block: introduce blk_rq_is_passthrough
[linux-block.git] / drivers / nvme / host / pci.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/cpu.h>
21 #include <linux/delay.h>
22 #include <linux/errno.h>
23 #include <linux/fs.h>
24 #include <linux/genhd.h>
25 #include <linux/hdreg.h>
26 #include <linux/idr.h>
27 #include <linux/init.h>
28 #include <linux/interrupt.h>
29 #include <linux/io.h>
30 #include <linux/kdev_t.h>
31 #include <linux/kernel.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/mutex.h>
36 #include <linux/pci.h>
37 #include <linux/poison.h>
38 #include <linux/ptrace.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/t10-pi.h>
42 #include <linux/timer.h>
43 #include <linux/types.h>
44 #include <linux/io-64-nonatomic-lo-hi.h>
45 #include <asm/unaligned.h>
46
47 #include "nvme.h"
48
49 #define NVME_Q_DEPTH            1024
50 #define NVME_AQ_DEPTH           256
51 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
52 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
53
54 /*
55  * We handle AEN commands ourselves and don't even let the
56  * block layer know about them.
57  */
58 #define NVME_AQ_BLKMQ_DEPTH     (NVME_AQ_DEPTH - NVME_NR_AERS)
59
60 static int use_threaded_interrupts;
61 module_param(use_threaded_interrupts, int, 0);
62
63 static bool use_cmb_sqes = true;
64 module_param(use_cmb_sqes, bool, 0644);
65 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
66
67 static struct workqueue_struct *nvme_workq;
68
69 struct nvme_dev;
70 struct nvme_queue;
71
72 static int nvme_reset(struct nvme_dev *dev);
73 static void nvme_process_cq(struct nvme_queue *nvmeq);
74 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
75
76 /*
77  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
78  */
79 struct nvme_dev {
80         struct nvme_queue **queues;
81         struct blk_mq_tag_set tagset;
82         struct blk_mq_tag_set admin_tagset;
83         u32 __iomem *dbs;
84         struct device *dev;
85         struct dma_pool *prp_page_pool;
86         struct dma_pool *prp_small_pool;
87         unsigned queue_count;
88         unsigned online_queues;
89         unsigned max_qid;
90         int q_depth;
91         u32 db_stride;
92         void __iomem *bar;
93         struct work_struct reset_work;
94         struct work_struct remove_work;
95         struct timer_list watchdog_timer;
96         struct mutex shutdown_lock;
97         bool subsystem;
98         void __iomem *cmb;
99         dma_addr_t cmb_dma_addr;
100         u64 cmb_size;
101         u32 cmbsz;
102         u32 cmbloc;
103         struct nvme_ctrl ctrl;
104         struct completion ioq_wait;
105 };
106
107 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
108 {
109         return container_of(ctrl, struct nvme_dev, ctrl);
110 }
111
112 /*
113  * An NVM Express queue.  Each device has at least two (one for admin
114  * commands and one for I/O commands).
115  */
116 struct nvme_queue {
117         struct device *q_dmadev;
118         struct nvme_dev *dev;
119         char irqname[24];       /* nvme4294967295-65535\0 */
120         spinlock_t q_lock;
121         struct nvme_command *sq_cmds;
122         struct nvme_command __iomem *sq_cmds_io;
123         volatile struct nvme_completion *cqes;
124         struct blk_mq_tags **tags;
125         dma_addr_t sq_dma_addr;
126         dma_addr_t cq_dma_addr;
127         u32 __iomem *q_db;
128         u16 q_depth;
129         s16 cq_vector;
130         u16 sq_tail;
131         u16 cq_head;
132         u16 qid;
133         u8 cq_phase;
134         u8 cqe_seen;
135 };
136
137 /*
138  * The nvme_iod describes the data in an I/O, including the list of PRP
139  * entries.  You can't see it in this data structure because C doesn't let
140  * me express that.  Use nvme_init_iod to ensure there's enough space
141  * allocated to store the PRP list.
142  */
143 struct nvme_iod {
144         struct nvme_request req;
145         struct nvme_queue *nvmeq;
146         int aborted;
147         int npages;             /* In the PRP list. 0 means small pool in use */
148         int nents;              /* Used in scatterlist */
149         int length;             /* Of data, in bytes */
150         dma_addr_t first_dma;
151         struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
152         struct scatterlist *sg;
153         struct scatterlist inline_sg[0];
154 };
155
156 /*
157  * Check we didin't inadvertently grow the command struct
158  */
159 static inline void _nvme_check_size(void)
160 {
161         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
162         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
163         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
164         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
165         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
166         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
167         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
168         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
169         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
170         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
171         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
172         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
173 }
174
175 /*
176  * Max size of iod being embedded in the request payload
177  */
178 #define NVME_INT_PAGES          2
179 #define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->ctrl.page_size)
180
181 /*
182  * Will slightly overestimate the number of pages needed.  This is OK
183  * as it only leads to a small amount of wasted memory for the lifetime of
184  * the I/O.
185  */
186 static int nvme_npages(unsigned size, struct nvme_dev *dev)
187 {
188         unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
189                                       dev->ctrl.page_size);
190         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
191 }
192
193 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
194                 unsigned int size, unsigned int nseg)
195 {
196         return sizeof(__le64 *) * nvme_npages(size, dev) +
197                         sizeof(struct scatterlist) * nseg;
198 }
199
200 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
201 {
202         return sizeof(struct nvme_iod) +
203                 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
204 }
205
206 static int nvmeq_irq(struct nvme_queue *nvmeq)
207 {
208         return pci_irq_vector(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector);
209 }
210
211 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
212                                 unsigned int hctx_idx)
213 {
214         struct nvme_dev *dev = data;
215         struct nvme_queue *nvmeq = dev->queues[0];
216
217         WARN_ON(hctx_idx != 0);
218         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
219         WARN_ON(nvmeq->tags);
220
221         hctx->driver_data = nvmeq;
222         nvmeq->tags = &dev->admin_tagset.tags[0];
223         return 0;
224 }
225
226 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
227 {
228         struct nvme_queue *nvmeq = hctx->driver_data;
229
230         nvmeq->tags = NULL;
231 }
232
233 static int nvme_admin_init_request(void *data, struct request *req,
234                                 unsigned int hctx_idx, unsigned int rq_idx,
235                                 unsigned int numa_node)
236 {
237         struct nvme_dev *dev = data;
238         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
239         struct nvme_queue *nvmeq = dev->queues[0];
240
241         BUG_ON(!nvmeq);
242         iod->nvmeq = nvmeq;
243         return 0;
244 }
245
246 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
247                           unsigned int hctx_idx)
248 {
249         struct nvme_dev *dev = data;
250         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
251
252         if (!nvmeq->tags)
253                 nvmeq->tags = &dev->tagset.tags[hctx_idx];
254
255         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
256         hctx->driver_data = nvmeq;
257         return 0;
258 }
259
260 static int nvme_init_request(void *data, struct request *req,
261                                 unsigned int hctx_idx, unsigned int rq_idx,
262                                 unsigned int numa_node)
263 {
264         struct nvme_dev *dev = data;
265         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
266         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
267
268         BUG_ON(!nvmeq);
269         iod->nvmeq = nvmeq;
270         return 0;
271 }
272
273 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
274 {
275         struct nvme_dev *dev = set->driver_data;
276
277         return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
278 }
279
280 /**
281  * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
282  * @nvmeq: The queue to use
283  * @cmd: The command to send
284  *
285  * Safe to use from interrupt context
286  */
287 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
288                                                 struct nvme_command *cmd)
289 {
290         u16 tail = nvmeq->sq_tail;
291
292         if (nvmeq->sq_cmds_io)
293                 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
294         else
295                 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
296
297         if (++tail == nvmeq->q_depth)
298                 tail = 0;
299         writel(tail, nvmeq->q_db);
300         nvmeq->sq_tail = tail;
301 }
302
303 static __le64 **iod_list(struct request *req)
304 {
305         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
306         return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
307 }
308
309 static int nvme_init_iod(struct request *rq, struct nvme_dev *dev)
310 {
311         struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
312         int nseg = blk_rq_nr_phys_segments(rq);
313         unsigned int size = blk_rq_payload_bytes(rq);
314
315         if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
316                 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
317                 if (!iod->sg)
318                         return BLK_MQ_RQ_QUEUE_BUSY;
319         } else {
320                 iod->sg = iod->inline_sg;
321         }
322
323         iod->aborted = 0;
324         iod->npages = -1;
325         iod->nents = 0;
326         iod->length = size;
327
328         if (!(rq->rq_flags & RQF_DONTPREP)) {
329                 rq->retries = 0;
330                 rq->rq_flags |= RQF_DONTPREP;
331         }
332         return BLK_MQ_RQ_QUEUE_OK;
333 }
334
335 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
336 {
337         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
338         const int last_prp = dev->ctrl.page_size / 8 - 1;
339         int i;
340         __le64 **list = iod_list(req);
341         dma_addr_t prp_dma = iod->first_dma;
342
343         if (iod->npages == 0)
344                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
345         for (i = 0; i < iod->npages; i++) {
346                 __le64 *prp_list = list[i];
347                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
348                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
349                 prp_dma = next_prp_dma;
350         }
351
352         if (iod->sg != iod->inline_sg)
353                 kfree(iod->sg);
354 }
355
356 #ifdef CONFIG_BLK_DEV_INTEGRITY
357 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
358 {
359         if (be32_to_cpu(pi->ref_tag) == v)
360                 pi->ref_tag = cpu_to_be32(p);
361 }
362
363 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
364 {
365         if (be32_to_cpu(pi->ref_tag) == p)
366                 pi->ref_tag = cpu_to_be32(v);
367 }
368
369 /**
370  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
371  *
372  * The virtual start sector is the one that was originally submitted by the
373  * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
374  * start sector may be different. Remap protection information to match the
375  * physical LBA on writes, and back to the original seed on reads.
