Merge tag 'usb-4.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb
[linux-2.6-block.git] / drivers / nvme / host / pci.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/dmi.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/mm.h>
25 #include <linux/module.h>
26 #include <linux/mutex.h>
27 #include <linux/pci.h>
28 #include <linux/poison.h>
29 #include <linux/t10-pi.h>
30 #include <linux/timer.h>
31 #include <linux/types.h>
32 #include <linux/io-64-nonatomic-lo-hi.h>
33 #include <asm/unaligned.h>
34 #include <linux/sed-opal.h>
35
36 #include "nvme.h"
37
38 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
39 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
40
41 /*
42  * We handle AEN commands ourselves and don't even let the
43  * block layer know about them.
44  */
45 #define NVME_AQ_BLKMQ_DEPTH     (NVME_AQ_DEPTH - NVME_NR_AERS)
46
47 static int use_threaded_interrupts;
48 module_param(use_threaded_interrupts, int, 0);
49
50 static bool use_cmb_sqes = true;
51 module_param(use_cmb_sqes, bool, 0644);
52 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
53
54 static unsigned int max_host_mem_size_mb = 128;
55 module_param(max_host_mem_size_mb, uint, 0444);
56 MODULE_PARM_DESC(max_host_mem_size_mb,
57         "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
58
59 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
60 static const struct kernel_param_ops io_queue_depth_ops = {
61         .set = io_queue_depth_set,
62         .get = param_get_int,
63 };
64
65 static int io_queue_depth = 1024;
66 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
67 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
68
69 struct nvme_dev;
70 struct nvme_queue;
71
72 static void nvme_process_cq(struct nvme_queue *nvmeq);
73 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
74
75 /*
76  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
77  */
78 struct nvme_dev {
79         struct nvme_queue **queues;
80         struct blk_mq_tag_set tagset;
81         struct blk_mq_tag_set admin_tagset;
82         u32 __iomem *dbs;
83         struct device *dev;
84         struct dma_pool *prp_page_pool;
85         struct dma_pool *prp_small_pool;
86         unsigned online_queues;
87         unsigned max_qid;
88         int q_depth;
89         u32 db_stride;
90         void __iomem *bar;
91         unsigned long bar_mapped_size;
92         struct work_struct remove_work;
93         struct mutex shutdown_lock;
94         bool subsystem;
95         void __iomem *cmb;
96         dma_addr_t cmb_dma_addr;
97         u64 cmb_size;
98         u32 cmbsz;
99         u32 cmbloc;
100         struct nvme_ctrl ctrl;
101         struct completion ioq_wait;
102
103         /* shadow doorbell buffer support: */
104         u32 *dbbuf_dbs;
105         dma_addr_t dbbuf_dbs_dma_addr;
106         u32 *dbbuf_eis;
107         dma_addr_t dbbuf_eis_dma_addr;
108
109         /* host memory buffer support: */
110         u64 host_mem_size;
111         u32 nr_host_mem_descs;
112         dma_addr_t host_mem_descs_dma;
113         struct nvme_host_mem_buf_desc *host_mem_descs;
114         void **host_mem_desc_bufs;
115 };
116
117 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
118 {
119         int n = 0, ret;
120
121         ret = kstrtoint(val, 10, &n);
122         if (ret != 0 || n < 2)
123                 return -EINVAL;
124
125         return param_set_int(val, kp);
126 }
127
128 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
129 {
130         return qid * 2 * stride;
131 }
132
133 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
134 {
135         return (qid * 2 + 1) * stride;
136 }
137
138 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
139 {
140         return container_of(ctrl, struct nvme_dev, ctrl);
141 }
142
143 /*
144  * An NVM Express queue.  Each device has at least two (one for admin
145  * commands and one for I/O commands).
146  */
147 struct nvme_queue {
148         struct device *q_dmadev;
149         struct nvme_dev *dev;
150         spinlock_t q_lock;
151         struct nvme_command *sq_cmds;
152         struct nvme_command __iomem *sq_cmds_io;
153         volatile struct nvme_completion *cqes;
154         struct blk_mq_tags **tags;
155         dma_addr_t sq_dma_addr;
156         dma_addr_t cq_dma_addr;
157         u32 __iomem *q_db;
158         u16 q_depth;
159         s16 cq_vector;
160         u16 sq_tail;
161         u16 cq_head;
162         u16 qid;
163         u8 cq_phase;
164         u8 cqe_seen;
165         u32 *dbbuf_sq_db;
166         u32 *dbbuf_cq_db;
167         u32 *dbbuf_sq_ei;
168         u32 *dbbuf_cq_ei;
169 };
170
171 /*
172  * The nvme_iod describes the data in an I/O, including the list of PRP
173  * entries.  You can't see it in this data structure because C doesn't let
174  * me express that.  Use nvme_init_iod to ensure there's enough space
175  * allocated to store the PRP list.
176  */
177 struct nvme_iod {
178         struct nvme_request req;
179         struct nvme_queue *nvmeq;
180         int aborted;
181         int npages;             /* In the PRP list. 0 means small pool in use */
182         int nents;              /* Used in scatterlist */
183         int length;             /* Of data, in bytes */
184         dma_addr_t first_dma;
185         struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
186         struct scatterlist *sg;
187         struct scatterlist inline_sg[0];
188 };
189
190 /*
191  * Check we didin't inadvertently grow the command struct
192  */
193 static inline void _nvme_check_size(void)
194 {
195         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
196         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
197         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
198         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
199         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
200         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
201         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
202         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
203         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
204         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
205         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
206         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
207         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
208 }
209
210 static inline unsigned int nvme_dbbuf_size(u32 stride)
211 {
212         return ((num_possible_cpus() + 1) * 8 * stride);
213 }
214
215 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
216 {
217         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
218
219         if (dev->dbbuf_dbs)
220                 return 0;
221
222         dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
223                                             &dev->dbbuf_dbs_dma_addr,
224                                             GFP_KERNEL);
225         if (!dev->dbbuf_dbs)
226                 return -ENOMEM;
227         dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
228                                             &dev->dbbuf_eis_dma_addr,
229                                             GFP_KERNEL);
230         if (!dev->dbbuf_eis) {
231                 dma_free_coherent(dev->dev, mem_size,
232                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
233                 dev->dbbuf_dbs = NULL;
234                 return -ENOMEM;
235         }
236
237         return 0;
238 }
239
240 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
241 {
242         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
243
244         if (dev->dbbuf_dbs) {
245                 dma_free_coherent(dev->dev, mem_size,
246                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
247                 dev->dbbuf_dbs = NULL;
248         }
249         if (dev->dbbuf_eis) {
250                 dma_free_coherent(dev->dev, mem_size,
251                                   dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
252                 dev->dbbuf_eis = NULL;
253         }
254 }
255
256 static void nvme_dbbuf_init(struct nvme_dev *dev,
257                             struct nvme_queue *nvmeq, int qid)
258 {
259         if (!dev->dbbuf_dbs || !qid)
260                 return;
261
262         nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
263         nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
264         nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
265         nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
266 }
267
268 static void nvme_dbbuf_set(struct nvme_dev *dev)
269 {
270         struct nvme_command c;
271
272         if (!dev->dbbuf_dbs)
273                 return;
274
275         memset(&c, 0, sizeof(c));
276         c.dbbuf.opcode = nvme_admin_dbbuf;
277         c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
278         c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
279
280         if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
281                 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
282                 /* Free memory and continue on */
283                 nvme_dbbuf_dma_free(dev);
284         }
285 }
286
287 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
288 {
289         return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
290 }
291
292 /* Update dbbuf and return true if an MMIO is required */
293 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
294                                               volatile u32 *dbbuf_ei)
295 {
296         if (dbbuf_db) {
297                 u16 old_value;
298
299                 /*
300                  * Ensure that the queue is written before updating
301                  * the doorbell in memory
302                  */
303                 wmb();
304
305                 old_value = *dbbuf_db;
306                 *dbbuf_db = value;
307
308                 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
309                         return false;
310         }
311
312         return true;
313 }
314
315 /*
316  * Max size of iod being embedded in the request payload
317  */
318 #define NVME_INT_PAGES          2
319 #define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->ctrl.page_size)
320
321 /*
322  * Will slightly overestimate the number of pages needed.  This is OK
323  * as it only leads to a small amount of wasted memory for the lifetime of
324  * the I/O.
