nvme-pci: merge nvme_free_iod into nvme_unmap_data
[linux-2.6-block.git] / drivers / nvme / host / pci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6
7 #include <linux/aer.h>
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq.h>
11 #include <linux/blk-mq-pci.h>
12 #include <linux/dmi.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/mutex.h>
19 #include <linux/once.h>
20 #include <linux/pci.h>
21 #include <linux/t10-pi.h>
22 #include <linux/types.h>
23 #include <linux/io-64-nonatomic-lo-hi.h>
24 #include <linux/sed-opal.h>
25 #include <linux/pci-p2pdma.h>
26
27 #include "trace.h"
28 #include "nvme.h"
29
30 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
31 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
32
33 #define SGES_PER_PAGE   (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
34
35 /*
36  * These can be higher, but we need to ensure that any command doesn't
37  * require an sg allocation that needs more than a page of data.
38  */
39 #define NVME_MAX_KB_SZ  4096
40 #define NVME_MAX_SEGS   127
41
42 static int use_threaded_interrupts;
43 module_param(use_threaded_interrupts, int, 0);
44
45 static bool use_cmb_sqes = true;
46 module_param(use_cmb_sqes, bool, 0444);
47 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
48
49 static unsigned int max_host_mem_size_mb = 128;
50 module_param(max_host_mem_size_mb, uint, 0444);
51 MODULE_PARM_DESC(max_host_mem_size_mb,
52         "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
53
54 static unsigned int sgl_threshold = SZ_32K;
55 module_param(sgl_threshold, uint, 0644);
56 MODULE_PARM_DESC(sgl_threshold,
57                 "Use SGLs when average request segment size is larger or equal to "
58                 "this size. Use 0 to disable SGLs.");
59
60 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
61 static const struct kernel_param_ops io_queue_depth_ops = {
62         .set = io_queue_depth_set,
63         .get = param_get_int,
64 };
65
66 static int io_queue_depth = 1024;
67 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
68 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
69
70 static int queue_count_set(const char *val, const struct kernel_param *kp);
71 static const struct kernel_param_ops queue_count_ops = {
72         .set = queue_count_set,
73         .get = param_get_int,
74 };
75
76 static int write_queues;
77 module_param_cb(write_queues, &queue_count_ops, &write_queues, 0644);
78 MODULE_PARM_DESC(write_queues,
79         "Number of queues to use for writes. If not set, reads and writes "
80         "will share a queue set.");
81
82 static int poll_queues = 0;
83 module_param_cb(poll_queues, &queue_count_ops, &poll_queues, 0644);
84 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
85
86 struct nvme_dev;
87 struct nvme_queue;
88
89 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
90 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
91
92 /*
93  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
94  */
95 struct nvme_dev {
96         struct nvme_queue *queues;
97         struct blk_mq_tag_set tagset;
98         struct blk_mq_tag_set admin_tagset;
99         u32 __iomem *dbs;
100         struct device *dev;
101         struct dma_pool *prp_page_pool;
102         struct dma_pool *prp_small_pool;
103         unsigned online_queues;
104         unsigned max_qid;
105         unsigned io_queues[HCTX_MAX_TYPES];
106         unsigned int num_vecs;
107         int q_depth;
108         u32 db_stride;
109         void __iomem *bar;
110         unsigned long bar_mapped_size;
111         struct work_struct remove_work;
112         struct mutex shutdown_lock;
113         bool subsystem;
114         u64 cmb_size;
115         bool cmb_use_sqes;
116         u32 cmbsz;
117         u32 cmbloc;
118         struct nvme_ctrl ctrl;
119
120         mempool_t *iod_mempool;
121
122         /* shadow doorbell buffer support: */
123         u32 *dbbuf_dbs;
124         dma_addr_t dbbuf_dbs_dma_addr;
125         u32 *dbbuf_eis;
126         dma_addr_t dbbuf_eis_dma_addr;
127
128         /* host memory buffer support: */
129         u64 host_mem_size;
130         u32 nr_host_mem_descs;
131         dma_addr_t host_mem_descs_dma;
132         struct nvme_host_mem_buf_desc *host_mem_descs;
133         void **host_mem_desc_bufs;
134 };
135
136 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
137 {
138         int n = 0, ret;
139
140         ret = kstrtoint(val, 10, &n);
141         if (ret != 0 || n < 2)
142                 return -EINVAL;
143
144         return param_set_int(val, kp);
145 }
146
147 static int queue_count_set(const char *val, const struct kernel_param *kp)
148 {
149         int n = 0, ret;
150
151         ret = kstrtoint(val, 10, &n);
152         if (ret)
153                 return ret;
154         if (n > num_possible_cpus())
155                 n = num_possible_cpus();
156
157         return param_set_int(val, kp);
158 }
159
160 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
161 {
162         return qid * 2 * stride;
163 }
164
165 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
166 {
167         return (qid * 2 + 1) * stride;
168 }
169
170 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
171 {
172         return container_of(ctrl, struct nvme_dev, ctrl);
173 }
174
175 /*
176  * An NVM Express queue.  Each device has at least two (one for admin
177  * commands and one for I/O commands).
178  */
179 struct nvme_queue {
180         struct nvme_dev *dev;
181         spinlock_t sq_lock;
182         struct nvme_command *sq_cmds;
183          /* only used for poll queues: */
184         spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
185         volatile struct nvme_completion *cqes;
186         struct blk_mq_tags **tags;
187         dma_addr_t sq_dma_addr;
188         dma_addr_t cq_dma_addr;
189         u32 __iomem *q_db;
190         u16 q_depth;
191         u16 cq_vector;
192         u16 sq_tail;
193         u16 last_sq_tail;
194         u16 cq_head;
195         u16 last_cq_head;
196         u16 qid;
197         u8 cq_phase;
198         unsigned long flags;
199 #define NVMEQ_ENABLED           0
200 #define NVMEQ_SQ_CMB            1
201 #define NVMEQ_DELETE_ERROR      2
202 #define NVMEQ_POLLED            3
203         u32 *dbbuf_sq_db;
204         u32 *dbbuf_cq_db;
205         u32 *dbbuf_sq_ei;
206         u32 *dbbuf_cq_ei;
207         struct completion delete_done;
208 };
209
210 /*
211  * The nvme_iod describes the data in an I/O.
212  *
213  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
214  * to the actual struct scatterlist.
215  */
216 struct nvme_iod {
217         struct nvme_request req;
218         struct nvme_queue *nvmeq;
219         bool use_sgl;
220         int aborted;
221         int npages;             /* In the PRP list. 0 means small pool in use */
222         int nents;              /* Used in scatterlist */
223         dma_addr_t first_dma;
224         struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
225         struct scatterlist *sg;
226         struct scatterlist inline_sg[0];
227 };
228
229 /*
230  * Check we didin't inadvertently grow the command struct
231  */
232 static inline void _nvme_check_size(void)
233 {
234         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
235         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
236         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
237         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
238         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
239         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
240         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
241         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
242         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
243         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
244         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
245         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
246         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
247 }
248
249 static unsigned int max_io_queues(void)
250 {
251         return num_possible_cpus() + write_queues + poll_queues;
252 }
253
254 static unsigned int max_queue_count(void)
255 {
256         /* IO queues + admin queue */
257         return 1 + max_io_queues();
258 }
259
260 static inline unsigned int nvme_dbbuf_size(u32 stride)
261 {
262         return (max_queue_count() * 8 * stride);
263 }
264
265 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
266 {
267         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
268
269         if (dev->dbbuf_dbs)
270                 return 0;
271
272         dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
273                                             &dev->dbbuf_dbs_dma_addr,
274                                             GFP_KERNEL);
275         if (!dev->dbbuf_dbs)
276                 return -ENOMEM;
277         dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
278                                             &dev->dbbuf_eis_dma_addr,
279                                             GFP_KERNEL);
280         if (!dev->dbbuf_eis) {
281                 dma_free_coherent(dev->dev, mem_size,
282                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
283                 dev->dbbuf_dbs = NULL;
284                 return -ENOMEM;
285         }
286
287         return 0;
288 }
289
290 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
291 {
292         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
293
294         if (dev->dbbuf_dbs) {
295                 dma_free_coherent(dev->dev, mem_size,
296                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
297                 dev->dbbuf_dbs = NULL;
298         }
299         if (dev->dbbuf_eis) {
300                 dma_free_coherent(dev->dev, mem_size,
301                                   dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
302                 dev->dbbuf_eis = NULL;
303         }
304 }
305
306 static void nvme_dbbuf_init(struct nvme_dev *dev,
307                             struct nvme_queue *nvmeq, int qid)
308 {
309         if (!dev->dbbuf_dbs || !qid)
310                 return;
311
312         nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
313         nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
314         nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
315         nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
316 }
317
318 static void nvme_dbbuf_set(struct nvme_dev *dev)
319 {
320         struct nvme_command c;
321
322         if (!dev->dbbuf_dbs)
323                 return;
324
325         memset(&c, 0, sizeof(c));
326         c.dbbuf.opcode = nvme_admin_dbbuf;
327         c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
328         c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
329
330         if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
331                 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
332                 /* Free memory and continue on */
333                 nvme_dbbuf_dma_free(dev);
334         }
335 }
336
337 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
338 {
339         return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
340 }
341
342 /* Update dbbuf and return true if an MMIO is required */
343 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
344                                               volatile u32 *dbbuf_ei)
345 {
346         if (dbbuf_db) {
347                 u16 old_value;
348
349                 /*
350                  * Ensure that the queue is written before updating
351                  * the doorbell in memory
352                  */
353                 wmb();
354
355                 old_value = *dbbuf_db;
356                 *dbbuf_db = value;
357
358                 /*
359                  * Ensure that the doorbell is updated before reading the event
360                  * index from memory.  The controller needs to provide similar
361                  * ordering to ensure the envent index is updated before reading
362                  * the doorbell.
363                  */
364                 mb();
365
366                 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
367                         return false;
368         }
369
370         return true;
371 }
372
373 /*
374  * Max size of iod being embedded in the request payload
375  */
376 #define NVME_INT_PAGES          2
377 #define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->ctrl.page_size)
378
379 /*
380  * Will slightly overestimate the number of pages needed.  This is OK
381  * as it only leads to a small amount of wasted memory for the lifetime of
382  * the I/O.
383  */
384 static int nvme_npages(unsigned size, struct nvme_dev *dev)
385 {
386         unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
387                                       dev->ctrl.page_size);
388         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
389 }
390
391 /*
392  * Calculates the number of pages needed for the SGL segments. For example a 4k
393  * page can accommodate 256 SGL descriptors.
