NVMe: Expose ns wwid through single sysfs entry
[linux-2.6-block.git] / drivers / nvme / host / pci.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/errno.h>
22 #include <linux/fs.h>
23 #include <linux/genhd.h>
24 #include <linux/hdreg.h>
25 #include <linux/idr.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/kdev_t.h>
30 #include <linux/kernel.h>
31 #include <linux/mm.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/mutex.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/ptrace.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/t10-pi.h>
41 #include <linux/timer.h>
42 #include <linux/types.h>
43 #include <linux/io-64-nonatomic-lo-hi.h>
44 #include <asm/unaligned.h>
45
46 #include "nvme.h"
47
48 #define NVME_Q_DEPTH            1024
49 #define NVME_AQ_DEPTH           256
50 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
51 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
52                 
53 /*
54  * We handle AEN commands ourselves and don't even let the
55  * block layer know about them.
56  */
57 #define NVME_NR_AEN_COMMANDS    1
58 #define NVME_AQ_BLKMQ_DEPTH     (NVME_AQ_DEPTH - NVME_NR_AEN_COMMANDS)
59
60 static int use_threaded_interrupts;
61 module_param(use_threaded_interrupts, int, 0);
62
63 static bool use_cmb_sqes = true;
64 module_param(use_cmb_sqes, bool, 0644);
65 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
66
67 static struct workqueue_struct *nvme_workq;
68
69 struct nvme_dev;
70 struct nvme_queue;
71
72 static int nvme_reset(struct nvme_dev *dev);
73 static void nvme_process_cq(struct nvme_queue *nvmeq);
74 static void nvme_remove_dead_ctrl(struct nvme_dev *dev);
75 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
76
77 /*
78  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
79  */
80 struct nvme_dev {
81         struct nvme_queue **queues;
82         struct blk_mq_tag_set tagset;
83         struct blk_mq_tag_set admin_tagset;
84         u32 __iomem *dbs;
85         struct device *dev;
86         struct dma_pool *prp_page_pool;
87         struct dma_pool *prp_small_pool;
88         unsigned queue_count;
89         unsigned online_queues;
90         unsigned max_qid;
91         int q_depth;
92         u32 db_stride;
93         struct msix_entry *entry;
94         void __iomem *bar;
95         struct work_struct reset_work;
96         struct work_struct scan_work;
97         struct work_struct remove_work;
98         struct work_struct async_work;
99         struct timer_list watchdog_timer;
100         struct mutex shutdown_lock;
101         bool subsystem;
102         void __iomem *cmb;
103         dma_addr_t cmb_dma_addr;
104         u64 cmb_size;
105         u32 cmbsz;
106         unsigned long flags;
107
108 #define NVME_CTRL_RESETTING    0
109
110         struct nvme_ctrl ctrl;
111         struct completion ioq_wait;
112 };
113
114 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
115 {
116         return container_of(ctrl, struct nvme_dev, ctrl);
117 }
118
119 /*
120  * An NVM Express queue.  Each device has at least two (one for admin
121  * commands and one for I/O commands).
122  */
123 struct nvme_queue {
124         struct device *q_dmadev;
125         struct nvme_dev *dev;
126         char irqname[24];       /* nvme4294967295-65535\0 */
127         spinlock_t q_lock;
128         struct nvme_command *sq_cmds;
129         struct nvme_command __iomem *sq_cmds_io;
130         volatile struct nvme_completion *cqes;
131         struct blk_mq_tags **tags;
132         dma_addr_t sq_dma_addr;
133         dma_addr_t cq_dma_addr;
134         u32 __iomem *q_db;
135         u16 q_depth;
136         s16 cq_vector;
137         u16 sq_tail;
138         u16 cq_head;
139         u16 qid;
140         u8 cq_phase;
141         u8 cqe_seen;
142 };
143
144 /*
145  * The nvme_iod describes the data in an I/O, including the list of PRP
146  * entries.  You can't see it in this data structure because C doesn't let
147  * me express that.  Use nvme_init_iod to ensure there's enough space
148  * allocated to store the PRP list.
149  */
150 struct nvme_iod {
151         struct nvme_queue *nvmeq;
152         int aborted;
153         int npages;             /* In the PRP list. 0 means small pool in use */
154         int nents;              /* Used in scatterlist */
155         int length;             /* Of data, in bytes */
156         dma_addr_t first_dma;
157         struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
158         struct scatterlist *sg;
159         struct scatterlist inline_sg[0];
160 };
161
162 /*
163  * Check we didin't inadvertently grow the command struct
164  */
165 static inline void _nvme_check_size(void)
166 {
167         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
168         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
169         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
170         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
171         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
172         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
173         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
174         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
175         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
176         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
177         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
178         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
179 }
180
181 /*
182  * Max size of iod being embedded in the request payload
183  */
184 #define NVME_INT_PAGES          2
185 #define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->ctrl.page_size)
186
187 /*
188  * Will slightly overestimate the number of pages needed.  This is OK
189  * as it only leads to a small amount of wasted memory for the lifetime of
190  * the I/O.
191  */
192 static int nvme_npages(unsigned size, struct nvme_dev *dev)
193 {
194         unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
195                                       dev->ctrl.page_size);
196         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
197 }
198
199 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
200                 unsigned int size, unsigned int nseg)
201 {
202         return sizeof(__le64 *) * nvme_npages(size, dev) +
203                         sizeof(struct scatterlist) * nseg;
204 }
205
206 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
207 {
208         return sizeof(struct nvme_iod) +
209                 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
210 }
211
212 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
213                                 unsigned int hctx_idx)
214 {
215         struct nvme_dev *dev = data;
216         struct nvme_queue *nvmeq = dev->queues[0];
217
218         WARN_ON(hctx_idx != 0);
219         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
220         WARN_ON(nvmeq->tags);
221
222         hctx->driver_data = nvmeq;
223         nvmeq->tags = &dev->admin_tagset.tags[0];
224         return 0;
225 }
226
227 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
228 {
229         struct nvme_queue *nvmeq = hctx->driver_data;
230
231         nvmeq->tags = NULL;
232 }
233
234 static int nvme_admin_init_request(void *data, struct request *req,
235                                 unsigned int hctx_idx, unsigned int rq_idx,
236                                 unsigned int numa_node)
237 {
238         struct nvme_dev *dev = data;
239         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
240         struct nvme_queue *nvmeq = dev->queues[0];
241
242         BUG_ON(!nvmeq);
243         iod->nvmeq = nvmeq;
244         return 0;
245 }
246
247 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
248                           unsigned int hctx_idx)
249 {
250         struct nvme_dev *dev = data;
251         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
252
253         if (!nvmeq->tags)
254                 nvmeq->tags = &dev->tagset.tags[hctx_idx];
255
256         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
257         hctx->driver_data = nvmeq;
258         return 0;
259 }
260
261 static int nvme_init_request(void *data, struct request *req,
262                                 unsigned int hctx_idx, unsigned int rq_idx,
263                                 unsigned int numa_node)
264 {
265         struct nvme_dev *dev = data;
266         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
267         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
268
269         BUG_ON(!nvmeq);
270         iod->nvmeq = nvmeq;
271         return 0;
272 }
273
274 static void nvme_complete_async_event(struct nvme_dev *dev,
275                 struct nvme_completion *cqe)
276 {
277         u16 status = le16_to_cpu(cqe->status) >> 1;
278         u32 result = le32_to_cpu(cqe->result);
279
280         if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ) {
281                 ++dev->ctrl.event_limit;
282                 queue_work(nvme_workq, &dev->async_work);
283         }
284
285         if (status != NVME_SC_SUCCESS)
286                 return;
287
288         switch (result & 0xff07) {
289         case NVME_AER_NOTICE_NS_CHANGED:
290                 dev_info(dev->ctrl.device, "rescanning\n");
291                 queue_work(nvme_workq, &dev->scan_work);
292         default:
293                 dev_warn(dev->ctrl.device, "async event result %08x\n", result);
294         }
295 }
296
297 /**
298  * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
299  * @nvmeq: The queue to use
300  * @cmd: The command to send
301  *
302  * Safe to use from interrupt context
303  */
304 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
305                                                 struct nvme_command *cmd)
306 {
307         u16 tail = nvmeq->sq_tail;
308
309         if (nvmeq->sq_cmds_io)
310                 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
311         else
312                 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
313
314         if (++tail == nvmeq->q_depth)
315                 tail = 0;
316         writel(tail, nvmeq->q_db);
317         nvmeq->sq_tail = tail;
318 }
319
320 static __le64 **iod_list(struct request *req)
321 {
322         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
323         return (__le64 **)(iod->sg + req->nr_phys_segments);
324 }
325
326 static int nvme_init_iod(struct request *rq, struct nvme_dev *dev)
327 {
328         struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
329         int nseg = rq->nr_phys_segments;
330         unsigned size;
331
332         if (rq->cmd_flags & REQ_DISCARD)
333                 size = sizeof(struct nvme_dsm_range);
334         else
335                 size = blk_rq_bytes(rq);
336
337         if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
338                 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
339                 if (!iod->sg)
340                         return BLK_MQ_RQ_QUEUE_BUSY;
341         } else {
342                 iod->sg = iod->inline_sg;
343         }
344
345         iod->aborted = 0;
346         iod->npages = -1;
347         iod->nents = 0;
348         iod->length = size;
349         return 0;
350 }
351
352 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
353 {
354         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
355         const int last_prp = dev->ctrl.page_size / 8 - 1;
356         int i;
357         __le64 **list = iod_list(req);
358         dma_addr_t prp_dma = iod->first_dma;
359
360         if (iod->npages == 0)
361                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
362         for (i = 0; i < iod->npages; i++) {
363                 __le64 *prp_list = list[i];
364                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
365                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
366                 prp_dma = next_prp_dma;
367         }
368
369         if (iod->sg != iod->inline_sg)
370                 kfree(iod->sg);
371 }
372
373 #ifdef CONFIG_BLK_DEV_INTEGRITY
374 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
375 {
376         if (be32_to_cpu(pi->ref_tag) == v)
377                 pi->ref_tag = cpu_to_be32(p);
378 }
379
380 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
381 {
382         if (be32_to_cpu(pi->ref_tag) == p)
383                 pi->ref_tag = cpu_to_be32(v);
384 }
385
386 /**
387  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
388  *
389  * The virtual start sector is the one that was originally submitted by the
390  * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
391  * start sector may be different. Remap protection information to match the
392  * physical LBA on writes, and back to the original seed on reads.