325  */
326 static int nvme_npages(unsigned size, struct nvme_dev *dev)
327 {
328         unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
329                                       dev->ctrl.page_size);
330         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
331 }
332
333 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
334                 unsigned int size, unsigned int nseg)
335 {
336         return sizeof(__le64 *) * nvme_npages(size, dev) +
337                         sizeof(struct scatterlist) * nseg;
338 }
339
340 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
341 {
342         return sizeof(struct nvme_iod) +
343                 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
344 }
345
346 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
347                                 unsigned int hctx_idx)
348 {
349         struct nvme_dev *dev = data;
350         struct nvme_queue *nvmeq = dev->queues[0];
351
352         WARN_ON(hctx_idx != 0);
353         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
354         WARN_ON(nvmeq->tags);
355
356         hctx->driver_data = nvmeq;
357         nvmeq->tags = &dev->admin_tagset.tags[0];
358         return 0;
359 }
360
361 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
362 {
363         struct nvme_queue *nvmeq = hctx->driver_data;
364
365         nvmeq->tags = NULL;
366 }
367
368 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
369                           unsigned int hctx_idx)
370 {
371         struct nvme_dev *dev = data;
372         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
373
374         if (!nvmeq->tags)
375                 nvmeq->tags = &dev->tagset.tags[hctx_idx];
376
377         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
378         hctx->driver_data = nvmeq;
379         return 0;
380 }
381
382 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
383                 unsigned int hctx_idx, unsigned int numa_node)
384 {
385         struct nvme_dev *dev = set->driver_data;
386         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
387         int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
388         struct nvme_queue *nvmeq = dev->queues[queue_idx];
389
390         BUG_ON(!nvmeq);
391         iod->nvmeq = nvmeq;
392         return 0;
393 }
394
395 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
396 {
397         struct nvme_dev *dev = set->driver_data;
398
399         return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
400 }
401
402 /**
403  * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
404  * @nvmeq: The queue to use
405  * @cmd: The command to send
406  *
407  * Safe to use from interrupt context
408  */
409 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
410                                                 struct nvme_command *cmd)
411 {
412         u16 tail = nvmeq->sq_tail;
413
414         if (nvmeq->sq_cmds_io)
415                 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
416         else
417                 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
418
419         if (++tail == nvmeq->q_depth)
420                 tail = 0;
421         if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db,
422                                               nvmeq->dbbuf_sq_ei))
423                 writel(tail, nvmeq->q_db);
424         nvmeq->sq_tail = tail;
425 }
426
427 static __le64 **iod_list(struct request *req)
428 {
429         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
430         return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
431 }
432
433 static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
434 {
435         struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
436         int nseg = blk_rq_nr_phys_segments(rq);
437         unsigned int size = blk_rq_payload_bytes(rq);
438
439         if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
440                 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
441                 if (!iod->sg)
442                         return BLK_STS_RESOURCE;
443         } else {
444                 iod->sg = iod->inline_sg;
445         }
446
447         iod->aborted = 0;
448         iod->npages = -1;
449         iod->nents = 0;
450         iod->length = size;
451
452         return BLK_STS_OK;
453 }
454
455 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
456 {
457         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
458         const int last_prp = dev->ctrl.page_size / 8 - 1;
459         int i;
460         __le64 **list = iod_list(req);
461         dma_addr_t prp_dma = iod->first_dma;
462
463         if (iod->npages == 0)
464                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
465         for (i = 0; i < iod->npages; i++) {
466                 __le64 *prp_list = list[i];
467                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
468                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
469                 prp_dma = next_prp_dma;
470         }
471
472         if (iod->sg != iod->inline_sg)
473                 kfree(iod->sg);
474 }
475
476 #ifdef CONFIG_BLK_DEV_INTEGRITY
477 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
478 {
479         if (be32_to_cpu(pi->ref_tag) == v)
480                 pi->ref_tag = cpu_to_be32(p);
481 }
482
483 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
484 {
485         if (be32_to_cpu(pi->ref_tag) == p)
486                 pi->ref_tag = cpu_to_be32(v);
487 }
488
489 /**
490  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
491  *
492  * The virtual start sector is the one that was originally submitted by the
493  * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
494  * start sector may be different. Remap protection information to match the
495  * physical LBA on writes, and back to the original seed on reads.
496  *
497  * Type 0 and 3 do not have a ref tag, so no remapping required.
498  */
499 static void nvme_dif_remap(struct request *req,
500                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
501 {
502         struct nvme_ns *ns = req->rq_disk->private_data;
503         struct bio_integrity_payload *bip;
504         struct t10_pi_tuple *pi;
505         void *p, *pmap;
506         u32 i, nlb, ts, phys, virt;
507
508         if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
509                 return;
510
511         bip = bio_integrity(req->bio);
512         if (!bip)
513                 return;
514
515         pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
516
517         p = pmap;
518         virt = bip_get_seed(bip);
519         phys = nvme_block_nr(ns, blk_rq_pos(req));
520         nlb = (blk_rq_bytes(req) >> ns->lba_shift);
521         ts = ns->disk->queue->integrity.tuple_size;
522
523         for (i = 0; i < nlb; i++, virt++, phys++) {
524                 pi = (struct t10_pi_tuple *)p;
525                 dif_swap(phys, virt, pi);
526                 p += ts;
527         }
528         kunmap_atomic(pmap);
529 }
530 #else /* CONFIG_BLK_DEV_INTEGRITY */
531 static void nvme_dif_remap(struct request *req,
532                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
533 {
534 }
535 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
536 {
537 }
538 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
539 {
540 }
541 #endif
542
543 static blk_status_t nvme_setup_prps(struct nvme_dev *dev, struct request *req)
544 {
545         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
546         struct dma_pool *pool;
547         int length = blk_rq_payload_bytes(req);
548         struct scatterlist *sg = iod->sg;
549         int dma_len = sg_dma_len(sg);
550         u64 dma_addr = sg_dma_address(sg);
551         u32 page_size = dev->ctrl.page_size;
552         int offset = dma_addr & (page_size - 1);
553         __le64 *prp_list;
554         __le64 **list = iod_list(req);
555         dma_addr_t prp_dma;
556         int nprps, i;
557
558         length -= (page_size - offset);
559         if (length <= 0)
560                 return BLK_STS_OK;
561
562         dma_len -= (page_size - offset);
563         if (dma_len) {
564                 dma_addr += (page_size - offset);
565         } else {
566                 sg = sg_next(sg);
567                 dma_addr = sg_dma_address(sg);
568                 dma_len = sg_dma_len(sg);
569         }
570
571         if (length <= page_size) {
572                 iod->first_dma = dma_addr;
573                 return BLK_STS_OK;
574         }
575
576         nprps = DIV_ROUND_UP(length, page_size);
577         if (nprps <= (256 / 8)) {
578                 pool = dev->prp_small_pool;
579                 iod->npages = 0;
580         } else {
581                 pool = dev->prp_page_pool;
582                 iod->npages = 1;
583         }
584
585         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
586         if (!prp_list) {
587                 iod->first_dma = dma_addr;
588                 iod->npages = -1;
589                 return BLK_STS_RESOURCE;
590         }
591         list[0] = prp_list;
592         iod->first_dma = prp_dma;
593         i = 0;
594         for (;;) {
595                 if (i == page_size >> 3) {
596                         __le64 *old_prp_list = prp_list;
597                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
598                         if (!prp_list)
599                                 return BLK_STS_RESOURCE;
600                         list[iod->npages++] = prp_list;
601                         prp_list[0] = old_prp_list[i - 1];
602                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
603                         i = 1;
604                 }
605                 prp_list[i++] = cpu_to_le64(dma_addr);
606                 dma_len -= page_size;
607                 dma_addr += page_size;
608                 length -= page_size;
609                 if (length <= 0)
610                         break;
611                 if (dma_len > 0)
612                         continue;
613                 if (unlikely(dma_len < 0))
614                         goto bad_sgl;
615                 sg = sg_next(sg);
616                 dma_addr = sg_dma_address(sg);
617                 dma_len = sg_dma_len(sg);
618         }
619
620         return BLK_STS_OK;
621
622  bad_sgl:
623         if (WARN_ONCE(1, "Invalid SGL for payload:%d nents:%d\n",
624                                 blk_rq_payload_bytes(req), iod->nents)) {
625                 for_each_sg(iod->sg, sg, iod->nents, i) {
626                         dma_addr_t phys = sg_phys(sg);
627                         pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
628                                "dma_address:%pad dma_length:%d\n", i, &phys,
629                                         sg->offset, sg->length,
630                                         &sg_dma_address(sg),
631                                         sg_dma_len(sg));
632                 }
633         }
634         return BLK_STS_IOERR;
635
636 }
637
638 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
639                 struct nvme_command *cmnd)
640 {
641         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
642         struct request_queue *q = req->q;
643         enum dma_data_direction dma_dir = rq_data_dir(req) ?
644                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
645         blk_status_t ret = BLK_STS_IOERR;
646
647         sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
648         iod->nents = blk_rq_map_sg(q, req, iod->sg);
649         if (!iod->nents)
650                 goto out;
651
652         ret = BLK_STS_RESOURCE;
653         if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
654                                 DMA_ATTR_NO_WARN))
655                 goto out;
656
657         ret = nvme_setup_prps(dev, req);
658         if (ret != BLK_STS_OK)
659                 goto out_unmap;
660
661         ret = BLK_STS_IOERR;
662         if (blk_integrity_rq(req)) {
663                 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
664                         goto out_unmap;
665
666                 sg_init_table(&iod->meta_sg, 1);
667                 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
668                         goto out_unmap;
669
670                 if (rq_data_dir(req))
671                         nvme_dif_remap(req, nvme_dif_prep);
672
673                 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
674                         goto out_unmap;
675         }
676
677         cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
678         cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
679         if (blk_integrity_rq(req))
680                 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
681         return BLK_STS_OK;
682
683 out_unmap:
684         dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
685 out:
686         return ret;
687 }
688
689 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
690 {
691         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
692         enum dma_data_direction dma_dir = rq_data_dir(req) ?
693                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
694
695         if (iod->nents) {
696                 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
697                 if (blk_integrity_rq(req)) {
698                         if (!rq_data_dir(req))
699                                 nvme_dif_remap(req, nvme_dif_complete);
700                         dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
701                 }
702         }
703
704         nvme_cleanup_cmd(req);
705         nvme_free_iod(dev, req);
706 }
707
708 /*
709  * NOTE: ns is NULL when called on the admin queue.
