1 // SPDX-License-Identifier: GPL-2.0
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
7 #include <linux/acpi.h>
9 #include <linux/async.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/blk-mq-pci.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
18 #include <linux/module.h>
19 #include <linux/mutex.h>
20 #include <linux/once.h>
21 #include <linux/pci.h>
22 #include <linux/suspend.h>
23 #include <linux/t10-pi.h>
24 #include <linux/types.h>
25 #include <linux/io-64-nonatomic-lo-hi.h>
26 #include <linux/io-64-nonatomic-hi-lo.h>
27 #include <linux/sed-opal.h>
28 #include <linux/pci-p2pdma.h>
33 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes)
34 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion))
36 #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
39 * These can be higher, but we need to ensure that any command doesn't
40 * require an sg allocation that needs more than a page of data.
42 #define NVME_MAX_KB_SZ 4096
43 #define NVME_MAX_SEGS 127
45 static int use_threaded_interrupts;
46 module_param(use_threaded_interrupts, int, 0);
48 static bool use_cmb_sqes = true;
49 module_param(use_cmb_sqes, bool, 0444);
50 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
52 static unsigned int max_host_mem_size_mb = 128;
53 module_param(max_host_mem_size_mb, uint, 0444);
54 MODULE_PARM_DESC(max_host_mem_size_mb,
55 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
57 static unsigned int sgl_threshold = SZ_32K;
58 module_param(sgl_threshold, uint, 0644);
59 MODULE_PARM_DESC(sgl_threshold,
60 "Use SGLs when average request segment size is larger or equal to "
61 "this size. Use 0 to disable SGLs.");
63 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
64 static const struct kernel_param_ops io_queue_depth_ops = {
65 .set = io_queue_depth_set,
66 .get = param_get_uint,
69 static unsigned int io_queue_depth = 1024;
70 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
71 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
73 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
78 ret = kstrtouint(val, 10, &n);
79 if (ret != 0 || n > num_possible_cpus())
81 return param_set_uint(val, kp);
84 static const struct kernel_param_ops io_queue_count_ops = {
85 .set = io_queue_count_set,
86 .get = param_get_uint,
89 static unsigned int write_queues;
90 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
91 MODULE_PARM_DESC(write_queues,
92 "Number of queues to use for writes. If not set, reads and writes "
93 "will share a queue set.");
95 static unsigned int poll_queues;
96 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
97 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
100 module_param(noacpi, bool, 0444);
101 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
106 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
107 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
110 * Represents an NVM Express device. Each nvme_dev is a PCI function.
113 struct nvme_queue *queues;
114 struct blk_mq_tag_set tagset;
115 struct blk_mq_tag_set admin_tagset;
118 struct dma_pool *prp_page_pool;
119 struct dma_pool *prp_small_pool;
120 unsigned online_queues;
122 unsigned io_queues[HCTX_MAX_TYPES];
123 unsigned int num_vecs;
128 unsigned long bar_mapped_size;
129 struct work_struct remove_work;
130 struct mutex shutdown_lock;
136 struct nvme_ctrl ctrl;
139 mempool_t *iod_mempool;
141 /* shadow doorbell buffer support: */
143 dma_addr_t dbbuf_dbs_dma_addr;
145 dma_addr_t dbbuf_eis_dma_addr;
147 /* host memory buffer support: */
149 u32 nr_host_mem_descs;
150 dma_addr_t host_mem_descs_dma;
151 struct nvme_host_mem_buf_desc *host_mem_descs;
152 void **host_mem_desc_bufs;
153 unsigned int nr_allocated_queues;
154 unsigned int nr_write_queues;
155 unsigned int nr_poll_queues;
158 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
163 ret = kstrtou32(val, 10, &n);
164 if (ret != 0 || n < 2)
167 return param_set_uint(val, kp);
170 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
172 return qid * 2 * stride;
175 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
177 return (qid * 2 + 1) * stride;
180 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
182 return container_of(ctrl, struct nvme_dev, ctrl);
186 * An NVM Express queue. Each device has at least two (one for admin
187 * commands and one for I/O commands).
190 struct nvme_dev *dev;
193 /* only used for poll queues: */
194 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
195 struct nvme_completion *cqes;
196 dma_addr_t sq_dma_addr;
197 dma_addr_t cq_dma_addr;
208 #define NVMEQ_ENABLED 0
209 #define NVMEQ_SQ_CMB 1
210 #define NVMEQ_DELETE_ERROR 2
211 #define NVMEQ_POLLED 3
216 struct completion delete_done;
220 * The nvme_iod describes the data in an I/O.
222 * The sg pointer contains the list of PRP/SGL chunk allocations in addition
223 * to the actual struct scatterlist.
226 struct nvme_request req;
227 struct nvme_command cmd;
228 struct nvme_queue *nvmeq;
231 int npages; /* In the PRP list. 0 means small pool in use */
232 int nents; /* Used in scatterlist */
233 dma_addr_t first_dma;
234 unsigned int dma_len; /* length of single DMA segment mapping */
236 struct scatterlist *sg;
239 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
241 return dev->nr_allocated_queues * 8 * dev->db_stride;
244 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
246 unsigned int mem_size = nvme_dbbuf_size(dev);
251 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
252 &dev->dbbuf_dbs_dma_addr,
256 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
257 &dev->dbbuf_eis_dma_addr,
259 if (!dev->dbbuf_eis) {
260 dma_free_coherent(dev->dev, mem_size,
261 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
262 dev->dbbuf_dbs = NULL;
269 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
271 unsigned int mem_size = nvme_dbbuf_size(dev);
273 if (dev->dbbuf_dbs) {
274 dma_free_coherent(dev->dev, mem_size,
275 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
276 dev->dbbuf_dbs = NULL;
278 if (dev->dbbuf_eis) {
279 dma_free_coherent(dev->dev, mem_size,
280 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
281 dev->dbbuf_eis = NULL;
285 static void nvme_dbbuf_init(struct nvme_dev *dev,
286 struct nvme_queue *nvmeq, int qid)
288 if (!dev->dbbuf_dbs || !qid)
291 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
292 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
293 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
294 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
297 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
302 nvmeq->dbbuf_sq_db = NULL;
303 nvmeq->dbbuf_cq_db = NULL;
304 nvmeq->dbbuf_sq_ei = NULL;
305 nvmeq->dbbuf_cq_ei = NULL;
308 static void nvme_dbbuf_set(struct nvme_dev *dev)
310 struct nvme_command c = { };
316 c.dbbuf.opcode = nvme_admin_dbbuf;
317 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
318 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
320 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
321 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
322 /* Free memory and continue on */
323 nvme_dbbuf_dma_free(dev);
325 for (i = 1; i <= dev->online_queues; i++)
326 nvme_dbbuf_free(&dev->queues[i]);
330 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
332 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
335 /* Update dbbuf and return true if an MMIO is required */
336 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
337 volatile u32 *dbbuf_ei)
343 * Ensure that the queue is written before updating
344 * the doorbell in memory
348 old_value = *dbbuf_db;
352 * Ensure that the doorbell is updated before reading the event
353 * index from memory. The controller needs to provide similar
354 * ordering to ensure the envent index is updated before reading
359 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
367 * Will slightly overestimate the number of pages needed. This is OK
368 * as it only leads to a small amount of wasted memory for the lifetime of
371 static int nvme_pci_npages_prp(void)
373 unsigned nprps = DIV_ROUND_UP(NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE,
374 NVME_CTRL_PAGE_SIZE);
375 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
379 * Calculates the number of pages needed for the SGL segments. For example a 4k
380 * page can accommodate 256 SGL descriptors.
382 static int nvme_pci_npages_sgl(void)
384 return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc),
388 static size_t nvme_pci_iod_alloc_size(void)
390 size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl());
392 return sizeof(__le64 *) * npages +
393 sizeof(struct scatterlist) * NVME_MAX_SEGS;
396 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
397 unsigned int hctx_idx)
399 struct nvme_dev *dev = data;
400 struct nvme_queue *nvmeq = &dev->queues[0];
402 WARN_ON(hctx_idx != 0);
403 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
405 hctx->driver_data = nvmeq;
409 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
410 unsigned int hctx_idx)
412 struct nvme_dev *dev = data;
413 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
415 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
416 hctx->driver_data = nvmeq;
420 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
421 unsigned int hctx_idx, unsigned int numa_node)
423 struct nvme_dev *dev = set->driver_data;
424 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
425 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
426 struct nvme_queue *nvmeq = &dev->queues[queue_idx];
431 nvme_req(req)->ctrl = &dev->ctrl;
432 nvme_req(req)->cmd = &iod->cmd;
436 static int queue_irq_offset(struct nvme_dev *dev)
438 /* if we have more than 1 vec, admin queue offsets us by 1 */
439 if (dev->num_vecs > 1)
445 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
447 struct nvme_dev *dev = set->driver_data;
450 offset = queue_irq_offset(dev);
451 for (i = 0, qoff = 0; i < set->nr_maps; i++) {
452 struct blk_mq_queue_map *map = &set->map[i];
454 map->nr_queues = dev->io_queues[i];
455 if (!map->nr_queues) {
456 BUG_ON(i == HCTX_TYPE_DEFAULT);
461 * The poll queue(s) doesn't have an IRQ (and hence IRQ
462 * affinity), so use the regular blk-mq cpu mapping
464 map->queue_offset = qoff;
465 if (i != HCTX_TYPE_POLL && offset)
466 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
468 blk_mq_map_queues(map);
469 qoff += map->nr_queues;
470 offset += map->nr_queues;
477 * Write sq tail if we are asked to, or if the next command would wrap.