376  *
377  * Type 0 and 3 do not have a ref tag, so no remapping required.
378  */
379 static void nvme_dif_remap(struct request *req,
380                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
381 {
382         struct nvme_ns *ns = req->rq_disk->private_data;
383         struct bio_integrity_payload *bip;
384         struct t10_pi_tuple *pi;
385         void *p, *pmap;
386         u32 i, nlb, ts, phys, virt;
387
388         if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
389                 return;
390
391         bip = bio_integrity(req->bio);
392         if (!bip)
393                 return;
394
395         pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
396
397         p = pmap;
398         virt = bip_get_seed(bip);
399         phys = nvme_block_nr(ns, blk_rq_pos(req));
400         nlb = (blk_rq_bytes(req) >> ns->lba_shift);
401         ts = ns->disk->queue->integrity.tuple_size;
402
403         for (i = 0; i < nlb; i++, virt++, phys++) {
404                 pi = (struct t10_pi_tuple *)p;
405                 dif_swap(phys, virt, pi);
406                 p += ts;
407         }
408         kunmap_atomic(pmap);
409 }
410 #else /* CONFIG_BLK_DEV_INTEGRITY */
411 static void nvme_dif_remap(struct request *req,
412                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
413 {
414 }
415 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
416 {
417 }
418 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
419 {
420 }
421 #endif
422
423 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req)
424 {
425         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
426         struct dma_pool *pool;
427         int length = blk_rq_payload_bytes(req);
428         struct scatterlist *sg = iod->sg;
429         int dma_len = sg_dma_len(sg);
430         u64 dma_addr = sg_dma_address(sg);
431         u32 page_size = dev->ctrl.page_size;
432         int offset = dma_addr & (page_size - 1);
433         __le64 *prp_list;
434         __le64 **list = iod_list(req);
435         dma_addr_t prp_dma;
436         int nprps, i;
437
438         length -= (page_size - offset);
439         if (length <= 0)
440                 return true;
441
442         dma_len -= (page_size - offset);
443         if (dma_len) {
444                 dma_addr += (page_size - offset);
445         } else {
446                 sg = sg_next(sg);
447                 dma_addr = sg_dma_address(sg);
448                 dma_len = sg_dma_len(sg);
449         }
450
451         if (length <= page_size) {
452                 iod->first_dma = dma_addr;
453                 return true;
454         }
455
456         nprps = DIV_ROUND_UP(length, page_size);
457         if (nprps <= (256 / 8)) {
458                 pool = dev->prp_small_pool;
459                 iod->npages = 0;
460         } else {
461                 pool = dev->prp_page_pool;
462                 iod->npages = 1;
463         }
464
465         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
466         if (!prp_list) {
467                 iod->first_dma = dma_addr;
468                 iod->npages = -1;
469                 return false;
470         }
471         list[0] = prp_list;
472         iod->first_dma = prp_dma;
473         i = 0;
474         for (;;) {
475                 if (i == page_size >> 3) {
476                         __le64 *old_prp_list = prp_list;
477                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
478                         if (!prp_list)
479                                 return false;
480                         list[iod->npages++] = prp_list;
481                         prp_list[0] = old_prp_list[i - 1];
482                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
483                         i = 1;
484                 }
485                 prp_list[i++] = cpu_to_le64(dma_addr);
486                 dma_len -= page_size;
487                 dma_addr += page_size;
488                 length -= page_size;
489                 if (length <= 0)
490                         break;
491                 if (dma_len > 0)
492                         continue;
493                 BUG_ON(dma_len < 0);
494                 sg = sg_next(sg);
495                 dma_addr = sg_dma_address(sg);
496                 dma_len = sg_dma_len(sg);
497         }
498
499         return true;
500 }
501
502 static int nvme_map_data(struct nvme_dev *dev, struct request *req,
503                 struct nvme_command *cmnd)
504 {
505         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
506         struct request_queue *q = req->q;
507         enum dma_data_direction dma_dir = rq_data_dir(req) ?
508                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
509         int ret = BLK_MQ_RQ_QUEUE_ERROR;
510
511         sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
512         iod->nents = blk_rq_map_sg(q, req, iod->sg);
513         if (!iod->nents)
514                 goto out;
515
516         ret = BLK_MQ_RQ_QUEUE_BUSY;
517         if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
518                                 DMA_ATTR_NO_WARN))
519                 goto out;
520
521         if (!nvme_setup_prps(dev, req))
522                 goto out_unmap;
523
524         ret = BLK_MQ_RQ_QUEUE_ERROR;
525         if (blk_integrity_rq(req)) {
526                 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
527                         goto out_unmap;
528
529                 sg_init_table(&iod->meta_sg, 1);
530                 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
531                         goto out_unmap;
532
533                 if (rq_data_dir(req))
534                         nvme_dif_remap(req, nvme_dif_prep);
535
536                 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
537                         goto out_unmap;
538         }
539
540         cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
541         cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
542         if (blk_integrity_rq(req))
543                 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
544         return BLK_MQ_RQ_QUEUE_OK;
545
546 out_unmap:
547         dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
548 out:
549         return ret;
550 }
551
552 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
553 {
554         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
555         enum dma_data_direction dma_dir = rq_data_dir(req) ?
556                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
557
558         if (iod->nents) {
559                 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
560                 if (blk_integrity_rq(req)) {
561                         if (!rq_data_dir(req))
562                                 nvme_dif_remap(req, nvme_dif_complete);
563                         dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
564                 }
565         }
566
567         nvme_cleanup_cmd(req);
568         nvme_free_iod(dev, req);
569 }
570
571 /*
572  * NOTE: ns is NULL when called on the admin queue.
573  */
574 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
575                          const struct blk_mq_queue_data *bd)
576 {
577         struct nvme_ns *ns = hctx->queue->queuedata;
578         struct nvme_queue *nvmeq = hctx->driver_data;
579         struct nvme_dev *dev = nvmeq->dev;
580         struct request *req = bd->rq;
581         struct nvme_command cmnd;
582         int ret = BLK_MQ_RQ_QUEUE_OK;
583
584         /*
585          * If formated with metadata, require the block layer provide a buffer
586          * unless this namespace is formated such that the metadata can be
587          * stripped/generated by the controller with PRACT=1.
