag_set(&dev->admin_tagset);
1387                         return -ENOMEM;
1388                 }
1389                 if (!blk_get_queue(dev->ctrl.admin_q)) {
1390                         nvme_dev_remove_admin(dev);
1391                         dev->ctrl.admin_q = NULL;
1392                         return -ENODEV;
1393                 }
1394         } else
1395                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1396
1397         return 0;
1398 }
1399
1400 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1401 {
1402         return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1403 }
1404
1405 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1406 {
1407         struct pci_dev *pdev = to_pci_dev(dev->dev);
1408
1409         if (size <= dev->bar_mapped_size)
1410                 return 0;
1411         if (size > pci_resource_len(pdev, 0))
1412                 return -ENOMEM;
1413         if (dev->bar)
1414                 iounmap(dev->bar);
1415         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1416         if (!dev->bar) {
1417                 dev->bar_mapped_size = 0;
1418                 return -ENOMEM;
1419         }
1420         dev->bar_mapped_size = size;
1421         dev->dbs = dev->bar + NVME_REG_DBS;
1422
1423         return 0;
1424 }
1425
1426 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1427 {
1428         int result;
1429         u32 aqa;
1430         struct nvme_queue *nvmeq;
1431
1432         result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1433         if (result < 0)
1434                 return result;
1435
1436         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1437                                 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1438
1439         if (dev->subsystem &&
1440             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1441                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1442
1443         result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1444         if (result < 0)
1445                 return result;
1446
1447         nvmeq = dev->queues[0];
1448         if (!nvmeq) {
1449                 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH,
1450                                         dev_to_node(dev->dev));
1451                 if (!nvmeq)
1452                         return -ENOMEM;
1453         }
1454
1455         aqa = nvmeq->q_depth - 1;
1456         aqa |= aqa << 16;
1457
1458         writel(aqa, dev->bar + NVME_REG_AQA);
1459         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1460         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1461
1462         result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
1463         if (result)
1464                 return result;
1465
1466         nvmeq->cq_vector = 0;
1467         result = queue_request_irq(nvmeq);
1468         if (result) {
1469                 nvmeq->cq_vector = -1;
1470                 return result;
1471         }
1472
1473         return result;
1474 }
1475
1476 static int nvme_create_io_queues(struct nvme_dev *dev)
1477 {
1478         unsigned i, max;
1479         int ret = 0;
1480
1481         for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1482                 /* vector == qid - 1, match nvme_create_queue */
1483                 if (!nvme_alloc_queue(dev, i, dev->q_depth,
1484                      pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) {
1485                         ret = -ENOMEM;
1486                         break;
1487                 }
1488         }
1489
1490         max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1491         for (i = dev->online_queues; i <= max; i++) {
1492                 ret = nvme_create_queue(dev->queues[i], i);
1493                 if (ret)
1494                         break;
1495         }
1496
1497         /*
1498          * Ignore failing Create SQ/CQ commands, we can continue with less
1499          * than the desired aount of queues, and even a controller without
1500          * I/O queues an still be used to issue admin commands.  This might
1501          * be useful to upgrade a buggy firmware for example.
1502          */
1503         return ret >= 0 ? 0 : ret;
1504 }
1505
1506 static ssize_t nvme_cmb_show(struct device *dev,
1507                              struct device_attribute *attr,
1508                              char *buf)
1509 {
1510         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1511
1512         return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1513                        ndev->cmbloc, ndev->cmbsz);
1514 }
1515 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1516
1517 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1518 {
1519         u64 szu, size, offset;
1520         resource_size_t bar_size;
1521         struct pci_dev *pdev = to_pci_dev(dev->dev);
1522         void __iomem *cmb;
1523         dma_addr_t dma_addr;
1524
1525         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1526         if (!(NVME_CMB_SZ(dev->cmbsz)))
1527                 return NULL;
1528         dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1529
1530         if (!use_cmb_sqes)
1531                 return NULL;
1532
1533         szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1534         size = szu * NVME_CMB_SZ(dev->cmbsz);
1535         offset = szu * NVME_CMB_OFST(dev->cmbloc);
1536         bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
1537
1538         if (offset > bar_size)
1539                 return NULL;
1540
1541         /*
1542          * Controllers may support a CMB size larger than their BAR,
1543          * for example, due to being behind a bridge. Reduce the CMB to
1544          * the reported size of the BAR
1545          */
1546         if (size > bar_size - offset)
1547                 size = bar_size - offset;
1548
1549         dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
1550         cmb = ioremap_wc(dma_addr, size);
1551         if (!cmb)
1552                 return NULL;
1553
