nvme: move OPAL setup from PCIe to core
[linux-2.6-block.git] / drivers / nvme / host / pci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6
7 #include <linux/acpi.h>
8 #include <linux/aer.h>
9 #include <linux/async.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/blk-mq-pci.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/memremap.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/mutex.h>
22 #include <linux/once.h>
23 #include <linux/pci.h>
24 #include <linux/suspend.h>
25 #include <linux/t10-pi.h>
26 #include <linux/types.h>
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #include <linux/io-64-nonatomic-hi-lo.h>
29 #include <linux/sed-opal.h>
30 #include <linux/pci-p2pdma.h>
31
32 #include "trace.h"
33 #include "nvme.h"
34
35 #define SQ_SIZE(q)      ((q)->q_depth << (q)->sqes)
36 #define CQ_SIZE(q)      ((q)->q_depth * sizeof(struct nvme_completion))
37
38 #define SGES_PER_PAGE   (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
39
40 /*
41  * These can be higher, but we need to ensure that any command doesn't
42  * require an sg allocation that needs more than a page of data.
43  */
44 #define NVME_MAX_KB_SZ  4096
45 #define NVME_MAX_SEGS   127
46
47 static int use_threaded_interrupts;
48 module_param(use_threaded_interrupts, int, 0444);
49
50 static bool use_cmb_sqes = true;
51 module_param(use_cmb_sqes, bool, 0444);
52 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
53
54 static unsigned int max_host_mem_size_mb = 128;
55 module_param(max_host_mem_size_mb, uint, 0444);
56 MODULE_PARM_DESC(max_host_mem_size_mb,
57         "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
58
59 static unsigned int sgl_threshold = SZ_32K;
60 module_param(sgl_threshold, uint, 0644);
61 MODULE_PARM_DESC(sgl_threshold,
62                 "Use SGLs when average request segment size is larger or equal to "
63                 "this size. Use 0 to disable SGLs.");
64
65 #define NVME_PCI_MIN_QUEUE_SIZE 2
66 #define NVME_PCI_MAX_QUEUE_SIZE 4095
67 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
68 static const struct kernel_param_ops io_queue_depth_ops = {
69         .set = io_queue_depth_set,
70         .get = param_get_uint,
71 };
72
73 static unsigned int io_queue_depth = 1024;
74 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
75 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
76
77 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
78 {
79         unsigned int n;
80         int ret;
81
82         ret = kstrtouint(val, 10, &n);
83         if (ret != 0 || n > num_possible_cpus())
84                 return -EINVAL;
85         return param_set_uint(val, kp);
86 }
87
88 static const struct kernel_param_ops io_queue_count_ops = {
89         .set = io_queue_count_set,
90         .get = param_get_uint,
91 };
92
93 static unsigned int write_queues;
94 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
95 MODULE_PARM_DESC(write_queues,
96         "Number of queues to use for writes. If not set, reads and writes "
97         "will share a queue set.");
98
99 static unsigned int poll_queues;
100 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
101 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
102
103 static bool noacpi;
104 module_param(noacpi, bool, 0444);
105 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
106
107 struct nvme_dev;
108 struct nvme_queue;
109
110 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
111 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
112
113 /*
114  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
115  */
116 struct nvme_dev {
117         struct nvme_queue *queues;
118         struct blk_mq_tag_set tagset;
119         struct blk_mq_tag_set admin_tagset;
120         u32 __iomem *dbs;
121         struct device *dev;
122         struct dma_pool *prp_page_pool;
123         struct dma_pool *prp_small_pool;
124         unsigned online_queues;
125         unsigned max_qid;
126         unsigned io_queues[HCTX_MAX_TYPES];
127         unsigned int num_vecs;
128         u32 q_depth;
129         int io_sqes;
130         u32 db_stride;
131         void __iomem *bar;
132         unsigned long bar_mapped_size;
133         struct work_struct remove_work;
134         struct mutex shutdown_lock;
135         bool subsystem;
136         u64 cmb_size;
137         bool cmb_use_sqes;
138         u32 cmbsz;
139         u32 cmbloc;
140         struct nvme_ctrl ctrl;
141         u32 last_ps;
142         bool hmb;
143
144         mempool_t *iod_mempool;
145
146         /* shadow doorbell buffer support: */
147         u32 *dbbuf_dbs;
148         dma_addr_t dbbuf_dbs_dma_addr;
149         u32 *dbbuf_eis;
150         dma_addr_t dbbuf_eis_dma_addr;
151
152         /* host memory buffer support: */
153         u64 host_mem_size;
154         u32 nr_host_mem_descs;
155         dma_addr_t host_mem_descs_dma;
156         struct nvme_host_mem_buf_desc *host_mem_descs;
157         void **host_mem_desc_bufs;
158         unsigned int nr_allocated_queues;
159         unsigned int nr_write_queues;
160         unsigned int nr_poll_queues;
161
162         bool attrs_added;
163 };
164
165 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
166 {
167         return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
168                         NVME_PCI_MAX_QUEUE_SIZE);
169 }
170
171 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
172 {
173         return qid * 2 * stride;
174 }
175
176 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
177 {
178         return (qid * 2 + 1) * stride;
179 }
180
181 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
182 {
183         return container_of(ctrl, struct nvme_dev, ctrl);
184 }
185
186 /*
187  * An NVM Express queue.  Each device has at least two (one for admin
188  * commands and one for I/O commands).
189  */
190 struct nvme_queue {
191         struct nvme_dev *dev;
192         spinlock_t sq_lock;
193         void *sq_cmds;
194          /* only used for poll queues: */
195         spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
196         struct nvme_completion *cqes;
197         dma_addr_t sq_dma_addr;
198         dma_addr_t cq_dma_addr;
199         u32 __iomem *q_db;
200         u32 q_depth;
201         u16 cq_vector;
202         u16 sq_tail;
203         u16 last_sq_tail;
204         u16 cq_head;
205         u16 qid;
206         u8 cq_phase;
207         u8 sqes;
208         unsigned long flags;
209 #define NVMEQ_ENABLED           0
210 #define NVMEQ_SQ_CMB            1
211 #define NVMEQ_DELETE_ERROR      2
212 #define NVMEQ_POLLED            3
213         u32 *dbbuf_sq_db;
214         u32 *dbbuf_cq_db;
215         u32 *dbbuf_sq_ei;
216         u32 *dbbuf_cq_ei;
217         struct completion delete_done;
218 };
219
220 /*
221  * The nvme_iod describes the data in an I/O.
222  *
223  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
224  * to the actual struct scatterlist.
225  */
226 struct nvme_iod {
227         struct nvme_request req;
228         struct nvme_command cmd;
229         bool use_sgl;
230         bool aborted;
231         s8 nr_allocations;      /* PRP list pool allocations. 0 means small
232                                    pool in use */
233         unsigned int dma_len;   /* length of single DMA segment mapping */
234         dma_addr_t first_dma;
235         dma_addr_t meta_dma;
236         struct sg_table sgt;
237 };
238
239 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
240 {
241         return dev->nr_allocated_queues * 8 * dev->db_stride;
242 }
243
244 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
245 {
246         unsigned int mem_size = nvme_dbbuf_size(dev);
247
248         if (dev->dbbuf_dbs) {
249                 /*
250                  * Clear the dbbuf memory so the driver doesn't observe stale
251                  * values from the previous instantiation.
252                  */
253                 memset(dev->dbbuf_dbs, 0, mem_size);
254                 memset(dev->dbbuf_eis, 0, mem_size);
255                 return 0;
256         }
257
258         dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
259                                             &dev->dbbuf_dbs_dma_addr,
260                                             GFP_KERNEL);
261         if (!dev->dbbuf_dbs)
262                 return -ENOMEM;
263         dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
264                                             &dev->dbbuf_eis_dma_addr,
265                                             GFP_KERNEL);
266         if (!dev->dbbuf_eis) {
267                 dma_free_coherent(dev->dev, mem_size,
268                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
269                 dev->dbbuf_dbs = NULL;
270                 return -ENOMEM;
271         }
272
273         return 0;
274 }
275
276 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
277 {
278         unsigned int mem_size = nvme_dbbuf_size(dev);
279
280         if (dev->dbbuf_dbs) {
281                 dma_free_coherent(dev->dev, mem_size,
282                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
283                 dev->dbbuf_dbs = NULL;
284         }
285         if (dev->dbbuf_eis) {
286                 dma_free_coherent(dev->dev, mem_size,
287                                   dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
288                 dev->dbbuf_eis = NULL;
289         }
290 }
291
292 static void nvme_dbbuf_init(struct nvme_dev *dev,
293                             struct nvme_queue *nvmeq, int qid)
294 {
295         if (!dev->dbbuf_dbs || !qid)
296                 return;
297
298         nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
299         nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
300         nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
301         nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
302 }
303
304 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
305 {
306         if (!nvmeq->qid)
307                 return;
308
309         nvmeq->dbbuf_sq_db = NULL;
310         nvmeq->dbbuf_cq_db = NULL;
311         nvmeq->dbbuf_sq_ei = NULL;
312         nvmeq->dbbuf_cq_ei = NULL;
313 }
314
315 static void nvme_dbbuf_set(struct nvme_dev *dev)
316 {
317         struct nvme_command c = { };
318         unsigned int i;
319
320         if (!dev->dbbuf_dbs)
321                 return;
322
323         c.dbbuf.opcode = nvme_admin_dbbuf;
324         c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
325         c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
326
327         if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
328                 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
329                 /* Free memory and continue on */
330                 nvme_dbbuf_dma_free(dev);
331
332                 for (i = 1; i <= dev->online_queues; i++)
333                         nvme_dbbuf_free(&dev->queues[i]);
334         }
335 }
336
337 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
338 {
339         return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
340 }
341
342 /* Update dbbuf and return true if an MMIO is required */
343 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
344                                               volatile u32 *dbbuf_ei)
345 {
346         if (dbbuf_db) {
347                 u16 old_value;
348
349                 /*
350                  * Ensure that the queue is written before updating
351                  * the doorbell in memory
352                  */
353                 wmb();
354
355                 old_value = *dbbuf_db;
356                 *dbbuf_db = value;
357
358                 /*
359                  * Ensure that the doorbell is updated before reading the event
360                  * index from memory.  The controller needs to provide similar
361                  * ordering to ensure the envent index is updated before reading
362                  * the doorbell.
363                  */
364                 mb();
365
366                 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
367                         return false;
368         }
369
370         return true;
371 }
372
373 /*
374  * Will slightly overestimate the number of pages needed.  This is OK
375  * as it only leads to a small amount of wasted memory for the lifetime of
376  * the I/O.
377  */
378 static int nvme_pci_npages_prp(void)
379 {
380         unsigned nprps = DIV_ROUND_UP(NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE,
381                                       NVME_CTRL_PAGE_SIZE);
382         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
383 }
384
385 /*
386  * Calculates the number of pages needed for the SGL segments. For example a 4k
387  * page can accommodate 256 SGL descriptors.
388  */
389 static int nvme_pci_npages_sgl(void)
390 {
391         return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc),
392                         PAGE_SIZE);
393 }
394
395 static size_t nvme_pci_iod_alloc_size(void)
396 {
397         size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl());
398
399         return sizeof(__le64 *) * npages +
400                 sizeof(struct scatterlist) * NVME_MAX_SEGS;
401 }
402
403 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
404                                 unsigned int hctx_idx)
405 {
406         struct nvme_dev *dev = data;
407         struct nvme_queue *nvmeq = &dev->queues[0];
408
409         WARN_ON(hctx_idx != 0);
410         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
411
412         hctx->driver_data = nvmeq;
413         return 0;
414 }
415
416 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
417                           unsigned int hctx_idx)
418 {
419         struct nvme_dev *dev = data;
420         struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
421
422         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
423         hctx->driver_data = nvmeq;
424         return 0;
425 }
426
427 static int nvme_pci_init_request(struct blk_mq_tag_set *set,
428                 struct request *req, unsigned int hctx_idx,
429                 unsigned int numa_node)
430 {
431         struct nvme_dev *dev = set->driver_data;
432         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
433
434         nvme_req(req)->ctrl = &dev->ctrl;
435         nvme_req(req)->cmd = &iod->cmd;
436         return 0;
437 }
438
439 static int queue_irq_offset(struct nvme_dev *dev)
440 {
441         /* if we have more than 1 vec, admin queue offsets us by 1 */
442         if (dev->num_vecs > 1)
443                 return 1;
444
445         return 0;
446 }
447
448 static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
449 {
450         struct nvme_dev *dev = set->driver_data;
451         int i, qoff, offset;
452
453         offset = queue_irq_offset(dev);
454         for (i = 0, qoff = 0; i < set->nr_maps; i++) {
455                 struct blk_mq_queue_map *map = &set->map[i];
456
457                 map->nr_queues = dev->io_queues[i];
458                 if (!map->nr_queues) {
459                         BUG_ON(i == HCTX_TYPE_DEFAULT);
460                         continue;
461                 }
462
463                 /*
464                  * The poll queue(s) doesn't have an IRQ (and hence IRQ
465                  * affinity), so use the regular blk-mq cpu mapping
466                  */
467                 map->queue_offset = qoff;
468                 if (i != HCTX_TYPE_POLL && offset)
469                         blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
470                 else
471                         blk_mq_map_queues(map);
472                 qoff += map->nr_queues;
473                 offset += map->nr_queues;
474         }
475 }
476
477 /*
478  * Write sq tail if we are asked to, or if the next command would wrap.