588          */
589         if (ns && ns->ms && !blk_integrity_rq(req)) {
590                 if (!(ns->pi_type && ns->ms == 8) &&
591                     !blk_rq_is_passthrough(req)) {
592                         blk_mq_end_request(req, -EFAULT);
593                         return BLK_MQ_RQ_QUEUE_OK;
594                 }
595         }
596
597         ret = nvme_setup_cmd(ns, req, &cmnd);
598         if (ret != BLK_MQ_RQ_QUEUE_OK)
599                 return ret;
600
601         ret = nvme_init_iod(req, dev);
602         if (ret != BLK_MQ_RQ_QUEUE_OK)
603                 goto out_free_cmd;
604
605         if (blk_rq_nr_phys_segments(req))
606                 ret = nvme_map_data(dev, req, &cmnd);
607
608         if (ret != BLK_MQ_RQ_QUEUE_OK)
609                 goto out_cleanup_iod;
610
611         blk_mq_start_request(req);
612
613         spin_lock_irq(&nvmeq->q_lock);
614         if (unlikely(nvmeq->cq_vector < 0)) {
615                 if (ns && !test_bit(NVME_NS_DEAD, &ns->flags))
616                         ret = BLK_MQ_RQ_QUEUE_BUSY;
617                 else
618                         ret = BLK_MQ_RQ_QUEUE_ERROR;
619                 spin_unlock_irq(&nvmeq->q_lock);
620                 goto out_cleanup_iod;
621         }
622         __nvme_submit_cmd(nvmeq, &cmnd);
623         nvme_process_cq(nvmeq);
624         spin_unlock_irq(&nvmeq->q_lock);
625         return BLK_MQ_RQ_QUEUE_OK;
626 out_cleanup_iod:
627         nvme_free_iod(dev, req);
628 out_free_cmd:
629         nvme_cleanup_cmd(req);
630         return ret;
631 }
632
633 static void nvme_complete_rq(struct request *req)
634 {
635         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
636         struct nvme_dev *dev = iod->nvmeq->dev;
637         int error = 0;
638
639         nvme_unmap_data(dev, req);
640
641         if (unlikely(req->errors)) {
642                 if (nvme_req_needs_retry(req, req->errors)) {
643                         req->retries++;
644                         nvme_requeue_req(req);
645                         return;
646                 }
647
648                 if (blk_rq_is_passthrough(req))
649                         error = req->errors;
650                 else
651                         error = nvme_error_status(req->errors);
652         }
653
654         if (unlikely(iod->aborted)) {
655                 dev_warn(dev->ctrl.device,
656                         "completing aborted command with status: %04x\n",
657                         req->errors);
658         }
659
660         blk_mq_end_request(req, error);
661 }
662
663 /* We read the CQE phase first to check if the rest of the entry is valid */
664 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
665                 u16 phase)
666 {
667         return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
668 }
669
670 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
671 {
672         u16 head, phase;
673
674         head = nvmeq->cq_head;
675         phase = nvmeq->cq_phase;
676
677         while (nvme_cqe_valid(nvmeq, head, phase)) {
678                 struct nvme_completion cqe = nvmeq->cqes[head];
679                 struct request *req;
680
681                 if (++head == nvmeq->q_depth) {
682                         head = 0;
683                         phase = !phase;
684                 }
685
686                 if (tag && *tag == cqe.command_id)
687                         *tag = -1;
688
689                 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
690                         dev_warn(nvmeq->dev->ctrl.device,
691                                 "invalid id %d completed on queue %d\n",
692                                 cqe.command_id, le16_to_cpu(cqe.sq_id));
693                         continue;
694                 }
695
696                 /*
697                  * AEN requests are special as they don't time out and can
698                  * survive any kind of queue freeze and often don't respond to
699                  * aborts.  We don't even bother to allocate a struct request
700                  * for them but rather special case them here.
701                  */
702                 if (unlikely(nvmeq->qid == 0 &&
703                                 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
704                         nvme_complete_async_event(&nvmeq->dev->ctrl,
705                                         cqe.status, &cqe.result);
706                         continue;
707                 }
708
709                 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
710                 nvme_req(req)->result = cqe.result;
711                 blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1);
712         }
713
714         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
715                 return;
716
717         if (likely(nvmeq->cq_vector >= 0))
718                 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
719         nvmeq->cq_head = head;
720         nvmeq->cq_phase = phase;
721
722         nvmeq->cqe_seen = 1;
723 }
724
725 static void nvme_process_cq(struct nvme_queue *nvmeq)
726 {
727         __nvme_process_cq(nvmeq, NULL);
728 }
729
730 static irqreturn_t nvme_irq(int irq, void *data)
731 {
732         irqreturn_t result;
733         struct nvme_queue *nvmeq = data;
734         spin_lock(&nvmeq->q_lock);
735         nvme_process_cq(nvmeq);
736         result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
737         nvmeq->cqe_seen = 0;
738         spin_unlock(&nvmeq->q_lock);
739         return result;
740 }
741
742 static irqreturn_t nvme_irq_check(int irq, void *data)
743 {
744         struct nvme_queue *nvmeq = data;
745         if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
746                 return IRQ_WAKE_THREAD;
747         return IRQ_NONE;
748 }
749
750 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
751 {
752         struct nvme_queue *nvmeq = hctx->driver_data;
753
754         if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
755                 spin_lock_irq(&nvmeq->q_lock);
756                 __nvme_process_cq(nvmeq, &tag);
757                 spin_unlock_irq(&nvmeq->q_lock);
758
759                 if (tag == -1)
760                         return 1;
761         }
762
763         return 0;
764 }
765
766 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
767 {
768         struct nvme_dev *dev = to_nvme_dev(ctrl);
769         struct nvme_queue *nvmeq = dev->queues[0];
770         struct nvme_command c;
771
772         memset(&c, 0, sizeof(c));
773         c.common.opcode = nvme_admin_async_event;
774         c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
775
776         spin_lock_irq(&nvmeq->q_lock);
777         __nvme_submit_cmd(nvmeq, &c);
778         spin_unlock_irq(&nvmeq->q_lock);
779 }
780
781 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
782 {
783         struct nvme_command c;
784
785         memset(&c, 0, sizeof(c));
786         c.delete_queue.opcode = opcode;
787         c.delete_queue.qid = cpu_to_le16(id);
788
789         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
790 }
791
792 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
793                                                 struct nvme_queue *nvmeq)
794 {
795         struct nvme_command c;
796         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
797
798         /*
799          * Note: we (ab)use the fact the the prp fields survive if no data
800          * is attached to the request.
801          */
802         memset(&c, 0, sizeof(c));
803         c.create_cq.opcode = nvme_admin_create_cq;
804         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
805         c.create_cq.cqid = cpu_to_le16(qid);
806         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
807         c.create_cq.cq_flags = cpu_to_le16(flags);
808         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
809
810         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
811 }
812
813 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
814                                                 struct nvme_queue *nvmeq)
815 {
816         struct nvme_command c;
817         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
818
819         /*
820          * Note: we (ab)use the fact the the prp fields survive if no data
821          * is attached to the request.
822          */
823         memset(&c, 0, sizeof(c));
824         c.create_sq.opcode = nvme_admin_create_sq;
825         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
826         c.create_sq.sqid = cpu_to_le16(qid);
827         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
828         c.create_sq.sq_flags = cpu_to_le16(flags);
829         c.create_sq.cqid = cpu_to_le16(qid);
830
831         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
832 }
833
834 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
835 {
836         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
837 }
838
839 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
840 {
841         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
842 }
843
844 static void abort_endio(struct request *req, int error)
845 {
846         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
847         struct nvme_queue *nvmeq = iod->nvmeq;
848         u16 status = req->errors;
849
850         dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
851         atomic_inc(&nvmeq->dev->ctrl.abort_limit);
852         blk_mq_free_request(req);
853 }
854
855 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
856 {
857         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
858         struct nvme_queue *nvmeq = iod->nvmeq;
859         struct nvme_dev *dev = nvmeq->dev;
860         struct request *abort_req;
861         struct nvme_command cmd;
862
863         /*
864          * Shutdown immediately if controller times out while starting. The
865          * reset work will see the pci device disabled when it gets the forced
866          * cancellation error. All outstanding requests are completed on
867          * shutdown, so we return BLK_EH_HANDLED.