1554         dev->cmb_dma_addr = dma_addr;
1555         dev->cmb_size = size;
1556         return cmb;
1557 }
1558
1559 static inline void nvme_release_cmb(struct nvme_dev *dev)
1560 {
1561         if (dev->cmb) {
1562                 iounmap(dev->cmb);
1563                 dev->cmb = NULL;
1564                 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1565                                              &dev_attr_cmb.attr, NULL);
1566                 dev->cmbsz = 0;
1567         }
1568 }
1569
1570 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1571 {
1572         u64 dma_addr = dev->host_mem_descs_dma;
1573         struct nvme_command c;
1574         int ret;
1575
1576         memset(&c, 0, sizeof(c));
1577         c.features.opcode       = nvme_admin_set_features;
1578         c.features.fid          = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1579         c.features.dword11      = cpu_to_le32(bits);
1580         c.features.dword12      = cpu_to_le32(dev->host_mem_size >>
1581                                               ilog2(dev->ctrl.page_size));
1582         c.features.dword13      = cpu_to_le32(lower_32_bits(dma_addr));
1583         c.features.dword14      = cpu_to_le32(upper_32_bits(dma_addr));
1584         c.features.dword15      = cpu_to_le32(dev->nr_host_mem_descs);
1585
1586         ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1587         if (ret) {
1588                 dev_warn(dev->ctrl.device,
1589                          "failed to set host mem (err %d, flags %#x).\n",
1590                          ret, bits);
1591         }
1592         return ret;
1593 }
1594
1595 static void nvme_free_host_mem(struct nvme_dev *dev)
1596 {
1597         int i;
1598
1599         for (i = 0; i < dev->nr_host_mem_descs; i++) {
1600                 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1601                 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1602
1603                 dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
1604                                 le64_to_cpu(desc->addr));
1605         }
1606
1607         kfree(dev->host_mem_desc_bufs);
1608         dev->host_mem_desc_bufs = NULL;
1609         dma_free_coherent(dev->dev,
1610                         dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1611                         dev->host_mem_descs, dev->host_mem_descs_dma);
1612         dev->host_mem_descs = NULL;
1613 }
1614
1615 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1616                 u32 chunk_size)
1617 {
1618         struct nvme_host_mem_buf_desc *descs;
1619         u32 max_entries, len;
1620         dma_addr_t descs_dma;
1621         int i = 0;
1622         void **bufs;
1623         u64 size = 0, tmp;
1624
1625         tmp = (preferred + chunk_size - 1);
1626         do_div(tmp, chunk_size);
1627         max_entries = tmp;
1628         descs = dma_zalloc_coherent(dev->dev, max_entries * sizeof(*descs),
1629                         &descs_dma, GFP_KERNEL);
1630         if (!descs)
1631                 goto out;
1632
1633         bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1634         if (!bufs)
1635                 goto out_free_descs;
1636
1637         for (size = 0; size < preferred; size += len) {
1638                 dma_addr_t dma_addr;
1639
1640                 len = min_t(u64, chunk_size, preferred - size);
1641                 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1642                                 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1643                 if (!bufs[i])
1644                         break;
1645
1646                 descs[i].addr = cpu_to_le64(dma_addr);
1647                 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1648                 i++;
1649         }
1650
1651         if (!size)
1652                 goto out_free_bufs;
1653
1654         dev->nr_host_mem_descs = i;
1655         dev->host_mem_size = size;
1656         dev->host_mem_descs = descs;
1657         dev->host_mem_descs_dma = descs_dma;
1658         dev->host_mem_desc_bufs = bufs;
1659         return 0;
1660
1661 out_free_bufs:
1662         while (--i >= 0) {
1663                 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1664
1665                 dma_free_coherent(dev->dev, size, bufs[i],
1666                                 le64_to_cpu(descs[i].addr));
1667         }
1668
1669         kfree(bufs);
1670 out_free_descs:
1671         dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1672                         descs_dma);
1673 out:
1674         dev->host_mem_descs = NULL;
1675         return -ENOMEM;
1676 }
1677
1678 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1679 {
1680         u32 chunk_size;
1681
1682         /* start big and work our way down */
1683         for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1684              chunk_size >= PAGE_SIZE * 2;
1685              chunk_size /= 2) {
1686                 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1687                         if (!min || dev->host_mem_size >= min)
1688                                 return 0;
1689                         nvme_free_host_mem(dev);
1690                 }
1691         }
1692
1693         return -ENOMEM;
1694 }
1695
1696 static int nvme_setup_host_mem(struct nvme_dev *dev)
1697 {
1698         u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1699         u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1700         u64 min = (u64)dev->ctrl.hmmin * 4096;
1701         u32 enable_bits = NVME_HOST_MEM_ENABLE;
1702         int ret = 0;
1703
1704         preferred = min(preferred, max);
1705         if (min > max) {
1706                 dev_warn(dev->ctrl.device,
1707                         "min host memory (%lld MiB) above limit (%d MiB).\n",
1708                         min >> ilog2(SZ_1M), max_host_mem_size_mb);
1709                 nvme_free_host_mem(dev);
1710                 return 0;
1711         }
1712
1713         /*
1714          * If we already have a buffer allocated check if we can reuse it.