479  */
480 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
481 {
482         if (!write_sq) {
483                 u16 next_tail = nvmeq->sq_tail + 1;
484
485                 if (next_tail == nvmeq->q_depth)
486                         next_tail = 0;
487                 if (next_tail != nvmeq->last_sq_tail)
488                         return;
489         }
490
491         if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
492                         nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
493                 writel(nvmeq->sq_tail, nvmeq->q_db);
494         nvmeq->last_sq_tail = nvmeq->sq_tail;
495 }
496
497 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
498                                     struct nvme_command *cmd)
499 {
500         memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
501                 absolute_pointer(cmd), sizeof(*cmd));
502         if (++nvmeq->sq_tail == nvmeq->q_depth)
503                 nvmeq->sq_tail = 0;
504 }
505
506 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
507 {
508         struct nvme_queue *nvmeq = hctx->driver_data;
509
510         spin_lock(&nvmeq->sq_lock);
511         if (nvmeq->sq_tail != nvmeq->last_sq_tail)
512                 nvme_write_sq_db(nvmeq, true);
513         spin_unlock(&nvmeq->sq_lock);
514 }
515
516 static void **nvme_pci_iod_list(struct request *req)
517 {
518         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
519         return (void **)(iod->sgt.sgl + blk_rq_nr_phys_segments(req));
520 }
521
522 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
523 {
524         struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
525         int nseg = blk_rq_nr_phys_segments(req);
526         unsigned int avg_seg_size;
527
528         avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
529
530         if (!nvme_ctrl_sgl_supported(&dev->ctrl))
531                 return false;
532         if (!nvmeq->qid)
533                 return false;
534         if (!sgl_threshold || avg_seg_size < sgl_threshold)
535                 return false;
536         return true;
537 }
538
539 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
540 {
541         const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
542         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
543         dma_addr_t dma_addr = iod->first_dma;
544         int i;
545
546         for (i = 0; i < iod->nr_allocations; i++) {
547                 __le64 *prp_list = nvme_pci_iod_list(req)[i];
548                 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
549
550                 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
551                 dma_addr = next_dma_addr;
552         }
553 }
554
555 static void nvme_free_sgls(struct nvme_dev *dev, struct request *req)
556 {
557         const int last_sg = SGES_PER_PAGE - 1;
558         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
559         dma_addr_t dma_addr = iod->first_dma;
560         int i;
561
562         for (i = 0; i < iod->nr_allocations; i++) {
563                 struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i];
564                 dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr);
565
566                 dma_pool_free(dev->prp_page_pool, sg_list, dma_addr);
567                 dma_addr = next_dma_addr;
568         }
569 }
570
571 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
572 {
573         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
574
575         if (iod->dma_len) {
576                 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
577                                rq_dma_dir(req));
578                 return;
579         }
580
581         WARN_ON_ONCE(!iod->sgt.nents);
582
583         dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
584
585         if (iod->nr_allocations == 0)
586                 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
587                               iod->first_dma);
588         else if (iod->use_sgl)
589                 nvme_free_sgls(dev, req);
590         else
591                 nvme_free_prps(dev, req);
592         mempool_free(iod->sgt.sgl, dev->iod_mempool);
593 }
594
595 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
596 {
597         int i;
598         struct scatterlist *sg;
599
600         for_each_sg(sgl, sg, nents, i) {
601                 dma_addr_t phys = sg_phys(sg);
602                 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
603                         "dma_address:%pad dma_length:%d\n",
604                         i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
605                         sg_dma_len(sg));
606         }
607 }
608
609 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
610                 struct request *req, struct nvme_rw_command *cmnd)
611 {
612         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
613         struct dma_pool *pool;
614         int length = blk_rq_payload_bytes(req);
615         struct scatterlist *sg = iod->sgt.sgl;
616         int dma_len = sg_dma_len(sg);
617         u64 dma_addr = sg_dma_address(sg);
618         int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
619         __le64 *prp_list;
620         void **list = nvme_pci_iod_list(req);
621         dma_addr_t prp_dma;
622         int nprps, i;
623
624         length -= (NVME_CTRL_PAGE_SIZE - offset);
625         if (length <= 0) {
626                 iod->first_dma = 0;
627                 goto done;
628         }
629
630         dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
631         if (dma_len) {
632                 dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
633         } else {
634                 sg = sg_next(sg);
635                 dma_addr = sg_dma_address(sg);
636                 dma_len = sg_dma_len(sg);
637         }
638
639         if (length <= NVME_CTRL_PAGE_SIZE) {
640                 iod->first_dma = dma_addr;
641                 goto done;
642         }
643
644         nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
645         if (nprps <= (256 / 8)) {
646                 pool = dev->prp_small_pool;
647                 iod->nr_allocations = 0;
648         } else {
649                 pool = dev->prp_page_pool;
650                 iod->nr_allocations = 1;
651         }
652
653         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
654         if (!prp_list) {
655                 iod->nr_allocations = -1;
656                 return BLK_STS_RESOURCE;
657         }
658         list[0] = prp_list;
659         iod->first_dma = prp_dma;
660         i = 0;
661         for (;;) {
662                 if (i == NVME_CTRL_PAGE_SIZE >> 3) {
663                         __le64 *old_prp_list = prp_list;
664                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
665                         if (!prp_list)
666                                 goto free_prps;
667                         list[iod->nr_allocations++] = prp_list;
668                         prp_list[0] = old_prp_list[i - 1];
669                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
670                         i = 1;
671                 }
672                 prp_list[i++] = cpu_to_le64(dma_addr);
673                 dma_len -= NVME_CTRL_PAGE_SIZE;
674                 dma_addr += NVME_CTRL_PAGE_SIZE;
675                 length -= NVME_CTRL_PAGE_SIZE;
676                 if (length <= 0)
677                         break;
678                 if (dma_len > 0)
679                         continue;
680                 if (unlikely(dma_len < 0))
681                         goto bad_sgl;
682                 sg = sg_next(sg);
683                 dma_addr = sg_dma_address(sg);
684                 dma_len = sg_dma_len(sg);
685         }
686 done:
687         cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl));
688         cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
689         return BLK_STS_OK;
690 free_prps:
691         nvme_free_prps(dev, req);
692         return BLK_STS_RESOURCE;
693 bad_sgl:
694         WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents),
695                         "Invalid SGL for payload:%d nents:%d\n",
696                         blk_rq_payload_bytes(req), iod->sgt.nents);
697         return BLK_STS_IOERR;
698 }
699
700 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
701                 struct scatterlist *sg)
702 {
703         sge->addr = cpu_to_le64(sg_dma_address(sg));
704         sge->length = cpu_to_le32(sg_dma_len(sg));
705         sge->type = NVME_SGL_FMT_DATA_DESC << 4;
706 }
707
708 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
709                 dma_addr_t dma_addr, int entries)
710 {
711         sge->addr = cpu_to_le64(dma_addr);
712         if (entries < SGES_PER_PAGE) {
713                 sge->length = cpu_to_le32(entries * sizeof(*sge));
714                 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
715         } else {
716                 sge->length = cpu_to_le32(PAGE_SIZE);
717                 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
718         }
719 }
720
721 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
722                 struct request *req, struct nvme_rw_command *cmd)
723 {
724         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
725         struct dma_pool *pool;
726         struct nvme_sgl_desc *sg_list;
727         struct scatterlist *sg = iod->sgt.sgl;
728         unsigned int entries = iod->sgt.nents;
729         dma_addr_t sgl_dma;
730         int i = 0;
731
732         /* setting the transfer type as SGL */
733         cmd->flags = NVME_CMD_SGL_METABUF;
734
735         if (entries == 1) {
736                 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
737                 return BLK_STS_OK;
738         }
739
740         if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
741                 pool = dev->prp_small_pool;
742                 iod->nr_allocations = 0;
743         } else {
744                 pool = dev->prp_page_pool;
745                 iod->nr_allocations = 1;
746         }
747
748         sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
749         if (!sg_list) {
750                 iod->nr_allocations = -1;
751                 return BLK_STS_RESOURCE;
752         }
753
754         nvme_pci_iod_list(req)[0] = sg_list;
755         iod->first_dma = sgl_dma;
756
757         nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
758
759         do {
760                 if (i == SGES_PER_PAGE) {
761                         struct nvme_sgl_desc *old_sg_desc = sg_list;
762                         struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
763
764                         sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
765                         if (!sg_list)
766                                 goto free_sgls;
767
768                         i = 0;
769                         nvme_pci_iod_list(req)[iod->nr_allocations++] = sg_list;
770                         sg_list[i++] = *link;
771                         nvme_pci_sgl_set_seg(link, sgl_dma, entries);
772                 }
773
774                 nvme_pci_sgl_set_data(&sg_list[i++], sg);
775                 sg = sg_next(sg);
776         } while (--entries > 0);
777
778         return BLK_STS_OK;
779 free_sgls:
780         nvme_free_sgls(dev, req);
781         return BLK_STS_RESOURCE;
782 }
783
784 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
785                 struct request *req, struct nvme_rw_command *cmnd,
786                 struct bio_vec *bv)
787 {
788         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
789         unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
790         unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
791
792         iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
793         if (dma_mapping_error(dev->dev, iod->first_dma))
794                 return BLK_STS_RESOURCE;
795         iod->dma_len = bv->bv_len;
796
797         cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
798         if (bv->bv_len > first_prp_len)
799                 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
800         return BLK_STS_OK;
801 }
802
803 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
804                 struct request *req, struct nvme_rw_command *cmnd,
805                 struct bio_vec *bv)
806 {
807         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
808
809         iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
810         if (dma_mapping_error(dev->dev, iod->first_dma))
811                 return BLK_STS_RESOURCE;
812         iod->dma_len = bv->bv_len;
813
814         cmnd->flags = NVME_CMD_SGL_METABUF;
815         cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
816         cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
817         cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
818         return BLK_STS_OK;
819 }
820
821 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
822                 struct nvme_command *cmnd)
823 {
824         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
825         blk_status_t ret = BLK_STS_RESOURCE;
826         int rc;
827
828         if (blk_rq_nr_phys_segments(req) == 1) {
829                 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
830                 struct bio_vec bv = req_bvec(req);
831
832                 if (!is_pci_p2pdma_page(bv.bv_page)) {
833                         if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
834                                 return nvme_setup_prp_simple(dev, req,
835                                                              &cmnd->rw, &bv);
836
837                         if (nvmeq->qid && sgl_threshold &&
838                             nvme_ctrl_sgl_supported(&dev->ctrl))
839                                 return nvme_setup_sgl_simple(dev, req,
840                                                              &cmnd->rw, &bv);
841                 }
842         }
843
844         iod->dma_len = 0;
845         iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
846         if (!iod->sgt.sgl)
847                 return BLK_STS_RESOURCE;
848         sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req));
849         iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl);
850         if (!iod->sgt.orig_nents)
851                 goto out_free_sg;
852
853         rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req),
854                              DMA_ATTR_NO_WARN);
855         if (rc) {
856                 if (rc == -EREMOTEIO)
857                         ret = BLK_STS_TARGET;
858                 goto out_free_sg;
859         }
860
861         iod->use_sgl = nvme_pci_use_sgls(dev, req);
862         if (iod->use_sgl)
863                 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw);
864         else
865                 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
866         if (ret != BLK_STS_OK)
867                 goto out_unmap_sg;
868         return BLK_STS_OK;
869
870 out_unmap_sg:
871         dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
872 out_free_sg:
873         mempool_free(iod->sgt.sgl, dev->iod_mempool);
874         return ret;
875 }
876
877 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
878                 struct nvme_command *cmnd)
879 {
880         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
881
882         iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
883                         rq_dma_dir(req), 0);
884         if (dma_mapping_error(dev->dev, iod->meta_dma))
885                 return BLK_STS_IOERR;
886         cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
887         return BLK_STS_OK;
888 }
889
890 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
891 {
892         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
893         blk_status_t ret;
894
895         iod->aborted = false;
896         iod->nr_allocations = -1;
897         iod->sgt.nents = 0;
898
899         ret = nvme_setup_cmd(req->q->queuedata, req);
900         if (ret)
901                 return ret;
902
903         if (blk_rq_nr_phys_segments(req)) {
904                 ret = nvme_map_data(dev, req, &iod->cmd);
905                 if (ret)
906                         goto out_free_cmd;
907         }
908
909         if (blk_integrity_rq(req)) {
910                 ret = nvme_map_metadata(dev, req, &iod->cmd);
911                 if (ret)
912                         goto out_unmap_data;
913         }
914
915         blk_mq_start_request(req);
916         return BLK_STS_OK;
917 out_unmap_data:
918         nvme_unmap_data(dev, req);
919 out_free_cmd:
920         nvme_cleanup_cmd(req);
921         return ret;
922 }
923
924 /*
925  * NOTE: ns is NULL when called on the admin queue.
926  */
927 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
928                          const struct blk_mq_queue_data *bd)
929 {
930         struct nvme_queue *nvmeq = hctx->driver_data;
931         struct nvme_dev *dev = nvmeq->dev;
932         struct request *req = bd->rq;
933         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
934         blk_status_t ret;
935
936         /*
937          * We should not need to do this, but we're still using this to
938          * ensure we can drain requests on a dying queue.
939          */
940         if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
941                 return BLK_STS_IOERR;
942
943         if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
944                 return nvme_fail_nonready_command(&dev->ctrl, req);
945
946         ret = nvme_prep_rq(dev, req);
947         if (unlikely(ret))
948                 return ret;
949         spin_lock(&nvmeq->sq_lock);
950         nvme_sq_copy_cmd(nvmeq, &iod->cmd);
951         nvme_write_sq_db(nvmeq, bd->last);
952         spin_unlock(&nvmeq->sq_lock);
953         return BLK_STS_OK;
954 }
955
956 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist)
957 {
958         spin_lock(&nvmeq->sq_lock);
959         while (!rq_list_empty(*rqlist)) {
960                 struct request *req = rq_list_pop(rqlist);
961                 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
962
963                 nvme_sq_copy_cmd(nvmeq, &iod->cmd);
964         }
965         nvme_write_sq_db(nvmeq, true);
966         spin_unlock(&nvmeq->sq_lock);
967 }
968
969 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
970 {
971         /*
972          * We should not need to do this, but we're still using this to
973          * ensure we can drain requests on a dying queue.