710  */
711 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
712                          const struct blk_mq_queue_data *bd)
713 {
714         struct nvme_ns *ns = hctx->queue->queuedata;
715         struct nvme_queue *nvmeq = hctx->driver_data;
716         struct nvme_dev *dev = nvmeq->dev;
717         struct request *req = bd->rq;
718         struct nvme_command cmnd;
719         blk_status_t ret;
720
721         ret = nvme_setup_cmd(ns, req, &cmnd);
722         if (ret)
723                 return ret;
724
725         ret = nvme_init_iod(req, dev);
726         if (ret)
727                 goto out_free_cmd;
728
729         if (blk_rq_nr_phys_segments(req)) {
730                 ret = nvme_map_data(dev, req, &cmnd);
731                 if (ret)
732                         goto out_cleanup_iod;
733         }
734
735         blk_mq_start_request(req);
736
737         spin_lock_irq(&nvmeq->q_lock);
738         if (unlikely(nvmeq->cq_vector < 0)) {
739                 ret = BLK_STS_IOERR;
740                 spin_unlock_irq(&nvmeq->q_lock);
741                 goto out_cleanup_iod;
742         }
743         __nvme_submit_cmd(nvmeq, &cmnd);
744         nvme_process_cq(nvmeq);
745         spin_unlock_irq(&nvmeq->q_lock);
746         return BLK_STS_OK;
747 out_cleanup_iod:
748         nvme_free_iod(dev, req);
749 out_free_cmd:
750         nvme_cleanup_cmd(req);
751         return ret;
752 }
753
754 static void nvme_pci_complete_rq(struct request *req)
755 {
756         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
757
758         nvme_unmap_data(iod->nvmeq->dev, req);
759         nvme_complete_rq(req);
760 }
761
762 /* We read the CQE phase first to check if the rest of the entry is valid */
763 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
764                 u16 phase)
765 {
766         return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
767 }
768
769 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
770 {
771         u16 head = nvmeq->cq_head;
772
773         if (likely(nvmeq->cq_vector >= 0)) {
774                 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
775                                                       nvmeq->dbbuf_cq_ei))
776                         writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
777         }
778 }
779
780 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
781                 struct nvme_completion *cqe)
782 {
783         struct request *req;
784
785         if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
786                 dev_warn(nvmeq->dev->ctrl.device,
787                         "invalid id %d completed on queue %d\n",
788                         cqe->command_id, le16_to_cpu(cqe->sq_id));
789                 return;
790         }
791
792         /*
793          * AEN requests are special as they don't time out and can
794          * survive any kind of queue freeze and often don't respond to
795          * aborts.  We don't even bother to allocate a struct request
796          * for them but rather special case them here.
797          */
798         if (unlikely(nvmeq->qid == 0 &&
799                         cqe->command_id >= NVME_AQ_BLKMQ_DEPTH)) {
800                 nvme_complete_async_event(&nvmeq->dev->ctrl,
801                                 cqe->status, &cqe->result);
802                 return;
803         }
804
805         nvmeq->cqe_seen = 1;
806         req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
807         nvme_end_request(req, cqe->status, cqe->result);
808 }
809
810 static inline bool nvme_read_cqe(struct nvme_queue *nvmeq,
811                 struct nvme_completion *cqe)
812 {
813         if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
814                 *cqe = nvmeq->cqes[nvmeq->cq_head];
815
816                 if (++nvmeq->cq_head == nvmeq->q_depth) {
817                         nvmeq->cq_head = 0;
818                         nvmeq->cq_phase = !nvmeq->cq_phase;
819                 }
820                 return true;
821         }
822         return false;
823 }
824
825 static void nvme_process_cq(struct nvme_queue *nvmeq)
826 {
827         struct nvme_completion cqe;
828         int consumed = 0;
829
830         while (nvme_read_cqe(nvmeq, &cqe)) {
831                 nvme_handle_cqe(nvmeq, &cqe);
832                 consumed++;
833         }
834
835         if (consumed)
836                 nvme_ring_cq_doorbell(nvmeq);
837 }
838
839 static irqreturn_t nvme_irq(int irq, void *data)
840 {
841         irqreturn_t result;
842         struct nvme_queue *nvmeq = data;
843         spin_lock(&nvmeq->q_lock);
844         nvme_process_cq(nvmeq);
845         result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
846         nvmeq->cqe_seen = 0;
847         spin_unlock(&nvmeq->q_lock);
848         return result;
849 }
850
851 static irqreturn_t nvme_irq_check(int irq, void *data)
852 {
853         struct nvme_queue *nvmeq = data;
854         if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
855                 return IRQ_WAKE_THREAD;
856         return IRQ_NONE;
857 }
858
859 static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
860 {
861         struct nvme_completion cqe;
862         int found = 0, consumed = 0;
863
864         if (!nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
865                 return 0;
866
867         spin_lock_irq(&nvmeq->q_lock);
868         while (nvme_read_cqe(nvmeq, &cqe)) {
869                 nvme_handle_cqe(nvmeq, &cqe);
870                 consumed++;
871
872                 if (tag == cqe.command_id) {
873                         found = 1;
874                         break;
875                 }
876        }
877
878         if (consumed)
879                 nvme_ring_cq_doorbell(nvmeq);
880         spin_unlock_irq(&nvmeq->q_lock);
881
882         return found;
883 }
884
885 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
886 {
887         struct nvme_queue *nvmeq = hctx->driver_data;
888
889         return __nvme_poll(nvmeq, tag);
890 }
891
892 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
893 {
894         struct nvme_dev *dev = to_nvme_dev(ctrl);
895         struct nvme_queue *nvmeq = dev->queues[0];
896         struct nvme_command c;
897
898         memset(&c, 0, sizeof(c));
899         c.common.opcode = nvme_admin_async_event;
900         c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
901
902         spin_lock_irq(&nvmeq->q_lock);
903         __nvme_submit_cmd(nvmeq, &c);
904         spin_unlock_irq(&nvmeq->q_lock);
905 }
906
907 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
908 {
909         struct nvme_command c;
910
911         memset(&c, 0, sizeof(c));
912         c.delete_queue.opcode = opcode;
913         c.delete_queue.qid = cpu_to_le16(id);
914
915         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
916 }
917
918 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
919                                                 struct nvme_queue *nvmeq)
920 {
921         struct nvme_command c;
922         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
923
924         /*
925          * Note: we (ab)use the fact the the prp fields survive if no data
926          * is attached to the request.
927          */
928         memset(&c, 0, sizeof(c));
929         c.create_cq.opcode = nvme_admin_create_cq;
930         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
931         c.create_cq.cqid = cpu_to_le16(qid);
932         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
933         c.create_cq.cq_flags = cpu_to_le16(flags);
934         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
935
936         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
937 }
938
939 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
940                                                 struct nvme_queue *nvmeq)
941 {
942         struct nvme_command c;
943         int flags = NVME_QUEUE_PHYS_CONTIG;
944
945         /*
946          * Note: we (ab)use the fact the the prp fields survive if no data
947          * is attached to the request.
948          */
949         memset(&c, 0, sizeof(c));
950         c.create_sq.opcode = nvme_admin_create_sq;
951         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
952         c.create_sq.sqid = cpu_to_le16(qid);
953         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
954         c.create_sq.sq_flags = cpu_to_le16(flags);
955         c.create_sq.cqid = cpu_to_le16(qid);
956
957         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
958 }
959
960 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
961 {
962         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
963 }
964
965 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
966 {
967         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
968 }
969
970 static void abort_endio(struct request *req, blk_status_t error)
971 {
972         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
973         struct nvme_queue *nvmeq = iod->nvmeq;
974
975         dev_warn(nvmeq->dev->ctrl.device,
976                  "Abort status: 0x%x", nvme_req(req)->status);
977         atomic_inc(&nvmeq->dev->ctrl.abort_limit);
978         blk_mq_free_request(req);
979 }
980
981 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
982 {
983
984         /* If true, indicates loss of adapter communication, possibly by a
985          * NVMe Subsystem reset.
986          */
987         bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
988
989         /* If there is a reset ongoing, we shouldn't reset again. */
990         if (dev->ctrl.state == NVME_CTRL_RESETTING)
991                 return false;
992
993         /* We shouldn't reset unless the controller is on fatal error state
994          * _or_ if we lost the communication with it.
995          */
996         if (!(csts & NVME_CSTS_CFS) && !nssro)
997                 return false;
998
999         /* If PCI error recovery process is happening, we cannot reset or
1000          * the recovery mechanism will surely fail.
1001          */
1002         if (pci_channel_offline(to_pci_dev(dev->dev)))
1003                 return false;
1004
1005         return true;
1006 }
1007
1008 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1009 {
1010         /* Read a config register to help see what died. */
1011         u16 pci_status;
1012         int result;
1013
1014         result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1015                                       &pci_status);
1016         if (result == PCIBIOS_SUCCESSFUL)
1017                 dev_warn(dev->ctrl.device,
1018                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1019                          csts, pci_status);
1020         else
1021                 dev_warn(dev->ctrl.device,
1022                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1023                          csts, result);
1024 }
1025
1026 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1027 {
1028         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1029         struct nvme_queue *nvmeq = iod->nvmeq;
1030         struct nvme_dev *dev = nvmeq->dev;
1031         struct request *abort_req;
1032         struct nvme_command cmd;
1033         u32 csts = readl(dev->bar + NVME_REG_CSTS);
1034
1035         /*
1036          * Reset immediately if the controller is failed
1037          */
1038         if (nvme_should_reset(dev, csts)) {
1039                 nvme_warn_reset(dev, csts);
1040                 nvme_dev_disable(dev, false);
1041                 nvme_reset_ctrl(&dev->ctrl);
1042                 return BLK_EH_HANDLED;
1043         }
1044
1045         /*
1046          * Did we miss an interrupt?