1715          */
1716         if (dev->host_mem_descs) {
1717                 if (dev->host_mem_size >= min)
1718                         enable_bits |= NVME_HOST_MEM_RETURN;
1719                 else
1720                         nvme_free_host_mem(dev);
1721         }
1722
1723         if (!dev->host_mem_descs) {
1724                 if (nvme_alloc_host_mem(dev, min, preferred)) {
1725                         dev_warn(dev->ctrl.device,
1726                                 "failed to allocate host memory buffer.\n");
1727                         return 0; /* controller must work without HMB */
1728                 }
1729
1730                 dev_info(dev->ctrl.device,
1731                         "allocated %lld MiB host memory buffer.\n",
1732                         dev->host_mem_size >> ilog2(SZ_1M));
1733         }
1734
1735         ret = nvme_set_host_mem(dev, enable_bits);
1736         if (ret)
1737                 nvme_free_host_mem(dev);
1738         return ret;
1739 }
1740
1741 static int nvme_setup_io_queues(struct nvme_dev *dev)
1742 {
1743         struct nvme_queue *adminq = dev->queues[0];
1744         struct pci_dev *pdev = to_pci_dev(dev->dev);
1745         int result, nr_io_queues;
1746         unsigned long size;
1747
1748         nr_io_queues = num_present_cpus();
1749         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1750         if (result < 0)
1751                 return result;
1752
1753         if (nr_io_queues == 0)
1754                 return 0;
1755
1756         if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1757                 result = nvme_cmb_qdepth(dev, nr_io_queues,
1758                                 sizeof(struct nvme_command));
1759                 if (result > 0)
1760                         dev->q_depth = result;
1761                 else
1762                         nvme_release_cmb(dev);
1763         }
1764
1765         do {
1766                 size = db_bar_size(dev, nr_io_queues);
1767                 result = nvme_remap_bar(dev, size);
1768                 if (!result)
1769                         break;
1770                 if (!--nr_io_queues)
1771                         return -ENOMEM;
1772         } while (1);
1773         adminq->q_db = dev->dbs;
1774
1775         /* Deregister the admin queue's interrupt */
1776         pci_free_irq(pdev, 0, adminq);
1777
1778         /*
1779          * If we enable msix early due to not intx, disable it again before
1780          * setting up the full range we need.
1781          */
1782         pci_free_irq_vectors(pdev);
1783         nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1784                         PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1785         if (nr_io_queues <= 0)
1786                 return -EIO;
1787         dev->max_qid = nr_io_queues;
1788
1789         /*
1790          * Should investigate if there's a performance win from allocating
1791          * more queues than interrupt vectors; it might allow the submission
1792          * path to scale better, even if the receive path is limited by the
1793          * number of interrupts.
1794          */
1795
1796         result = queue_request_irq(adminq);
1797         if (result) {
1798                 adminq->cq_vector = -1;
1799                 return result;
1800         }
1801         return nvme_create_io_queues(dev);
1802 }
1803
1804 static void nvme_del_queue_end(struct request *req, blk_status_t error)
1805 {
1806         struct nvme_queue *nvmeq = req->end_io_data;
1807
1808         blk_mq_free_request(req);
1809         complete(&nvmeq->dev->ioq_wait);
1810 }
1811
1812 static void nvme_del_cq_end(struct request *req, blk_status_t error)
1813 {
1814         struct nvme_queue *nvmeq = req->end_io_data;
1815
1816         if (!error) {
1817                 unsigned long flags;
1818
1819                 /*
1820                  * We might be called with the AQ q_lock held
1821                  * and the I/O queue q_lock should always
1822                  * nest inside the AQ one.
1823                  */
1824                 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1825                                         SINGLE_DEPTH_NESTING);
1826                 nvme_process_cq(nvmeq);
1827                 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1828         }
1829
1830         nvme_del_queue_end(req, error);
1831 }
1832
1833 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1834 {
1835         struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1836         struct request *req;
1837         struct nvme_command cmd;
1838
1839         memset(&cmd, 0, sizeof(cmd));
1840         cmd.delete_queue.opcode = opcode;
1841         cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1842
1843         req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1844         if (IS_ERR(req))
1845                 return PTR_ERR(req);
1846
1847         req->timeout = ADMIN_TIMEOUT;
1848         req->end_io_data = nvmeq;
1849
1850         blk_execute_rq_nowait(q, NULL, req, false,
1851                         opcode == nvme_admin_delete_cq ?
