99c5b6319d8ddcdcc23cd94443173983637f7b2a
[linux-2.6-block.git] / drivers / nvme / host / pci.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/bitops.h>
16 #include <linux/blkdev.h>
17 #include <linux/blk-mq.h>
18 #include <linux/cpu.h>
19 #include <linux/delay.h>
20 #include <linux/errno.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/hdreg.h>
24 #include <linux/idr.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kdev_t.h>
29 #include <linux/kthread.h>
30 #include <linux/kernel.h>
31 #include <linux/mm.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/mutex.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/ptrace.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/t10-pi.h>
41 #include <linux/types.h>
42 #include <linux/io-64-nonatomic-lo-hi.h>
43 #include <asm/unaligned.h>
44
45 #include "nvme.h"
46
47 #define NVME_Q_DEPTH            1024
48 #define NVME_AQ_DEPTH           256
49 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
50 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
51
52 unsigned char admin_timeout = 60;
53 module_param(admin_timeout, byte, 0644);
54 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
55
56 unsigned char nvme_io_timeout = 30;
57 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
58 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
59
60 unsigned char shutdown_timeout = 5;
61 module_param(shutdown_timeout, byte, 0644);
62 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
63
64 static int use_threaded_interrupts;
65 module_param(use_threaded_interrupts, int, 0);
66
67 static bool use_cmb_sqes = true;
68 module_param(use_cmb_sqes, bool, 0644);
69 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
70
71 static LIST_HEAD(dev_list);
72 static struct task_struct *nvme_thread;
73 static struct workqueue_struct *nvme_workq;
74 static wait_queue_head_t nvme_kthread_wait;
75
76 struct nvme_dev;
77 struct nvme_queue;
78 struct nvme_iod;
79
80 static int __nvme_reset(struct nvme_dev *dev);
81 static int nvme_reset(struct nvme_dev *dev);
82 static void nvme_process_cq(struct nvme_queue *nvmeq);
83 static void nvme_unmap_data(struct nvme_dev *dev, struct nvme_iod *iod);
84 static void nvme_dead_ctrl(struct nvme_dev *dev);
85
86 struct async_cmd_info {
87         struct kthread_work work;
88         struct kthread_worker *worker;
89         struct request *req;
90         u32 result;
91         int status;
92         void *ctx;
93 };
94
95 /*
96  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
97  */
98 struct nvme_dev {
99         struct list_head node;
100         struct nvme_queue **queues;
101         struct blk_mq_tag_set tagset;
102         struct blk_mq_tag_set admin_tagset;
103         u32 __iomem *dbs;
104         struct device *dev;
105         struct dma_pool *prp_page_pool;
106         struct dma_pool *prp_small_pool;
107         unsigned queue_count;
108         unsigned online_queues;
109         unsigned max_qid;
110         int q_depth;
111         u32 db_stride;
112         struct msix_entry *entry;
113         void __iomem *bar;
114         struct work_struct reset_work;
115         struct work_struct probe_work;
116         struct work_struct scan_work;
117         struct mutex shutdown_lock;
118         bool subsystem;
119         void __iomem *cmb;
120         dma_addr_t cmb_dma_addr;
121         u64 cmb_size;
122         u32 cmbsz;
123
124         struct nvme_ctrl ctrl;
125 };
126
127 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
128 {
129         return container_of(ctrl, struct nvme_dev, ctrl);
130 }
131
132 /*
133  * An NVM Express queue.  Each device has at least two (one for admin
134  * commands and one for I/O commands).
135  */
136 struct nvme_queue {
137         struct device *q_dmadev;
138         struct nvme_dev *dev;
139         char irqname[24];       /* nvme4294967295-65535\0 */
140         spinlock_t q_lock;
141         struct nvme_command *sq_cmds;
142         struct nvme_command __iomem *sq_cmds_io;
143         volatile struct nvme_completion *cqes;
144         struct blk_mq_tags **tags;
145         dma_addr_t sq_dma_addr;
146         dma_addr_t cq_dma_addr;
147         u32 __iomem *q_db;
148         u16 q_depth;
149         s16 cq_vector;
150         u16 sq_head;
151         u16 sq_tail;
152         u16 cq_head;
153         u16 qid;
154         u8 cq_phase;
155         u8 cqe_seen;
156         struct async_cmd_info cmdinfo;
157 };
158
159 /*
160  * The nvme_iod describes the data in an I/O, including the list of PRP
161  * entries.  You can't see it in this data structure because C doesn't let
162  * me express that.  Use nvme_alloc_iod to ensure there's enough space
163  * allocated to store the PRP list.