974          */
975         if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
976                 return false;
977         if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
978                 return false;
979
980         req->mq_hctx->tags->rqs[req->tag] = req;
981         return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
982 }
983
984 static void nvme_queue_rqs(struct request **rqlist)
985 {
986         struct request *req, *next, *prev = NULL;
987         struct request *requeue_list = NULL;
988
989         rq_list_for_each_safe(rqlist, req, next) {
990                 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
991
992                 if (!nvme_prep_rq_batch(nvmeq, req)) {
993                         /* detach 'req' and add to remainder list */
994                         rq_list_move(rqlist, &requeue_list, req, prev);
995
996                         req = prev;
997                         if (!req)
998                                 continue;
999                 }
1000
1001                 if (!next || req->mq_hctx != next->mq_hctx) {
1002                         /* detach rest of list, and submit */
1003                         req->rq_next = NULL;
1004                         nvme_submit_cmds(nvmeq, rqlist);
1005                         *rqlist = next;
1006                         prev = NULL;
1007                 } else
1008                         prev = req;
1009         }
1010
1011         *rqlist = requeue_list;
1012 }
1013
1014 static __always_inline void nvme_pci_unmap_rq(struct request *req)
1015 {
1016         struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1017         struct nvme_dev *dev = nvmeq->dev;
1018
1019         if (blk_integrity_rq(req)) {
1020                 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1021
1022                 dma_unmap_page(dev->dev, iod->meta_dma,
1023                                rq_integrity_vec(req)->bv_len, rq_data_dir(req));
1024         }
1025
1026         if (blk_rq_nr_phys_segments(req))
1027                 nvme_unmap_data(dev, req);
1028 }
1029
1030 static void nvme_pci_complete_rq(struct request *req)
1031 {
1032         nvme_pci_unmap_rq(req);
1033         nvme_complete_rq(req);
1034 }
1035
1036 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
1037 {
1038         nvme_complete_batch(iob, nvme_pci_unmap_rq);
1039 }
1040
1041 /* We read the CQE phase first to check if the rest of the entry is valid */
1042 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
1043 {
1044         struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
1045
1046         return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
1047 }
1048
1049 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
1050 {
1051         u16 head = nvmeq->cq_head;
1052
1053         if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1054                                               nvmeq->dbbuf_cq_ei))
1055                 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1056 }
1057
1058 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1059 {
1060         if (!nvmeq->qid)
1061                 return nvmeq->dev->admin_tagset.tags[0];
1062         return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1063 }
1064
1065 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1066                                    struct io_comp_batch *iob, u16 idx)
1067 {
1068         struct nvme_completion *cqe = &nvmeq->cqes[idx];
1069         __u16 command_id = READ_ONCE(cqe->command_id);
1070         struct request *req;
1071
1072         /*
1073          * AEN requests are special as they don't time out and can
1074          * survive any kind of queue freeze and often don't respond to
1075          * aborts.  We don't even bother to allocate a struct request
1076          * for them but rather special case them here.
1077          */
1078         if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1079                 nvme_complete_async_event(&nvmeq->dev->ctrl,
1080                                 cqe->status, &cqe->result);
1081                 return;
1082         }
1083
1084         req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1085         if (unlikely(!req)) {
1086                 dev_warn(nvmeq->dev->ctrl.device,
1087                         "invalid id %d completed on queue %d\n",
1088                         command_id, le16_to_cpu(cqe->sq_id));
1089                 return;
1090         }
1091
1092         trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1093         if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1094             !blk_mq_add_to_batch(req, iob, nvme_req(req)->status,
1095                                         nvme_pci_complete_batch))
1096                 nvme_pci_complete_rq(req);
1097 }
1098
1099 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1100 {
1101         u32 tmp = nvmeq->cq_head + 1;
1102
1103         if (tmp == nvmeq->q_depth) {
1104                 nvmeq->cq_head = 0;
1105                 nvmeq->cq_phase ^= 1;
1106         } else {
1107                 nvmeq->cq_head = tmp;
1108         }
1109 }
1110
1111 static inline int nvme_poll_cq(struct nvme_queue *nvmeq,
1112                                struct io_comp_batch *iob)
1113 {
1114         int found = 0;
1115
1116         while (nvme_cqe_pending(nvmeq)) {
1117                 found++;
1118                 /*
1119                  * load-load control dependency between phase and the rest of
1120                  * the cqe requires a full read memory barrier
1121                  */
1122                 dma_rmb();
1123                 nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1124                 nvme_update_cq_head(nvmeq);
1125         }
1126
1127         if (found)
1128                 nvme_ring_cq_doorbell(nvmeq);
1129         return found;
1130 }
1131
1132 static irqreturn_t nvme_irq(int irq, void *data)
1133 {
1134         struct nvme_queue *nvmeq = data;
1135         DEFINE_IO_COMP_BATCH(iob);
1136
1137         if (nvme_poll_cq(nvmeq, &iob)) {
1138                 if (!rq_list_empty(iob.req_list))
1139                         nvme_pci_complete_batch(&iob);
1140                 return IRQ_HANDLED;
1141         }
1142         return IRQ_NONE;
1143 }
1144
1145 static irqreturn_t nvme_irq_check(int irq, void *data)
1146 {
1147         struct nvme_queue *nvmeq = data;
1148
1149         if (nvme_cqe_pending(nvmeq))
1150                 return IRQ_WAKE_THREAD;
1151         return IRQ_NONE;
1152 }
1153
1154 /*
1155  * Poll for completions for any interrupt driven queue
1156  * Can be called from any context.
1157  */
1158 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1159 {
1160         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1161
1162         WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1163
1164         disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1165         nvme_poll_cq(nvmeq, NULL);
1166         enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1167 }
1168
1169 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1170 {
1171         struct nvme_queue *nvmeq = hctx->driver_data;
1172         bool found;
1173
1174         if (!nvme_cqe_pending(nvmeq))
1175                 return 0;
1176
1177         spin_lock(&nvmeq->cq_poll_lock);
1178         found = nvme_poll_cq(nvmeq, iob);
1179         spin_unlock(&nvmeq->cq_poll_lock);
1180
1181         return found;
1182 }
1183
1184 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1185 {
1186         struct nvme_dev *dev = to_nvme_dev(ctrl);
1187         struct nvme_queue *nvmeq = &dev->queues[0];
1188         struct nvme_command c = { };
1189
1190         c.common.opcode = nvme_admin_async_event;
1191         c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1192
1193         spin_lock(&nvmeq->sq_lock);
1194         nvme_sq_copy_cmd(nvmeq, &c);
1195         nvme_write_sq_db(nvmeq, true);
1196         spin_unlock(&nvmeq->sq_lock);
1197 }
1198
1199 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1200 {
1201         struct nvme_command c = { };
1202
1203         c.delete_queue.opcode = opcode;
1204         c.delete_queue.qid = cpu_to_le16(id);
1205
1206         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1207 }
1208
1209 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1210                 struct nvme_queue *nvmeq, s16 vector)
1211 {
1212         struct nvme_command c = { };
1213         int flags = NVME_QUEUE_PHYS_CONTIG;
1214
1215         if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1216                 flags |= NVME_CQ_IRQ_ENABLED;
1217
1218         /*
1219          * Note: we (ab)use the fact that the prp fields survive if no data
1220          * is attached to the request.
1221          */
1222         c.create_cq.opcode = nvme_admin_create_cq;
1223         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1224         c.create_cq.cqid = cpu_to_le16(qid);
1225         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1226         c.create_cq.cq_flags = cpu_to_le16(flags);
1227         c.create_cq.irq_vector = cpu_to_le16(vector);
1228
1229         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1230 }
1231
1232 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1233                                                 struct nvme_queue *nvmeq)
1234 {
1235         struct nvme_ctrl *ctrl = &dev->ctrl;
1236         struct nvme_command c = { };
1237         int flags = NVME_QUEUE_PHYS_CONTIG;
1238
1239         /*
1240          * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1241          * set. Since URGENT priority is zeroes, it makes all queues
1242          * URGENT.
1243          */
1244         if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1245                 flags |= NVME_SQ_PRIO_MEDIUM;
1246
1247         /*
1248          * Note: we (ab)use the fact that the prp fields survive if no data
1249          * is attached to the request.
1250          */
1251         c.create_sq.opcode = nvme_admin_create_sq;
1252         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1253         c.create_sq.sqid = cpu_to_le16(qid);
1254         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1255         c.create_sq.sq_flags = cpu_to_le16(flags);
1256         c.create_sq.cqid = cpu_to_le16(qid);
1257
1258         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1259 }
1260
1261 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1262 {
1263         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1264 }
1265
1266 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1267 {
1268         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1269 }
1270
1271 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
1272 {
1273         struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1274
1275         dev_warn(nvmeq->dev->ctrl.device,
1276                  "Abort status: 0x%x", nvme_req(req)->status);
1277         atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1278         blk_mq_free_request(req);
1279         return RQ_END_IO_NONE;
1280 }
1281
1282 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1283 {
1284         /* If true, indicates loss of adapter communication, possibly by a
1285          * NVMe Subsystem reset.
1286          */
1287         bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1288
1289         /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1290         switch (dev->ctrl.state) {
1291         case NVME_CTRL_RESETTING:
1292         case NVME_CTRL_CONNECTING:
1293                 return false;
1294         default:
1295                 break;
1296         }
1297
1298         /* We shouldn't reset unless the controller is on fatal error state
1299          * _or_ if we lost the communication with it.
1300          */
1301         if (!(csts & NVME_CSTS_CFS) && !nssro)
1302                 return false;
1303
1304         return true;
1305 }
1306
1307 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1308 {
1309         /* Read a config register to help see what died. */
1310         u16 pci_status;
1311         int result;
1312
1313         result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1314                                       &pci_status);
1315         if (result == PCIBIOS_SUCCESSFUL)
1316                 dev_warn(dev->ctrl.device,
1317                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1318                          csts, pci_status);
1319         else
1320                 dev_warn(dev->ctrl.device,
1321                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1322                          csts, result);
1323
1324         if (csts != ~0)
1325                 return;
1326
1327         dev_warn(dev->ctrl.device,
1328                  "Does your device have a faulty power saving mode enabled?\n");
1329         dev_warn(dev->ctrl.device,
1330                  "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off\" and report a bug\n");
1331 }
1332
1333 static enum blk_eh_timer_return nvme_timeout(struct request *req)
1334 {
1335         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1336         struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1337         struct nvme_dev *dev = nvmeq->dev;
1338         struct request *abort_req;
1339         struct nvme_command cmd = { };
1340         u32 csts = readl(dev->bar + NVME_REG_CSTS);
1341
1342         /* If PCI error recovery process is happening, we cannot reset or
1343          * the recovery mechanism will surely fail.
1344          */
1345         mb();
1346         if (pci_channel_offline(to_pci_dev(dev->dev)))
1347                 return BLK_EH_RESET_TIMER;
1348
1349         /*
1350          * Reset immediately if the controller is failed
1351          */
1352         if (nvme_should_reset(dev, csts)) {
1353                 nvme_warn_reset(dev, csts);
1354                 nvme_dev_disable(dev, false);
1355                 nvme_reset_ctrl(&dev->ctrl);
1356                 return BLK_EH_DONE;
1357         }
1358
1359         /*
1360          * Did we miss an interrupt?
1361          */
1362         if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1363                 nvme_poll(req->mq_hctx, NULL);
1364         else
1365                 nvme_poll_irqdisable(nvmeq);
1366
1367         if (blk_mq_request_completed(req)) {
1368                 dev_warn(dev->ctrl.device,
1369                          "I/O %d QID %d timeout, completion polled\n",
1370                          req->tag, nvmeq->qid);
1371                 return BLK_EH_DONE;
1372         }
1373
1374         /*
1375          * Shutdown immediately if controller times out while starting. The
1376          * reset work will see the pci device disabled when it gets the forced
1377          * cancellation error. All outstanding requests are completed on
1378          * shutdown, so we return BLK_EH_DONE.
1379          */
1380         switch (dev->ctrl.state) {
1381         case NVME_CTRL_CONNECTING:
1382                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1383                 fallthrough;
1384         case NVME_CTRL_DELETING:
1385                 dev_warn_ratelimited(dev->ctrl.device,
1386                          "I/O %d QID %d timeout, disable controller\n",
1387                          req->tag, nvmeq->qid);
1388                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1389                 nvme_dev_disable(dev, true);
1390                 return BLK_EH_DONE;
1391         case NVME_CTRL_RESETTING:
1392                 return BLK_EH_RESET_TIMER;
1393         default:
1394                 break;
1395         }
1396
1397         /*
1398          * Shutdown the controller immediately and schedule a reset if the
1399          * command was already aborted once before and still hasn't been
1400          * returned to the driver, or if this is the admin queue.