393  *
394  * Type 0 and 3 do not have a ref tag, so no remapping required.
395  */
396 static void nvme_dif_remap(struct request *req,
397                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
398 {
399         struct nvme_ns *ns = req->rq_disk->private_data;
400         struct bio_integrity_payload *bip;
401         struct t10_pi_tuple *pi;
402         void *p, *pmap;
403         u32 i, nlb, ts, phys, virt;
404
405         if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
406                 return;
407
408         bip = bio_integrity(req->bio);
409         if (!bip)
410                 return;
411
412         pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
413
414         p = pmap;
415         virt = bip_get_seed(bip);
416         phys = nvme_block_nr(ns, blk_rq_pos(req));
417         nlb = (blk_rq_bytes(req) >> ns->lba_shift);
418         ts = ns->disk->queue->integrity.tuple_size;
419
420         for (i = 0; i < nlb; i++, virt++, phys++) {
421                 pi = (struct t10_pi_tuple *)p;
422                 dif_swap(phys, virt, pi);
423                 p += ts;
424         }
425         kunmap_atomic(pmap);
426 }
427 #else /* CONFIG_BLK_DEV_INTEGRITY */
428 static void nvme_dif_remap(struct request *req,
429                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
430 {
431 }
432 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
433 {
434 }
435 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
436 {
437 }
438 #endif
439
440 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
441                 int total_len)
442 {
443         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
444         struct dma_pool *pool;
445         int length = total_len;
446         struct scatterlist *sg = iod->sg;
447         int dma_len = sg_dma_len(sg);
448         u64 dma_addr = sg_dma_address(sg);
449         u32 page_size = dev->ctrl.page_size;
450         int offset = dma_addr & (page_size - 1);
451         __le64 *prp_list;
452         __le64 **list = iod_list(req);
453         dma_addr_t prp_dma;
454         int nprps, i;
455
456         length -= (page_size - offset);
457         if (length <= 0)
458                 return true;
459
460         dma_len -= (page_size - offset);
461         if (dma_len) {
462                 dma_addr += (page_size - offset);
463         } else {
464                 sg = sg_next(sg);
465                 dma_addr = sg_dma_address(sg);
466                 dma_len = sg_dma_len(sg);
467         }
468
469         if (length <= page_size) {
470                 iod->first_dma = dma_addr;
471                 return true;
472         }
473
474         nprps = DIV_ROUND_UP(length, page_size);
475         if (nprps <= (256 / 8)) {
476                 pool = dev->prp_small_pool;
477                 iod->npages = 0;
478         } else {
479                 pool = dev->prp_page_pool;
480                 iod->npages = 1;
481         }
482
483         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
484         if (!prp_list) {
485                 iod->first_dma = dma_addr;
486                 iod->npages = -1;
487                 return false;
488         }
489         list[0] = prp_list;
490         iod->first_dma = prp_dma;
491         i = 0;
492         for (;;) {
493                 if (i == page_size >> 3) {
494                         __le64 *old_prp_list = prp_list;
495                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
496                         if (!prp_list)
497                                 return false;
498                         list[iod->npages++] = prp_list;
499                         prp_list[0] = old_prp_list[i - 1];
500                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
501                         i = 1;
502                 }
503                 prp_list[i++] = cpu_to_le64(dma_addr);
504                 dma_len -= page_size;
505                 dma_addr += page_size;
506                 length -= page_size;
507                 if (length <= 0)
508                         break;
509                 if (dma_len > 0)
510                         continue;
511                 BUG_ON(dma_len < 0);
512                 sg = sg_next(sg);
513                 dma_addr = sg_dma_address(sg);
514                 dma_len = sg_dma_len(sg);
515         }
516
517         return true;
518 }
519
520 static int nvme_map_data(struct nvme_dev *dev, struct request *req,
521                 struct nvme_command *cmnd)
522 {
523         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
524         struct request_queue *q = req->q;
525         enum dma_data_direction dma_dir = rq_data_dir(req) ?
526                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
527         int ret = BLK_MQ_RQ_QUEUE_ERROR;
528
529         sg_init_table(iod->sg, req->nr_phys_segments);
530         iod->nents = blk_rq_map_sg(q, req, iod->sg);
531         if (!iod->nents)
532                 goto out;
533
534         ret = BLK_MQ_RQ_QUEUE_BUSY;
535         if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
536                 goto out;
537
538         if (!nvme_setup_prps(dev, req, blk_rq_bytes(req)))
539                 goto out_unmap;
540
541         ret = BLK_MQ_RQ_QUEUE_ERROR;
542         if (blk_integrity_rq(req)) {
543                 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
544                         goto out_unmap;
545
546                 sg_init_table(&iod->meta_sg, 1);
547                 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
548                         goto out_unmap;
549
550                 if (rq_data_dir(req))
551                         nvme_dif_remap(req, nvme_dif_prep);
552
553                 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
554                         goto out_unmap;
555         }
556
557         cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
558         cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
559         if (blk_integrity_rq(req))
560                 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
561         return BLK_MQ_RQ_QUEUE_OK;
562
563 out_unmap:
564         dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
565 out:
566         return ret;
567 }
568
569 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
570 {
571         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
572         enum dma_data_direction dma_dir = rq_data_dir(req) ?
573                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
574
575         if (iod->nents) {
576                 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
577                 if (blk_integrity_rq(req)) {
578                         if (!rq_data_dir(req))
579                                 nvme_dif_remap(req, nvme_dif_complete);
580                         dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
581                 }
582         }
583
584         nvme_free_iod(dev, req);
585 }
586
587 /*
588  * We reuse the small pool to allocate the 16-byte range here as it is not
589  * worth having a special pool for these or additional cases to handle freeing
590  * the iod.