164  */
165 struct nvme_iod {
166         unsigned long private;  /* For the use of the submitter of the I/O */
167         int npages;             /* In the PRP list. 0 means small pool in use */
168         int offset;             /* Of PRP list */
169         int nents;              /* Used in scatterlist */
170         int length;             /* Of data, in bytes */
171         dma_addr_t first_dma;
172         struct scatterlist meta_sg[1]; /* metadata requires single contiguous buffer */
173         struct scatterlist sg[0];
174 };
175
176 /*
177  * Check we didin't inadvertently grow the command struct
178  */
179 static inline void _nvme_check_size(void)
180 {
181         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
182         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
183         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
184         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
185         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
186         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
187         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
188         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
189         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
190         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
191         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
192         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
193 }
194
195 typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
196                                                 struct nvme_completion *);
197
198 struct nvme_cmd_info {
199         nvme_completion_fn fn;
200         void *ctx;
201         int aborted;
202         struct nvme_queue *nvmeq;
203         struct nvme_iod iod[0];
204 };
205
206 /*
207  * Max size of iod being embedded in the request payload
208  */
209 #define NVME_INT_PAGES          2
210 #define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->ctrl.page_size)
211 #define NVME_INT_MASK           0x01
212
213 /*
214  * Will slightly overestimate the number of pages needed.  This is OK
215  * as it only leads to a small amount of wasted memory for the lifetime of
216  * the I/O.
217  */
218 static int nvme_npages(unsigned size, struct nvme_dev *dev)
219 {
220         unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
221                                       dev->ctrl.page_size);
222         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
223 }
224
225 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
226 {
227         unsigned int ret = sizeof(struct nvme_cmd_info);
228
229         ret += sizeof(struct nvme_iod);
230         ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
231         ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
232
233         return ret;
234 }
235
236 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
237                                 unsigned int hctx_idx)
238 {
239         struct nvme_dev *dev = data;
240         struct nvme_queue *nvmeq = dev->queues[0];
241
242         WARN_ON(hctx_idx != 0);
243         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
244         WARN_ON(nvmeq->tags);
245
246         hctx->driver_data = nvmeq;
247         nvmeq->tags = &dev->admin_tagset.tags[0];
248         return 0;
249 }
250
251 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
252 {
253         struct nvme_queue *nvmeq = hctx->driver_data;
254
255         nvmeq->tags = NULL;
256 }
257
258 static int nvme_admin_init_request(void *data, struct request *req,
259                                 unsigned int hctx_idx, unsigned int rq_idx,
260                                 unsigned int numa_node)
261 {
262         struct nvme_dev *dev = data;
263         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
264         struct nvme_queue *nvmeq = dev->queues[0];
265
266         BUG_ON(!nvmeq);
267         cmd->nvmeq = nvmeq;
268         return 0;
269 }
270
271 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
272                           unsigned int hctx_idx)
273 {
274         struct nvme_dev *dev = data;
275         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
276
277         if (!nvmeq->tags)
278                 nvmeq->tags = &dev->tagset.tags[hctx_idx];
279
280         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
281         hctx->driver_data = nvmeq;
282         return 0;
283 }
284
285 static int nvme_init_request(void *data, struct request *req,
286                                 unsigned int hctx_idx, unsigned int rq_idx,
287                                 unsigned int numa_node)
288 {
289         struct nvme_dev *dev = data;
290         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
291         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
292
293         BUG_ON(!nvmeq);
294         cmd->nvmeq = nvmeq;
295         return 0;
296 }
297
298 static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
299                                 nvme_completion_fn handler)
300 {
301         cmd->fn = handler;
302         cmd->ctx = ctx;
303         cmd->aborted = 0;
304         blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
305 }
306
307 static void *iod_get_private(struct nvme_iod *iod)
308 {
309         return (void *) (iod->private & ~0x1UL);
310 }
311
312 /*
313  * If bit 0 is set, the iod is embedded in the request payload.