1047          */
1048         if (__nvme_poll(nvmeq, req->tag)) {
1049                 dev_warn(dev->ctrl.device,
1050                          "I/O %d QID %d timeout, completion polled\n",
1051                          req->tag, nvmeq->qid);
1052                 return BLK_EH_HANDLED;
1053         }
1054
1055         /*
1056          * Shutdown immediately if controller times out while starting. The
1057          * reset work will see the pci device disabled when it gets the forced
1058          * cancellation error. All outstanding requests are completed on
1059          * shutdown, so we return BLK_EH_HANDLED.
1060          */
1061         if (dev->ctrl.state == NVME_CTRL_RESETTING) {
1062                 dev_warn(dev->ctrl.device,
1063                          "I/O %d QID %d timeout, disable controller\n",
1064                          req->tag, nvmeq->qid);
1065                 nvme_dev_disable(dev, false);
1066                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1067                 return BLK_EH_HANDLED;
1068         }
1069
1070         /*
1071          * Shutdown the controller immediately and schedule a reset if the
1072          * command was already aborted once before and still hasn't been
1073          * returned to the driver, or if this is the admin queue.
1074          */
1075         if (!nvmeq->qid || iod->aborted) {
1076                 dev_warn(dev->ctrl.device,
1077                          "I/O %d QID %d timeout, reset controller\n",
1078                          req->tag, nvmeq->qid);
1079                 nvme_dev_disable(dev, false);
1080                 nvme_reset_ctrl(&dev->ctrl);
1081
1082                 /*
1083                  * Mark the request as handled, since the inline shutdown
1084                  * forces all outstanding requests to complete.
1085                  */
1086                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1087                 return BLK_EH_HANDLED;
1088         }
1089
1090         if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1091                 atomic_inc(&dev->ctrl.abort_limit);
1092                 return BLK_EH_RESET_TIMER;
1093         }
1094         iod->aborted = 1;
1095
1096         memset(&cmd, 0, sizeof(cmd));
1097         cmd.abort.opcode = nvme_admin_abort_cmd;
1098         cmd.abort.cid = req->tag;
1099         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1100
1101         dev_warn(nvmeq->dev->ctrl.device,
1102                 "I/O %d QID %d timeout, aborting\n",
1103                  req->tag, nvmeq->qid);
1104
1105         abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1106                         BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1107         if (IS_ERR(abort_req)) {
1108                 atomic_inc(&dev->ctrl.abort_limit);
1109                 return BLK_EH_RESET_TIMER;
1110         }
1111
1112         abort_req->timeout = ADMIN_TIMEOUT;
1113         abort_req->end_io_data = NULL;
1114         blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1115
1116         /*
1117          * The aborted req will be completed on receiving the abort req.
1118          * We enable the timer again. If hit twice, it'll cause a device reset,
1119          * as the device then is in a faulty state.
1120          */
1121         return BLK_EH_RESET_TIMER;
1122 }
1123
1124 static void nvme_free_queue(struct nvme_queue *nvmeq)
1125 {
1126         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1127                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1128         if (nvmeq->sq_cmds)
1129                 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1130                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1131         kfree(nvmeq);
1132 }
1133
1134 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1135 {
1136         int i;
1137
1138         for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1139                 struct nvme_queue *nvmeq = dev->queues[i];
1140                 dev->ctrl.queue_count--;
1141                 dev->queues[i] = NULL;
1142                 nvme_free_queue(nvmeq);
1143         }
1144 }
1145
1146 /**
1147  * nvme_suspend_queue - put queue into suspended state
1148  * @nvmeq - queue to suspend
1149  */
1150 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1151 {
1152         int vector;
1153
1154         spin_lock_irq(&nvmeq->q_lock);
1155         if (nvmeq->cq_vector == -1) {
1156                 spin_unlock_irq(&nvmeq->q_lock);
1157                 return 1;
1158         }
1159         vector = nvmeq->cq_vector;
1160         nvmeq->dev->online_queues--;
1161         nvmeq->cq_vector = -1;
1162         spin_unlock_irq(&nvmeq->q_lock);
1163
1164         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1165                 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1166
1167         pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
1168
1169         return 0;
1170 }
1171
1172 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1173 {
1174         struct nvme_queue *nvmeq = dev->queues[0];
1175
1176         if (!nvmeq)
1177                 return;
1178         if (nvme_suspend_queue(nvmeq))
1179                 return;
1180
1181         if (shutdown)
1182                 nvme_shutdown_ctrl(&dev->ctrl);
1183         else
1184                 nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1185
1186         spin_lock_irq(&nvmeq->q_lock);
1187         nvme_process_cq(nvmeq);
1188         spin_unlock_irq(&nvmeq->q_lock);
1189 }
1190
1191 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1192                                 int entry_size)
1193 {
1194         int q_depth = dev->q_depth;
1195         unsigned q_size_aligned = roundup(q_depth * entry_size,
1196                                           dev->ctrl.page_size);
1197
1198         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1199                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1200                 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1201                 q_depth = div_u64(mem_per_q, entry_size);
1202
1203                 /*
1204                  * Ensure the reduced q_depth is above some threshold where it
1205                  * would be better to map queues in system memory with the
1206                  * original depth
1207                  */
1208                 if (q_depth < 64)
1209                         return -ENOMEM;
1210         }
1211
1212         return q_depth;
1213 }
1214
1215 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1216                                 int qid, int depth)
1217 {
1218         if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1219                 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1220                                                       dev->ctrl.page_size);
1221                 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1222                 nvmeq->sq_cmds_io = dev->cmb + offset;
1223         } else {
1224                 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1225                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
1226                 if (!nvmeq->sq_cmds)
1227                         return -ENOMEM;
1228         }
1229
1230         return 0;
1231 }
1232
1233 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1234                                                         int depth, int node)
1235 {
1236         struct nvme_queue *nvmeq = kzalloc_node(sizeof(*nvmeq), GFP_KERNEL,
1237                                                         node);
1238         if (!nvmeq)
1239                 return NULL;
1240
1241         nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1242                                           &nvmeq->cq_dma_addr, GFP_KERNEL);
1243         if (!nvmeq->cqes)
1244                 goto free_nvmeq;
1245
1246         if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1247                 goto free_cqdma;
1248
1249         nvmeq->q_dmadev = dev->dev;
1250         nvmeq->dev = dev;
1251         spin_lock_init(&nvmeq->q_lock);
1252         nvmeq->cq_head = 0;
1253         nvmeq->cq_phase = 1;
1254         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1255         nvmeq->q_depth = depth;
1256         nvmeq->qid = qid;
1257         nvmeq->cq_vector = -1;
1258         dev->queues[qid] = nvmeq;
1259         dev->ctrl.queue_count++;
1260
1261         return nvmeq;
1262
1263  free_cqdma:
1264         dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1265                                                         nvmeq->cq_dma_addr);
1266  free_nvmeq:
1267         kfree(nvmeq);
1268         return NULL;
1269 }
1270
1271 static int queue_request_irq(struct nvme_queue *nvmeq)
1272 {
1273         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1274         int nr = nvmeq->dev->ctrl.instance;
1275
1276         if (use_threaded_interrupts) {
1277                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1278                                 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1279         } else {
1280                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1281                                 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1282         }
1283 }
1284
1285 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1286 {
1287         struct nvme_dev *dev = nvmeq->dev;
1288
1289         spin_lock_irq(&nvmeq->q_lock);
1290         nvmeq->sq_tail = 0;
1291         nvmeq->cq_head = 0;
1292         nvmeq->cq_phase = 1;
1293         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1294         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1295         nvme_dbbuf_init(dev, nvmeq, qid);
1296         dev->online_queues++;
1297         spin_unlock_irq(&nvmeq->q_lock);
1298 }
1299
1300 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1301 {
1302         struct nvme_dev *dev = nvmeq->dev;
1303         int result;
1304
1305         nvmeq->cq_vector = qid - 1;
1306         result = adapter_alloc_cq(dev, qid, nvmeq);
1307         if (result < 0)
1308                 return result;
1309
1310         result = adapter_alloc_sq(dev, qid, nvmeq);
1311         if (result < 0)
1312                 goto release_cq;
1313
1314         result = queue_request_irq(nvmeq);
1315         if (result < 0)
1316                 goto release_sq;
1317
1318         nvme_init_queue(nvmeq, qid);
1319         return result;
1320
1321  release_sq:
1322         adapter_delete_sq(dev, qid);
1323  release_cq:
1324         adapter_delete_cq(dev, qid);
1325         return result;
1326 }
1327
1328 static const struct blk_mq_ops nvme_mq_admin_ops = {
1329         .queue_rq       = nvme_queue_rq,
1330         .complete       = nvme_pci_complete_rq,
1331         .init_hctx      = nvme_admin_init_hctx,
1332         .exit_hctx      = nvme_admin_exit_hctx,
1333         .init_request   = nvme_init_request,
1334         .timeout        = nvme_timeout,
1335 };
1336
1337 static const struct blk_mq_ops nvme_mq_ops = {
1338         .queue_rq       = nvme_queue_rq,
1339         .complete       = nvme_pci_complete_rq,
1340         .init_hctx      = nvme_init_hctx,
1341         .init_request   = nvme_init_request,
1342         .map_queues     = nvme_pci_map_queues,
1343         .timeout        = nvme_timeout,
1344         .poll           = nvme_poll,
1345 };
1346
1347 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1348 {
1349         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1350                 /*
1351                  * If the controller was reset during removal, it's possible
1352                  * user requests may be waiting on a stopped queue. Start the
1353                  * queue to flush these to completion.