591  */
592 static int nvme_setup_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
593                 struct request *req, struct nvme_command *cmnd)
594 {
595         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
596         struct nvme_dsm_range *range;
597
598         range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
599                                                 &iod->first_dma);
600         if (!range)
601                 return BLK_MQ_RQ_QUEUE_BUSY;
602         iod_list(req)[0] = (__le64 *)range;
603         iod->npages = 0;
604
605         range->cattr = cpu_to_le32(0);
606         range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
607         range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
608
609         memset(cmnd, 0, sizeof(*cmnd));
610         cmnd->dsm.opcode = nvme_cmd_dsm;
611         cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
612         cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
613         cmnd->dsm.nr = 0;
614         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
615         return BLK_MQ_RQ_QUEUE_OK;
616 }
617
618 /*
619  * NOTE: ns is NULL when called on the admin queue.
620  */
621 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
622                          const struct blk_mq_queue_data *bd)
623 {
624         struct nvme_ns *ns = hctx->queue->queuedata;
625         struct nvme_queue *nvmeq = hctx->driver_data;
626         struct nvme_dev *dev = nvmeq->dev;
627         struct request *req = bd->rq;
628         struct nvme_command cmnd;
629         int ret = BLK_MQ_RQ_QUEUE_OK;
630
631         /*
632          * If formated with metadata, require the block layer provide a buffer
633          * unless this namespace is formated such that the metadata can be
634          * stripped/generated by the controller with PRACT=1.
635          */
636         if (ns && ns->ms && !blk_integrity_rq(req)) {
637                 if (!(ns->pi_type && ns->ms == 8) &&
638                                         req->cmd_type != REQ_TYPE_DRV_PRIV) {
639                         blk_mq_end_request(req, -EFAULT);
640                         return BLK_MQ_RQ_QUEUE_OK;
641                 }
642         }
643
644         ret = nvme_init_iod(req, dev);
645         if (ret)
646                 return ret;
647
648         if (req->cmd_flags & REQ_DISCARD) {
649                 ret = nvme_setup_discard(nvmeq, ns, req, &cmnd);
650         } else {
651                 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
652                         memcpy(&cmnd, req->cmd, sizeof(cmnd));
653                 else if (req->cmd_flags & REQ_FLUSH)
654                         nvme_setup_flush(ns, &cmnd);
655                 else
656                         nvme_setup_rw(ns, req, &cmnd);
657
658                 if (req->nr_phys_segments)
659                         ret = nvme_map_data(dev, req, &cmnd);
660         }
661
662         if (ret)
663                 goto out;
664
665         cmnd.common.command_id = req->tag;
666         blk_mq_start_request(req);
667
668         spin_lock_irq(&nvmeq->q_lock);
669         __nvme_submit_cmd(nvmeq, &cmnd);
670         nvme_process_cq(nvmeq);
671         spin_unlock_irq(&nvmeq->q_lock);
672         return BLK_MQ_RQ_QUEUE_OK;
673 out:
674         nvme_free_iod(dev, req);
675         return ret;
676 }
677
678 static void nvme_complete_rq(struct request *req)
679 {
680         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
681         struct nvme_dev *dev = iod->nvmeq->dev;
682         int error = 0;
683
684         nvme_unmap_data(dev, req);
685
686         if (unlikely(req->errors)) {
687                 if (nvme_req_needs_retry(req, req->errors)) {
688                         nvme_requeue_req(req);
689                         return;
690                 }
691
692                 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
693                         error = req->errors;
694                 else
695                         error = nvme_error_status(req->errors);
696         }
697
698         if (unlikely(iod->aborted)) {
699                 dev_warn(dev->ctrl.device,
700                         "completing aborted command with status: %04x\n",
701                         req->errors);
702         }
703
704         blk_mq_end_request(req, error);
705 }
706
707 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
708 {
709         u16 head, phase;
710
711         head = nvmeq->cq_head;
712         phase = nvmeq->cq_phase;
713
714         for (;;) {
715                 struct nvme_completion cqe = nvmeq->cqes[head];
716                 u16 status = le16_to_cpu(cqe.status);
717                 struct request *req;
718
719                 if ((status & 1) != phase)
720                         break;
721                 if (++head == nvmeq->q_depth) {
722                         head = 0;
723                         phase = !phase;
724                 }
725
726                 if (tag && *tag == cqe.command_id)
727                         *tag = -1;
728
729                 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
730                         dev_warn(nvmeq->dev->ctrl.device,
731                                 "invalid id %d completed on queue %d\n",
732                                 cqe.command_id, le16_to_cpu(cqe.sq_id));
733                         continue;
734                 }
735
736                 /*
737                  * AEN requests are special as they don't time out and can
738                  * survive any kind of queue freeze and often don't respond to
739                  * aborts.  We don't even bother to allocate a struct request
740                  * for them but rather special case them here.
741                  */
742                 if (unlikely(nvmeq->qid == 0 &&
743                                 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
744                         nvme_complete_async_event(nvmeq->dev, &cqe);
745                         continue;
746                 }
747
748                 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
749                 if (req->cmd_type == REQ_TYPE_DRV_PRIV && req->special)
750                         memcpy(req->special, &cqe, sizeof(cqe));
751                 blk_mq_complete_request(req, status >> 1);
752
753         }
754
755         /* If the controller ignores the cq head doorbell and continuously
756          * writes to the queue, it is theoretically possible to wrap around
757          * the queue twice and mistakenly return IRQ_NONE.  Linux only
758          * requires that 0.1% of your interrupts are handled, so this isn't
759          * a big problem.
760          */
761         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
762                 return;
763
764         if (likely(nvmeq->cq_vector >= 0))
765                 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
766         nvmeq->cq_head = head;
767         nvmeq->cq_phase = phase;
768
769         nvmeq->cqe_seen = 1;
770 }
771
772 static void nvme_process_cq(struct nvme_queue *nvmeq)
773 {
774         __nvme_process_cq(nvmeq, NULL);
775 }
776
777 static irqreturn_t nvme_irq(int irq, void *data)
778 {
779         irqreturn_t result;
780         struct nvme_queue *nvmeq = data;
781         spin_lock(&nvmeq->q_lock);
782         nvme_process_cq(nvmeq);
783         result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
784         nvmeq->cqe_seen = 0;
785         spin_unlock(&nvmeq->q_lock);
786         return result;
787 }
788
789 static irqreturn_t nvme_irq_check(int irq, void *data)
790 {
791         struct nvme_queue *nvmeq = data;
792         struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
793         if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
794                 return IRQ_NONE;
795         return IRQ_WAKE_THREAD;
796 }
797
798 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
799 {
800         struct nvme_queue *nvmeq = hctx->driver_data;
801
802         if ((le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
803             nvmeq->cq_phase) {
804                 spin_lock_irq(&nvmeq->q_lock);
805                 __nvme_process_cq(nvmeq, &tag);
806                 spin_unlock_irq(&nvmeq->q_lock);
807
808                 if (tag == -1)
809                         return 1;
810         }
811
812         return 0;
813 }
814
815 static void nvme_async_event_work(struct work_struct *work)
816 {
817         struct nvme_dev *dev = container_of(work, struct nvme_dev, async_work);
818         struct nvme_queue *nvmeq = dev->queues[0];
819         struct nvme_command c;
820
821         memset(&c, 0, sizeof(c));
822         c.common.opcode = nvme_admin_async_event;
823
824         spin_lock_irq(&nvmeq->q_lock);
825         while (dev->ctrl.event_limit > 0) {
826                 c.common.command_id = NVME_AQ_BLKMQ_DEPTH +
827                         --dev->ctrl.event_limit;
828                 __nvme_submit_cmd(nvmeq, &c);
829         }
830         spin_unlock_irq(&nvmeq->q_lock);
831 }
832
833 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
834 {
835         struct nvme_command c;
836
837         memset(&c, 0, sizeof(c));
838         c.delete_queue.opcode = opcode;
839         c.delete_queue.qid = cpu_to_le16(id);
840
841         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
842 }
843
844 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
845                                                 struct nvme_queue *nvmeq)
846 {
847         struct nvme_command c;
848         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
849
850         /*
851          * Note: we (ab)use the fact the the prp fields survive if no data
852          * is attached to the request.