314  */
315 static bool iod_should_kfree(struct nvme_iod *iod)
316 {
317         return (iod->private & NVME_INT_MASK) == 0;
318 }
319
320 /* Special values must be less than 0x1000 */
321 #define CMD_CTX_BASE            ((void *)POISON_POINTER_DELTA)
322 #define CMD_CTX_CANCELLED       (0x30C + CMD_CTX_BASE)
323 #define CMD_CTX_COMPLETED       (0x310 + CMD_CTX_BASE)
324 #define CMD_CTX_INVALID         (0x314 + CMD_CTX_BASE)
325
326 static void special_completion(struct nvme_queue *nvmeq, void *ctx,
327                                                 struct nvme_completion *cqe)
328 {
329         if (ctx == CMD_CTX_CANCELLED)
330                 return;
331         if (ctx == CMD_CTX_COMPLETED) {
332                 dev_warn(nvmeq->q_dmadev,
333                                 "completed id %d twice on queue %d\n",
334                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
335                 return;
336         }
337         if (ctx == CMD_CTX_INVALID) {
338                 dev_warn(nvmeq->q_dmadev,
339                                 "invalid id %d completed on queue %d\n",
340                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
341                 return;
342         }
343         dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
344 }
345
346 static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
347 {
348         void *ctx;
349
350         if (fn)
351                 *fn = cmd->fn;
352         ctx = cmd->ctx;
353         cmd->fn = special_completion;
354         cmd->ctx = CMD_CTX_CANCELLED;
355         return ctx;
356 }
357
358 static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
359                                                 struct nvme_completion *cqe)
360 {
361         u32 result = le32_to_cpup(&cqe->result);
362         u16 status = le16_to_cpup(&cqe->status) >> 1;
363
364         if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
365                 ++nvmeq->dev->ctrl.event_limit;
366         if (status != NVME_SC_SUCCESS)
367                 return;
368
369         switch (result & 0xff07) {
370         case NVME_AER_NOTICE_NS_CHANGED:
371                 dev_info(nvmeq->q_dmadev, "rescanning\n");
372                 schedule_work(&nvmeq->dev->scan_work);
373         default:
374                 dev_warn(nvmeq->q_dmadev, "async event result %08x\n", result);
375         }
376 }
377
378 static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
379                                                 struct nvme_completion *cqe)
380 {
381         struct request *req = ctx;
382
383         u16 status = le16_to_cpup(&cqe->status) >> 1;
384         u32 result = le32_to_cpup(&cqe->result);
385
386         blk_mq_free_request(req);
387
388         dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
389         ++nvmeq->dev->ctrl.abort_limit;
390 }
391
392 static void async_completion(struct nvme_queue *nvmeq, void *ctx,
393                                                 struct nvme_completion *cqe)
394 {
395         struct async_cmd_info *cmdinfo = ctx;
396         cmdinfo->result = le32_to_cpup(&cqe->result);
397         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
398         queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
399         blk_mq_free_request(cmdinfo->req);
400 }
401
402 static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
403                                   unsigned int tag)
404 {
405         struct request *req = blk_mq_tag_to_rq(*nvmeq->tags, tag);
406
407         return blk_mq_rq_to_pdu(req);
408 }
409
410 /*
411  * Called with local interrupts disabled and the q_lock held.  May not sleep.