394  */
395 static int nvme_pci_npages_sgl(unsigned int num_seg)
396 {
397         return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
398 }
399
400 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
401                 unsigned int size, unsigned int nseg, bool use_sgl)
402 {
403         size_t alloc_size;
404
405         if (use_sgl)
406                 alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
407         else
408                 alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
409
410         return alloc_size + sizeof(struct scatterlist) * nseg;
411 }
412
413 static unsigned int nvme_pci_cmd_size(struct nvme_dev *dev, bool use_sgl)
414 {
415         unsigned int alloc_size = nvme_pci_iod_alloc_size(dev,
416                                     NVME_INT_BYTES(dev), NVME_INT_PAGES,
417                                     use_sgl);
418
419         return sizeof(struct nvme_iod) + alloc_size;
420 }
421
422 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
423                                 unsigned int hctx_idx)
424 {
425         struct nvme_dev *dev = data;
426         struct nvme_queue *nvmeq = &dev->queues[0];
427
428         WARN_ON(hctx_idx != 0);
429         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
430         WARN_ON(nvmeq->tags);
431
432         hctx->driver_data = nvmeq;
433         nvmeq->tags = &dev->admin_tagset.tags[0];
434         return 0;
435 }
436
437 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
438 {
439         struct nvme_queue *nvmeq = hctx->driver_data;
440
441         nvmeq->tags = NULL;
442 }
443
444 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
445                           unsigned int hctx_idx)
446 {
447         struct nvme_dev *dev = data;
448         struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
449
450         if (!nvmeq->tags)
451                 nvmeq->tags = &dev->tagset.tags[hctx_idx];
452
453         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
454         hctx->driver_data = nvmeq;
455         return 0;
456 }
457
458 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
459                 unsigned int hctx_idx, unsigned int numa_node)
460 {
461         struct nvme_dev *dev = set->driver_data;
462         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
463         int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
464         struct nvme_queue *nvmeq = &dev->queues[queue_idx];
465
466         BUG_ON(!nvmeq);
467         iod->nvmeq = nvmeq;
468
469         nvme_req(req)->ctrl = &dev->ctrl;
470         return 0;
471 }
472
473 static int queue_irq_offset(struct nvme_dev *dev)
474 {
475         /* if we have more than 1 vec, admin queue offsets us by 1 */
476         if (dev->num_vecs > 1)
477                 return 1;
478
479         return 0;
480 }
481
482 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
483 {
484         struct nvme_dev *dev = set->driver_data;
485         int i, qoff, offset;
486
487         offset = queue_irq_offset(dev);
488         for (i = 0, qoff = 0; i < set->nr_maps; i++) {
489                 struct blk_mq_queue_map *map = &set->map[i];
490
491                 map->nr_queues = dev->io_queues[i];
492                 if (!map->nr_queues) {
493                         BUG_ON(i == HCTX_TYPE_DEFAULT);
494                         continue;
495                 }
496
497                 /*
498                  * The poll queue(s) doesn't have an IRQ (and hence IRQ
499                  * affinity), so use the regular blk-mq cpu mapping
500                  */
501                 map->queue_offset = qoff;
502                 if (i != HCTX_TYPE_POLL)
503                         blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
504                 else
505                         blk_mq_map_queues(map);
506                 qoff += map->nr_queues;
507                 offset += map->nr_queues;
508         }
509
510         return 0;
511 }
512
513 /*
514  * Write sq tail if we are asked to, or if the next command would wrap.
515  */
516 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
517 {
518         if (!write_sq) {
519                 u16 next_tail = nvmeq->sq_tail + 1;
520
521                 if (next_tail == nvmeq->q_depth)
522                         next_tail = 0;
523                 if (next_tail != nvmeq->last_sq_tail)
524                         return;
525         }
526
527         if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
528                         nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
529                 writel(nvmeq->sq_tail, nvmeq->q_db);
530         nvmeq->last_sq_tail = nvmeq->sq_tail;
531 }
532
533 /**
534  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
535  * @nvmeq: The queue to use
536  * @cmd: The command to send
537  * @write_sq: whether to write to the SQ doorbell
538  */
539 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
540                             bool write_sq)
541 {
542         spin_lock(&nvmeq->sq_lock);
543         memcpy(&nvmeq->sq_cmds[nvmeq->sq_tail], cmd, sizeof(*cmd));
544         if (++nvmeq->sq_tail == nvmeq->q_depth)
545                 nvmeq->sq_tail = 0;
546         nvme_write_sq_db(nvmeq, write_sq);
547         spin_unlock(&nvmeq->sq_lock);
548 }
549
550 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
551 {
552         struct nvme_queue *nvmeq = hctx->driver_data;
553
554         spin_lock(&nvmeq->sq_lock);
555         if (nvmeq->sq_tail != nvmeq->last_sq_tail)
556                 nvme_write_sq_db(nvmeq, true);
557         spin_unlock(&nvmeq->sq_lock);
558 }
559
560 static void **nvme_pci_iod_list(struct request *req)
561 {
562         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
563         return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
564 }
565
566 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
567 {
568         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
569         int nseg = blk_rq_nr_phys_segments(req);
570         unsigned int avg_seg_size;
571
572         if (nseg == 0)
573                 return false;
574
575         avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
576
577         if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
578                 return false;
579         if (!iod->nvmeq->qid)
580                 return false;
581         if (!sgl_threshold || avg_seg_size < sgl_threshold)
582                 return false;
583         return true;
584 }
585
586 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
587 {
588         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
589         enum dma_data_direction dma_dir = rq_data_dir(req) ?
590                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
591         const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
592         dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
593         int i;
594
595         if (iod->nents) {
596                 /* P2PDMA requests do not need to be unmapped */
597                 if (!is_pci_p2pdma_page(sg_page(iod->sg)))
598                         dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
599
600                 if (blk_integrity_rq(req))
601                         dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
602         }
603
604         if (iod->npages == 0)
605                 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
606                         dma_addr);
607
608         for (i = 0; i < iod->npages; i++) {
609                 void *addr = nvme_pci_iod_list(req)[i];
610
611                 if (iod->use_sgl) {
612                         struct nvme_sgl_desc *sg_list = addr;
613
614                         next_dma_addr =
615                             le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
616                 } else {
617                         __le64 *prp_list = addr;
618
619                         next_dma_addr = le64_to_cpu(prp_list[last_prp]);
620                 }
621
622                 dma_pool_free(dev->prp_page_pool, addr, dma_addr);
623                 dma_addr = next_dma_addr;
624         }
625
626         if (iod->sg != iod->inline_sg)
627                 mempool_free(iod->sg, dev->iod_mempool);
628 }
629
630 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
631 {
632         int i;
633         struct scatterlist *sg;
634
635         for_each_sg(sgl, sg, nents, i) {
636                 dma_addr_t phys = sg_phys(sg);
637                 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
638                         "dma_address:%pad dma_length:%d\n",
639                         i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
640                         sg_dma_len(sg));
641         }
642 }
643
644 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
645                 struct request *req, struct nvme_rw_command *cmnd)
646 {
647         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
648         struct dma_pool *pool;
649         int length = blk_rq_payload_bytes(req);
650         struct scatterlist *sg = iod->sg;
651         int dma_len = sg_dma_len(sg);
652         u64 dma_addr = sg_dma_address(sg);
653         u32 page_size = dev->ctrl.page_size;
654         int offset = dma_addr & (page_size - 1);
655         __le64 *prp_list;
656         void **list = nvme_pci_iod_list(req);
657         dma_addr_t prp_dma;
658         int nprps, i;
659
660         length -= (page_size - offset);
661         if (length <= 0) {
662                 iod->first_dma = 0;
663                 goto done;
664         }
665
666         dma_len -= (page_size - offset);
667         if (dma_len) {
668                 dma_addr += (page_size - offset);
669         } else {
670                 sg = sg_next(sg);
671                 dma_addr = sg_dma_address(sg);
672                 dma_len = sg_dma_len(sg);
673         }
674
675         if (length <= page_size) {
676                 iod->first_dma = dma_addr;
677                 goto done;
678         }
679
680         nprps = DIV_ROUND_UP(length, page_size);
681         if (nprps <= (256 / 8)) {
682                 pool = dev->prp_small_pool;
683                 iod->npages = 0;
684         } else {
685                 pool = dev->prp_page_pool;
686                 iod->npages = 1;
687         }
688
689         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
690         if (!prp_list) {
691                 iod->first_dma = dma_addr;
692                 iod->npages = -1;
693                 return BLK_STS_RESOURCE;
694         }
695         list[0] = prp_list;
696         iod->first_dma = prp_dma;
697         i = 0;
698         for (;;) {
699                 if (i == page_size >> 3) {
700                         __le64 *old_prp_list = prp_list;
701                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
702                         if (!prp_list)
703                                 return BLK_STS_RESOURCE;
704                         list[iod->npages++] = prp_list;
705                         prp_list[0] = old_prp_list[i - 1];
706                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
707                         i = 1;
708                 }
709                 prp_list[i++] = cpu_to_le64(dma_addr);
710                 dma_len -= page_size;
711                 dma_addr += page_size;
712                 length -= page_size;
713                 if (length <= 0)
714                         break;
715                 if (dma_len > 0)
716                         continue;
717                 if (unlikely(dma_len < 0))
718                         goto bad_sgl;
719                 sg = sg_next(sg);
720                 dma_addr = sg_dma_address(sg);
721                 dma_len = sg_dma_len(sg);
722         }
723
724 done:
725         cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
726         cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
727
728         return BLK_STS_OK;
729
730  bad_sgl:
731         WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
732                         "Invalid SGL for payload:%d nents:%d\n",
733                         blk_rq_payload_bytes(req), iod->nents);
734         return BLK_STS_IOERR;
735 }
736
737 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
738                 struct scatterlist *sg)
739 {
740         sge->addr = cpu_to_le64(sg_dma_address(sg));
741         sge->length = cpu_to_le32(sg_dma_len(sg));
742         sge->type = NVME_SGL_FMT_DATA_DESC << 4;
743 }
744
745 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
746                 dma_addr_t dma_addr, int entries)
747 {
748         sge->addr = cpu_to_le64(dma_addr);
749         if (entries < SGES_PER_PAGE) {
750                 sge->length = cpu_to_le32(entries * sizeof(*sge));
751                 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
752         } else {
753                 sge->length = cpu_to_le32(PAGE_SIZE);
754                 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
755         }
756 }
757
758 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
759                 struct request *req, struct nvme_rw_command *cmd, int entries)
760 {
761         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
762         struct dma_pool *pool;
763         struct nvme_sgl_desc *sg_list;
764         struct scatterlist *sg = iod->sg;
765         dma_addr_t sgl_dma;
766         int i = 0;
767
768         /* setting the transfer type as SGL */
769         cmd->flags = NVME_CMD_SGL_METABUF;
770
771         if (entries == 1) {
772                 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
773                 return BLK_STS_OK;
774         }
775
776         if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
777                 pool = dev->prp_small_pool;
778                 iod->npages = 0;
779         } else {
780                 pool = dev->prp_page_pool;
781                 iod->npages = 1;
782         }
783
784         sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
785         if (!sg_list) {
786                 iod->npages = -1;
787                 return BLK_STS_RESOURCE;
788         }
789
790         nvme_pci_iod_list(req)[0] = sg_list;
791         iod->first_dma = sgl_dma;
792
793         nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
794
795         do {
796                 if (i == SGES_PER_PAGE) {
797                         struct nvme_sgl_desc *old_sg_desc = sg_list;
798                         struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
799
800                         sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
801                         if (!sg_list)
802                                 return BLK_STS_RESOURCE;
803
804                         i = 0;
805                         nvme_pci_iod_list(req)[iod->npages++] = sg_list;
806                         sg_list[i++] = *link;
807                         nvme_pci_sgl_set_seg(link, sgl_dma, entries);
808                 }
809
810                 nvme_pci_sgl_set_data(&sg_list[i++], sg);
811                 sg = sg_next(sg);
812         } while (--entries > 0);
813
814         return BLK_STS_OK;
815 }
816
817 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
818                 struct nvme_command *cmnd)
819 {
820         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
821         struct request_queue *q = req->q;
822         enum dma_data_direction dma_dir = rq_data_dir(req) ?
