Merge tag 'trace-v5.14-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[linux-2.6-block.git] / drivers / nvme / host / pci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6
7 #include <linux/acpi.h>
8 #include <linux/aer.h>
9 #include <linux/async.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/blk-mq-pci.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/mutex.h>
20 #include <linux/once.h>
21 #include <linux/pci.h>
22 #include <linux/suspend.h>
23 #include <linux/t10-pi.h>
24 #include <linux/types.h>
25 #include <linux/io-64-nonatomic-lo-hi.h>
26 #include <linux/io-64-nonatomic-hi-lo.h>
27 #include <linux/sed-opal.h>
28 #include <linux/pci-p2pdma.h>
29
30 #include "trace.h"
31 #include "nvme.h"
32
33 #define SQ_SIZE(q)      ((q)->q_depth << (q)->sqes)
34 #define CQ_SIZE(q)      ((q)->q_depth * sizeof(struct nvme_completion))
35
36 #define SGES_PER_PAGE   (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
37
38 /*
39  * These can be higher, but we need to ensure that any command doesn't
40  * require an sg allocation that needs more than a page of data.
41  */
42 #define NVME_MAX_KB_SZ  4096
43 #define NVME_MAX_SEGS   127
44
45 static int use_threaded_interrupts;
46 module_param(use_threaded_interrupts, int, 0);
47
48 static bool use_cmb_sqes = true;
49 module_param(use_cmb_sqes, bool, 0444);
50 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
51
52 static unsigned int max_host_mem_size_mb = 128;
53 module_param(max_host_mem_size_mb, uint, 0444);
54 MODULE_PARM_DESC(max_host_mem_size_mb,
55         "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
56
57 static unsigned int sgl_threshold = SZ_32K;
58 module_param(sgl_threshold, uint, 0644);
59 MODULE_PARM_DESC(sgl_threshold,
60                 "Use SGLs when average request segment size is larger or equal to "
61                 "this size. Use 0 to disable SGLs.");
62
63 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
64 static const struct kernel_param_ops io_queue_depth_ops = {
65         .set = io_queue_depth_set,
66         .get = param_get_uint,
67 };
68
69 static unsigned int io_queue_depth = 1024;
70 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
71 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
72
73 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
74 {
75         unsigned int n;
76         int ret;
77
78         ret = kstrtouint(val, 10, &n);
79         if (ret != 0 || n > num_possible_cpus())
80                 return -EINVAL;
81         return param_set_uint(val, kp);
82 }
83
84 static const struct kernel_param_ops io_queue_count_ops = {
85         .set = io_queue_count_set,
86         .get = param_get_uint,
87 };
88
89 static unsigned int write_queues;
90 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
91 MODULE_PARM_DESC(write_queues,
92         "Number of queues to use for writes. If not set, reads and writes "
93         "will share a queue set.");
94
95 static unsigned int poll_queues;
96 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
97 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
98
99 static bool noacpi;
100 module_param(noacpi, bool, 0444);
101 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
102
103 struct nvme_dev;
104 struct nvme_queue;
105
106 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
107 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
108
109 /*
110  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
111  */
112 struct nvme_dev {
113         struct nvme_queue *queues;
114         struct blk_mq_tag_set tagset;
115         struct blk_mq_tag_set admin_tagset;
116         u32 __iomem *dbs;
117         struct device *dev;
118         struct dma_pool *prp_page_pool;
119         struct dma_pool *prp_small_pool;
120         unsigned online_queues;
121         unsigned max_qid;
122         unsigned io_queues[HCTX_MAX_TYPES];
123         unsigned int num_vecs;
124         u32 q_depth;
125         int io_sqes;
126         u32 db_stride;
127         void __iomem *bar;
128         unsigned long bar_mapped_size;
129         struct work_struct remove_work;
130         struct mutex shutdown_lock;
131         bool subsystem;
132         u64 cmb_size;
133         bool cmb_use_sqes;
134         u32 cmbsz;
135         u32 cmbloc;
136         struct nvme_ctrl ctrl;
137         u32 last_ps;
138
139         mempool_t *iod_mempool;
140
141         /* shadow doorbell buffer support: */
142         u32 *dbbuf_dbs;
143         dma_addr_t dbbuf_dbs_dma_addr;
144         u32 *dbbuf_eis;
145         dma_addr_t dbbuf_eis_dma_addr;
146
147         /* host memory buffer support: */
148         u64 host_mem_size;
149         u32 nr_host_mem_descs;
150         dma_addr_t host_mem_descs_dma;
151         struct nvme_host_mem_buf_desc *host_mem_descs;
152         void **host_mem_desc_bufs;
153         unsigned int nr_allocated_queues;
154         unsigned int nr_write_queues;
155         unsigned int nr_poll_queues;
156 };
157
158 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
159 {
160         int ret;
161         u32 n;
162
163         ret = kstrtou32(val, 10, &n);
164         if (ret != 0 || n < 2)
165                 return -EINVAL;
166
167         return param_set_uint(val, kp);
168 }
169
170 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
171 {
172         return qid * 2 * stride;
173 }
174
175 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
176 {
177         return (qid * 2 + 1) * stride;
178 }
179
180 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
181 {
182         return container_of(ctrl, struct nvme_dev, ctrl);
183 }
184
185 /*
186  * An NVM Express queue.  Each device has at least two (one for admin
187  * commands and one for I/O commands).
188  */
189 struct nvme_queue {
190         struct nvme_dev *dev;
191         spinlock_t sq_lock;
192         void *sq_cmds;
193          /* only used for poll queues: */
194         spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
195         struct nvme_completion *cqes;
196         dma_addr_t sq_dma_addr;
197         dma_addr_t cq_dma_addr;
198         u32 __iomem *q_db;
199         u32 q_depth;
200         u16 cq_vector;
201         u16 sq_tail;
202         u16 last_sq_tail;
203         u16 cq_head;
204         u16 qid;
205         u8 cq_phase;
206         u8 sqes;
207         unsigned long flags;
208 #define NVMEQ_ENABLED           0
209 #define NVMEQ_SQ_CMB            1
210 #define NVMEQ_DELETE_ERROR      2
211 #define NVMEQ_POLLED            3
212         u32 *dbbuf_sq_db;
213         u32 *dbbuf_cq_db;
214         u32 *dbbuf_sq_ei;
215         u32 *dbbuf_cq_ei;
216         struct completion delete_done;
217 };
218
219 /*
220  * The nvme_iod describes the data in an I/O.
221  *
222  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
223  * to the actual struct scatterlist.
224  */
225 struct nvme_iod {
226         struct nvme_request req;
227         struct nvme_command cmd;
228         struct nvme_queue *nvmeq;
229         bool use_sgl;
230         int aborted;
231         int npages;             /* In the PRP list. 0 means small pool in use */
232         int nents;              /* Used in scatterlist */
233         dma_addr_t first_dma;
234         unsigned int dma_len;   /* length of single DMA segment mapping */
235         dma_addr_t meta_dma;
236         struct scatterlist *sg;
237 };
238
239 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
240 {
241         return dev->nr_allocated_queues * 8 * dev->db_stride;
242 }
243
244 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
245 {
246         unsigned int mem_size = nvme_dbbuf_size(dev);
247
248         if (dev->dbbuf_dbs)
249                 return 0;
250
251         dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
252                                             &dev->dbbuf_dbs_dma_addr,
253                                             GFP_KERNEL);
254         if (!dev->dbbuf_dbs)
255                 return -ENOMEM;
256         dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
257                                             &dev->dbbuf_eis_dma_addr,
258                                             GFP_KERNEL);
259         if (!dev->dbbuf_eis) {
260                 dma_free_coherent(dev->dev, mem_size,
261                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
262                 dev->dbbuf_dbs = NULL;
263                 return -ENOMEM;
264         }
265
266         return 0;
267 }
268
269 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
270 {
271         unsigned int mem_size = nvme_dbbuf_size(dev);
272
273         if (dev->dbbuf_dbs) {
274                 dma_free_coherent(dev->dev, mem_size,
275                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
276                 dev->dbbuf_dbs = NULL;
277         }
278         if (dev->dbbuf_eis) {
279                 dma_free_coherent(dev->dev, mem_size,
280                                   dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
281                 dev->dbbuf_eis = NULL;
282         }
283 }
284
285 static void nvme_dbbuf_init(struct nvme_dev *dev,
286                             struct nvme_queue *nvmeq, int qid)
287 {
288         if (!dev->dbbuf_dbs || !qid)
289                 return;
290
291         nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
292         nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
293         nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
294         nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
295 }
296
297 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
298 {
299         if (!nvmeq->qid)
300                 return;
301
302         nvmeq->dbbuf_sq_db = NULL;
303         nvmeq->dbbuf_cq_db = NULL;
304         nvmeq->dbbuf_sq_ei = NULL;
305         nvmeq->dbbuf_cq_ei = NULL;
306 }
307
308 static void nvme_dbbuf_set(struct nvme_dev *dev)
309 {
310         struct nvme_command c = { };
311         unsigned int i;
312
313         if (!dev->dbbuf_dbs)
314                 return;
315
316         c.dbbuf.opcode = nvme_admin_dbbuf;
317         c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
318         c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
319
320         if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
321                 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
322                 /* Free memory and continue on */
323                 nvme_dbbuf_dma_free(dev);
324
325                 for (i = 1; i <= dev->online_queues; i++)
326                         nvme_dbbuf_free(&dev->queues[i]);
327         }
328 }
329
330 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
331 {
332         return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
333 }
334
335 /* Update dbbuf and return true if an MMIO is required */
336 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
337                                               volatile u32 *dbbuf_ei)
338 {
339         if (dbbuf_db) {
340                 u16 old_value;
341
342                 /*
343                  * Ensure that the queue is written before updating
344                  * the doorbell in memory
345                  */
346                 wmb();
347
348                 old_value = *dbbuf_db;
349                 *dbbuf_db = value;
350
351                 /*
352                  * Ensure that the doorbell is updated before reading the event
353                  * index from memory.  The controller needs to provide similar
354                  * ordering to ensure the envent index is updated before reading
355                  * the doorbell.
356                  */
357                 mb();
358
359                 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
360                         return false;
361         }
362
363         return true;
364 }
365
366 /*
367  * Will slightly overestimate the number of pages needed.  This is OK
368  * as it only leads to a small amount of wasted memory for the lifetime of
369  * the I/O.
370  */
371 static int nvme_pci_npages_prp(void)
372 {
373         unsigned nprps = DIV_ROUND_UP(NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE,
374                                       NVME_CTRL_PAGE_SIZE);
375         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
376 }
377
378 /*
379  * Calculates the number of pages needed for the SGL segments. For example a 4k
380  * page can accommodate 256 SGL descriptors.
381  */
382 static int nvme_pci_npages_sgl(void)
383 {
384         return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc),
385                         PAGE_SIZE);
386 }
387
388 static size_t nvme_pci_iod_alloc_size(void)
389 {
390         size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl());
391
392         return sizeof(__le64 *) * npages +
393                 sizeof(struct scatterlist) * NVME_MAX_SEGS;
394 }
395
396 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
397                                 unsigned int hctx_idx)
398 {
399         struct nvme_dev *dev = data;
400         struct nvme_queue *nvmeq = &dev->queues[0];
401
402         WARN_ON(hctx_idx != 0);
403         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
404
405         hctx->driver_data = nvmeq;
406         return 0;
407 }
408
409 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
410                           unsigned int hctx_idx)
411 {
412         struct nvme_dev *dev = data;
413         struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
414
415         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
416         hctx->driver_data = nvmeq;
417         return 0;
418 }
419
420 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
421                 unsigned int hctx_idx, unsigned int numa_node)
422 {
423         struct nvme_dev *dev = set->driver_data;
424         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
425         int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
426         struct nvme_queue *nvmeq = &dev->queues[queue_idx];
427
428         BUG_ON(!nvmeq);
429         iod->nvmeq = nvmeq;
430
431         nvme_req(req)->ctrl = &dev->ctrl;
432         nvme_req(req)->cmd = &iod->cmd;
433         return 0;
434 }
435
436 static int queue_irq_offset(struct nvme_dev *dev)
437 {
438         /* if we have more than 1 vec, admin queue offsets us by 1 */
439         if (dev->num_vecs > 1)
440                 return 1;
441
442         return 0;
443 }
444
445 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
446 {
447         struct nvme_dev *dev = set->driver_data;
448         int i, qoff, offset;
449
450         offset = queue_irq_offset(dev);
451         for (i = 0, qoff = 0; i < set->nr_maps; i++) {
452                 struct blk_mq_queue_map *map = &set->map[i];
453
454                 map->nr_queues = dev->io_queues[i];
455                 if (!map->nr_queues) {
456                         BUG_ON(i == HCTX_TYPE_DEFAULT);
457                         continue;
458                 }
459
460                 /*
461                  * The poll queue(s) doesn't have an IRQ (and hence IRQ
462                  * affinity), so use the regular blk-mq cpu mapping
463                  */
464                 map->queue_offset = qoff;
465                 if (i != HCTX_TYPE_POLL && offset)
466                         blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
467                 else
468                         blk_mq_map_queues(map);
469                 qoff += map->nr_queues;
470                 offset += map->nr_queues;
471         }
472
473         return 0;
474 }
475
476 /*
477  * Write sq tail if we are asked to, or if the next command would wrap.