412  */
413 static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
414                                                 nvme_completion_fn *fn)
415 {
416         struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
417         void *ctx;
418         if (tag >= nvmeq->q_depth) {
419                 *fn = special_completion;
420                 return CMD_CTX_INVALID;
421         }
422         if (fn)
423                 *fn = cmd->fn;
424         ctx = cmd->ctx;
425         cmd->fn = special_completion;
426         cmd->ctx = CMD_CTX_COMPLETED;
427         return ctx;
428 }
429
430 /**
431  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
432  * @nvmeq: The queue to use
433  * @cmd: The command to send
434  *
435  * Safe to use from interrupt context
436  */
437 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
438                                                 struct nvme_command *cmd)
439 {
440         u16 tail = nvmeq->sq_tail;
441
442         if (nvmeq->sq_cmds_io)
443                 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
444         else
445                 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
446
447         if (++tail == nvmeq->q_depth)
448                 tail = 0;
449         writel(tail, nvmeq->q_db);
450         nvmeq->sq_tail = tail;
451 }
452
453 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
454 {
455         unsigned long flags;
456         spin_lock_irqsave(&nvmeq->q_lock, flags);
457         __nvme_submit_cmd(nvmeq, cmd);
458         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
459 }
460
461 static __le64 **iod_list(struct nvme_iod *iod)
462 {
463         return ((void *)iod) + iod->offset;
464 }
465
466 static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
467                             unsigned nseg, unsigned long private)
468 {
469         iod->private = private;
470         iod->offset = offsetof(struct nvme_iod, sg[nseg]);
471         iod->npages = -1;
472         iod->length = nbytes;
473         iod->nents = 0;
474 }
475
476 static struct nvme_iod *
477 __nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
478                  unsigned long priv, gfp_t gfp)
479 {
480         struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
481                                 sizeof(__le64 *) * nvme_npages(bytes, dev) +
482                                 sizeof(struct scatterlist) * nseg, gfp);
483
484         if (iod)
485                 iod_init(iod, bytes, nseg, priv);
486
487         return iod;
488 }
489
490 static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
491                                        gfp_t gfp)
492 {
493         unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
494                                                 sizeof(struct nvme_dsm_range);
495         struct nvme_iod *iod;
496
497         if (rq->nr_phys_segments <= NVME_INT_PAGES &&
498             size <= NVME_INT_BYTES(dev)) {
499                 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
500
501                 iod = cmd->iod;
502                 iod_init(iod, size, rq->nr_phys_segments,
503                                 (unsigned long) rq | NVME_INT_MASK);
504                 return iod;
505         }
506
507         return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
508                                 (unsigned long) rq, gfp);
509 }
510
511 static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
512 {
513         const int last_prp = dev->ctrl.page_size / 8 - 1;
514         int i;
515         __le64 **list = iod_list(iod);
516         dma_addr_t prp_dma = iod->first_dma;
517
518         if (iod->npages == 0)
519                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
520         for (i = 0; i < iod->npages; i++) {
521                 __le64 *prp_list = list[i];
522                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
523                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
524                 prp_dma = next_prp_dma;
525         }
526
527         if (iod_should_kfree(iod))
528                 kfree(iod);
529 }
530
531 #ifdef CONFIG_BLK_DEV_INTEGRITY
532 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
533 {
534         if (be32_to_cpu(pi->ref_tag) == v)
535                 pi->ref_tag = cpu_to_be32(p);
536 }
537
538 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
539 {
540         if (be32_to_cpu(pi->ref_tag) == p)
541                 pi->ref_tag = cpu_to_be32(v);
542 }
543
544 /**
545  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
546  *
547  * The virtual start sector is the one that was originally submitted by the
548  * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
549  * start sector may be different. Remap protection information to match the
550  * physical LBA on writes, and back to the original seed on reads.
551  *
552  * Type 0 and 3 do not have a ref tag, so no remapping required.