868          */
869         if (dev->ctrl.state == NVME_CTRL_RESETTING) {
870                 dev_warn(dev->ctrl.device,
871                          "I/O %d QID %d timeout, disable controller\n",
872                          req->tag, nvmeq->qid);
873                 nvme_dev_disable(dev, false);
874                 req->errors = NVME_SC_CANCELLED;
875                 return BLK_EH_HANDLED;
876         }
877
878         /*
879          * Shutdown the controller immediately and schedule a reset if the
880          * command was already aborted once before and still hasn't been
881          * returned to the driver, or if this is the admin queue.
882          */
883         if (!nvmeq->qid || iod->aborted) {
884                 dev_warn(dev->ctrl.device,
885                          "I/O %d QID %d timeout, reset controller\n",
886                          req->tag, nvmeq->qid);
887                 nvme_dev_disable(dev, false);
888                 nvme_reset(dev);
889
890                 /*
891                  * Mark the request as handled, since the inline shutdown
892                  * forces all outstanding requests to complete.
893                  */
894                 req->errors = NVME_SC_CANCELLED;
895                 return BLK_EH_HANDLED;
896         }
897
898         iod->aborted = 1;
899
900         if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
901                 atomic_inc(&dev->ctrl.abort_limit);
902                 return BLK_EH_RESET_TIMER;
903         }
904
905         memset(&cmd, 0, sizeof(cmd));
906         cmd.abort.opcode = nvme_admin_abort_cmd;
907         cmd.abort.cid = req->tag;
908         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
909
910         dev_warn(nvmeq->dev->ctrl.device,
911                 "I/O %d QID %d timeout, aborting\n",
912                  req->tag, nvmeq->qid);
913
914         abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
915                         BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
916         if (IS_ERR(abort_req)) {
917                 atomic_inc(&dev->ctrl.abort_limit);
918                 return BLK_EH_RESET_TIMER;
919         }
920
921         abort_req->timeout = ADMIN_TIMEOUT;
922         abort_req->end_io_data = NULL;
923         blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
924
925         /*
926          * The aborted req will be completed on receiving the abort req.
927          * We enable the timer again. If hit twice, it'll cause a device reset,
928          * as the device then is in a faulty state.
929          */
930         return BLK_EH_RESET_TIMER;
931 }
932
933 static void nvme_free_queue(struct nvme_queue *nvmeq)
934 {
935         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
936                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
937         if (nvmeq->sq_cmds)
938                 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
939                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
940         kfree(nvmeq);
941 }
942
943 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
944 {
945         int i;
946
947         for (i = dev->queue_count - 1; i >= lowest; i--) {
948                 struct nvme_queue *nvmeq = dev->queues[i];
949                 dev->queue_count--;
950                 dev->queues[i] = NULL;
951                 nvme_free_queue(nvmeq);
952         }
953 }
954
955 /**
956  * nvme_suspend_queue - put queue into suspended state
957  * @nvmeq - queue to suspend
958  */
959 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
960 {
961         int vector;
962
963         spin_lock_irq(&nvmeq->q_lock);
964         if (nvmeq->cq_vector == -1) {
965                 spin_unlock_irq(&nvmeq->q_lock);
966                 return 1;
967         }
968         vector = nvmeq_irq(nvmeq);
969         nvmeq->dev->online_queues--;
970         nvmeq->cq_vector = -1;
971         spin_unlock_irq(&nvmeq->q_lock);
972
973         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
974                 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
975
976         free_irq(vector, nvmeq);
977
978         return 0;
979 }
980
981 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
982 {
983         struct nvme_queue *nvmeq = dev->queues[0];
984
985         if (!nvmeq)
986                 return;
987         if (nvme_suspend_queue(nvmeq))
988                 return;
989
990         if (shutdown)
991                 nvme_shutdown_ctrl(&dev->ctrl);
992         else
993                 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
994                                                 dev->bar + NVME_REG_CAP));
995
996         spin_lock_irq(&nvmeq->q_lock);
997         nvme_process_cq(nvmeq);
998         spin_unlock_irq(&nvmeq->q_lock);
999 }
1000
1001 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1002                                 int entry_size)
1003 {
1004         int q_depth = dev->q_depth;
1005         unsigned q_size_aligned = roundup(q_depth * entry_size,
1006                                           dev->ctrl.page_size);
1007
1008         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1009                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1010                 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1011                 q_depth = div_u64(mem_per_q, entry_size);
1012
1013                 /*
1014                  * Ensure the reduced q_depth is above some threshold where it
1015                  * would be better to map queues in system memory with the
1016                  * original depth
1017                  */
1018                 if (q_depth < 64)
1019                         return -ENOMEM;
1020         }
1021
1022         return q_depth;
1023 }
1024
1025 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1026                                 int qid, int depth)
1027 {
1028         if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1029                 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1030                                                       dev->ctrl.page_size);
1031                 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1032                 nvmeq->sq_cmds_io = dev->cmb + offset;
1033         } else {
1034                 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1035                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
1036                 if (!nvmeq->sq_cmds)
1037                         return -ENOMEM;
1038         }
1039
1040         return 0;
1041 }
1042
1043 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1044                                                         int depth)
1045 {
1046         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1047         if (!nvmeq)
1048                 return NULL;
1049
1050         nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1051                                           &nvmeq->cq_dma_addr, GFP_KERNEL);
1052         if (!nvmeq->cqes)
1053                 goto free_nvmeq;
1054
1055         if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1056                 goto free_cqdma;
1057
1058         nvmeq->q_dmadev = dev->dev;
1059         nvmeq->dev = dev;
1060         snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1061                         dev->ctrl.instance, qid);
1062         spin_lock_init(&nvmeq->q_lock);
1063         nvmeq->cq_head = 0;
1064         nvmeq->cq_phase = 1;
1065         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1066         nvmeq->q_depth = depth;
1067         nvmeq->qid = qid;
1068         nvmeq->cq_vector = -1;
1069         dev->queues[qid] = nvmeq;
1070         dev->queue_count++;
1071
1072         return nvmeq;
1073
1074  free_cqdma:
1075         dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1076                                                         nvmeq->cq_dma_addr);
1077  free_nvmeq:
1078         kfree(nvmeq);
1079         return NULL;
1080 }
1081
1082 static int queue_request_irq(struct nvme_queue *nvmeq)
1083 {
1084         if (use_threaded_interrupts)
1085                 return request_threaded_irq(nvmeq_irq(nvmeq), nvme_irq_check,
1086                                 nvme_irq, IRQF_SHARED, nvmeq->irqname, nvmeq);
1087         else
1088                 return request_irq(nvmeq_irq(nvmeq), nvme_irq, IRQF_SHARED,
1089                                 nvmeq->irqname, nvmeq);
1090 }
1091
1092 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1093 {
1094         struct nvme_dev *dev = nvmeq->dev;
1095
1096         spin_lock_irq(&nvmeq->q_lock);
1097         nvmeq->sq_tail = 0;
1098         nvmeq->cq_head = 0;
1099         nvmeq->cq_phase = 1;
1100         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1101         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1102         dev->online_queues++;
1103         spin_unlock_irq(&nvmeq->q_lock);
1104 }
1105
1106 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1107 {
1108         struct nvme_dev *dev = nvmeq->dev;
1109         int result;
1110
1111         nvmeq->cq_vector = qid - 1;
1112         result = adapter_alloc_cq(dev, qid, nvmeq);
1113         if (result < 0)
1114                 return result;
1115
1116         result = adapter_alloc_sq(dev, qid, nvmeq);
1117         if (result < 0)
1118                 goto release_cq;
1119
1120         result = queue_request_irq(nvmeq);
1121         if (result < 0)
1122                 goto release_sq;
1123
1124         nvme_init_queue(nvmeq, qid);
1125         return result;
1126
1127  release_sq:
1128         adapter_delete_sq(dev, qid);
1129  release_cq:
1130         adapter_delete_cq(dev, qid);
1131         return result;
1132 }
1133
1134 static struct blk_mq_ops nvme_mq_admin_ops = {
1135         .queue_rq       = nvme_queue_rq,
1136         .complete       = nvme_complete_rq,
1137         .init_hctx      = nvme_admin_init_hctx,
1138         .exit_hctx      = nvme_admin_exit_hctx,
1139         .init_request   = nvme_admin_init_request,
1140         .timeout        = nvme_timeout,
1141 };
1142
1143 static struct blk_mq_ops nvme_mq_ops = {
1144         .queue_rq       = nvme_queue_rq,
1145         .complete       = nvme_complete_rq,
1146         .init_hctx      = nvme_init_hctx,
1147         .init_request   = nvme_init_request,
1148         .map_queues     = nvme_pci_map_queues,
1149         .timeout        = nvme_timeout,
1150         .poll           = nvme_poll,
1151 };
1152
1153 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1154 {
1155         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1156                 /*
1157                  * If the controller was reset during removal, it's possible
1158                  * user requests may be waiting on a stopped queue. Start the
1159                  * queue to flush these to completion.