1401          */
1402         if (!nvmeq->qid || iod->aborted) {
1403                 dev_warn(dev->ctrl.device,
1404                          "I/O %d QID %d timeout, reset controller\n",
1405                          req->tag, nvmeq->qid);
1406                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1407                 nvme_dev_disable(dev, false);
1408                 nvme_reset_ctrl(&dev->ctrl);
1409
1410                 return BLK_EH_DONE;
1411         }
1412
1413         if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1414                 atomic_inc(&dev->ctrl.abort_limit);
1415                 return BLK_EH_RESET_TIMER;
1416         }
1417         iod->aborted = true;
1418
1419         cmd.abort.opcode = nvme_admin_abort_cmd;
1420         cmd.abort.cid = nvme_cid(req);
1421         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1422
1423         dev_warn(nvmeq->dev->ctrl.device,
1424                 "I/O %d (%s) QID %d timeout, aborting\n",
1425                  req->tag,
1426                  nvme_get_opcode_str(nvme_req(req)->cmd->common.opcode),
1427                  nvmeq->qid);
1428
1429         abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1430                                          BLK_MQ_REQ_NOWAIT);
1431         if (IS_ERR(abort_req)) {
1432                 atomic_inc(&dev->ctrl.abort_limit);
1433                 return BLK_EH_RESET_TIMER;
1434         }
1435         nvme_init_request(abort_req, &cmd);
1436
1437         abort_req->end_io = abort_endio;
1438         abort_req->end_io_data = NULL;
1439         abort_req->rq_flags |= RQF_QUIET;
1440         blk_execute_rq_nowait(abort_req, false);
1441
1442         /*
1443          * The aborted req will be completed on receiving the abort req.
1444          * We enable the timer again. If hit twice, it'll cause a device reset,
1445          * as the device then is in a faulty state.
1446          */
1447         return BLK_EH_RESET_TIMER;
1448 }
1449
1450 static void nvme_free_queue(struct nvme_queue *nvmeq)
1451 {
1452         dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1453                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1454         if (!nvmeq->sq_cmds)
1455                 return;
1456
1457         if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1458                 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1459                                 nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1460         } else {
1461                 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1462                                 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1463         }
1464 }
1465
1466 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1467 {
1468         int i;
1469
1470         for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1471                 dev->ctrl.queue_count--;
1472                 nvme_free_queue(&dev->queues[i]);
1473         }
1474 }
1475
1476 /**
1477  * nvme_suspend_queue - put queue into suspended state
1478  * @nvmeq: queue to suspend
1479  */
1480 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1481 {
1482         if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1483                 return 1;
1484
1485         /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1486         mb();
1487
1488         nvmeq->dev->online_queues--;
1489         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1490                 nvme_stop_admin_queue(&nvmeq->dev->ctrl);
1491         if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1492                 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1493         return 0;
1494 }
1495
1496 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1497 {
1498         int i;
1499
1500         for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1501                 nvme_suspend_queue(&dev->queues[i]);
1502 }
1503
1504 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1505 {
1506         struct nvme_queue *nvmeq = &dev->queues[0];
1507
1508         if (shutdown)
1509                 nvme_shutdown_ctrl(&dev->ctrl);
1510         else
1511                 nvme_disable_ctrl(&dev->ctrl);
1512
1513         nvme_poll_irqdisable(nvmeq);
1514 }
1515
1516 /*
1517  * Called only on a device that has been disabled and after all other threads
1518  * that can check this device's completion queues have synced, except
1519  * nvme_poll(). This is the last chance for the driver to see a natural
1520  * completion before nvme_cancel_request() terminates all incomplete requests.
1521  */
1522 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1523 {
1524         int i;
1525
1526         for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1527                 spin_lock(&dev->queues[i].cq_poll_lock);
1528                 nvme_poll_cq(&dev->queues[i], NULL);
1529                 spin_unlock(&dev->queues[i].cq_poll_lock);
1530         }
1531 }
1532
1533 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1534                                 int entry_size)
1535 {
1536         int q_depth = dev->q_depth;
1537         unsigned q_size_aligned = roundup(q_depth * entry_size,
1538                                           NVME_CTRL_PAGE_SIZE);
1539
1540         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1541                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1542
1543                 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1544                 q_depth = div_u64(mem_per_q, entry_size);
1545
1546                 /*
1547                  * Ensure the reduced q_depth is above some threshold where it
1548                  * would be better to map queues in system memory with the
1549                  * original depth
1550                  */
1551                 if (q_depth < 64)
1552                         return -ENOMEM;
1553         }
1554
1555         return q_depth;
1556 }
1557
1558 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1559                                 int qid)
1560 {
1561         struct pci_dev *pdev = to_pci_dev(dev->dev);
1562
1563         if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1564                 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1565                 if (nvmeq->sq_cmds) {
1566                         nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1567                                                         nvmeq->sq_cmds);
1568                         if (nvmeq->sq_dma_addr) {
1569                                 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1570                                 return 0;
1571                         }
1572
1573                         pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1574                 }
1575         }
1576
1577         nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1578                                 &nvmeq->sq_dma_addr, GFP_KERNEL);
1579         if (!nvmeq->sq_cmds)
1580                 return -ENOMEM;
1581         return 0;
1582 }
1583
1584 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1585 {
1586         struct nvme_queue *nvmeq = &dev->queues[qid];
1587
1588         if (dev->ctrl.queue_count > qid)
1589                 return 0;
1590
1591         nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1592         nvmeq->q_depth = depth;
1593         nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1594                                          &nvmeq->cq_dma_addr, GFP_KERNEL);
1595         if (!nvmeq->cqes)
1596                 goto free_nvmeq;
1597
1598         if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1599                 goto free_cqdma;
1600
1601         nvmeq->dev = dev;
1602         spin_lock_init(&nvmeq->sq_lock);
1603         spin_lock_init(&nvmeq->cq_poll_lock);
1604         nvmeq->cq_head = 0;
1605         nvmeq->cq_phase = 1;
1606         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1607         nvmeq->qid = qid;
1608         dev->ctrl.queue_count++;
1609
1610         return 0;
1611
1612  free_cqdma:
1613         dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1614                           nvmeq->cq_dma_addr);
1615  free_nvmeq:
1616         return -ENOMEM;
1617 }
1618
1619 static int queue_request_irq(struct nvme_queue *nvmeq)
1620 {
1621         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1622         int nr = nvmeq->dev->ctrl.instance;
1623
1624         if (use_threaded_interrupts) {
1625                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1626                                 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1627         } else {
1628                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1629                                 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1630         }
1631 }
1632
1633 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1634 {
1635         struct nvme_dev *dev = nvmeq->dev;
1636
1637         nvmeq->sq_tail = 0;
1638         nvmeq->last_sq_tail = 0;
1639         nvmeq->cq_head = 0;
1640         nvmeq->cq_phase = 1;
1641         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1642         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1643         nvme_dbbuf_init(dev, nvmeq, qid);
1644         dev->online_queues++;
1645         wmb(); /* ensure the first interrupt sees the initialization */
1646 }
1647
1648 /*
1649  * Try getting shutdown_lock while setting up IO queues.
1650  */
1651 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1652 {
1653         /*
1654          * Give up if the lock is being held by nvme_dev_disable.
1655          */
1656         if (!mutex_trylock(&dev->shutdown_lock))
1657                 return -ENODEV;
1658
1659         /*
1660          * Controller is in wrong state, fail early.
1661          */
1662         if (dev->ctrl.state != NVME_CTRL_CONNECTING) {
1663                 mutex_unlock(&dev->shutdown_lock);
1664                 return -ENODEV;
1665         }
1666
1667         return 0;
1668 }
1669
1670 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1671 {
1672         struct nvme_dev *dev = nvmeq->dev;
1673         int result;
1674         u16 vector = 0;
1675
1676         clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1677
1678         /*
1679          * A queue's vector matches the queue identifier unless the controller
1680          * has only one vector available.
1681          */
1682         if (!polled)
1683                 vector = dev->num_vecs == 1 ? 0 : qid;
1684         else
1685                 set_bit(NVMEQ_POLLED, &nvmeq->flags);
1686
1687         result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1688         if (result)
1689                 return result;
1690
1691         result = adapter_alloc_sq(dev, qid, nvmeq);
1692         if (result < 0)
1693                 return result;
1694         if (result)
1695                 goto release_cq;
1696
1697         nvmeq->cq_vector = vector;
1698
1699         result = nvme_setup_io_queues_trylock(dev);
1700         if (result)
1701                 return result;
1702         nvme_init_queue(nvmeq, qid);
1703         if (!polled) {
1704                 result = queue_request_irq(nvmeq);
1705                 if (result < 0)
1706                         goto release_sq;
1707         }
1708
1709         set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1710         mutex_unlock(&dev->shutdown_lock);
1711         return result;
1712
1713 release_sq:
1714         dev->online_queues--;
1715         mutex_unlock(&dev->shutdown_lock);
1716         adapter_delete_sq(dev, qid);
1717 release_cq:
1718         adapter_delete_cq(dev, qid);
1719         return result;
1720 }
1721
1722 static const struct blk_mq_ops nvme_mq_admin_ops = {
1723         .queue_rq       = nvme_queue_rq,
1724         .complete       = nvme_pci_complete_rq,
1725         .init_hctx      = nvme_admin_init_hctx,
1726         .init_request   = nvme_pci_init_request,
1727         .timeout        = nvme_timeout,
1728 };
1729
1730 static const struct blk_mq_ops nvme_mq_ops = {
1731         .queue_rq       = nvme_queue_rq,
1732         .queue_rqs      = nvme_queue_rqs,
1733         .complete       = nvme_pci_complete_rq,
1734         .commit_rqs     = nvme_commit_rqs,
1735         .init_hctx      = nvme_init_hctx,
1736         .init_request   = nvme_pci_init_request,
1737         .map_queues     = nvme_pci_map_queues,
1738         .timeout        = nvme_timeout,
1739         .poll           = nvme_poll,
1740 };
1741
1742 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1743 {
1744         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1745                 /*
1746                  * If the controller was reset during removal, it's possible
1747                  * user requests may be waiting on a stopped queue. Start the
1748                  * queue to flush these to completion.
1749                  */
1750                 nvme_start_admin_queue(&dev->ctrl);
1751                 blk_mq_destroy_queue(dev->ctrl.admin_q);
1752                 blk_mq_free_tag_set(&dev->admin_tagset);
1753         }
1754 }
1755
1756 static int nvme_pci_alloc_admin_tag_set(struct nvme_dev *dev)
1757 {
1758         struct blk_mq_tag_set *set = &dev->admin_tagset;
1759
1760         set->ops = &nvme_mq_admin_ops;
1761         set->nr_hw_queues = 1;
1762
1763         set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1764         set->timeout = NVME_ADMIN_TIMEOUT;
1765         set->numa_node = dev->ctrl.numa_node;
1766         set->cmd_size = sizeof(struct nvme_iod);
1767         set->flags = BLK_MQ_F_NO_SCHED;
1768         set->driver_data = dev;
1769
1770         if (blk_mq_alloc_tag_set(set))
1771                 return -ENOMEM;
1772         dev->ctrl.admin_tagset = set;
1773
1774         dev->ctrl.admin_q = blk_mq_init_queue(set);
1775         if (IS_ERR(dev->ctrl.admin_q)) {
1776                 blk_mq_free_tag_set(set);
1777                 dev->ctrl.admin_q = NULL;
1778                 return -ENOMEM;
1779         }
1780         return 0;
1781 }
1782
1783 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1784 {
1785         return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1786 }
1787
1788 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1789 {
1790         struct pci_dev *pdev = to_pci_dev(dev->dev);
1791
1792         if (size <= dev->bar_mapped_size)
1793                 return 0;
1794         if (size > pci_resource_len(pdev, 0))
1795                 return -ENOMEM;
1796         if (dev->bar)
1797                 iounmap(dev->bar);
1798         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1799         if (!dev->bar) {
1800                 dev->bar_mapped_size = 0;
1801                 return -ENOMEM;
1802         }
1803         dev->bar_mapped_size = size;
1804         dev->dbs = dev->bar + NVME_REG_DBS;
1805
1806         return 0;
1807 }
1808
1809 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1810 {
1811         int result;
1812         u32 aqa;
1813         struct nvme_queue *nvmeq;
1814
1815         result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1816         if (result < 0)
1817                 return result;
1818
1819         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1820                                 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1821
1822         if (dev->subsystem &&
1823             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1824                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1825
1826         result = nvme_disable_ctrl(&dev->ctrl);
1827         if (result < 0)
1828                 return result;
1829
1830         result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1831         if (result)
1832                 return result;
1833
1834         dev->ctrl.numa_node = dev_to_node(dev->dev);
1835
1836         nvmeq = &dev->queues[0];
1837         aqa = nvmeq->q_depth - 1;
1838         aqa |= aqa << 16;
1839
1840         writel(aqa, dev->bar + NVME_REG_AQA);
1841         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1842         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1843
1844         result = nvme_enable_ctrl(&dev->ctrl);
1845         if (result)
1846                 return result;
1847
1848         nvmeq->cq_vector = 0;
1849         nvme_init_queue(nvmeq, 0);
1850         result = queue_request_irq(nvmeq);
1851         if (result) {
1852                 dev->online_queues--;
1853                 return result;
1854         }
1855
1856         set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1857         return result;
1858 }
1859
1860 static int nvme_create_io_queues(struct nvme_dev *dev)
1861 {
1862         unsigned i, max, rw_queues;
1863         int ret = 0;
1864
1865         for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1866                 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1867                         ret = -ENOMEM;
1868                         break;
1869                 }
1870         }
1871
1872         max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1873         if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1874                 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1875                                 dev->io_queues[HCTX_TYPE_READ];
1876         } else {
1877                 rw_queues = max;
1878         }
1879
1880         for (i = dev->online_queues; i <= max; i++) {
1881                 bool polled = i > rw_queues;
1882
1883                 ret = nvme_create_queue(&dev->queues[i], i, polled);
1884                 if (ret)
1885                         break;
1886         }
1887
1888         /*
1889          * Ignore failing Create SQ/CQ commands, we can continue with less
1890          * than the desired amount of queues, and even a controller without
1891          * I/O queues can still be used to issue admin commands.  This might
1892          * be useful to upgrade a buggy firmware for example.