1354                  */
1355                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1356                 blk_cleanup_queue(dev->ctrl.admin_q);
1357                 blk_mq_free_tag_set(&dev->admin_tagset);
1358         }
1359 }
1360
1361 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1362 {
1363         if (!dev->ctrl.admin_q) {
1364                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1365                 dev->admin_tagset.nr_hw_queues = 1;
1366
1367                 /*
1368                  * Subtract one to leave an empty queue entry for 'Full Queue'
1369                  * condition. See NVM-Express 1.2 specification, section 4.1.2.
1370                  */
1371                 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1372                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1373                 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1374                 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1375                 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1376                 dev->admin_tagset.driver_data = dev;
1377
1378                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1379                         return -ENOMEM;
1380
1381                 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1382                 if (IS_ERR(dev->ctrl.admin_q)) {
1383                         blk_mq_free_tag_set(&dev->admin_tagset);
1384                         return -ENOMEM;
1385                 }
1386                 if (!blk_get_queue(dev->ctrl.admin_q)) {
1387                         nvme_dev_remove_admin(dev);
1388                         dev->ctrl.admin_q = NULL;
1389                         return -ENODEV;
1390                 }
1391         } else
1392                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1393
1394         return 0;
1395 }
1396
1397 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1398 {
1399         return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1400 }
1401
1402 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1403 {
1404         struct pci_dev *pdev = to_pci_dev(dev->dev);
1405
1406         if (size <= dev->bar_mapped_size)
1407                 return 0;
1408         if (size > pci_resource_len(pdev, 0))
1409                 return -ENOMEM;
1410         if (dev->bar)
1411                 iounmap(dev->bar);
1412         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1413         if (!dev->bar) {
1414                 dev->bar_mapped_size = 0;
1415                 return -ENOMEM;
1416         }
1417         dev->bar_mapped_size = size;
1418         dev->dbs = dev->bar + NVME_REG_DBS;
1419
1420         return 0;
1421 }
1422
1423 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1424 {
1425         int result;
1426         u32 aqa;
1427         struct nvme_queue *nvmeq;
1428
1429         result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1430         if (result < 0)
1431                 return result;
1432
1433         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1434                                 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1435
1436         if (dev->subsystem &&
1437             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1438                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1439
1440         result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1441         if (result < 0)
1442                 return result;
1443
1444         nvmeq = dev->queues[0];
1445         if (!nvmeq) {
1446                 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH,
1447                                         dev_to_node(dev->dev));
1448                 if (!nvmeq)
1449                         return -ENOMEM;
1450         }
1451
1452         aqa = nvmeq->q_depth - 1;
1453         aqa |= aqa << 16;
1454
1455         writel(aqa, dev->bar + NVME_REG_AQA);
1456         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1457         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1458
1459         result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
1460         if (result)
1461                 return result;
1462
1463         nvmeq->cq_vector = 0;
1464         result = queue_request_irq(nvmeq);
1465         if (result) {
1466                 nvmeq->cq_vector = -1;
1467                 return result;
1468         }
1469
1470         return result;
1471 }
1472
1473 static int nvme_create_io_queues(struct nvme_dev *dev)
1474 {
1475         unsigned i, max;
1476         int ret = 0;
1477
1478         for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1479                 /* vector == qid - 1, match nvme_create_queue */
1480                 if (!nvme_alloc_queue(dev, i, dev->q_depth,
1481                      pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) {
1482                         ret = -ENOMEM;
1483                         break;
1484                 }
1485         }
1486
1487         max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1488         for (i = dev->online_queues; i <= max; i++) {
1489                 ret = nvme_create_queue(dev->queues[i], i);
1490                 if (ret)
1491                         break;
1492         }
1493
1494         /*
1495          * Ignore failing Create SQ/CQ commands, we can continue with less
1496          * than the desired aount of queues, and even a controller without
1497          * I/O queues an still be used to issue admin commands.  This might
1498          * be useful to upgrade a buggy firmware for example.
1499          */
1500         return ret >= 0 ? 0 : ret;
1501 }
1502
1503 static ssize_t nvme_cmb_show(struct device *dev,
1504                              struct device_attribute *attr,
1505                              char *buf)
1506 {
1507         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1508
1509         return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1510                        ndev->cmbloc, ndev->cmbsz);
1511 }
1512 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1513
1514 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1515 {
1516         u64 szu, size, offset;
1517         resource_size_t bar_size;
1518         struct pci_dev *pdev = to_pci_dev(dev->dev);
1519         void __iomem *cmb;
1520         dma_addr_t dma_addr;
1521
1522         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1523         if (!(NVME_CMB_SZ(dev->cmbsz)))
1524                 return NULL;
1525         dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1526
1527         if (!use_cmb_sqes)
1528                 return NULL;
1529
1530         szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1531         size = szu * NVME_CMB_SZ(dev->cmbsz);
1532         offset = szu * NVME_CMB_OFST(dev->cmbloc);
1533         bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
1534
1535         if (offset > bar_size)
1536                 return NULL;
1537
1538         /*
1539          * Controllers may support a CMB size larger than their BAR,
1540          * for example, due to being behind a bridge. Reduce the CMB to
1541          * the reported size of the BAR
1542          */
1543         if (size > bar_size - offset)
1544                 size = bar_size - offset;
1545
1546         dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
1547         cmb = ioremap_wc(dma_addr, size);
1548         if (!cmb)
1549                 return NULL;
1550
1551         dev->cmb_dma_addr = dma_addr;
1552         dev->cmb_size = size;
1553         return cmb;
1554 }
1555
1556 static inline void nvme_release_cmb(struct nvme_dev *dev)
1557 {
1558         if (dev->cmb) {
1559                 iounmap(dev->cmb);
1560                 dev->cmb = NULL;
1561                 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1562                                              &dev_attr_cmb.attr, NULL);
1563                 dev->cmbsz = 0;
1564         }
1565 }
1566
1567 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1568 {
1569         u64 dma_addr = dev->host_mem_descs_dma;
1570         struct nvme_command c;
1571         int ret;
1572
1573         memset(&c, 0, sizeof(c));
1574         c.features.opcode       = nvme_admin_set_features;
1575         c.features.fid          = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1576         c.features.dword11      = cpu_to_le32(bits);
1577         c.features.dword12      = cpu_to_le32(dev->host_mem_size >>
1578                                               ilog2(dev->ctrl.page_size));
1579         c.features.dword13      = cpu_to_le32(lower_32_bits(dma_addr));
1580         c.features.dword14      = cpu_to_le32(upper_32_bits(dma_addr));
1581         c.features.dword15      = cpu_to_le32(dev->nr_host_mem_descs);
1582
1583         ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1584         if (ret) {
1585                 dev_warn(dev->ctrl.device,
1586                          "failed to set host mem (err %d, flags %#x).\n",
1587                          ret, bits);
1588         }
1589         return ret;
1590 }
1591
1592 static void nvme_free_host_mem(struct nvme_dev *dev)
1593 {
1594         int i;
1595
1596         for (i = 0; i < dev->nr_host_mem_descs; i++) {
1597                 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1598                 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1599
1600                 dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
1601                                 le64_to_cpu(desc->addr));
1602         }
1603
1604         kfree(dev->host_mem_desc_bufs);
1605         dev->host_mem_desc_bufs = NULL;
1606         dma_free_coherent(dev->dev,
1607                         dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1608                         dev->host_mem_descs, dev->host_mem_descs_dma);
1609         dev->host_mem_descs = NULL;
1610 }
1611
1612 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1613 {
1614         struct nvme_host_mem_buf_desc *descs;
1615         u32 chunk_size, max_entries, len;
1616         dma_addr_t descs_dma;
1617         int i = 0;
1618         void **bufs;
1619         u64 size = 0, tmp;
1620
1621         /* start big and work our way down */
1622         chunk_size = min(preferred, (u64)PAGE_SIZE << MAX_ORDER);
1623 retry:
1624         tmp = (preferred + chunk_size - 1);
1625         do_div(tmp, chunk_size);
1626         max_entries = tmp;
1627         descs = dma_zalloc_coherent(dev->dev, max_entries * sizeof(*descs),
1628                         &descs_dma, GFP_KERNEL);
1629         if (!descs)
1630                 goto out;
1631
1632         bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1633         if (!bufs)
1634                 goto out_free_descs;
1635
1636         for (size = 0; size < preferred; size += len) {
1637                 dma_addr_t dma_addr;
1638
1639                 len = min_t(u64, chunk_size, preferred - size);
1640                 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1641                                 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1642                 if (!bufs[i])
1643                         break;
1644
1645                 descs[i].addr = cpu_to_le64(dma_addr);
1646                 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1647                 i++;
1648         }
1649
1650         if (!size || (min && size < min)) {
1651                 dev_warn(dev->ctrl.device,
1652                         "failed to allocate host memory buffer.\n");
1653                 goto out_free_bufs;
1654         }
1655
1656         dev_info(dev->ctrl.device,
1657                 "allocated %lld MiB host memory buffer.\n",
1658                 size >> ilog2(SZ_1M));
1659         dev->nr_host_mem_descs = i;
1660         dev->host_mem_size = size;
1661         dev->host_mem_descs = descs;
1662         dev->host_mem_descs_dma = descs_dma;
1663         dev->host_mem_desc_bufs = bufs;
1664         return 0;
1665
1666 out_free_bufs:
1667         while (--i >= 0) {
1668                 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1669
1670                 dma_free_coherent(dev->dev, size, bufs[i],
1671                                 le64_to_cpu(descs[i].addr));
1672         }
1673
1674         kfree(bufs);
1675 out_free_descs:
1676         dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1677                         descs_dma);
1678 out:
1679         /* try a smaller chunk size if we failed early */
1680         if (chunk_size >= PAGE_SIZE * 2 && (i == 0 || size < min)) {
1681                 chunk_size /= 2;
1682                 goto retry;
1683         }
1684         dev->host_mem_descs = NULL;
1685         return -ENOMEM;
1686 }
1687
1688 static void nvme_setup_host_mem(struct nvme_dev *dev)
1689 {
1690         u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1691         u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1692         u64 min = (u64)dev->ctrl.hmmin * 4096;
1693         u32 enable_bits = NVME_HOST_MEM_ENABLE;
1694
1695         preferred = min(preferred, max);
1696         if (min > max) {
1697                 dev_warn(dev->ctrl.device,
1698                         "min host memory (%lld MiB) above limit (%d MiB).\n",
1699                         min >> ilog2(SZ_1M), max_host_mem_size_mb);
1700                 nvme_free_host_mem(dev);
1701                 return;
1702         }
1703
1704         /*
1705          * If we already have a buffer allocated check if we can reuse it.