1160                  */
1161                 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1162                 blk_cleanup_queue(dev->ctrl.admin_q);
1163                 blk_mq_free_tag_set(&dev->admin_tagset);
1164         }
1165 }
1166
1167 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1168 {
1169         if (!dev->ctrl.admin_q) {
1170                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1171                 dev->admin_tagset.nr_hw_queues = 1;
1172
1173                 /*
1174                  * Subtract one to leave an empty queue entry for 'Full Queue'
1175                  * condition. See NVM-Express 1.2 specification, section 4.1.2.
1176                  */
1177                 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1178                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1179                 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1180                 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1181                 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1182                 dev->admin_tagset.driver_data = dev;
1183
1184                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1185                         return -ENOMEM;
1186
1187                 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1188                 if (IS_ERR(dev->ctrl.admin_q)) {
1189                         blk_mq_free_tag_set(&dev->admin_tagset);
1190                         return -ENOMEM;
1191                 }
1192                 if (!blk_get_queue(dev->ctrl.admin_q)) {
1193                         nvme_dev_remove_admin(dev);
1194                         dev->ctrl.admin_q = NULL;
1195                         return -ENODEV;
1196                 }
1197         } else
1198                 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1199
1200         return 0;
1201 }
1202
1203 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1204 {
1205         int result;
1206         u32 aqa;
1207         u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1208         struct nvme_queue *nvmeq;
1209
1210         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1211                                                 NVME_CAP_NSSRC(cap) : 0;
1212
1213         if (dev->subsystem &&
1214             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1215                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1216
1217         result = nvme_disable_ctrl(&dev->ctrl, cap);
1218         if (result < 0)
1219                 return result;
1220
1221         nvmeq = dev->queues[0];
1222         if (!nvmeq) {
1223                 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1224                 if (!nvmeq)
1225                         return -ENOMEM;
1226         }
1227
1228         aqa = nvmeq->q_depth - 1;
1229         aqa |= aqa << 16;
1230
1231         writel(aqa, dev->bar + NVME_REG_AQA);
1232         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1233         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1234
1235         result = nvme_enable_ctrl(&dev->ctrl, cap);
1236         if (result)
1237                 return result;
1238
1239         nvmeq->cq_vector = 0;
1240         result = queue_request_irq(nvmeq);
1241         if (result) {
1242                 nvmeq->cq_vector = -1;
1243                 return result;
1244         }
1245
1246         return result;
1247 }
1248
1249 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1250 {
1251
1252         /* If true, indicates loss of adapter communication, possibly by a
1253          * NVMe Subsystem reset.
1254          */
1255         bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1256
1257         /* If there is a reset ongoing, we shouldn't reset again. */
1258         if (work_busy(&dev->reset_work))
1259                 return false;
1260
1261         /* We shouldn't reset unless the controller is on fatal error state
1262          * _or_ if we lost the communication with it.
1263          */
1264         if (!(csts & NVME_CSTS_CFS) && !nssro)
1265                 return false;
1266
1267         /* If PCI error recovery process is happening, we cannot reset or
1268          * the recovery mechanism will surely fail.
1269          */
1270         if (pci_channel_offline(to_pci_dev(dev->dev)))
1271                 return false;
1272
1273         return true;
1274 }
1275
1276 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1277 {
1278         /* Read a config register to help see what died. */
1279         u16 pci_status;
1280         int result;
1281
1282         result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1283                                       &pci_status);
1284         if (result == PCIBIOS_SUCCESSFUL)
1285                 dev_warn(dev->dev,
1286                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1287                          csts, pci_status);
1288         else
1289                 dev_warn(dev->dev,
1290                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1291                          csts, result);
1292 }
1293
1294 static void nvme_watchdog_timer(unsigned long data)
1295 {
1296         struct nvme_dev *dev = (struct nvme_dev *)data;
1297         u32 csts = readl(dev->bar + NVME_REG_CSTS);
1298
1299         /* Skip controllers under certain specific conditions. */
1300         if (nvme_should_reset(dev, csts)) {
1301                 if (!nvme_reset(dev))
1302                         nvme_warn_reset(dev, csts);
1303                 return;
1304         }
1305
1306         mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1307 }
1308
1309 static int nvme_create_io_queues(struct nvme_dev *dev)
1310 {
1311         unsigned i, max;
1312         int ret = 0;
1313
1314         for (i = dev->queue_count; i <= dev->max_qid; i++) {
1315                 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1316                         ret = -ENOMEM;
1317                         break;
1318                 }
1319         }
1320
1321         max = min(dev->max_qid, dev->queue_count - 1);
1322         for (i = dev->online_queues; i <= max; i++) {
1323                 ret = nvme_create_queue(dev->queues[i], i);
1324                 if (ret)
1325                         break;
1326         }
1327
1328         /*
1329          * Ignore failing Create SQ/CQ commands, we can continue with less
1330          * than the desired aount of queues, and even a controller without
1331          * I/O queues an still be used to issue admin commands.  This might
1332          * be useful to upgrade a buggy firmware for example.