478  */
479 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
480 {
481         if (!write_sq) {
482                 u16 next_tail = nvmeq->sq_tail + 1;
483
484                 if (next_tail == nvmeq->q_depth)
485                         next_tail = 0;
486                 if (next_tail != nvmeq->last_sq_tail)
487                         return;
488         }
489
490         if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
491                         nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
492                 writel(nvmeq->sq_tail, nvmeq->q_db);
493         nvmeq->last_sq_tail = nvmeq->sq_tail;
494 }
495
496 /**
497  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
498  * @nvmeq: The queue to use
499  * @cmd: The command to send
500  * @write_sq: whether to write to the SQ doorbell
501  */
502 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
503                             bool write_sq)
504 {
505         spin_lock(&nvmeq->sq_lock);
506         memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
507                cmd, sizeof(*cmd));
508         if (++nvmeq->sq_tail == nvmeq->q_depth)
509                 nvmeq->sq_tail = 0;
510         nvme_write_sq_db(nvmeq, write_sq);
511         spin_unlock(&nvmeq->sq_lock);
512 }
513
514 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
515 {
516         struct nvme_queue *nvmeq = hctx->driver_data;
517
518         spin_lock(&nvmeq->sq_lock);
519         if (nvmeq->sq_tail != nvmeq->last_sq_tail)
520                 nvme_write_sq_db(nvmeq, true);
521         spin_unlock(&nvmeq->sq_lock);
522 }
523
524 static void **nvme_pci_iod_list(struct request *req)
525 {
526         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
527         return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
528 }
529
530 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
531 {
532         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
533         int nseg = blk_rq_nr_phys_segments(req);
534         unsigned int avg_seg_size;
535
536         avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
537
538         if (!nvme_ctrl_sgl_supported(&dev->ctrl))
539                 return false;
540         if (!iod->nvmeq->qid)
541                 return false;
542         if (!sgl_threshold || avg_seg_size < sgl_threshold)
543                 return false;
544         return true;
545 }
546
547 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
548 {
549         const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
550         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
551         dma_addr_t dma_addr = iod->first_dma;
552         int i;
553
554         for (i = 0; i < iod->npages; i++) {
555                 __le64 *prp_list = nvme_pci_iod_list(req)[i];
556                 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
557
558                 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
559                 dma_addr = next_dma_addr;
560         }
561 }
562
563 static void nvme_free_sgls(struct nvme_dev *dev, struct request *req)
564 {
565         const int last_sg = SGES_PER_PAGE - 1;
566         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
567         dma_addr_t dma_addr = iod->first_dma;
568         int i;
569
570         for (i = 0; i < iod->npages; i++) {
571                 struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i];
572                 dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr);
573
574                 dma_pool_free(dev->prp_page_pool, sg_list, dma_addr);
575                 dma_addr = next_dma_addr;
576         }
577 }
578
579 static void nvme_unmap_sg(struct nvme_dev *dev, struct request *req)
580 {
581         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
582
583         if (is_pci_p2pdma_page(sg_page(iod->sg)))
584                 pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents,
585                                     rq_dma_dir(req));
586         else
587                 dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
588 }
589
590 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
591 {
592         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
593
594         if (iod->dma_len) {
595                 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
596                                rq_dma_dir(req));
597                 return;
598         }
599
600         WARN_ON_ONCE(!iod->nents);
601
602         nvme_unmap_sg(dev, req);
603         if (iod->npages == 0)
604                 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
605                               iod->first_dma);
606         else if (iod->use_sgl)
607                 nvme_free_sgls(dev, req);
608         else
609                 nvme_free_prps(dev, req);
610         mempool_free(iod->sg, dev->iod_mempool);
611 }
612
613 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
614 {
615         int i;
616         struct scatterlist *sg;
617
618         for_each_sg(sgl, sg, nents, i) {
619                 dma_addr_t phys = sg_phys(sg);
620                 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
621                         "dma_address:%pad dma_length:%d\n",
622                         i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
623                         sg_dma_len(sg));
624         }
625 }
626
627 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
628                 struct request *req, struct nvme_rw_command *cmnd)
629 {
630         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
631         struct dma_pool *pool;
632         int length = blk_rq_payload_bytes(req);
633         struct scatterlist *sg = iod->sg;
634         int dma_len = sg_dma_len(sg);
635         u64 dma_addr = sg_dma_address(sg);
636         int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
637         __le64 *prp_list;
638         void **list = nvme_pci_iod_list(req);
639         dma_addr_t prp_dma;
640         int nprps, i;
641
642         length -= (NVME_CTRL_PAGE_SIZE - offset);
643         if (length <= 0) {
644                 iod->first_dma = 0;
645                 goto done;
646         }
647
648         dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
649         if (dma_len) {
650                 dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
651         } else {
652                 sg = sg_next(sg);
653                 dma_addr = sg_dma_address(sg);
654                 dma_len = sg_dma_len(sg);
655         }
656
657         if (length <= NVME_CTRL_PAGE_SIZE) {
658                 iod->first_dma = dma_addr;
659                 goto done;
660         }
661
662         nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
663         if (nprps <= (256 / 8)) {
664                 pool = dev->prp_small_pool;
665                 iod->npages = 0;
666         } else {
667                 pool = dev->prp_page_pool;
668                 iod->npages = 1;
669         }
670
671         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
672         if (!prp_list) {
673                 iod->first_dma = dma_addr;
674                 iod->npages = -1;
675                 return BLK_STS_RESOURCE;
676         }
677         list[0] = prp_list;
678         iod->first_dma = prp_dma;
679         i = 0;
680         for (;;) {
681                 if (i == NVME_CTRL_PAGE_SIZE >> 3) {
682                         __le64 *old_prp_list = prp_list;
683                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
684                         if (!prp_list)
685                                 goto free_prps;
686                         list[iod->npages++] = prp_list;
687                         prp_list[0] = old_prp_list[i - 1];
688                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
689                         i = 1;
690                 }
691                 prp_list[i++] = cpu_to_le64(dma_addr);
692                 dma_len -= NVME_CTRL_PAGE_SIZE;
693                 dma_addr += NVME_CTRL_PAGE_SIZE;
694                 length -= NVME_CTRL_PAGE_SIZE;
695                 if (length <= 0)
696                         break;
697                 if (dma_len > 0)
698                         continue;
699                 if (unlikely(dma_len < 0))
700                         goto bad_sgl;
701                 sg = sg_next(sg);
702                 dma_addr = sg_dma_address(sg);
703                 dma_len = sg_dma_len(sg);
704         }
705 done:
706         cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
707         cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
708         return BLK_STS_OK;
709 free_prps:
710         nvme_free_prps(dev, req);
711         return BLK_STS_RESOURCE;
712 bad_sgl:
713         WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
714                         "Invalid SGL for payload:%d nents:%d\n",
715                         blk_rq_payload_bytes(req), iod->nents);
716         return BLK_STS_IOERR;
717 }
718
719 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
720                 struct scatterlist *sg)
721 {
722         sge->addr = cpu_to_le64(sg_dma_address(sg));
723         sge->length = cpu_to_le32(sg_dma_len(sg));
724         sge->type = NVME_SGL_FMT_DATA_DESC << 4;
725 }
726
727 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
728                 dma_addr_t dma_addr, int entries)
729 {
730         sge->addr = cpu_to_le64(dma_addr);
731         if (entries < SGES_PER_PAGE) {
732                 sge->length = cpu_to_le32(entries * sizeof(*sge));
733                 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
734         } else {
735                 sge->length = cpu_to_le32(PAGE_SIZE);
736                 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
737         }
738 }
739
740 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
741                 struct request *req, struct nvme_rw_command *cmd, int entries)
742 {
743         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
744         struct dma_pool *pool;
745         struct nvme_sgl_desc *sg_list;
746         struct scatterlist *sg = iod->sg;
747         dma_addr_t sgl_dma;
748         int i = 0;
749
750         /* setting the transfer type as SGL */
751         cmd->flags = NVME_CMD_SGL_METABUF;
752
753         if (entries == 1) {
754                 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
755                 return BLK_STS_OK;
756         }
757
758         if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
759                 pool = dev->prp_small_pool;
760                 iod->npages = 0;
761         } else {
762                 pool = dev->prp_page_pool;
763                 iod->npages = 1;
764         }
765
766         sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
767         if (!sg_list) {
768                 iod->npages = -1;
769                 return BLK_STS_RESOURCE;
770         }
771
772         nvme_pci_iod_list(req)[0] = sg_list;
773         iod->first_dma = sgl_dma;
774
775         nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
776
777         do {
778                 if (i == SGES_PER_PAGE) {
779                         struct nvme_sgl_desc *old_sg_desc = sg_list;
780                         struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
781
782                         sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
783                         if (!sg_list)
784                                 goto free_sgls;
785
786                         i = 0;
787                         nvme_pci_iod_list(req)[iod->npages++] = sg_list;
788                         sg_list[i++] = *link;
789                         nvme_pci_sgl_set_seg(link, sgl_dma, entries);
790                 }
791
792                 nvme_pci_sgl_set_data(&sg_list[i++], sg);
793                 sg = sg_next(sg);
794         } while (--entries > 0);
795
796         return BLK_STS_OK;
797 free_sgls:
798         nvme_free_sgls(dev, req);
799         return BLK_STS_RESOURCE;
800 }
801
802 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
803                 struct request *req, struct nvme_rw_command *cmnd,
804                 struct bio_vec *bv)
805 {
806         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
807         unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
808         unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
809
810         iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
811         if (dma_mapping_error(dev->dev, iod->first_dma))
812                 return BLK_STS_RESOURCE;
813         iod->dma_len = bv->bv_len;
814
815         cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
816         if (bv->bv_len > first_prp_len)
817                 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
818         return BLK_STS_OK;
819 }
820
821 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
822                 struct request *req, struct nvme_rw_command *cmnd,
823                 struct bio_vec *bv)
824 {
825         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
826
827         iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
828         if (dma_mapping_error(dev->dev, iod->first_dma))
829                 return BLK_STS_RESOURCE;
830         iod->dma_len = bv->bv_len;
831
832         cmnd->flags = NVME_CMD_SGL_METABUF;
833         cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
834         cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
835         cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
836         return BLK_STS_OK;
837 }
838
839 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
840                 struct nvme_command *cmnd)
841 {
842         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
843         blk_status_t ret = BLK_STS_RESOURCE;
844         int nr_mapped;
845
846         if (blk_rq_nr_phys_segments(req) == 1) {
847                 struct bio_vec bv = req_bvec(req);
848
849                 if (!is_pci_p2pdma_page(bv.bv_page)) {
850                         if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
851                                 return nvme_setup_prp_simple(dev, req,
852                                                              &cmnd->rw, &bv);
853
854                         if (iod->nvmeq->qid && sgl_threshold &&
855                             nvme_ctrl_sgl_supported(&dev->ctrl))
856                                 return nvme_setup_sgl_simple(dev, req,
857                                                              &cmnd->rw, &bv);
858                 }
859         }
860
861         iod->dma_len = 0;
862         iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
863         if (!iod->sg)
864                 return BLK_STS_RESOURCE;
865         sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
866         iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
867         if (!iod->nents)
868                 goto out_free_sg;
869
870         if (is_pci_p2pdma_page(sg_page(iod->sg)))
871                 nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg,
872                                 iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN);
873         else
874                 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
875                                              rq_dma_dir(req), DMA_ATTR_NO_WARN);
876         if (!nr_mapped)
877                 goto out_free_sg;
878
879         iod->use_sgl = nvme_pci_use_sgls(dev, req);
880         if (iod->use_sgl)
881                 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
882         else
883                 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
884         if (ret != BLK_STS_OK)
885                 goto out_unmap_sg;
886         return BLK_STS_OK;
887
888 out_unmap_sg:
889         nvme_unmap_sg(dev, req);
890 out_free_sg:
891         mempool_free(iod->sg, dev->iod_mempool);
892         return ret;
893 }
894
895 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
896                 struct nvme_command *cmnd)
897 {
898         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
899
900         iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
901                         rq_dma_dir(req), 0);
902         if (dma_mapping_error(dev->dev, iod->meta_dma))
903                 return BLK_STS_IOERR;
904         cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
905         return BLK_STS_OK;
906 }
907
908 /*
909  * NOTE: ns is NULL when called on the admin queue.