853          */
854         memset(&c, 0, sizeof(c));
855         c.create_cq.opcode = nvme_admin_create_cq;
856         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
857         c.create_cq.cqid = cpu_to_le16(qid);
858         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
859         c.create_cq.cq_flags = cpu_to_le16(flags);
860         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
861
862         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
863 }
864
865 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
866                                                 struct nvme_queue *nvmeq)
867 {
868         struct nvme_command c;
869         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
870
871         /*
872          * Note: we (ab)use the fact the the prp fields survive if no data
873          * is attached to the request.
874          */
875         memset(&c, 0, sizeof(c));
876         c.create_sq.opcode = nvme_admin_create_sq;
877         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
878         c.create_sq.sqid = cpu_to_le16(qid);
879         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
880         c.create_sq.sq_flags = cpu_to_le16(flags);
881         c.create_sq.cqid = cpu_to_le16(qid);
882
883         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
884 }
885
886 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
887 {
888         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
889 }
890
891 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
892 {
893         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
894 }
895
896 static void abort_endio(struct request *req, int error)
897 {
898         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
899         struct nvme_queue *nvmeq = iod->nvmeq;
900         u16 status = req->errors;
901
902         dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
903         atomic_inc(&nvmeq->dev->ctrl.abort_limit);
904         blk_mq_free_request(req);
905 }
906
907 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
908 {
909         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
910         struct nvme_queue *nvmeq = iod->nvmeq;
911         struct nvme_dev *dev = nvmeq->dev;
912         struct request *abort_req;
913         struct nvme_command cmd;
914
915         /*
916          * Shutdown immediately if controller times out while starting. The
917          * reset work will see the pci device disabled when it gets the forced
918          * cancellation error. All outstanding requests are completed on
919          * shutdown, so we return BLK_EH_HANDLED.
920          */
921         if (test_bit(NVME_CTRL_RESETTING, &dev->flags)) {
922                 dev_warn(dev->ctrl.device,
923                          "I/O %d QID %d timeout, disable controller\n",
924                          req->tag, nvmeq->qid);
925                 nvme_dev_disable(dev, false);
926                 req->errors = NVME_SC_CANCELLED;
927                 return BLK_EH_HANDLED;
928         }
929
930         /*
931          * Shutdown the controller immediately and schedule a reset if the
932          * command was already aborted once before and still hasn't been
933          * returned to the driver, or if this is the admin queue.
934          */
935         if (!nvmeq->qid || iod->aborted) {
936                 dev_warn(dev->ctrl.device,
937                          "I/O %d QID %d timeout, reset controller\n",
938                          req->tag, nvmeq->qid);
939                 nvme_dev_disable(dev, false);
940                 queue_work(nvme_workq, &dev->reset_work);
941
942                 /*
943                  * Mark the request as handled, since the inline shutdown
944                  * forces all outstanding requests to complete.
945                  */
946                 req->errors = NVME_SC_CANCELLED;
947                 return BLK_EH_HANDLED;
948         }
949
950         iod->aborted = 1;
951
952         if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
953                 atomic_inc(&dev->ctrl.abort_limit);
954                 return BLK_EH_RESET_TIMER;
955         }
956
957         memset(&cmd, 0, sizeof(cmd));
958         cmd.abort.opcode = nvme_admin_abort_cmd;
959         cmd.abort.cid = req->tag;
960         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
961
962         dev_warn(nvmeq->dev->ctrl.device,
963                 "I/O %d QID %d timeout, aborting\n",
964                  req->tag, nvmeq->qid);
965
966         abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
967                         BLK_MQ_REQ_NOWAIT);
968         if (IS_ERR(abort_req)) {
969                 atomic_inc(&dev->ctrl.abort_limit);
970                 return BLK_EH_RESET_TIMER;
971         }
972
973         abort_req->timeout = ADMIN_TIMEOUT;
974         abort_req->end_io_data = NULL;
975         blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
976
977         /*
978          * The aborted req will be completed on receiving the abort req.
979          * We enable the timer again. If hit twice, it'll cause a device reset,
980          * as the device then is in a faulty state.
981          */
982         return BLK_EH_RESET_TIMER;
983 }
984
985 static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
986 {
987         struct nvme_queue *nvmeq = data;
988         int status;
989
990         if (!blk_mq_request_started(req))
991                 return;
992
993         dev_warn(nvmeq->dev->ctrl.device,
994                  "Cancelling I/O %d QID %d\n", req->tag, nvmeq->qid);
995
996         status = NVME_SC_ABORT_REQ;
997         if (blk_queue_dying(req->q))
998                 status |= NVME_SC_DNR;
999         blk_mq_complete_request(req, status);
1000 }
1001
1002 static void nvme_free_queue(struct nvme_queue *nvmeq)
1003 {
1004         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1005                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1006         if (nvmeq->sq_cmds)
1007                 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1008                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1009         kfree(nvmeq);
1010 }
1011
1012 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1013 {
1014         int i;
1015
1016         for (i = dev->queue_count - 1; i >= lowest; i--) {
1017                 struct nvme_queue *nvmeq = dev->queues[i];
1018                 dev->queue_count--;
1019                 dev->queues[i] = NULL;
1020                 nvme_free_queue(nvmeq);
1021         }
1022 }
1023
1024 /**
1025  * nvme_suspend_queue - put queue into suspended state
1026  * @nvmeq - queue to suspend
1027  */
1028 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1029 {
1030         int vector;
1031
1032         spin_lock_irq(&nvmeq->q_lock);
1033         if (nvmeq->cq_vector == -1) {
1034                 spin_unlock_irq(&nvmeq->q_lock);
1035                 return 1;
1036         }
1037         vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1038         nvmeq->dev->online_queues--;
1039         nvmeq->cq_vector = -1;
1040         spin_unlock_irq(&nvmeq->q_lock);
1041
1042         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1043                 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
1044
1045         irq_set_affinity_hint(vector, NULL);
1046         free_irq(vector, nvmeq);
1047
1048         return 0;
1049 }
1050
1051 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1052 {
1053         spin_lock_irq(&nvmeq->q_lock);
1054         if (nvmeq->tags && *nvmeq->tags)
1055                 blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
1056         spin_unlock_irq(&nvmeq->q_lock);
1057 }
1058
1059 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1060 {
1061         struct nvme_queue *nvmeq = dev->queues[0];
1062
1063         if (!nvmeq)
1064                 return;
1065         if (nvme_suspend_queue(nvmeq))
1066                 return;
1067
1068         if (shutdown)
1069                 nvme_shutdown_ctrl(&dev->ctrl);
1070         else
1071                 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
1072                                                 dev->bar + NVME_REG_CAP));
1073
1074         spin_lock_irq(&nvmeq->q_lock);
1075         nvme_process_cq(nvmeq);
1076         spin_unlock_irq(&nvmeq->q_lock);
1077 }
1078
1079 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1080                                 int entry_size)
1081 {
1082         int q_depth = dev->q_depth;
1083         unsigned q_size_aligned = roundup(q_depth * entry_size,
1084                                           dev->ctrl.page_size);
1085
1086         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1087                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1088                 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1089                 q_depth = div_u64(mem_per_q, entry_size);
1090
1091                 /*
1092                  * Ensure the reduced q_depth is above some threshold where it
1093                  * would be better to map queues in system memory with the
1094                  * original depth
1095                  */
1096                 if (q_depth < 64)
1097                         return -ENOMEM;
1098         }
1099
1100         return q_depth;
1101 }
1102
1103 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1104                                 int qid, int depth)
1105 {
1106         if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1107                 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1108                                                       dev->ctrl.page_size);
1109                 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1110                 nvmeq->sq_cmds_io = dev->cmb + offset;