1852                                 nvme_del_cq_end : nvme_del_queue_end);
1853         return 0;
1854 }
1855
1856 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
1857 {
1858         int pass;
1859         unsigned long timeout;
1860         u8 opcode = nvme_admin_delete_sq;
1861
1862         for (pass = 0; pass < 2; pass++) {
1863                 int sent = 0, i = queues;
1864
1865                 reinit_completion(&dev->ioq_wait);
1866  retry:
1867                 timeout = ADMIN_TIMEOUT;
1868                 for (; i > 0; i--, sent++)
1869                         if (nvme_delete_queue(dev->queues[i], opcode))
1870                                 break;
1871
1872                 while (sent--) {
1873                         timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1874                         if (timeout == 0)
1875                                 return;
1876                         if (i)
1877                                 goto retry;
1878                 }
1879                 opcode = nvme_admin_delete_cq;
1880         }
1881 }
1882
1883 /*
1884  * Return: error value if an error occurred setting up the queues or calling
1885  * Identify Device.  0 if these succeeded, even if adding some of the
1886  * namespaces failed.  At the moment, these failures are silent.  TBD which
1887  * failures should be reported.
1888  */
1889 static int nvme_dev_add(struct nvme_dev *dev)
1890 {
1891         if (!dev->ctrl.tagset) {
1892                 dev->tagset.ops = &nvme_mq_ops;
1893                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1894                 dev->tagset.timeout = NVME_IO_TIMEOUT;
1895                 dev->tagset.numa_node = dev_to_node(dev->dev);
1896                 dev->tagset.queue_depth =
1897                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1898                 dev->tagset.cmd_size = nvme_cmd_size(dev);
1899                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1900                 dev->tagset.driver_data = dev;
1901
1902                 if (blk_mq_alloc_tag_set(&dev->tagset))
1903                         return 0;
1904                 dev->ctrl.tagset = &dev->tagset;
1905
1906                 nvme_dbbuf_set(dev);
1907         } else {
1908                 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1909
1910                 /* Free previously allocated queues that are no longer usable */
1911                 nvme_free_queues(dev, dev->online_queues);
1912         }
1913
1914         return 0;
1915 }
1916
1917 static int nvme_pci_enable(struct nvme_dev *dev)
1918 {
1919         int result = -ENOMEM;
1920         struct pci_dev *pdev = to_pci_dev(dev->dev);
1921
1922         if (pci_enable_device_mem(pdev))
1923                 return result;
1924
1925         pci_set_master(pdev);
1926
1927         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1928             dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1929                 goto disable;
1930
1931         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1932                 result = -ENODEV;
1933                 goto disable;
1934         }
1935
1936         /*
1937          * Some devices and/or platforms don't advertise or work with INTx
1938          * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1939          * adjust this later.
1940          */
1941         result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1942         if (result < 0)
1943                 return result;
1944
1945         dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1946
1947         dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
1948                                 io_queue_depth);
1949         dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
1950         dev->dbs = dev->bar + 4096;
1951
1952         /*
1953          * Temporary fix for the Apple controller found in the MacBook8,1 and
1954          * some MacBook7,1 to avoid controller resets and data loss.
1955          */
1956         if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1957                 dev->q_depth = 2;
1958                 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
1959                         "set queue depth=%u to work around controller resets\n",
1960                         dev->q_depth);
1961         } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
1962                    (pdev->device == 0xa821 || pdev->device == 0xa822) &&
1963                    NVME_CAP_MQES(dev->ctrl.cap) == 0) {
1964                 dev->q_depth = 64;
1965                 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
1966                         "set queue depth=%u\n", dev->q_depth);
1967         }
1968
1969         /*
1970          * CMBs can currently only exist on >=1.2 PCIe devices. We only
1971          * populate sysfs if a CMB is implemented. Since nvme_dev_attrs_group
1972          * has no name we can pass NULL as final argument to
1973          * sysfs_add_file_to_group.