1333          */
1334         return ret >= 0 ? 0 : ret;
1335 }
1336
1337 static ssize_t nvme_cmb_show(struct device *dev,
1338                              struct device_attribute *attr,
1339                              char *buf)
1340 {
1341         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1342
1343         return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1344                        ndev->cmbloc, ndev->cmbsz);
1345 }
1346 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1347
1348 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1349 {
1350         u64 szu, size, offset;
1351         resource_size_t bar_size;
1352         struct pci_dev *pdev = to_pci_dev(dev->dev);
1353         void __iomem *cmb;
1354         dma_addr_t dma_addr;
1355
1356         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1357         if (!(NVME_CMB_SZ(dev->cmbsz)))
1358                 return NULL;
1359         dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1360
1361         if (!use_cmb_sqes)
1362                 return NULL;
1363
1364         szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1365         size = szu * NVME_CMB_SZ(dev->cmbsz);
1366         offset = szu * NVME_CMB_OFST(dev->cmbloc);
1367         bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
1368
1369         if (offset > bar_size)
1370                 return NULL;
1371
1372         /*
1373          * Controllers may support a CMB size larger than their BAR,
1374          * for example, due to being behind a bridge. Reduce the CMB to
1375          * the reported size of the BAR
1376          */
1377         if (size > bar_size - offset)
1378                 size = bar_size - offset;
1379
1380         dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
1381         cmb = ioremap_wc(dma_addr, size);
1382         if (!cmb)
1383                 return NULL;
1384
1385         dev->cmb_dma_addr = dma_addr;
1386         dev->cmb_size = size;
1387         return cmb;
1388 }
1389
1390 static inline void nvme_release_cmb(struct nvme_dev *dev)
1391 {
1392         if (dev->cmb) {
1393                 iounmap(dev->cmb);
1394                 dev->cmb = NULL;
1395         }
1396 }
1397
1398 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1399 {
1400         return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1401 }
1402
1403 static int nvme_setup_io_queues(struct nvme_dev *dev)
1404 {
1405         struct nvme_queue *adminq = dev->queues[0];
1406         struct pci_dev *pdev = to_pci_dev(dev->dev);
1407         int result, nr_io_queues, size;
1408
1409         nr_io_queues = num_online_cpus();
1410         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1411         if (result < 0)
1412                 return result;
1413
1414         if (nr_io_queues == 0)
1415                 return 0;
1416
1417         if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1418                 result = nvme_cmb_qdepth(dev, nr_io_queues,
1419                                 sizeof(struct nvme_command));
1420                 if (result > 0)
1421                         dev->q_depth = result;
1422                 else
1423                         nvme_release_cmb(dev);
1424         }
1425
1426         size = db_bar_size(dev, nr_io_queues);
1427         if (size > 8192) {
1428                 iounmap(dev->bar);
1429                 do {
1430                         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1431                         if (dev->bar)
1432                                 break;
1433                         if (!--nr_io_queues)
1434                                 return -ENOMEM;
1435                         size = db_bar_size(dev, nr_io_queues);
1436                 } while (1);
1437                 dev->dbs = dev->bar + 4096;
1438                 adminq->q_db = dev->dbs;
1439         }
1440
1441         /* Deregister the admin queue's interrupt */
1442         free_irq(pci_irq_vector(pdev, 0), adminq);
1443
1444         /*
1445          * If we enable msix early due to not intx, disable it again before
1446          * setting up the full range we need.
1447          */
1448         pci_free_irq_vectors(pdev);
1449         nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1450                         PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1451         if (nr_io_queues <= 0)
1452                 return -EIO;
1453         dev->max_qid = nr_io_queues;
1454
1455         /*
1456          * Should investigate if there's a performance win from allocating
1457          * more queues than interrupt vectors; it might allow the submission
1458          * path to scale better, even if the receive path is limited by the
1459          * number of interrupts.
1460          */
1461
1462         result = queue_request_irq(adminq);
1463         if (result) {
1464                 adminq->cq_vector = -1;
1465                 return result;
1466         }
1467         return nvme_create_io_queues(dev);
1468 }
1469
1470 static void nvme_del_queue_end(struct request *req, int error)
1471 {
1472         struct nvme_queue *nvmeq = req->end_io_data;
1473
1474         blk_mq_free_request(req);
1475         complete(&nvmeq->dev->ioq_wait);
1476 }
1477
1478 static void nvme_del_cq_end(struct request *req, int error)
1479 {
1480         struct nvme_queue *nvmeq = req->end_io_data;
1481
1482         if (!error) {
1483                 unsigned long flags;
1484
1485                 /*
1486                  * We might be called with the AQ q_lock held
1487                  * and the I/O queue q_lock should always
1488                  * nest inside the AQ one.
1489                  */
1490                 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1491                                         SINGLE_DEPTH_NESTING);
1492                 nvme_process_cq(nvmeq);
1493                 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1494         }
1495
1496         nvme_del_queue_end(req, error);
1497 }
1498
1499 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1500 {
1501         struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1502         struct request *req;
1503         struct nvme_command cmd;
1504
1505         memset(&cmd, 0, sizeof(cmd));
1506         cmd.delete_queue.opcode = opcode;
1507         cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1508
1509         req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1510         if (IS_ERR(req))
1511                 return PTR_ERR(req);
1512
1513         req->timeout = ADMIN_TIMEOUT;
1514         req->end_io_data = nvmeq;
1515
1516         blk_execute_rq_nowait(q, NULL, req, false,
1517                         opcode == nvme_admin_delete_cq ?
1518                                 nvme_del_cq_end : nvme_del_queue_end);
1519         return 0;
1520 }
1521
1522 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
1523 {
1524         int pass;
1525         unsigned long timeout;
1526         u8 opcode = nvme_admin_delete_sq;
1527
1528         for (pass = 0; pass < 2; pass++) {
1529                 int sent = 0, i = queues;
1530
1531                 reinit_completion(&dev->ioq_wait);
1532  retry:
1533                 timeout = ADMIN_TIMEOUT;
1534                 for (; i > 0; i--, sent++)
1535                         if (nvme_delete_queue(dev->queues[i], opcode))
1536                                 break;
1537
1538                 while (sent--) {
1539                         timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1540                         if (timeout == 0)
1541                                 return;
1542                         if (i)
1543                                 goto retry;
1544                 }
1545                 opcode = nvme_admin_delete_cq;
1546         }
1547 }
1548
1549 /*
1550  * Return: error value if an error occurred setting up the queues or calling
1551  * Identify Device.  0 if these succeeded, even if adding some of the
1552  * namespaces failed.  At the moment, these failures are silent.  TBD which
1553  * failures should be reported.
1554  */
1555 static int nvme_dev_add(struct nvme_dev *dev)
1556 {
1557         if (!dev->ctrl.tagset) {
1558                 dev->tagset.ops = &nvme_mq_ops;
1559                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1560                 dev->tagset.timeout = NVME_IO_TIMEOUT;
1561                 dev->tagset.numa_node = dev_to_node(dev->dev);
1562                 dev->tagset.queue_depth =
1563                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1564                 dev->tagset.cmd_size = nvme_cmd_size(dev);
1565                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1566                 dev->tagset.driver_data = dev;
1567
1568                 if (blk_mq_alloc_tag_set(&dev->tagset))
1569                         return 0;
1570                 dev->ctrl.tagset = &dev->tagset;
1571         } else {
1572                 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1573
1574                 /* Free previously allocated queues that are no longer usable */
1575                 nvme_free_queues(dev, dev->online_queues);
1576         }
1577
1578         return 0;
1579 }
1580
1581 static int nvme_pci_enable(struct nvme_dev *dev)
1582 {
1583         u64 cap;
1584         int result = -ENOMEM;
1585         struct pci_dev *pdev = to_pci_dev(dev->dev);
1586
1587         if (pci_enable_device_mem(pdev))
1588                 return result;
1589
1590         pci_set_master(pdev);
1591
1592         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1593             dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1594                 goto disable;
1595
1596         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1597                 result = -ENODEV;
1598                 goto disable;
1599         }
1600
1601         /*
1602          * Some devices and/or platforms don't advertise or work with INTx
1603          * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1604          * adjust this later.
1605          */
1606         result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1607         if (result < 0)
1608                 return result;
1609
1610         cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1611
1612         dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1613         dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1614         dev->dbs = dev->bar + 4096;
1615
1616         /*
1617          * Temporary fix for the Apple controller found in the MacBook8,1 and
1618          * some MacBook7,1 to avoid controller resets and data loss.
1619          */
1620         if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1621                 dev->q_depth = 2;
1622                 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1623                         "queue depth=%u to work around controller resets\n",
1624                         dev->q_depth);
1625         }
1626
1627         /*
1628          * CMBs can currently only exist on >=1.2 PCIe devices. We only
1629          * populate sysfs if a CMB is implemented. Note that we add the
1630          * CMB attribute to the nvme_ctrl kobj which removes the need to remove
1631          * it on exit. Since nvme_dev_attrs_group has no name we can pass
1632          * NULL as final argument to sysfs_add_file_to_group.