1111         } else {
1112                 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1113                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
1114                 if (!nvmeq->sq_cmds)
1115                         return -ENOMEM;
1116         }
1117
1118         return 0;
1119 }
1120
1121 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1122                                                         int depth)
1123 {
1124         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1125         if (!nvmeq)
1126                 return NULL;
1127
1128         nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1129                                           &nvmeq->cq_dma_addr, GFP_KERNEL);
1130         if (!nvmeq->cqes)
1131                 goto free_nvmeq;
1132
1133         if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1134                 goto free_cqdma;
1135
1136         nvmeq->q_dmadev = dev->dev;
1137         nvmeq->dev = dev;
1138         snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1139                         dev->ctrl.instance, qid);
1140         spin_lock_init(&nvmeq->q_lock);
1141         nvmeq->cq_head = 0;
1142         nvmeq->cq_phase = 1;
1143         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1144         nvmeq->q_depth = depth;
1145         nvmeq->qid = qid;
1146         nvmeq->cq_vector = -1;
1147         dev->queues[qid] = nvmeq;
1148         dev->queue_count++;
1149
1150         return nvmeq;
1151
1152  free_cqdma:
1153         dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1154                                                         nvmeq->cq_dma_addr);
1155  free_nvmeq:
1156         kfree(nvmeq);
1157         return NULL;
1158 }
1159
1160 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1161                                                         const char *name)
1162 {
1163         if (use_threaded_interrupts)
1164                 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1165                                         nvme_irq_check, nvme_irq, IRQF_SHARED,
1166                                         name, nvmeq);
1167         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1168                                 IRQF_SHARED, name, nvmeq);
1169 }
1170
1171 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1172 {
1173         struct nvme_dev *dev = nvmeq->dev;
1174
1175         spin_lock_irq(&nvmeq->q_lock);
1176         nvmeq->sq_tail = 0;
1177         nvmeq->cq_head = 0;
1178         nvmeq->cq_phase = 1;
1179         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1180         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1181         dev->online_queues++;
1182         spin_unlock_irq(&nvmeq->q_lock);
1183 }
1184
1185 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1186 {
1187         struct nvme_dev *dev = nvmeq->dev;
1188         int result;
1189
1190         nvmeq->cq_vector = qid - 1;
1191         result = adapter_alloc_cq(dev, qid, nvmeq);
1192         if (result < 0)
1193                 return result;
1194
1195         result = adapter_alloc_sq(dev, qid, nvmeq);
1196         if (result < 0)
1197                 goto release_cq;
1198
1199         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1200         if (result < 0)
1201                 goto release_sq;
1202
1203         nvme_init_queue(nvmeq, qid);
1204         return result;
1205
1206  release_sq:
1207         adapter_delete_sq(dev, qid);
1208  release_cq:
1209         adapter_delete_cq(dev, qid);
1210         return result;
1211 }
1212
1213 static struct blk_mq_ops nvme_mq_admin_ops = {
1214         .queue_rq       = nvme_queue_rq,
1215         .complete       = nvme_complete_rq,
1216         .map_queue      = blk_mq_map_queue,
1217         .init_hctx      = nvme_admin_init_hctx,
1218         .exit_hctx      = nvme_admin_exit_hctx,
1219         .init_request   = nvme_admin_init_request,
1220         .timeout        = nvme_timeout,
1221 };
1222
1223 static struct blk_mq_ops nvme_mq_ops = {
1224         .queue_rq       = nvme_queue_rq,
1225         .complete       = nvme_complete_rq,
1226         .map_queue      = blk_mq_map_queue,
1227         .init_hctx      = nvme_init_hctx,
1228         .init_request   = nvme_init_request,
1229         .timeout        = nvme_timeout,
1230         .poll           = nvme_poll,
1231 };
1232
1233 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1234 {
1235         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1236                 blk_cleanup_queue(dev->ctrl.admin_q);
1237                 blk_mq_free_tag_set(&dev->admin_tagset);
1238         }
1239 }
1240
1241 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1242 {
1243         if (!dev->ctrl.admin_q) {
1244                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1245                 dev->admin_tagset.nr_hw_queues = 1;
1246
1247                 /*
1248                  * Subtract one to leave an empty queue entry for 'Full Queue'
1249                  * condition. See NVM-Express 1.2 specification, section 4.1.2.
1250                  */
1251                 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1252                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1253                 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1254                 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1255                 dev->admin_tagset.driver_data = dev;
1256
1257                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1258                         return -ENOMEM;
1259
1260                 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1261                 if (IS_ERR(dev->ctrl.admin_q)) {
1262                         blk_mq_free_tag_set(&dev->admin_tagset);
1263                         return -ENOMEM;
1264                 }
1265                 if (!blk_get_queue(dev->ctrl.admin_q)) {
1266                         nvme_dev_remove_admin(dev);
1267                         dev->ctrl.admin_q = NULL;
1268                         return -ENODEV;
1269                 }
1270         } else
1271                 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1272
1273         return 0;
1274 }
1275
1276 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1277 {
1278         int result;
1279         u32 aqa;
1280         u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1281         struct nvme_queue *nvmeq;
1282
1283         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
1284                                                 NVME_CAP_NSSRC(cap) : 0;
1285
1286         if (dev->subsystem &&
1287             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1288                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1289
1290         result = nvme_disable_ctrl(&dev->ctrl, cap);
1291         if (result < 0)
1292                 return result;
1293
1294         nvmeq = dev->queues[0];
1295         if (!nvmeq) {
1296                 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1297                 if (!nvmeq)
1298                         return -ENOMEM;
1299         }
1300
1301         aqa = nvmeq->q_depth - 1;
1302         aqa |= aqa << 16;
1303
1304         writel(aqa, dev->bar + NVME_REG_AQA);
1305         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1306         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1307
1308         result = nvme_enable_ctrl(&dev->ctrl, cap);
1309         if (result)
1310                 goto free_nvmeq;
1311
1312         nvmeq->cq_vector = 0;
1313         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1314         if (result) {
1315                 nvmeq->cq_vector = -1;
1316                 goto free_nvmeq;
1317         }
1318
1319         return result;
1320
1321  free_nvmeq:
1322         nvme_free_queues(dev, 0);
1323         return result;
1324 }
1325
1326 static void nvme_watchdog_timer(unsigned long data)
1327 {
1328         struct nvme_dev *dev = (struct nvme_dev *)data;
1329         u32 csts = readl(dev->bar + NVME_REG_CSTS);
1330
1331         /*
1332          * Skip controllers currently under reset.
1333          */
1334         if (!work_pending(&dev->reset_work) && !work_busy(&dev->reset_work) &&
1335             ((csts & NVME_CSTS_CFS) ||
1336              (dev->subsystem && (csts & NVME_CSTS_NSSRO)))) {
1337                 if (queue_work(nvme_workq, &dev->reset_work)) {
1338                         dev_warn(dev->dev,
1339                                 "Failed status: 0x%x, reset controller.\n",
1340                                 csts);
1341                 }
1342                 return;
1343         }
1344
1345         mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1346 }
1347
1348 static int nvme_create_io_queues(struct nvme_dev *dev)
1349 {
1350         unsigned i, max;
1351         int ret = 0;
1352
1353         for (i = dev->queue_count; i <= dev->max_qid; i++) {
1354                 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1355                         ret = -ENOMEM;
1356                         break;
1357                 }
1358         }
1359
1360         max = min(dev->max_qid, dev->queue_count - 1);
1361         for (i = dev->online_queues; i <= max; i++) {
1362                 ret = nvme_create_queue(dev->queues[i], i);
1363                 if (ret) {
1364                         nvme_free_queues(dev, i);
1365                         break;
1366                 }
1367         }
1368
1369         /*
1370          * Ignore failing Create SQ/CQ commands, we can continue with less
1371          * than the desired aount of queues, and even a controller without
1372          * I/O queues an still be used to issue admin commands.  This might
1373          * be useful to upgrade a buggy firmware for example.