910  */
911 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
912                          const struct blk_mq_queue_data *bd)
913 {
914         struct nvme_ns *ns = hctx->queue->queuedata;
915         struct nvme_queue *nvmeq = hctx->driver_data;
916         struct nvme_dev *dev = nvmeq->dev;
917         struct request *req = bd->rq;
918         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
919         struct nvme_command *cmnd = &iod->cmd;
920         blk_status_t ret;
921
922         iod->aborted = 0;
923         iod->npages = -1;
924         iod->nents = 0;
925
926         /*
927          * We should not need to do this, but we're still using this to
928          * ensure we can drain requests on a dying queue.
929          */
930         if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
931                 return BLK_STS_IOERR;
932
933         if (!nvme_check_ready(&dev->ctrl, req, true))
934                 return nvme_fail_nonready_command(&dev->ctrl, req);
935
936         ret = nvme_setup_cmd(ns, req);
937         if (ret)
938                 return ret;
939
940         if (blk_rq_nr_phys_segments(req)) {
941                 ret = nvme_map_data(dev, req, cmnd);
942                 if (ret)
943                         goto out_free_cmd;
944         }
945
946         if (blk_integrity_rq(req)) {
947                 ret = nvme_map_metadata(dev, req, cmnd);
948                 if (ret)
949                         goto out_unmap_data;
950         }
951
952         blk_mq_start_request(req);
953         nvme_submit_cmd(nvmeq, cmnd, bd->last);
954         return BLK_STS_OK;
955 out_unmap_data:
956         nvme_unmap_data(dev, req);
957 out_free_cmd:
958         nvme_cleanup_cmd(req);
959         return ret;
960 }
961
962 static void nvme_pci_complete_rq(struct request *req)
963 {
964         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
965         struct nvme_dev *dev = iod->nvmeq->dev;
966
967         if (blk_integrity_rq(req))
968                 dma_unmap_page(dev->dev, iod->meta_dma,
969                                rq_integrity_vec(req)->bv_len, rq_data_dir(req));
970         if (blk_rq_nr_phys_segments(req))
971                 nvme_unmap_data(dev, req);
972         nvme_complete_rq(req);
973 }
974
975 /* We read the CQE phase first to check if the rest of the entry is valid */
976 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
977 {
978         struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
979
980         return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
981 }
982
983 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
984 {
985         u16 head = nvmeq->cq_head;
986
987         if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
988                                               nvmeq->dbbuf_cq_ei))
989                 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
990 }
991
992 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
993 {
994         if (!nvmeq->qid)
995                 return nvmeq->dev->admin_tagset.tags[0];
996         return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
997 }
998
999 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
1000 {
1001         struct nvme_completion *cqe = &nvmeq->cqes[idx];
1002         __u16 command_id = READ_ONCE(cqe->command_id);
1003         struct request *req;
1004
1005         /*
1006          * AEN requests are special as they don't time out and can
1007          * survive any kind of queue freeze and often don't respond to
1008          * aborts.  We don't even bother to allocate a struct request
1009          * for them but rather special case them here.
1010          */
1011         if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1012                 nvme_complete_async_event(&nvmeq->dev->ctrl,
1013                                 cqe->status, &cqe->result);
1014                 return;
1015         }
1016
1017         req = blk_mq_tag_to_rq(nvme_queue_tagset(nvmeq), command_id);
1018         if (unlikely(!req)) {
1019                 dev_warn(nvmeq->dev->ctrl.device,
1020                         "invalid id %d completed on queue %d\n",
1021                         command_id, le16_to_cpu(cqe->sq_id));
1022                 return;
1023         }
1024
1025         trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1026         if (!nvme_try_complete_req(req, cqe->status, cqe->result))
1027                 nvme_pci_complete_rq(req);
1028 }
1029
1030 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1031 {
1032         u32 tmp = nvmeq->cq_head + 1;
1033
1034         if (tmp == nvmeq->q_depth) {
1035                 nvmeq->cq_head = 0;
1036                 nvmeq->cq_phase ^= 1;
1037         } else {
1038                 nvmeq->cq_head = tmp;
1039         }
1040 }
1041
1042 static inline int nvme_process_cq(struct nvme_queue *nvmeq)
1043 {
1044         int found = 0;
1045
1046         while (nvme_cqe_pending(nvmeq)) {
1047                 found++;
1048                 /*
1049                  * load-load control dependency between phase and the rest of
1050                  * the cqe requires a full read memory barrier
1051                  */
1052                 dma_rmb();
1053                 nvme_handle_cqe(nvmeq, nvmeq->cq_head);
1054                 nvme_update_cq_head(nvmeq);
1055         }
1056
1057         if (found)
1058                 nvme_ring_cq_doorbell(nvmeq);
1059         return found;
1060 }
1061
1062 static irqreturn_t nvme_irq(int irq, void *data)
1063 {
1064         struct nvme_queue *nvmeq = data;
1065
1066         if (nvme_process_cq(nvmeq))
1067                 return IRQ_HANDLED;
1068         return IRQ_NONE;
1069 }
1070
1071 static irqreturn_t nvme_irq_check(int irq, void *data)
1072 {
1073         struct nvme_queue *nvmeq = data;
1074
1075         if (nvme_cqe_pending(nvmeq))
1076                 return IRQ_WAKE_THREAD;
1077         return IRQ_NONE;
1078 }
1079
1080 /*
1081  * Poll for completions for any interrupt driven queue
1082  * Can be called from any context.
1083  */
1084 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1085 {
1086         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1087
1088         WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1089
1090         disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1091         nvme_process_cq(nvmeq);
1092         enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1093 }
1094
1095 static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1096 {
1097         struct nvme_queue *nvmeq = hctx->driver_data;
1098         bool found;
1099
1100         if (!nvme_cqe_pending(nvmeq))
1101                 return 0;
1102
1103         spin_lock(&nvmeq->cq_poll_lock);
1104         found = nvme_process_cq(nvmeq);
1105         spin_unlock(&nvmeq->cq_poll_lock);
1106
1107         return found;
1108 }
1109
1110 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1111 {
1112         struct nvme_dev *dev = to_nvme_dev(ctrl);
1113         struct nvme_queue *nvmeq = &dev->queues[0];
1114         struct nvme_command c = { };
1115
1116         c.common.opcode = nvme_admin_async_event;
1117         c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1118         nvme_submit_cmd(nvmeq, &c, true);
1119 }
1120
1121 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1122 {
1123         struct nvme_command c = { };
1124
1125         c.delete_queue.opcode = opcode;
1126         c.delete_queue.qid = cpu_to_le16(id);
1127
1128         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1129 }
1130
1131 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1132                 struct nvme_queue *nvmeq, s16 vector)
1133 {
1134         struct nvme_command c = { };
1135         int flags = NVME_QUEUE_PHYS_CONTIG;
1136
1137         if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1138                 flags |= NVME_CQ_IRQ_ENABLED;
1139
1140         /*
1141          * Note: we (ab)use the fact that the prp fields survive if no data
1142          * is attached to the request.
1143          */
1144         c.create_cq.opcode = nvme_admin_create_cq;
1145         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1146         c.create_cq.cqid = cpu_to_le16(qid);
1147         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1148         c.create_cq.cq_flags = cpu_to_le16(flags);
1149         c.create_cq.irq_vector = cpu_to_le16(vector);
1150
1151         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1152 }
1153
1154 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1155                                                 struct nvme_queue *nvmeq)
1156 {
1157         struct nvme_ctrl *ctrl = &dev->ctrl;
1158         struct nvme_command c = { };
1159         int flags = NVME_QUEUE_PHYS_CONTIG;
1160
1161         /*
1162          * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1163          * set. Since URGENT priority is zeroes, it makes all queues
1164          * URGENT.
1165          */
1166         if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1167                 flags |= NVME_SQ_PRIO_MEDIUM;
1168
1169         /*
1170          * Note: we (ab)use the fact that the prp fields survive if no data
1171          * is attached to the request.
1172          */
1173         c.create_sq.opcode = nvme_admin_create_sq;
1174         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1175         c.create_sq.sqid = cpu_to_le16(qid);
1176         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1177         c.create_sq.sq_flags = cpu_to_le16(flags);
1178         c.create_sq.cqid = cpu_to_le16(qid);
1179
1180         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1181 }
1182
1183 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1184 {
1185         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1186 }
1187
1188 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1189 {
1190         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1191 }
1192
1193 static void abort_endio(struct request *req, blk_status_t error)
1194 {
1195         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1196         struct nvme_queue *nvmeq = iod->nvmeq;
1197
1198         dev_warn(nvmeq->dev->ctrl.device,
1199                  "Abort status: 0x%x", nvme_req(req)->status);
1200         atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1201         blk_mq_free_request(req);
1202 }
1203
1204 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1205 {
1206         /* If true, indicates loss of adapter communication, possibly by a
1207          * NVMe Subsystem reset.
1208          */
1209         bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1210
1211         /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1212         switch (dev->ctrl.state) {
1213         case NVME_CTRL_RESETTING:
1214         case NVME_CTRL_CONNECTING:
1215                 return false;
1216         default:
1217                 break;
1218         }
1219
1220         /* We shouldn't reset unless the controller is on fatal error state
1221          * _or_ if we lost the communication with it.
1222          */
1223         if (!(csts & NVME_CSTS_CFS) && !nssro)
1224                 return false;
1225
1226         return true;
1227 }
1228
1229 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1230 {
1231         /* Read a config register to help see what died. */
1232         u16 pci_status;
1233         int result;
1234
1235         result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1236                                       &pci_status);
1237         if (result == PCIBIOS_SUCCESSFUL)
1238                 dev_warn(dev->ctrl.device,
1239                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1240                          csts, pci_status);
1241         else
1242                 dev_warn(dev->ctrl.device,
1243                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1244                          csts, result);
1245 }
1246
1247 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1248 {
1249         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1250         struct nvme_queue *nvmeq = iod->nvmeq;
1251         struct nvme_dev *dev = nvmeq->dev;
1252         struct request *abort_req;
1253         struct nvme_command cmd = { };
1254         u32 csts = readl(dev->bar + NVME_REG_CSTS);
1255
1256         /* If PCI error recovery process is happening, we cannot reset or
1257          * the recovery mechanism will surely fail.
1258          */
1259         mb();
1260         if (pci_channel_offline(to_pci_dev(dev->dev)))
1261                 return BLK_EH_RESET_TIMER;
1262
1263         /*
1264          * Reset immediately if the controller is failed
1265          */
1266         if (nvme_should_reset(dev, csts)) {
1267                 nvme_warn_reset(dev, csts);
1268                 nvme_dev_disable(dev, false);
1269                 nvme_reset_ctrl(&dev->ctrl);
1270                 return BLK_EH_DONE;
1271         }
1272
1273         /*
1274          * Did we miss an interrupt?
1275          */
1276         if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1277                 nvme_poll(req->mq_hctx);
1278         else
1279                 nvme_poll_irqdisable(nvmeq);
1280
1281         if (blk_mq_request_completed(req)) {
1282                 dev_warn(dev->ctrl.device,
1283                          "I/O %d QID %d timeout, completion polled\n",
1284                          req->tag, nvmeq->qid);
1285                 return BLK_EH_DONE;
1286         }
1287
1288         /*
1289          * Shutdown immediately if controller times out while starting. The
1290          * reset work will see the pci device disabled when it gets the forced
1291          * cancellation error. All outstanding requests are completed on
1292          * shutdown, so we return BLK_EH_DONE.