1974          */
1975
1976         if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
1977                 dev->cmb = nvme_map_cmb(dev);
1978                 if (dev->cmb) {
1979                         if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1980                                                     &dev_attr_cmb.attr, NULL))
1981                                 dev_warn(dev->ctrl.device,
1982                                          "failed to add sysfs attribute for CMB\n");
1983                 }
1984         }
1985
1986         pci_enable_pcie_error_reporting(pdev);
1987         pci_save_state(pdev);
1988         return 0;
1989
1990  disable:
1991         pci_disable_device(pdev);
1992         return result;
1993 }
1994
1995 static void nvme_dev_unmap(struct nvme_dev *dev)
1996 {
1997         if (dev->bar)
1998                 iounmap(dev->bar);
1999         pci_release_mem_regions(to_pci_dev(dev->dev));
2000 }
2001
2002 static void nvme_pci_disable(struct nvme_dev *dev)
2003 {
2004         struct pci_dev *pdev = to_pci_dev(dev->dev);
2005
2006         nvme_release_cmb(dev);
2007         pci_free_irq_vectors(pdev);
2008
2009         if (pci_is_enabled(pdev)) {
2010                 pci_disable_pcie_error_reporting(pdev);
2011                 pci_disable_device(pdev);
2012         }
2013 }
2014
2015 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2016 {
2017         int i, queues;
2018         bool dead = true;
2019         struct pci_dev *pdev = to_pci_dev(dev->dev);
2020
2021         mutex_lock(&dev->shutdown_lock);
2022         if (pci_is_enabled(pdev)) {
2023                 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2024
2025                 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2026                     dev->ctrl.state == NVME_CTRL_RESETTING)
2027                         nvme_start_freeze(&dev->ctrl);
2028                 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2029                         pdev->error_state  != pci_channel_io_normal);
2030         }
2031
2032         /*
2033          * Give the controller a chance to complete all entered requests if
2034          * doing a safe shutdown.
2035          */
2036         if (!dead) {
2037                 if (shutdown)
2038                         nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2039
2040                 /*
2041                  * If the controller is still alive tell it to stop using the
2042                  * host memory buffer.  In theory the shutdown / reset should
2043                  * make sure that it doesn't access the host memoery anymore,
2044                  * but I'd rather be safe than sorry..
2045                  */
2046                 if (dev->host_mem_descs)
2047                         nvme_set_host_mem(dev, 0);
2048
2049         }
2050         nvme_stop_queues(&dev->ctrl);
2051
2052         queues = dev->online_queues - 1;
2053         for (i = dev->ctrl.queue_count - 1; i > 0; i--)
2054                 nvme_suspend_queue(dev->queues[i]);
2055
2056         if (dead) {
2057                 /* A device might become IO incapable very soon during
2058                  * probe, before the admin queue is configured. Thus,
2059                  * queue_count can be 0 here.
2060                  */
2061                 if (dev->ctrl.queue_count)
2062                         nvme_suspend_queue(dev->queues[0]);
2063         } else {
2064                 nvme_disable_io_queues(dev, queues);
2065                 nvme_disable_admin_queue(dev, shutdown);
2066         }
2067         nvme_pci_disable(dev);
2068
2069         blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2070         blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2071
2072         /*
2073          * The driver will not be starting up queues again if shutting down so
2074          * must flush all entered requests to their failed completion to avoid
2075          * deadlocking blk-mq hot-cpu notifier.
2076          */
2077         if (shutdown)
2078                 nvme_start_queues(&dev->ctrl);
2079         mutex_unlock(&dev->shutdown_lock);
2080 }
2081
2082 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2083 {
2084         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2085                                                 PAGE_SIZE, PAGE_SIZE, 0);
2086         if (!dev->prp_page_pool)
2087                 return -ENOMEM;
2088
2089         /* Optimisation for I/Os between 4k and 128k */
2090         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2091                                                 256, 256, 0);
2092         if (!dev->prp_small_pool) {
2093                 dma_pool_destroy(dev->prp_page_pool);
2094                 return -ENOMEM;
2095         }
2096         return 0;
2097 }
2098
2099 static void nvme_release_prp_pools(struct nvme_dev *dev)
2100 {
2101         dma_pool_destroy(dev->prp_page_pool);
2102         dma_pool_destroy(dev->prp_small_pool);
2103 }
2104
2105 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2106 {
2107         struct nvme_dev *dev = to_nvme_dev(ctrl);
2108
2109         nvme_dbbuf_dma_free(dev);
2110         put_device(dev->dev);
2111         if (dev->tagset.tags)
2112                 blk_mq_free_tag_set(&dev->tagset);
2113         if (dev->ctrl.admin_q)
2114                 blk_put_queue(dev->ctrl.admin_q);
2115         kfree(dev->queues);
2116         free_opal_dev(dev->ctrl.opal_dev);
2117         kfree(dev);
2118 }
2119
2120 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2121 {
2122         dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
2123
2124         kref_get(&dev->ctrl.kref);
2125         nvme_dev_disable(dev, false);
2126         if (!schedule_work(&dev->remove_work))
2127                 nvme_put_ctrl(&dev->ctrl);
2128 }
2129
2130 static void nvme_reset_work(struct work_struct *work)
2131 {
2132         struct nvme_dev *dev =
2133                 container_of(work, struct nvme_dev, ctrl.reset_work);
2134         bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2135         int result = -ENODEV;
2136
2137         if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
2138                 goto out;
2139
2140         /*
2141          * If we're called to reset a live controller first shut it down before
2142          * moving on.