1374          */
1375         return ret >= 0 ? 0 : ret;
1376 }
1377
1378 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1379 {
1380         u64 szu, size, offset;
1381         u32 cmbloc;
1382         resource_size_t bar_size;
1383         struct pci_dev *pdev = to_pci_dev(dev->dev);
1384         void __iomem *cmb;
1385         dma_addr_t dma_addr;
1386
1387         if (!use_cmb_sqes)
1388                 return NULL;
1389
1390         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1391         if (!(NVME_CMB_SZ(dev->cmbsz)))
1392                 return NULL;
1393
1394         cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1395
1396         szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1397         size = szu * NVME_CMB_SZ(dev->cmbsz);
1398         offset = szu * NVME_CMB_OFST(cmbloc);
1399         bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1400
1401         if (offset > bar_size)
1402                 return NULL;
1403
1404         /*
1405          * Controllers may support a CMB size larger than their BAR,
1406          * for example, due to being behind a bridge. Reduce the CMB to
1407          * the reported size of the BAR
1408          */
1409         if (size > bar_size - offset)
1410                 size = bar_size - offset;
1411
1412         dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1413         cmb = ioremap_wc(dma_addr, size);
1414         if (!cmb)
1415                 return NULL;
1416
1417         dev->cmb_dma_addr = dma_addr;
1418         dev->cmb_size = size;
1419         return cmb;
1420 }
1421
1422 static inline void nvme_release_cmb(struct nvme_dev *dev)
1423 {
1424         if (dev->cmb) {
1425                 iounmap(dev->cmb);
1426                 dev->cmb = NULL;
1427         }
1428 }
1429
1430 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1431 {
1432         return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1433 }
1434
1435 static int nvme_setup_io_queues(struct nvme_dev *dev)
1436 {
1437         struct nvme_queue *adminq = dev->queues[0];
1438         struct pci_dev *pdev = to_pci_dev(dev->dev);
1439         int result, i, vecs, nr_io_queues, size;
1440
1441         nr_io_queues = num_possible_cpus();
1442         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1443         if (result < 0)
1444                 return result;
1445
1446         /*
1447          * Degraded controllers might return an error when setting the queue
1448          * count.  We still want to be able to bring them online and offer
1449          * access to the admin queue, as that might be only way to fix them up.
1450          */
1451         if (result > 0) {
1452                 dev_err(dev->ctrl.device,
1453                         "Could not set queue count (%d)\n", result);
1454                 nr_io_queues = 0;
1455                 result = 0;
1456         }
1457
1458         if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1459                 result = nvme_cmb_qdepth(dev, nr_io_queues,
1460                                 sizeof(struct nvme_command));
1461                 if (result > 0)
1462                         dev->q_depth = result;
1463                 else
1464                         nvme_release_cmb(dev);
1465         }
1466
1467         size = db_bar_size(dev, nr_io_queues);
1468         if (size > 8192) {
1469                 iounmap(dev->bar);
1470                 do {
1471                         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1472                         if (dev->bar)
1473                                 break;
1474                         if (!--nr_io_queues)
1475                                 return -ENOMEM;
1476                         size = db_bar_size(dev, nr_io_queues);
1477                 } while (1);
1478                 dev->dbs = dev->bar + 4096;
1479                 adminq->q_db = dev->dbs;
1480         }
1481
1482         /* Deregister the admin queue's interrupt */
1483         free_irq(dev->entry[0].vector, adminq);
1484
1485         /*
1486          * If we enable msix early due to not intx, disable it again before
1487          * setting up the full range we need.
1488          */
1489         if (!pdev->irq)
1490                 pci_disable_msix(pdev);
1491
1492         for (i = 0; i < nr_io_queues; i++)
1493                 dev->entry[i].entry = i;
1494         vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
1495         if (vecs < 0) {
1496                 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
1497                 if (vecs < 0) {
1498                         vecs = 1;
1499                 } else {
1500                         for (i = 0; i < vecs; i++)
1501                                 dev->entry[i].vector = i + pdev->irq;
1502                 }
1503         }
1504
1505         /*
1506          * Should investigate if there's a performance win from allocating
1507          * more queues than interrupt vectors; it might allow the submission
1508          * path to scale better, even if the receive path is limited by the
1509          * number of interrupts.
1510          */
1511         nr_io_queues = vecs;
1512         dev->max_qid = nr_io_queues;
1513
1514         result = queue_request_irq(dev, adminq, adminq->irqname);
1515         if (result) {
1516                 adminq->cq_vector = -1;
1517                 goto free_queues;
1518         }
1519         return nvme_create_io_queues(dev);
1520
1521  free_queues:
1522         nvme_free_queues(dev, 1);
1523         return result;
1524 }
1525
1526 static void nvme_set_irq_hints(struct nvme_dev *dev)
1527 {
1528         struct nvme_queue *nvmeq;
1529         int i;
1530
1531         for (i = 0; i < dev->online_queues; i++) {
1532                 nvmeq = dev->queues[i];
1533
1534                 if (!nvmeq->tags || !(*nvmeq->tags))
1535                         continue;
1536
1537                 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1538                                         blk_mq_tags_cpumask(*nvmeq->tags));
1539         }
1540 }
1541
1542 static void nvme_dev_scan(struct work_struct *work)
1543 {
1544         struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
1545
1546         if (!dev->tagset.tags)
1547                 return;
1548         nvme_scan_namespaces(&dev->ctrl);
1549         nvme_set_irq_hints(dev);
1550 }
1551
1552 static void nvme_del_queue_end(struct request *req, int error)
1553 {
1554         struct nvme_queue *nvmeq = req->end_io_data;
1555
1556         blk_mq_free_request(req);
1557         complete(&nvmeq->dev->ioq_wait);
1558 }
1559
1560 static void nvme_del_cq_end(struct request *req, int error)
1561 {
1562         struct nvme_queue *nvmeq = req->end_io_data;
1563
1564         if (!error) {
1565                 unsigned long flags;
1566
1567                 spin_lock_irqsave(&nvmeq->q_lock, flags);
1568                 nvme_process_cq(nvmeq);
1569                 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1570         }
1571
1572         nvme_del_queue_end(req, error);
1573 }
1574
1575 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1576 {
1577         struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1578         struct request *req;
1579         struct nvme_command cmd;
1580
1581         memset(&cmd, 0, sizeof(cmd));
1582         cmd.delete_queue.opcode = opcode;
1583         cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1584
1585         req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
1586         if (IS_ERR(req))
1587                 return PTR_ERR(req);
1588
1589         req->timeout = ADMIN_TIMEOUT;
1590         req->end_io_data = nvmeq;
1591
1592         blk_execute_rq_nowait(q, NULL, req, false,
1593                         opcode == nvme_admin_delete_cq ?
1594                                 nvme_del_cq_end : nvme_del_queue_end);
1595         return 0;
1596 }
1597
1598 static void nvme_disable_io_queues(struct nvme_dev *dev)
1599 {
1600         int pass;
1601         unsigned long timeout;
1602         u8 opcode = nvme_admin_delete_sq;
1603
1604         for (pass = 0; pass < 2; pass++) {
1605                 int sent = 0, i = dev->queue_count - 1;
1606
1607                 reinit_completion(&dev->ioq_wait);
1608  retry:
1609                 timeout = ADMIN_TIMEOUT;
1610                 for (; i > 0; i--) {
1611                         struct nvme_queue *nvmeq = dev->queues[i];
1612
1613                         if (!pass)
1614                                 nvme_suspend_queue(nvmeq);
1615                         if (nvme_delete_queue(nvmeq, opcode))
1616                                 break;
1617                         ++sent;
1618                 }
1619                 while (sent--) {
1620                         timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1621                         if (timeout == 0)
1622                                 return;
1623                         if (i)
1624                                 goto retry;
1625                 }
1626                 opcode = nvme_admin_delete_cq;
1627         }
1628 }
1629
1630 /*
1631  * Return: error value if an error occurred setting up the queues or calling
1632  * Identify Device.  0 if these succeeded, even if adding some of the
1633  * namespaces failed.  At the moment, these failures are silent.  TBD which
1634  * failures should be reported.
1635  */
1636 static int nvme_dev_add(struct nvme_dev *dev)
1637 {
1638         if (!dev->ctrl.tagset) {
1639                 dev->tagset.ops = &nvme_mq_ops;
1640                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1641                 dev->tagset.timeout = NVME_IO_TIMEOUT;
1642                 dev->tagset.numa_node = dev_to_node(dev->dev);
1643                 dev->tagset.queue_depth =
1644                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1645                 dev->tagset.cmd_size = nvme_cmd_size(dev);
1646                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1647                 dev->tagset.driver_data = dev;
1648
1649                 if (blk_mq_alloc_tag_set(&dev->tagset))
1650                         return 0;
1651                 dev->ctrl.tagset = &dev->tagset;
1652         } else {
1653                 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1654
1655                 /* Free previously allocated queues that are no longer usable */
1656                 nvme_free_queues(dev, dev->online_queues);
1657         }
1658
1659         queue_work(nvme_workq, &dev->scan_work);
1660         return 0;
1661 }
1662
1663 static int nvme_dev_map(struct nvme_dev *dev)
1664 {
1665         u64 cap;
1666         int bars, result = -ENOMEM;
1667         struct pci_dev *pdev = to_pci_dev(dev->dev);
1668
1669         if (pci_enable_device_mem(pdev))
1670                 return result;
1671
1672         dev->entry[0].vector = pdev->irq;
1673         pci_set_master(pdev);
1674         bars = pci_select_bars(pdev, IORESOURCE_MEM);
1675         if (!bars)
1676                 goto disable_pci;
1677
1678         if (pci_request_selected_regions(pdev, bars, "nvme"))
1679                 goto disable_pci;
1680
1681         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1682             dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1683                 goto disable;
1684
1685         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1686         if (!dev->bar)
1687                 goto disable;
1688
1689         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1690                 result = -ENODEV;
1691                 goto unmap;
1692         }
1693
1694         /*
1695          * Some devices don't advertse INTx interrupts, pre-enable a single
1696          * MSIX vec for setup. We'll adjust this later.
