NVMe: Implement namespace list scanning
[linux-2.6-block.git] / drivers / nvme / host / pci.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/bitops.h>
16 #include <linux/blkdev.h>
17 #include <linux/blk-mq.h>
18 #include <linux/cpu.h>
19 #include <linux/delay.h>
20 #include <linux/errno.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/hdreg.h>
24 #include <linux/idr.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kdev_t.h>
29 #include <linux/kthread.h>
30 #include <linux/kernel.h>
31 #include <linux/mm.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/mutex.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/ptrace.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/t10-pi.h>
41 #include <linux/types.h>
42 #include <linux/io-64-nonatomic-lo-hi.h>
43 #include <asm/unaligned.h>
44
45 #include "nvme.h"
46
47 #define NVME_Q_DEPTH            1024
48 #define NVME_AQ_DEPTH           256
49 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
50 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
51
52 unsigned char admin_timeout = 60;
53 module_param(admin_timeout, byte, 0644);
54 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
55
56 unsigned char nvme_io_timeout = 30;
57 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
58 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
59
60 unsigned char shutdown_timeout = 5;
61 module_param(shutdown_timeout, byte, 0644);
62 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
63
64 static int use_threaded_interrupts;
65 module_param(use_threaded_interrupts, int, 0);
66
67 static bool use_cmb_sqes = true;
68 module_param(use_cmb_sqes, bool, 0644);
69 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
70
71 static LIST_HEAD(dev_list);
72 static struct task_struct *nvme_thread;
73 static struct workqueue_struct *nvme_workq;
74 static wait_queue_head_t nvme_kthread_wait;
75
76 struct nvme_dev;
77 struct nvme_queue;
78 struct nvme_iod;
79
80 static int nvme_reset(struct nvme_dev *dev);
81 static void nvme_process_cq(struct nvme_queue *nvmeq);
82 static void nvme_unmap_data(struct nvme_dev *dev, struct nvme_iod *iod);
83 static void nvme_remove_dead_ctrl(struct nvme_dev *dev);
84 static void nvme_dev_shutdown(struct nvme_dev *dev);
85
86 struct async_cmd_info {
87         struct kthread_work work;
88         struct kthread_worker *worker;
89         struct request *req;
90         u32 result;
91         int status;
92         void *ctx;
93 };
94
95 /*
96  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
97  */
98 struct nvme_dev {
99         struct list_head node;
100         struct nvme_queue **queues;
101         struct blk_mq_tag_set tagset;
102         struct blk_mq_tag_set admin_tagset;
103         u32 __iomem *dbs;
104         struct device *dev;
105         struct dma_pool *prp_page_pool;
106         struct dma_pool *prp_small_pool;
107         unsigned queue_count;
108         unsigned online_queues;
109         unsigned max_qid;
110         int q_depth;
111         u32 db_stride;
112         struct msix_entry *entry;
113         void __iomem *bar;
114         struct work_struct reset_work;
115         struct work_struct scan_work;
116         struct work_struct remove_work;
117         struct mutex shutdown_lock;
118         bool subsystem;
119         void __iomem *cmb;
120         dma_addr_t cmb_dma_addr;
121         u64 cmb_size;
122         u32 cmbsz;
123         unsigned long flags;
124 #define NVME_CTRL_RESETTING    0
125
126         struct nvme_ctrl ctrl;
127 };
128
129 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
130 {
131         return container_of(ctrl, struct nvme_dev, ctrl);
132 }
133
134 /*
135  * An NVM Express queue.  Each device has at least two (one for admin
136  * commands and one for I/O commands).
137  */
138 struct nvme_queue {
139         struct device *q_dmadev;
140         struct nvme_dev *dev;
141         char irqname[24];       /* nvme4294967295-65535\0 */
142         spinlock_t q_lock;
143         struct nvme_command *sq_cmds;
144         struct nvme_command __iomem *sq_cmds_io;
145         volatile struct nvme_completion *cqes;
146         struct blk_mq_tags **tags;
147         dma_addr_t sq_dma_addr;
148         dma_addr_t cq_dma_addr;
149         u32 __iomem *q_db;
150         u16 q_depth;
151         s16 cq_vector;
152         u16 sq_head;
153         u16 sq_tail;
154         u16 cq_head;
155         u16 qid;
156         u8 cq_phase;
157         u8 cqe_seen;
158         struct async_cmd_info cmdinfo;
159 };
160
161 /*
162  * The nvme_iod describes the data in an I/O, including the list of PRP
163  * entries.  You can't see it in this data structure because C doesn't let
164  * me express that.  Use nvme_alloc_iod to ensure there's enough space
165  * allocated to store the PRP list.
166  */
167 struct nvme_iod {
168         unsigned long private;  /* For the use of the submitter of the I/O */
169         int npages;             /* In the PRP list. 0 means small pool in use */
170         int offset;             /* Of PRP list */
171         int nents;              /* Used in scatterlist */
172         int length;             /* Of data, in bytes */
173         dma_addr_t first_dma;
174         struct scatterlist meta_sg[1]; /* metadata requires single contiguous buffer */
175         struct scatterlist sg[0];
176 };
177
178 /*
179  * Check we didin't inadvertently grow the command struct
180  */
181 static inline void _nvme_check_size(void)
182 {
183         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
184         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
185         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
186         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
187         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
188         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
189         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
190         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
191         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
192         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
193         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
194         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
195 }
196
197 typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
198                                                 struct nvme_completion *);
199
200 struct nvme_cmd_info {
201         nvme_completion_fn fn;
202         void *ctx;
203         int aborted;
204         struct nvme_queue *nvmeq;
205         struct nvme_iod iod[0];
206 };
207
208 /*
209  * Max size of iod being embedded in the request payload
210  */
211 #define NVME_INT_PAGES          2
212 #define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->ctrl.page_size)
213 #define NVME_INT_MASK           0x01
214
215 /*
216  * Will slightly overestimate the number of pages needed.  This is OK
217  * as it only leads to a small amount of wasted memory for the lifetime of
218  * the I/O.
219  */
220 static int nvme_npages(unsigned size, struct nvme_dev *dev)
221 {
222         unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
223                                       dev->ctrl.page_size);
224         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
225 }
226
227 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
228 {
229         unsigned int ret = sizeof(struct nvme_cmd_info);
230
231         ret += sizeof(struct nvme_iod);
232         ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
233         ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
234
235         return ret;
236 }
237
238 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
239                                 unsigned int hctx_idx)
240 {
241         struct nvme_dev *dev = data;
242         struct nvme_queue *nvmeq = dev->queues[0];
243
244         WARN_ON(hctx_idx != 0);
245         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
246         WARN_ON(nvmeq->tags);
247
248         hctx->driver_data = nvmeq;
249         nvmeq->tags = &dev->admin_tagset.tags[0];
250         return 0;
251 }
252
253 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
254 {
255         struct nvme_queue *nvmeq = hctx->driver_data;
256
257         nvmeq->tags = NULL;
258 }
259
260 static int nvme_admin_init_request(void *data, struct request *req,
261                                 unsigned int hctx_idx, unsigned int rq_idx,
262                                 unsigned int numa_node)
263 {
264         struct nvme_dev *dev = data;
265         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
266         struct nvme_queue *nvmeq = dev->queues[0];
267
268         BUG_ON(!nvmeq);
269         cmd->nvmeq = nvmeq;
270         return 0;
271 }
272
273 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
274                           unsigned int hctx_idx)
275 {
276         struct nvme_dev *dev = data;
277         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
278
279         if (!nvmeq->tags)
280                 nvmeq->tags = &dev->tagset.tags[hctx_idx];
281
282         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
283         hctx->driver_data = nvmeq;
284         return 0;
285 }
286
287 static int nvme_init_request(void *data, struct request *req,
288                                 unsigned int hctx_idx, unsigned int rq_idx,
289                                 unsigned int numa_node)
290 {
291         struct nvme_dev *dev = data;
292         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
293         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
294
295         BUG_ON(!nvmeq);
296         cmd->nvmeq = nvmeq;
297         return 0;
298 }
299
300 static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
301                                 nvme_completion_fn handler)
302 {
303         cmd->fn = handler;
304         cmd->ctx = ctx;
305         cmd->aborted = 0;
306         blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
307 }
308
309 static void *iod_get_private(struct nvme_iod *iod)
310 {
311         return (void *) (iod->private & ~0x1UL);
312 }
313
314 /*
315  * If bit 0 is set, the iod is embedded in the request payload.