553  */
554 static void nvme_dif_remap(struct request *req,
555                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
556 {
557         struct nvme_ns *ns = req->rq_disk->private_data;
558         struct bio_integrity_payload *bip;
559         struct t10_pi_tuple *pi;
560         void *p, *pmap;
561         u32 i, nlb, ts, phys, virt;
562
563         if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
564                 return;
565
566         bip = bio_integrity(req->bio);
567         if (!bip)
568                 return;
569
570         pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
571
572         p = pmap;
573         virt = bip_get_seed(bip);
574         phys = nvme_block_nr(ns, blk_rq_pos(req));
575         nlb = (blk_rq_bytes(req) >> ns->lba_shift);
576         ts = ns->disk->queue->integrity.tuple_size;
577
578         for (i = 0; i < nlb; i++, virt++, phys++) {
579                 pi = (struct t10_pi_tuple *)p;
580                 dif_swap(phys, virt, pi);
581                 p += ts;
582         }
583         kunmap_atomic(pmap);
584 }
585 #else /* CONFIG_BLK_DEV_INTEGRITY */
586 static void nvme_dif_remap(struct request *req,
587                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
588 {
589 }
590 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
591 {
592 }
593 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
594 {
595 }
596 #endif
597
598 static void req_completion(struct nvme_queue *nvmeq, void *ctx,
599                                                 struct nvme_completion *cqe)
600 {
601         struct nvme_iod *iod = ctx;
602         struct request *req = iod_get_private(iod);
603         struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
604         u16 status = le16_to_cpup(&cqe->status) >> 1;
605         int error = 0;
606
607         if (unlikely(status)) {
608                 if (!(status & NVME_SC_DNR || blk_noretry_request(req))
609                     && (jiffies - req->start_time) < req->timeout) {
610                         unsigned long flags;
611
612                         nvme_unmap_data(nvmeq->dev, iod);
613
614                         blk_mq_requeue_request(req);
615                         spin_lock_irqsave(req->q->queue_lock, flags);
616                         if (!blk_queue_stopped(req->q))
617                                 blk_mq_kick_requeue_list(req->q);
618                         spin_unlock_irqrestore(req->q->queue_lock, flags);
619                         return;
620                 }
621
622                 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
623                         if (cmd_rq->ctx == CMD_CTX_CANCELLED)
624                                 error = -EINTR;
625                         else
626                                 error = status;
627                 } else {
628                         error = nvme_error_status(status);
629                 }
630         }
631
632         if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
633                 u32 result = le32_to_cpup(&cqe->result);
634                 req->special = (void *)(uintptr_t)result;
635         }
636
637         if (cmd_rq->aborted)
638                 dev_warn(nvmeq->dev->dev,
639                         "completing aborted command with status:%04x\n",
640                         error);
641
642         nvme_unmap_data(nvmeq->dev, iod);
643         blk_mq_complete_request(req, error);
644 }
645
646 static bool nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod,
647                 int total_len)
648 {
649         struct dma_pool *pool;
650         int length = total_len;
651         struct scatterlist *sg = iod->sg;
652         int dma_len = sg_dma_len(sg);
653         u64 dma_addr = sg_dma_address(sg);
654         u32 page_size = dev->ctrl.page_size;
655         int offset = dma_addr & (page_size - 1);
656         __le64 *prp_list;
657         __le64 **list = iod_list(iod);
658         dma_addr_t prp_dma;
659         int nprps, i;
660
661         length -= (page_size - offset);
662         if (length <= 0)
663                 return true;
664
665         dma_len -= (page_size - offset);
666         if (dma_len) {
667                 dma_addr += (page_size - offset);
668         } else {
669                 sg = sg_next(sg);
670                 dma_addr = sg_dma_address(sg);
671                 dma_len = sg_dma_len(sg);
672         }
673
674         if (length <= page_size) {
675                 iod->first_dma = dma_addr;
676                 return true;
677         }
678
679         nprps = DIV_ROUND_UP(length, page_size);
680         if (nprps <= (256 / 8)) {
681                 pool = dev->prp_small_pool;
682                 iod->npages = 0;
683         } else {
684                 pool = dev->prp_page_pool;
685                 iod->npages = 1;
686         }
687
688         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
689         if (!prp_list) {
690                 iod->first_dma = dma_addr;
691                 iod->npages = -1;
692                 return false;
693         }
694         list[0] = prp_list;
695         iod->first_dma = prp_dma;
696         i = 0;
697         for (;;) {
698                 if (i == page_size >> 3) {
699                         __le64 *old_prp_list = prp_list;
700                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
701                         if (!prp_list)
702                                 return false;
703                         list[iod->npages++] = prp_list;
704                         prp_list[0] = old_prp_list[i - 1];
705                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
706                         i = 1;
707                 }
708                 prp_list[i++] = cpu_to_le64(dma_addr);
709                 dma_len -= page_size;
710                 dma_addr += page_size;
711                 length -= page_size;
712                 if (length <= 0)
713                         break;
714                 if (dma_len > 0)
715                         continue;
716                 BUG_ON(dma_len < 0);
717                 sg = sg_next(sg);
718                 dma_addr = sg_dma_address(sg);
719                 dma_len = sg_dma_len(sg);
720         }
721
722         return true;
723 }
724
725 static int nvme_map_data(struct nvme_dev *dev, struct nvme_iod *iod,
726                 struct nvme_command *cmnd)
727 {
728         struct request *req = iod_get_private(iod);
729         struct request_queue *q = req->q;
730         enum dma_data_direction dma_dir = rq_data_dir(req) ?