1697          */
1698         if (!pdev->irq) {
1699                 result = pci_enable_msix(pdev, dev->entry, 1);
1700                 if (result < 0)
1701                         goto unmap;
1702         }
1703
1704         cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1705
1706         dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1707         dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1708         dev->dbs = dev->bar + 4096;
1709
1710         /*
1711          * Temporary fix for the Apple controller found in the MacBook8,1 and
1712          * some MacBook7,1 to avoid controller resets and data loss.
1713          */
1714         if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1715                 dev->q_depth = 2;
1716                 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1717                         "queue depth=%u to work around controller resets\n",
1718                         dev->q_depth);
1719         }
1720
1721         if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
1722                 dev->cmb = nvme_map_cmb(dev);
1723
1724         pci_enable_pcie_error_reporting(pdev);
1725         pci_save_state(pdev);
1726         return 0;
1727
1728  unmap:
1729         iounmap(dev->bar);
1730         dev->bar = NULL;
1731  disable:
1732         pci_release_regions(pdev);
1733  disable_pci:
1734         pci_disable_device(pdev);
1735         return result;
1736 }
1737
1738 static void nvme_dev_unmap(struct nvme_dev *dev)
1739 {
1740         struct pci_dev *pdev = to_pci_dev(dev->dev);
1741
1742         if (pdev->msi_enabled)
1743                 pci_disable_msi(pdev);
1744         else if (pdev->msix_enabled)
1745                 pci_disable_msix(pdev);
1746
1747         if (dev->bar) {
1748                 iounmap(dev->bar);
1749                 dev->bar = NULL;
1750                 pci_release_regions(pdev);
1751         }
1752
1753         if (pci_is_enabled(pdev)) {
1754                 pci_disable_pcie_error_reporting(pdev);
1755                 pci_disable_device(pdev);
1756         }
1757 }
1758
1759 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1760 {
1761         int i;
1762         u32 csts = -1;
1763
1764         del_timer_sync(&dev->watchdog_timer);
1765
1766         mutex_lock(&dev->shutdown_lock);
1767         if (dev->bar) {
1768                 nvme_stop_queues(&dev->ctrl);
1769                 csts = readl(dev->bar + NVME_REG_CSTS);
1770         }
1771         if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
1772                 for (i = dev->queue_count - 1; i >= 0; i--) {
1773                         struct nvme_queue *nvmeq = dev->queues[i];
1774                         nvme_suspend_queue(nvmeq);
1775                 }
1776         } else {
1777                 nvme_disable_io_queues(dev);
1778                 nvme_disable_admin_queue(dev, shutdown);
1779         }
1780         nvme_dev_unmap(dev);
1781
1782         for (i = dev->queue_count - 1; i >= 0; i--)
1783                 nvme_clear_queue(dev->queues[i]);
1784         mutex_unlock(&dev->shutdown_lock);
1785 }
1786
1787 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1788 {
1789         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1790                                                 PAGE_SIZE, PAGE_SIZE, 0);
1791         if (!dev->prp_page_pool)
1792                 return -ENOMEM;
1793
1794         /* Optimisation for I/Os between 4k and 128k */
1795         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1796                                                 256, 256, 0);
1797         if (!dev->prp_small_pool) {
1798                 dma_pool_destroy(dev->prp_page_pool);
1799                 return -ENOMEM;
1800         }
1801         return 0;
1802 }
1803
1804 static void nvme_release_prp_pools(struct nvme_dev *dev)
1805 {
1806         dma_pool_destroy(dev->prp_page_pool);
1807         dma_pool_destroy(dev->prp_small_pool);
1808 }
1809
1810 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1811 {
1812         struct nvme_dev *dev = to_nvme_dev(ctrl);
1813
1814         put_device(dev->dev);
1815         if (dev->tagset.tags)
1816                 blk_mq_free_tag_set(&dev->tagset);
1817         if (dev->ctrl.admin_q)
1818                 blk_put_queue(dev->ctrl.admin_q);
1819         kfree(dev->queues);
1820         kfree(dev->entry);
1821         kfree(dev);
1822 }
1823
1824 static void nvme_reset_work(struct work_struct *work)
1825 {
1826         struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
1827         int result;
1828
1829         if (WARN_ON(test_bit(NVME_CTRL_RESETTING, &dev->flags)))
1830                 goto out;
1831
1832         /*
1833          * If we're called to reset a live controller first shut it down before
1834          * moving on.
1835          */
1836         if (dev->bar)
1837                 nvme_dev_disable(dev, false);
1838
1839         set_bit(NVME_CTRL_RESETTING, &dev->flags);
1840
1841         result = nvme_dev_map(dev);
1842         if (result)
1843                 goto out;
1844
1845         result = nvme_configure_admin_queue(dev);
1846         if (result)
1847                 goto unmap;
1848
1849         nvme_init_queue(dev->queues[0], 0);
1850         result = nvme_alloc_admin_tags(dev);
1851         if (result)
1852                 goto disable;
1853
1854         result = nvme_init_identify(&dev->ctrl);
1855         if (result)
1856                 goto free_tags;
1857
1858         result = nvme_setup_io_queues(dev);
1859         if (result)
1860                 goto free_tags;
1861
1862         dev->ctrl.event_limit = NVME_NR_AEN_COMMANDS;
1863         queue_work(nvme_workq, &dev->async_work);
1864
1865         mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1866
1867         /*
1868          * Keep the controller around but remove all namespaces if we don't have
1869          * any working I/O queue.