823                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
824         blk_status_t ret = BLK_STS_IOERR;
825         int nr_mapped;
826
827         if (blk_rq_payload_bytes(req) > NVME_INT_BYTES(dev) ||
828             blk_rq_nr_phys_segments(req) > NVME_INT_PAGES) {
829                 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
830                 if (!iod->sg)
831                         return BLK_STS_RESOURCE;
832         } else {
833                 iod->sg = iod->inline_sg;
834         }
835
836         iod->use_sgl = nvme_pci_use_sgls(dev, req);
837
838         sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
839         iod->nents = blk_rq_map_sg(q, req, iod->sg);
840         if (!iod->nents)
841                 goto out;
842
843         ret = BLK_STS_RESOURCE;
844
845         if (is_pci_p2pdma_page(sg_page(iod->sg)))
846                 nr_mapped = pci_p2pdma_map_sg(dev->dev, iod->sg, iod->nents,
847                                           dma_dir);
848         else
849                 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
850                                              dma_dir,  DMA_ATTR_NO_WARN);
851         if (!nr_mapped)
852                 goto out;
853
854         if (iod->use_sgl)
855                 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
856         else
857                 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
858
859         if (ret != BLK_STS_OK)
860                 goto out;
861
862         ret = BLK_STS_IOERR;
863         if (blk_integrity_rq(req)) {
864                 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
865                         goto out;
866
867                 sg_init_table(&iod->meta_sg, 1);
868                 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
869                         goto out;
870
871                 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
872                         goto out;
873
874                 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
875         }
876
877         return BLK_STS_OK;
878
879 out:
880         nvme_unmap_data(dev, req);
881         return ret;
882 }
883
884 /*
885  * NOTE: ns is NULL when called on the admin queue.
886  */
887 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
888                          const struct blk_mq_queue_data *bd)
889 {
890         struct nvme_ns *ns = hctx->queue->queuedata;
891         struct nvme_queue *nvmeq = hctx->driver_data;
892         struct nvme_dev *dev = nvmeq->dev;
893         struct request *req = bd->rq;
894         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
895         struct nvme_command cmnd;
896         blk_status_t ret;
897
898         iod->aborted = 0;
899         iod->npages = -1;
900         iod->nents = 0;
901
902         /*
903          * We should not need to do this, but we're still using this to
904          * ensure we can drain requests on a dying queue.
905          */
906         if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
907                 return BLK_STS_IOERR;
908
909         ret = nvme_setup_cmd(ns, req, &cmnd);
910         if (ret)
911                 return ret;
912
913         if (blk_rq_nr_phys_segments(req)) {
914                 ret = nvme_map_data(dev, req, &cmnd);
915                 if (ret)
916                         goto out_free_cmd;
917         }
918
919         blk_mq_start_request(req);
920         nvme_submit_cmd(nvmeq, &cmnd, bd->last);
921         return BLK_STS_OK;
922 out_free_cmd:
923         nvme_cleanup_cmd(req);
924         return ret;
925 }
926
927 static void nvme_pci_complete_rq(struct request *req)
928 {
929         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
930
931         nvme_cleanup_cmd(req);
932         nvme_unmap_data(iod->nvmeq->dev, req);
933         nvme_complete_rq(req);
934 }
935
936 /* We read the CQE phase first to check if the rest of the entry is valid */
937 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
938 {
939         return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
940                         nvmeq->cq_phase;
941 }
942
943 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
944 {
945         u16 head = nvmeq->cq_head;
946
947         if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
948                                               nvmeq->dbbuf_cq_ei))
949                 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
950 }
951
952 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
953 {
954         volatile struct nvme_completion *cqe = &nvmeq->cqes[idx];
955         struct request *req;
956
957         if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
958                 dev_warn(nvmeq->dev->ctrl.device,
959                         "invalid id %d completed on queue %d\n",
960                         cqe->command_id, le16_to_cpu(cqe->sq_id));
961                 return;
962         }
963
964         /*
965          * AEN requests are special as they don't time out and can
966          * survive any kind of queue freeze and often don't respond to
967          * aborts.  We don't even bother to allocate a struct request
968          * for them but rather special case them here.
969          */
970         if (unlikely(nvmeq->qid == 0 &&
971                         cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) {
972                 nvme_complete_async_event(&nvmeq->dev->ctrl,
973                                 cqe->status, &cqe->result);
974                 return;
975         }
976
977         req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
978         trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
979         nvme_end_request(req, cqe->status, cqe->result);
980 }
981
982 static void nvme_complete_cqes(struct nvme_queue *nvmeq, u16 start, u16 end)
983 {
984         while (start != end) {
985                 nvme_handle_cqe(nvmeq, start);
986                 if (++start == nvmeq->q_depth)
987                         start = 0;
988         }
989 }
990
991 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
992 {
993         if (nvmeq->cq_head == nvmeq->q_depth - 1) {
994                 nvmeq->cq_head = 0;
995                 nvmeq->cq_phase = !nvmeq->cq_phase;
996         } else {
997                 nvmeq->cq_head++;
998         }
999 }
1000
1001 static inline int nvme_process_cq(struct nvme_queue *nvmeq, u16 *start,
1002                                   u16 *end, unsigned int tag)
1003 {
1004         int found = 0;
1005
1006         *start = nvmeq->cq_head;
1007         while (nvme_cqe_pending(nvmeq)) {
1008                 if (tag == -1U || nvmeq->cqes[nvmeq->cq_head].command_id == tag)
1009                         found++;
1010                 nvme_update_cq_head(nvmeq);
1011         }
1012         *end = nvmeq->cq_head;
1013
1014         if (*start != *end)
1015                 nvme_ring_cq_doorbell(nvmeq);
1016         return found;
1017 }
1018
1019 static irqreturn_t nvme_irq(int irq, void *data)
1020 {
1021         struct nvme_queue *nvmeq = data;
1022         irqreturn_t ret = IRQ_NONE;
1023         u16 start, end;
1024
1025         /*
1026          * The rmb/wmb pair ensures we see all updates from a previous run of
1027          * the irq handler, even if that was on another CPU.
1028          */
1029         rmb();
1030         if (nvmeq->cq_head != nvmeq->last_cq_head)
1031                 ret = IRQ_HANDLED;
1032         nvme_process_cq(nvmeq, &start, &end, -1);
1033         nvmeq->last_cq_head = nvmeq->cq_head;
1034         wmb();
1035
1036         if (start != end) {
1037                 nvme_complete_cqes(nvmeq, start, end);
1038                 return IRQ_HANDLED;
1039         }
1040
1041         return ret;
1042 }
1043
1044 static irqreturn_t nvme_irq_check(int irq, void *data)
1045 {
1046         struct nvme_queue *nvmeq = data;
1047         if (nvme_cqe_pending(nvmeq))
1048                 return IRQ_WAKE_THREAD;
1049         return IRQ_NONE;
1050 }
1051
1052 /*
1053  * Poll for completions any queue, including those not dedicated to polling.
1054  * Can be called from any context.
1055  */
1056 static int nvme_poll_irqdisable(struct nvme_queue *nvmeq, unsigned int tag)
1057 {
1058         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1059         u16 start, end;
1060         int found;
1061
1062         /*
1063          * For a poll queue we need to protect against the polling thread
1064          * using the CQ lock.  For normal interrupt driven threads we have
1065          * to disable the interrupt to avoid racing with it.
1066          */
1067         if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) {
1068                 spin_lock(&nvmeq->cq_poll_lock);
1069                 found = nvme_process_cq(nvmeq, &start, &end, tag);
1070                 spin_unlock(&nvmeq->cq_poll_lock);
1071         } else {
1072                 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1073                 found = nvme_process_cq(nvmeq, &start, &end, tag);
1074                 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1075         }
1076
1077         nvme_complete_cqes(nvmeq, start, end);
1078         return found;
1079 }
1080
1081 static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1082 {
1083         struct nvme_queue *nvmeq = hctx->driver_data;
1084         u16 start, end;
1085         bool found;
1086
1087         if (!nvme_cqe_pending(nvmeq))
1088                 return 0;
1089
1090         spin_lock(&nvmeq->cq_poll_lock);
1091         found = nvme_process_cq(nvmeq, &start, &end, -1);
1092         spin_unlock(&nvmeq->cq_poll_lock);
1093
1094         nvme_complete_cqes(nvmeq, start, end);
1095         return found;
1096 }
1097
1098 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1099 {
1100         struct nvme_dev *dev = to_nvme_dev(ctrl);
1101         struct nvme_queue *nvmeq = &dev->queues[0];
1102         struct nvme_command c;
1103
1104         memset(&c, 0, sizeof(c));
1105         c.common.opcode = nvme_admin_async_event;
1106         c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1107         nvme_submit_cmd(nvmeq, &c, true);
1108 }
1109
1110 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1111 {
1112         struct nvme_command c;
1113
1114         memset(&c, 0, sizeof(c));
1115         c.delete_queue.opcode = opcode;
1116         c.delete_queue.qid = cpu_to_le16(id);
1117
1118         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1119 }
1120
1121 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1122                 struct nvme_queue *nvmeq, s16 vector)
1123 {
1124         struct nvme_command c;
1125         int flags = NVME_QUEUE_PHYS_CONTIG;
1126
1127         if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1128                 flags |= NVME_CQ_IRQ_ENABLED;
1129
1130         /*
1131          * Note: we (ab)use the fact that the prp fields survive if no data
1132          * is attached to the request.
1133          */
1134         memset(&c, 0, sizeof(c));
1135         c.create_cq.opcode = nvme_admin_create_cq;
1136         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1137         c.create_cq.cqid = cpu_to_le16(qid);
1138         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1139         c.create_cq.cq_flags = cpu_to_le16(flags);
1140         c.create_cq.irq_vector = cpu_to_le16(vector);
1141
1142         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1143 }
1144
1145 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1146                                                 struct nvme_queue *nvmeq)
1147 {
1148         struct nvme_ctrl *ctrl = &dev->ctrl;
1149         struct nvme_command c;
1150         int flags = NVME_QUEUE_PHYS_CONTIG;
1151
1152         /*
1153          * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1154          * set. Since URGENT priority is zeroes, it makes all queues
1155          * URGENT.