1293          */
1294         switch (dev->ctrl.state) {
1295         case NVME_CTRL_CONNECTING:
1296                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1297                 fallthrough;
1298         case NVME_CTRL_DELETING:
1299                 dev_warn_ratelimited(dev->ctrl.device,
1300                          "I/O %d QID %d timeout, disable controller\n",
1301                          req->tag, nvmeq->qid);
1302                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1303                 nvme_dev_disable(dev, true);
1304                 return BLK_EH_DONE;
1305         case NVME_CTRL_RESETTING:
1306                 return BLK_EH_RESET_TIMER;
1307         default:
1308                 break;
1309         }
1310
1311         /*
1312          * Shutdown the controller immediately and schedule a reset if the
1313          * command was already aborted once before and still hasn't been
1314          * returned to the driver, or if this is the admin queue.
1315          */
1316         if (!nvmeq->qid || iod->aborted) {
1317                 dev_warn(dev->ctrl.device,
1318                          "I/O %d QID %d timeout, reset controller\n",
1319                          req->tag, nvmeq->qid);
1320                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1321                 nvme_dev_disable(dev, false);
1322                 nvme_reset_ctrl(&dev->ctrl);
1323
1324                 return BLK_EH_DONE;
1325         }
1326
1327         if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1328                 atomic_inc(&dev->ctrl.abort_limit);
1329                 return BLK_EH_RESET_TIMER;
1330         }
1331         iod->aborted = 1;
1332
1333         cmd.abort.opcode = nvme_admin_abort_cmd;
1334         cmd.abort.cid = req->tag;
1335         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1336
1337         dev_warn(nvmeq->dev->ctrl.device,
1338                 "I/O %d QID %d timeout, aborting\n",
1339                  req->tag, nvmeq->qid);
1340
1341         abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1342                         BLK_MQ_REQ_NOWAIT);
1343         if (IS_ERR(abort_req)) {
1344                 atomic_inc(&dev->ctrl.abort_limit);
1345                 return BLK_EH_RESET_TIMER;
1346         }
1347
1348         abort_req->end_io_data = NULL;
1349         blk_execute_rq_nowait(NULL, abort_req, 0, abort_endio);
1350
1351         /*
1352          * The aborted req will be completed on receiving the abort req.
1353          * We enable the timer again. If hit twice, it'll cause a device reset,
1354          * as the device then is in a faulty state.
1355          */
1356         return BLK_EH_RESET_TIMER;
1357 }
1358
1359 static void nvme_free_queue(struct nvme_queue *nvmeq)
1360 {
1361         dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1362                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1363         if (!nvmeq->sq_cmds)
1364                 return;
1365
1366         if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1367                 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1368                                 nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1369         } else {
1370                 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1371                                 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1372         }
1373 }
1374
1375 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1376 {
1377         int i;
1378
1379         for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1380                 dev->ctrl.queue_count--;
1381                 nvme_free_queue(&dev->queues[i]);
1382         }
1383 }
1384
1385 /**
1386  * nvme_suspend_queue - put queue into suspended state
1387  * @nvmeq: queue to suspend
1388  */
1389 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1390 {
1391         if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1392                 return 1;
1393
1394         /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1395         mb();
1396
1397         nvmeq->dev->online_queues--;
1398         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1399                 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1400         if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1401                 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1402         return 0;
1403 }
1404
1405 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1406 {
1407         int i;
1408
1409         for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1410                 nvme_suspend_queue(&dev->queues[i]);
1411 }
1412
1413 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1414 {
1415         struct nvme_queue *nvmeq = &dev->queues[0];
1416
1417         if (shutdown)
1418                 nvme_shutdown_ctrl(&dev->ctrl);
1419         else
1420                 nvme_disable_ctrl(&dev->ctrl);
1421
1422         nvme_poll_irqdisable(nvmeq);
1423 }
1424
1425 /*
1426  * Called only on a device that has been disabled and after all other threads
1427  * that can check this device's completion queues have synced, except
1428  * nvme_poll(). This is the last chance for the driver to see a natural
1429  * completion before nvme_cancel_request() terminates all incomplete requests.
1430  */
1431 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1432 {
1433         int i;
1434
1435         for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1436                 spin_lock(&dev->queues[i].cq_poll_lock);
1437                 nvme_process_cq(&dev->queues[i]);
1438                 spin_unlock(&dev->queues[i].cq_poll_lock);
1439         }
1440 }
1441
1442 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1443                                 int entry_size)
1444 {
1445         int q_depth = dev->q_depth;
1446         unsigned q_size_aligned = roundup(q_depth * entry_size,
1447                                           NVME_CTRL_PAGE_SIZE);
1448
1449         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1450                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1451
1452                 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1453                 q_depth = div_u64(mem_per_q, entry_size);
1454
1455                 /*
1456                  * Ensure the reduced q_depth is above some threshold where it
1457                  * would be better to map queues in system memory with the
1458                  * original depth
1459                  */
1460                 if (q_depth < 64)
1461                         return -ENOMEM;
1462         }
1463
1464         return q_depth;
1465 }
1466
1467 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1468                                 int qid)
1469 {
1470         struct pci_dev *pdev = to_pci_dev(dev->dev);
1471
1472         if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1473                 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1474                 if (nvmeq->sq_cmds) {
1475                         nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1476                                                         nvmeq->sq_cmds);
1477                         if (nvmeq->sq_dma_addr) {
1478                                 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1479                                 return 0;
1480                         }
1481
1482                         pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1483                 }
1484         }
1485
1486         nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1487                                 &nvmeq->sq_dma_addr, GFP_KERNEL);
1488         if (!nvmeq->sq_cmds)
1489                 return -ENOMEM;
1490         return 0;
1491 }
1492
1493 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1494 {
1495         struct nvme_queue *nvmeq = &dev->queues[qid];
1496
1497         if (dev->ctrl.queue_count > qid)
1498                 return 0;
1499
1500         nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1501         nvmeq->q_depth = depth;
1502         nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1503                                          &nvmeq->cq_dma_addr, GFP_KERNEL);
1504         if (!nvmeq->cqes)
1505                 goto free_nvmeq;
1506
1507         if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1508                 goto free_cqdma;
1509
1510         nvmeq->dev = dev;
1511         spin_lock_init(&nvmeq->sq_lock);
1512         spin_lock_init(&nvmeq->cq_poll_lock);
1513         nvmeq->cq_head = 0;
1514         nvmeq->cq_phase = 1;
1515         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1516         nvmeq->qid = qid;
1517         dev->ctrl.queue_count++;
1518
1519         return 0;
1520
1521  free_cqdma:
1522         dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1523                           nvmeq->cq_dma_addr);
1524  free_nvmeq:
1525         return -ENOMEM;
1526 }
1527
1528 static int queue_request_irq(struct nvme_queue *nvmeq)
1529 {
1530         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1531         int nr = nvmeq->dev->ctrl.instance;
1532
1533         if (use_threaded_interrupts) {
1534                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1535                                 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1536         } else {
1537                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1538                                 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1539         }
1540 }
1541
1542 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1543 {
1544         struct nvme_dev *dev = nvmeq->dev;
1545
1546         nvmeq->sq_tail = 0;
1547         nvmeq->last_sq_tail = 0;
1548         nvmeq->cq_head = 0;
1549         nvmeq->cq_phase = 1;
1550         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1551         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1552         nvme_dbbuf_init(dev, nvmeq, qid);
1553         dev->online_queues++;
1554         wmb(); /* ensure the first interrupt sees the initialization */
1555 }
1556
1557 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1558 {
1559         struct nvme_dev *dev = nvmeq->dev;
1560         int result;
1561         u16 vector = 0;
1562
1563         clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1564
1565         /*
1566          * A queue's vector matches the queue identifier unless the controller
1567          * has only one vector available.
1568          */
1569         if (!polled)
1570                 vector = dev->num_vecs == 1 ? 0 : qid;
1571         else
1572                 set_bit(NVMEQ_POLLED, &nvmeq->flags);
1573
1574         result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1575         if (result)
1576                 return result;
1577
1578         result = adapter_alloc_sq(dev, qid, nvmeq);
1579         if (result < 0)
1580                 return result;
1581         if (result)
1582                 goto release_cq;
1583
1584         nvmeq->cq_vector = vector;
1585         nvme_init_queue(nvmeq, qid);
1586
1587         if (!polled) {
1588                 result = queue_request_irq(nvmeq);
1589                 if (result < 0)
1590                         goto release_sq;
1591         }
1592
1593         set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1594         return result;
1595
1596 release_sq:
1597         dev->online_queues--;
1598         adapter_delete_sq(dev, qid);
1599 release_cq:
1600         adapter_delete_cq(dev, qid);
1601         return result;
1602 }
1603
1604 static const struct blk_mq_ops nvme_mq_admin_ops = {
1605         .queue_rq       = nvme_queue_rq,
1606         .complete       = nvme_pci_complete_rq,
1607         .init_hctx      = nvme_admin_init_hctx,
1608         .init_request   = nvme_init_request,
1609         .timeout        = nvme_timeout,
1610 };
1611
1612 static const struct blk_mq_ops nvme_mq_ops = {
1613         .queue_rq       = nvme_queue_rq,
1614         .complete       = nvme_pci_complete_rq,
1615         .commit_rqs     = nvme_commit_rqs,
1616         .init_hctx      = nvme_init_hctx,
1617         .init_request   = nvme_init_request,
1618         .map_queues     = nvme_pci_map_queues,
1619         .timeout        = nvme_timeout,
1620         .poll           = nvme_poll,
1621 };
1622
1623 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1624 {
1625         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1626                 /*
1627                  * If the controller was reset during removal, it's possible
1628                  * user requests may be waiting on a stopped queue. Start the
1629                  * queue to flush these to completion.
1630                  */
1631                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1632                 blk_cleanup_queue(dev->ctrl.admin_q);
1633                 blk_mq_free_tag_set(&dev->admin_tagset);
1634         }
1635 }
1636
1637 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1638 {
1639         if (!dev->ctrl.admin_q) {
1640                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1641                 dev->admin_tagset.nr_hw_queues = 1;
1642
1643                 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1644                 dev->admin_tagset.timeout = NVME_ADMIN_TIMEOUT;
1645                 dev->admin_tagset.numa_node = dev->ctrl.numa_node;
1646                 dev->admin_tagset.cmd_size = sizeof(struct nvme_iod);
1647                 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1648                 dev->admin_tagset.driver_data = dev;
1649
1650                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1651                         return -ENOMEM;
1652                 dev->ctrl.admin_tagset = &dev->admin_tagset;
1653
1654                 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1655                 if (IS_ERR(dev->ctrl.admin_q)) {
1656                         blk_mq_free_tag_set(&dev->admin_tagset);
1657                         return -ENOMEM;
1658                 }
1659                 if (!blk_get_queue(dev->ctrl.admin_q)) {
1660                         nvme_dev_remove_admin(dev);
1661                         dev->ctrl.admin_q = NULL;
1662                         return -ENODEV;
1663                 }
1664         } else
1665                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1666
1667         return 0;
1668 }
1669
1670 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1671 {
1672         return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1673 }
1674
1675 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1676 {
1677         struct pci_dev *pdev = to_pci_dev(dev->dev);
1678
1679         if (size <= dev->bar_mapped_size)
1680                 return 0;
1681         if (size > pci_resource_len(pdev, 0))
1682                 return -ENOMEM;
1683         if (dev->bar)
1684                 iounmap(dev->bar);
1685         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1686         if (!dev->bar) {
1687                 dev->bar_mapped_size = 0;
1688                 return -ENOMEM;
1689         }
1690         dev->bar_mapped_size = size;
1691         dev->dbs = dev->bar + NVME_REG_DBS;
1692
1693         return 0;
1694 }
1695
1696 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1697 {
1698         int result;
1699         u32 aqa;
1700         struct nvme_queue *nvmeq;
1701
1702         result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1703         if (result < 0)
1704                 return result;
1705
1706         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1707                                 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1708
1709         if (dev->subsystem &&
1710             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1711                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1712
1713         result = nvme_disable_ctrl(&dev->ctrl);
1714         if (result < 0)
1715                 return result;
1716
1717         result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1718         if (result)
1719                 return result;
1720
1721         dev->ctrl.numa_node = dev_to_node(dev->dev);
1722
1723         nvmeq = &dev->queues[0];
1724         aqa = nvmeq->q_depth - 1;
1725         aqa |= aqa << 16;
1726
1727         writel(aqa, dev->bar + NVME_REG_AQA);
1728         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1729         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1730
1731         result = nvme_enable_ctrl(&dev->ctrl);
1732         if (result)
1733                 return result;
1734
1735         nvmeq->cq_vector = 0;
1736         nvme_init_queue(nvmeq, 0);
1737         result = queue_request_irq(nvmeq);
1738         if (result) {
1739                 dev->online_queues--;
1740                 return result;
1741         }
1742
1743         set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1744         return result;
1745 }
1746
1747 static int nvme_create_io_queues(struct nvme_dev *dev)
1748 {
1749         unsigned i, max, rw_queues;
1750         int ret = 0;
1751
1752         for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1753                 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1754                         ret = -ENOMEM;
1755                         break;
1756                 }
1757         }
1758
1759         max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1760         if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1761                 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1762                                 dev->io_queues[HCTX_TYPE_READ];
1763         } else {
1764                 rw_queues = max;
1765         }
1766
1767         for (i = dev->online_queues; i <= max; i++) {
1768                 bool polled = i > rw_queues;
1769
1770                 ret = nvme_create_queue(&dev->queues[i], i, polled);
1771                 if (ret)
1772                         break;
1773         }
1774
1775         /*
1776          * Ignore failing Create SQ/CQ commands, we can continue with less
1777          * than the desired amount of queues, and even a controller without
1778          * I/O queues can still be used to issue admin commands.  This might
1779          * be useful to upgrade a buggy firmware for example.