316  */
317 static bool iod_should_kfree(struct nvme_iod *iod)
318 {
319         return (iod->private & NVME_INT_MASK) == 0;
320 }
321
322 /* Special values must be less than 0x1000 */
323 #define CMD_CTX_BASE            ((void *)POISON_POINTER_DELTA)
324 #define CMD_CTX_CANCELLED       (0x30C + CMD_CTX_BASE)
325 #define CMD_CTX_COMPLETED       (0x310 + CMD_CTX_BASE)
326 #define CMD_CTX_INVALID         (0x314 + CMD_CTX_BASE)
327
328 static void special_completion(struct nvme_queue *nvmeq, void *ctx,
329                                                 struct nvme_completion *cqe)
330 {
331         if (ctx == CMD_CTX_CANCELLED)
332                 return;
333         if (ctx == CMD_CTX_COMPLETED) {
334                 dev_warn(nvmeq->q_dmadev,
335                                 "completed id %d twice on queue %d\n",
336                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
337                 return;
338         }
339         if (ctx == CMD_CTX_INVALID) {
340                 dev_warn(nvmeq->q_dmadev,
341                                 "invalid id %d completed on queue %d\n",
342                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
343                 return;
344         }
345         dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
346 }
347
348 static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
349 {
350         void *ctx;
351
352         if (fn)
353                 *fn = cmd->fn;
354         ctx = cmd->ctx;
355         cmd->fn = special_completion;
356         cmd->ctx = CMD_CTX_CANCELLED;
357         return ctx;
358 }
359
360 static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
361                                                 struct nvme_completion *cqe)
362 {
363         u32 result = le32_to_cpup(&cqe->result);
364         u16 status = le16_to_cpup(&cqe->status) >> 1;
365
366         if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
367                 ++nvmeq->dev->ctrl.event_limit;
368         if (status != NVME_SC_SUCCESS)
369                 return;
370
371         switch (result & 0xff07) {
372         case NVME_AER_NOTICE_NS_CHANGED:
373                 dev_info(nvmeq->q_dmadev, "rescanning\n");
374                 schedule_work(&nvmeq->dev->scan_work);
375         default:
376                 dev_warn(nvmeq->q_dmadev, "async event result %08x\n", result);
377         }
378 }
379
380 static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
381                                                 struct nvme_completion *cqe)
382 {
383         struct request *req = ctx;
384
385         u16 status = le16_to_cpup(&cqe->status) >> 1;
386         u32 result = le32_to_cpup(&cqe->result);
387
388         blk_mq_free_request(req);
389
390         dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
391         atomic_inc(&nvmeq->dev->ctrl.abort_limit);
392 }
393
394 static void async_completion(struct nvme_queue *nvmeq, void *ctx,
395                                                 struct nvme_completion *cqe)
396 {
397         struct async_cmd_info *cmdinfo = ctx;
398         cmdinfo->result = le32_to_cpup(&cqe->result);
399         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
400         queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
401         blk_mq_free_request(cmdinfo->req);
402 }
403
404 static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
405                                   unsigned int tag)
406 {
407         struct request *req = blk_mq_tag_to_rq(*nvmeq->tags, tag);
408
409         return blk_mq_rq_to_pdu(req);
410 }
411
412 /*
413  * Called with local interrupts disabled and the q_lock held.  May not sleep.
414  */
415 static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
416                                                 nvme_completion_fn *fn)
417 {
418         struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
419         void *ctx;
420         if (tag >= nvmeq->q_depth) {
421                 *fn = special_completion;
422                 return CMD_CTX_INVALID;
423         }
424         if (fn)
425                 *fn = cmd->fn;
426         ctx = cmd->ctx;
427         cmd->fn = special_completion;
428         cmd->ctx = CMD_CTX_COMPLETED;
429         return ctx;
430 }
431
432 /**
433  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
434  * @nvmeq: The queue to use
435  * @cmd: The command to send
436  *
437  * Safe to use from interrupt context
438  */
439 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
440                                                 struct nvme_command *cmd)
441 {
442         u16 tail = nvmeq->sq_tail;
443
444         if (nvmeq->sq_cmds_io)
445                 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
446         else
447                 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
448
449         if (++tail == nvmeq->q_depth)
450                 tail = 0;
451         writel(tail, nvmeq->q_db);
452         nvmeq->sq_tail = tail;
453 }
454
455 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
456 {
457         unsigned long flags;
458         spin_lock_irqsave(&nvmeq->q_lock, flags);
459         __nvme_submit_cmd(nvmeq, cmd);
460         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
461 }
462
463 static __le64 **iod_list(struct nvme_iod *iod)
464 {
465         return ((void *)iod) + iod->offset;
466 }
467
468 static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
469                             unsigned nseg, unsigned long private)
470 {
471         iod->private = private;
472         iod->offset = offsetof(struct nvme_iod, sg[nseg]);
473         iod->npages = -1;
474         iod->length = nbytes;
475         iod->nents = 0;
476 }
477
478 static struct nvme_iod *
479 __nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
480                  unsigned long priv, gfp_t gfp)
481 {
482         struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
483                                 sizeof(__le64 *) * nvme_npages(bytes, dev) +
484                                 sizeof(struct scatterlist) * nseg, gfp);
485
486         if (iod)
487                 iod_init(iod, bytes, nseg, priv);
488
489         return iod;
490 }
491
492 static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
493                                        gfp_t gfp)
494 {
495         unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
496                                                 sizeof(struct nvme_dsm_range);
497         struct nvme_iod *iod;
498
499         if (rq->nr_phys_segments <= NVME_INT_PAGES &&
500             size <= NVME_INT_BYTES(dev)) {
501                 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
502
503                 iod = cmd->iod;
504                 iod_init(iod, size, rq->nr_phys_segments,
505                                 (unsigned long) rq | NVME_INT_MASK);
506                 return iod;
507         }
508
509         return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
510                                 (unsigned long) rq, gfp);
511 }
512
513 static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
514 {
515         const int last_prp = dev->ctrl.page_size / 8 - 1;
516         int i;
517         __le64 **list = iod_list(iod);
518         dma_addr_t prp_dma = iod->first_dma;
519
520         if (iod->npages == 0)
521                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
522         for (i = 0; i < iod->npages; i++) {
523                 __le64 *prp_list = list[i];
524                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
525                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
526                 prp_dma = next_prp_dma;
527         }
528
529         if (iod_should_kfree(iod))
530                 kfree(iod);
531 }
532
533 #ifdef CONFIG_BLK_DEV_INTEGRITY
534 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
535 {
536         if (be32_to_cpu(pi->ref_tag) == v)
537                 pi->ref_tag = cpu_to_be32(p);
538 }
539
540 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
541 {
542         if (be32_to_cpu(pi->ref_tag) == p)
543                 pi->ref_tag = cpu_to_be32(v);
544 }
545
546 /**
547  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
548  *
549  * The virtual start sector is the one that was originally submitted by the
550  * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
551  * start sector may be different. Remap protection information to match the
552  * physical LBA on writes, and back to the original seed on reads.
553  *
554  * Type 0 and 3 do not have a ref tag, so no remapping required.
555  */
556 static void nvme_dif_remap(struct request *req,
557                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
558 {
559         struct nvme_ns *ns = req->rq_disk->private_data;
560         struct bio_integrity_payload *bip;
561         struct t10_pi_tuple *pi;
562         void *p, *pmap;
563         u32 i, nlb, ts, phys, virt;
564
565         if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
566                 return;
567
568         bip = bio_integrity(req->bio);
569         if (!bip)
570                 return;
571
572         pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
573
574         p = pmap;
575         virt = bip_get_seed(bip);
576         phys = nvme_block_nr(ns, blk_rq_pos(req));
577         nlb = (blk_rq_bytes(req) >> ns->lba_shift);
578         ts = ns->disk->queue->integrity.tuple_size;
579
580         for (i = 0; i < nlb; i++, virt++, phys++) {
581                 pi = (struct t10_pi_tuple *)p;
582                 dif_swap(phys, virt, pi);
583                 p += ts;
584         }
585         kunmap_atomic(pmap);
586 }
587 #else /* CONFIG_BLK_DEV_INTEGRITY */
588 static void nvme_dif_remap(struct request *req,
589                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
590 {
591 }
592 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
593 {
594 }
595 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
596 {
597 }
598 #endif
599
600 static void req_completion(struct nvme_queue *nvmeq, void *ctx,
601                                                 struct nvme_completion *cqe)
602 {
603         struct nvme_iod *iod = ctx;
604         struct request *req = iod_get_private(iod);
605         struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
606         u16 status = le16_to_cpup(&cqe->status) >> 1;
607         int error = 0;
608
609         if (unlikely(status)) {
610                 if (!(status & NVME_SC_DNR || blk_noretry_request(req))
611                     && (jiffies - req->start_time) < req->timeout) {
612                         unsigned long flags;
613
614                         nvme_unmap_data(nvmeq->dev, iod);
615
616                         blk_mq_requeue_request(req);
617                         spin_lock_irqsave(req->q->queue_lock, flags);
618                         if (!blk_queue_stopped(req->q))
619                                 blk_mq_kick_requeue_list(req->q);
620                         spin_unlock_irqrestore(req->q->queue_lock, flags);
621                         return;
622                 }
623
624                 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
625                         if (cmd_rq->ctx == CMD_CTX_CANCELLED)
626                                 error = NVME_SC_CANCELLED;
627                         else
628                                 error = status;
629                 } else {
630                         error = nvme_error_status(status);
631                 }
632         }
633
634         if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
635                 u32 result = le32_to_cpup(&cqe->result);
636                 req->special = (void *)(uintptr_t)result;
637         }
638
639         if (cmd_rq->aborted)
640                 dev_warn(nvmeq->dev->dev,
641                         "completing aborted command with status:%04x\n",
642                         error);
643
644         nvme_unmap_data(nvmeq->dev, iod);
645         blk_mq_complete_request(req, error);
646 }
647
648 static bool nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod,
649                 int total_len)
650 {
651         struct dma_pool *pool;
652         int length = total_len;
653         struct scatterlist *sg = iod->sg;
654         int dma_len = sg_dma_len(sg);
655         u64 dma_addr = sg_dma_address(sg);
656         u32 page_size = dev->ctrl.page_size;
657         int offset = dma_addr & (page_size - 1);
658         __le64 *prp_list;
659         __le64 **list = iod_list(iod);
660         dma_addr_t prp_dma;
661         int nprps, i;
662
663         length -= (page_size - offset);
664         if (length <= 0)
665                 return true;
666
667         dma_len -= (page_size - offset);
668         if (dma_len) {
669                 dma_addr += (page_size - offset);
670         } else {
671                 sg = sg_next(sg);
672                 dma_addr = sg_dma_address(sg);
673                 dma_len = sg_dma_len(sg);
674         }
675
676         if (length <= page_size) {
677                 iod->first_dma = dma_addr;
678                 return true;
679         }
680
681         nprps = DIV_ROUND_UP(length, page_size);
682         if (nprps <= (256 / 8)) {
683                 pool = dev->prp_small_pool;
684                 iod->npages = 0;
685         } else {
686                 pool = dev->prp_page_pool;
687                 iod->npages = 1;
688         }
689
690         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
691         if (!prp_list) {
692                 iod->first_dma = dma_addr;
693                 iod->npages = -1;
694                 return false;
695         }
696         list[0] = prp_list;
697         iod->first_dma = prp_dma;
698         i = 0;
699         for (;;) {
700                 if (i == page_size >> 3) {
701                         __le64 *old_prp_list = prp_list;
702                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
703                         if (!prp_list)
704                                 return false;
705                         list[iod->npages++] = prp_list;
706                         prp_list[0] = old_prp_list[i - 1];
707                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
708                         i = 1;
709                 }
710                 prp_list[i++] = cpu_to_le64(dma_addr);
711                 dma_len -= page_size;
712                 dma_addr += page_size;
713                 length -= page_size;
714                 if (length <= 0)
715                         break;
716                 if (dma_len > 0)
717                         continue;
718                 BUG_ON(dma_len < 0);
719                 sg = sg_next(sg);
720                 dma_addr = sg_dma_address(sg);
721                 dma_len = sg_dma_len(sg);
722         }
723
724         return true;
725 }
726
727 static int nvme_map_data(struct nvme_dev *dev, struct nvme_iod *iod,
728                 struct nvme_command *cmnd)
729 {
730         struct request *req = iod_get_private(iod);
731         struct request_queue *q = req->q;
732         enum dma_data_direction dma_dir = rq_data_dir(req) ?