1893          */
1894         return ret >= 0 ? 0 : ret;
1895 }
1896
1897 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1898 {
1899         u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1900
1901         return 1ULL << (12 + 4 * szu);
1902 }
1903
1904 static u32 nvme_cmb_size(struct nvme_dev *dev)
1905 {
1906         return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1907 }
1908
1909 static void nvme_map_cmb(struct nvme_dev *dev)
1910 {
1911         u64 size, offset;
1912         resource_size_t bar_size;
1913         struct pci_dev *pdev = to_pci_dev(dev->dev);
1914         int bar;
1915
1916         if (dev->cmb_size)
1917                 return;
1918
1919         if (NVME_CAP_CMBS(dev->ctrl.cap))
1920                 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1921
1922         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1923         if (!dev->cmbsz)
1924                 return;
1925         dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1926
1927         size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1928         offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1929         bar = NVME_CMB_BIR(dev->cmbloc);
1930         bar_size = pci_resource_len(pdev, bar);
1931
1932         if (offset > bar_size)
1933                 return;
1934
1935         /*
1936          * Tell the controller about the host side address mapping the CMB,
1937          * and enable CMB decoding for the NVMe 1.4+ scheme:
1938          */
1939         if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1940                 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1941                              (pci_bus_address(pdev, bar) + offset),
1942                              dev->bar + NVME_REG_CMBMSC);
1943         }
1944
1945         /*
1946          * Controllers may support a CMB size larger than their BAR,
1947          * for example, due to being behind a bridge. Reduce the CMB to
1948          * the reported size of the BAR
1949          */
1950         if (size > bar_size - offset)
1951                 size = bar_size - offset;
1952
1953         if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1954                 dev_warn(dev->ctrl.device,
1955                          "failed to register the CMB\n");
1956                 return;
1957         }
1958
1959         dev->cmb_size = size;
1960         dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1961
1962         if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1963                         (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1964                 pci_p2pmem_publish(pdev, true);
1965 }
1966
1967 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1968 {
1969         u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1970         u64 dma_addr = dev->host_mem_descs_dma;
1971         struct nvme_command c = { };
1972         int ret;
1973
1974         c.features.opcode       = nvme_admin_set_features;
1975         c.features.fid          = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1976         c.features.dword11      = cpu_to_le32(bits);
1977         c.features.dword12      = cpu_to_le32(host_mem_size);
1978         c.features.dword13      = cpu_to_le32(lower_32_bits(dma_addr));
1979         c.features.dword14      = cpu_to_le32(upper_32_bits(dma_addr));
1980         c.features.dword15      = cpu_to_le32(dev->nr_host_mem_descs);
1981
1982         ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1983         if (ret) {
1984                 dev_warn(dev->ctrl.device,
1985                          "failed to set host mem (err %d, flags %#x).\n",
1986                          ret, bits);
1987         } else
1988                 dev->hmb = bits & NVME_HOST_MEM_ENABLE;
1989
1990         return ret;
1991 }
1992
1993 static void nvme_free_host_mem(struct nvme_dev *dev)
1994 {
1995         int i;
1996
1997         for (i = 0; i < dev->nr_host_mem_descs; i++) {
1998                 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1999                 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
2000
2001                 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
2002                                le64_to_cpu(desc->addr),
2003                                DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2004         }
2005
2006         kfree(dev->host_mem_desc_bufs);
2007         dev->host_mem_desc_bufs = NULL;
2008         dma_free_coherent(dev->dev,
2009                         dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
2010                         dev->host_mem_descs, dev->host_mem_descs_dma);
2011         dev->host_mem_descs = NULL;
2012         dev->nr_host_mem_descs = 0;
2013 }
2014
2015 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
2016                 u32 chunk_size)
2017 {
2018         struct nvme_host_mem_buf_desc *descs;
2019         u32 max_entries, len;
2020         dma_addr_t descs_dma;
2021         int i = 0;
2022         void **bufs;
2023         u64 size, tmp;
2024
2025         tmp = (preferred + chunk_size - 1);
2026         do_div(tmp, chunk_size);
2027         max_entries = tmp;
2028
2029         if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
2030                 max_entries = dev->ctrl.hmmaxd;
2031
2032         descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
2033                                    &descs_dma, GFP_KERNEL);
2034         if (!descs)
2035                 goto out;
2036
2037         bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
2038         if (!bufs)
2039                 goto out_free_descs;
2040
2041         for (size = 0; size < preferred && i < max_entries; size += len) {
2042                 dma_addr_t dma_addr;
2043
2044                 len = min_t(u64, chunk_size, preferred - size);
2045                 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
2046                                 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2047                 if (!bufs[i])
2048                         break;
2049
2050                 descs[i].addr = cpu_to_le64(dma_addr);
2051                 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
2052                 i++;
2053         }
2054
2055         if (!size)
2056                 goto out_free_bufs;
2057
2058         dev->nr_host_mem_descs = i;
2059         dev->host_mem_size = size;
2060         dev->host_mem_descs = descs;
2061         dev->host_mem_descs_dma = descs_dma;
2062         dev->host_mem_desc_bufs = bufs;
2063         return 0;
2064
2065 out_free_bufs:
2066         while (--i >= 0) {
2067                 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
2068
2069                 dma_free_attrs(dev->dev, size, bufs[i],
2070                                le64_to_cpu(descs[i].addr),
2071                                DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2072         }
2073
2074         kfree(bufs);
2075 out_free_descs:
2076         dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
2077                         descs_dma);
2078 out:
2079         dev->host_mem_descs = NULL;
2080         return -ENOMEM;
2081 }
2082
2083 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2084 {
2085         u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2086         u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2087         u64 chunk_size;
2088
2089         /* start big and work our way down */
2090         for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2091                 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2092                         if (!min || dev->host_mem_size >= min)
2093                                 return 0;
2094                         nvme_free_host_mem(dev);
2095                 }
2096         }
2097
2098         return -ENOMEM;
2099 }
2100
2101 static int nvme_setup_host_mem(struct nvme_dev *dev)
2102 {
2103         u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2104         u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2105         u64 min = (u64)dev->ctrl.hmmin * 4096;
2106         u32 enable_bits = NVME_HOST_MEM_ENABLE;
2107         int ret;
2108
2109         preferred = min(preferred, max);
2110         if (min > max) {
2111                 dev_warn(dev->ctrl.device,
2112                         "min host memory (%lld MiB) above limit (%d MiB).\n",
2113                         min >> ilog2(SZ_1M), max_host_mem_size_mb);
2114                 nvme_free_host_mem(dev);
2115                 return 0;
2116         }
2117
2118         /*
2119          * If we already have a buffer allocated check if we can reuse it.
2120          */
2121         if (dev->host_mem_descs) {
2122                 if (dev->host_mem_size >= min)
2123                         enable_bits |= NVME_HOST_MEM_RETURN;
2124                 else
2125                         nvme_free_host_mem(dev);
2126         }
2127
2128         if (!dev->host_mem_descs) {
2129                 if (nvme_alloc_host_mem(dev, min, preferred)) {
2130                         dev_warn(dev->ctrl.device,
2131                                 "failed to allocate host memory buffer.\n");
2132                         return 0; /* controller must work without HMB */
2133                 }
2134
2135                 dev_info(dev->ctrl.device,
2136                         "allocated %lld MiB host memory buffer.\n",
2137                         dev->host_mem_size >> ilog2(SZ_1M));
2138         }
2139
2140         ret = nvme_set_host_mem(dev, enable_bits);
2141         if (ret)
2142                 nvme_free_host_mem(dev);
2143         return ret;
2144 }
2145
2146 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2147                 char *buf)
2148 {
2149         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2150
2151         return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz  : x%08x\n",
2152                        ndev->cmbloc, ndev->cmbsz);
2153 }
2154 static DEVICE_ATTR_RO(cmb);
2155
2156 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2157                 char *buf)
2158 {
2159         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2160
2161         return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2162 }
2163 static DEVICE_ATTR_RO(cmbloc);
2164
2165 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2166                 char *buf)
2167 {
2168         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2169
2170         return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2171 }
2172 static DEVICE_ATTR_RO(cmbsz);
2173
2174 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2175                         char *buf)
2176 {
2177         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2178
2179         return sysfs_emit(buf, "%d\n", ndev->hmb);
2180 }
2181
2182 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2183                          const char *buf, size_t count)
2184 {
2185         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2186         bool new;
2187         int ret;
2188
2189         if (strtobool(buf, &new) < 0)
2190                 return -EINVAL;
2191
2192         if (new == ndev->hmb)
2193                 return count;
2194
2195         if (new) {
2196                 ret = nvme_setup_host_mem(ndev);
2197         } else {
2198                 ret = nvme_set_host_mem(ndev, 0);
2199                 if (!ret)
2200                         nvme_free_host_mem(ndev);
2201         }
2202
2203         if (ret < 0)
2204                 return ret;
2205
2206         return count;
2207 }
2208 static DEVICE_ATTR_RW(hmb);
2209
2210 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2211                 struct attribute *a, int n)
2212 {
2213         struct nvme_ctrl *ctrl =
2214                 dev_get_drvdata(container_of(kobj, struct device, kobj));
2215         struct nvme_dev *dev = to_nvme_dev(ctrl);
2216
2217         if (a == &dev_attr_cmb.attr ||
2218             a == &dev_attr_cmbloc.attr ||
2219             a == &dev_attr_cmbsz.attr) {
2220                 if (!dev->cmbsz)
2221                         return 0;
2222         }
2223         if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2224                 return 0;
2225
2226         return a->mode;
2227 }
2228
2229 static struct attribute *nvme_pci_attrs[] = {
2230         &dev_attr_cmb.attr,
2231         &dev_attr_cmbloc.attr,
2232         &dev_attr_cmbsz.attr,
2233         &dev_attr_hmb.attr,
2234         NULL,
2235 };
2236
2237 static const struct attribute_group nvme_pci_attr_group = {
2238         .attrs          = nvme_pci_attrs,
2239         .is_visible     = nvme_pci_attrs_are_visible,
2240 };
2241
2242 /*
2243  * nirqs is the number of interrupts available for write and read
2244  * queues. The core already reserved an interrupt for the admin queue.
2245  */
2246 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2247 {
2248         struct nvme_dev *dev = affd->priv;
2249         unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2250
2251         /*
2252          * If there is no interrupt available for queues, ensure that
2253          * the default queue is set to 1. The affinity set size is
2254          * also set to one, but the irq core ignores it for this case.
2255          *
2256          * If only one interrupt is available or 'write_queue' == 0, combine
2257          * write and read queues.
2258          *
2259          * If 'write_queues' > 0, ensure it leaves room for at least one read
2260          * queue.
2261          */
2262         if (!nrirqs) {
2263                 nrirqs = 1;
2264                 nr_read_queues = 0;
2265         } else if (nrirqs == 1 || !nr_write_queues) {
2266                 nr_read_queues = 0;
2267         } else if (nr_write_queues >= nrirqs) {
2268                 nr_read_queues = 1;
2269         } else {
2270                 nr_read_queues = nrirqs - nr_write_queues;
2271         }
2272
2273         dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2274         affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2275         dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2276         affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2277         affd->nr_sets = nr_read_queues ? 2 : 1;
2278 }
2279
2280 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2281 {
2282         struct pci_dev *pdev = to_pci_dev(dev->dev);
2283         struct irq_affinity affd = {
2284                 .pre_vectors    = 1,
2285                 .calc_sets      = nvme_calc_irq_sets,
2286                 .priv           = dev,
2287         };
2288         unsigned int irq_queues, poll_queues;
2289
2290         /*
2291          * Poll queues don't need interrupts, but we need at least one I/O queue
2292          * left over for non-polled I/O.
2293          */
2294         poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2295         dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2296
2297         /*
2298          * Initialize for the single interrupt case, will be updated in
2299          * nvme_calc_irq_sets().
2300          */
2301         dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2302         dev->io_queues[HCTX_TYPE_READ] = 0;
2303
2304         /*
2305          * We need interrupts for the admin queue and each non-polled I/O queue,
2306          * but some Apple controllers require all queues to use the first
2307          * vector.
2308          */
2309         irq_queues = 1;
2310         if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2311                 irq_queues += (nr_io_queues - poll_queues);
2312         return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2313                               PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2314 }
2315
2316 static void nvme_disable_io_queues(struct nvme_dev *dev)
2317 {
2318         if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2319                 __nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2320 }
2321
2322 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2323 {
2324         /*
2325          * If tags are shared with admin queue (Apple bug), then
2326          * make sure we only use one IO queue.
2327          */
2328         if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2329                 return 1;
2330         return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2331 }
2332
2333 static int nvme_setup_io_queues(struct nvme_dev *dev)
2334 {
2335         struct nvme_queue *adminq = &dev->queues[0];
2336         struct pci_dev *pdev = to_pci_dev(dev->dev);
2337         unsigned int nr_io_queues;
2338         unsigned long size;
2339         int result;
2340
2341         /*
2342          * Sample the module parameters once at reset time so that we have
2343          * stable values to work with.
2344          */
2345         dev->nr_write_queues = write_queues;
2346         dev->nr_poll_queues = poll_queues;
2347
2348         nr_io_queues = dev->nr_allocated_queues - 1;
2349         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2350         if (result < 0)
2351                 return result;
2352
2353         if (nr_io_queues == 0)
2354                 return 0;
2355
2356         /*
2357          * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2358          * from set to unset. If there is a window to it is truely freed,
2359          * pci_free_irq_vectors() jumping into this window will crash.
2360          * And take lock to avoid racing with pci_free_irq_vectors() in
2361          * nvme_dev_disable() path.