1156          */
1157         if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1158                 flags |= NVME_SQ_PRIO_MEDIUM;
1159
1160         /*
1161          * Note: we (ab)use the fact that the prp fields survive if no data
1162          * is attached to the request.
1163          */
1164         memset(&c, 0, sizeof(c));
1165         c.create_sq.opcode = nvme_admin_create_sq;
1166         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1167         c.create_sq.sqid = cpu_to_le16(qid);
1168         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1169         c.create_sq.sq_flags = cpu_to_le16(flags);
1170         c.create_sq.cqid = cpu_to_le16(qid);
1171
1172         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1173 }
1174
1175 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1176 {
1177         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1178 }
1179
1180 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1181 {
1182         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1183 }
1184
1185 static void abort_endio(struct request *req, blk_status_t error)
1186 {
1187         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1188         struct nvme_queue *nvmeq = iod->nvmeq;
1189
1190         dev_warn(nvmeq->dev->ctrl.device,
1191                  "Abort status: 0x%x", nvme_req(req)->status);
1192         atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1193         blk_mq_free_request(req);
1194 }
1195
1196 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1197 {
1198
1199         /* If true, indicates loss of adapter communication, possibly by a
1200          * NVMe Subsystem reset.
1201          */
1202         bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1203
1204         /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1205         switch (dev->ctrl.state) {
1206         case NVME_CTRL_RESETTING:
1207         case NVME_CTRL_CONNECTING:
1208                 return false;
1209         default:
1210                 break;
1211         }
1212
1213         /* We shouldn't reset unless the controller is on fatal error state
1214          * _or_ if we lost the communication with it.
1215          */
1216         if (!(csts & NVME_CSTS_CFS) && !nssro)
1217                 return false;
1218
1219         return true;
1220 }
1221
1222 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1223 {
1224         /* Read a config register to help see what died. */
1225         u16 pci_status;
1226         int result;
1227
1228         result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1229                                       &pci_status);
1230         if (result == PCIBIOS_SUCCESSFUL)
1231                 dev_warn(dev->ctrl.device,
1232                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1233                          csts, pci_status);
1234         else
1235                 dev_warn(dev->ctrl.device,
1236                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1237                          csts, result);
1238 }
1239
1240 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1241 {
1242         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1243         struct nvme_queue *nvmeq = iod->nvmeq;
1244         struct nvme_dev *dev = nvmeq->dev;
1245         struct request *abort_req;
1246         struct nvme_command cmd;
1247         u32 csts = readl(dev->bar + NVME_REG_CSTS);
1248
1249         /* If PCI error recovery process is happening, we cannot reset or
1250          * the recovery mechanism will surely fail.
1251          */
1252         mb();
1253         if (pci_channel_offline(to_pci_dev(dev->dev)))
1254                 return BLK_EH_RESET_TIMER;
1255
1256         /*
1257          * Reset immediately if the controller is failed
1258          */
1259         if (nvme_should_reset(dev, csts)) {
1260                 nvme_warn_reset(dev, csts);
1261                 nvme_dev_disable(dev, false);
1262                 nvme_reset_ctrl(&dev->ctrl);
1263                 return BLK_EH_DONE;
1264         }
1265
1266         /*
1267          * Did we miss an interrupt?
1268          */
1269         if (nvme_poll_irqdisable(nvmeq, req->tag)) {
1270                 dev_warn(dev->ctrl.device,
1271                          "I/O %d QID %d timeout, completion polled\n",
1272                          req->tag, nvmeq->qid);
1273                 return BLK_EH_DONE;
1274         }
1275
1276         /*
1277          * Shutdown immediately if controller times out while starting. The
1278          * reset work will see the pci device disabled when it gets the forced
1279          * cancellation error. All outstanding requests are completed on
1280          * shutdown, so we return BLK_EH_DONE.
1281          */
1282         switch (dev->ctrl.state) {
1283         case NVME_CTRL_CONNECTING:
1284         case NVME_CTRL_RESETTING:
1285                 dev_warn_ratelimited(dev->ctrl.device,
1286                          "I/O %d QID %d timeout, disable controller\n",
1287                          req->tag, nvmeq->qid);
1288                 nvme_dev_disable(dev, false);
1289                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1290                 return BLK_EH_DONE;
1291         default:
1292                 break;
1293         }
1294
1295         /*
1296          * Shutdown the controller immediately and schedule a reset if the
1297          * command was already aborted once before and still hasn't been
1298          * returned to the driver, or if this is the admin queue.
1299          */
1300         if (!nvmeq->qid || iod->aborted) {
1301                 dev_warn(dev->ctrl.device,
1302                          "I/O %d QID %d timeout, reset controller\n",
1303                          req->tag, nvmeq->qid);
1304                 nvme_dev_disable(dev, false);
1305                 nvme_reset_ctrl(&dev->ctrl);
1306
1307                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1308                 return BLK_EH_DONE;
1309         }
1310
1311         if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1312                 atomic_inc(&dev->ctrl.abort_limit);
1313                 return BLK_EH_RESET_TIMER;
1314         }
1315         iod->aborted = 1;
1316
1317         memset(&cmd, 0, sizeof(cmd));
1318         cmd.abort.opcode = nvme_admin_abort_cmd;
1319         cmd.abort.cid = req->tag;
1320         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1321
1322         dev_warn(nvmeq->dev->ctrl.device,
1323                 "I/O %d QID %d timeout, aborting\n",
1324                  req->tag, nvmeq->qid);
1325
1326         abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1327                         BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1328         if (IS_ERR(abort_req)) {
1329                 atomic_inc(&dev->ctrl.abort_limit);
1330                 return BLK_EH_RESET_TIMER;
1331         }
1332
1333         abort_req->timeout = ADMIN_TIMEOUT;
1334         abort_req->end_io_data = NULL;
1335         blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1336
1337         /*
1338          * The aborted req will be completed on receiving the abort req.
1339          * We enable the timer again. If hit twice, it'll cause a device reset,
1340          * as the device then is in a faulty state.
1341          */
1342         return BLK_EH_RESET_TIMER;
1343 }
1344
1345 static void nvme_free_queue(struct nvme_queue *nvmeq)
1346 {
1347         dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq->q_depth),
1348                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1349         if (!nvmeq->sq_cmds)
1350                 return;
1351
1352         if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1353                 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1354                                 nvmeq->sq_cmds, SQ_SIZE(nvmeq->q_depth));
1355         } else {
1356                 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq->q_depth),
1357                                 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1358         }
1359 }
1360
1361 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1362 {
1363         int i;
1364
1365         for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1366                 dev->ctrl.queue_count--;
1367                 nvme_free_queue(&dev->queues[i]);
1368         }
1369 }
1370
1371 /**
1372  * nvme_suspend_queue - put queue into suspended state
1373  * @nvmeq: queue to suspend
1374  */
1375 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1376 {
1377         if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1378                 return 1;
1379
1380         /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1381         mb();
1382
1383         nvmeq->dev->online_queues--;
1384         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1385                 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1386         if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1387                 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1388         return 0;
1389 }
1390
1391 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1392 {
1393         int i;
1394
1395         for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1396                 nvme_suspend_queue(&dev->queues[i]);
1397 }
1398
1399 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1400 {
1401         struct nvme_queue *nvmeq = &dev->queues[0];
1402
1403         if (shutdown)
1404                 nvme_shutdown_ctrl(&dev->ctrl);
1405         else
1406                 nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1407
1408         nvme_poll_irqdisable(nvmeq, -1);
1409 }
1410
1411 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1412                                 int entry_size)
1413 {
1414         int q_depth = dev->q_depth;
1415         unsigned q_size_aligned = roundup(q_depth * entry_size,
1416                                           dev->ctrl.page_size);
1417
1418         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1419                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1420                 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1421                 q_depth = div_u64(mem_per_q, entry_size);
1422
1423                 /*
1424                  * Ensure the reduced q_depth is above some threshold where it
1425                  * would be better to map queues in system memory with the
1426                  * original depth
1427                  */
1428                 if (q_depth < 64)
1429                         return -ENOMEM;
1430         }
1431
1432         return q_depth;
1433 }
1434
1435 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1436                                 int qid, int depth)
1437 {
1438         struct pci_dev *pdev = to_pci_dev(dev->dev);
1439
1440         if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1441                 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(depth));
1442                 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1443                                                 nvmeq->sq_cmds);
1444                 if (nvmeq->sq_dma_addr) {
1445                         set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1446                         return 0; 
1447                 }
1448         }
1449
1450         nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1451                                 &nvmeq->sq_dma_addr, GFP_KERNEL);
1452         if (!nvmeq->sq_cmds)
1453                 return -ENOMEM;
1454         return 0;
1455 }
1456
1457 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1458 {
1459         struct nvme_queue *nvmeq = &dev->queues[qid];
1460
1461         if (dev->ctrl.queue_count > qid)
1462                 return 0;
1463
1464         nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(depth),
1465                                          &nvmeq->cq_dma_addr, GFP_KERNEL);
1466         if (!nvmeq->cqes)
1467                 goto free_nvmeq;
1468
1469         if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1470                 goto free_cqdma;
1471
1472         nvmeq->dev = dev;
1473         spin_lock_init(&nvmeq->sq_lock);
1474         spin_lock_init(&nvmeq->cq_poll_lock);
1475         nvmeq->cq_head = 0;
1476         nvmeq->cq_phase = 1;
1477         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1478         nvmeq->q_depth = depth;
1479         nvmeq->qid = qid;
1480         dev->ctrl.queue_count++;
1481
1482         return 0;
1483
1484  free_cqdma:
1485         dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1486                                                         nvmeq->cq_dma_addr);
1487  free_nvmeq:
1488         return -ENOMEM;
1489 }
1490
1491 static int queue_request_irq(struct nvme_queue *nvmeq)
1492 {
1493         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1494         int nr = nvmeq->dev->ctrl.instance;
1495
1496         if (use_threaded_interrupts) {
1497                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1498                                 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1499         } else {
1500                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1501                                 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1502         }
1503 }
1504
1505 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1506 {
1507         struct nvme_dev *dev = nvmeq->dev;
1508
1509         nvmeq->sq_tail = 0;
1510         nvmeq->last_sq_tail = 0;
1511         nvmeq->cq_head = 0;
1512         nvmeq->cq_phase = 1;
1513         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1514         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1515         nvme_dbbuf_init(dev, nvmeq, qid);
1516         dev->online_queues++;
1517         wmb(); /* ensure the first interrupt sees the initialization */
1518 }
1519
1520 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1521 {
1522         struct nvme_dev *dev = nvmeq->dev;
1523         int result;
1524         u16 vector = 0;
1525
1526         clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1527
1528         /*
1529          * A queue's vector matches the queue identifier unless the controller
1530          * has only one vector available.