1633          */
1634
1635         if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
1636                 dev->cmb = nvme_map_cmb(dev);
1637
1638                 if (dev->cmbsz) {
1639                         if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1640                                                     &dev_attr_cmb.attr, NULL))
1641                                 dev_warn(dev->dev,
1642                                          "failed to add sysfs attribute for CMB\n");
1643                 }
1644         }
1645
1646         pci_enable_pcie_error_reporting(pdev);
1647         pci_save_state(pdev);
1648         return 0;
1649
1650  disable:
1651         pci_disable_device(pdev);
1652         return result;
1653 }
1654
1655 static void nvme_dev_unmap(struct nvme_dev *dev)
1656 {
1657         if (dev->bar)
1658                 iounmap(dev->bar);
1659         pci_release_mem_regions(to_pci_dev(dev->dev));
1660 }
1661
1662 static void nvme_pci_disable(struct nvme_dev *dev)
1663 {
1664         struct pci_dev *pdev = to_pci_dev(dev->dev);
1665
1666         pci_free_irq_vectors(pdev);
1667
1668         if (pci_is_enabled(pdev)) {
1669                 pci_disable_pcie_error_reporting(pdev);
1670                 pci_disable_device(pdev);
1671         }
1672 }
1673
1674 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1675 {
1676         int i, queues;
1677         u32 csts = -1;
1678
1679         del_timer_sync(&dev->watchdog_timer);
1680
1681         mutex_lock(&dev->shutdown_lock);
1682         if (pci_is_enabled(to_pci_dev(dev->dev))) {
1683                 nvme_stop_queues(&dev->ctrl);
1684                 csts = readl(dev->bar + NVME_REG_CSTS);
1685         }
1686
1687         queues = dev->online_queues - 1;
1688         for (i = dev->queue_count - 1; i > 0; i--)
1689                 nvme_suspend_queue(dev->queues[i]);
1690
1691         if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
1692                 /* A device might become IO incapable very soon during
1693                  * probe, before the admin queue is configured. Thus,
1694                  * queue_count can be 0 here.
1695                  */
1696                 if (dev->queue_count)
1697                         nvme_suspend_queue(dev->queues[0]);
1698         } else {
1699                 nvme_disable_io_queues(dev, queues);
1700                 nvme_disable_admin_queue(dev, shutdown);
1701         }
1702         nvme_pci_disable(dev);
1703
1704         blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
1705         blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
1706         mutex_unlock(&dev->shutdown_lock);
1707 }
1708
1709 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1710 {
1711         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1712                                                 PAGE_SIZE, PAGE_SIZE, 0);
1713         if (!dev->prp_page_pool)
1714                 return -ENOMEM;
1715
1716         /* Optimisation for I/Os between 4k and 128k */
1717         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1718                                                 256, 256, 0);
1719         if (!dev->prp_small_pool) {
1720                 dma_pool_destroy(dev->prp_page_pool);
1721                 return -ENOMEM;
1722         }
1723         return 0;
1724 }
1725
1726 static void nvme_release_prp_pools(struct nvme_dev *dev)
1727 {
1728         dma_pool_destroy(dev->prp_page_pool);
1729         dma_pool_destroy(dev->prp_small_pool);
1730 }
1731
1732 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1733 {
1734         struct nvme_dev *dev = to_nvme_dev(ctrl);
1735
1736         put_device(dev->dev);
1737         if (dev->tagset.tags)
1738                 blk_mq_free_tag_set(&dev->tagset);
1739         if (dev->ctrl.admin_q)
1740                 blk_put_queue(dev->ctrl.admin_q);
1741         kfree(dev->queues);
1742         kfree(dev);
1743 }
1744
1745 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1746 {
1747         dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
1748
1749         kref_get(&dev->ctrl.kref);
1750         nvme_dev_disable(dev, false);
1751         if (!schedule_work(&dev->remove_work))
1752                 nvme_put_ctrl(&dev->ctrl);
1753 }
1754
1755 static void nvme_reset_work(struct work_struct *work)
1756 {
1757         struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
1758         int result = -ENODEV;
1759
1760         if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING))
1761                 goto out;
1762
1763         /*
1764          * If we're called to reset a live controller first shut it down before
1765          * moving on.
1766          */
1767         if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
1768                 nvme_dev_disable(dev, false);
1769
1770         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
1771                 goto out;
1772
1773         result = nvme_pci_enable(dev);
1774         if (result)
1775                 goto out;
1776
1777         result = nvme_configure_admin_queue(dev);
1778         if (result)
1779                 goto out;
1780
1781         nvme_init_queue(dev->queues[0], 0);
1782         result = nvme_alloc_admin_tags(dev);
1783         if (result)
1784                 goto out;
1785
1786         result = nvme_init_identify(&dev->ctrl);
1787         if (result)
1788                 goto out;
1789
1790         result = nvme_setup_io_queues(dev);
1791         if (result)
1792                 goto out;
1793
1794         /*
1795          * A controller that can not execute IO typically requires user
1796          * intervention to correct. For such degraded controllers, the driver
1797          * should not submit commands the user did not request, so skip
1798          * registering for asynchronous event notification on this condition.
1799          */
1800         if (dev->online_queues > 1)
1801                 nvme_queue_async_events(&dev->ctrl);
1802
1803         mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1804
1805         /*
1806          * Keep the controller around but remove all namespaces if we don't have
1807          * any working I/O queue.
1808          */
1809         if (dev->online_queues < 2) {
1810                 dev_warn(dev->ctrl.device, "IO queues not created\n");
1811                 nvme_kill_queues(&dev->ctrl);
1812                 nvme_remove_namespaces(&dev->ctrl);
1813         } else {
1814                 nvme_start_queues(&dev->ctrl);
1815                 nvme_dev_add(dev);
1816         }
1817
1818         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
1819                 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
1820                 goto out;
1821         }
1822
1823         if (dev->online_queues > 1)
1824                 nvme_queue_scan(&dev->ctrl);
1825         return;
1826
1827  out:
1828         nvme_remove_dead_ctrl(dev, result);
1829 }
1830
1831 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
1832 {
1833         struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
1834         struct pci_dev *pdev = to_pci_dev(dev->dev);
1835
1836         nvme_kill_queues(&dev->ctrl);
1837         if (pci_get_drvdata(pdev))
1838                 device_release_driver(&pdev->dev);
1839         nvme_put_ctrl(&dev->ctrl);
1840 }
1841
1842 static int nvme_reset(struct nvme_dev *dev)
1843 {
1844         if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
1845                 return -ENODEV;
1846         if (work_busy(&dev->reset_work))
1847                 return -ENODEV;
1848         if (!queue_work(nvme_workq, &dev->reset_work))
1849                 return -EBUSY;
1850         return 0;
1851 }
1852
1853 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
1854 {
1855         *val = readl(to_nvme_dev(ctrl)->bar + off);
1856         return 0;
1857 }
1858
1859 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
1860 {
1861         writel(val, to_nvme_dev(ctrl)->bar + off);
1862         return 0;
1863 }
1864
1865 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
1866 {
1867         *val = readq(to_nvme_dev(ctrl)->bar + off);
1868         return 0;
1869 }
1870
1871 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
1872 {
1873         struct nvme_dev *dev = to_nvme_dev(ctrl);
1874         int ret = nvme_reset(dev);
1875
1876         if (!ret)
1877                 flush_work(&dev->reset_work);
1878         return ret;
1879 }
1880
1881 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1882         .name                   = "pcie",
1883         .module                 = THIS_MODULE,
1884         .reg_read32             = nvme_pci_reg_read32,
1885         .reg_write32            = nvme_pci_reg_write32,
1886         .reg_read64             = nvme_pci_reg_read64,
1887         .reset_ctrl             = nvme_pci_reset_ctrl,
1888         .free_ctrl              = nvme_pci_free_ctrl,
1889         .submit_async_event     = nvme_pci_submit_async_event,
1890 };
1891
1892 static int nvme_dev_map(struct nvme_dev *dev)
1893 {
1894         struct pci_dev *pdev = to_pci_dev(dev->dev);
1895
1896         if (pci_request_mem_regions(pdev, "nvme"))
1897                 return -ENODEV;
1898
1899         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1900         if (!dev->bar)
1901                 goto release;
1902
1903         return 0;
1904   release:
1905         pci_release_mem_regions(pdev);
1906         return -ENODEV;
1907 }
1908
1909 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1910 {
1911         int node, result = -ENOMEM;
1912         struct nvme_dev *dev;
1913
1914         node = dev_to_node(&pdev->dev);
1915         if (node == NUMA_NO_NODE)
1916                 set_dev_node(&pdev->dev, first_memory_node);
1917
1918         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
1919         if (!dev)
1920                 return -ENOMEM;
1921         dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
1922                                                         GFP_KERNEL, node);
1923         if (!dev->queues)
1924                 goto free;
1925
1926         dev->dev = get_device(&pdev->dev);
1927         pci_set_drvdata(pdev, dev);
1928
1929         result = nvme_dev_map(dev);
1930         if (result)
1931                 goto free;
1932
1933         INIT_WORK(&dev->reset_work, nvme_reset_work);
1934         INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
1935         setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
1936                 (unsigned long)dev);
1937         mutex_init(&dev->shutdown_lock);
1938         init_completion(&dev->ioq_wait);
1939
1940         result = nvme_setup_prp_pools(dev);
1941         if (result)
1942                 goto put_pci;
1943
1944         result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
1945                         id->driver_data);
1946         if (result)
1947                 goto release_pools;
1948
1949         dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
1950
1951         queue_work(nvme_workq, &dev->reset_work);
1952         return 0;
1953
1954  release_pools:
1955         nvme_release_prp_pools(dev);
1956  put_pci:
1957         put_device(dev->dev);
1958         nvme_dev_unmap(dev);
1959  free:
1960         kfree(dev->queues);
1961         kfree(dev);
1962         return result;
1963 }
1964
1965 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
1966 {
1967         struct nvme_dev *dev = pci_get_drvdata(pdev);
1968
1969         if (prepare)
1970                 nvme_dev_disable(dev, false);
1971         else
1972                 nvme_reset(dev);
1973 }
1974
1975 static void nvme_shutdown(struct pci_dev *pdev)
1976 {
1977         struct nvme_dev *dev = pci_get_drvdata(pdev);
1978         nvme_dev_disable(dev, true);
1979 }
1980
1981 /*
1982  * The driver's remove may be called on a device in a partially initialized
1983  * state. This function must not have any dependencies on the device state in
1984  * order to proceed.