2362          */
2363         result = nvme_setup_io_queues_trylock(dev);
2364         if (result)
2365                 return result;
2366         if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2367                 pci_free_irq(pdev, 0, adminq);
2368
2369         if (dev->cmb_use_sqes) {
2370                 result = nvme_cmb_qdepth(dev, nr_io_queues,
2371                                 sizeof(struct nvme_command));
2372                 if (result > 0)
2373                         dev->q_depth = result;
2374                 else
2375                         dev->cmb_use_sqes = false;
2376         }
2377
2378         do {
2379                 size = db_bar_size(dev, nr_io_queues);
2380                 result = nvme_remap_bar(dev, size);
2381                 if (!result)
2382                         break;
2383                 if (!--nr_io_queues) {
2384                         result = -ENOMEM;
2385                         goto out_unlock;
2386                 }
2387         } while (1);
2388         adminq->q_db = dev->dbs;
2389
2390  retry:
2391         /* Deregister the admin queue's interrupt */
2392         if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2393                 pci_free_irq(pdev, 0, adminq);
2394
2395         /*
2396          * If we enable msix early due to not intx, disable it again before
2397          * setting up the full range we need.
2398          */
2399         pci_free_irq_vectors(pdev);
2400
2401         result = nvme_setup_irqs(dev, nr_io_queues);
2402         if (result <= 0) {
2403                 result = -EIO;
2404                 goto out_unlock;
2405         }
2406
2407         dev->num_vecs = result;
2408         result = max(result - 1, 1);
2409         dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2410
2411         /*
2412          * Should investigate if there's a performance win from allocating
2413          * more queues than interrupt vectors; it might allow the submission
2414          * path to scale better, even if the receive path is limited by the
2415          * number of interrupts.
2416          */
2417         result = queue_request_irq(adminq);
2418         if (result)
2419                 goto out_unlock;
2420         set_bit(NVMEQ_ENABLED, &adminq->flags);
2421         mutex_unlock(&dev->shutdown_lock);
2422
2423         result = nvme_create_io_queues(dev);
2424         if (result || dev->online_queues < 2)
2425                 return result;
2426
2427         if (dev->online_queues - 1 < dev->max_qid) {
2428                 nr_io_queues = dev->online_queues - 1;
2429                 nvme_disable_io_queues(dev);
2430                 result = nvme_setup_io_queues_trylock(dev);
2431                 if (result)
2432                         return result;
2433                 nvme_suspend_io_queues(dev);
2434                 goto retry;
2435         }
2436         dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2437                                         dev->io_queues[HCTX_TYPE_DEFAULT],
2438                                         dev->io_queues[HCTX_TYPE_READ],
2439                                         dev->io_queues[HCTX_TYPE_POLL]);
2440         return 0;
2441 out_unlock:
2442         mutex_unlock(&dev->shutdown_lock);
2443         return result;
2444 }
2445
2446 static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
2447                                              blk_status_t error)
2448 {
2449         struct nvme_queue *nvmeq = req->end_io_data;
2450
2451         blk_mq_free_request(req);
2452         complete(&nvmeq->delete_done);
2453         return RQ_END_IO_NONE;
2454 }
2455
2456 static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
2457                                           blk_status_t error)
2458 {
2459         struct nvme_queue *nvmeq = req->end_io_data;
2460
2461         if (error)
2462                 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2463
2464         return nvme_del_queue_end(req, error);
2465 }
2466
2467 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2468 {
2469         struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2470         struct request *req;
2471         struct nvme_command cmd = { };
2472
2473         cmd.delete_queue.opcode = opcode;
2474         cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2475
2476         req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2477         if (IS_ERR(req))
2478                 return PTR_ERR(req);
2479         nvme_init_request(req, &cmd);
2480
2481         if (opcode == nvme_admin_delete_cq)
2482                 req->end_io = nvme_del_cq_end;
2483         else
2484                 req->end_io = nvme_del_queue_end;
2485         req->end_io_data = nvmeq;
2486
2487         init_completion(&nvmeq->delete_done);
2488         req->rq_flags |= RQF_QUIET;
2489         blk_execute_rq_nowait(req, false);
2490         return 0;
2491 }
2492
2493 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2494 {
2495         int nr_queues = dev->online_queues - 1, sent = 0;
2496         unsigned long timeout;
2497
2498  retry:
2499         timeout = NVME_ADMIN_TIMEOUT;
2500         while (nr_queues > 0) {
2501                 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2502                         break;
2503                 nr_queues--;
2504                 sent++;
2505         }
2506         while (sent) {
2507                 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2508
2509                 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2510                                 timeout);
2511                 if (timeout == 0)
2512                         return false;
2513
2514                 sent--;
2515                 if (nr_queues)
2516                         goto retry;
2517         }
2518         return true;
2519 }
2520
2521 static void nvme_pci_alloc_tag_set(struct nvme_dev *dev)
2522 {
2523         struct blk_mq_tag_set * set = &dev->tagset;
2524         int ret;
2525
2526         set->ops = &nvme_mq_ops;
2527         set->nr_hw_queues = dev->online_queues - 1;
2528         set->nr_maps = 1;
2529         if (dev->io_queues[HCTX_TYPE_READ])
2530                 set->nr_maps = 2;
2531         if (dev->io_queues[HCTX_TYPE_POLL])
2532                 set->nr_maps = 3;
2533         set->timeout = NVME_IO_TIMEOUT;
2534         set->numa_node = dev->ctrl.numa_node;
2535         set->queue_depth = min_t(unsigned, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2536         set->cmd_size = sizeof(struct nvme_iod);
2537         set->flags = BLK_MQ_F_SHOULD_MERGE;
2538         set->driver_data = dev;
2539
2540         /*
2541          * Some Apple controllers requires tags to be unique
2542          * across admin and IO queue, so reserve the first 32
2543          * tags of the IO queue.
2544          */
2545         if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2546                 set->reserved_tags = NVME_AQ_DEPTH;
2547
2548         ret = blk_mq_alloc_tag_set(set);
2549         if (ret) {
2550                 dev_warn(dev->ctrl.device,
2551                         "IO queues tagset allocation failed %d\n", ret);
2552                 return;
2553         }
2554         dev->ctrl.tagset = set;
2555 }
2556
2557 static void nvme_pci_update_nr_queues(struct nvme_dev *dev)
2558 {
2559         blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2560         /* free previously allocated queues that are no longer usable */
2561         nvme_free_queues(dev, dev->online_queues);
2562 }
2563
2564 static int nvme_pci_enable(struct nvme_dev *dev)
2565 {
2566         int result = -ENOMEM;
2567         struct pci_dev *pdev = to_pci_dev(dev->dev);
2568         int dma_address_bits = 64;
2569
2570         if (pci_enable_device_mem(pdev))
2571                 return result;
2572
2573         pci_set_master(pdev);
2574
2575         if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
2576                 dma_address_bits = 48;
2577         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(dma_address_bits)))
2578                 goto disable;
2579
2580         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2581                 result = -ENODEV;
2582                 goto disable;
2583         }
2584
2585         /*
2586          * Some devices and/or platforms don't advertise or work with INTx
2587          * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2588          * adjust this later.
2589          */
2590         result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2591         if (result < 0)
2592                 return result;
2593
2594         dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2595
2596         dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2597                                 io_queue_depth);
2598         dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2599         dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2600         dev->dbs = dev->bar + 4096;
2601
2602         /*
2603          * Some Apple controllers require a non-standard SQE size.
2604          * Interestingly they also seem to ignore the CC:IOSQES register
2605          * so we don't bother updating it here.
2606          */
2607         if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2608                 dev->io_sqes = 7;
2609         else
2610                 dev->io_sqes = NVME_NVM_IOSQES;
2611
2612         /*
2613          * Temporary fix for the Apple controller found in the MacBook8,1 and
2614          * some MacBook7,1 to avoid controller resets and data loss.
2615          */
2616         if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2617                 dev->q_depth = 2;
2618                 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2619                         "set queue depth=%u to work around controller resets\n",
2620                         dev->q_depth);
2621         } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2622                    (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2623                    NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2624                 dev->q_depth = 64;
2625                 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2626                         "set queue depth=%u\n", dev->q_depth);
2627         }
2628
2629         /*
2630          * Controllers with the shared tags quirk need the IO queue to be
2631          * big enough so that we get 32 tags for the admin queue
2632          */
2633         if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2634             (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2635                 dev->q_depth = NVME_AQ_DEPTH + 2;
2636                 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2637                          dev->q_depth);
2638         }
2639
2640
2641         nvme_map_cmb(dev);
2642
2643         pci_enable_pcie_error_reporting(pdev);
2644         pci_save_state(pdev);
2645         return 0;
2646
2647  disable:
2648         pci_disable_device(pdev);
2649         return result;
2650 }
2651
2652 static void nvme_dev_unmap(struct nvme_dev *dev)
2653 {
2654         if (dev->bar)
2655                 iounmap(dev->bar);
2656         pci_release_mem_regions(to_pci_dev(dev->dev));
2657 }
2658
2659 static void nvme_pci_disable(struct nvme_dev *dev)
2660 {
2661         struct pci_dev *pdev = to_pci_dev(dev->dev);
2662
2663         pci_free_irq_vectors(pdev);
2664
2665         if (pci_is_enabled(pdev)) {
2666                 pci_disable_pcie_error_reporting(pdev);
2667                 pci_disable_device(pdev);
2668         }
2669 }
2670
2671 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2672 {
2673         bool dead = true, freeze = false;
2674         struct pci_dev *pdev = to_pci_dev(dev->dev);
2675
2676         mutex_lock(&dev->shutdown_lock);
2677         if (pci_is_enabled(pdev)) {
2678                 u32 csts;
2679
2680                 if (pci_device_is_present(pdev))
2681                         csts = readl(dev->bar + NVME_REG_CSTS);
2682                 else
2683                         csts = ~0;
2684
2685                 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2686                     dev->ctrl.state == NVME_CTRL_RESETTING) {
2687                         freeze = true;
2688                         nvme_start_freeze(&dev->ctrl);
2689                 }
2690                 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2691                         pdev->error_state  != pci_channel_io_normal);
2692         }
2693
2694         /*
2695          * Give the controller a chance to complete all entered requests if
2696          * doing a safe shutdown.
2697          */
2698         if (!dead && shutdown && freeze)
2699                 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2700
2701         nvme_stop_queues(&dev->ctrl);
2702
2703         if (!dead && dev->ctrl.queue_count > 0) {
2704                 nvme_disable_io_queues(dev);
2705                 nvme_disable_admin_queue(dev, shutdown);
2706         }
2707         nvme_suspend_io_queues(dev);
2708         nvme_suspend_queue(&dev->queues[0]);
2709         nvme_pci_disable(dev);
2710         nvme_reap_pending_cqes(dev);
2711
2712         nvme_cancel_tagset(&dev->ctrl);
2713         nvme_cancel_admin_tagset(&dev->ctrl);
2714
2715         /*
2716          * The driver will not be starting up queues again if shutting down so
2717          * must flush all entered requests to their failed completion to avoid
2718          * deadlocking blk-mq hot-cpu notifier.
2719          */
2720         if (shutdown) {
2721                 nvme_start_queues(&dev->ctrl);
2722                 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2723                         nvme_start_admin_queue(&dev->ctrl);
2724         }
2725         mutex_unlock(&dev->shutdown_lock);
2726 }
2727
2728 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2729 {
2730         if (!nvme_wait_reset(&dev->ctrl))
2731                 return -EBUSY;
2732         nvme_dev_disable(dev, shutdown);
2733         return 0;
2734 }
2735
2736 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2737 {
2738         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2739                                                 NVME_CTRL_PAGE_SIZE,
2740                                                 NVME_CTRL_PAGE_SIZE, 0);
2741         if (!dev->prp_page_pool)
2742                 return -ENOMEM;
2743
2744         /* Optimisation for I/Os between 4k and 128k */
2745         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2746                                                 256, 256, 0);
2747         if (!dev->prp_small_pool) {
2748                 dma_pool_destroy(dev->prp_page_pool);
2749                 return -ENOMEM;
2750         }
2751         return 0;
2752 }
2753
2754 static void nvme_release_prp_pools(struct nvme_dev *dev)
2755 {
2756         dma_pool_destroy(dev->prp_page_pool);
2757         dma_pool_destroy(dev->prp_small_pool);
2758 }
2759
2760 static void nvme_free_tagset(struct nvme_dev *dev)
2761 {
2762         if (dev->tagset.tags)
2763                 blk_mq_free_tag_set(&dev->tagset);
2764         dev->ctrl.tagset = NULL;
2765 }
2766
2767 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2768 {
2769         struct nvme_dev *dev = to_nvme_dev(ctrl);
2770
2771         nvme_dbbuf_dma_free(dev);
2772         nvme_free_tagset(dev);
2773         if (dev->ctrl.admin_q)
2774                 blk_put_queue(dev->ctrl.admin_q);
2775         mempool_destroy(dev->iod_mempool);
2776         put_device(dev->dev);
2777         kfree(dev->queues);
2778         kfree(dev);
2779 }
2780
2781 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2782 {
2783         /*
2784          * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2785          * may be holding this pci_dev's device lock.
2786          */
2787         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2788         nvme_get_ctrl(&dev->ctrl);
2789         nvme_dev_disable(dev, false);
2790         nvme_mark_namespaces_dead(&dev->ctrl);
2791         if (!queue_work(nvme_wq, &dev->remove_work))
2792                 nvme_put_ctrl(&dev->ctrl);
2793 }
2794
2795 static void nvme_reset_work(struct work_struct *work)
2796 {
2797         struct nvme_dev *dev =
2798                 container_of(work, struct nvme_dev, ctrl.reset_work);
2799         bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2800         int result;
2801
2802         if (dev->ctrl.state != NVME_CTRL_RESETTING) {
2803                 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2804                          dev->ctrl.state);
2805                 result = -ENODEV;
2806                 goto out;
2807         }
2808
2809         /*
2810          * If we're called to reset a live controller first shut it down before
2811          * moving on.