1531          */
1532         if (!polled)
1533                 vector = dev->num_vecs == 1 ? 0 : qid;
1534         else
1535                 set_bit(NVMEQ_POLLED, &nvmeq->flags);
1536
1537         result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1538         if (result)
1539                 return result;
1540
1541         result = adapter_alloc_sq(dev, qid, nvmeq);
1542         if (result < 0)
1543                 return result;
1544         else if (result)
1545                 goto release_cq;
1546
1547         nvmeq->cq_vector = vector;
1548         nvme_init_queue(nvmeq, qid);
1549
1550         if (!polled) {
1551                 nvmeq->cq_vector = vector;
1552                 result = queue_request_irq(nvmeq);
1553                 if (result < 0)
1554                         goto release_sq;
1555         }
1556
1557         set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1558         return result;
1559
1560 release_sq:
1561         dev->online_queues--;
1562         adapter_delete_sq(dev, qid);
1563 release_cq:
1564         adapter_delete_cq(dev, qid);
1565         return result;
1566 }
1567
1568 static const struct blk_mq_ops nvme_mq_admin_ops = {
1569         .queue_rq       = nvme_queue_rq,
1570         .complete       = nvme_pci_complete_rq,
1571         .init_hctx      = nvme_admin_init_hctx,
1572         .exit_hctx      = nvme_admin_exit_hctx,
1573         .init_request   = nvme_init_request,
1574         .timeout        = nvme_timeout,
1575 };
1576
1577 static const struct blk_mq_ops nvme_mq_ops = {
1578         .queue_rq       = nvme_queue_rq,
1579         .complete       = nvme_pci_complete_rq,
1580         .commit_rqs     = nvme_commit_rqs,
1581         .init_hctx      = nvme_init_hctx,
1582         .init_request   = nvme_init_request,
1583         .map_queues     = nvme_pci_map_queues,
1584         .timeout        = nvme_timeout,
1585         .poll           = nvme_poll,
1586 };
1587
1588 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1589 {
1590         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1591                 /*
1592                  * If the controller was reset during removal, it's possible
1593                  * user requests may be waiting on a stopped queue. Start the
1594                  * queue to flush these to completion.
1595                  */
1596                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1597                 blk_cleanup_queue(dev->ctrl.admin_q);
1598                 blk_mq_free_tag_set(&dev->admin_tagset);
1599         }
1600 }
1601
1602 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1603 {
1604         if (!dev->ctrl.admin_q) {
1605                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1606                 dev->admin_tagset.nr_hw_queues = 1;
1607
1608                 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1609                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1610                 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1611                 dev->admin_tagset.cmd_size = nvme_pci_cmd_size(dev, false);
1612                 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1613                 dev->admin_tagset.driver_data = dev;
1614
1615                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1616                         return -ENOMEM;
1617                 dev->ctrl.admin_tagset = &dev->admin_tagset;
1618
1619                 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1620                 if (IS_ERR(dev->ctrl.admin_q)) {
1621                         blk_mq_free_tag_set(&dev->admin_tagset);
1622                         return -ENOMEM;
1623                 }
1624                 if (!blk_get_queue(dev->ctrl.admin_q)) {
1625                         nvme_dev_remove_admin(dev);
1626                         dev->ctrl.admin_q = NULL;
1627                         return -ENODEV;
1628                 }
1629         } else
1630                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1631
1632         return 0;
1633 }
1634
1635 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1636 {
1637         return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1638 }
1639
1640 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1641 {
1642         struct pci_dev *pdev = to_pci_dev(dev->dev);
1643
1644         if (size <= dev->bar_mapped_size)
1645                 return 0;
1646         if (size > pci_resource_len(pdev, 0))
1647                 return -ENOMEM;
1648         if (dev->bar)
1649                 iounmap(dev->bar);
1650         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1651         if (!dev->bar) {
1652                 dev->bar_mapped_size = 0;
1653                 return -ENOMEM;
1654         }
1655         dev->bar_mapped_size = size;
1656         dev->dbs = dev->bar + NVME_REG_DBS;
1657
1658         return 0;
1659 }
1660
1661 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1662 {
1663         int result;
1664         u32 aqa;
1665         struct nvme_queue *nvmeq;
1666
1667         result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1668         if (result < 0)
1669                 return result;
1670
1671         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1672                                 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1673
1674         if (dev->subsystem &&
1675             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1676                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1677
1678         result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1679         if (result < 0)
1680                 return result;
1681
1682         result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1683         if (result)
1684                 return result;
1685
1686         nvmeq = &dev->queues[0];
1687         aqa = nvmeq->q_depth - 1;
1688         aqa |= aqa << 16;
1689
1690         writel(aqa, dev->bar + NVME_REG_AQA);
1691         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1692         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1693
1694         result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
1695         if (result)
1696                 return result;
1697
1698         nvmeq->cq_vector = 0;
1699         nvme_init_queue(nvmeq, 0);
1700         result = queue_request_irq(nvmeq);
1701         if (result) {
1702                 dev->online_queues--;
1703                 return result;
1704         }
1705
1706         set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1707         return result;
1708 }
1709
1710 static int nvme_create_io_queues(struct nvme_dev *dev)
1711 {
1712         unsigned i, max, rw_queues;
1713         int ret = 0;
1714
1715         for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1716                 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1717                         ret = -ENOMEM;
1718                         break;
1719                 }
1720         }
1721
1722         max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1723         if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1724                 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1725                                 dev->io_queues[HCTX_TYPE_READ];
1726         } else {
1727                 rw_queues = max;
1728         }
1729
1730         for (i = dev->online_queues; i <= max; i++) {
1731                 bool polled = i > rw_queues;
1732
1733                 ret = nvme_create_queue(&dev->queues[i], i, polled);
1734                 if (ret)
1735                         break;
1736         }
1737
1738         /*
1739          * Ignore failing Create SQ/CQ commands, we can continue with less
1740          * than the desired amount of queues, and even a controller without
1741          * I/O queues can still be used to issue admin commands.  This might
1742          * be useful to upgrade a buggy firmware for example.
1743          */
1744         return ret >= 0 ? 0 : ret;
1745 }
1746
1747 static ssize_t nvme_cmb_show(struct device *dev,
1748                              struct device_attribute *attr,
1749                              char *buf)
1750 {
1751         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1752
1753         return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1754                        ndev->cmbloc, ndev->cmbsz);
1755 }
1756 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1757
1758 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1759 {
1760         u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1761
1762         return 1ULL << (12 + 4 * szu);
1763 }
1764
1765 static u32 nvme_cmb_size(struct nvme_dev *dev)
1766 {
1767         return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1768 }
1769
1770 static void nvme_map_cmb(struct nvme_dev *dev)
1771 {
1772         u64 size, offset;
1773         resource_size_t bar_size;
1774         struct pci_dev *pdev = to_pci_dev(dev->dev);
1775         int bar;
1776
1777         if (dev->cmb_size)
1778                 return;
1779
1780         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1781         if (!dev->cmbsz)
1782                 return;
1783         dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1784
1785         size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1786         offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1787         bar = NVME_CMB_BIR(dev->cmbloc);
1788         bar_size = pci_resource_len(pdev, bar);
1789
1790         if (offset > bar_size)
1791                 return;
1792
1793         /*
1794          * Controllers may support a CMB size larger than their BAR,
1795          * for example, due to being behind a bridge. Reduce the CMB to
1796          * the reported size of the BAR
1797          */
1798         if (size > bar_size - offset)
1799                 size = bar_size - offset;
1800
1801         if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1802                 dev_warn(dev->ctrl.device,
1803                          "failed to register the CMB\n");
1804                 return;
1805         }
1806
1807         dev->cmb_size = size;
1808         dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1809
1810         if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1811                         (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1812                 pci_p2pmem_publish(pdev, true);
1813
1814         if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1815                                     &dev_attr_cmb.attr, NULL))
1816                 dev_warn(dev->ctrl.device,
1817                          "failed to add sysfs attribute for CMB\n");
1818 }
1819
1820 static inline void nvme_release_cmb(struct nvme_dev *dev)
1821 {
1822         if (dev->cmb_size) {
1823                 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1824                                              &dev_attr_cmb.attr, NULL);
1825                 dev->cmb_size = 0;
1826         }
1827 }
1828
1829 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1830 {
1831         u64 dma_addr = dev->host_mem_descs_dma;
1832         struct nvme_command c;
1833         int ret;
1834
1835         memset(&c, 0, sizeof(c));
1836         c.features.opcode       = nvme_admin_set_features;
1837         c.features.fid          = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1838         c.features.dword11      = cpu_to_le32(bits);
1839         c.features.dword12      = cpu_to_le32(dev->host_mem_size >>
1840                                               ilog2(dev->ctrl.page_size));
1841         c.features.dword13      = cpu_to_le32(lower_32_bits(dma_addr));
1842         c.features.dword14      = cpu_to_le32(upper_32_bits(dma_addr));
1843         c.features.dword15      = cpu_to_le32(dev->nr_host_mem_descs);
1844
1845         ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1846         if (ret) {
1847                 dev_warn(dev->ctrl.device,
1848                          "failed to set host mem (err %d, flags %#x).\n",
1849                          ret, bits);
1850         }
1851         return ret;
1852 }
1853
1854 static void nvme_free_host_mem(struct nvme_dev *dev)
1855 {
1856         int i;
1857
1858         for (i = 0; i < dev->nr_host_mem_descs; i++) {
1859                 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1860                 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1861
1862                 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1863                                le64_to_cpu(desc->addr),
1864                                DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1865         }
1866
1867         kfree(dev->host_mem_desc_bufs);
1868         dev->host_mem_desc_bufs = NULL;
1869         dma_free_coherent(dev->dev,
1870                         dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1871                         dev->host_mem_descs, dev->host_mem_descs_dma);
1872         dev->host_mem_descs = NULL;
1873         dev->nr_host_mem_descs = 0;
1874 }
1875
1876 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1877                 u32 chunk_size)
1878 {
1879         struct nvme_host_mem_buf_desc *descs;
1880         u32 max_entries, len;
1881         dma_addr_t descs_dma;
1882         int i = 0;
1883         void **bufs;
1884         u64 size, tmp;
1885
1886         tmp = (preferred + chunk_size - 1);
1887         do_div(tmp, chunk_size);
1888         max_entries = tmp;
1889
1890         if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1891                 max_entries = dev->ctrl.hmmaxd;
1892
1893         descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1894                                    &descs_dma, GFP_KERNEL);
1895         if (!descs)
1896                 goto out;
1897
1898         bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1899         if (!bufs)
1900                 goto out_free_descs;
1901
1902         for (size = 0; size < preferred && i < max_entries; size += len) {
1903                 dma_addr_t dma_addr;
1904
1905                 len = min_t(u64, chunk_size, preferred - size);
1906                 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1907                                 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1908                 if (!bufs[i])
1909                         break;
1910
1911                 descs[i].addr = cpu_to_le64(dma_addr);
1912                 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1913                 i++;
1914         }
1915
1916         if (!size)
1917                 goto out_free_bufs;
1918
1919         dev->nr_host_mem_descs = i;
1920         dev->host_mem_size = size;
1921         dev->host_mem_descs = descs;
1922         dev->host_mem_descs_dma = descs_dma;
1923         dev->host_mem_desc_bufs = bufs;
1924         return 0;
1925
1926 out_free_bufs:
1927         while (--i >= 0) {
1928                 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1929
1930                 dma_free_attrs(dev->dev, size, bufs[i],
1931                                le64_to_cpu(descs[i].addr),
1932                                DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1933         }
1934
1935         kfree(bufs);
1936 out_free_descs:
1937         dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1938                         descs_dma);
1939 out:
1940         dev->host_mem_descs = NULL;
1941         return -ENOMEM;
1942 }
1943
1944 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1945 {
1946         u32 chunk_size;
1947
1948         /* start big and work our way down */
1949         for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1950              chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1951              chunk_size /= 2) {
1952                 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1953                         if (!min || dev->host_mem_size >= min)
1954                                 return 0;
1955                         nvme_free_host_mem(dev);
1956                 }
1957         }
1958
1959         return -ENOMEM;
1960 }
1961
1962 static int nvme_setup_host_mem(struct nvme_dev *dev)
1963 {
1964         u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1965         u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1966         u64 min = (u64)dev->ctrl.hmmin * 4096;
1967         u32 enable_bits = NVME_HOST_MEM_ENABLE;
1968         int ret;
1969
1970         preferred = min(preferred, max);
1971         if (min > max) {
1972                 dev_warn(dev->ctrl.device,
1973                         "min host memory (%lld MiB) above limit (%d MiB).\n",
1974                         min >> ilog2(SZ_1M), max_host_mem_size_mb);
1975                 nvme_free_host_mem(dev);
1976                 return 0;
1977         }
1978
1979         /*
1980          * If we already have a buffer allocated check if we can reuse it.