1780          */
1781         return ret >= 0 ? 0 : ret;
1782 }
1783
1784 static ssize_t nvme_cmb_show(struct device *dev,
1785                              struct device_attribute *attr,
1786                              char *buf)
1787 {
1788         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1789
1790         return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1791                        ndev->cmbloc, ndev->cmbsz);
1792 }
1793 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1794
1795 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1796 {
1797         u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1798
1799         return 1ULL << (12 + 4 * szu);
1800 }
1801
1802 static u32 nvme_cmb_size(struct nvme_dev *dev)
1803 {
1804         return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1805 }
1806
1807 static void nvme_map_cmb(struct nvme_dev *dev)
1808 {
1809         u64 size, offset;
1810         resource_size_t bar_size;
1811         struct pci_dev *pdev = to_pci_dev(dev->dev);
1812         int bar;
1813
1814         if (dev->cmb_size)
1815                 return;
1816
1817         if (NVME_CAP_CMBS(dev->ctrl.cap))
1818                 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1819
1820         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1821         if (!dev->cmbsz)
1822                 return;
1823         dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1824
1825         size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1826         offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1827         bar = NVME_CMB_BIR(dev->cmbloc);
1828         bar_size = pci_resource_len(pdev, bar);
1829
1830         if (offset > bar_size)
1831                 return;
1832
1833         /*
1834          * Tell the controller about the host side address mapping the CMB,
1835          * and enable CMB decoding for the NVMe 1.4+ scheme:
1836          */
1837         if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1838                 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1839                              (pci_bus_address(pdev, bar) + offset),
1840                              dev->bar + NVME_REG_CMBMSC);
1841         }
1842
1843         /*
1844          * Controllers may support a CMB size larger than their BAR,
1845          * for example, due to being behind a bridge. Reduce the CMB to
1846          * the reported size of the BAR
1847          */
1848         if (size > bar_size - offset)
1849                 size = bar_size - offset;
1850
1851         if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1852                 dev_warn(dev->ctrl.device,
1853                          "failed to register the CMB\n");
1854                 return;
1855         }
1856
1857         dev->cmb_size = size;
1858         dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1859
1860         if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1861                         (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1862                 pci_p2pmem_publish(pdev, true);
1863
1864         if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1865                                     &dev_attr_cmb.attr, NULL))
1866                 dev_warn(dev->ctrl.device,
1867                          "failed to add sysfs attribute for CMB\n");
1868 }
1869
1870 static inline void nvme_release_cmb(struct nvme_dev *dev)
1871 {
1872         if (dev->cmb_size) {
1873                 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1874                                              &dev_attr_cmb.attr, NULL);
1875                 dev->cmb_size = 0;
1876         }
1877 }
1878
1879 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1880 {
1881         u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1882         u64 dma_addr = dev->host_mem_descs_dma;
1883         struct nvme_command c = { };
1884         int ret;
1885
1886         c.features.opcode       = nvme_admin_set_features;
1887         c.features.fid          = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1888         c.features.dword11      = cpu_to_le32(bits);
1889         c.features.dword12      = cpu_to_le32(host_mem_size);
1890         c.features.dword13      = cpu_to_le32(lower_32_bits(dma_addr));
1891         c.features.dword14      = cpu_to_le32(upper_32_bits(dma_addr));
1892         c.features.dword15      = cpu_to_le32(dev->nr_host_mem_descs);
1893
1894         ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1895         if (ret) {
1896                 dev_warn(dev->ctrl.device,
1897                          "failed to set host mem (err %d, flags %#x).\n",
1898                          ret, bits);
1899         }
1900         return ret;
1901 }
1902
1903 static void nvme_free_host_mem(struct nvme_dev *dev)
1904 {
1905         int i;
1906
1907         for (i = 0; i < dev->nr_host_mem_descs; i++) {
1908                 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1909                 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
1910
1911                 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1912                                le64_to_cpu(desc->addr),
1913                                DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1914         }
1915
1916         kfree(dev->host_mem_desc_bufs);
1917         dev->host_mem_desc_bufs = NULL;
1918         dma_free_coherent(dev->dev,
1919                         dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1920                         dev->host_mem_descs, dev->host_mem_descs_dma);
1921         dev->host_mem_descs = NULL;
1922         dev->nr_host_mem_descs = 0;
1923 }
1924
1925 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1926                 u32 chunk_size)
1927 {
1928         struct nvme_host_mem_buf_desc *descs;
1929         u32 max_entries, len;
1930         dma_addr_t descs_dma;
1931         int i = 0;
1932         void **bufs;
1933         u64 size, tmp;
1934
1935         tmp = (preferred + chunk_size - 1);
1936         do_div(tmp, chunk_size);
1937         max_entries = tmp;
1938
1939         if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1940                 max_entries = dev->ctrl.hmmaxd;
1941
1942         descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1943                                    &descs_dma, GFP_KERNEL);
1944         if (!descs)
1945                 goto out;
1946
1947         bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1948         if (!bufs)
1949                 goto out_free_descs;
1950
1951         for (size = 0; size < preferred && i < max_entries; size += len) {
1952                 dma_addr_t dma_addr;
1953
1954                 len = min_t(u64, chunk_size, preferred - size);
1955                 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1956                                 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1957                 if (!bufs[i])
1958                         break;
1959
1960                 descs[i].addr = cpu_to_le64(dma_addr);
1961                 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
1962                 i++;
1963         }
1964
1965         if (!size)
1966                 goto out_free_bufs;
1967
1968         dev->nr_host_mem_descs = i;
1969         dev->host_mem_size = size;
1970         dev->host_mem_descs = descs;
1971         dev->host_mem_descs_dma = descs_dma;
1972         dev->host_mem_desc_bufs = bufs;
1973         return 0;
1974
1975 out_free_bufs:
1976         while (--i >= 0) {
1977                 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
1978
1979                 dma_free_attrs(dev->dev, size, bufs[i],
1980                                le64_to_cpu(descs[i].addr),
1981                                DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1982         }
1983
1984         kfree(bufs);
1985 out_free_descs:
1986         dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1987                         descs_dma);
1988 out:
1989         dev->host_mem_descs = NULL;
1990         return -ENOMEM;
1991 }
1992
1993 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1994 {
1995         u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1996         u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1997         u64 chunk_size;
1998
1999         /* start big and work our way down */
2000         for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2001                 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2002                         if (!min || dev->host_mem_size >= min)
2003                                 return 0;
2004                         nvme_free_host_mem(dev);
2005                 }
2006         }
2007
2008         return -ENOMEM;
2009 }
2010
2011 static int nvme_setup_host_mem(struct nvme_dev *dev)
2012 {
2013         u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2014         u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2015         u64 min = (u64)dev->ctrl.hmmin * 4096;
2016         u32 enable_bits = NVME_HOST_MEM_ENABLE;
2017         int ret;
2018
2019         preferred = min(preferred, max);
2020         if (min > max) {
2021                 dev_warn(dev->ctrl.device,
2022                         "min host memory (%lld MiB) above limit (%d MiB).\n",
2023                         min >> ilog2(SZ_1M), max_host_mem_size_mb);
2024                 nvme_free_host_mem(dev);
2025                 return 0;
2026         }
2027
2028         /*
2029          * If we already have a buffer allocated check if we can reuse it.
2030          */
2031         if (dev->host_mem_descs) {
2032                 if (dev->host_mem_size >= min)
2033                         enable_bits |= NVME_HOST_MEM_RETURN;
2034                 else
2035                         nvme_free_host_mem(dev);
2036         }
2037
2038         if (!dev->host_mem_descs) {
2039                 if (nvme_alloc_host_mem(dev, min, preferred)) {
2040                         dev_warn(dev->ctrl.device,
2041                                 "failed to allocate host memory buffer.\n");
2042                         return 0; /* controller must work without HMB */
2043                 }
2044
2045                 dev_info(dev->ctrl.device,
2046                         "allocated %lld MiB host memory buffer.\n",
2047                         dev->host_mem_size >> ilog2(SZ_1M));
2048         }
2049
2050         ret = nvme_set_host_mem(dev, enable_bits);
2051         if (ret)
2052                 nvme_free_host_mem(dev);
2053         return ret;
2054 }
2055
2056 /*
2057  * nirqs is the number of interrupts available for write and read
2058  * queues. The core already reserved an interrupt for the admin queue.
2059  */
2060 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2061 {
2062         struct nvme_dev *dev = affd->priv;
2063         unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2064
2065         /*
2066          * If there is no interrupt available for queues, ensure that
2067          * the default queue is set to 1. The affinity set size is
2068          * also set to one, but the irq core ignores it for this case.
2069          *
2070          * If only one interrupt is available or 'write_queue' == 0, combine
2071          * write and read queues.
2072          *
2073          * If 'write_queues' > 0, ensure it leaves room for at least one read
2074          * queue.
2075          */
2076         if (!nrirqs) {
2077                 nrirqs = 1;
2078                 nr_read_queues = 0;
2079         } else if (nrirqs == 1 || !nr_write_queues) {
2080                 nr_read_queues = 0;
2081         } else if (nr_write_queues >= nrirqs) {
2082                 nr_read_queues = 1;
2083         } else {
2084                 nr_read_queues = nrirqs - nr_write_queues;
2085         }
2086
2087         dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2088         affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2089         dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2090         affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2091         affd->nr_sets = nr_read_queues ? 2 : 1;
2092 }
2093
2094 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2095 {
2096         struct pci_dev *pdev = to_pci_dev(dev->dev);
2097         struct irq_affinity affd = {
2098                 .pre_vectors    = 1,
2099                 .calc_sets      = nvme_calc_irq_sets,
2100                 .priv           = dev,
2101         };
2102         unsigned int irq_queues, poll_queues;
2103
2104         /*
2105          * Poll queues don't need interrupts, but we need at least one I/O queue
2106          * left over for non-polled I/O.
2107          */
2108         poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2109         dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2110
2111         /*
2112          * Initialize for the single interrupt case, will be updated in
2113          * nvme_calc_irq_sets().
2114          */
2115         dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2116         dev->io_queues[HCTX_TYPE_READ] = 0;
2117
2118         /*
2119          * We need interrupts for the admin queue and each non-polled I/O queue,
2120          * but some Apple controllers require all queues to use the first
2121          * vector.