2812          */
2813         if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2814                 nvme_dev_disable(dev, false);
2815         nvme_sync_queues(&dev->ctrl);
2816
2817         mutex_lock(&dev->shutdown_lock);
2818         result = nvme_pci_enable(dev);
2819         if (result)
2820                 goto out_unlock;
2821
2822         result = nvme_pci_configure_admin_queue(dev);
2823         if (result)
2824                 goto out_unlock;
2825
2826         if (!dev->ctrl.admin_q) {
2827                 result = nvme_pci_alloc_admin_tag_set(dev);
2828                 if (result)
2829                         goto out_unlock;
2830         } else {
2831                 nvme_start_admin_queue(&dev->ctrl);
2832         }
2833
2834         dma_set_min_align_mask(dev->dev, NVME_CTRL_PAGE_SIZE - 1);
2835
2836         /*
2837          * Limit the max command size to prevent iod->sg allocations going
2838          * over a single page.
2839          */
2840         dev->ctrl.max_hw_sectors = min_t(u32,
2841                 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2842         dev->ctrl.max_segments = NVME_MAX_SEGS;
2843
2844         /*
2845          * Don't limit the IOMMU merged segment size.
2846          */
2847         dma_set_max_seg_size(dev->dev, 0xffffffff);
2848
2849         mutex_unlock(&dev->shutdown_lock);
2850
2851         /*
2852          * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2853          * initializing procedure here.
2854          */
2855         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2856                 dev_warn(dev->ctrl.device,
2857                         "failed to mark controller CONNECTING\n");
2858                 result = -EBUSY;
2859                 goto out;
2860         }
2861
2862         /*
2863          * We do not support an SGL for metadata (yet), so we are limited to a
2864          * single integrity segment for the separate metadata pointer.
2865          */
2866         dev->ctrl.max_integrity_segments = 1;
2867
2868         result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend);
2869         if (result)
2870                 goto out;
2871
2872         if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2873                 result = nvme_dbbuf_dma_alloc(dev);
2874                 if (result)
2875                         dev_warn(dev->dev,
2876                                  "unable to allocate dma for dbbuf\n");
2877         }
2878
2879         if (dev->ctrl.hmpre) {
2880                 result = nvme_setup_host_mem(dev);
2881                 if (result < 0)
2882                         goto out;
2883         }
2884
2885         result = nvme_setup_io_queues(dev);
2886         if (result)
2887                 goto out;
2888
2889         if (dev->ctrl.tagset) {
2890                 /*
2891                  * This is a controller reset and we already have a tagset.
2892                  * Freeze and update the number of I/O queues as thos might have
2893                  * changed.  If there are no I/O queues left after this reset,
2894                  * keep the controller around but remove all namespaces.
2895                  */
2896                 if (dev->online_queues > 1) {
2897                         nvme_start_queues(&dev->ctrl);
2898                         nvme_wait_freeze(&dev->ctrl);
2899                         nvme_pci_update_nr_queues(dev);
2900                         nvme_dbbuf_set(dev);
2901                         nvme_unfreeze(&dev->ctrl);
2902                 } else {
2903                         dev_warn(dev->ctrl.device, "IO queues lost\n");
2904                         nvme_mark_namespaces_dead(&dev->ctrl);
2905                         nvme_start_queues(&dev->ctrl);
2906                         nvme_remove_namespaces(&dev->ctrl);
2907                         nvme_free_tagset(dev);
2908                 }
2909         } else {
2910                 /*
2911                  * First probe.  Still allow the controller to show up even if
2912                  * there are no namespaces.
2913                  */
2914                 if (dev->online_queues > 1) {
2915                         nvme_pci_alloc_tag_set(dev);
2916                         nvme_dbbuf_set(dev);
2917                 } else {
2918                         dev_warn(dev->ctrl.device, "IO queues not created\n");
2919                 }
2920         }
2921
2922         /*
2923          * If only admin queue live, keep it to do further investigation or
2924          * recovery.
2925          */
2926         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2927                 dev_warn(dev->ctrl.device,
2928                         "failed to mark controller live state\n");
2929                 result = -ENODEV;
2930                 goto out;
2931         }
2932
2933         if (!dev->attrs_added && !sysfs_create_group(&dev->ctrl.device->kobj,
2934                         &nvme_pci_attr_group))
2935                 dev->attrs_added = true;
2936
2937         nvme_start_ctrl(&dev->ctrl);
2938         return;
2939
2940  out_unlock:
2941         mutex_unlock(&dev->shutdown_lock);
2942  out:
2943         if (result)
2944                 dev_warn(dev->ctrl.device,
2945                          "Removing after probe failure status: %d\n", result);
2946         nvme_remove_dead_ctrl(dev);
2947 }
2948
2949 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2950 {
2951         struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2952         struct pci_dev *pdev = to_pci_dev(dev->dev);
2953
2954         if (pci_get_drvdata(pdev))
2955                 device_release_driver(&pdev->dev);
2956         nvme_put_ctrl(&dev->ctrl);
2957 }
2958
2959 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2960 {
2961         *val = readl(to_nvme_dev(ctrl)->bar + off);
2962         return 0;
2963 }
2964
2965 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2966 {
2967         writel(val, to_nvme_dev(ctrl)->bar + off);
2968         return 0;
2969 }
2970
2971 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2972 {
2973         *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2974         return 0;
2975 }
2976
2977 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2978 {
2979         struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2980
2981         return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2982 }
2983
2984 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
2985 {
2986         struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2987         struct nvme_subsystem *subsys = ctrl->subsys;
2988
2989         dev_err(ctrl->device,
2990                 "VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
2991                 pdev->vendor, pdev->device,
2992                 nvme_strlen(subsys->model, sizeof(subsys->model)),
2993                 subsys->model, nvme_strlen(subsys->firmware_rev,
2994                                            sizeof(subsys->firmware_rev)),
2995                 subsys->firmware_rev);
2996 }
2997
2998 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
2999 {
3000         struct nvme_dev *dev = to_nvme_dev(ctrl);
3001
3002         return dma_pci_p2pdma_supported(dev->dev);
3003 }
3004
3005 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
3006         .name                   = "pcie",
3007         .module                 = THIS_MODULE,
3008         .flags                  = NVME_F_METADATA_SUPPORTED,
3009         .reg_read32             = nvme_pci_reg_read32,
3010         .reg_write32            = nvme_pci_reg_write32,
3011         .reg_read64             = nvme_pci_reg_read64,
3012         .free_ctrl              = nvme_pci_free_ctrl,
3013         .submit_async_event     = nvme_pci_submit_async_event,
3014         .get_address            = nvme_pci_get_address,
3015         .print_device_info      = nvme_pci_print_device_info,
3016         .supports_pci_p2pdma    = nvme_pci_supports_pci_p2pdma,
3017 };
3018
3019 static int nvme_dev_map(struct nvme_dev *dev)
3020 {
3021         struct pci_dev *pdev = to_pci_dev(dev->dev);
3022
3023         if (pci_request_mem_regions(pdev, "nvme"))
3024                 return -ENODEV;
3025
3026         if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
3027                 goto release;
3028
3029         return 0;
3030   release:
3031         pci_release_mem_regions(pdev);
3032         return -ENODEV;
3033 }
3034
3035 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
3036 {
3037         if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
3038                 /*
3039                  * Several Samsung devices seem to drop off the PCIe bus
3040                  * randomly when APST is on and uses the deepest sleep state.
3041                  * This has been observed on a Samsung "SM951 NVMe SAMSUNG
3042                  * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
3043                  * 950 PRO 256GB", but it seems to be restricted to two Dell
3044                  * laptops.
3045                  */
3046                 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
3047                     (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
3048                      dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
3049                         return NVME_QUIRK_NO_DEEPEST_PS;
3050         } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
3051                 /*
3052                  * Samsung SSD 960 EVO drops off the PCIe bus after system
3053                  * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
3054                  * within few minutes after bootup on a Coffee Lake board -
3055                  * ASUS PRIME Z370-A
3056                  */
3057                 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
3058                     (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
3059                      dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
3060                         return NVME_QUIRK_NO_APST;
3061         } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
3062                     pdev->device == 0xa808 || pdev->device == 0xa809)) ||
3063                    (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
3064                 /*
3065                  * Forcing to use host managed nvme power settings for
3066                  * lowest idle power with quick resume latency on
3067                  * Samsung and Toshiba SSDs based on suspend behavior
3068                  * on Coffee Lake board for LENOVO C640
3069                  */
3070                 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
3071                      dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
3072                         return NVME_QUIRK_SIMPLE_SUSPEND;
3073         }
3074
3075         return 0;
3076 }
3077
3078 static void nvme_async_probe(void *data, async_cookie_t cookie)
3079 {
3080         struct nvme_dev *dev = data;
3081
3082         flush_work(&dev->ctrl.reset_work);
3083         flush_work(&dev->ctrl.scan_work);
3084         nvme_put_ctrl(&dev->ctrl);
3085 }
3086
3087 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3088 {
3089         int node, result = -ENOMEM;
3090         struct nvme_dev *dev;
3091         unsigned long quirks = id->driver_data;
3092         size_t alloc_size;
3093
3094         node = dev_to_node(&pdev->dev);
3095         if (node == NUMA_NO_NODE)
3096                 set_dev_node(&pdev->dev, first_memory_node);
3097
3098         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
3099         if (!dev)
3100                 return -ENOMEM;
3101
3102         dev->nr_write_queues = write_queues;
3103         dev->nr_poll_queues = poll_queues;
3104         dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
3105         dev->queues = kcalloc_node(dev->nr_allocated_queues,
3106                         sizeof(struct nvme_queue), GFP_KERNEL, node);
3107         if (!dev->queues)
3108                 goto free;
3109
3110         dev->dev = get_device(&pdev->dev);
3111         pci_set_drvdata(pdev, dev);
3112
3113         result = nvme_dev_map(dev);
3114         if (result)
3115                 goto put_pci;
3116
3117         INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
3118         INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
3119         mutex_init(&dev->shutdown_lock);
3120
3121         result = nvme_setup_prp_pools(dev);
3122         if (result)
3123                 goto unmap;
3124
3125         quirks |= check_vendor_combination_bug(pdev);
3126
3127         if (!noacpi && acpi_storage_d3(&pdev->dev)) {
3128                 /*
3129                  * Some systems use a bios work around to ask for D3 on
3130                  * platforms that support kernel managed suspend.
3131                  */
3132                 dev_info(&pdev->dev,
3133                          "platform quirk: setting simple suspend\n");
3134                 quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
3135         }
3136
3137         /*
3138          * Double check that our mempool alloc size will cover the biggest
3139          * command we support.
3140          */
3141         alloc_size = nvme_pci_iod_alloc_size();
3142         WARN_ON_ONCE(alloc_size > PAGE_SIZE);
3143
3144         dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
3145                                                 mempool_kfree,
3146                                                 (void *) alloc_size,
3147                                                 GFP_KERNEL, node);
3148         if (!dev->iod_mempool) {
3149                 result = -ENOMEM;
3150                 goto release_pools;
3151         }
3152
3153         result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
3154                         quirks);
3155         if (result)
3156                 goto release_mempool;
3157
3158         dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3159
3160         nvme_reset_ctrl(&dev->ctrl);
3161         async_schedule(nvme_async_probe, dev);
3162
3163         return 0;
3164
3165  release_mempool:
3166         mempool_destroy(dev->iod_mempool);
3167  release_pools:
3168         nvme_release_prp_pools(dev);
3169  unmap:
3170         nvme_dev_unmap(dev);
3171  put_pci:
3172         put_device(dev->dev);
3173  free:
3174         kfree(dev->queues);
3175         kfree(dev);
3176         return result;
3177 }
3178
3179 static void nvme_reset_prepare(struct pci_dev *pdev)
3180 {
3181         struct nvme_dev *dev = pci_get_drvdata(pdev);
3182
3183         /*
3184          * We don't need to check the return value from waiting for the reset
3185          * state as pci_dev device lock is held, making it impossible to race
3186          * with ->remove().
3187          */
3188         nvme_disable_prepare_reset(dev, false);
3189         nvme_sync_queues(&dev->ctrl);
3190 }
3191
3192 static void nvme_reset_done(struct pci_dev *pdev)
3193 {
3194         struct nvme_dev *dev = pci_get_drvdata(pdev);
3195
3196         if (!nvme_try_sched_reset(&dev->ctrl))
3197                 flush_work(&dev->ctrl.reset_work);
3198 }
3199
3200 static void nvme_shutdown(struct pci_dev *pdev)
3201 {
3202         struct nvme_dev *dev = pci_get_drvdata(pdev);
3203
3204         nvme_disable_prepare_reset(dev, true);
3205 }
3206
3207 static void nvme_remove_attrs(struct nvme_dev *dev)
3208 {
3209         if (dev->attrs_added)
3210                 sysfs_remove_group(&dev->ctrl.device->kobj,
3211                                    &nvme_pci_attr_group);
3212 }
3213
3214 /*
3215  * The driver's remove may be called on a device in a partially initialized
3216  * state. This function must not have any dependencies on the device state in
3217  * order to proceed.