1981          */
1982         if (dev->host_mem_descs) {
1983                 if (dev->host_mem_size >= min)
1984                         enable_bits |= NVME_HOST_MEM_RETURN;
1985                 else
1986                         nvme_free_host_mem(dev);
1987         }
1988
1989         if (!dev->host_mem_descs) {
1990                 if (nvme_alloc_host_mem(dev, min, preferred)) {
1991                         dev_warn(dev->ctrl.device,
1992                                 "failed to allocate host memory buffer.\n");
1993                         return 0; /* controller must work without HMB */
1994                 }
1995
1996                 dev_info(dev->ctrl.device,
1997                         "allocated %lld MiB host memory buffer.\n",
1998                         dev->host_mem_size >> ilog2(SZ_1M));
1999         }
2000
2001         ret = nvme_set_host_mem(dev, enable_bits);
2002         if (ret)
2003                 nvme_free_host_mem(dev);
2004         return ret;
2005 }
2006
2007 /*
2008  * nirqs is the number of interrupts available for write and read
2009  * queues. The core already reserved an interrupt for the admin queue.
2010  */
2011 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2012 {
2013         struct nvme_dev *dev = affd->priv;
2014         unsigned int nr_read_queues;
2015
2016         /*
2017          * If there is no interupt available for queues, ensure that
2018          * the default queue is set to 1. The affinity set size is
2019          * also set to one, but the irq core ignores it for this case.
2020          *
2021          * If only one interrupt is available or 'write_queue' == 0, combine
2022          * write and read queues.
2023          *
2024          * If 'write_queues' > 0, ensure it leaves room for at least one read
2025          * queue.
2026          */
2027         if (!nrirqs) {
2028                 nrirqs = 1;
2029                 nr_read_queues = 0;
2030         } else if (nrirqs == 1 || !write_queues) {
2031                 nr_read_queues = 0;
2032         } else if (write_queues >= nrirqs) {
2033                 nr_read_queues = 1;
2034         } else {
2035                 nr_read_queues = nrirqs - write_queues;
2036         }
2037
2038         dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2039         affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2040         dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2041         affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2042         affd->nr_sets = nr_read_queues ? 2 : 1;
2043 }
2044
2045 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2046 {
2047         struct pci_dev *pdev = to_pci_dev(dev->dev);
2048         struct irq_affinity affd = {
2049                 .pre_vectors    = 1,
2050                 .calc_sets      = nvme_calc_irq_sets,
2051                 .priv           = dev,
2052         };
2053         unsigned int irq_queues, this_p_queues;
2054
2055         /*
2056          * Poll queues don't need interrupts, but we need at least one IO
2057          * queue left over for non-polled IO.
2058          */
2059         this_p_queues = poll_queues;
2060         if (this_p_queues >= nr_io_queues) {
2061                 this_p_queues = nr_io_queues - 1;
2062                 irq_queues = 1;
2063         } else {
2064                 irq_queues = nr_io_queues - this_p_queues + 1;
2065         }
2066         dev->io_queues[HCTX_TYPE_POLL] = this_p_queues;
2067
2068         /* Initialize for the single interrupt case */
2069         dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2070         dev->io_queues[HCTX_TYPE_READ] = 0;
2071
2072         return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2073                               PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2074 }
2075
2076 static void nvme_disable_io_queues(struct nvme_dev *dev)
2077 {
2078         if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2079                 __nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2080 }
2081
2082 static int nvme_setup_io_queues(struct nvme_dev *dev)
2083 {
2084         struct nvme_queue *adminq = &dev->queues[0];
2085         struct pci_dev *pdev = to_pci_dev(dev->dev);
2086         int result, nr_io_queues;
2087         unsigned long size;
2088
2089         nr_io_queues = max_io_queues();
2090         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2091         if (result < 0)
2092                 return result;
2093
2094         if (nr_io_queues == 0)
2095                 return 0;
2096         
2097         clear_bit(NVMEQ_ENABLED, &adminq->flags);
2098
2099         if (dev->cmb_use_sqes) {
2100                 result = nvme_cmb_qdepth(dev, nr_io_queues,
2101                                 sizeof(struct nvme_command));
2102                 if (result > 0)
2103                         dev->q_depth = result;
2104                 else
2105                         dev->cmb_use_sqes = false;
2106         }
2107
2108         do {
2109                 size = db_bar_size(dev, nr_io_queues);
2110                 result = nvme_remap_bar(dev, size);
2111                 if (!result)
2112                         break;
2113                 if (!--nr_io_queues)
2114                         return -ENOMEM;
2115         } while (1);
2116         adminq->q_db = dev->dbs;
2117
2118  retry:
2119         /* Deregister the admin queue's interrupt */
2120         pci_free_irq(pdev, 0, adminq);
2121
2122         /*
2123          * If we enable msix early due to not intx, disable it again before
2124          * setting up the full range we need.
2125          */
2126         pci_free_irq_vectors(pdev);
2127
2128         result = nvme_setup_irqs(dev, nr_io_queues);
2129         if (result <= 0)
2130                 return -EIO;
2131
2132         dev->num_vecs = result;
2133         result = max(result - 1, 1);
2134         dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2135
2136         /*
2137          * Should investigate if there's a performance win from allocating
2138          * more queues than interrupt vectors; it might allow the submission
2139          * path to scale better, even if the receive path is limited by the
2140          * number of interrupts.
2141          */
2142         result = queue_request_irq(adminq);
2143         if (result)
2144                 return result;
2145         set_bit(NVMEQ_ENABLED, &adminq->flags);
2146
2147         result = nvme_create_io_queues(dev);
2148         if (result || dev->online_queues < 2)
2149                 return result;
2150
2151         if (dev->online_queues - 1 < dev->max_qid) {
2152                 nr_io_queues = dev->online_queues - 1;
2153                 nvme_disable_io_queues(dev);
2154                 nvme_suspend_io_queues(dev);
2155                 goto retry;
2156         }
2157         dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2158                                         dev->io_queues[HCTX_TYPE_DEFAULT],
2159                                         dev->io_queues[HCTX_TYPE_READ],
2160                                         dev->io_queues[HCTX_TYPE_POLL]);
2161         return 0;
2162 }
2163
2164 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2165 {
2166         struct nvme_queue *nvmeq = req->end_io_data;
2167
2168         blk_mq_free_request(req);
2169         complete(&nvmeq->delete_done);
2170 }
2171
2172 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2173 {
2174         struct nvme_queue *nvmeq = req->end_io_data;
2175
2176         if (error)
2177                 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2178
2179         nvme_del_queue_end(req, error);
2180 }
2181
2182 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2183 {
2184         struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2185         struct request *req;
2186         struct nvme_command cmd;
2187
2188         memset(&cmd, 0, sizeof(cmd));
2189         cmd.delete_queue.opcode = opcode;
2190         cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2191
2192         req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
2193         if (IS_ERR(req))
2194                 return PTR_ERR(req);
2195
2196         req->timeout = ADMIN_TIMEOUT;
2197         req->end_io_data = nvmeq;
2198
2199         init_completion(&nvmeq->delete_done);
2200         blk_execute_rq_nowait(q, NULL, req, false,
2201                         opcode == nvme_admin_delete_cq ?
2202                                 nvme_del_cq_end : nvme_del_queue_end);
2203         return 0;
2204 }
2205
2206 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2207 {
2208         int nr_queues = dev->online_queues - 1, sent = 0;
2209         unsigned long timeout;
2210
2211  retry:
2212         timeout = ADMIN_TIMEOUT;
2213         while (nr_queues > 0) {
2214                 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2215                         break;
2216                 nr_queues--;
2217                 sent++;
2218         }
2219         while (sent) {
2220                 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2221
2222                 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2223                                 timeout);
2224                 if (timeout == 0)
2225                         return false;
2226
2227                 /* handle any remaining CQEs */
2228                 if (opcode == nvme_admin_delete_cq &&
2229                     !test_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags))
2230                         nvme_poll_irqdisable(nvmeq, -1);
2231
2232                 sent--;
2233                 if (nr_queues)
2234                         goto retry;
2235         }
2236         return true;
2237 }
2238
2239 /*
2240  * return error value only when tagset allocation failed
2241  */
2242 static int nvme_dev_add(struct nvme_dev *dev)
2243 {
2244         int ret;
2245
2246         if (!dev->ctrl.tagset) {
2247                 dev->tagset.ops = &nvme_mq_ops;
2248                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2249                 dev->tagset.nr_maps = 2; /* default + read */
2250                 if (dev->io_queues[HCTX_TYPE_POLL])
2251                         dev->tagset.nr_maps++;
2252                 dev->tagset.timeout = NVME_IO_TIMEOUT;
2253                 dev->tagset.numa_node = dev_to_node(dev->dev);
2254                 dev->tagset.queue_depth =
2255                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2256                 dev->tagset.cmd_size = nvme_pci_cmd_size(dev, false);
2257                 if ((dev->ctrl.sgls & ((1 << 0) | (1 << 1))) && sgl_threshold) {
2258                         dev->tagset.cmd_size = max(dev->tagset.cmd_size,
2259                                         nvme_pci_cmd_size(dev, true));
2260                 }
2261                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2262                 dev->tagset.driver_data = dev;
2263
2264                 ret = blk_mq_alloc_tag_set(&dev->tagset);
2265                 if (ret) {
2266                         dev_warn(dev->ctrl.device,
2267                                 "IO queues tagset allocation failed %d\n", ret);
2268                         return ret;
2269                 }
2270                 dev->ctrl.tagset = &dev->tagset;
2271
2272                 nvme_dbbuf_set(dev);
2273         } else {
2274                 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2275
2276                 /* Free previously allocated queues that are no longer usable */
2277                 nvme_free_queues(dev, dev->online_queues);
2278         }
2279
2280         return 0;
2281 }
2282
2283 static int nvme_pci_enable(struct nvme_dev *dev)
2284 {
2285         int result = -ENOMEM;
2286         struct pci_dev *pdev = to_pci_dev(dev->dev);
2287
2288         if (pci_enable_device_mem(pdev))
2289                 return result;
2290
2291         pci_set_master(pdev);
2292
2293         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2294             dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
2295                 goto disable;
2296
2297         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2298                 result = -ENODEV;
2299                 goto disable;
2300         }
2301
2302         /*
2303          * Some devices and/or platforms don't advertise or work with INTx
2304          * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2305          * adjust this later.