1706          */
1707         if (dev->host_mem_descs) {
1708                 if (dev->host_mem_size >= min)
1709                         enable_bits |= NVME_HOST_MEM_RETURN;
1710                 else
1711                         nvme_free_host_mem(dev);
1712         }
1713
1714         if (!dev->host_mem_descs) {
1715                 if (nvme_alloc_host_mem(dev, min, preferred))
1716                         return;
1717         }
1718
1719         if (nvme_set_host_mem(dev, enable_bits))
1720                 nvme_free_host_mem(dev);
1721 }
1722
1723 static int nvme_setup_io_queues(struct nvme_dev *dev)
1724 {
1725         struct nvme_queue *adminq = dev->queues[0];
1726         struct pci_dev *pdev = to_pci_dev(dev->dev);
1727         int result, nr_io_queues;
1728         unsigned long size;
1729
1730         nr_io_queues = num_present_cpus();
1731         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1732         if (result < 0)
1733                 return result;
1734
1735         if (nr_io_queues == 0)
1736                 return 0;
1737
1738         if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1739                 result = nvme_cmb_qdepth(dev, nr_io_queues,
1740                                 sizeof(struct nvme_command));
1741                 if (result > 0)
1742                         dev->q_depth = result;
1743                 else
1744                         nvme_release_cmb(dev);
1745         }
1746
1747         do {
1748                 size = db_bar_size(dev, nr_io_queues);
1749                 result = nvme_remap_bar(dev, size);
1750                 if (!result)
1751                         break;
1752                 if (!--nr_io_queues)
1753                         return -ENOMEM;
1754         } while (1);
1755         adminq->q_db = dev->dbs;
1756
1757         /* Deregister the admin queue's interrupt */
1758         pci_free_irq(pdev, 0, adminq);
1759
1760         /*
1761          * If we enable msix early due to not intx, disable it again before
1762          * setting up the full range we need.
1763          */
1764         pci_free_irq_vectors(pdev);
1765         nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1766                         PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1767         if (nr_io_queues <= 0)
1768                 return -EIO;
1769         dev->max_qid = nr_io_queues;
1770
1771         /*
1772          * Should investigate if there's a performance win from allocating
1773          * more queues than interrupt vectors; it might allow the submission
1774          * path to scale better, even if the receive path is limited by the
1775          * number of interrupts.
1776          */
1777
1778         result = queue_request_irq(adminq);
1779         if (result) {
1780                 adminq->cq_vector = -1;
1781                 return result;
1782         }
1783         return nvme_create_io_queues(dev);
1784 }
1785
1786 static void nvme_del_queue_end(struct request *req, blk_status_t error)
1787 {
1788         struct nvme_queue *nvmeq = req->end_io_data;
1789
1790         blk_mq_free_request(req);
1791         complete(&nvmeq->dev->ioq_wait);
1792 }
1793
1794 static void nvme_del_cq_end(struct request *req, blk_status_t error)
1795 {
1796         struct nvme_queue *nvmeq = req->end_io_data;
1797
1798         if (!error) {
1799                 unsigned long flags;
1800
1801                 /*
1802                  * We might be called with the AQ q_lock held
1803                  * and the I/O queue q_lock should always
1804                  * nest inside the AQ one.
1805                  */
1806                 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1807                                         SINGLE_DEPTH_NESTING);
1808                 nvme_process_cq(nvmeq);
1809                 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1810         }
1811
1812         nvme_del_queue_end(req, error);
1813 }
1814
1815 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1816 {
1817         struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1818         struct request *req;
1819         struct nvme_command cmd;
1820
1821         memset(&cmd, 0, sizeof(cmd));
1822         cmd.delete_queue.opcode = opcode;
1823         cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1824
1825         req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1826         if (IS_ERR(req))
1827                 return PTR_ERR(req);
1828
1829         req->timeout = ADMIN_TIMEOUT;
1830         req->end_io_data = nvmeq;
1831
1832         blk_execute_rq_nowait(q, NULL, req, false,
1833                         opcode == nvme_admin_delete_cq ?
1834                                 nvme_del_cq_end : nvme_del_queue_end);
1835         return 0;
1836 }
1837
1838 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
1839 {
1840         int pass;
1841         unsigned long timeout;
1842         u8 opcode = nvme_admin_delete_sq;
1843
1844         for (pass = 0; pass < 2; pass++) {
1845                 int sent = 0, i = queues;
1846
1847                 reinit_completion(&dev->ioq_wait);
1848  retry:
1849                 timeout = ADMIN_TIMEOUT;
1850                 for (; i > 0; i--, sent++)
1851                         if (nvme_delete_queue(dev->queues[i], opcode))
1852                                 break;
1853
1854                 while (sent--) {
1855                         timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1856                         if (timeout == 0)
1857                                 return;
1858                         if (i)
1859                                 goto retry;
1860                 }
1861                 opcode = nvme_admin_delete_cq;
1862         }
1863 }
1864
1865 /*
1866  * Return: error value if an error occurred setting up the queues or calling
1867  * Identify Device.  0 if these succeeded, even if adding some of the
1868  * namespaces failed.  At the moment, these failures are silent.  TBD which
1869  * failures should be reported.
1870  */
1871 static int nvme_dev_add(struct nvme_dev *dev)
1872 {
1873         if (!dev->ctrl.tagset) {
1874                 dev->tagset.ops = &nvme_mq_ops;
1875                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1876                 dev->tagset.timeout = NVME_IO_TIMEOUT;
1877                 dev->tagset.numa_node = dev_to_node(dev->dev);
1878                 dev->tagset.queue_depth =
1879                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1880                 dev->tagset.cmd_size = nvme_cmd_size(dev);
1881                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1882                 dev->tagset.driver_data = dev;
1883
1884                 if (blk_mq_alloc_tag_set(&dev->tagset))
1885                         return 0;
1886                 dev->ctrl.tagset = &dev->tagset;
1887
1888                 nvme_dbbuf_set(dev);
1889         } else {
1890                 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1891
1892                 /* Free previously allocated queues that are no longer usable */
1893                 nvme_free_queues(dev, dev->online_queues);
1894         }
1895
1896         return 0;
1897 }
1898
1899 static int nvme_pci_enable(struct nvme_dev *dev)
1900 {
1901         int result = -ENOMEM;
1902         struct pci_dev *pdev = to_pci_dev(dev->dev);
1903
1904         if (pci_enable_device_mem(pdev))
1905                 return result;
1906
1907         pci_set_master(pdev);
1908
1909         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1910             dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1911                 goto disable;
1912
1913         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1914                 result = -ENODEV;
1915                 goto disable;
1916         }
1917
1918         /*
1919          * Some devices and/or platforms don't advertise or work with INTx
1920          * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1921          * adjust this later.
1922          */
1923         result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1924         if (result < 0)
1925                 return result;
1926
1927         dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1928
1929         dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
1930                                 io_queue_depth);
1931         dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
1932         dev->dbs = dev->bar + 4096;
1933
1934         /*
1935          * Temporary fix for the Apple controller found in the MacBook8,1 and
1936          * some MacBook7,1 to avoid controller resets and data loss.