479 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
482 u16 next_tail = nvmeq->sq_tail + 1;
484 if (next_tail == nvmeq->q_depth)
486 if (next_tail != nvmeq->last_sq_tail)
490 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
491 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
492 writel(nvmeq->sq_tail, nvmeq->q_db);
493 nvmeq->last_sq_tail = nvmeq->sq_tail;
497 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
498 * @nvmeq: The queue to use
499 * @cmd: The command to send
500 * @write_sq: whether to write to the SQ doorbell
502 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
505 spin_lock(&nvmeq->sq_lock);
506 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
508 if (++nvmeq->sq_tail == nvmeq->q_depth)
510 nvme_write_sq_db(nvmeq, write_sq);
511 spin_unlock(&nvmeq->sq_lock);
514 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
516 struct nvme_queue *nvmeq = hctx->driver_data;
518 spin_lock(&nvmeq->sq_lock);
519 if (nvmeq->sq_tail != nvmeq->last_sq_tail)
520 nvme_write_sq_db(nvmeq, true);
521 spin_unlock(&nvmeq->sq_lock);
524 static void **nvme_pci_iod_list(struct request *req)
526 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
527 return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
530 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
532 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
533 int nseg = blk_rq_nr_phys_segments(req);
534 unsigned int avg_seg_size;
536 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
538 if (!nvme_ctrl_sgl_supported(&dev->ctrl))
540 if (!iod->nvmeq->qid)
542 if (!sgl_threshold || avg_seg_size < sgl_threshold)
547 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
549 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
550 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
551 dma_addr_t dma_addr = iod->first_dma;
554 for (i = 0; i < iod->npages; i++) {
555 __le64 *prp_list = nvme_pci_iod_list(req)[i];
556 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
558 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
559 dma_addr = next_dma_addr;
563 static void nvme_free_sgls(struct nvme_dev *dev, struct request *req)
565 const int last_sg = SGES_PER_PAGE - 1;
566 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
567 dma_addr_t dma_addr = iod->first_dma;
570 for (i = 0; i < iod->npages; i++) {
571 struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i];
572 dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr);
574 dma_pool_free(dev->prp_page_pool, sg_list, dma_addr);
575 dma_addr = next_dma_addr;
579 static void nvme_unmap_sg(struct nvme_dev *dev, struct request *req)
581 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
583 if (is_pci_p2pdma_page(sg_page(iod->sg)))
584 pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents,
587 dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
590 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
592 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
595 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
600 WARN_ON_ONCE(!iod->nents);
602 nvme_unmap_sg(dev, req);
603 if (iod->npages == 0)
604 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
606 else if (iod->use_sgl)
607 nvme_free_sgls(dev, req);
609 nvme_free_prps(dev, req);
610 mempool_free(iod->sg, dev->iod_mempool);
613 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
616 struct scatterlist *sg;
618 for_each_sg(sgl, sg, nents, i) {
619 dma_addr_t phys = sg_phys(sg);
620 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
621 "dma_address:%pad dma_length:%d\n",
622 i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
627 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
628 struct request *req, struct nvme_rw_command *cmnd)
630 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
631 struct dma_pool *pool;
632 int length = blk_rq_payload_bytes(req);
633 struct scatterlist *sg = iod->sg;
634 int dma_len = sg_dma_len(sg);
635 u64 dma_addr = sg_dma_address(sg);
636 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
638 void **list = nvme_pci_iod_list(req);
642 length -= (NVME_CTRL_PAGE_SIZE - offset);
648 dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
650 dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
653 dma_addr = sg_dma_address(sg);
654 dma_len = sg_dma_len(sg);
657 if (length <= NVME_CTRL_PAGE_SIZE) {
658 iod->first_dma = dma_addr;
662 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
663 if (nprps <= (256 / 8)) {
664 pool = dev->prp_small_pool;
667 pool = dev->prp_page_pool;
671 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
673 iod->first_dma = dma_addr;
675 return BLK_STS_RESOURCE;
678 iod->first_dma = prp_dma;
681 if (i == NVME_CTRL_PAGE_SIZE >> 3) {
682 __le64 *old_prp_list = prp_list;
683 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
686 list[iod->npages++] = prp_list;
687 prp_list[0] = old_prp_list[i - 1];
688 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
691 prp_list[i++] = cpu_to_le64(dma_addr);
692 dma_len -= NVME_CTRL_PAGE_SIZE;
693 dma_addr += NVME_CTRL_PAGE_SIZE;
694 length -= NVME_CTRL_PAGE_SIZE;
699 if (unlikely(dma_len < 0))
702 dma_addr = sg_dma_address(sg);
703 dma_len = sg_dma_len(sg);
706 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
707 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
710 nvme_free_prps(dev, req);
711 return BLK_STS_RESOURCE;
713 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
714 "Invalid SGL for payload:%d nents:%d\n",
715 blk_rq_payload_bytes(req), iod->nents);
716 return BLK_STS_IOERR;
719 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
720 struct scatterlist *sg)
722 sge->addr = cpu_to_le64(sg_dma_address(sg));
723 sge->length = cpu_to_le32(sg_dma_len(sg));
724 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
727 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
728 dma_addr_t dma_addr, int entries)
730 sge->addr = cpu_to_le64(dma_addr);
731 if (entries < SGES_PER_PAGE) {
732 sge->length = cpu_to_le32(entries * sizeof(*sge));
733 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
735 sge->length = cpu_to_le32(PAGE_SIZE);
736 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
740 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
741 struct request *req, struct nvme_rw_command *cmd, int entries)
743 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
744 struct dma_pool *pool;
745 struct nvme_sgl_desc *sg_list;
746 struct scatterlist *sg = iod->sg;
750 /* setting the transfer type as SGL */
751 cmd->flags = NVME_CMD_SGL_METABUF;
754 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
758 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
759 pool = dev->prp_small_pool;
762 pool = dev->prp_page_pool;
766 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
769 return BLK_STS_RESOURCE;
772 nvme_pci_iod_list(req)[0] = sg_list;
773 iod->first_dma = sgl_dma;
775 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
778 if (i == SGES_PER_PAGE) {
779 struct nvme_sgl_desc *old_sg_desc = sg_list;
780 struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
782 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
787 nvme_pci_iod_list(req)[iod->npages++] = sg_list;
788 sg_list[i++] = *link;
789 nvme_pci_sgl_set_seg(link, sgl_dma, entries);
792 nvme_pci_sgl_set_data(&sg_list[i++], sg);
794 } while (--entries > 0);
798 nvme_free_sgls(dev, req);
799 return BLK_STS_RESOURCE;
802 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
803 struct request *req, struct nvme_rw_command *cmnd,
806 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
807 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
808 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
810 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
811 if (dma_mapping_error(dev->dev, iod->first_dma))
812 return BLK_STS_RESOURCE;
813 iod->dma_len = bv->bv_len;
815 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
816 if (bv->bv_len > first_prp_len)
817 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
821 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
822 struct request *req, struct nvme_rw_command *cmnd,
825 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
827 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
828 if (dma_mapping_error(dev->dev, iod->first_dma))
829 return BLK_STS_RESOURCE;
830 iod->dma_len = bv->bv_len;
832 cmnd->flags = NVME_CMD_SGL_METABUF;
833 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
834 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
835 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
839 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
840 struct nvme_command *cmnd)
842 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
843 blk_status_t ret = BLK_STS_RESOURCE;
846 if (blk_rq_nr_phys_segments(req) == 1) {
847 struct bio_vec bv = req_bvec(req);
849 if (!is_pci_p2pdma_page(bv.bv_page)) {
850 if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
851 return nvme_setup_prp_simple(dev, req,
854 if (iod->nvmeq->qid && sgl_threshold &&
855 nvme_ctrl_sgl_supported(&dev->ctrl))
856 return nvme_setup_sgl_simple(dev, req,
862 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
864 return BLK_STS_RESOURCE;
865 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
866 iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
870 if (is_pci_p2pdma_page(sg_page(iod->sg)))
871 nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg,
872 iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN);
874 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
875 rq_dma_dir(req), DMA_ATTR_NO_WARN);
879 iod->use_sgl = nvme_pci_use_sgls(dev, req);
881 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
883 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
884 if (ret != BLK_STS_OK)
889 nvme_unmap_sg(dev, req);
891 mempool_free(iod->sg, dev->iod_mempool);
895 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
896 struct nvme_command *cmnd)
898 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
900 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
902 if (dma_mapping_error(dev->dev, iod->meta_dma))
903 return BLK_STS_IOERR;
904 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
909 * NOTE: ns is NULL when called on the admin queue.