733                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
734         int ret = BLK_MQ_RQ_QUEUE_ERROR;
735
736         sg_init_table(iod->sg, req->nr_phys_segments);
737         iod->nents = blk_rq_map_sg(q, req, iod->sg);
738         if (!iod->nents)
739                 goto out;
740
741         ret = BLK_MQ_RQ_QUEUE_BUSY;
742         if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
743                 goto out;
744
745         if (!nvme_setup_prps(dev, iod, blk_rq_bytes(req)))
746                 goto out_unmap;
747
748         ret = BLK_MQ_RQ_QUEUE_ERROR;
749         if (blk_integrity_rq(req)) {
750                 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
751                         goto out_unmap;
752
753                 sg_init_table(iod->meta_sg, 1);
754                 if (blk_rq_map_integrity_sg(q, req->bio, iod->meta_sg) != 1)
755                         goto out_unmap;
756
757                 if (rq_data_dir(req))
758                         nvme_dif_remap(req, nvme_dif_prep);
759
760                 if (!dma_map_sg(dev->dev, iod->meta_sg, 1, dma_dir))
761                         goto out_unmap;
762         }
763
764         cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
765         cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
766         if (blk_integrity_rq(req))
767                 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(iod->meta_sg));
768         return BLK_MQ_RQ_QUEUE_OK;
769
770 out_unmap:
771         dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
772 out:
773         return ret;
774 }
775
776 static void nvme_unmap_data(struct nvme_dev *dev, struct nvme_iod *iod)
777 {
778         struct request *req = iod_get_private(iod);
779         enum dma_data_direction dma_dir = rq_data_dir(req) ?
780                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
781
782         if (iod->nents) {
783                 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
784                 if (blk_integrity_rq(req)) {
785                         if (!rq_data_dir(req))
786                                 nvme_dif_remap(req, nvme_dif_complete);
787                         dma_unmap_sg(dev->dev, iod->meta_sg, 1, dma_dir);
788                 }
789         }
790
791         nvme_free_iod(dev, iod);
792 }
793
794 /*
795  * We reuse the small pool to allocate the 16-byte range here as it is not
796  * worth having a special pool for these or additional cases to handle freeing
797  * the iod.
798  */
799 static int nvme_setup_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
800                 struct nvme_iod *iod, struct nvme_command *cmnd)
801 {
802         struct request *req = iod_get_private(iod);
803         struct nvme_dsm_range *range;
804
805         range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
806                                                 &iod->first_dma);
807         if (!range)
808                 return BLK_MQ_RQ_QUEUE_BUSY;
809         iod_list(iod)[0] = (__le64 *)range;
810         iod->npages = 0;
811
812         range->cattr = cpu_to_le32(0);
813         range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
814         range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
815
816         memset(cmnd, 0, sizeof(*cmnd));
817         cmnd->dsm.opcode = nvme_cmd_dsm;
818         cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
819         cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
820         cmnd->dsm.nr = 0;
821         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
822         return BLK_MQ_RQ_QUEUE_OK;
823 }
824
825 /*
826  * NOTE: ns is NULL when called on the admin queue.
827  */
828 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
829                          const struct blk_mq_queue_data *bd)
830 {
831         struct nvme_ns *ns = hctx->queue->queuedata;
832         struct nvme_queue *nvmeq = hctx->driver_data;
833         struct nvme_dev *dev = nvmeq->dev;
834         struct request *req = bd->rq;
835         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
836         struct nvme_iod *iod;
837         struct nvme_command cmnd;
838         int ret = BLK_MQ_RQ_QUEUE_OK;
839
840         /*
841          * If formated with metadata, require the block layer provide a buffer
842          * unless this namespace is formated such that the metadata can be
843          * stripped/generated by the controller with PRACT=1.
844          */
845         if (ns && ns->ms && !blk_integrity_rq(req)) {
846                 if (!(ns->pi_type && ns->ms == 8) &&
847                                         req->cmd_type != REQ_TYPE_DRV_PRIV) {
848                         blk_mq_complete_request(req, -EFAULT);
849                         return BLK_MQ_RQ_QUEUE_OK;
850                 }
851         }
852
853         iod = nvme_alloc_iod(req, dev, GFP_ATOMIC);
854         if (!iod)
855                 return BLK_MQ_RQ_QUEUE_BUSY;
856
857         if (req->cmd_flags & REQ_DISCARD) {
858                 ret = nvme_setup_discard(nvmeq, ns, iod, &cmnd);
859         } else {
860                 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
861                         memcpy(&cmnd, req->cmd, sizeof(cmnd));
862                 else if (req->cmd_flags & REQ_FLUSH)
863                         nvme_setup_flush(ns, &cmnd);
864                 else
865                         nvme_setup_rw(ns, req, &cmnd);
866
867                 if (req->nr_phys_segments)
868                         ret = nvme_map_data(dev, iod, &cmnd);
869         }
870
871         if (ret)
872                 goto out;
873
874         cmnd.common.command_id = req->tag;
875         nvme_set_info(cmd, iod, req_completion);
876
877         spin_lock_irq(&nvmeq->q_lock);
878         __nvme_submit_cmd(nvmeq, &cmnd);
879         nvme_process_cq(nvmeq);
880         spin_unlock_irq(&nvmeq->q_lock);
881         return BLK_MQ_RQ_QUEUE_OK;
882 out:
883         nvme_free_iod(dev, iod);
884         return ret;
885 }
886
887 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
888 {
889         u16 head, phase;
890
891         head = nvmeq->cq_head;
892         phase = nvmeq->cq_phase;
893
894         for (;;) {
895                 void *ctx;
896                 nvme_completion_fn fn;
897                 struct nvme_completion cqe = nvmeq->cqes[head];
898                 if ((le16_to_cpu(cqe.status) & 1) != phase)
899                         break;
900                 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
901                 if (++head == nvmeq->q_depth) {
902                         head = 0;
903                         phase = !phase;
904                 }
905                 if (tag && *tag == cqe.command_id)
906                         *tag = -1;
907                 ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
908                 fn(nvmeq, ctx, &cqe);
909         }
910
911         /* If the controller ignores the cq head doorbell and continuously
912          * writes to the queue, it is theoretically possible to wrap around
913          * the queue twice and mistakenly return IRQ_NONE.  Linux only
914          * requires that 0.1% of your interrupts are handled, so this isn't
915          * a big problem.