3218  */
3219 static void nvme_remove(struct pci_dev *pdev)
3220 {
3221         struct nvme_dev *dev = pci_get_drvdata(pdev);
3222
3223         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3224         pci_set_drvdata(pdev, NULL);
3225
3226         if (!pci_device_is_present(pdev)) {
3227                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3228                 nvme_dev_disable(dev, true);
3229         }
3230
3231         flush_work(&dev->ctrl.reset_work);
3232         nvme_stop_ctrl(&dev->ctrl);
3233         nvme_remove_namespaces(&dev->ctrl);
3234         nvme_dev_disable(dev, true);
3235         nvme_remove_attrs(dev);
3236         nvme_free_host_mem(dev);
3237         nvme_dev_remove_admin(dev);
3238         nvme_free_queues(dev, 0);
3239         nvme_release_prp_pools(dev);
3240         nvme_dev_unmap(dev);
3241         nvme_uninit_ctrl(&dev->ctrl);
3242 }
3243
3244 #ifdef CONFIG_PM_SLEEP
3245 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3246 {
3247         return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3248 }
3249
3250 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3251 {
3252         return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3253 }
3254
3255 static int nvme_resume(struct device *dev)
3256 {
3257         struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3258         struct nvme_ctrl *ctrl = &ndev->ctrl;
3259
3260         if (ndev->last_ps == U32_MAX ||
3261             nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3262                 goto reset;
3263         if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3264                 goto reset;
3265
3266         return 0;
3267 reset:
3268         return nvme_try_sched_reset(ctrl);
3269 }
3270
3271 static int nvme_suspend(struct device *dev)
3272 {
3273         struct pci_dev *pdev = to_pci_dev(dev);
3274         struct nvme_dev *ndev = pci_get_drvdata(pdev);
3275         struct nvme_ctrl *ctrl = &ndev->ctrl;
3276         int ret = -EBUSY;
3277
3278         ndev->last_ps = U32_MAX;
3279
3280         /*
3281          * The platform does not remove power for a kernel managed suspend so
3282          * use host managed nvme power settings for lowest idle power if
3283          * possible. This should have quicker resume latency than a full device
3284          * shutdown.  But if the firmware is involved after the suspend or the
3285          * device does not support any non-default power states, shut down the
3286          * device fully.
3287          *
3288          * If ASPM is not enabled for the device, shut down the device and allow
3289          * the PCI bus layer to put it into D3 in order to take the PCIe link
3290          * down, so as to allow the platform to achieve its minimum low-power
3291          * state (which may not be possible if the link is up).
3292          */
3293         if (pm_suspend_via_firmware() || !ctrl->npss ||
3294             !pcie_aspm_enabled(pdev) ||
3295             (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3296                 return nvme_disable_prepare_reset(ndev, true);
3297
3298         nvme_start_freeze(ctrl);
3299         nvme_wait_freeze(ctrl);
3300         nvme_sync_queues(ctrl);
3301
3302         if (ctrl->state != NVME_CTRL_LIVE)
3303                 goto unfreeze;
3304
3305         /*
3306          * Host memory access may not be successful in a system suspend state,
3307          * but the specification allows the controller to access memory in a
3308          * non-operational power state.
3309          */
3310         if (ndev->hmb) {
3311                 ret = nvme_set_host_mem(ndev, 0);
3312                 if (ret < 0)
3313                         goto unfreeze;
3314         }
3315
3316         ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3317         if (ret < 0)
3318                 goto unfreeze;
3319
3320         /*
3321          * A saved state prevents pci pm from generically controlling the
3322          * device's power. If we're using protocol specific settings, we don't
3323          * want pci interfering.
3324          */
3325         pci_save_state(pdev);
3326
3327         ret = nvme_set_power_state(ctrl, ctrl->npss);
3328         if (ret < 0)
3329                 goto unfreeze;
3330
3331         if (ret) {
3332                 /* discard the saved state */
3333                 pci_load_saved_state(pdev, NULL);
3334
3335                 /*
3336                  * Clearing npss forces a controller reset on resume. The
3337                  * correct value will be rediscovered then.
3338                  */
3339                 ret = nvme_disable_prepare_reset(ndev, true);
3340                 ctrl->npss = 0;
3341         }
3342 unfreeze:
3343         nvme_unfreeze(ctrl);
3344         return ret;
3345 }
3346
3347 static int nvme_simple_suspend(struct device *dev)
3348 {
3349         struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3350
3351         return nvme_disable_prepare_reset(ndev, true);
3352 }
3353
3354 static int nvme_simple_resume(struct device *dev)
3355 {
3356         struct pci_dev *pdev = to_pci_dev(dev);
3357         struct nvme_dev *ndev = pci_get_drvdata(pdev);
3358
3359         return nvme_try_sched_reset(&ndev->ctrl);
3360 }
3361
3362 static const struct dev_pm_ops nvme_dev_pm_ops = {
3363         .suspend        = nvme_suspend,
3364         .resume         = nvme_resume,
3365         .freeze         = nvme_simple_suspend,
3366         .thaw           = nvme_simple_resume,
3367         .poweroff       = nvme_simple_suspend,
3368         .restore        = nvme_simple_resume,
3369 };
3370 #endif /* CONFIG_PM_SLEEP */
3371
3372 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3373                                                 pci_channel_state_t state)
3374 {
3375         struct nvme_dev *dev = pci_get_drvdata(pdev);
3376
3377         /*
3378          * A frozen channel requires a reset. When detected, this method will
3379          * shutdown the controller to quiesce. The controller will be restarted
3380          * after the slot reset through driver's slot_reset callback.
3381          */
3382         switch (state) {
3383         case pci_channel_io_normal:
3384                 return PCI_ERS_RESULT_CAN_RECOVER;
3385         case pci_channel_io_frozen:
3386                 dev_warn(dev->ctrl.device,
3387                         "frozen state error detected, reset controller\n");
3388                 nvme_dev_disable(dev, false);
3389                 return PCI_ERS_RESULT_NEED_RESET;
3390         case pci_channel_io_perm_failure:
3391                 dev_warn(dev->ctrl.device,
3392                         "failure state error detected, request disconnect\n");
3393                 return PCI_ERS_RESULT_DISCONNECT;
3394         }
3395         return PCI_ERS_RESULT_NEED_RESET;
3396 }
3397
3398 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3399 {
3400         struct nvme_dev *dev = pci_get_drvdata(pdev);
3401
3402         dev_info(dev->ctrl.device, "restart after slot reset\n");
3403         pci_restore_state(pdev);
3404         nvme_reset_ctrl(&dev->ctrl);
3405         return PCI_ERS_RESULT_RECOVERED;
3406 }
3407
3408 static void nvme_error_resume(struct pci_dev *pdev)
3409 {
3410         struct nvme_dev *dev = pci_get_drvdata(pdev);
3411
3412         flush_work(&dev->ctrl.reset_work);
3413 }
3414
3415 static const struct pci_error_handlers nvme_err_handler = {
3416         .error_detected = nvme_error_detected,
3417         .slot_reset     = nvme_slot_reset,
3418         .resume         = nvme_error_resume,
3419         .reset_prepare  = nvme_reset_prepare,
3420         .reset_done     = nvme_reset_done,
3421 };
3422
3423 static const struct pci_device_id nvme_id_table[] = {
3424         { PCI_VDEVICE(INTEL, 0x0953),   /* Intel 750/P3500/P3600/P3700 */
3425                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3426                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3427         { PCI_VDEVICE(INTEL, 0x0a53),   /* Intel P3520 */
3428                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3429                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3430         { PCI_VDEVICE(INTEL, 0x0a54),   /* Intel P4500/P4600 */
3431                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3432                                 NVME_QUIRK_DEALLOCATE_ZEROES |
3433                                 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3434         { PCI_VDEVICE(INTEL, 0x0a55),   /* Dell Express Flash P4600 */
3435                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3436                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3437         { PCI_VDEVICE(INTEL, 0xf1a5),   /* Intel 600P/P3100 */
3438                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3439                                 NVME_QUIRK_MEDIUM_PRIO_SQ |
3440                                 NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3441                                 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3442         { PCI_VDEVICE(INTEL, 0xf1a6),   /* Intel 760p/Pro 7600p */
3443                 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3444         { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
3445                 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3446                                 NVME_QUIRK_DISABLE_WRITE_ZEROES |
3447                                 NVME_QUIRK_BOGUS_NID, },
3448         { PCI_VDEVICE(REDHAT, 0x0010),  /* Qemu emulated controller */
3449                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3450         { PCI_DEVICE(0x126f, 0x2263),   /* Silicon Motion unidentified */
3451                 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3452                                 NVME_QUIRK_BOGUS_NID, },
3453         { PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3454                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3455                                 NVME_QUIRK_NO_NS_DESC_LIST, },
3456         { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
3457                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3458         { PCI_DEVICE(0x1c58, 0x0023),   /* WDC SN200 adapter */
3459                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3460         { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
3461                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3462         { PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3463                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3464         { PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3465                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3466                                 NVME_QUIRK_DISABLE_WRITE_ZEROES|
3467                                 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3468         { PCI_DEVICE(0x1987, 0x5012),   /* Phison E12 */
3469                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3470         { PCI_DEVICE(0x1987, 0x5016),   /* Phison E16 */
3471                 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3472                                 NVME_QUIRK_BOGUS_NID, },
3473         { PCI_DEVICE(0x1987, 0x5019),  /* phison E19 */
3474                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3475         { PCI_DEVICE(0x1987, 0x5021),   /* Phison E21 */
3476                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3477         { PCI_DEVICE(0x1b4b, 0x1092),   /* Lexar 256 GB SSD */
3478                 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3479                                 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3480         { PCI_DEVICE(0x1cc1, 0x33f8),   /* ADATA IM2P33F8ABR1 1 TB */
3481                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3482         { PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3483                 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3484                                 NVME_QUIRK_BOGUS_NID, },
3485         { PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3486                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3487                                 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3488          { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3489                 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3490         { PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3491                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3492         { PCI_DEVICE(0x1c5c, 0x174a),   /* SK Hynix P31 SSD */
3493                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3494         { PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3495                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3496         { PCI_DEVICE(0x1d97, 0x2263),   /* SPCC */
3497                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3498         { PCI_DEVICE(0x144d, 0xa80b),   /* Samsung PM9B1 256G and 512G */
3499                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3500         { PCI_DEVICE(0x144d, 0xa809),   /* Samsung MZALQ256HBJD 256G */
3501                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3502         { PCI_DEVICE(0x1cc4, 0x6303),   /* UMIS RPJTJ512MGE1QDY 512G */
3503                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3504         { PCI_DEVICE(0x1cc4, 0x6302),   /* UMIS RPJTJ256MGE1QDY 256G */
3505                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3506         { PCI_DEVICE(0x2646, 0x2262),   /* KINGSTON SKC2000 NVMe SSD */
3507                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3508         { PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3509                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3510         { PCI_DEVICE(0x2646, 0x5018),   /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3511                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3512         { PCI_DEVICE(0x2646, 0x5016),   /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3513                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3514         { PCI_DEVICE(0x2646, 0x501A),   /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3515                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3516         { PCI_DEVICE(0x2646, 0x501B),   /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3517                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3518         { PCI_DEVICE(0x2646, 0x501E),   /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3519                 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3520         { PCI_DEVICE(0x1e4B, 0x1001),   /* MAXIO MAP1001 */
3521                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3522         { PCI_DEVICE(0x1e4B, 0x1002),   /* MAXIO MAP1002 */
3523                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3524         { PCI_DEVICE(0x1e4B, 0x1202),   /* MAXIO MAP1202 */
3525                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3526         { PCI_DEVICE(0x1cc1, 0x5350),   /* ADATA XPG GAMMIX S50 */
3527                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3528         { PCI_DEVICE(0x1dbe, 0x5236),   /* ADATA XPG GAMMIX S70 */
3529                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3530         { PCI_DEVICE(0x1e49, 0x0021),   /* ZHITAI TiPro5000 NVMe SSD */
3531                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3532         { PCI_DEVICE(0x1e49, 0x0041),   /* ZHITAI TiPro7000 NVMe SSD */
3533                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3534         { PCI_DEVICE(0xc0a9, 0x540a),   /* Crucial P2 */
3535                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3536         { PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
3537                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3538         { PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
3539                 .driver_data = NVME_QUIRK_BOGUS_NID, },
3540         { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3541                 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3542         { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3543                 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3544         { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3545                 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3546         { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3547                 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3548         { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3549                 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3550         { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3551                 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3552         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3553                 .driver_data = NVME_QUIRK_SINGLE_VECTOR },
3554         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3555         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3556                 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3557                                 NVME_QUIRK_128_BYTES_SQES |
3558                                 NVME_QUIRK_SHARED_TAGS |
3559                                 NVME_QUIRK_SKIP_CID_GEN },
3560         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3561         { 0, }
3562 };
3563 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3564
3565 static struct pci_driver nvme_driver = {
3566         .name           = "nvme",
3567         .id_table       = nvme_id_table,
3568         .probe          = nvme_probe,
3569         .remove         = nvme_remove,
3570         .shutdown       = nvme_shutdown,
3571 #ifdef CONFIG_PM_SLEEP
3572         .driver         = {
3573                 .pm     = &nvme_dev_pm_ops,
3574         },
3575 #endif
3576         .sriov_configure = pci_sriov_configure_simple,
3577         .err_handler    = &nvme_err_handler,
3578 };
3579
3580 static int __init nvme_init(void)
3581 {
3582         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3583         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3584         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3585         BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3586         BUILD_BUG_ON(DIV_ROUND_UP(nvme_pci_npages_prp(), NVME_CTRL_PAGE_SIZE) >
3587                      S8_MAX);
3588
3589         return pci_register_driver(&nvme_driver);
3590 }
3591
3592 static void __exit nvme_exit(void)
3593 {
3594         pci_unregister_driver(&nvme_driver);
3595         flush_workqueue(nvme_wq);
3596 }
3597
3598 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3599 MODULE_LICENSE("GPL");
3600 MODULE_VERSION("1.0");
3601 module_init(nvme_init);
3602 module_exit(nvme_exit);