911 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
912 const struct blk_mq_queue_data *bd)
914 struct nvme_ns *ns = hctx->queue->queuedata;
915 struct nvme_queue *nvmeq = hctx->driver_data;
916 struct nvme_dev *dev = nvmeq->dev;
917 struct request *req = bd->rq;
918 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
919 struct nvme_command *cmnd = &iod->cmd;
927 * We should not need to do this, but we're still using this to
928 * ensure we can drain requests on a dying queue.
930 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
931 return BLK_STS_IOERR;
933 if (!nvme_check_ready(&dev->ctrl, req, true))
934 return nvme_fail_nonready_command(&dev->ctrl, req);
936 ret = nvme_setup_cmd(ns, req);
940 if (blk_rq_nr_phys_segments(req)) {
941 ret = nvme_map_data(dev, req, cmnd);
946 if (blk_integrity_rq(req)) {
947 ret = nvme_map_metadata(dev, req, cmnd);
952 blk_mq_start_request(req);
953 nvme_submit_cmd(nvmeq, cmnd, bd->last);
956 nvme_unmap_data(dev, req);
958 nvme_cleanup_cmd(req);
962 static void nvme_pci_complete_rq(struct request *req)
964 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
965 struct nvme_dev *dev = iod->nvmeq->dev;
967 if (blk_integrity_rq(req))
968 dma_unmap_page(dev->dev, iod->meta_dma,
969 rq_integrity_vec(req)->bv_len, rq_data_dir(req));
970 if (blk_rq_nr_phys_segments(req))
971 nvme_unmap_data(dev, req);
972 nvme_complete_rq(req);
975 /* We read the CQE phase first to check if the rest of the entry is valid */
976 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
978 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
980 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
983 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
985 u16 head = nvmeq->cq_head;
987 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
989 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
992 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
995 return nvmeq->dev->admin_tagset.tags[0];
996 return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
999 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
1001 struct nvme_completion *cqe = &nvmeq->cqes[idx];
1002 __u16 command_id = READ_ONCE(cqe->command_id);
1003 struct request *req;
1006 * AEN requests are special as they don't time out and can
1007 * survive any kind of queue freeze and often don't respond to
1008 * aborts. We don't even bother to allocate a struct request
1009 * for them but rather special case them here.
1011 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1012 nvme_complete_async_event(&nvmeq->dev->ctrl,
1013 cqe->status, &cqe->result);
1017 req = blk_mq_tag_to_rq(nvme_queue_tagset(nvmeq), command_id);
1018 if (unlikely(!req)) {
1019 dev_warn(nvmeq->dev->ctrl.device,
1020 "invalid id %d completed on queue %d\n",
1021 command_id, le16_to_cpu(cqe->sq_id));
1025 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1026 if (!nvme_try_complete_req(req, cqe->status, cqe->result))
1027 nvme_pci_complete_rq(req);
1030 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1032 u32 tmp = nvmeq->cq_head + 1;
1034 if (tmp == nvmeq->q_depth) {
1036 nvmeq->cq_phase ^= 1;
1038 nvmeq->cq_head = tmp;
1042 static inline int nvme_process_cq(struct nvme_queue *nvmeq)
1046 while (nvme_cqe_pending(nvmeq)) {
1049 * load-load control dependency between phase and the rest of
1050 * the cqe requires a full read memory barrier
1053 nvme_handle_cqe(nvmeq, nvmeq->cq_head);
1054 nvme_update_cq_head(nvmeq);
1058 nvme_ring_cq_doorbell(nvmeq);
1062 static irqreturn_t nvme_irq(int irq, void *data)
1064 struct nvme_queue *nvmeq = data;
1066 if (nvme_process_cq(nvmeq))
1071 static irqreturn_t nvme_irq_check(int irq, void *data)
1073 struct nvme_queue *nvmeq = data;
1075 if (nvme_cqe_pending(nvmeq))
1076 return IRQ_WAKE_THREAD;
1081 * Poll for completions for any interrupt driven queue
1082 * Can be called from any context.
1084 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1086 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1088 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1090 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1091 nvme_process_cq(nvmeq);
1092 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1095 static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1097 struct nvme_queue *nvmeq = hctx->driver_data;
1100 if (!nvme_cqe_pending(nvmeq))
1103 spin_lock(&nvmeq->cq_poll_lock);
1104 found = nvme_process_cq(nvmeq);
1105 spin_unlock(&nvmeq->cq_poll_lock);
1110 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1112 struct nvme_dev *dev = to_nvme_dev(ctrl);
1113 struct nvme_queue *nvmeq = &dev->queues[0];
1114 struct nvme_command c = { };
1116 c.common.opcode = nvme_admin_async_event;
1117 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1118 nvme_submit_cmd(nvmeq, &c, true);
1121 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1123 struct nvme_command c = { };
1125 c.delete_queue.opcode = opcode;
1126 c.delete_queue.qid = cpu_to_le16(id);
1128 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1131 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1132 struct nvme_queue *nvmeq, s16 vector)
1134 struct nvme_command c = { };
1135 int flags = NVME_QUEUE_PHYS_CONTIG;
1137 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1138 flags |= NVME_CQ_IRQ_ENABLED;
1141 * Note: we (ab)use the fact that the prp fields survive if no data
1142 * is attached to the request.
1144 c.create_cq.opcode = nvme_admin_create_cq;
1145 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1146 c.create_cq.cqid = cpu_to_le16(qid);
1147 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1148 c.create_cq.cq_flags = cpu_to_le16(flags);
1149 c.create_cq.irq_vector = cpu_to_le16(vector);
1151 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1154 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1155 struct nvme_queue *nvmeq)
1157 struct nvme_ctrl *ctrl = &dev->ctrl;
1158 struct nvme_command c = { };
1159 int flags = NVME_QUEUE_PHYS_CONTIG;
1162 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1163 * set. Since URGENT priority is zeroes, it makes all queues
1166 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1167 flags |= NVME_SQ_PRIO_MEDIUM;
1170 * Note: we (ab)use the fact that the prp fields survive if no data
1171 * is attached to the request.
1173 c.create_sq.opcode = nvme_admin_create_sq;
1174 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1175 c.create_sq.sqid = cpu_to_le16(qid);
1176 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1177 c.create_sq.sq_flags = cpu_to_le16(flags);
1178 c.create_sq.cqid = cpu_to_le16(qid);
1180 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1183 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1185 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1188 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1190 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1193 static void abort_endio(struct request *req, blk_status_t error)
1195 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1196 struct nvme_queue *nvmeq = iod->nvmeq;
1198 dev_warn(nvmeq->dev->ctrl.device,
1199 "Abort status: 0x%x", nvme_req(req)->status);
1200 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1201 blk_mq_free_request(req);
1204 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1206 /* If true, indicates loss of adapter communication, possibly by a
1207 * NVMe Subsystem reset.
1209 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1211 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1212 switch (dev->ctrl.state) {
1213 case NVME_CTRL_RESETTING:
1214 case NVME_CTRL_CONNECTING:
1220 /* We shouldn't reset unless the controller is on fatal error state
1221 * _or_ if we lost the communication with it.
1223 if (!(csts & NVME_CSTS_CFS) && !nssro)
1229 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1231 /* Read a config register to help see what died. */
1235 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1237 if (result == PCIBIOS_SUCCESSFUL)
1238 dev_warn(dev->ctrl.device,
1239 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1242 dev_warn(dev->ctrl.device,
1243 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1247 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1249 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1250 struct nvme_queue *nvmeq = iod->nvmeq;
1251 struct nvme_dev *dev = nvmeq->dev;
1252 struct request *abort_req;
1253 struct nvme_command cmd = { };
1254 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1256 /* If PCI error recovery process is happening, we cannot reset or
1257 * the recovery mechanism will surely fail.
1260 if (pci_channel_offline(to_pci_dev(dev->dev)))
1261 return BLK_EH_RESET_TIMER;
1264 * Reset immediately if the controller is failed
1266 if (nvme_should_reset(dev, csts)) {
1267 nvme_warn_reset(dev, csts);
1268 nvme_dev_disable(dev, false);
1269 nvme_reset_ctrl(&dev->ctrl);
1274 * Did we miss an interrupt?
1276 if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1277 nvme_poll(req->mq_hctx);
1279 nvme_poll_irqdisable(nvmeq);
1281 if (blk_mq_request_completed(req)) {
1282 dev_warn(dev->ctrl.device,
1283 "I/O %d QID %d timeout, completion polled\n",
1284 req->tag, nvmeq->qid);
1289 * Shutdown immediately if controller times out while starting. The
1290 * reset work will see the pci device disabled when it gets the forced
1291 * cancellation error. All outstanding requests are completed on
1292 * shutdown, so we return BLK_EH_DONE.