916          */
917         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
918                 return;
919
920         if (likely(nvmeq->cq_vector >= 0))
921                 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
922         nvmeq->cq_head = head;
923         nvmeq->cq_phase = phase;
924
925         nvmeq->cqe_seen = 1;
926 }
927
928 static void nvme_process_cq(struct nvme_queue *nvmeq)
929 {
930         __nvme_process_cq(nvmeq, NULL);
931 }
932
933 static irqreturn_t nvme_irq(int irq, void *data)
934 {
935         irqreturn_t result;
936         struct nvme_queue *nvmeq = data;
937         spin_lock(&nvmeq->q_lock);
938         nvme_process_cq(nvmeq);
939         result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
940         nvmeq->cqe_seen = 0;
941         spin_unlock(&nvmeq->q_lock);
942         return result;
943 }
944
945 static irqreturn_t nvme_irq_check(int irq, void *data)
946 {
947         struct nvme_queue *nvmeq = data;
948         struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
949         if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
950                 return IRQ_NONE;
951         return IRQ_WAKE_THREAD;
952 }
953
954 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
955 {
956         struct nvme_queue *nvmeq = hctx->driver_data;
957
958         if ((le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
959             nvmeq->cq_phase) {
960                 spin_lock_irq(&nvmeq->q_lock);
961                 __nvme_process_cq(nvmeq, &tag);
962                 spin_unlock_irq(&nvmeq->q_lock);
963
964                 if (tag == -1)
965                         return 1;
966         }
967
968         return 0;
969 }
970
971 static int nvme_submit_async_admin_req(struct nvme_dev *dev)
972 {
973         struct nvme_queue *nvmeq = dev->queues[0];
974         struct nvme_command c;
975         struct nvme_cmd_info *cmd_info;
976         struct request *req;
977
978         req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE,
979                         BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED);
980         if (IS_ERR(req))
981                 return PTR_ERR(req);
982
983         req->cmd_flags |= REQ_NO_TIMEOUT;
984         cmd_info = blk_mq_rq_to_pdu(req);
985         nvme_set_info(cmd_info, NULL, async_req_completion);
986
987         memset(&c, 0, sizeof(c));
988         c.common.opcode = nvme_admin_async_event;
989         c.common.command_id = req->tag;
990
991         blk_mq_free_request(req);
992         __nvme_submit_cmd(nvmeq, &c);
993         return 0;
994 }
995
996 static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
997                         struct nvme_command *cmd,
998                         struct async_cmd_info *cmdinfo, unsigned timeout)
999 {
1000         struct nvme_queue *nvmeq = dev->queues[0];
1001         struct request *req;
1002         struct nvme_cmd_info *cmd_rq;
1003
1004         req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE, 0);
1005         if (IS_ERR(req))
1006                 return PTR_ERR(req);
1007
1008         req->timeout = timeout;
1009         cmd_rq = blk_mq_rq_to_pdu(req);
1010         cmdinfo->req = req;
1011         nvme_set_info(cmd_rq, cmdinfo, async_completion);
1012         cmdinfo->status = -EINTR;
1013
1014         cmd->common.command_id = req->tag;
1015
1016         nvme_submit_cmd(nvmeq, cmd);
1017         return 0;
1018 }
1019
1020 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1021 {
1022         struct nvme_command c;
1023
1024         memset(&c, 0, sizeof(c));
1025         c.delete_queue.opcode = opcode;
1026         c.delete_queue.qid = cpu_to_le16(id);
1027
1028         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1029 }
1030
1031 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1032                                                 struct nvme_queue *nvmeq)
1033 {
1034         struct nvme_command c;
1035         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1036
1037         /*
1038          * Note: we (ab)use the fact the the prp fields survive if no data
1039          * is attached to the request.
1040          */
1041         memset(&c, 0, sizeof(c));
1042         c.create_cq.opcode = nvme_admin_create_cq;
1043         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1044         c.create_cq.cqid = cpu_to_le16(qid);
1045         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1046         c.create_cq.cq_flags = cpu_to_le16(flags);
1047         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1048
1049         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1050 }
1051
1052 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1053                                                 struct nvme_queue *nvmeq)
1054 {
1055         struct nvme_command c;
1056         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1057
1058         /*
1059          * Note: we (ab)use the fact the the prp fields survive if no data
1060          * is attached to the request.
1061          */
1062         memset(&c, 0, sizeof(c));
1063         c.create_sq.opcode = nvme_admin_create_sq;
1064         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1065         c.create_sq.sqid = cpu_to_le16(qid);
1066         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1067         c.create_sq.sq_flags = cpu_to_le16(flags);
1068         c.create_sq.cqid = cpu_to_le16(qid);
1069
1070         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1071 }
1072
1073 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1074 {
1075         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1076 }
1077
1078 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1079 {
1080         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1081 }
1082
1083 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1084 {
1085         struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1086         struct nvme_queue *nvmeq = cmd_rq->nvmeq;
1087         struct nvme_dev *dev = nvmeq->dev;
1088         struct request *abort_req;
1089         struct nvme_cmd_info *abort_cmd;
1090         struct nvme_command cmd;
1091
1092         /*
1093          * Shutdown immediately if controller times out while starting. The
1094          * reset work will see the pci device disabled when it gets the forced
1095          * cancellation error. All outstanding requests are completed on
1096          * shutdown, so we return BLK_EH_HANDLED.
1097          */
1098         if (test_bit(NVME_CTRL_RESETTING, &dev->flags)) {
1099                 dev_warn(dev->dev,
1100                          "I/O %d QID %d timeout, disable controller\n",
1101                          req->tag, nvmeq->qid);
1102                 nvme_dev_shutdown(dev);
1103                 req->errors = NVME_SC_CANCELLED;
1104                 return BLK_EH_HANDLED;
1105         }
1106
1107         /*
1108          * Shutdown the controller immediately and schedule a reset if the
1109          * command was already aborted once before and still hasn't been
1110          * returned to the driver, or if this is the admin queue.
1111          */
1112         if (!nvmeq->qid || cmd_rq->aborted) {
1113                 dev_warn(dev->dev,
1114                          "I/O %d QID %d timeout, reset controller\n",
1115                          req->tag, nvmeq->qid);
1116                 nvme_dev_shutdown(dev);
1117                 queue_work(nvme_workq, &dev->reset_work);
1118
1119                 /*
1120                  * Mark the request as handled, since the inline shutdown
1121                  * forces all outstanding requests to complete.
1122                  */
1123                 req->errors = NVME_SC_CANCELLED;
1124                 return BLK_EH_HANDLED;
1125         }
1126
1127         if (atomic_dec_and_test(&dev->ctrl.abort_limit))
1128                 return BLK_EH_RESET_TIMER;
1129
1130         abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE,
1131                         BLK_MQ_REQ_NOWAIT);
1132         if (IS_ERR(abort_req)) {
1133                 atomic_inc(&dev->ctrl.abort_limit);
1134                 return BLK_EH_RESET_TIMER;
1135         }
1136
1137         abort_cmd = blk_mq_rq_to_pdu(abort_req);
1138         nvme_set_info(abort_cmd, abort_req, abort_completion);
1139
1140         memset(&cmd, 0, sizeof(cmd));
1141         cmd.abort.opcode = nvme_admin_abort_cmd;
1142         cmd.abort.cid = req->tag;
1143         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1144         cmd.abort.command_id = abort_req->tag;
1145
1146         cmd_rq->aborted = 1;
1147
1148         dev_warn(nvmeq->q_dmadev, "I/O %d QID %d timeout, aborting\n",
1149                                  req->tag, nvmeq->qid);
1150         nvme_submit_cmd(dev->queues[0], &cmd);
1151
1152         /*
1153          * The aborted req will be completed on receiving the abort req.
1154          * We enable the timer again. If hit twice, it'll cause a device reset,
1155          * as the device then is in a faulty state.
1156          */
1157         return BLK_EH_RESET_TIMER;
1158 }
1159
1160 static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
1161 {
1162         struct nvme_queue *nvmeq = data;
1163         void *ctx;
1164         nvme_completion_fn fn;
1165         struct nvme_cmd_info *cmd;
1166         struct nvme_completion cqe;
1167
1168         if (!blk_mq_request_started(req))
1169                 return;
1170
1171         cmd = blk_mq_rq_to_pdu(req);
1172
1173         if (cmd->ctx == CMD_CTX_CANCELLED)
1174                 return;
1175
1176         if (blk_queue_dying(req->q))
1177                 cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1178         else
1179                 cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1180
1181
1182         dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1183                                                 req->tag, nvmeq->qid);
1184         ctx = cancel_cmd_info(cmd, &fn);
1185         fn(nvmeq, ctx, &cqe);
1186 }
1187
1188 static void nvme_free_queue(struct nvme_queue *nvmeq)
1189 {
1190         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1191                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1192         if (nvmeq->sq_cmds)
1193                 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1194                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1195         kfree(nvmeq);
1196 }
1197
1198 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1199 {
1200         int i;
1201
1202         for (i = dev->queue_count - 1; i >= lowest; i--) {
1203                 struct nvme_queue *nvmeq = dev->queues[i];
1204                 dev->queue_count--;
1205                 dev->queues[i] = NULL;
1206                 nvme_free_queue(nvmeq);
1207         }
1208 }
1209
1210 /**
1211  * nvme_suspend_queue - put queue into suspended state
1212  * @nvmeq - queue to suspend
1213  */
1214 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1215 {
1216         int vector;
1217
1218         spin_lock_irq(&nvmeq->q_lock);
1219         if (nvmeq->cq_vector == -1) {
1220                 spin_unlock_irq(&nvmeq->q_lock);
1221                 return 1;
1222         }
1223         vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1224         nvmeq->dev->online_queues--;
1225         nvmeq->cq_vector = -1;
1226         spin_unlock_irq(&nvmeq->q_lock);
1227
1228         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1229                 blk_mq_freeze_queue_start(nvmeq->dev->ctrl.admin_q);
1230
1231         irq_set_affinity_hint(vector, NULL);
1232         free_irq(vector, nvmeq);
1233
1234         return 0;
1235 }
1236
1237 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1238 {
1239         spin_lock_irq(&nvmeq->q_lock);
1240         if (nvmeq->tags && *nvmeq->tags)
1241                 blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
1242         spin_unlock_irq(&nvmeq->q_lock);
1243 }
1244
1245 static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1246 {
1247         struct nvme_queue *nvmeq = dev->queues[qid];
1248
1249         if (!nvmeq)
1250                 return;
1251         if (nvme_suspend_queue(nvmeq))
1252                 return;
1253
1254         /* Don't tell the adapter to delete the admin queue.