2306          */
2307         result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2308         if (result < 0)
2309                 return result;
2310
2311         dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2312
2313         dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2314                                 io_queue_depth);
2315         dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2316         dev->dbs = dev->bar + 4096;
2317
2318         /*
2319          * Temporary fix for the Apple controller found in the MacBook8,1 and
2320          * some MacBook7,1 to avoid controller resets and data loss.
2321          */
2322         if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2323                 dev->q_depth = 2;
2324                 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2325                         "set queue depth=%u to work around controller resets\n",
2326                         dev->q_depth);
2327         } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2328                    (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2329                    NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2330                 dev->q_depth = 64;
2331                 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2332                         "set queue depth=%u\n", dev->q_depth);
2333         }
2334
2335         nvme_map_cmb(dev);
2336
2337         pci_enable_pcie_error_reporting(pdev);
2338         pci_save_state(pdev);
2339         return 0;
2340
2341  disable:
2342         pci_disable_device(pdev);
2343         return result;
2344 }
2345
2346 static void nvme_dev_unmap(struct nvme_dev *dev)
2347 {
2348         if (dev->bar)
2349                 iounmap(dev->bar);
2350         pci_release_mem_regions(to_pci_dev(dev->dev));
2351 }
2352
2353 static void nvme_pci_disable(struct nvme_dev *dev)
2354 {
2355         struct pci_dev *pdev = to_pci_dev(dev->dev);
2356
2357         pci_free_irq_vectors(pdev);
2358
2359         if (pci_is_enabled(pdev)) {
2360                 pci_disable_pcie_error_reporting(pdev);
2361                 pci_disable_device(pdev);
2362         }
2363 }
2364
2365 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2366 {
2367         bool dead = true;
2368         struct pci_dev *pdev = to_pci_dev(dev->dev);
2369
2370         mutex_lock(&dev->shutdown_lock);
2371         if (pci_is_enabled(pdev)) {
2372                 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2373
2374                 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2375                     dev->ctrl.state == NVME_CTRL_RESETTING)
2376                         nvme_start_freeze(&dev->ctrl);
2377                 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2378                         pdev->error_state  != pci_channel_io_normal);
2379         }
2380
2381         /*
2382          * Give the controller a chance to complete all entered requests if
2383          * doing a safe shutdown.
2384          */
2385         if (!dead) {
2386                 if (shutdown)
2387                         nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2388         }
2389
2390         nvme_stop_queues(&dev->ctrl);
2391
2392         if (!dead && dev->ctrl.queue_count > 0) {
2393                 nvme_disable_io_queues(dev);
2394                 nvme_disable_admin_queue(dev, shutdown);
2395         }
2396         nvme_suspend_io_queues(dev);
2397         nvme_suspend_queue(&dev->queues[0]);
2398         nvme_pci_disable(dev);
2399
2400         blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2401         blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2402
2403         /*
2404          * The driver will not be starting up queues again if shutting down so
2405          * must flush all entered requests to their failed completion to avoid
2406          * deadlocking blk-mq hot-cpu notifier.
2407          */
2408         if (shutdown)
2409                 nvme_start_queues(&dev->ctrl);
2410         mutex_unlock(&dev->shutdown_lock);
2411 }
2412
2413 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2414 {
2415         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2416                                                 PAGE_SIZE, PAGE_SIZE, 0);
2417         if (!dev->prp_page_pool)
2418                 return -ENOMEM;
2419
2420         /* Optimisation for I/Os between 4k and 128k */
2421         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2422                                                 256, 256, 0);
2423         if (!dev->prp_small_pool) {
2424                 dma_pool_destroy(dev->prp_page_pool);
2425                 return -ENOMEM;
2426         }
2427         return 0;
2428 }
2429
2430 static void nvme_release_prp_pools(struct nvme_dev *dev)
2431 {
2432         dma_pool_destroy(dev->prp_page_pool);
2433         dma_pool_destroy(dev->prp_small_pool);
2434 }
2435
2436 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2437 {
2438         struct nvme_dev *dev = to_nvme_dev(ctrl);
2439
2440         nvme_dbbuf_dma_free(dev);
2441         put_device(dev->dev);
2442         if (dev->tagset.tags)
2443                 blk_mq_free_tag_set(&dev->tagset);
2444         if (dev->ctrl.admin_q)
2445                 blk_put_queue(dev->ctrl.admin_q);
2446         kfree(dev->queues);
2447         free_opal_dev(dev->ctrl.opal_dev);
2448         mempool_destroy(dev->iod_mempool);
2449         kfree(dev);
2450 }
2451
2452 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2453 {
2454         dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
2455
2456         nvme_get_ctrl(&dev->ctrl);
2457         nvme_dev_disable(dev, false);
2458         nvme_kill_queues(&dev->ctrl);
2459         if (!queue_work(nvme_wq, &dev->remove_work))
2460                 nvme_put_ctrl(&dev->ctrl);
2461 }
2462
2463 static void nvme_reset_work(struct work_struct *work)
2464 {
2465         struct nvme_dev *dev =
2466                 container_of(work, struct nvme_dev, ctrl.reset_work);
2467         bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2468         int result = -ENODEV;
2469         enum nvme_ctrl_state new_state = NVME_CTRL_LIVE;
2470
2471         if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
2472                 goto out;
2473
2474         /*
2475          * If we're called to reset a live controller first shut it down before
2476          * moving on.
2477          */
2478         if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2479                 nvme_dev_disable(dev, false);
2480
2481         mutex_lock(&dev->shutdown_lock);
2482         result = nvme_pci_enable(dev);
2483         if (result)
2484                 goto out_unlock;
2485
2486         result = nvme_pci_configure_admin_queue(dev);
2487         if (result)
2488                 goto out_unlock;
2489
2490         result = nvme_alloc_admin_tags(dev);
2491         if (result)
2492                 goto out_unlock;
2493
2494         /*
2495          * Limit the max command size to prevent iod->sg allocations going
2496          * over a single page.
2497          */
2498         dev->ctrl.max_hw_sectors = NVME_MAX_KB_SZ << 1;
2499         dev->ctrl.max_segments = NVME_MAX_SEGS;
2500         mutex_unlock(&dev->shutdown_lock);
2501
2502         /*
2503          * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2504          * initializing procedure here.
2505          */
2506         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2507                 dev_warn(dev->ctrl.device,
2508                         "failed to mark controller CONNECTING\n");
2509                 goto out;
2510         }
2511
2512         result = nvme_init_identify(&dev->ctrl);
2513         if (result)
2514                 goto out;
2515
2516         if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2517                 if (!dev->ctrl.opal_dev)
2518                         dev->ctrl.opal_dev =
2519                                 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2520                 else if (was_suspend)
2521                         opal_unlock_from_suspend(dev->ctrl.opal_dev);
2522         } else {
2523                 free_opal_dev(dev->ctrl.opal_dev);
2524                 dev->ctrl.opal_dev = NULL;
2525         }
2526
2527         if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2528                 result = nvme_dbbuf_dma_alloc(dev);
2529                 if (result)
2530                         dev_warn(dev->dev,
2531                                  "unable to allocate dma for dbbuf\n");
2532         }
2533
2534         if (dev->ctrl.hmpre) {
2535                 result = nvme_setup_host_mem(dev);
2536                 if (result < 0)
2537                         goto out;
2538         }
2539
2540         result = nvme_setup_io_queues(dev);
2541         if (result)
2542                 goto out;
2543
2544         /*
2545          * Keep the controller around but remove all namespaces if we don't have
2546          * any working I/O queue.
2547          */
2548         if (dev->online_queues < 2) {
2549                 dev_warn(dev->ctrl.device, "IO queues not created\n");
2550                 nvme_kill_queues(&dev->ctrl);
2551                 nvme_remove_namespaces(&dev->ctrl);
2552                 new_state = NVME_CTRL_ADMIN_ONLY;
2553         } else {
2554                 nvme_start_queues(&dev->ctrl);
2555                 nvme_wait_freeze(&dev->ctrl);
2556                 /* hit this only when allocate tagset fails */
2557                 if (nvme_dev_add(dev))
2558                         new_state = NVME_CTRL_ADMIN_ONLY;
2559                 nvme_unfreeze(&dev->ctrl);
2560         }
2561
2562         /*
2563          * If only admin queue live, keep it to do further investigation or
2564          * recovery.
2565          */
2566         if (!nvme_change_ctrl_state(&dev->ctrl, new_state)) {
2567                 dev_warn(dev->ctrl.device,
2568                         "failed to mark controller state %d\n", new_state);
2569                 goto out;
2570         }
2571
2572         nvme_start_ctrl(&dev->ctrl);
2573         return;
2574
2575  out_unlock:
2576         mutex_unlock(&dev->shutdown_lock);
2577  out:
2578         nvme_remove_dead_ctrl(dev, result);
2579 }
2580
2581 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2582 {
2583         struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2584         struct pci_dev *pdev = to_pci_dev(dev->dev);
2585
2586         if (pci_get_drvdata(pdev))
2587                 device_release_driver(&pdev->dev);
2588         nvme_put_ctrl(&dev->ctrl);
2589 }
2590
2591 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2592 {
2593         *val = readl(to_nvme_dev(ctrl)->bar + off);
2594         return 0;
2595 }
2596
2597 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2598 {
2599         writel(val, to_nvme_dev(ctrl)->bar + off);
2600         return 0;
2601 }
2602
2603 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2604 {
2605         *val = readq(to_nvme_dev(ctrl)->bar + off);
2606         return 0;
2607 }
2608
2609 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2610 {
2611         struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2612
2613         return snprintf(buf, size, "%s", dev_name(&pdev->dev));
2614 }
2615
2616 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2617         .name                   = "pcie",
2618         .module                 = THIS_MODULE,
2619         .flags                  = NVME_F_METADATA_SUPPORTED |
2620                                   NVME_F_PCI_P2PDMA,
2621         .reg_read32             = nvme_pci_reg_read32,
2622         .reg_write32            = nvme_pci_reg_write32,
2623         .reg_read64             = nvme_pci_reg_read64,
2624         .free_ctrl              = nvme_pci_free_ctrl,
2625         .submit_async_event     = nvme_pci_submit_async_event,
2626         .get_address            = nvme_pci_get_address,
2627 };
2628
2629 static int nvme_dev_map(struct nvme_dev *dev)
2630 {
2631         struct pci_dev *pdev = to_pci_dev(dev->dev);
2632
2633         if (pci_request_mem_regions(pdev, "nvme"))
2634                 return -ENODEV;
2635
2636         if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2637                 goto release;
2638
2639         return 0;
2640   release:
2641         pci_release_mem_regions(pdev);
2642         return -ENODEV;
2643 }
2644
2645 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2646 {
2647         if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2648                 /*
2649                  * Several Samsung devices seem to drop off the PCIe bus
2650                  * randomly when APST is on and uses the deepest sleep state.