1294 switch (dev->ctrl.state) {
1295 case NVME_CTRL_CONNECTING:
1296 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1298 case NVME_CTRL_DELETING:
1299 dev_warn_ratelimited(dev->ctrl.device,
1300 "I/O %d QID %d timeout, disable controller\n",
1301 req->tag, nvmeq->qid);
1302 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1303 nvme_dev_disable(dev, true);
1305 case NVME_CTRL_RESETTING:
1306 return BLK_EH_RESET_TIMER;
1312 * Shutdown the controller immediately and schedule a reset if the
1313 * command was already aborted once before and still hasn't been
1314 * returned to the driver, or if this is the admin queue.
1316 if (!nvmeq->qid || iod->aborted) {
1317 dev_warn(dev->ctrl.device,
1318 "I/O %d QID %d timeout, reset controller\n",
1319 req->tag, nvmeq->qid);
1320 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1321 nvme_dev_disable(dev, false);
1322 nvme_reset_ctrl(&dev->ctrl);
1327 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1328 atomic_inc(&dev->ctrl.abort_limit);
1329 return BLK_EH_RESET_TIMER;
1333 cmd.abort.opcode = nvme_admin_abort_cmd;
1334 cmd.abort.cid = req->tag;
1335 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1337 dev_warn(nvmeq->dev->ctrl.device,
1338 "I/O %d QID %d timeout, aborting\n",
1339 req->tag, nvmeq->qid);
1341 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1343 if (IS_ERR(abort_req)) {
1344 atomic_inc(&dev->ctrl.abort_limit);
1345 return BLK_EH_RESET_TIMER;
1348 abort_req->end_io_data = NULL;
1349 blk_execute_rq_nowait(NULL, abort_req, 0, abort_endio);
1352 * The aborted req will be completed on receiving the abort req.
1353 * We enable the timer again. If hit twice, it'll cause a device reset,
1354 * as the device then is in a faulty state.
1356 return BLK_EH_RESET_TIMER;
1359 static void nvme_free_queue(struct nvme_queue *nvmeq)
1361 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1362 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1363 if (!nvmeq->sq_cmds)
1366 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1367 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1368 nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1370 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1371 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1375 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1379 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1380 dev->ctrl.queue_count--;
1381 nvme_free_queue(&dev->queues[i]);
1386 * nvme_suspend_queue - put queue into suspended state
1387 * @nvmeq: queue to suspend
1389 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1391 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1394 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1397 nvmeq->dev->online_queues--;
1398 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1399 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1400 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1401 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1405 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1409 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1410 nvme_suspend_queue(&dev->queues[i]);
1413 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1415 struct nvme_queue *nvmeq = &dev->queues[0];
1418 nvme_shutdown_ctrl(&dev->ctrl);
1420 nvme_disable_ctrl(&dev->ctrl);
1422 nvme_poll_irqdisable(nvmeq);
1426 * Called only on a device that has been disabled and after all other threads
1427 * that can check this device's completion queues have synced, except
1428 * nvme_poll(). This is the last chance for the driver to see a natural
1429 * completion before nvme_cancel_request() terminates all incomplete requests.
1431 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1435 for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1436 spin_lock(&dev->queues[i].cq_poll_lock);
1437 nvme_process_cq(&dev->queues[i]);
1438 spin_unlock(&dev->queues[i].cq_poll_lock);
1442 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1445 int q_depth = dev->q_depth;
1446 unsigned q_size_aligned = roundup(q_depth * entry_size,
1447 NVME_CTRL_PAGE_SIZE);
1449 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1450 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1452 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1453 q_depth = div_u64(mem_per_q, entry_size);
1456 * Ensure the reduced q_depth is above some threshold where it
1457 * would be better to map queues in system memory with the
1467 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1470 struct pci_dev *pdev = to_pci_dev(dev->dev);
1472 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1473 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1474 if (nvmeq->sq_cmds) {
1475 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1477 if (nvmeq->sq_dma_addr) {
1478 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1482 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1486 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1487 &nvmeq->sq_dma_addr, GFP_KERNEL);
1488 if (!nvmeq->sq_cmds)
1493 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1495 struct nvme_queue *nvmeq = &dev->queues[qid];
1497 if (dev->ctrl.queue_count > qid)
1500 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1501 nvmeq->q_depth = depth;
1502 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1503 &nvmeq->cq_dma_addr, GFP_KERNEL);
1507 if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1511 spin_lock_init(&nvmeq->sq_lock);
1512 spin_lock_init(&nvmeq->cq_poll_lock);
1514 nvmeq->cq_phase = 1;
1515 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1517 dev->ctrl.queue_count++;
1522 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1523 nvmeq->cq_dma_addr);
1528 static int queue_request_irq(struct nvme_queue *nvmeq)
1530 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1531 int nr = nvmeq->dev->ctrl.instance;
1533 if (use_threaded_interrupts) {
1534 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1535 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1537 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1538 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1542 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1544 struct nvme_dev *dev = nvmeq->dev;
1547 nvmeq->last_sq_tail = 0;
1549 nvmeq->cq_phase = 1;
1550 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1551 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1552 nvme_dbbuf_init(dev, nvmeq, qid);
1553 dev->online_queues++;
1554 wmb(); /* ensure the first interrupt sees the initialization */
1557 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1559 struct nvme_dev *dev = nvmeq->dev;
1563 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1566 * A queue's vector matches the queue identifier unless the controller
1567 * has only one vector available.
1570 vector = dev->num_vecs == 1 ? 0 : qid;
1572 set_bit(NVMEQ_POLLED, &nvmeq->flags);
1574 result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1578 result = adapter_alloc_sq(dev, qid, nvmeq);
1584 nvmeq->cq_vector = vector;
1585 nvme_init_queue(nvmeq, qid);
1588 result = queue_request_irq(nvmeq);
1593 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1597 dev->online_queues--;
1598 adapter_delete_sq(dev, qid);
1600 adapter_delete_cq(dev, qid);
1604 static const struct blk_mq_ops nvme_mq_admin_ops = {
1605 .queue_rq = nvme_queue_rq,
1606 .complete = nvme_pci_complete_rq,
1607 .init_hctx = nvme_admin_init_hctx,
1608 .init_request = nvme_init_request,
1609 .timeout = nvme_timeout,
1612 static const struct blk_mq_ops nvme_mq_ops = {
1613 .queue_rq = nvme_queue_rq,
1614 .complete = nvme_pci_complete_rq,
1615 .commit_rqs = nvme_commit_rqs,
1616 .init_hctx = nvme_init_hctx,
1617 .init_request = nvme_init_request,
1618 .map_queues = nvme_pci_map_queues,
1619 .timeout = nvme_timeout,
1623 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1625 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1627 * If the controller was reset during removal, it's possible
1628 * user requests may be waiting on a stopped queue. Start the
1629 * queue to flush these to completion.
1631 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1632 blk_cleanup_queue(dev->ctrl.admin_q);
1633 blk_mq_free_tag_set(&dev->admin_tagset);
1637 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1639 if (!dev->ctrl.admin_q) {
1640 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1641 dev->admin_tagset.nr_hw_queues = 1;
1643 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1644 dev->admin_tagset.timeout = NVME_ADMIN_TIMEOUT;
1645 dev->admin_tagset.numa_node = dev->ctrl.numa_node;
1646 dev->admin_tagset.cmd_size = sizeof(struct nvme_iod);
1647 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1648 dev->admin_tagset.driver_data = dev;
1650 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1652 dev->ctrl.admin_tagset = &dev->admin_tagset;
1654 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1655 if (IS_ERR(dev->ctrl.admin_q)) {
1656 blk_mq_free_tag_set(&dev->admin_tagset);
1659 if (!blk_get_queue(dev->ctrl.admin_q)) {
1660 nvme_dev_remove_admin(dev);
1661 dev->ctrl.admin_q = NULL;
1665 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1670 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1672 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1675 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1677 struct pci_dev *pdev = to_pci_dev(dev->dev);
1679 if (size <= dev->bar_mapped_size)
1681 if (size > pci_resource_len(pdev, 0))
1685 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1687 dev->bar_mapped_size = 0;
1690 dev->bar_mapped_size = size;
1691 dev->dbs = dev->bar + NVME_REG_DBS;
1696 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1700 struct nvme_queue *nvmeq;
1702 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1706 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1707 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1709 if (dev->subsystem &&
1710 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1711 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1713 result = nvme_disable_ctrl(&dev->ctrl);
1717 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1721 dev->ctrl.numa_node = dev_to_node(dev->dev);
1723 nvmeq = &dev->queues[0];
1724 aqa = nvmeq->q_depth - 1;
1727 writel(aqa, dev->bar + NVME_REG_AQA);
1728 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1729 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1731 result = nvme_enable_ctrl(&dev->ctrl);
1735 nvmeq->cq_vector = 0;
1736 nvme_init_queue(nvmeq, 0);
1737 result = queue_request_irq(nvmeq);
1739 dev->online_queues--;
1743 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1747 static int nvme_create_io_queues(struct nvme_dev *dev)
1749 unsigned i, max, rw_queues;
1752 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1753 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1759 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1760 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1761 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1762 dev->io_queues[HCTX_TYPE_READ];
1767 for (i = dev->online_queues; i <= max; i++) {
1768 bool polled = i > rw_queues;
1770 ret = nvme_create_queue(&dev->queues[i], i, polled);
1776 * Ignore failing Create SQ/CQ commands, we can continue with less
1777 * than the desired amount of queues, and even a controller without
1778 * I/O queues can still be used to issue admin commands. This might
1779 * be useful to upgrade a buggy firmware for example.