2143          */
2144         if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2145                 nvme_dev_disable(dev, false);
2146
2147         result = nvme_pci_enable(dev);
2148         if (result)
2149                 goto out;
2150
2151         result = nvme_pci_configure_admin_queue(dev);
2152         if (result)
2153                 goto out;
2154
2155         nvme_init_queue(dev->queues[0], 0);
2156         result = nvme_alloc_admin_tags(dev);
2157         if (result)
2158                 goto out;
2159
2160         result = nvme_init_identify(&dev->ctrl);
2161         if (result)
2162                 goto out;
2163
2164         if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2165                 if (!dev->ctrl.opal_dev)
2166                         dev->ctrl.opal_dev =
2167                                 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2168                 else if (was_suspend)
2169                         opal_unlock_from_suspend(dev->ctrl.opal_dev);
2170         } else {
2171                 free_opal_dev(dev->ctrl.opal_dev);
2172                 dev->ctrl.opal_dev = NULL;
2173         }
2174
2175         if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2176                 result = nvme_dbbuf_dma_alloc(dev);
2177                 if (result)
2178                         dev_warn(dev->dev,
2179                                  "unable to allocate dma for dbbuf\n");
2180         }
2181
2182         if (dev->ctrl.hmpre) {
2183                 result = nvme_setup_host_mem(dev);
2184                 if (result < 0)
2185                         goto out;
2186         }
2187
2188         result = nvme_setup_io_queues(dev);
2189         if (result)
2190                 goto out;
2191
2192         /*
2193          * Keep the controller around but remove all namespaces if we don't have
2194          * any working I/O queue.
2195          */
2196         if (dev->online_queues < 2) {
2197                 dev_warn(dev->ctrl.device, "IO queues not created\n");
2198                 nvme_kill_queues(&dev->ctrl);
2199                 nvme_remove_namespaces(&dev->ctrl);
2200         } else {
2201                 nvme_start_queues(&dev->ctrl);
2202                 nvme_wait_freeze(&dev->ctrl);
2203                 nvme_dev_add(dev);
2204                 nvme_unfreeze(&dev->ctrl);
2205         }
2206
2207         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2208                 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
2209                 goto out;
2210         }
2211
2212         nvme_start_ctrl(&dev->ctrl);
2213         return;
2214
2215  out:
2216         nvme_remove_dead_ctrl(dev, result);
2217 }
2218
2219 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2220 {
2221         struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2222         struct pci_dev *pdev = to_pci_dev(dev->dev);
2223
2224         nvme_kill_queues(&dev->ctrl);
2225         if (pci_get_drvdata(pdev))
2226                 device_release_driver(&pdev->dev);
2227         nvme_put_ctrl(&dev->ctrl);
2228 }
2229
2230 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2231 {
2232         *val = readl(to_nvme_dev(ctrl)->bar + off);
2233         return 0;
2234 }
2235
2236 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2237 {
2238         writel(val, to_nvme_dev(ctrl)->bar + off);
2239         return 0;
2240 }
2241
2242 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2243 {
2244         *val = readq(to_nvme_dev(ctrl)->bar + off);
2245         return 0;
2246 }
2247
2248 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2249         .name                   = "pcie",
2250         .module                 = THIS_MODULE,
2251         .flags                  = NVME_F_METADATA_SUPPORTED,
2252         .reg_read32             = nvme_pci_reg_read32,
2253         .reg_write32            = nvme_pci_reg_write32,
2254         .reg_read64             = nvme_pci_reg_read64,
2255         .free_ctrl              = nvme_pci_free_ctrl,
2256         .submit_async_event     = nvme_pci_submit_async_event,
2257 };
2258
2259 static int nvme_dev_map(struct nvme_dev *dev)
2260 {
2261         struct pci_dev *pdev = to_pci_dev(dev->dev);
2262
2263         if (pci_request_mem_regions(pdev, "nvme"))
2264                 return -ENODEV;
2265
2266         if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2267                 goto release;
2268
2269         return 0;
2270   release:
2271         pci_release_mem_regions(pdev);
2272         return -ENODEV;
2273 }
2274
2275 static unsigned long check_dell_samsung_bug(struct pci_dev *pdev)
2276 {
2277         if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2278                 /*
2279                  * Several Samsung devices seem to drop off the PCIe bus
2280                  * randomly when APST is on and uses the deepest sleep state.