1937          */
1938         if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1939                 dev->q_depth = 2;
1940                 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
1941                         "set queue depth=%u to work around controller resets\n",
1942                         dev->q_depth);
1943         } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
1944                    (pdev->device == 0xa821 || pdev->device == 0xa822) &&
1945                    NVME_CAP_MQES(dev->ctrl.cap) == 0) {
1946                 dev->q_depth = 64;
1947                 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
1948                         "set queue depth=%u\n", dev->q_depth);
1949         }
1950
1951         /*
1952          * CMBs can currently only exist on >=1.2 PCIe devices. We only
1953          * populate sysfs if a CMB is implemented. Since nvme_dev_attrs_group
1954          * has no name we can pass NULL as final argument to
1955          * sysfs_add_file_to_group.
1956          */
1957
1958         if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
1959                 dev->cmb = nvme_map_cmb(dev);
1960                 if (dev->cmb) {
1961                         if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1962                                                     &dev_attr_cmb.attr, NULL))
1963                                 dev_warn(dev->ctrl.device,
1964                                          "failed to add sysfs attribute for CMB\n");
1965                 }
1966         }
1967
1968         pci_enable_pcie_error_reporting(pdev);
1969         pci_save_state(pdev);
1970         return 0;
1971
1972  disable:
1973         pci_disable_device(pdev);
1974         return result;
1975 }
1976
1977 static void nvme_dev_unmap(struct nvme_dev *dev)
1978 {
1979         if (dev->bar)
1980                 iounmap(dev->bar);
1981         pci_release_mem_regions(to_pci_dev(dev->dev));
1982 }
1983
1984 static void nvme_pci_disable(struct nvme_dev *dev)
1985 {
1986         struct pci_dev *pdev = to_pci_dev(dev->dev);
1987
1988         nvme_release_cmb(dev);
1989         pci_free_irq_vectors(pdev);
1990
1991         if (pci_is_enabled(pdev)) {
1992                 pci_disable_pcie_error_reporting(pdev);
1993                 pci_disable_device(pdev);
1994         }
1995 }
1996
1997 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1998 {
1999         int i, queues;
2000         bool dead = true;
2001         struct pci_dev *pdev = to_pci_dev(dev->dev);
2002
2003         mutex_lock(&dev->shutdown_lock);
2004         if (pci_is_enabled(pdev)) {
2005                 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2006
2007                 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2008                     dev->ctrl.state == NVME_CTRL_RESETTING)
2009                         nvme_start_freeze(&dev->ctrl);
2010                 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2011                         pdev->error_state  != pci_channel_io_normal);
2012         }
2013
2014         /*
2015          * Give the controller a chance to complete all entered requests if
2016          * doing a safe shutdown.
2017          */
2018         if (!dead) {
2019                 if (shutdown)
2020                         nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2021
2022                 /*
2023                  * If the controller is still alive tell it to stop using the
2024                  * host memory buffer.  In theory the shutdown / reset should
2025                  * make sure that it doesn't access the host memoery anymore,
2026                  * but I'd rather be safe than sorry..
2027                  */
2028                 if (dev->host_mem_descs)
2029                         nvme_set_host_mem(dev, 0);
2030
2031         }
2032         nvme_stop_queues(&dev->ctrl);
2033
2034         queues = dev->online_queues - 1;
2035         for (i = dev->ctrl.queue_count - 1; i > 0; i--)
2036                 nvme_suspend_queue(dev->queues[i]);
2037
2038         if (dead) {
2039                 /* A device might become IO incapable very soon during
2040                  * probe, before the admin queue is configured. Thus,
2041                  * queue_count can be 0 here.
2042                  */
2043                 if (dev->ctrl.queue_count)
2044                         nvme_suspend_queue(dev->queues[0]);
2045         } else {
2046                 nvme_disable_io_queues(dev, queues);
2047                 nvme_disable_admin_queue(dev, shutdown);
2048         }
2049         nvme_pci_disable(dev);
2050
2051         blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2052         blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2053
2054         /*
2055          * The driver will not be starting up queues again if shutting down so
2056          * must flush all entered requests to their failed completion to avoid
2057          * deadlocking blk-mq hot-cpu notifier.
2058          */
2059         if (shutdown)
2060                 nvme_start_queues(&dev->ctrl);
2061         mutex_unlock(&dev->shutdown_lock);
2062 }
2063
2064 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2065 {
2066         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2067                                                 PAGE_SIZE, PAGE_SIZE, 0);
2068         if (!dev->prp_page_pool)
2069                 return -ENOMEM;
2070
2071         /* Optimisation for I/Os between 4k and 128k */
2072         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2073                                                 256, 256, 0);
2074         if (!dev->prp_small_pool) {
2075                 dma_pool_destroy(dev->prp_page_pool);
2076                 return -ENOMEM;
2077         }
2078         return 0;
2079 }
2080
2081 static void nvme_release_prp_pools(struct nvme_dev *dev)
2082 {
2083         dma_pool_destroy(dev->prp_page_pool);
2084         dma_pool_destroy(dev->prp_small_pool);
2085 }
2086
2087 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2088 {
2089         struct nvme_dev *dev = to_nvme_dev(ctrl);
2090
2091         nvme_dbbuf_dma_free(dev);
2092         put_device(dev->dev);
2093         if (dev->tagset.tags)
2094                 blk_mq_free_tag_set(&dev->tagset);
2095         if (dev->ctrl.admin_q)
2096                 blk_put_queue(dev->ctrl.admin_q);
2097         kfree(dev->queues);
2098         free_opal_dev(dev->ctrl.opal_dev);
2099         kfree(dev);
2100 }
2101
2102 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2103 {
2104         dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
2105
2106         kref_get(&dev->ctrl.kref);
2107         nvme_dev_disable(dev, false);
2108         if (!schedule_work(&dev->remove_work))
2109                 nvme_put_ctrl(&dev->ctrl);
2110 }
2111
2112 static void nvme_reset_work(struct work_struct *work)
2113 {
2114         struct nvme_dev *dev =
2115                 container_of(work, struct nvme_dev, ctrl.reset_work);
2116         bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2117         int result = -ENODEV;
2118
2119         if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
2120                 goto out;
2121
2122         /*
2123          * If we're called to reset a live controller first shut it down before
2124          * moving on.
2125          */
2126         if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2127                 nvme_dev_disable(dev, false);
2128
2129         result = nvme_pci_enable(dev);
2130         if (result)
2131                 goto out;
2132
2133         result = nvme_pci_configure_admin_queue(dev);
2134         if (result)
2135                 goto out;
2136
2137         nvme_init_queue(dev->queues[0], 0);
2138         result = nvme_alloc_admin_tags(dev);
2139         if (result)
2140                 goto out;
2141
2142         result = nvme_init_identify(&dev->ctrl);
2143         if (result)
2144                 goto out;
2145
2146         if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2147                 if (!dev->ctrl.opal_dev)
2148                         dev->ctrl.opal_dev =
2149                                 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2150                 else if (was_suspend)
2151                         opal_unlock_from_suspend(dev->ctrl.opal_dev);
2152         } else {
2153                 free_opal_dev(dev->ctrl.opal_dev);
2154                 dev->ctrl.opal_dev = NULL;
2155         }
2156
2157         if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2158                 result = nvme_dbbuf_dma_alloc(dev);
2159                 if (result)
2160                         dev_warn(dev->dev,
2161                                  "unable to allocate dma for dbbuf\n");
2162         }
2163
2164         if (dev->ctrl.hmpre)
2165                 nvme_setup_host_mem(dev);
2166
2167         result = nvme_setup_io_queues(dev);
2168         if (result)
2169                 goto out;
2170
2171         /*
2172          * Keep the controller around but remove all namespaces if we don't have
2173          * any working I/O queue.
2174          */
2175         if (dev->online_queues < 2) {
2176                 dev_warn(dev->ctrl.device, "IO queues not created\n");
2177                 nvme_kill_queues(&dev->ctrl);
2178                 nvme_remove_namespaces(&dev->ctrl);
2179         } else {
2180                 nvme_start_queues(&dev->ctrl);
2181                 nvme_wait_freeze(&dev->ctrl);
2182                 nvme_dev_add(dev);
2183                 nvme_unfreeze(&dev->ctrl);
2184         }
2185
2186         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2187                 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
2188                 goto out;
2189         }
2190
2191         nvme_start_ctrl(&dev->ctrl);
2192         return;
2193
2194  out:
2195         nvme_remove_dead_ctrl(dev, result);
2196 }
2197
2198 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2199 {
2200         struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2201         struct pci_dev *pdev = to_pci_dev(dev->dev);
2202
2203         nvme_kill_queues(&dev->ctrl);
2204         if (pci_get_drvdata(pdev))
2205                 device_release_driver(&pdev->dev);
2206         nvme_put_ctrl(&dev->ctrl);
2207 }
2208
2209 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2210 {
2211         *val = readl(to_nvme_dev(ctrl)->bar + off);
2212         return 0;
2213 }
2214
2215 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2216 {
2217         writel(val, to_nvme_dev(ctrl)->bar + off);
2218         return 0;
2219 }
2220
2221 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2222 {
2223         *val = readq(to_nvme_dev(ctrl)->bar + off);
2224         return 0;
2225 }
2226
2227 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2228         .name                   = "pcie",
2229         .module                 = THIS_MODULE,
2230         .flags                  = NVME_F_METADATA_SUPPORTED,
2231         .reg_read32             = nvme_pci_reg_read32,
2232         .reg_write32            = nvme_pci_reg_write32,
2233         .reg_read64             = nvme_pci_reg_read64,
2234         .free_ctrl              = nvme_pci_free_ctrl,
2235         .submit_async_event     = nvme_pci_submit_async_event,
2236 };
2237
2238 static int nvme_dev_map(struct nvme_dev *dev)
2239 {
2240         struct pci_dev *pdev = to_pci_dev(dev->dev);
2241
2242         if (pci_request_mem_regions(pdev, "nvme"))
2243                 return -ENODEV;
2244
2245         if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2246                 goto release;
2247
2248         return 0;
2249   release:
2250         pci_release_mem_regions(pdev);
2251         return -ENODEV;
2252 }
2253
2254 static unsigned long check_dell_samsung_bug(struct pci_dev *pdev)
2255 {
2256         if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2257                 /*
2258                  * Several Samsung devices seem to drop off the PCIe bus
2259                  * randomly when APST is on and uses the deepest sleep state.