1781 return ret >= 0 ? 0 : ret;
1784 static ssize_t nvme_cmb_show(struct device *dev,
1785 struct device_attribute *attr,
1788 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1790 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
1791 ndev->cmbloc, ndev->cmbsz);
1793 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1795 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1797 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1799 return 1ULL << (12 + 4 * szu);
1802 static u32 nvme_cmb_size(struct nvme_dev *dev)
1804 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1807 static void nvme_map_cmb(struct nvme_dev *dev)
1810 resource_size_t bar_size;
1811 struct pci_dev *pdev = to_pci_dev(dev->dev);
1817 if (NVME_CAP_CMBS(dev->ctrl.cap))
1818 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1820 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1823 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1825 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1826 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1827 bar = NVME_CMB_BIR(dev->cmbloc);
1828 bar_size = pci_resource_len(pdev, bar);
1830 if (offset > bar_size)
1834 * Tell the controller about the host side address mapping the CMB,
1835 * and enable CMB decoding for the NVMe 1.4+ scheme:
1837 if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1838 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1839 (pci_bus_address(pdev, bar) + offset),
1840 dev->bar + NVME_REG_CMBMSC);
1844 * Controllers may support a CMB size larger than their BAR,
1845 * for example, due to being behind a bridge. Reduce the CMB to
1846 * the reported size of the BAR
1848 if (size > bar_size - offset)
1849 size = bar_size - offset;
1851 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1852 dev_warn(dev->ctrl.device,
1853 "failed to register the CMB\n");
1857 dev->cmb_size = size;
1858 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1860 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1861 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1862 pci_p2pmem_publish(pdev, true);
1864 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1865 &dev_attr_cmb.attr, NULL))
1866 dev_warn(dev->ctrl.device,
1867 "failed to add sysfs attribute for CMB\n");
1870 static inline void nvme_release_cmb(struct nvme_dev *dev)
1872 if (dev->cmb_size) {
1873 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1874 &dev_attr_cmb.attr, NULL);
1879 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1881 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1882 u64 dma_addr = dev->host_mem_descs_dma;
1883 struct nvme_command c = { };
1886 c.features.opcode = nvme_admin_set_features;
1887 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1888 c.features.dword11 = cpu_to_le32(bits);
1889 c.features.dword12 = cpu_to_le32(host_mem_size);
1890 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1891 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1892 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1894 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1896 dev_warn(dev->ctrl.device,
1897 "failed to set host mem (err %d, flags %#x).\n",
1903 static void nvme_free_host_mem(struct nvme_dev *dev)
1907 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1908 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1909 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
1911 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1912 le64_to_cpu(desc->addr),
1913 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1916 kfree(dev->host_mem_desc_bufs);
1917 dev->host_mem_desc_bufs = NULL;
1918 dma_free_coherent(dev->dev,
1919 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1920 dev->host_mem_descs, dev->host_mem_descs_dma);
1921 dev->host_mem_descs = NULL;
1922 dev->nr_host_mem_descs = 0;
1925 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1928 struct nvme_host_mem_buf_desc *descs;
1929 u32 max_entries, len;
1930 dma_addr_t descs_dma;
1935 tmp = (preferred + chunk_size - 1);
1936 do_div(tmp, chunk_size);
1939 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1940 max_entries = dev->ctrl.hmmaxd;
1942 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1943 &descs_dma, GFP_KERNEL);
1947 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1949 goto out_free_descs;
1951 for (size = 0; size < preferred && i < max_entries; size += len) {
1952 dma_addr_t dma_addr;
1954 len = min_t(u64, chunk_size, preferred - size);
1955 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1956 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1960 descs[i].addr = cpu_to_le64(dma_addr);
1961 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
1968 dev->nr_host_mem_descs = i;
1969 dev->host_mem_size = size;
1970 dev->host_mem_descs = descs;
1971 dev->host_mem_descs_dma = descs_dma;
1972 dev->host_mem_desc_bufs = bufs;
1977 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
1979 dma_free_attrs(dev->dev, size, bufs[i],
1980 le64_to_cpu(descs[i].addr),
1981 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1986 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1989 dev->host_mem_descs = NULL;
1993 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1995 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1996 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1999 /* start big and work our way down */
2000 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2001 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2002 if (!min || dev->host_mem_size >= min)
2004 nvme_free_host_mem(dev);
2011 static int nvme_setup_host_mem(struct nvme_dev *dev)
2013 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2014 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2015 u64 min = (u64)dev->ctrl.hmmin * 4096;
2016 u32 enable_bits = NVME_HOST_MEM_ENABLE;
2019 preferred = min(preferred, max);
2021 dev_warn(dev->ctrl.device,
2022 "min host memory (%lld MiB) above limit (%d MiB).\n",
2023 min >> ilog2(SZ_1M), max_host_mem_size_mb);
2024 nvme_free_host_mem(dev);
2029 * If we already have a buffer allocated check if we can reuse it.
2031 if (dev->host_mem_descs) {
2032 if (dev->host_mem_size >= min)
2033 enable_bits |= NVME_HOST_MEM_RETURN;
2035 nvme_free_host_mem(dev);
2038 if (!dev->host_mem_descs) {
2039 if (nvme_alloc_host_mem(dev, min, preferred)) {
2040 dev_warn(dev->ctrl.device,
2041 "failed to allocate host memory buffer.\n");
2042 return 0; /* controller must work without HMB */
2045 dev_info(dev->ctrl.device,
2046 "allocated %lld MiB host memory buffer.\n",
2047 dev->host_mem_size >> ilog2(SZ_1M));
2050 ret = nvme_set_host_mem(dev, enable_bits);
2052 nvme_free_host_mem(dev);
2057 * nirqs is the number of interrupts available for write and read
2058 * queues. The core already reserved an interrupt for the admin queue.
2060 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2062 struct nvme_dev *dev = affd->priv;
2063 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2066 * If there is no interrupt available for queues, ensure that
2067 * the default queue is set to 1. The affinity set size is
2068 * also set to one, but the irq core ignores it for this case.
2070 * If only one interrupt is available or 'write_queue' == 0, combine
2071 * write and read queues.
2073 * If 'write_queues' > 0, ensure it leaves room for at least one read
2079 } else if (nrirqs == 1 || !nr_write_queues) {
2081 } else if (nr_write_queues >= nrirqs) {
2084 nr_read_queues = nrirqs - nr_write_queues;
2087 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2088 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2089 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2090 affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2091 affd->nr_sets = nr_read_queues ? 2 : 1;
2094 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2096 struct pci_dev *pdev = to_pci_dev(dev->dev);
2097 struct irq_affinity affd = {
2099 .calc_sets = nvme_calc_irq_sets,
2102 unsigned int irq_queues, poll_queues;
2105 * Poll queues don't need interrupts, but we need at least one I/O queue
2106 * left over for non-polled I/O.
2108 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2109 dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2112 * Initialize for the single interrupt case, will be updated in
2113 * nvme_calc_irq_sets().
2115 dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2116 dev->io_queues[HCTX_TYPE_READ] = 0;
2119 * We need interrupts for the admin queue and each non-polled I/O queue,
2120 * but some Apple controllers require all queues to use the first
2124 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2125 irq_queues += (nr_io_queues - poll_queues);
2126 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2127 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2130 static void nvme_disable_io_queues(struct nvme_dev *dev)
2132 if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2133 __nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2136 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2139 * If tags are shared with admin queue (Apple bug), then
2140 * make sure we only use one IO queue.
2142 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2144 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2147 static int nvme_setup_io_queues(struct nvme_dev *dev)
2149 struct nvme_queue *adminq = &dev->queues[0];
2150 struct pci_dev *pdev = to_pci_dev(dev->dev);
2151 unsigned int nr_io_queues;
2156 * Sample the module parameters once at reset time so that we have
2157 * stable values to work with.