2281                  * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2282                  * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2283                  * 950 PRO 256GB", but it seems to be restricted to two Dell
2284                  * laptops.
2285                  */
2286                 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2287                     (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2288                      dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2289                         return NVME_QUIRK_NO_DEEPEST_PS;
2290         }
2291
2292         return 0;
2293 }
2294
2295 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2296 {
2297         int node, result = -ENOMEM;
2298         struct nvme_dev *dev;
2299         unsigned long quirks = id->driver_data;
2300
2301         node = dev_to_node(&pdev->dev);
2302         if (node == NUMA_NO_NODE)
2303                 set_dev_node(&pdev->dev, first_memory_node);
2304
2305         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2306         if (!dev)
2307                 return -ENOMEM;
2308         dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2309                                                         GFP_KERNEL, node);
2310         if (!dev->queues)
2311                 goto free;
2312
2313         dev->dev = get_device(&pdev->dev);
2314         pci_set_drvdata(pdev, dev);
2315
2316         result = nvme_dev_map(dev);
2317         if (result)
2318                 goto put_pci;
2319
2320         INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2321         INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2322         mutex_init(&dev->shutdown_lock);
2323         init_completion(&dev->ioq_wait);
2324
2325         result = nvme_setup_prp_pools(dev);
2326         if (result)
2327                 goto unmap;
2328
2329         quirks |= check_dell_samsung_bug(pdev);
2330
2331         result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2332                         quirks);
2333         if (result)
2334                 goto release_pools;
2335
2336         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING);
2337         dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2338
2339         queue_work(nvme_wq, &dev->ctrl.reset_work);
2340         return 0;
2341
2342  release_pools:
2343         nvme_release_prp_pools(dev);
2344  unmap:
2345         nvme_dev_unmap(dev);
2346  put_pci:
2347         put_device(dev->dev);
2348  free:
2349         kfree(dev->queues);
2350         kfree(dev);
2351         return result;
2352 }
2353
2354 static void nvme_reset_prepare(struct pci_dev *pdev)
2355 {
2356         struct nvme_dev *dev = pci_get_drvdata(pdev);
2357         nvme_dev_disable(dev, false);
2358 }
2359
2360 static void nvme_reset_done(struct pci_dev *pdev)
2361 {
2362         struct nvme_dev *dev = pci_get_drvdata(pdev);
2363         nvme_reset_ctrl(&dev->ctrl);
2364 }
2365
2366 static void nvme_shutdown(struct pci_dev *pdev)
2367 {
2368         struct nvme_dev *dev = pci_get_drvdata(pdev);
2369         nvme_dev_disable(dev, true);
2370 }
2371
2372 /*
2373  * The driver's remove may be called on a device in a partially initialized
2374  * state. This function must not have any dependencies on the device state in
2375  * order to proceed.
2376  */
2377 static void nvme_remove(struct pci_dev *pdev)
2378 {
2379         struct nvme_dev *dev = pci_get_drvdata(pdev);
2380
2381         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2382
2383         cancel_work_sync(&dev->ctrl.reset_work);
2384         pci_set_drvdata(pdev, NULL);
2385
2386         if (!pci_device_is_present(pdev)) {
2387                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2388                 nvme_dev_disable(dev, false);
2389         }
2390
2391         flush_work(&dev->ctrl.reset_work);
2392         nvme_stop_ctrl(&dev->ctrl);
2393         nvme_remove_namespaces(&dev->ctrl);
2394         nvme_dev_disable(dev, true);
2395         nvme_free_host_mem(dev);
2396         nvme_dev_remove_admin(dev);
2397         nvme_free_queues(dev, 0);
2398         nvme_uninit_ctrl(&dev->ctrl);
2399         nvme_release_prp_pools(dev);
2400         nvme_dev_unmap(dev);
2401         nvme_put_ctrl(&dev->ctrl);
2402 }
2403
2404 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2405 {
2406         int ret = 0;
2407
2408         if (numvfs == 0) {
2409                 if (pci_vfs_assigned(pdev)) {
2410                         dev_warn(&pdev->dev,
2411                                 "Cannot disable SR-IOV VFs while assigned\n");
2412                         return -EPERM;
2413                 }
2414                 pci_disable_sriov(pdev);
2415                 return 0;
2416         }
2417
2418         ret = pci_enable_sriov(pdev, numvfs);
2419         return ret ? ret : numvfs;
2420 }
2421
2422 #ifdef CONFIG_PM_SLEEP
2423 static int nvme_suspend(struct device *dev)
2424 {
2425         struct pci_dev *pdev = to_pci_dev(dev);
2426         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2427
2428         nvme_dev_disable(ndev, true);
2429         return 0;
2430 }
2431
2432 static int nvme_resume(struct device *dev)
2433 {
2434         struct pci_dev *pdev = to_pci_dev(dev);
2435         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2436
2437         nvme_reset_ctrl(&ndev->ctrl);
2438         return 0;
2439 }
2440 #endif
2441
2442 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2443
2444 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2445                                                 pci_channel_state_t state)
2446 {
2447         struct nvme_dev *dev = pci_get_drvdata(pdev);
2448
2449         /*
2450          * A frozen channel requires a reset. When detected, this method will
2451          * shutdown the controller to quiesce. The controller will be restarted
2452          * after the slot reset through driver's slot_reset callback.