1985  */
1986 static void nvme_remove(struct pci_dev *pdev)
1987 {
1988         struct nvme_dev *dev = pci_get_drvdata(pdev);
1989
1990         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1991
1992         pci_set_drvdata(pdev, NULL);
1993
1994         if (!pci_device_is_present(pdev))
1995                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
1996
1997         flush_work(&dev->reset_work);
1998         nvme_uninit_ctrl(&dev->ctrl);
1999         nvme_dev_disable(dev, true);
2000         nvme_dev_remove_admin(dev);
2001         nvme_free_queues(dev, 0);
2002         nvme_release_cmb(dev);
2003         nvme_release_prp_pools(dev);
2004         nvme_dev_unmap(dev);
2005         nvme_put_ctrl(&dev->ctrl);
2006 }
2007
2008 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2009 {
2010         int ret = 0;
2011
2012         if (numvfs == 0) {
2013                 if (pci_vfs_assigned(pdev)) {
2014                         dev_warn(&pdev->dev,
2015                                 "Cannot disable SR-IOV VFs while assigned\n");
2016                         return -EPERM;
2017                 }
2018                 pci_disable_sriov(pdev);
2019                 return 0;
2020         }
2021
2022         ret = pci_enable_sriov(pdev, numvfs);
2023         return ret ? ret : numvfs;
2024 }
2025
2026 #ifdef CONFIG_PM_SLEEP
2027 static int nvme_suspend(struct device *dev)
2028 {
2029         struct pci_dev *pdev = to_pci_dev(dev);
2030         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2031
2032         nvme_dev_disable(ndev, true);
2033         return 0;
2034 }
2035
2036 static int nvme_resume(struct device *dev)
2037 {
2038         struct pci_dev *pdev = to_pci_dev(dev);
2039         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2040
2041         nvme_reset(ndev);
2042         return 0;
2043 }
2044 #endif
2045
2046 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2047
2048 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2049                                                 pci_channel_state_t state)
2050 {
2051         struct nvme_dev *dev = pci_get_drvdata(pdev);
2052
2053         /*
2054          * A frozen channel requires a reset. When detected, this method will
2055          * shutdown the controller to quiesce. The controller will be restarted
2056          * after the slot reset through driver's slot_reset callback.
2057          */
2058         switch (state) {
2059         case pci_channel_io_normal:
2060                 return PCI_ERS_RESULT_CAN_RECOVER;
2061         case pci_channel_io_frozen:
2062                 dev_warn(dev->ctrl.device,
2063                         "frozen state error detected, reset controller\n");
2064                 nvme_dev_disable(dev, false);
2065                 return PCI_ERS_RESULT_NEED_RESET;
2066         case pci_channel_io_perm_failure:
2067                 dev_warn(dev->ctrl.device,
2068                         "failure state error detected, request disconnect\n");
2069                 return PCI_ERS_RESULT_DISCONNECT;
2070         }
2071         return PCI_ERS_RESULT_NEED_RESET;
2072 }
2073
2074 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2075 {
2076         struct nvme_dev *dev = pci_get_drvdata(pdev);
2077
2078         dev_info(dev->ctrl.device, "restart after slot reset\n");
2079         pci_restore_state(pdev);
2080         nvme_reset(dev);
2081         return PCI_ERS_RESULT_RECOVERED;
2082 }
2083
2084 static void nvme_error_resume(struct pci_dev *pdev)
2085 {
2086         pci_cleanup_aer_uncorrect_error_status(pdev);
2087 }
2088
2089 static const struct pci_error_handlers nvme_err_handler = {
2090         .error_detected = nvme_error_detected,
2091         .slot_reset     = nvme_slot_reset,
2092         .resume         = nvme_error_resume,
2093         .reset_notify   = nvme_reset_notify,
2094 };
2095
2096 static const struct pci_device_id nvme_id_table[] = {
2097         { PCI_VDEVICE(INTEL, 0x0953),
2098                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2099                                 NVME_QUIRK_DISCARD_ZEROES, },
2100         { PCI_VDEVICE(INTEL, 0x0a53),
2101                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2102                                 NVME_QUIRK_DISCARD_ZEROES, },
2103         { PCI_VDEVICE(INTEL, 0x0a54),
2104                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2105                                 NVME_QUIRK_DISCARD_ZEROES, },
2106         { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
2107                 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2108         { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
2109                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2110         { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
2111                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2112         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2113         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2114         { 0, }
2115 };
2116 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2117
2118 static struct pci_driver nvme_driver = {
2119         .name           = "nvme",
2120         .id_table       = nvme_id_table,
2121         .probe          = nvme_probe,
2122         .remove         = nvme_remove,
2123         .shutdown       = nvme_shutdown,
2124         .driver         = {
2125                 .pm     = &nvme_dev_pm_ops,
2126         },
2127         .sriov_configure = nvme_pci_sriov_configure,
2128         .err_handler    = &nvme_err_handler,
2129 };
2130
2131 static int __init nvme_init(void)
2132 {
2133         int result;
2134
2135         nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2136         if (!nvme_workq)
2137                 return -ENOMEM;
2138
2139         result = pci_register_driver(&nvme_driver);
2140         if (result)
2141                 destroy_workqueue(nvme_workq);
2142         return result;
2143 }
2144
2145 static void __exit nvme_exit(void)
2146 {
2147         pci_unregister_driver(&nvme_driver);
2148         destroy_workqueue(nvme_workq);
2149         _nvme_check_size();
2150 }
2151
2152 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2153 MODULE_LICENSE("GPL");
2154 MODULE_VERSION("1.0");
2155 module_init(nvme_init);
2156 module_exit(nvme_exit);