2159 dev->nr_write_queues = write_queues;
2160 dev->nr_poll_queues = poll_queues;
2162 nr_io_queues = dev->nr_allocated_queues - 1;
2163 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2167 if (nr_io_queues == 0)
2170 clear_bit(NVMEQ_ENABLED, &adminq->flags);
2172 if (dev->cmb_use_sqes) {
2173 result = nvme_cmb_qdepth(dev, nr_io_queues,
2174 sizeof(struct nvme_command));
2176 dev->q_depth = result;
2178 dev->cmb_use_sqes = false;
2182 size = db_bar_size(dev, nr_io_queues);
2183 result = nvme_remap_bar(dev, size);
2186 if (!--nr_io_queues)
2189 adminq->q_db = dev->dbs;
2192 /* Deregister the admin queue's interrupt */
2193 pci_free_irq(pdev, 0, adminq);
2196 * If we enable msix early due to not intx, disable it again before
2197 * setting up the full range we need.
2199 pci_free_irq_vectors(pdev);
2201 result = nvme_setup_irqs(dev, nr_io_queues);
2205 dev->num_vecs = result;
2206 result = max(result - 1, 1);
2207 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2210 * Should investigate if there's a performance win from allocating
2211 * more queues than interrupt vectors; it might allow the submission
2212 * path to scale better, even if the receive path is limited by the
2213 * number of interrupts.
2215 result = queue_request_irq(adminq);
2218 set_bit(NVMEQ_ENABLED, &adminq->flags);
2220 result = nvme_create_io_queues(dev);
2221 if (result || dev->online_queues < 2)
2224 if (dev->online_queues - 1 < dev->max_qid) {
2225 nr_io_queues = dev->online_queues - 1;
2226 nvme_disable_io_queues(dev);
2227 nvme_suspend_io_queues(dev);
2230 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2231 dev->io_queues[HCTX_TYPE_DEFAULT],
2232 dev->io_queues[HCTX_TYPE_READ],
2233 dev->io_queues[HCTX_TYPE_POLL]);
2237 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2239 struct nvme_queue *nvmeq = req->end_io_data;
2241 blk_mq_free_request(req);
2242 complete(&nvmeq->delete_done);
2245 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2247 struct nvme_queue *nvmeq = req->end_io_data;
2250 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2252 nvme_del_queue_end(req, error);
2255 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2257 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2258 struct request *req;
2259 struct nvme_command cmd = { };
2261 cmd.delete_queue.opcode = opcode;
2262 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2264 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
2266 return PTR_ERR(req);
2268 req->end_io_data = nvmeq;
2270 init_completion(&nvmeq->delete_done);
2271 blk_execute_rq_nowait(NULL, req, false,
2272 opcode == nvme_admin_delete_cq ?
2273 nvme_del_cq_end : nvme_del_queue_end);
2277 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2279 int nr_queues = dev->online_queues - 1, sent = 0;
2280 unsigned long timeout;
2283 timeout = NVME_ADMIN_TIMEOUT;
2284 while (nr_queues > 0) {
2285 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2291 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2293 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2305 static void nvme_dev_add(struct nvme_dev *dev)
2309 if (!dev->ctrl.tagset) {
2310 dev->tagset.ops = &nvme_mq_ops;
2311 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2312 dev->tagset.nr_maps = 2; /* default + read */
2313 if (dev->io_queues[HCTX_TYPE_POLL])
2314 dev->tagset.nr_maps++;
2315 dev->tagset.timeout = NVME_IO_TIMEOUT;
2316 dev->tagset.numa_node = dev->ctrl.numa_node;
2317 dev->tagset.queue_depth = min_t(unsigned int, dev->q_depth,
2318 BLK_MQ_MAX_DEPTH) - 1;
2319 dev->tagset.cmd_size = sizeof(struct nvme_iod);
2320 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2321 dev->tagset.driver_data = dev;
2324 * Some Apple controllers requires tags to be unique
2325 * across admin and IO queue, so reserve the first 32
2326 * tags of the IO queue.
2328 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2329 dev->tagset.reserved_tags = NVME_AQ_DEPTH;
2331 ret = blk_mq_alloc_tag_set(&dev->tagset);
2333 dev_warn(dev->ctrl.device,
2334 "IO queues tagset allocation failed %d\n", ret);
2337 dev->ctrl.tagset = &dev->tagset;
2339 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2341 /* Free previously allocated queues that are no longer usable */
2342 nvme_free_queues(dev, dev->online_queues);
2345 nvme_dbbuf_set(dev);
2348 static int nvme_pci_enable(struct nvme_dev *dev)
2350 int result = -ENOMEM;
2351 struct pci_dev *pdev = to_pci_dev(dev->dev);
2352 int dma_address_bits = 64;
2354 if (pci_enable_device_mem(pdev))
2357 pci_set_master(pdev);
2359 if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
2360 dma_address_bits = 48;
2361 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(dma_address_bits)))
2364 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2370 * Some devices and/or platforms don't advertise or work with INTx
2371 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2372 * adjust this later.
2374 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2378 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2380 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2382 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2383 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2384 dev->dbs = dev->bar + 4096;
2387 * Some Apple controllers require a non-standard SQE size.
2388 * Interestingly they also seem to ignore the CC:IOSQES register
2389 * so we don't bother updating it here.
2391 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2394 dev->io_sqes = NVME_NVM_IOSQES;
2397 * Temporary fix for the Apple controller found in the MacBook8,1 and
2398 * some MacBook7,1 to avoid controller resets and data loss.
2400 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2402 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2403 "set queue depth=%u to work around controller resets\n",
2405 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2406 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2407 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2409 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2410 "set queue depth=%u\n", dev->q_depth);
2414 * Controllers with the shared tags quirk need the IO queue to be
2415 * big enough so that we get 32 tags for the admin queue
2417 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2418 (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2419 dev->q_depth = NVME_AQ_DEPTH + 2;
2420 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2427 pci_enable_pcie_error_reporting(pdev);
2428 pci_save_state(pdev);
2432 pci_disable_device(pdev);
2436 static void nvme_dev_unmap(struct nvme_dev *dev)
2440 pci_release_mem_regions(to_pci_dev(dev->dev));
2443 static void nvme_pci_disable(struct nvme_dev *dev)
2445 struct pci_dev *pdev = to_pci_dev(dev->dev);
2447 pci_free_irq_vectors(pdev);
2449 if (pci_is_enabled(pdev)) {
2450 pci_disable_pcie_error_reporting(pdev);
2451 pci_disable_device(pdev);
2455 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2457 bool dead = true, freeze = false;
2458 struct pci_dev *pdev = to_pci_dev(dev->dev);
2460 mutex_lock(&dev->shutdown_lock);
2461 if (pci_is_enabled(pdev)) {
2462 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2464 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2465 dev->ctrl.state == NVME_CTRL_RESETTING) {
2467 nvme_start_freeze(&dev->ctrl);
2469 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2470 pdev->error_state != pci_channel_io_normal);
2474 * Give the controller a chance to complete all entered requests if
2475 * doing a safe shutdown.
2477 if (!dead && shutdown && freeze)
2478 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2480 nvme_stop_queues(&dev->ctrl);
2482 if (!dead && dev->ctrl.queue_count > 0) {
2483 nvme_disable_io_queues(dev);
2484 nvme_disable_admin_queue(dev, shutdown);
2486 nvme_suspend_io_queues(dev);
2487 nvme_suspend_queue(&dev->queues[0]);
2488 nvme_pci_disable(dev);
2489 nvme_reap_pending_cqes(dev);
2491 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2492 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2493 blk_mq_tagset_wait_completed_request(&dev->tagset);
2494 blk_mq_tagset_wait_completed_request(&dev->admin_tagset);
2497 * The driver will not be starting up queues again if shutting down so
2498 * must flush all entered requests to their failed completion to avoid
2499 * deadlocking blk-mq hot-cpu notifier.
2502 nvme_start_queues(&dev->ctrl);
2503 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2504 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
2506 mutex_unlock(&dev->shutdown_lock);
2509 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2511 if (!nvme_wait_reset(&dev->ctrl))
2513 nvme_dev_disable(dev, shutdown);
2517 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2519 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2520 NVME_CTRL_PAGE_SIZE,
2521 NVME_CTRL_PAGE_SIZE, 0);
2522 if (!dev->prp_page_pool)
2525 /* Optimisation for I/Os between 4k and 128k */
2526 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2528 if (!dev->prp_small_pool) {
2529 dma_pool_destroy(dev->prp_page_pool);
2535 static void nvme_release_prp_pools(struct nvme_dev *dev)
2537 dma_pool_destroy(dev->prp_page_pool);
2538 dma_pool_destroy(dev->prp_small_pool);
2541 static void nvme_free_tagset(struct nvme_dev *dev)
2543 if (dev->tagset.tags)
2544 blk_mq_free_tag_set(&dev->tagset);
2545 dev->ctrl.tagset = NULL;
2548 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2550 struct nvme_dev *dev = to_nvme_dev(ctrl);
2552 nvme_dbbuf_dma_free(dev);
2553 nvme_free_tagset(dev);
2554 if (dev->ctrl.admin_q)
2555 blk_put_queue(dev->ctrl.admin_q);
2556 free_opal_dev(dev->ctrl.opal_dev);
2557 mempool_destroy(dev->iod_mempool);
2558 put_device(dev->dev);
2563 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2566 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2567 * may be holding this pci_dev's device lock.