2122          */
2123         irq_queues = 1;
2124         if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2125                 irq_queues += (nr_io_queues - poll_queues);
2126         return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2127                               PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2128 }
2129
2130 static void nvme_disable_io_queues(struct nvme_dev *dev)
2131 {
2132         if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2133                 __nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2134 }
2135
2136 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2137 {
2138         /*
2139          * If tags are shared with admin queue (Apple bug), then
2140          * make sure we only use one IO queue.
2141          */
2142         if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2143                 return 1;
2144         return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2145 }
2146
2147 static int nvme_setup_io_queues(struct nvme_dev *dev)
2148 {
2149         struct nvme_queue *adminq = &dev->queues[0];
2150         struct pci_dev *pdev = to_pci_dev(dev->dev);
2151         unsigned int nr_io_queues;
2152         unsigned long size;
2153         int result;
2154
2155         /*
2156          * Sample the module parameters once at reset time so that we have
2157          * stable values to work with.
2158          */
2159         dev->nr_write_queues = write_queues;
2160         dev->nr_poll_queues = poll_queues;
2161
2162         nr_io_queues = dev->nr_allocated_queues - 1;
2163         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2164         if (result < 0)
2165                 return result;
2166
2167         if (nr_io_queues == 0)
2168                 return 0;
2169
2170         clear_bit(NVMEQ_ENABLED, &adminq->flags);
2171
2172         if (dev->cmb_use_sqes) {
2173                 result = nvme_cmb_qdepth(dev, nr_io_queues,
2174                                 sizeof(struct nvme_command));
2175                 if (result > 0)
2176                         dev->q_depth = result;
2177                 else
2178                         dev->cmb_use_sqes = false;
2179         }
2180
2181         do {
2182                 size = db_bar_size(dev, nr_io_queues);
2183                 result = nvme_remap_bar(dev, size);
2184                 if (!result)
2185                         break;
2186                 if (!--nr_io_queues)
2187                         return -ENOMEM;
2188         } while (1);
2189         adminq->q_db = dev->dbs;
2190
2191  retry:
2192         /* Deregister the admin queue's interrupt */
2193         pci_free_irq(pdev, 0, adminq);
2194
2195         /*
2196          * If we enable msix early due to not intx, disable it again before
2197          * setting up the full range we need.
2198          */
2199         pci_free_irq_vectors(pdev);
2200
2201         result = nvme_setup_irqs(dev, nr_io_queues);
2202         if (result <= 0)
2203                 return -EIO;
2204
2205         dev->num_vecs = result;
2206         result = max(result - 1, 1);
2207         dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2208
2209         /*
2210          * Should investigate if there's a performance win from allocating
2211          * more queues than interrupt vectors; it might allow the submission
2212          * path to scale better, even if the receive path is limited by the
2213          * number of interrupts.
2214          */
2215         result = queue_request_irq(adminq);
2216         if (result)
2217                 return result;
2218         set_bit(NVMEQ_ENABLED, &adminq->flags);
2219
2220         result = nvme_create_io_queues(dev);
2221         if (result || dev->online_queues < 2)
2222                 return result;
2223
2224         if (dev->online_queues - 1 < dev->max_qid) {
2225                 nr_io_queues = dev->online_queues - 1;
2226                 nvme_disable_io_queues(dev);
2227                 nvme_suspend_io_queues(dev);
2228                 goto retry;
2229         }
2230         dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2231                                         dev->io_queues[HCTX_TYPE_DEFAULT],
2232                                         dev->io_queues[HCTX_TYPE_READ],
2233                                         dev->io_queues[HCTX_TYPE_POLL]);
2234         return 0;
2235 }
2236
2237 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2238 {
2239         struct nvme_queue *nvmeq = req->end_io_data;
2240
2241         blk_mq_free_request(req);
2242         complete(&nvmeq->delete_done);
2243 }
2244
2245 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2246 {
2247         struct nvme_queue *nvmeq = req->end_io_data;
2248
2249         if (error)
2250                 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2251
2252         nvme_del_queue_end(req, error);
2253 }
2254
2255 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2256 {
2257         struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2258         struct request *req;
2259         struct nvme_command cmd = { };
2260
2261         cmd.delete_queue.opcode = opcode;
2262         cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2263
2264         req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
2265         if (IS_ERR(req))
2266                 return PTR_ERR(req);
2267
2268         req->end_io_data = nvmeq;
2269
2270         init_completion(&nvmeq->delete_done);
2271         blk_execute_rq_nowait(NULL, req, false,
2272                         opcode == nvme_admin_delete_cq ?
2273                                 nvme_del_cq_end : nvme_del_queue_end);
2274         return 0;
2275 }
2276
2277 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2278 {
2279         int nr_queues = dev->online_queues - 1, sent = 0;
2280         unsigned long timeout;
2281
2282  retry:
2283         timeout = NVME_ADMIN_TIMEOUT;
2284         while (nr_queues > 0) {
2285                 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2286                         break;
2287                 nr_queues--;
2288                 sent++;
2289         }
2290         while (sent) {
2291                 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2292
2293                 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2294                                 timeout);
2295                 if (timeout == 0)
2296                         return false;
2297
2298                 sent--;
2299                 if (nr_queues)
2300                         goto retry;
2301         }
2302         return true;
2303 }
2304
2305 static void nvme_dev_add(struct nvme_dev *dev)
2306 {
2307         int ret;
2308
2309         if (!dev->ctrl.tagset) {
2310                 dev->tagset.ops = &nvme_mq_ops;
2311                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2312                 dev->tagset.nr_maps = 2; /* default + read */
2313                 if (dev->io_queues[HCTX_TYPE_POLL])
2314                         dev->tagset.nr_maps++;
2315                 dev->tagset.timeout = NVME_IO_TIMEOUT;
2316                 dev->tagset.numa_node = dev->ctrl.numa_node;
2317                 dev->tagset.queue_depth = min_t(unsigned int, dev->q_depth,
2318                                                 BLK_MQ_MAX_DEPTH) - 1;
2319                 dev->tagset.cmd_size = sizeof(struct nvme_iod);
2320                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2321                 dev->tagset.driver_data = dev;
2322
2323                 /*
2324                  * Some Apple controllers requires tags to be unique
2325                  * across admin and IO queue, so reserve the first 32
2326                  * tags of the IO queue.
2327                  */
2328                 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2329                         dev->tagset.reserved_tags = NVME_AQ_DEPTH;
2330
2331                 ret = blk_mq_alloc_tag_set(&dev->tagset);
2332                 if (ret) {
2333                         dev_warn(dev->ctrl.device,
2334                                 "IO queues tagset allocation failed %d\n", ret);
2335                         return;
2336                 }
2337                 dev->ctrl.tagset = &dev->tagset;
2338         } else {
2339                 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2340
2341                 /* Free previously allocated queues that are no longer usable */
2342                 nvme_free_queues(dev, dev->online_queues);
2343         }
2344
2345         nvme_dbbuf_set(dev);
2346 }
2347
2348 static int nvme_pci_enable(struct nvme_dev *dev)
2349 {
2350         int result = -ENOMEM;
2351         struct pci_dev *pdev = to_pci_dev(dev->dev);
2352         int dma_address_bits = 64;
2353
2354         if (pci_enable_device_mem(pdev))
2355                 return result;
2356
2357         pci_set_master(pdev);
2358
2359         if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
2360                 dma_address_bits = 48;
2361         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(dma_address_bits)))
2362                 goto disable;
2363
2364         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2365                 result = -ENODEV;
2366                 goto disable;
2367         }
2368
2369         /*
2370          * Some devices and/or platforms don't advertise or work with INTx
2371          * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2372          * adjust this later.
2373          */
2374         result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2375         if (result < 0)
2376                 return result;
2377
2378         dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2379
2380         dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2381                                 io_queue_depth);
2382         dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2383         dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2384         dev->dbs = dev->bar + 4096;
2385
2386         /*
2387          * Some Apple controllers require a non-standard SQE size.
2388          * Interestingly they also seem to ignore the CC:IOSQES register
2389          * so we don't bother updating it here.
2390          */
2391         if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2392                 dev->io_sqes = 7;
2393         else
2394                 dev->io_sqes = NVME_NVM_IOSQES;
2395
2396         /*
2397          * Temporary fix for the Apple controller found in the MacBook8,1 and
2398          * some MacBook7,1 to avoid controller resets and data loss.
2399          */
2400         if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2401                 dev->q_depth = 2;
2402                 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2403                         "set queue depth=%u to work around controller resets\n",
2404                         dev->q_depth);
2405         } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2406                    (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2407                    NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2408                 dev->q_depth = 64;
2409                 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2410                         "set queue depth=%u\n", dev->q_depth);
2411         }
2412
2413         /*
2414          * Controllers with the shared tags quirk need the IO queue to be
2415          * big enough so that we get 32 tags for the admin queue
2416          */
2417         if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2418             (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2419                 dev->q_depth = NVME_AQ_DEPTH + 2;
2420                 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2421                          dev->q_depth);
2422         }
2423
2424
2425         nvme_map_cmb(dev);
2426
2427         pci_enable_pcie_error_reporting(pdev);
2428         pci_save_state(pdev);
2429         return 0;
2430
2431  disable:
2432         pci_disable_device(pdev);
2433         return result;
2434 }
2435
2436 static void nvme_dev_unmap(struct nvme_dev *dev)
2437 {
2438         if (dev->bar)
2439                 iounmap(dev->bar);
2440         pci_release_mem_regions(to_pci_dev(dev->dev));
2441 }
2442
2443 static void nvme_pci_disable(struct nvme_dev *dev)
2444 {
2445         struct pci_dev *pdev = to_pci_dev(dev->dev);
2446
2447         pci_free_irq_vectors(pdev);
2448
2449         if (pci_is_enabled(pdev)) {
2450                 pci_disable_pcie_error_reporting(pdev);
2451                 pci_disable_device(pdev);
2452         }
2453 }
2454
2455 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2456 {
2457         bool dead = true, freeze = false;
2458         struct pci_dev *pdev = to_pci_dev(dev->dev);
2459
2460         mutex_lock(&dev->shutdown_lock);
2461         if (pci_is_enabled(pdev)) {
2462                 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2463
2464                 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2465                     dev->ctrl.state == NVME_CTRL_RESETTING) {
2466                         freeze = true;
2467                         nvme_start_freeze(&dev->ctrl);
2468                 }
2469                 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2470                         pdev->error_state  != pci_channel_io_normal);
2471         }
2472
2473         /*
2474          * Give the controller a chance to complete all entered requests if
2475          * doing a safe shutdown.
2476          */
2477         if (!dead && shutdown && freeze)
2478                 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2479
2480         nvme_stop_queues(&dev->ctrl);
2481
2482         if (!dead && dev->ctrl.queue_count > 0) {
2483                 nvme_disable_io_queues(dev);
2484                 nvme_disable_admin_queue(dev, shutdown);
2485         }
2486         nvme_suspend_io_queues(dev);
2487         nvme_suspend_queue(&dev->queues[0]);
2488         nvme_pci_disable(dev);
2489         nvme_reap_pending_cqes(dev);
2490
2491         blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2492         blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2493         blk_mq_tagset_wait_completed_request(&dev->tagset);
2494         blk_mq_tagset_wait_completed_request(&dev->admin_tagset);
2495
2496         /*
2497          * The driver will not be starting up queues again if shutting down so
2498          * must flush all entered requests to their failed completion to avoid
2499          * deadlocking blk-mq hot-cpu notifier.