2260                  * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2261                  * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2262                  * 950 PRO 256GB", but it seems to be restricted to two Dell
2263                  * laptops.
2264                  */
2265                 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2266                     (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2267                      dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2268                         return NVME_QUIRK_NO_DEEPEST_PS;
2269         }
2270
2271         return 0;
2272 }
2273
2274 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2275 {
2276         int node, result = -ENOMEM;
2277         struct nvme_dev *dev;
2278         unsigned long quirks = id->driver_data;
2279
2280         node = dev_to_node(&pdev->dev);
2281         if (node == NUMA_NO_NODE)
2282                 set_dev_node(&pdev->dev, first_memory_node);
2283
2284         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2285         if (!dev)
2286                 return -ENOMEM;
2287         dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2288                                                         GFP_KERNEL, node);
2289         if (!dev->queues)
2290                 goto free;
2291
2292         dev->dev = get_device(&pdev->dev);
2293         pci_set_drvdata(pdev, dev);
2294
2295         result = nvme_dev_map(dev);
2296         if (result)
2297                 goto put_pci;
2298
2299         INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2300         INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2301         mutex_init(&dev->shutdown_lock);
2302         init_completion(&dev->ioq_wait);
2303
2304         result = nvme_setup_prp_pools(dev);
2305         if (result)
2306                 goto unmap;
2307
2308         quirks |= check_dell_samsung_bug(pdev);
2309
2310         result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2311                         quirks);
2312         if (result)
2313                 goto release_pools;
2314
2315         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING);
2316         dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2317
2318         queue_work(nvme_wq, &dev->ctrl.reset_work);
2319         return 0;
2320
2321  release_pools:
2322         nvme_release_prp_pools(dev);
2323  unmap:
2324         nvme_dev_unmap(dev);
2325  put_pci:
2326         put_device(dev->dev);
2327  free:
2328         kfree(dev->queues);
2329         kfree(dev);
2330         return result;
2331 }
2332
2333 static void nvme_reset_prepare(struct pci_dev *pdev)
2334 {
2335         struct nvme_dev *dev = pci_get_drvdata(pdev);
2336         nvme_dev_disable(dev, false);
2337 }
2338
2339 static void nvme_reset_done(struct pci_dev *pdev)
2340 {
2341         struct nvme_dev *dev = pci_get_drvdata(pdev);
2342         nvme_reset_ctrl(&dev->ctrl);
2343 }
2344
2345 static void nvme_shutdown(struct pci_dev *pdev)
2346 {
2347         struct nvme_dev *dev = pci_get_drvdata(pdev);
2348         nvme_dev_disable(dev, true);
2349 }
2350
2351 /*
2352  * The driver's remove may be called on a device in a partially initialized
2353  * state. This function must not have any dependencies on the device state in
2354  * order to proceed.
2355  */
2356 static void nvme_remove(struct pci_dev *pdev)
2357 {
2358         struct nvme_dev *dev = pci_get_drvdata(pdev);
2359
2360         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2361
2362         cancel_work_sync(&dev->ctrl.reset_work);
2363         pci_set_drvdata(pdev, NULL);
2364
2365         if (!pci_device_is_present(pdev)) {
2366                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2367                 nvme_dev_disable(dev, false);
2368         }
2369
2370         flush_work(&dev->ctrl.reset_work);
2371         nvme_stop_ctrl(&dev->ctrl);
2372         nvme_remove_namespaces(&dev->ctrl);
2373         nvme_dev_disable(dev, true);
2374         nvme_free_host_mem(dev);
2375         nvme_dev_remove_admin(dev);
2376         nvme_free_queues(dev, 0);
2377         nvme_uninit_ctrl(&dev->ctrl);
2378         nvme_release_prp_pools(dev);
2379         nvme_dev_unmap(dev);
2380         nvme_put_ctrl(&dev->ctrl);
2381 }
2382
2383 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2384 {
2385         int ret = 0;
2386
2387         if (numvfs == 0) {
2388                 if (pci_vfs_assigned(pdev)) {
2389                         dev_warn(&pdev->dev,
2390                                 "Cannot disable SR-IOV VFs while assigned\n");
2391                         return -EPERM;
2392                 }
2393                 pci_disable_sriov(pdev);
2394                 return 0;
2395         }
2396
2397         ret = pci_enable_sriov(pdev, numvfs);
2398         return ret ? ret : numvfs;
2399 }
2400
2401 #ifdef CONFIG_PM_SLEEP
2402 static int nvme_suspend(struct device *dev)
2403 {
2404         struct pci_dev *pdev = to_pci_dev(dev);
2405         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2406
2407         nvme_dev_disable(ndev, true);
2408         return 0;
2409 }
2410
2411 static int nvme_resume(struct device *dev)
2412 {
2413         struct pci_dev *pdev = to_pci_dev(dev);
2414         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2415
2416         nvme_reset_ctrl(&ndev->ctrl);
2417         return 0;
2418 }
2419 #endif
2420
2421 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2422
2423 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2424                                                 pci_channel_state_t state)
2425 {
2426         struct nvme_dev *dev = pci_get_drvdata(pdev);
2427
2428         /*
2429          * A frozen channel requires a reset. When detected, this method will
2430          * shutdown the controller to quiesce. The controller will be restarted
2431          * after the slot reset through driver's slot_reset callback.
2432          */
2433         switch (state) {
2434         case pci_channel_io_normal:
2435                 return PCI_ERS_RESULT_CAN_RECOVER;
2436         case pci_channel_io_frozen:
2437                 dev_warn(dev->ctrl.device,
2438                         "frozen state error detected, reset controller\n");
2439                 nvme_dev_disable(dev, false);
2440                 return PCI_ERS_RESULT_NEED_RESET;
2441         case pci_channel_io_perm_failure:
2442                 dev_warn(dev->ctrl.device,
2443                         "failure state error detected, request disconnect\n");
2444                 return PCI_ERS_RESULT_DISCONNECT;
2445         }
2446         return PCI_ERS_RESULT_NEED_RESET;
2447 }
2448
2449 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2450 {
2451         struct nvme_dev *dev = pci_get_drvdata(pdev);
2452
2453         dev_info(dev->ctrl.device, "restart after slot reset\n");
2454         pci_restore_state(pdev);
2455         nvme_reset_ctrl(&dev->ctrl);
2456         return PCI_ERS_RESULT_RECOVERED;
2457 }
2458
2459 static void nvme_error_resume(struct pci_dev *pdev)
2460 {
2461         pci_cleanup_aer_uncorrect_error_status(pdev);
2462 }
2463
2464 static const struct pci_error_handlers nvme_err_handler = {
2465         .error_detected = nvme_error_detected,
2466         .slot_reset     = nvme_slot_reset,
2467         .resume         = nvme_error_resume,
2468         .reset_prepare  = nvme_reset_prepare,
2469         .reset_done     = nvme_reset_done,
2470 };
2471
2472 static const struct pci_device_id nvme_id_table[] = {
2473         { PCI_VDEVICE(INTEL, 0x0953),
2474                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2475                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2476         { PCI_VDEVICE(INTEL, 0x0a53),
2477                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2478                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2479         { PCI_VDEVICE(INTEL, 0x0a54),
2480                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2481                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2482         { PCI_VDEVICE(INTEL, 0x0a55),
2483                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2484                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2485         { PCI_VDEVICE(INTEL, 0xf1a5),   /* Intel 600P/P3100 */
2486                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS },
2487         { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
2488                 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2489         { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
2490                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2491         { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
2492                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2493         { PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
2494                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2495         { PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
2496                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2497         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2498         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2499         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2500         { 0, }
2501 };
2502 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2503
2504 static struct pci_driver nvme_driver = {
2505         .name           = "nvme",
2506         .id_table       = nvme_id_table,
2507         .probe          = nvme_probe,
2508         .remove         = nvme_remove,
2509         .shutdown       = nvme_shutdown,
2510         .driver         = {
2511                 .pm     = &nvme_dev_pm_ops,
2512         },
2513         .sriov_configure = nvme_pci_sriov_configure,
2514         .err_handler    = &nvme_err_handler,
2515 };
2516
2517 static int __init nvme_init(void)
2518 {
2519         return pci_register_driver(&nvme_driver);
2520 }
2521
2522 static void __exit nvme_exit(void)
2523 {
2524         pci_unregister_driver(&nvme_driver);
2525         _nvme_check_size();
2526 }
2527
2528 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2529 MODULE_LICENSE("GPL");
2530 MODULE_VERSION("1.0");
2531 module_init(nvme_init);
2532 module_exit(nvme_exit);