2569 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2570 nvme_get_ctrl(&dev->ctrl);
2571 nvme_dev_disable(dev, false);
2572 nvme_kill_queues(&dev->ctrl);
2573 if (!queue_work(nvme_wq, &dev->remove_work))
2574 nvme_put_ctrl(&dev->ctrl);
2577 static void nvme_reset_work(struct work_struct *work)
2579 struct nvme_dev *dev =
2580 container_of(work, struct nvme_dev, ctrl.reset_work);
2581 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2584 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING)) {
2590 * If we're called to reset a live controller first shut it down before
2593 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2594 nvme_dev_disable(dev, false);
2595 nvme_sync_queues(&dev->ctrl);
2597 mutex_lock(&dev->shutdown_lock);
2598 result = nvme_pci_enable(dev);
2602 result = nvme_pci_configure_admin_queue(dev);
2606 result = nvme_alloc_admin_tags(dev);
2611 * Limit the max command size to prevent iod->sg allocations going
2612 * over a single page.
2614 dev->ctrl.max_hw_sectors = min_t(u32,
2615 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2616 dev->ctrl.max_segments = NVME_MAX_SEGS;
2619 * Don't limit the IOMMU merged segment size.
2621 dma_set_max_seg_size(dev->dev, 0xffffffff);
2622 dma_set_min_align_mask(dev->dev, NVME_CTRL_PAGE_SIZE - 1);
2624 mutex_unlock(&dev->shutdown_lock);
2627 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2628 * initializing procedure here.
2630 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2631 dev_warn(dev->ctrl.device,
2632 "failed to mark controller CONNECTING\n");
2638 * We do not support an SGL for metadata (yet), so we are limited to a
2639 * single integrity segment for the separate metadata pointer.
2641 dev->ctrl.max_integrity_segments = 1;
2643 result = nvme_init_ctrl_finish(&dev->ctrl);
2647 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2648 if (!dev->ctrl.opal_dev)
2649 dev->ctrl.opal_dev =
2650 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2651 else if (was_suspend)
2652 opal_unlock_from_suspend(dev->ctrl.opal_dev);
2654 free_opal_dev(dev->ctrl.opal_dev);
2655 dev->ctrl.opal_dev = NULL;
2658 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2659 result = nvme_dbbuf_dma_alloc(dev);
2662 "unable to allocate dma for dbbuf\n");
2665 if (dev->ctrl.hmpre) {
2666 result = nvme_setup_host_mem(dev);
2671 result = nvme_setup_io_queues(dev);
2676 * Keep the controller around but remove all namespaces if we don't have
2677 * any working I/O queue.
2679 if (dev->online_queues < 2) {
2680 dev_warn(dev->ctrl.device, "IO queues not created\n");
2681 nvme_kill_queues(&dev->ctrl);
2682 nvme_remove_namespaces(&dev->ctrl);
2683 nvme_free_tagset(dev);
2685 nvme_start_queues(&dev->ctrl);
2686 nvme_wait_freeze(&dev->ctrl);
2688 nvme_unfreeze(&dev->ctrl);
2692 * If only admin queue live, keep it to do further investigation or
2695 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2696 dev_warn(dev->ctrl.device,
2697 "failed to mark controller live state\n");
2702 nvme_start_ctrl(&dev->ctrl);
2706 mutex_unlock(&dev->shutdown_lock);
2709 dev_warn(dev->ctrl.device,
2710 "Removing after probe failure status: %d\n", result);
2711 nvme_remove_dead_ctrl(dev);
2714 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2716 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2717 struct pci_dev *pdev = to_pci_dev(dev->dev);
2719 if (pci_get_drvdata(pdev))
2720 device_release_driver(&pdev->dev);
2721 nvme_put_ctrl(&dev->ctrl);
2724 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2726 *val = readl(to_nvme_dev(ctrl)->bar + off);
2730 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2732 writel(val, to_nvme_dev(ctrl)->bar + off);
2736 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2738 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2742 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2744 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2746 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2749 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2751 .module = THIS_MODULE,
2752 .flags = NVME_F_METADATA_SUPPORTED |
2754 .reg_read32 = nvme_pci_reg_read32,
2755 .reg_write32 = nvme_pci_reg_write32,
2756 .reg_read64 = nvme_pci_reg_read64,
2757 .free_ctrl = nvme_pci_free_ctrl,
2758 .submit_async_event = nvme_pci_submit_async_event,
2759 .get_address = nvme_pci_get_address,
2762 static int nvme_dev_map(struct nvme_dev *dev)
2764 struct pci_dev *pdev = to_pci_dev(dev->dev);
2766 if (pci_request_mem_regions(pdev, "nvme"))
2769 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2774 pci_release_mem_regions(pdev);
2778 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2780 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2782 * Several Samsung devices seem to drop off the PCIe bus
2783 * randomly when APST is on and uses the deepest sleep state.
2784 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2785 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2786 * 950 PRO 256GB", but it seems to be restricted to two Dell
2789 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2790 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2791 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2792 return NVME_QUIRK_NO_DEEPEST_PS;
2793 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2795 * Samsung SSD 960 EVO drops off the PCIe bus after system
2796 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2797 * within few minutes after bootup on a Coffee Lake board -
2800 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2801 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2802 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2803 return NVME_QUIRK_NO_APST;
2804 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2805 pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2806 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2808 * Forcing to use host managed nvme power settings for
2809 * lowest idle power with quick resume latency on
2810 * Samsung and Toshiba SSDs based on suspend behavior
2811 * on Coffee Lake board for LENOVO C640
2813 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2814 dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2815 return NVME_QUIRK_SIMPLE_SUSPEND;
2821 static void nvme_async_probe(void *data, async_cookie_t cookie)
2823 struct nvme_dev *dev = data;
2825 flush_work(&dev->ctrl.reset_work);
2826 flush_work(&dev->ctrl.scan_work);
2827 nvme_put_ctrl(&dev->ctrl);
2830 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2832 int node, result = -ENOMEM;
2833 struct nvme_dev *dev;
2834 unsigned long quirks = id->driver_data;
2837 node = dev_to_node(&pdev->dev);
2838 if (node == NUMA_NO_NODE)
2839 set_dev_node(&pdev->dev, first_memory_node);
2841 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2845 dev->nr_write_queues = write_queues;
2846 dev->nr_poll_queues = poll_queues;
2847 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
2848 dev->queues = kcalloc_node(dev->nr_allocated_queues,
2849 sizeof(struct nvme_queue), GFP_KERNEL, node);
2853 dev->dev = get_device(&pdev->dev);
2854 pci_set_drvdata(pdev, dev);
2856 result = nvme_dev_map(dev);
2860 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2861 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2862 mutex_init(&dev->shutdown_lock);
2864 result = nvme_setup_prp_pools(dev);
2868 quirks |= check_vendor_combination_bug(pdev);
2870 if (!noacpi && acpi_storage_d3(&pdev->dev)) {
2872 * Some systems use a bios work around to ask for D3 on
2873 * platforms that support kernel managed suspend.
2875 dev_info(&pdev->dev,
2876 "platform quirk: setting simple suspend\n");
2877 quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
2881 * Double check that our mempool alloc size will cover the biggest
2882 * command we support.