1255          * Don't tell a removed adapter to delete IO queues. */
1256         if (qid && readl(dev->bar + NVME_REG_CSTS) != -1) {
1257                 adapter_delete_sq(dev, qid);
1258                 adapter_delete_cq(dev, qid);
1259         }
1260
1261         spin_lock_irq(&nvmeq->q_lock);
1262         nvme_process_cq(nvmeq);
1263         spin_unlock_irq(&nvmeq->q_lock);
1264 }
1265
1266 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1267                                 int entry_size)
1268 {
1269         int q_depth = dev->q_depth;
1270         unsigned q_size_aligned = roundup(q_depth * entry_size,
1271                                           dev->ctrl.page_size);
1272
1273         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1274                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1275                 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1276                 q_depth = div_u64(mem_per_q, entry_size);
1277
1278                 /*
1279                  * Ensure the reduced q_depth is above some threshold where it
1280                  * would be better to map queues in system memory with the
1281                  * original depth
1282                  */
1283                 if (q_depth < 64)
1284                         return -ENOMEM;
1285         }
1286
1287         return q_depth;
1288 }
1289
1290 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1291                                 int qid, int depth)
1292 {
1293         if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1294                 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1295                                                       dev->ctrl.page_size);
1296                 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1297                 nvmeq->sq_cmds_io = dev->cmb + offset;
1298         } else {
1299                 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1300                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
1301                 if (!nvmeq->sq_cmds)
1302                         return -ENOMEM;
1303         }
1304
1305         return 0;
1306 }
1307
1308 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1309                                                         int depth)
1310 {
1311         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1312         if (!nvmeq)
1313                 return NULL;
1314
1315         nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1316                                           &nvmeq->cq_dma_addr, GFP_KERNEL);
1317         if (!nvmeq->cqes)
1318                 goto free_nvmeq;
1319
1320         if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1321                 goto free_cqdma;
1322
1323         nvmeq->q_dmadev = dev->dev;
1324         nvmeq->dev = dev;
1325         snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1326                         dev->ctrl.instance, qid);
1327         spin_lock_init(&nvmeq->q_lock);
1328         nvmeq->cq_head = 0;
1329         nvmeq->cq_phase = 1;
1330         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1331         nvmeq->q_depth = depth;
1332         nvmeq->qid = qid;
1333         nvmeq->cq_vector = -1;
1334         dev->queues[qid] = nvmeq;
1335
1336         /* make sure queue descriptor is set before queue count, for kthread */
1337         mb();
1338         dev->queue_count++;
1339
1340         return nvmeq;
1341
1342  free_cqdma:
1343         dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1344                                                         nvmeq->cq_dma_addr);
1345  free_nvmeq:
1346         kfree(nvmeq);
1347         return NULL;
1348 }
1349
1350 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1351                                                         const char *name)
1352 {
1353         if (use_threaded_interrupts)
1354                 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1355                                         nvme_irq_check, nvme_irq, IRQF_SHARED,
1356                                         name, nvmeq);
1357         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1358                                 IRQF_SHARED, name, nvmeq);
1359 }
1360
1361 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1362 {
1363         struct nvme_dev *dev = nvmeq->dev;
1364
1365         spin_lock_irq(&nvmeq->q_lock);
1366         nvmeq->sq_tail = 0;
1367         nvmeq->cq_head = 0;
1368         nvmeq->cq_phase = 1;
1369         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1370         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1371         dev->online_queues++;
1372         spin_unlock_irq(&nvmeq->q_lock);
1373 }
1374
1375 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1376 {
1377         struct nvme_dev *dev = nvmeq->dev;
1378         int result;
1379
1380         nvmeq->cq_vector = qid - 1;
1381         result = adapter_alloc_cq(dev, qid, nvmeq);
1382         if (result < 0)
1383                 return result;
1384
1385         result = adapter_alloc_sq(dev, qid, nvmeq);
1386         if (result < 0)
1387                 goto release_cq;
1388
1389         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1390         if (result < 0)
1391                 goto release_sq;
1392
1393         nvme_init_queue(nvmeq, qid);
1394         return result;
1395
1396  release_sq:
1397         adapter_delete_sq(dev, qid);
1398  release_cq:
1399         adapter_delete_cq(dev, qid);
1400         return result;
1401 }
1402
1403 static struct blk_mq_ops nvme_mq_admin_ops = {
1404         .queue_rq       = nvme_queue_rq,
1405         .map_queue      = blk_mq_map_queue,
1406         .init_hctx      = nvme_admin_init_hctx,
1407         .exit_hctx      = nvme_admin_exit_hctx,
1408         .init_request   = nvme_admin_init_request,
1409         .timeout        = nvme_timeout,
1410 };
1411
1412 static struct blk_mq_ops nvme_mq_ops = {
1413         .queue_rq       = nvme_queue_rq,
1414         .map_queue      = blk_mq_map_queue,
1415         .init_hctx      = nvme_init_hctx,
1416         .init_request   = nvme_init_request,
1417         .timeout        = nvme_timeout,
1418         .poll           = nvme_poll,
1419 };
1420
1421 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1422 {
1423         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1424                 blk_cleanup_queue(dev->ctrl.admin_q);
1425                 blk_mq_free_tag_set(&dev->admin_tagset);
1426         }
1427 }
1428
1429 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1430 {
1431         if (!dev->ctrl.admin_q) {
1432                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1433                 dev->admin_tagset.nr_hw_queues = 1;
1434                 dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
1435                 dev->admin_tagset.reserved_tags = 1;
1436                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1437                 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1438                 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1439                 dev->admin_tagset.driver_data = dev;
1440
1441                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1442                         return -ENOMEM;
1443
1444                 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1445                 if (IS_ERR(dev->ctrl.admin_q)) {
1446                         blk_mq_free_tag_set(&dev->admin_tagset);
1447                         return -ENOMEM;
1448                 }
1449                 if (!blk_get_queue(dev->ctrl.admin_q)) {
1450                         nvme_dev_remove_admin(dev);
1451                         dev->ctrl.admin_q = NULL;
1452                         return -ENODEV;
1453                 }
1454         } else
1455                 blk_mq_unfreeze_queue(dev->ctrl.admin_q);
1456
1457         return 0;
1458 }
1459
1460 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1461 {
1462         int result;
1463         u32 aqa;
1464         u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1465         struct nvme_queue *nvmeq;
1466
1467         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
1468                                                 NVME_CAP_NSSRC(cap) : 0;
1469
1470         if (dev->subsystem &&
1471             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1472                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1473
1474         result = nvme_disable_ctrl(&dev->ctrl, cap);
1475         if (result < 0)
1476                 return result;
1477
1478         nvmeq = dev->queues[0];
1479         if (!nvmeq) {
1480                 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1481                 if (!nvmeq)
1482                         return -ENOMEM;
1483         }
1484
1485         aqa = nvmeq->q_depth - 1;
1486         aqa |= aqa << 16;
1487
1488         writel(aqa, dev->bar + NVME_REG_AQA);
1489         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1490         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1491
1492         result = nvme_enable_ctrl(&dev->ctrl, cap);
1493         if (result)
1494                 goto free_nvmeq;
1495
1496         nvmeq->cq_vector = 0;
1497         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1498         if (result) {
1499                 nvmeq->cq_vector = -1;
1500                 goto free_nvmeq;
1501         }
1502
1503         return result;
1504
1505  free_nvmeq:
1506         nvme_free_queues(dev, 0);
1507         return result;
1508 }
1509
1510 static int nvme_kthread(void *data)
1511 {
1512         struct nvme_dev *dev, *next;
1513
1514         while (!kthread_should_stop()) {
1515                 set_current_state(TASK_INTERRUPTIBLE);
1516                 spin_lock(&dev_list_lock);
1517                 list_for_each_entry_safe(dev, next, &dev_list, node) {
1518                         int i;
1519                         u32 csts = readl(dev->bar + NVME_REG_CSTS);
1520
1521                         /*
1522                          * Skip controllers currently under reset.
1523                          */
1524                         if (work_pending(&dev->reset_work) || work_busy(&dev->reset_work))
1525                                 continue;
1526
1527                         if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) ||
1528                                                         csts & NVME_CSTS_CFS) {
1529                                 if (queue_work(nvme_workq, &dev->reset_work)) {
1530                                         dev_warn(dev->dev,
1531                                                 "Failed status: %x, reset controller\n",
1532                                                 readl(dev->bar + NVME_REG_CSTS));
1533                                 }
1534                                 continue;
1535                         }
1536                         for (i = 0; i < dev->queue_count; i++) {
1537                                 struct nvme_queue *nvmeq = dev->queues[i];
1538                                 if (!nvmeq)
1539                                         continue;
1540                                 spin_lock_irq(&nvmeq->q_lock);
1541                                 nvme_process_cq(nvmeq);
1542
1543                                 while (i == 0 && dev->ctrl.event_limit > 0) {
1544                                         if (nvme_submit_async_admin_req(dev))
1545                                                 break;
1546                                         dev->ctrl.event_limit--;
1547                                 }
1548                                 spin_unlock_irq(&nvmeq->q_lock);
1549                         }
1550                 }
1551                 spin_unlock(&dev_list_lock);
1552                 schedule_timeout(round_jiffies_relative(HZ));
1553         }
1554         return 0;
1555 }
1556
1557 static int nvme_create_io_queues(struct nvme_dev *dev)
1558 {
1559         unsigned i;
1560         int ret = 0;
1561
1562         for (i = dev->queue_count; i <= dev->max_qid; i++) {
1563                 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1564                         ret = -ENOMEM;
1565                         break;
1566                 }
1567         }
1568
1569         for (i = dev->online_queues; i <= dev->queue_count - 1; i++) {
1570                 ret = nvme_create_queue(dev->queues[i], i);
1571                 if (ret) {
1572                         nvme_free_queues(dev, i);
1573                         break;
1574                 }
1575         }
1576
1577         /*
1578          * Ignore failing Create SQ/CQ commands, we can continue with less
1579          * than the desired aount of queues, and even a controller without
1580          * I/O queues an still be used to issue admin commands.  This might
1581          * be useful to upgrade a buggy firmware for example.