2500          */
2501         if (shutdown) {
2502                 nvme_start_queues(&dev->ctrl);
2503                 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2504                         blk_mq_unquiesce_queue(dev->ctrl.admin_q);
2505         }
2506         mutex_unlock(&dev->shutdown_lock);
2507 }
2508
2509 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2510 {
2511         if (!nvme_wait_reset(&dev->ctrl))
2512                 return -EBUSY;
2513         nvme_dev_disable(dev, shutdown);
2514         return 0;
2515 }
2516
2517 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2518 {
2519         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2520                                                 NVME_CTRL_PAGE_SIZE,
2521                                                 NVME_CTRL_PAGE_SIZE, 0);
2522         if (!dev->prp_page_pool)
2523                 return -ENOMEM;
2524
2525         /* Optimisation for I/Os between 4k and 128k */
2526         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2527                                                 256, 256, 0);
2528         if (!dev->prp_small_pool) {
2529                 dma_pool_destroy(dev->prp_page_pool);
2530                 return -ENOMEM;
2531         }
2532         return 0;
2533 }
2534
2535 static void nvme_release_prp_pools(struct nvme_dev *dev)
2536 {
2537         dma_pool_destroy(dev->prp_page_pool);
2538         dma_pool_destroy(dev->prp_small_pool);
2539 }
2540
2541 static void nvme_free_tagset(struct nvme_dev *dev)
2542 {
2543         if (dev->tagset.tags)
2544                 blk_mq_free_tag_set(&dev->tagset);
2545         dev->ctrl.tagset = NULL;
2546 }
2547
2548 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2549 {
2550         struct nvme_dev *dev = to_nvme_dev(ctrl);
2551
2552         nvme_dbbuf_dma_free(dev);
2553         nvme_free_tagset(dev);
2554         if (dev->ctrl.admin_q)
2555                 blk_put_queue(dev->ctrl.admin_q);
2556         free_opal_dev(dev->ctrl.opal_dev);
2557         mempool_destroy(dev->iod_mempool);
2558         put_device(dev->dev);
2559         kfree(dev->queues);
2560         kfree(dev);
2561 }
2562
2563 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2564 {
2565         /*
2566          * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2567          * may be holding this pci_dev's device lock.
2568          */
2569         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2570         nvme_get_ctrl(&dev->ctrl);
2571         nvme_dev_disable(dev, false);
2572         nvme_kill_queues(&dev->ctrl);
2573         if (!queue_work(nvme_wq, &dev->remove_work))
2574                 nvme_put_ctrl(&dev->ctrl);
2575 }
2576
2577 static void nvme_reset_work(struct work_struct *work)
2578 {
2579         struct nvme_dev *dev =
2580                 container_of(work, struct nvme_dev, ctrl.reset_work);
2581         bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2582         int result;
2583
2584         if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING)) {
2585                 result = -ENODEV;
2586                 goto out;
2587         }
2588
2589         /*
2590          * If we're called to reset a live controller first shut it down before
2591          * moving on.
2592          */
2593         if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2594                 nvme_dev_disable(dev, false);
2595         nvme_sync_queues(&dev->ctrl);
2596
2597         mutex_lock(&dev->shutdown_lock);
2598         result = nvme_pci_enable(dev);
2599         if (result)
2600                 goto out_unlock;
2601
2602         result = nvme_pci_configure_admin_queue(dev);
2603         if (result)
2604                 goto out_unlock;
2605
2606         result = nvme_alloc_admin_tags(dev);
2607         if (result)
2608                 goto out_unlock;
2609
2610         /*
2611          * Limit the max command size to prevent iod->sg allocations going
2612          * over a single page.
2613          */
2614         dev->ctrl.max_hw_sectors = min_t(u32,
2615                 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2616         dev->ctrl.max_segments = NVME_MAX_SEGS;
2617
2618         /*
2619          * Don't limit the IOMMU merged segment size.
2620          */
2621         dma_set_max_seg_size(dev->dev, 0xffffffff);
2622         dma_set_min_align_mask(dev->dev, NVME_CTRL_PAGE_SIZE - 1);
2623
2624         mutex_unlock(&dev->shutdown_lock);
2625
2626         /*
2627          * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2628          * initializing procedure here.
2629          */
2630         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2631                 dev_warn(dev->ctrl.device,
2632                         "failed to mark controller CONNECTING\n");
2633                 result = -EBUSY;
2634                 goto out;
2635         }
2636
2637         /*
2638          * We do not support an SGL for metadata (yet), so we are limited to a
2639          * single integrity segment for the separate metadata pointer.
2640          */
2641         dev->ctrl.max_integrity_segments = 1;
2642
2643         result = nvme_init_ctrl_finish(&dev->ctrl);
2644         if (result)
2645                 goto out;
2646
2647         if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2648                 if (!dev->ctrl.opal_dev)
2649                         dev->ctrl.opal_dev =
2650                                 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2651                 else if (was_suspend)
2652                         opal_unlock_from_suspend(dev->ctrl.opal_dev);
2653         } else {
2654                 free_opal_dev(dev->ctrl.opal_dev);
2655                 dev->ctrl.opal_dev = NULL;
2656         }
2657
2658         if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2659                 result = nvme_dbbuf_dma_alloc(dev);
2660                 if (result)
2661                         dev_warn(dev->dev,
2662                                  "unable to allocate dma for dbbuf\n");
2663         }
2664
2665         if (dev->ctrl.hmpre) {
2666                 result = nvme_setup_host_mem(dev);
2667                 if (result < 0)
2668                         goto out;
2669         }
2670
2671         result = nvme_setup_io_queues(dev);
2672         if (result)
2673                 goto out;
2674
2675         /*
2676          * Keep the controller around but remove all namespaces if we don't have
2677          * any working I/O queue.
2678          */
2679         if (dev->online_queues < 2) {
2680                 dev_warn(dev->ctrl.device, "IO queues not created\n");
2681                 nvme_kill_queues(&dev->ctrl);
2682                 nvme_remove_namespaces(&dev->ctrl);
2683                 nvme_free_tagset(dev);
2684         } else {
2685                 nvme_start_queues(&dev->ctrl);
2686                 nvme_wait_freeze(&dev->ctrl);
2687                 nvme_dev_add(dev);
2688                 nvme_unfreeze(&dev->ctrl);
2689         }
2690
2691         /*
2692          * If only admin queue live, keep it to do further investigation or
2693          * recovery.
2694          */
2695         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2696                 dev_warn(dev->ctrl.device,
2697                         "failed to mark controller live state\n");
2698                 result = -ENODEV;
2699                 goto out;
2700         }
2701
2702         nvme_start_ctrl(&dev->ctrl);
2703         return;
2704
2705  out_unlock:
2706         mutex_unlock(&dev->shutdown_lock);
2707  out:
2708         if (result)
2709                 dev_warn(dev->ctrl.device,
2710                          "Removing after probe failure status: %d\n", result);
2711         nvme_remove_dead_ctrl(dev);
2712 }
2713
2714 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2715 {
2716         struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2717         struct pci_dev *pdev = to_pci_dev(dev->dev);
2718
2719         if (pci_get_drvdata(pdev))
2720                 device_release_driver(&pdev->dev);
2721         nvme_put_ctrl(&dev->ctrl);
2722 }
2723
2724 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2725 {
2726         *val = readl(to_nvme_dev(ctrl)->bar + off);
2727         return 0;
2728 }
2729
2730 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2731 {
2732         writel(val, to_nvme_dev(ctrl)->bar + off);
2733         return 0;
2734 }
2735
2736 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2737 {
2738         *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2739         return 0;
2740 }
2741
2742 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2743 {
2744         struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2745
2746         return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2747 }
2748
2749 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2750         .name                   = "pcie",
2751         .module                 = THIS_MODULE,
2752         .flags                  = NVME_F_METADATA_SUPPORTED |
2753                                   NVME_F_PCI_P2PDMA,
2754         .reg_read32             = nvme_pci_reg_read32,
2755         .reg_write32            = nvme_pci_reg_write32,
2756         .reg_read64             = nvme_pci_reg_read64,
2757         .free_ctrl              = nvme_pci_free_ctrl,
2758         .submit_async_event     = nvme_pci_submit_async_event,
2759         .get_address            = nvme_pci_get_address,
2760 };
2761
2762 static int nvme_dev_map(struct nvme_dev *dev)
2763 {
2764         struct pci_dev *pdev = to_pci_dev(dev->dev);
2765
2766         if (pci_request_mem_regions(pdev, "nvme"))
2767                 return -ENODEV;
2768
2769         if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2770                 goto release;
2771
2772         return 0;
2773   release:
2774         pci_release_mem_regions(pdev);
2775         return -ENODEV;
2776 }
2777
2778 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2779 {
2780         if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2781                 /*
2782                  * Several Samsung devices seem to drop off the PCIe bus
2783                  * randomly when APST is on and uses the deepest sleep state.
2784                  * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2785                  * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2786                  * 950 PRO 256GB", but it seems to be restricted to two Dell
2787                  * laptops.
2788                  */
2789                 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2790                     (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2791                      dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2792                         return NVME_QUIRK_NO_DEEPEST_PS;
2793         } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2794                 /*
2795                  * Samsung SSD 960 EVO drops off the PCIe bus after system
2796                  * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2797                  * within few minutes after bootup on a Coffee Lake board -
2798                  * ASUS PRIME Z370-A
2799                  */
2800                 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2801                     (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2802                      dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2803                         return NVME_QUIRK_NO_APST;
2804         } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2805                     pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2806                    (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2807                 /*
2808                  * Forcing to use host managed nvme power settings for
2809                  * lowest idle power with quick resume latency on
2810                  * Samsung and Toshiba SSDs based on suspend behavior
2811                  * on Coffee Lake board for LENOVO C640
2812                  */
2813                 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2814                      dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2815                         return NVME_QUIRK_SIMPLE_SUSPEND;
2816         }
2817
2818         return 0;
2819 }
2820
2821 static void nvme_async_probe(void *data, async_cookie_t cookie)
2822 {
2823         struct nvme_dev *dev = data;
2824
2825         flush_work(&dev->ctrl.reset_work);
2826         flush_work(&dev->ctrl.scan_work);
2827         nvme_put_ctrl(&dev->ctrl);
2828 }
2829
2830 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2831 {
2832         int node, result = -ENOMEM;
2833         struct nvme_dev *dev;
2834         unsigned long quirks = id->driver_data;
2835         size_t alloc_size;
2836
2837         node = dev_to_node(&pdev->dev);
2838         if (node == NUMA_NO_NODE)
2839                 set_dev_node(&pdev->dev, first_memory_node);
2840
2841         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2842         if (!dev)
2843                 return -ENOMEM;
2844
2845         dev->nr_write_queues = write_queues;
2846         dev->nr_poll_queues = poll_queues;
2847         dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
2848         dev->queues = kcalloc_node(dev->nr_allocated_queues,
2849                         sizeof(struct nvme_queue), GFP_KERNEL, node);
2850         if (!dev->queues)
2851                 goto free;
2852
2853         dev->dev = get_device(&pdev->dev);
2854         pci_set_drvdata(pdev, dev);
2855
2856         result = nvme_dev_map(dev);
2857         if (result)
2858                 goto put_pci;
2859
2860         INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2861         INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2862         mutex_init(&dev->shutdown_lock);
2863
2864         result = nvme_setup_prp_pools(dev);
2865         if (result)
2866                 goto unmap;
2867
2868         quirks |= check_vendor_combination_bug(pdev);
2869
2870         if (!noacpi && acpi_storage_d3(&pdev->dev)) {
2871                 /*
2872                  * Some systems use a bios work around to ask for D3 on
2873                  * platforms that support kernel managed suspend.
2874                  */
2875                 dev_info(&pdev->dev,
2876                          "platform quirk: setting simple suspend\n");
2877                 quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
2878         }
2879
2880         /*
2881          * Double check that our mempool alloc size will cover the biggest
2882          * command we support.
2883          */
2884         alloc_size = nvme_pci_iod_alloc_size();
2885         WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2886
2887         dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2888                                                 mempool_kfree,
2889                                                 (void *) alloc_size,
2890                                                 GFP_KERNEL, node);
2891         if (!dev->iod_mempool) {
2892                 result = -ENOMEM;
2893                 goto release_pools;
2894         }
2895
2896         result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2897                         quirks);
2898         if (result)
2899                 goto release_mempool;
2900
2901         dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2902
2903         nvme_reset_ctrl(&dev->ctrl);
2904         async_schedule(nvme_async_probe, dev);
2905
2906         return 0;
2907
2908  release_mempool:
2909         mempool_destroy(dev->iod_mempool);
2910  release_pools:
2911         nvme_release_prp_pools(dev);
2912  unmap:
2913         nvme_dev_unmap(dev);
2914  put_pci:
2915         put_device(dev->dev);
2916  free:
2917         kfree(dev->queues);
2918         kfree(dev);
2919         return result;
2920 }
2921
2922 static void nvme_reset_prepare(struct pci_dev *pdev)
2923 {
2924         struct nvme_dev *dev = pci_get_drvdata(pdev);
2925
2926         /*
2927          * We don't need to check the return value from waiting for the reset
2928          * state as pci_dev device lock is held, making it impossible to race
2929          * with ->remove().