2884 alloc_size = nvme_pci_iod_alloc_size();
2885 WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2887 dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2889 (void *) alloc_size,
2891 if (!dev->iod_mempool) {
2896 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2899 goto release_mempool;
2901 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2903 nvme_reset_ctrl(&dev->ctrl);
2904 async_schedule(nvme_async_probe, dev);
2909 mempool_destroy(dev->iod_mempool);
2911 nvme_release_prp_pools(dev);
2913 nvme_dev_unmap(dev);
2915 put_device(dev->dev);
2922 static void nvme_reset_prepare(struct pci_dev *pdev)
2924 struct nvme_dev *dev = pci_get_drvdata(pdev);
2927 * We don't need to check the return value from waiting for the reset
2928 * state as pci_dev device lock is held, making it impossible to race
2931 nvme_disable_prepare_reset(dev, false);
2932 nvme_sync_queues(&dev->ctrl);
2935 static void nvme_reset_done(struct pci_dev *pdev)
2937 struct nvme_dev *dev = pci_get_drvdata(pdev);
2939 if (!nvme_try_sched_reset(&dev->ctrl))
2940 flush_work(&dev->ctrl.reset_work);
2943 static void nvme_shutdown(struct pci_dev *pdev)
2945 struct nvme_dev *dev = pci_get_drvdata(pdev);
2947 nvme_disable_prepare_reset(dev, true);
2951 * The driver's remove may be called on a device in a partially initialized
2952 * state. This function must not have any dependencies on the device state in
2955 static void nvme_remove(struct pci_dev *pdev)
2957 struct nvme_dev *dev = pci_get_drvdata(pdev);
2959 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2960 pci_set_drvdata(pdev, NULL);
2962 if (!pci_device_is_present(pdev)) {
2963 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2964 nvme_dev_disable(dev, true);
2965 nvme_dev_remove_admin(dev);
2968 flush_work(&dev->ctrl.reset_work);
2969 nvme_stop_ctrl(&dev->ctrl);
2970 nvme_remove_namespaces(&dev->ctrl);
2971 nvme_dev_disable(dev, true);
2972 nvme_release_cmb(dev);
2973 nvme_free_host_mem(dev);
2974 nvme_dev_remove_admin(dev);
2975 nvme_free_queues(dev, 0);
2976 nvme_release_prp_pools(dev);
2977 nvme_dev_unmap(dev);
2978 nvme_uninit_ctrl(&dev->ctrl);
2981 #ifdef CONFIG_PM_SLEEP
2982 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
2984 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
2987 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
2989 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
2992 static int nvme_resume(struct device *dev)
2994 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
2995 struct nvme_ctrl *ctrl = &ndev->ctrl;
2997 if (ndev->last_ps == U32_MAX ||
2998 nvme_set_power_state(ctrl, ndev->last_ps) != 0)
2999 return nvme_try_sched_reset(&ndev->ctrl);
3003 static int nvme_suspend(struct device *dev)
3005 struct pci_dev *pdev = to_pci_dev(dev);
3006 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3007 struct nvme_ctrl *ctrl = &ndev->ctrl;
3010 ndev->last_ps = U32_MAX;
3013 * The platform does not remove power for a kernel managed suspend so
3014 * use host managed nvme power settings for lowest idle power if
3015 * possible. This should have quicker resume latency than a full device
3016 * shutdown. But if the firmware is involved after the suspend or the
3017 * device does not support any non-default power states, shut down the
3020 * If ASPM is not enabled for the device, shut down the device and allow
3021 * the PCI bus layer to put it into D3 in order to take the PCIe link
3022 * down, so as to allow the platform to achieve its minimum low-power
3023 * state (which may not be possible if the link is up).
3025 * If a host memory buffer is enabled, shut down the device as the NVMe
3026 * specification allows the device to access the host memory buffer in
3027 * host DRAM from all power states, but hosts will fail access to DRAM
3030 if (pm_suspend_via_firmware() || !ctrl->npss ||
3031 !pcie_aspm_enabled(pdev) ||
3032 ndev->nr_host_mem_descs ||
3033 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3034 return nvme_disable_prepare_reset(ndev, true);
3036 nvme_start_freeze(ctrl);
3037 nvme_wait_freeze(ctrl);
3038 nvme_sync_queues(ctrl);
3040 if (ctrl->state != NVME_CTRL_LIVE)
3043 ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3048 * A saved state prevents pci pm from generically controlling the
3049 * device's power. If we're using protocol specific settings, we don't
3050 * want pci interfering.
3052 pci_save_state(pdev);
3054 ret = nvme_set_power_state(ctrl, ctrl->npss);
3059 /* discard the saved state */
3060 pci_load_saved_state(pdev, NULL);
3063 * Clearing npss forces a controller reset on resume. The
3064 * correct value will be rediscovered then.
3066 ret = nvme_disable_prepare_reset(ndev, true);
3070 nvme_unfreeze(ctrl);
3074 static int nvme_simple_suspend(struct device *dev)
3076 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3078 return nvme_disable_prepare_reset(ndev, true);
3081 static int nvme_simple_resume(struct device *dev)
3083 struct pci_dev *pdev = to_pci_dev(dev);
3084 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3086 return nvme_try_sched_reset(&ndev->ctrl);
3089 static const struct dev_pm_ops nvme_dev_pm_ops = {
3090 .suspend = nvme_suspend,
3091 .resume = nvme_resume,
3092 .freeze = nvme_simple_suspend,
3093 .thaw = nvme_simple_resume,
3094 .poweroff = nvme_simple_suspend,
3095 .restore = nvme_simple_resume,
3097 #endif /* CONFIG_PM_SLEEP */
3099 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3100 pci_channel_state_t state)
3102 struct nvme_dev *dev = pci_get_drvdata(pdev);
3105 * A frozen channel requires a reset. When detected, this method will
3106 * shutdown the controller to quiesce. The controller will be restarted
3107 * after the slot reset through driver's slot_reset callback.
3110 case pci_channel_io_normal:
3111 return PCI_ERS_RESULT_CAN_RECOVER;
3112 case pci_channel_io_frozen:
3113 dev_warn(dev->ctrl.device,
3114 "frozen state error detected, reset controller\n");
3115 nvme_dev_disable(dev, false);
3116 return PCI_ERS_RESULT_NEED_RESET;
3117 case pci_channel_io_perm_failure:
3118 dev_warn(dev->ctrl.device,
3119 "failure state error detected, request disconnect\n");
3120 return PCI_ERS_RESULT_DISCONNECT;
3122 return PCI_ERS_RESULT_NEED_RESET;
3125 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3127 struct nvme_dev *dev = pci_get_drvdata(pdev);
3129 dev_info(dev->ctrl.device, "restart after slot reset\n");
3130 pci_restore_state(pdev);
3131 nvme_reset_ctrl(&dev->ctrl);
3132 return PCI_ERS_RESULT_RECOVERED;
3135 static void nvme_error_resume(struct pci_dev *pdev)
3137 struct nvme_dev *dev = pci_get_drvdata(pdev);
3139 flush_work(&dev->ctrl.reset_work);
3142 static const struct pci_error_handlers nvme_err_handler = {
3143 .error_detected = nvme_error_detected,
3144 .slot_reset = nvme_slot_reset,
3145 .resume = nvme_error_resume,
3146 .reset_prepare = nvme_reset_prepare,
3147 .reset_done = nvme_reset_done,
3150 static const struct pci_device_id nvme_id_table[] = {
3151 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */
3152 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3153 NVME_QUIRK_DEALLOCATE_ZEROES, },
3154 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */
3155 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3156 NVME_QUIRK_DEALLOCATE_ZEROES, },
3157 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */
3158 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3159 NVME_QUIRK_DEALLOCATE_ZEROES, },
3160 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */
3161 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3162 NVME_QUIRK_DEALLOCATE_ZEROES, },
3163 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
3164 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3165 NVME_QUIRK_MEDIUM_PRIO_SQ |
3166 NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3167 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3168 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */
3169 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3170 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
3171 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3172 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3173 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */
3174 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST, },
3175 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
3176 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3177 NVME_QUIRK_NO_NS_DESC_LIST, },
3178 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
3179 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3180 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
3181 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3182 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
3183 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3184 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
3185 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3186 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
3187 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3188 NVME_QUIRK_DISABLE_WRITE_ZEROES|
3189 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3190 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */
3191 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3192 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */
3193 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3194 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3195 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */
3196 .driver_data = NVME_QUIRK_LIGHTNVM, },
3197 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */
3198 .driver_data = NVME_QUIRK_LIGHTNVM, },
3199 { PCI_DEVICE(0x1d1d, 0x2601), /* CNEX Granby */
3200 .driver_data = NVME_QUIRK_LIGHTNVM, },
3201 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */
3202 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3203 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */
3204 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3205 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3206 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */
3207 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3208 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */
3209 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3210 { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */
3211 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3212 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */
3213 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3214 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */
3215 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3216 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3217 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3218 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3219 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3220 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3221 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3222 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3223 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3224 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3225 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3226 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3227 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3228 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3229 .driver_data = NVME_QUIRK_SINGLE_VECTOR },
3230 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3231 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3232 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3233 NVME_QUIRK_128_BYTES_SQES |
3234 NVME_QUIRK_SHARED_TAGS },
3236 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3239 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3241 static struct pci_driver nvme_driver = {
3243 .id_table = nvme_id_table,
3244 .probe = nvme_probe,
3245 .remove = nvme_remove,
3246 .shutdown = nvme_shutdown,
3247 #ifdef CONFIG_PM_SLEEP
3249 .pm = &nvme_dev_pm_ops,
3252 .sriov_configure = pci_sriov_configure_simple,
3253 .err_handler = &nvme_err_handler,
3256 static int __init nvme_init(void)
3258 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3259 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3260 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3261 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3263 return pci_register_driver(&nvme_driver);
3266 static void __exit nvme_exit(void)
3268 pci_unregister_driver(&nvme_driver);
3269 flush_workqueue(nvme_wq);
3272 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3273 MODULE_LICENSE("GPL");
3274 MODULE_VERSION("1.0");
3275 module_init(nvme_init);
3276 module_exit(nvme_exit);