1582          */
1583         return ret >= 0 ? 0 : ret;
1584 }
1585
1586 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1587 {
1588         u64 szu, size, offset;
1589         u32 cmbloc;
1590         resource_size_t bar_size;
1591         struct pci_dev *pdev = to_pci_dev(dev->dev);
1592         void __iomem *cmb;
1593         dma_addr_t dma_addr;
1594
1595         if (!use_cmb_sqes)
1596                 return NULL;
1597
1598         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1599         if (!(NVME_CMB_SZ(dev->cmbsz)))
1600                 return NULL;
1601
1602         cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1603
1604         szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1605         size = szu * NVME_CMB_SZ(dev->cmbsz);
1606         offset = szu * NVME_CMB_OFST(cmbloc);
1607         bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1608
1609         if (offset > bar_size)
1610                 return NULL;
1611
1612         /*
1613          * Controllers may support a CMB size larger than their BAR,
1614          * for example, due to being behind a bridge. Reduce the CMB to
1615          * the reported size of the BAR
1616          */
1617         if (size > bar_size - offset)
1618                 size = bar_size - offset;
1619
1620         dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1621         cmb = ioremap_wc(dma_addr, size);
1622         if (!cmb)
1623                 return NULL;
1624
1625         dev->cmb_dma_addr = dma_addr;
1626         dev->cmb_size = size;
1627         return cmb;
1628 }
1629
1630 static inline void nvme_release_cmb(struct nvme_dev *dev)
1631 {
1632         if (dev->cmb) {
1633                 iounmap(dev->cmb);
1634                 dev->cmb = NULL;
1635         }
1636 }
1637
1638 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1639 {
1640         return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1641 }
1642
1643 static int nvme_setup_io_queues(struct nvme_dev *dev)
1644 {
1645         struct nvme_queue *adminq = dev->queues[0];
1646         struct pci_dev *pdev = to_pci_dev(dev->dev);
1647         int result, i, vecs, nr_io_queues, size;
1648
1649         nr_io_queues = num_possible_cpus();
1650         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1651         if (result < 0)
1652                 return result;
1653
1654         /*
1655          * Degraded controllers might return an error when setting the queue
1656          * count.  We still want to be able to bring them online and offer
1657          * access to the admin queue, as that might be only way to fix them up.
1658          */
1659         if (result > 0) {
1660                 dev_err(dev->dev, "Could not set queue count (%d)\n", result);
1661                 nr_io_queues = 0;
1662                 result = 0;
1663         }
1664
1665         if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1666                 result = nvme_cmb_qdepth(dev, nr_io_queues,
1667                                 sizeof(struct nvme_command));
1668                 if (result > 0)
1669                         dev->q_depth = result;
1670                 else
1671                         nvme_release_cmb(dev);
1672         }
1673
1674         size = db_bar_size(dev, nr_io_queues);
1675         if (size > 8192) {
1676                 iounmap(dev->bar);
1677                 do {
1678                         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1679                         if (dev->bar)
1680                                 break;
1681                         if (!--nr_io_queues)
1682                                 return -ENOMEM;
1683                         size = db_bar_size(dev, nr_io_queues);
1684                 } while (1);
1685                 dev->dbs = dev->bar + 4096;
1686                 adminq->q_db = dev->dbs;
1687         }
1688
1689         /* Deregister the admin queue's interrupt */
1690         free_irq(dev->entry[0].vector, adminq);
1691
1692         /*
1693          * If we enable msix early due to not intx, disable it again before
1694          * setting up the full range we need.
1695          */
1696         if (!pdev->irq)
1697                 pci_disable_msix(pdev);
1698
1699         for (i = 0; i < nr_io_queues; i++)
1700                 dev->entry[i].entry = i;
1701         vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
1702         if (vecs < 0) {
1703                 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
1704                 if (vecs < 0) {
1705                         vecs = 1;
1706                 } else {
1707                         for (i = 0; i < vecs; i++)
1708                                 dev->entry[i].vector = i + pdev->irq;
1709                 }
1710         }
1711
1712         /*
1713          * Should investigate if there's a performance win from allocating
1714          * more queues than interrupt vectors; it might allow the submission
1715          * path to scale better, even if the receive path is limited by the
1716          * number of interrupts.
1717          */
1718         nr_io_queues = vecs;
1719         dev->max_qid = nr_io_queues;
1720
1721         result = queue_request_irq(dev, adminq, adminq->irqname);
1722         if (result) {
1723                 adminq->cq_vector = -1;
1724                 goto free_queues;
1725         }
1726
1727         /* Free previously allocated queues that are no longer usable */
1728         nvme_free_queues(dev, nr_io_queues + 1);
1729         return nvme_create_io_queues(dev);
1730
1731  free_queues:
1732         nvme_free_queues(dev, 1);
1733         return result;
1734 }
1735
1736 static void nvme_set_irq_hints(struct nvme_dev *dev)
1737 {
1738         struct nvme_queue *nvmeq;
1739         int i;
1740
1741         for (i = 0; i < dev->online_queues; i++) {
1742                 nvmeq = dev->queues[i];
1743
1744                 if (!nvmeq->tags || !(*nvmeq->tags))
1745                         continue;
1746
1747                 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1748                                         blk_mq_tags_cpumask(*nvmeq->tags));
1749         }
1750 }
1751
1752 static void nvme_dev_scan(struct work_struct *work)
1753 {
1754         struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
1755
1756         if (!dev->tagset.tags)
1757                 return;
1758         nvme_scan_namespaces(&dev->ctrl);
1759         nvme_set_irq_hints(dev);
1760 }
1761
1762 /*
1763  * Return: error value if an error occurred setting up the queues or calling
1764  * Identify Device.  0 if these succeeded, even if adding some of the
1765  * namespaces failed.  At the moment, these failures are silent.  TBD which
1766  * failures should be reported.
1767  */
1768 static int nvme_dev_add(struct nvme_dev *dev)
1769 {
1770         if (!dev->ctrl.tagset) {
1771                 dev->tagset.ops = &nvme_mq_ops;
1772                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1773                 dev->tagset.timeout = NVME_IO_TIMEOUT;
1774                 dev->tagset.numa_node = dev_to_node(dev->dev);
1775                 dev->tagset.queue_depth =
1776                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1777                 dev->tagset.cmd_size = nvme_cmd_size(dev);
1778                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1779                 dev->tagset.driver_data = dev;
1780
1781                 if (blk_mq_alloc_tag_set(&dev->tagset))
1782                         return 0;
1783                 dev->ctrl.tagset = &dev->tagset;
1784         }
1785         schedule_work(&dev->scan_work);
1786         return 0;
1787 }
1788
1789 static int nvme_dev_map(struct nvme_dev *dev)
1790 {
1791         u64 cap;
1792         int bars, result = -ENOMEM;
1793         struct pci_dev *pdev = to_pci_dev(dev->dev);
1794
1795         if (pci_enable_device_mem(pdev))
1796                 return result;
1797
1798         dev->entry[0].vector = pdev->irq;
1799         pci_set_master(pdev);
1800         bars = pci_select_bars(pdev, IORESOURCE_MEM);
1801         if (!bars)
1802                 goto disable_pci;
1803
1804         if (pci_request_selected_regions(pdev, bars, "nvme"))
1805                 goto disable_pci;
1806
1807         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1808             dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1809                 goto disable;
1810
1811         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1812         if (!dev->bar)
1813                 goto disable;
1814
1815         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1816                 result = -ENODEV;
1817                 goto unmap;
1818         }
1819
1820         /*
1821          * Some devices don't advertse INTx interrupts, pre-enable a single
1822          * MSIX vec for setup. We'll adjust this later.
1823          */
1824         if (!pdev->irq) {
1825                 result = pci_enable_msix(pdev, dev->entry, 1);
1826                 if (result < 0)
1827                         goto unmap;
1828         }
1829
1830         cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1831
1832         dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1833         dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1834         dev->dbs = dev->bar + 4096;
1835         if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
1836                 dev->cmb = nvme_map_cmb(dev);
1837
1838         return 0;
1839
1840  unmap:
1841         iounmap(dev->bar);
1842         dev->bar = NULL;
1843  disable:
1844         pci_release_regions(pdev);
1845  disable_pci:
1846         pci_disable_device(pdev);
1847         return result;
1848 }
1849
1850 static void nvme_dev_unmap(struct nvme_dev *dev)
1851 {
1852         struct pci_dev *pdev = to_pci_dev(dev->dev);
1853
1854         if (pdev->msi_enabled)
1855                 pci_disable_msi(pdev);
1856         else if (pdev->msix_enabled)
1857                 pci_disable_msix(pdev);
1858
1859         if (dev->bar) {
1860                 iounmap(dev->bar);
1861                 dev->bar = NULL;
1862                 pci_release_regions(pdev);
1863         }
1864
1865         if (pci_is_enabled(pdev))
1866                 pci_disable_device(pdev);
1867 }
1868
1869 struct nvme_delq_ctx {
1870         struct task_struct *waiter;
1871         struct kthread_worker *worker;
1872         atomic_t refcount;
1873 };
1874
1875 static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
1876 {
1877         dq->waiter = current;
1878         mb();
1879
1880         for (;;) {
1881                 set_current_state(TASK_KILLABLE);
1882                 if (!atomic_read(&dq->refcount))
1883                         break;
1884                 if (!schedule_timeout(ADMIN_TIMEOUT) ||
1885                                         fatal_signal_pending(current)) {
1886                         /*
1887                          * Disable the controller first since we can't trust it
1888                          * at this point, but leave the admin queue enabled
1889                          * until all queue deletion requests are flushed.