2930          */
2931         nvme_disable_prepare_reset(dev, false);
2932         nvme_sync_queues(&dev->ctrl);
2933 }
2934
2935 static void nvme_reset_done(struct pci_dev *pdev)
2936 {
2937         struct nvme_dev *dev = pci_get_drvdata(pdev);
2938
2939         if (!nvme_try_sched_reset(&dev->ctrl))
2940                 flush_work(&dev->ctrl.reset_work);
2941 }
2942
2943 static void nvme_shutdown(struct pci_dev *pdev)
2944 {
2945         struct nvme_dev *dev = pci_get_drvdata(pdev);
2946
2947         nvme_disable_prepare_reset(dev, true);
2948 }
2949
2950 /*
2951  * The driver's remove may be called on a device in a partially initialized
2952  * state. This function must not have any dependencies on the device state in
2953  * order to proceed.
2954  */
2955 static void nvme_remove(struct pci_dev *pdev)
2956 {
2957         struct nvme_dev *dev = pci_get_drvdata(pdev);
2958
2959         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2960         pci_set_drvdata(pdev, NULL);
2961
2962         if (!pci_device_is_present(pdev)) {
2963                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2964                 nvme_dev_disable(dev, true);
2965                 nvme_dev_remove_admin(dev);
2966         }
2967
2968         flush_work(&dev->ctrl.reset_work);
2969         nvme_stop_ctrl(&dev->ctrl);
2970         nvme_remove_namespaces(&dev->ctrl);
2971         nvme_dev_disable(dev, true);
2972         nvme_release_cmb(dev);
2973         nvme_free_host_mem(dev);
2974         nvme_dev_remove_admin(dev);
2975         nvme_free_queues(dev, 0);
2976         nvme_release_prp_pools(dev);
2977         nvme_dev_unmap(dev);
2978         nvme_uninit_ctrl(&dev->ctrl);
2979 }
2980
2981 #ifdef CONFIG_PM_SLEEP
2982 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
2983 {
2984         return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
2985 }
2986
2987 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
2988 {
2989         return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
2990 }
2991
2992 static int nvme_resume(struct device *dev)
2993 {
2994         struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
2995         struct nvme_ctrl *ctrl = &ndev->ctrl;
2996
2997         if (ndev->last_ps == U32_MAX ||
2998             nvme_set_power_state(ctrl, ndev->last_ps) != 0)
2999                 return nvme_try_sched_reset(&ndev->ctrl);
3000         return 0;
3001 }
3002
3003 static int nvme_suspend(struct device *dev)
3004 {
3005         struct pci_dev *pdev = to_pci_dev(dev);
3006         struct nvme_dev *ndev = pci_get_drvdata(pdev);
3007         struct nvme_ctrl *ctrl = &ndev->ctrl;
3008         int ret = -EBUSY;
3009
3010         ndev->last_ps = U32_MAX;
3011
3012         /*
3013          * The platform does not remove power for a kernel managed suspend so
3014          * use host managed nvme power settings for lowest idle power if
3015          * possible. This should have quicker resume latency than a full device
3016          * shutdown.  But if the firmware is involved after the suspend or the
3017          * device does not support any non-default power states, shut down the
3018          * device fully.
3019          *
3020          * If ASPM is not enabled for the device, shut down the device and allow
3021          * the PCI bus layer to put it into D3 in order to take the PCIe link
3022          * down, so as to allow the platform to achieve its minimum low-power
3023          * state (which may not be possible if the link is up).
3024          *
3025          * If a host memory buffer is enabled, shut down the device as the NVMe
3026          * specification allows the device to access the host memory buffer in
3027          * host DRAM from all power states, but hosts will fail access to DRAM
3028          * during S3.
3029          */
3030         if (pm_suspend_via_firmware() || !ctrl->npss ||
3031             !pcie_aspm_enabled(pdev) ||
3032             ndev->nr_host_mem_descs ||
3033             (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3034                 return nvme_disable_prepare_reset(ndev, true);
3035
3036         nvme_start_freeze(ctrl);
3037         nvme_wait_freeze(ctrl);
3038         nvme_sync_queues(ctrl);
3039
3040         if (ctrl->state != NVME_CTRL_LIVE)
3041                 goto unfreeze;
3042
3043         ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3044         if (ret < 0)
3045                 goto unfreeze;
3046
3047         /*
3048          * A saved state prevents pci pm from generically controlling the
3049          * device's power. If we're using protocol specific settings, we don't
3050          * want pci interfering.
3051          */
3052         pci_save_state(pdev);
3053
3054         ret = nvme_set_power_state(ctrl, ctrl->npss);
3055         if (ret < 0)
3056                 goto unfreeze;
3057
3058         if (ret) {
3059                 /* discard the saved state */
3060                 pci_load_saved_state(pdev, NULL);
3061
3062                 /*
3063                  * Clearing npss forces a controller reset on resume. The
3064                  * correct value will be rediscovered then.
3065                  */
3066                 ret = nvme_disable_prepare_reset(ndev, true);
3067                 ctrl->npss = 0;
3068         }
3069 unfreeze:
3070         nvme_unfreeze(ctrl);
3071         return ret;
3072 }
3073
3074 static int nvme_simple_suspend(struct device *dev)
3075 {
3076         struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3077
3078         return nvme_disable_prepare_reset(ndev, true);
3079 }
3080
3081 static int nvme_simple_resume(struct device *dev)
3082 {
3083         struct pci_dev *pdev = to_pci_dev(dev);
3084         struct nvme_dev *ndev = pci_get_drvdata(pdev);
3085
3086         return nvme_try_sched_reset(&ndev->ctrl);
3087 }
3088
3089 static const struct dev_pm_ops nvme_dev_pm_ops = {
3090         .suspend        = nvme_suspend,
3091         .resume         = nvme_resume,
3092         .freeze         = nvme_simple_suspend,
3093         .thaw           = nvme_simple_resume,
3094         .poweroff       = nvme_simple_suspend,
3095         .restore        = nvme_simple_resume,
3096 };
3097 #endif /* CONFIG_PM_SLEEP */
3098
3099 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3100                                                 pci_channel_state_t state)
3101 {
3102         struct nvme_dev *dev = pci_get_drvdata(pdev);
3103
3104         /*
3105          * A frozen channel requires a reset. When detected, this method will
3106          * shutdown the controller to quiesce. The controller will be restarted
3107          * after the slot reset through driver's slot_reset callback.
3108          */
3109         switch (state) {
3110         case pci_channel_io_normal:
3111                 return PCI_ERS_RESULT_CAN_RECOVER;
3112         case pci_channel_io_frozen:
3113                 dev_warn(dev->ctrl.device,
3114                         "frozen state error detected, reset controller\n");
3115                 nvme_dev_disable(dev, false);
3116                 return PCI_ERS_RESULT_NEED_RESET;
3117         case pci_channel_io_perm_failure:
3118                 dev_warn(dev->ctrl.device,
3119                         "failure state error detected, request disconnect\n");
3120                 return PCI_ERS_RESULT_DISCONNECT;
3121         }
3122         return PCI_ERS_RESULT_NEED_RESET;
3123 }
3124
3125 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3126 {
3127         struct nvme_dev *dev = pci_get_drvdata(pdev);
3128
3129         dev_info(dev->ctrl.device, "restart after slot reset\n");
3130         pci_restore_state(pdev);
3131         nvme_reset_ctrl(&dev->ctrl);
3132         return PCI_ERS_RESULT_RECOVERED;
3133 }
3134
3135 static void nvme_error_resume(struct pci_dev *pdev)
3136 {
3137         struct nvme_dev *dev = pci_get_drvdata(pdev);
3138
3139         flush_work(&dev->ctrl.reset_work);
3140 }
3141
3142 static const struct pci_error_handlers nvme_err_handler = {
3143         .error_detected = nvme_error_detected,
3144         .slot_reset     = nvme_slot_reset,
3145         .resume         = nvme_error_resume,
3146         .reset_prepare  = nvme_reset_prepare,
3147         .reset_done     = nvme_reset_done,
3148 };
3149
3150 static const struct pci_device_id nvme_id_table[] = {
3151         { PCI_VDEVICE(INTEL, 0x0953),   /* Intel 750/P3500/P3600/P3700 */
3152                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3153                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3154         { PCI_VDEVICE(INTEL, 0x0a53),   /* Intel P3520 */
3155                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3156                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3157         { PCI_VDEVICE(INTEL, 0x0a54),   /* Intel P4500/P4600 */
3158                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3159                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3160         { PCI_VDEVICE(INTEL, 0x0a55),   /* Dell Express Flash P4600 */
3161                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3162                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3163         { PCI_VDEVICE(INTEL, 0xf1a5),   /* Intel 600P/P3100 */
3164                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3165                                 NVME_QUIRK_MEDIUM_PRIO_SQ |
3166                                 NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3167                                 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3168         { PCI_VDEVICE(INTEL, 0xf1a6),   /* Intel 760p/Pro 7600p */
3169                 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3170         { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
3171                 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3172                                 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3173         { PCI_DEVICE(0x126f, 0x2263),   /* Silicon Motion unidentified */
3174                 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST, },
3175         { PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3176                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3177                                 NVME_QUIRK_NO_NS_DESC_LIST, },
3178         { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
3179                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3180         { PCI_DEVICE(0x1c58, 0x0023),   /* WDC SN200 adapter */
3181                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3182         { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
3183                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3184         { PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3185                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3186         { PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3187                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3188                                 NVME_QUIRK_DISABLE_WRITE_ZEROES|
3189                                 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3190         { PCI_DEVICE(0x1987, 0x5016),   /* Phison E16 */
3191                 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3192         { PCI_DEVICE(0x1b4b, 0x1092),   /* Lexar 256 GB SSD */
3193                 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3194                                 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3195         { PCI_DEVICE(0x1d1d, 0x1f1f),   /* LighNVM qemu device */
3196                 .driver_data = NVME_QUIRK_LIGHTNVM, },
3197         { PCI_DEVICE(0x1d1d, 0x2807),   /* CNEX WL */
3198                 .driver_data = NVME_QUIRK_LIGHTNVM, },
3199         { PCI_DEVICE(0x1d1d, 0x2601),   /* CNEX Granby */
3200                 .driver_data = NVME_QUIRK_LIGHTNVM, },
3201         { PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3202                 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3203         { PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3204                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3205                                 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3206         { PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3207                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3208         { PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3209                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3210         { PCI_DEVICE(0x1d97, 0x2263),   /* SPCC */
3211                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3212         { PCI_DEVICE(0x2646, 0x2262),   /* KINGSTON SKC2000 NVMe SSD */
3213                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3214         { PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3215                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3216         { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3217                 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3218         { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3219                 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3220         { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3221                 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3222         { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3223                 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3224         { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3225                 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3226         { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3227                 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3228         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3229                 .driver_data = NVME_QUIRK_SINGLE_VECTOR },
3230         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3231         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3232                 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3233                                 NVME_QUIRK_128_BYTES_SQES |
3234                                 NVME_QUIRK_SHARED_TAGS },
3235
3236         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3237         { 0, }
3238 };
3239 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3240
3241 static struct pci_driver nvme_driver = {
3242         .name           = "nvme",
3243         .id_table       = nvme_id_table,
3244         .probe          = nvme_probe,
3245         .remove         = nvme_remove,
3246         .shutdown       = nvme_shutdown,
3247 #ifdef CONFIG_PM_SLEEP
3248         .driver         = {
3249                 .pm     = &nvme_dev_pm_ops,
3250         },
3251 #endif
3252         .sriov_configure = pci_sriov_configure_simple,
3253         .err_handler    = &nvme_err_handler,
3254 };
3255
3256 static int __init nvme_init(void)
3257 {
3258         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3259         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3260         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3261         BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3262
3263         return pci_register_driver(&nvme_driver);
3264 }
3265
3266 static void __exit nvme_exit(void)
3267 {
3268         pci_unregister_driver(&nvme_driver);
3269         flush_workqueue(nvme_wq);
3270 }
3271
3272 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3273 MODULE_LICENSE("GPL");
3274 MODULE_VERSION("1.0");
3275 module_init(nvme_init);
3276 module_exit(nvme_exit);