2453          */
2454         switch (state) {
2455         case pci_channel_io_normal:
2456                 return PCI_ERS_RESULT_CAN_RECOVER;
2457         case pci_channel_io_frozen:
2458                 dev_warn(dev->ctrl.device,
2459                         "frozen state error detected, reset controller\n");
2460                 nvme_dev_disable(dev, false);
2461                 return PCI_ERS_RESULT_NEED_RESET;
2462         case pci_channel_io_perm_failure:
2463                 dev_warn(dev->ctrl.device,
2464                         "failure state error detected, request disconnect\n");
2465                 return PCI_ERS_RESULT_DISCONNECT;
2466         }
2467         return PCI_ERS_RESULT_NEED_RESET;
2468 }
2469
2470 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2471 {
2472         struct nvme_dev *dev = pci_get_drvdata(pdev);
2473
2474         dev_info(dev->ctrl.device, "restart after slot reset\n");
2475         pci_restore_state(pdev);
2476         nvme_reset_ctrl(&dev->ctrl);
2477         return PCI_ERS_RESULT_RECOVERED;
2478 }
2479
2480 static void nvme_error_resume(struct pci_dev *pdev)
2481 {
2482         pci_cleanup_aer_uncorrect_error_status(pdev);
2483 }
2484
2485 static const struct pci_error_handlers nvme_err_handler = {
2486         .error_detected = nvme_error_detected,
2487         .slot_reset     = nvme_slot_reset,
2488         .resume         = nvme_error_resume,
2489         .reset_prepare  = nvme_reset_prepare,
2490         .reset_done     = nvme_reset_done,
2491 };
2492
2493 static const struct pci_device_id nvme_id_table[] = {
2494         { PCI_VDEVICE(INTEL, 0x0953),
2495                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2496                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2497         { PCI_VDEVICE(INTEL, 0x0a53),
2498                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2499                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2500         { PCI_VDEVICE(INTEL, 0x0a54),
2501                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2502                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2503         { PCI_VDEVICE(INTEL, 0x0a55),
2504                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2505                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2506         { PCI_VDEVICE(INTEL, 0xf1a5),   /* Intel 600P/P3100 */
2507                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS },
2508         { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
2509                 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2510         { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
2511                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2512         { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
2513                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2514         { PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
2515                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2516         { PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
2517                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2518         { PCI_DEVICE(0x1d1d, 0x1f1f),   /* LighNVM qemu device */
2519                 .driver_data = NVME_QUIRK_LIGHTNVM, },
2520         { PCI_DEVICE(0x1d1d, 0x2807),   /* CNEX WL */
2521                 .driver_data = NVME_QUIRK_LIGHTNVM, },
2522         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2523         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2524         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2525         { 0, }
2526 };
2527 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2528
2529 static struct pci_driver nvme_driver = {
2530         .name           = "nvme",
2531         .id_table       = nvme_id_table,
2532         .probe          = nvme_probe,
2533         .remove         = nvme_remove,
2534         .shutdown       = nvme_shutdown,
2535         .driver         = {
2536                 .pm     = &nvme_dev_pm_ops,
2537         },
2538         .sriov_configure = nvme_pci_sriov_configure,
2539         .err_handler    = &nvme_err_handler,
2540 };
2541
2542 static int __init nvme_init(void)
2543 {
2544         return pci_register_driver(&nvme_driver);
2545 }
2546
2547 static void __exit nvme_exit(void)
2548 {
2549         pci_unregister_driver(&nvme_driver);
2550         _nvme_check_size();
2551 }
2552
2553 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2554 MODULE_LICENSE("GPL");
2555 MODULE_VERSION("1.0");
2556 module_init(nvme_init);
2557 module_exit(nvme_exit);