1890                          * FIXME: This may take a while if there are more h/w
1891                          * queues than admin tags.
1892                          */
1893                         set_current_state(TASK_RUNNING);
1894                         nvme_disable_ctrl(&dev->ctrl,
1895                                 lo_hi_readq(dev->bar + NVME_REG_CAP));
1896                         nvme_clear_queue(dev->queues[0]);
1897                         flush_kthread_worker(dq->worker);
1898                         nvme_disable_queue(dev, 0);
1899                         return;
1900                 }
1901         }
1902         set_current_state(TASK_RUNNING);
1903 }
1904
1905 static void nvme_put_dq(struct nvme_delq_ctx *dq)
1906 {
1907         atomic_dec(&dq->refcount);
1908         if (dq->waiter)
1909                 wake_up_process(dq->waiter);
1910 }
1911
1912 static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
1913 {
1914         atomic_inc(&dq->refcount);
1915         return dq;
1916 }
1917
1918 static void nvme_del_queue_end(struct nvme_queue *nvmeq)
1919 {
1920         struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
1921         nvme_put_dq(dq);
1922
1923         spin_lock_irq(&nvmeq->q_lock);
1924         nvme_process_cq(nvmeq);
1925         spin_unlock_irq(&nvmeq->q_lock);
1926 }
1927
1928 static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
1929                                                 kthread_work_func_t fn)
1930 {
1931         struct nvme_command c;
1932
1933         memset(&c, 0, sizeof(c));
1934         c.delete_queue.opcode = opcode;
1935         c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1936
1937         init_kthread_work(&nvmeq->cmdinfo.work, fn);
1938         return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
1939                                                                 ADMIN_TIMEOUT);
1940 }
1941
1942 static void nvme_del_cq_work_handler(struct kthread_work *work)
1943 {
1944         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
1945                                                         cmdinfo.work);
1946         nvme_del_queue_end(nvmeq);
1947 }
1948
1949 static int nvme_delete_cq(struct nvme_queue *nvmeq)
1950 {
1951         return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
1952                                                 nvme_del_cq_work_handler);
1953 }
1954
1955 static void nvme_del_sq_work_handler(struct kthread_work *work)
1956 {
1957         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
1958                                                         cmdinfo.work);
1959         int status = nvmeq->cmdinfo.status;
1960
1961         if (!status)
1962                 status = nvme_delete_cq(nvmeq);
1963         if (status)
1964                 nvme_del_queue_end(nvmeq);
1965 }
1966
1967 static int nvme_delete_sq(struct nvme_queue *nvmeq)
1968 {
1969         return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
1970                                                 nvme_del_sq_work_handler);
1971 }
1972
1973 static void nvme_del_queue_start(struct kthread_work *work)
1974 {
1975         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
1976                                                         cmdinfo.work);
1977         if (nvme_delete_sq(nvmeq))
1978                 nvme_del_queue_end(nvmeq);
1979 }
1980
1981 static void nvme_disable_io_queues(struct nvme_dev *dev)
1982 {
1983         int i;
1984         DEFINE_KTHREAD_WORKER_ONSTACK(worker);
1985         struct nvme_delq_ctx dq;
1986         struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
1987                                         &worker, "nvme%d", dev->ctrl.instance);
1988
1989         if (IS_ERR(kworker_task)) {
1990                 dev_err(dev->dev,
1991                         "Failed to create queue del task\n");
1992                 for (i = dev->queue_count - 1; i > 0; i--)
1993                         nvme_disable_queue(dev, i);
1994                 return;
1995         }
1996
1997         dq.waiter = NULL;
1998         atomic_set(&dq.refcount, 0);
1999         dq.worker = &worker;
2000         for (i = dev->queue_count - 1; i > 0; i--) {
2001                 struct nvme_queue *nvmeq = dev->queues[i];
2002
2003                 if (nvme_suspend_queue(nvmeq))
2004                         continue;
2005                 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2006                 nvmeq->cmdinfo.worker = dq.worker;
2007                 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2008                 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2009         }
2010         nvme_wait_dq(&dq, dev);
2011         kthread_stop(kworker_task);
2012 }
2013
2014 static int nvme_dev_list_add(struct nvme_dev *dev)
2015 {
2016         bool start_thread = false;
2017
2018         spin_lock(&dev_list_lock);
2019         if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
2020                 start_thread = true;
2021                 nvme_thread = NULL;
2022         }
2023         list_add(&dev->node, &dev_list);
2024         spin_unlock(&dev_list_lock);
2025
2026         if (start_thread) {
2027                 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2028                 wake_up_all(&nvme_kthread_wait);
2029         } else
2030                 wait_event_killable(nvme_kthread_wait, nvme_thread);
2031
2032         if (IS_ERR_OR_NULL(nvme_thread))
2033                 return nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2034
2035         return 0;
2036 }
2037
2038 /*
2039 * Remove the node from the device list and check
2040 * for whether or not we need to stop the nvme_thread.
2041 */
2042 static void nvme_dev_list_remove(struct nvme_dev *dev)
2043 {
2044         struct task_struct *tmp = NULL;
2045
2046         spin_lock(&dev_list_lock);
2047         list_del_init(&dev->node);
2048         if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2049                 tmp = nvme_thread;
2050                 nvme_thread = NULL;
2051         }
2052         spin_unlock(&dev_list_lock);
2053
2054         if (tmp)
2055                 kthread_stop(tmp);
2056 }
2057
2058 static void nvme_freeze_queues(struct nvme_dev *dev)
2059 {
2060         struct nvme_ns *ns;
2061
2062         list_for_each_entry(ns, &dev->ctrl.namespaces, list) {
2063                 blk_mq_freeze_queue_start(ns->queue);
2064
2065                 spin_lock_irq(ns->queue->queue_lock);
2066                 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
2067                 spin_unlock_irq(ns->queue->queue_lock);
2068
2069                 blk_mq_cancel_requeue_work(ns->queue);
2070                 blk_mq_stop_hw_queues(ns->queue);
2071         }
2072 }
2073
2074 static void nvme_unfreeze_queues(struct nvme_dev *dev)
2075 {
2076         struct nvme_ns *ns;
2077
2078         list_for_each_entry(ns, &dev->ctrl.namespaces, list) {
2079                 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2080                 blk_mq_unfreeze_queue(ns->queue);
2081                 blk_mq_start_stopped_hw_queues(ns->queue, true);
2082                 blk_mq_kick_requeue_list(ns->queue);
2083         }
2084 }
2085
2086 static void nvme_dev_shutdown(struct nvme_dev *dev)
2087 {
2088         int i;
2089         u32 csts = -1;
2090
2091         nvme_dev_list_remove(dev);
2092
2093         mutex_lock(&dev->shutdown_lock);
2094         if (dev->bar) {
2095                 nvme_freeze_queues(dev);
2096                 csts = readl(dev->bar + NVME_REG_CSTS);
2097         }
2098         if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
2099                 for (i = dev->queue_count - 1; i >= 0; i--) {
2100                         struct nvme_queue *nvmeq = dev->queues[i];
2101                         nvme_suspend_queue(nvmeq);
2102                 }
2103         } else {
2104                 nvme_disable_io_queues(dev);
2105                 nvme_shutdown_ctrl(&dev->ctrl);
2106                 nvme_disable_queue(dev, 0);
2107         }
2108         nvme_dev_unmap(dev);
2109
2110         for (i = dev->queue_count - 1; i >= 0; i--)
2111                 nvme_clear_queue(dev->queues[i]);
2112         mutex_unlock(&dev->shutdown_lock);
2113 }
2114
2115 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2116 {
2117         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2118                                                 PAGE_SIZE, PAGE_SIZE, 0);
2119         if (!dev->prp_page_pool)
2120                 return -ENOMEM;
2121
2122         /* Optimisation for I/Os between 4k and 128k */
2123         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2124                                                 256, 256, 0);
2125         if (!dev->prp_small_pool) {
2126                 dma_pool_destroy(dev->prp_page_pool);
2127                 return -ENOMEM;
2128         }
2129         return 0;
2130 }
2131
2132 static void nvme_release_prp_pools(struct nvme_dev *dev)
2133 {
2134         dma_pool_destroy(dev->prp_page_pool);
2135         dma_pool_destroy(dev->prp_small_pool);
2136 }
2137
2138 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2139 {
2140         struct nvme_dev *dev = to_nvme_dev(ctrl);
2141
2142         put_device(dev->dev);
2143         if (dev->tagset.tags)
2144                 blk_mq_free_tag_set(&dev->tagset);
2145         if (dev->ctrl.admin_q)
2146                 blk_put_queue(dev->ctrl.admin_q);
2147         kfree(dev->queues);
2148         kfree(dev->entry);
2149         kfree(dev);
2150 }
2151
2152 static void nvme_reset_work(struct work_struct *work)
2153 {
2154         struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
2155         int result;
2156
2157         if (WARN_ON(test_bit(NVME_CTRL_RESETTING, &dev->flags)))
2158                 goto out;
2159
2160         /*
2161          * If we're called to reset a live controller first shut it down before
2162          * moving on.