2651                  * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2652                  * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2653                  * 950 PRO 256GB", but it seems to be restricted to two Dell
2654                  * laptops.
2655                  */
2656                 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2657                     (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2658                      dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2659                         return NVME_QUIRK_NO_DEEPEST_PS;
2660         } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2661                 /*
2662                  * Samsung SSD 960 EVO drops off the PCIe bus after system
2663                  * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2664                  * within few minutes after bootup on a Coffee Lake board -
2665                  * ASUS PRIME Z370-A
2666                  */
2667                 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2668                     (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2669                      dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2670                         return NVME_QUIRK_NO_APST;
2671         }
2672
2673         return 0;
2674 }
2675
2676 static void nvme_async_probe(void *data, async_cookie_t cookie)
2677 {
2678         struct nvme_dev *dev = data;
2679
2680         nvme_reset_ctrl_sync(&dev->ctrl);
2681         flush_work(&dev->ctrl.scan_work);
2682         nvme_put_ctrl(&dev->ctrl);
2683 }
2684
2685 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2686 {
2687         int node, result = -ENOMEM;
2688         struct nvme_dev *dev;
2689         unsigned long quirks = id->driver_data;
2690         size_t alloc_size;
2691
2692         node = dev_to_node(&pdev->dev);
2693         if (node == NUMA_NO_NODE)
2694                 set_dev_node(&pdev->dev, first_memory_node);
2695
2696         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2697         if (!dev)
2698                 return -ENOMEM;
2699
2700         dev->queues = kcalloc_node(max_queue_count(), sizeof(struct nvme_queue),
2701                                         GFP_KERNEL, node);
2702         if (!dev->queues)
2703                 goto free;
2704
2705         dev->dev = get_device(&pdev->dev);
2706         pci_set_drvdata(pdev, dev);
2707
2708         result = nvme_dev_map(dev);
2709         if (result)
2710                 goto put_pci;
2711
2712         INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2713         INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2714         mutex_init(&dev->shutdown_lock);
2715
2716         result = nvme_setup_prp_pools(dev);
2717         if (result)
2718                 goto unmap;
2719
2720         quirks |= check_vendor_combination_bug(pdev);
2721
2722         /*
2723          * Double check that our mempool alloc size will cover the biggest
2724          * command we support.
2725          */
2726         alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ,
2727                                                 NVME_MAX_SEGS, true);
2728         WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2729
2730         dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2731                                                 mempool_kfree,
2732                                                 (void *) alloc_size,
2733                                                 GFP_KERNEL, node);
2734         if (!dev->iod_mempool) {
2735                 result = -ENOMEM;
2736                 goto release_pools;
2737         }
2738
2739         result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2740                         quirks);
2741         if (result)
2742                 goto release_mempool;
2743
2744         dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2745
2746         nvme_get_ctrl(&dev->ctrl);
2747         async_schedule(nvme_async_probe, dev);
2748
2749         return 0;
2750
2751  release_mempool:
2752         mempool_destroy(dev->iod_mempool);
2753  release_pools:
2754         nvme_release_prp_pools(dev);
2755  unmap:
2756         nvme_dev_unmap(dev);
2757  put_pci:
2758         put_device(dev->dev);
2759  free:
2760         kfree(dev->queues);
2761         kfree(dev);
2762         return result;
2763 }
2764
2765 static void nvme_reset_prepare(struct pci_dev *pdev)
2766 {
2767         struct nvme_dev *dev = pci_get_drvdata(pdev);
2768         nvme_dev_disable(dev, false);
2769 }
2770
2771 static void nvme_reset_done(struct pci_dev *pdev)
2772 {
2773         struct nvme_dev *dev = pci_get_drvdata(pdev);
2774         nvme_reset_ctrl_sync(&dev->ctrl);
2775 }
2776
2777 static void nvme_shutdown(struct pci_dev *pdev)
2778 {
2779         struct nvme_dev *dev = pci_get_drvdata(pdev);
2780         nvme_dev_disable(dev, true);
2781 }
2782
2783 /*
2784  * The driver's remove may be called on a device in a partially initialized
2785  * state. This function must not have any dependencies on the device state in
2786  * order to proceed.
2787  */
2788 static void nvme_remove(struct pci_dev *pdev)
2789 {
2790         struct nvme_dev *dev = pci_get_drvdata(pdev);
2791
2792         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2793         pci_set_drvdata(pdev, NULL);
2794
2795         if (!pci_device_is_present(pdev)) {
2796                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2797                 nvme_dev_disable(dev, true);
2798                 nvme_dev_remove_admin(dev);
2799         }
2800
2801         flush_work(&dev->ctrl.reset_work);
2802         nvme_stop_ctrl(&dev->ctrl);
2803         nvme_remove_namespaces(&dev->ctrl);
2804         nvme_dev_disable(dev, true);
2805         nvme_release_cmb(dev);
2806         nvme_free_host_mem(dev);
2807         nvme_dev_remove_admin(dev);
2808         nvme_free_queues(dev, 0);
2809         nvme_uninit_ctrl(&dev->ctrl);
2810         nvme_release_prp_pools(dev);
2811         nvme_dev_unmap(dev);
2812         nvme_put_ctrl(&dev->ctrl);
2813 }
2814
2815 #ifdef CONFIG_PM_SLEEP
2816 static int nvme_suspend(struct device *dev)
2817 {
2818         struct pci_dev *pdev = to_pci_dev(dev);
2819         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2820
2821         nvme_dev_disable(ndev, true);
2822         return 0;
2823 }
2824
2825 static int nvme_resume(struct device *dev)
2826 {
2827         struct pci_dev *pdev = to_pci_dev(dev);
2828         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2829
2830         nvme_reset_ctrl(&ndev->ctrl);
2831         return 0;
2832 }
2833 #endif
2834
2835 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2836
2837 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2838                                                 pci_channel_state_t state)
2839 {
2840         struct nvme_dev *dev = pci_get_drvdata(pdev);
2841
2842         /*
2843          * A frozen channel requires a reset. When detected, this method will
2844          * shutdown the controller to quiesce. The controller will be restarted
2845          * after the slot reset through driver's slot_reset callback.
2846          */
2847         switch (state) {
2848         case pci_channel_io_normal:
2849                 return PCI_ERS_RESULT_CAN_RECOVER;
2850         case pci_channel_io_frozen:
2851                 dev_warn(dev->ctrl.device,
2852                         "frozen state error detected, reset controller\n");
2853                 nvme_dev_disable(dev, false);
2854                 return PCI_ERS_RESULT_NEED_RESET;
2855         case pci_channel_io_perm_failure:
2856                 dev_warn(dev->ctrl.device,
2857                         "failure state error detected, request disconnect\n");
2858                 return PCI_ERS_RESULT_DISCONNECT;
2859         }
2860         return PCI_ERS_RESULT_NEED_RESET;
2861 }
2862
2863 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2864 {
2865         struct nvme_dev *dev = pci_get_drvdata(pdev);
2866
2867         dev_info(dev->ctrl.device, "restart after slot reset\n");
2868         pci_restore_state(pdev);
2869         nvme_reset_ctrl(&dev->ctrl);
2870         return PCI_ERS_RESULT_RECOVERED;
2871 }
2872
2873 static void nvme_error_resume(struct pci_dev *pdev)
2874 {
2875         struct nvme_dev *dev = pci_get_drvdata(pdev);
2876
2877         flush_work(&dev->ctrl.reset_work);
2878 }
2879
2880 static const struct pci_error_handlers nvme_err_handler = {
2881         .error_detected = nvme_error_detected,
2882         .slot_reset     = nvme_slot_reset,
2883         .resume         = nvme_error_resume,
2884         .reset_prepare  = nvme_reset_prepare,
2885         .reset_done     = nvme_reset_done,
2886 };
2887
2888 static const struct pci_device_id nvme_id_table[] = {
2889         { PCI_VDEVICE(INTEL, 0x0953),
2890                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2891                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2892         { PCI_VDEVICE(INTEL, 0x0a53),
2893                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2894                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2895         { PCI_VDEVICE(INTEL, 0x0a54),
2896                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2897                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2898         { PCI_VDEVICE(INTEL, 0x0a55),
2899                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2900                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2901         { PCI_VDEVICE(INTEL, 0xf1a5),   /* Intel 600P/P3100 */
2902                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
2903                                 NVME_QUIRK_MEDIUM_PRIO_SQ },
2904         { PCI_VDEVICE(INTEL, 0xf1a6),   /* Intel 760p/Pro 7600p */
2905                 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
2906         { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
2907                 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
2908                                 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
2909         { PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
2910                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2911         { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
2912                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2913         { PCI_DEVICE(0x1c58, 0x0023),   /* WDC SN200 adapter */
2914                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2915         { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
2916                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2917         { PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
2918                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2919         { PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
2920                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2921         { PCI_DEVICE(0x1d1d, 0x1f1f),   /* LighNVM qemu device */
2922                 .driver_data = NVME_QUIRK_LIGHTNVM, },
2923         { PCI_DEVICE(0x1d1d, 0x2807),   /* CNEX WL */
2924                 .driver_data = NVME_QUIRK_LIGHTNVM, },
2925         { PCI_DEVICE(0x1d1d, 0x2601),   /* CNEX Granby */
2926                 .driver_data = NVME_QUIRK_LIGHTNVM, },
2927         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2928         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2929         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2930         { 0, }
2931 };
2932 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2933
2934 static struct pci_driver nvme_driver = {
2935         .name           = "nvme",
2936         .id_table       = nvme_id_table,
2937         .probe          = nvme_probe,
2938         .remove         = nvme_remove,
2939         .shutdown       = nvme_shutdown,
2940         .driver         = {
2941                 .pm     = &nvme_dev_pm_ops,
2942         },
2943         .sriov_configure = pci_sriov_configure_simple,
2944         .err_handler    = &nvme_err_handler,
2945 };
2946
2947 static int __init nvme_init(void)
2948 {
2949         BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
2950         return pci_register_driver(&nvme_driver);
2951 }
2952
2953 static void __exit nvme_exit(void)
2954 {
2955         pci_unregister_driver(&nvme_driver);
2956         flush_workqueue(nvme_wq);
2957         _nvme_check_size();
2958 }
2959
2960 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2961 MODULE_LICENSE("GPL");
2962 MODULE_VERSION("1.0");
2963 module_init(nvme_init);
2964 module_exit(nvme_exit);