1870          */
1871         if (dev->online_queues < 2) {
1872                 dev_warn(dev->ctrl.device, "IO queues not created\n");
1873                 nvme_remove_namespaces(&dev->ctrl);
1874         } else {
1875                 nvme_start_queues(&dev->ctrl);
1876                 nvme_dev_add(dev);
1877         }
1878
1879         clear_bit(NVME_CTRL_RESETTING, &dev->flags);
1880         return;
1881
1882  free_tags:
1883         nvme_dev_remove_admin(dev);
1884         blk_put_queue(dev->ctrl.admin_q);
1885         dev->ctrl.admin_q = NULL;
1886         dev->queues[0]->tags = NULL;
1887  disable:
1888         nvme_disable_admin_queue(dev, false);
1889  unmap:
1890         nvme_dev_unmap(dev);
1891  out:
1892         nvme_remove_dead_ctrl(dev);
1893 }
1894
1895 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
1896 {
1897         struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
1898         struct pci_dev *pdev = to_pci_dev(dev->dev);
1899
1900         if (pci_get_drvdata(pdev))
1901                 pci_stop_and_remove_bus_device_locked(pdev);
1902         nvme_put_ctrl(&dev->ctrl);
1903 }
1904
1905 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
1906 {
1907         dev_warn(dev->ctrl.device, "Removing after probe failure\n");
1908         kref_get(&dev->ctrl.kref);
1909         if (!schedule_work(&dev->remove_work))
1910                 nvme_put_ctrl(&dev->ctrl);
1911 }
1912
1913 static int nvme_reset(struct nvme_dev *dev)
1914 {
1915         if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
1916                 return -ENODEV;
1917
1918         if (!queue_work(nvme_workq, &dev->reset_work))
1919                 return -EBUSY;
1920
1921         flush_work(&dev->reset_work);
1922         return 0;
1923 }
1924
1925 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
1926 {
1927         *val = readl(to_nvme_dev(ctrl)->bar + off);
1928         return 0;
1929 }
1930
1931 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
1932 {
1933         writel(val, to_nvme_dev(ctrl)->bar + off);
1934         return 0;
1935 }
1936
1937 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
1938 {
1939         *val = readq(to_nvme_dev(ctrl)->bar + off);
1940         return 0;
1941 }
1942
1943 static bool nvme_pci_io_incapable(struct nvme_ctrl *ctrl)
1944 {
1945         struct nvme_dev *dev = to_nvme_dev(ctrl);
1946
1947         return !dev->bar || dev->online_queues < 2;
1948 }
1949
1950 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
1951 {
1952         return nvme_reset(to_nvme_dev(ctrl));
1953 }
1954
1955 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1956         .module                 = THIS_MODULE,
1957         .reg_read32             = nvme_pci_reg_read32,
1958         .reg_write32            = nvme_pci_reg_write32,
1959         .reg_read64             = nvme_pci_reg_read64,
1960         .io_incapable           = nvme_pci_io_incapable,
1961         .reset_ctrl             = nvme_pci_reset_ctrl,
1962         .free_ctrl              = nvme_pci_free_ctrl,
1963 };
1964
1965 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1966 {
1967         int node, result = -ENOMEM;
1968         struct nvme_dev *dev;
1969
1970         node = dev_to_node(&pdev->dev);
1971         if (node == NUMA_NO_NODE)
1972                 set_dev_node(&pdev->dev, 0);
1973
1974         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
1975         if (!dev)
1976                 return -ENOMEM;
1977         dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
1978                                                         GFP_KERNEL, node);
1979         if (!dev->entry)
1980                 goto free;
1981         dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
1982                                                         GFP_KERNEL, node);
1983         if (!dev->queues)
1984                 goto free;
1985
1986         dev->dev = get_device(&pdev->dev);
1987         pci_set_drvdata(pdev, dev);
1988
1989         INIT_WORK(&dev->scan_work, nvme_dev_scan);
1990         INIT_WORK(&dev->reset_work, nvme_reset_work);
1991         INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
1992         INIT_WORK(&dev->async_work, nvme_async_event_work);
1993         setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
1994                 (unsigned long)dev);
1995         mutex_init(&dev->shutdown_lock);
1996         init_completion(&dev->ioq_wait);
1997
1998         result = nvme_setup_prp_pools(dev);
1999         if (result)
2000                 goto put_pci;
2001
2002         result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2003                         id->driver_data);
2004         if (result)
2005                 goto release_pools;
2006
2007         dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2008
2009         queue_work(nvme_workq, &dev->reset_work);
2010         return 0;
2011
2012  release_pools:
2013         nvme_release_prp_pools(dev);
2014  put_pci:
2015         put_device(dev->dev);
2016  free:
2017         kfree(dev->queues);
2018         kfree(dev->entry);
2019         kfree(dev);
2020         return result;
2021 }
2022
2023 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2024 {
2025         struct nvme_dev *dev = pci_get_drvdata(pdev);
2026
2027         if (prepare)
2028                 nvme_dev_disable(dev, false);
2029         else
2030                 queue_work(nvme_workq, &dev->reset_work);
2031 }
2032
2033 static void nvme_shutdown(struct pci_dev *pdev)
2034 {
2035         struct nvme_dev *dev = pci_get_drvdata(pdev);
2036         nvme_dev_disable(dev, true);
2037 }
2038
2039 static void nvme_remove(struct pci_dev *pdev)
2040 {
2041         struct nvme_dev *dev = pci_get_drvdata(pdev);
2042
2043         del_timer_sync(&dev->watchdog_timer);
2044
2045         pci_set_drvdata(pdev, NULL);
2046         flush_work(&dev->async_work);
2047         flush_work(&dev->reset_work);
2048         flush_work(&dev->scan_work);
2049         nvme_remove_namespaces(&dev->ctrl);
2050         nvme_uninit_ctrl(&dev->ctrl);
2051         nvme_dev_disable(dev, true);
2052         nvme_dev_remove_admin(dev);
2053         nvme_free_queues(dev, 0);
2054         nvme_release_cmb(dev);
2055         nvme_release_prp_pools(dev);
2056         nvme_put_ctrl(&dev->ctrl);
2057 }
2058
2059 #ifdef CONFIG_PM_SLEEP
2060 static int nvme_suspend(struct device *dev)
2061 {
2062         struct pci_dev *pdev = to_pci_dev(dev);
2063         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2064
2065         nvme_dev_disable(ndev, true);
2066         return 0;
2067 }
2068
2069 static int nvme_resume(struct device *dev)
2070 {
2071         struct pci_dev *pdev = to_pci_dev(dev);
2072         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2073
2074         queue_work(nvme_workq, &ndev->reset_work);
2075         return 0;
2076 }
2077 #endif
2078
2079 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2080
2081 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2082                                                 pci_channel_state_t state)
2083 {
2084         struct nvme_dev *dev = pci_get_drvdata(pdev);
2085
2086         /*
2087          * A frozen channel requires a reset. When detected, this method will
2088          * shutdown the controller to quiesce. The controller will be restarted
2089          * after the slot reset through driver's slot_reset callback.
2090          */
2091         dev_warn(dev->ctrl.device, "error detected: state:%d\n", state);
2092         switch (state) {
2093         case pci_channel_io_normal:
2094                 return PCI_ERS_RESULT_CAN_RECOVER;
2095         case pci_channel_io_frozen:
2096                 nvme_dev_disable(dev, false);
2097                 return PCI_ERS_RESULT_NEED_RESET;
2098         case pci_channel_io_perm_failure:
2099                 return PCI_ERS_RESULT_DISCONNECT;
2100         }
2101         return PCI_ERS_RESULT_NEED_RESET;
2102 }
2103
2104 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2105 {
2106         struct nvme_dev *dev = pci_get_drvdata(pdev);
2107
2108         dev_info(dev->ctrl.device, "restart after slot reset\n");
2109         pci_restore_state(pdev);
2110         queue_work(nvme_workq, &dev->reset_work);
2111         return PCI_ERS_RESULT_RECOVERED;
2112 }
2113
2114 static void nvme_error_resume(struct pci_dev *pdev)
2115 {
2116         pci_cleanup_aer_uncorrect_error_status(pdev);
2117 }
2118
2119 static const struct pci_error_handlers nvme_err_handler = {
2120         .error_detected = nvme_error_detected,
2121         .slot_reset     = nvme_slot_reset,
2122         .resume         = nvme_error_resume,
2123         .reset_notify   = nvme_reset_notify,
2124 };
2125
2126 /* Move to pci_ids.h later */
2127 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
2128
2129 static const struct pci_device_id nvme_id_table[] = {
2130         { PCI_VDEVICE(INTEL, 0x0953),
2131                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2132                                 NVME_QUIRK_DISCARD_ZEROES, },
2133         { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
2134                 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2135         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2136         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2137         { 0, }
2138 };
2139 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2140
2141 static struct pci_driver nvme_driver = {
2142         .name           = "nvme",
2143         .id_table       = nvme_id_table,
2144         .probe          = nvme_probe,
2145         .remove         = nvme_remove,
2146         .shutdown       = nvme_shutdown,
2147         .driver         = {
2148                 .pm     = &nvme_dev_pm_ops,
2149         },
2150         .err_handler    = &nvme_err_handler,
2151 };
2152
2153 static int __init nvme_init(void)
2154 {
2155         int result;
2156
2157         nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2158         if (!nvme_workq)
2159                 return -ENOMEM;
2160
2161         result = pci_register_driver(&nvme_driver);
2162         if (result)
2163                 destroy_workqueue(nvme_workq);
2164         return result;
2165 }
2166
2167 static void __exit nvme_exit(void)
2168 {
2169         pci_unregister_driver(&nvme_driver);
2170         destroy_workqueue(nvme_workq);
2171         _nvme_check_size();
2172 }
2173
2174 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2175 MODULE_LICENSE("GPL");
2176 MODULE_VERSION("1.0");
2177 module_init(nvme_init);
2178 module_exit(nvme_exit);