2163          */
2164         if (dev->bar)
2165                 nvme_dev_shutdown(dev);
2166
2167         set_bit(NVME_CTRL_RESETTING, &dev->flags);
2168
2169         result = nvme_dev_map(dev);
2170         if (result)
2171                 goto out;
2172
2173         result = nvme_configure_admin_queue(dev);
2174         if (result)
2175                 goto unmap;
2176
2177         nvme_init_queue(dev->queues[0], 0);
2178         result = nvme_alloc_admin_tags(dev);
2179         if (result)
2180                 goto disable;
2181
2182         result = nvme_init_identify(&dev->ctrl);
2183         if (result)
2184                 goto free_tags;
2185
2186         result = nvme_setup_io_queues(dev);
2187         if (result)
2188                 goto free_tags;
2189
2190         dev->ctrl.event_limit = 1;
2191
2192         result = nvme_dev_list_add(dev);
2193         if (result)
2194                 goto remove;
2195
2196         /*
2197          * Keep the controller around but remove all namespaces if we don't have
2198          * any working I/O queue.
2199          */
2200         if (dev->online_queues < 2) {
2201                 dev_warn(dev->dev, "IO queues not created\n");
2202                 nvme_remove_namespaces(&dev->ctrl);
2203         } else {
2204                 nvme_unfreeze_queues(dev);
2205                 nvme_dev_add(dev);
2206         }
2207
2208         clear_bit(NVME_CTRL_RESETTING, &dev->flags);
2209         return;
2210
2211  remove:
2212         nvme_dev_list_remove(dev);
2213  free_tags:
2214         nvme_dev_remove_admin(dev);
2215         blk_put_queue(dev->ctrl.admin_q);
2216         dev->ctrl.admin_q = NULL;
2217         dev->queues[0]->tags = NULL;
2218  disable:
2219         nvme_disable_queue(dev, 0);
2220  unmap:
2221         nvme_dev_unmap(dev);
2222  out:
2223         nvme_remove_dead_ctrl(dev);
2224 }
2225
2226 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2227 {
2228         struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2229         struct pci_dev *pdev = to_pci_dev(dev->dev);
2230
2231         if (pci_get_drvdata(pdev))
2232                 pci_stop_and_remove_bus_device_locked(pdev);
2233         nvme_put_ctrl(&dev->ctrl);
2234 }
2235
2236 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2237 {
2238         dev_warn(dev->dev, "Removing after probe failure\n");
2239         kref_get(&dev->ctrl.kref);
2240         if (!schedule_work(&dev->remove_work))
2241                 nvme_put_ctrl(&dev->ctrl);
2242 }
2243
2244 static int nvme_reset(struct nvme_dev *dev)
2245 {
2246         if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
2247                 return -ENODEV;
2248
2249         if (!queue_work(nvme_workq, &dev->reset_work))
2250                 return -EBUSY;
2251
2252         flush_work(&dev->reset_work);
2253         return 0;
2254 }
2255
2256 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2257 {
2258         *val = readl(to_nvme_dev(ctrl)->bar + off);
2259         return 0;
2260 }
2261
2262 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2263 {
2264         writel(val, to_nvme_dev(ctrl)->bar + off);
2265         return 0;
2266 }
2267
2268 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2269 {
2270         *val = readq(to_nvme_dev(ctrl)->bar + off);
2271         return 0;
2272 }
2273
2274 static bool nvme_pci_io_incapable(struct nvme_ctrl *ctrl)
2275 {
2276         struct nvme_dev *dev = to_nvme_dev(ctrl);
2277
2278         return !dev->bar || dev->online_queues < 2;
2279 }
2280
2281 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
2282 {
2283         return nvme_reset(to_nvme_dev(ctrl));
2284 }
2285
2286 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2287         .reg_read32             = nvme_pci_reg_read32,
2288         .reg_write32            = nvme_pci_reg_write32,
2289         .reg_read64             = nvme_pci_reg_read64,
2290         .io_incapable           = nvme_pci_io_incapable,
2291         .reset_ctrl             = nvme_pci_reset_ctrl,
2292         .free_ctrl              = nvme_pci_free_ctrl,
2293 };
2294
2295 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2296 {
2297         int node, result = -ENOMEM;
2298         struct nvme_dev *dev;
2299
2300         node = dev_to_node(&pdev->dev);
2301         if (node == NUMA_NO_NODE)
2302                 set_dev_node(&pdev->dev, 0);
2303
2304         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2305         if (!dev)
2306                 return -ENOMEM;
2307         dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2308                                                         GFP_KERNEL, node);
2309         if (!dev->entry)
2310                 goto free;
2311         dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2312                                                         GFP_KERNEL, node);
2313         if (!dev->queues)
2314                 goto free;
2315
2316         dev->dev = get_device(&pdev->dev);
2317         pci_set_drvdata(pdev, dev);
2318
2319         INIT_LIST_HEAD(&dev->node);
2320         INIT_WORK(&dev->scan_work, nvme_dev_scan);
2321         INIT_WORK(&dev->reset_work, nvme_reset_work);
2322         INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2323         mutex_init(&dev->shutdown_lock);
2324
2325         result = nvme_setup_prp_pools(dev);
2326         if (result)
2327                 goto put_pci;
2328
2329         result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2330                         id->driver_data);
2331         if (result)
2332                 goto release_pools;
2333
2334         schedule_work(&dev->reset_work);
2335         return 0;
2336
2337  release_pools:
2338         nvme_release_prp_pools(dev);
2339  put_pci:
2340         put_device(dev->dev);
2341  free:
2342         kfree(dev->queues);
2343         kfree(dev->entry);
2344         kfree(dev);
2345         return result;
2346 }
2347
2348 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2349 {
2350         struct nvme_dev *dev = pci_get_drvdata(pdev);
2351
2352         if (prepare)
2353                 nvme_dev_shutdown(dev);
2354         else
2355                 schedule_work(&dev->reset_work);
2356 }
2357
2358 static void nvme_shutdown(struct pci_dev *pdev)
2359 {
2360         struct nvme_dev *dev = pci_get_drvdata(pdev);
2361         nvme_dev_shutdown(dev);
2362 }
2363
2364 static void nvme_remove(struct pci_dev *pdev)
2365 {
2366         struct nvme_dev *dev = pci_get_drvdata(pdev);
2367
2368         spin_lock(&dev_list_lock);
2369         list_del_init(&dev->node);
2370         spin_unlock(&dev_list_lock);
2371
2372         pci_set_drvdata(pdev, NULL);
2373         flush_work(&dev->reset_work);
2374         flush_work(&dev->scan_work);
2375         nvme_remove_namespaces(&dev->ctrl);
2376         nvme_dev_shutdown(dev);
2377         nvme_dev_remove_admin(dev);
2378         nvme_free_queues(dev, 0);
2379         nvme_release_cmb(dev);
2380         nvme_release_prp_pools(dev);
2381         nvme_put_ctrl(&dev->ctrl);
2382 }
2383
2384 /* These functions are yet to be implemented */
2385 #define nvme_error_detected NULL
2386 #define nvme_dump_registers NULL
2387 #define nvme_link_reset NULL
2388 #define nvme_slot_reset NULL
2389 #define nvme_error_resume NULL
2390
2391 #ifdef CONFIG_PM_SLEEP
2392 static int nvme_suspend(struct device *dev)
2393 {
2394         struct pci_dev *pdev = to_pci_dev(dev);
2395         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2396
2397         nvme_dev_shutdown(ndev);
2398         return 0;
2399 }
2400
2401 static int nvme_resume(struct device *dev)
2402 {
2403         struct pci_dev *pdev = to_pci_dev(dev);
2404         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2405
2406         schedule_work(&ndev->reset_work);
2407         return 0;
2408 }
2409 #endif
2410
2411 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2412
2413 static const struct pci_error_handlers nvme_err_handler = {
2414         .error_detected = nvme_error_detected,
2415         .mmio_enabled   = nvme_dump_registers,
2416         .link_reset     = nvme_link_reset,
2417         .slot_reset     = nvme_slot_reset,
2418         .resume         = nvme_error_resume,
2419         .reset_notify   = nvme_reset_notify,
2420 };
2421
2422 /* Move to pci_ids.h later */
2423 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
2424
2425 static const struct pci_device_id nvme_id_table[] = {
2426         { PCI_VDEVICE(INTEL, 0x0953),
2427                 .driver_data = NVME_QUIRK_STRIPE_SIZE, },
2428         { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
2429                 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2430         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2431         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2432         { 0, }
2433 };
2434 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2435
2436 static struct pci_driver nvme_driver = {
2437         .name           = "nvme",
2438         .id_table       = nvme_id_table,
2439         .probe          = nvme_probe,
2440         .remove         = nvme_remove,
2441         .shutdown       = nvme_shutdown,
2442         .driver         = {
2443                 .pm     = &nvme_dev_pm_ops,
2444         },
2445         .err_handler    = &nvme_err_handler,
2446 };
2447
2448 static int __init nvme_init(void)
2449 {
2450         int result;
2451
2452         init_waitqueue_head(&nvme_kthread_wait);
2453
2454         nvme_workq = create_singlethread_workqueue("nvme");
2455         if (!nvme_workq)
2456                 return -ENOMEM;
2457
2458         result = nvme_core_init();
2459         if (result < 0)
2460                 goto kill_workq;
2461
2462         result = pci_register_driver(&nvme_driver);
2463         if (result)
2464                 goto core_exit;
2465         return 0;
2466
2467  core_exit:
2468         nvme_core_exit();
2469  kill_workq:
2470         destroy_workqueue(nvme_workq);
2471         return result;
2472 }
2473
2474 static void __exit nvme_exit(void)
2475 {
2476         pci_unregister_driver(&nvme_driver);
2477         nvme_core_exit();
2478         destroy_workqueue(nvme_workq);
2479         BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
2480         _nvme_check_size();
2481 }
2482
2483 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2484 MODULE_LICENSE("GPL");
2485 MODULE_VERSION("1.0");
2486 module_init(nvme_init);
2487 module_exit(nvme_exit);