731                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
732         int ret = BLK_MQ_RQ_QUEUE_ERROR;
733
734         sg_init_table(iod->sg, req->nr_phys_segments);
735         iod->nents = blk_rq_map_sg(q, req, iod->sg);
736         if (!iod->nents)
737                 goto out;
738
739         ret = BLK_MQ_RQ_QUEUE_BUSY;
740         if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
741                 goto out;
742
743         if (!nvme_setup_prps(dev, iod, blk_rq_bytes(req)))
744                 goto out_unmap;
745
746         ret = BLK_MQ_RQ_QUEUE_ERROR;
747         if (blk_integrity_rq(req)) {
748                 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
749                         goto out_unmap;
750
751                 sg_init_table(iod->meta_sg, 1);
752                 if (blk_rq_map_integrity_sg(q, req->bio, iod->meta_sg) != 1)
753                         goto out_unmap;
754
755                 if (rq_data_dir(req))
756                         nvme_dif_remap(req, nvme_dif_prep);
757
758                 if (!dma_map_sg(dev->dev, iod->meta_sg, 1, dma_dir))
759                         goto out_unmap;
760         }
761
762         cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
763         cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
764         if (blk_integrity_rq(req))
765                 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(iod->meta_sg));
766         return BLK_MQ_RQ_QUEUE_OK;
767
768 out_unmap:
769         dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
770 out:
771         return ret;
772 }
773
774 static void nvme_unmap_data(struct nvme_dev *dev, struct nvme_iod *iod)
775 {
776         struct request *req = iod_get_private(iod);
777         enum dma_data_direction dma_dir = rq_data_dir(req) ?
778                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
779
780         if (iod->nents) {
781                 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
782                 if (blk_integrity_rq(req)) {
783                         if (!rq_data_dir(req))
784                                 nvme_dif_remap(req, nvme_dif_complete);
785                         dma_unmap_sg(dev->dev, iod->meta_sg, 1, dma_dir);
786                 }
787         }
788
789         nvme_free_iod(dev, iod);
790 }
791
792 /*
793  * We reuse the small pool to allocate the 16-byte range here as it is not
794  * worth having a special pool for these or additional cases to handle freeing
795  * the iod.
796  */
797 static int nvme_setup_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
798                 struct nvme_iod *iod, struct nvme_command *cmnd)
799 {
800         struct request *req = iod_get_private(iod);
801         struct nvme_dsm_range *range;
802
803         range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
804                                                 &iod->first_dma);
805         if (!range)
806                 return BLK_MQ_RQ_QUEUE_BUSY;
807         iod_list(iod)[0] = (__le64 *)range;
808         iod->npages = 0;
809
810         range->cattr = cpu_to_le32(0);
811         range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
812         range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
813
814         memset(cmnd, 0, sizeof(*cmnd));
815         cmnd->dsm.opcode = nvme_cmd_dsm;
816         cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
817         cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
818         cmnd->dsm.nr = 0;
819         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
820         return BLK_MQ_RQ_QUEUE_OK;
821 }
822
823 /*
824  * NOTE: ns is NULL when called on the admin queue.
825  */
826 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
827                          const struct blk_mq_queue_data *bd)
828 {
829         struct nvme_ns *ns = hctx->queue->queuedata;
830         struct nvme_queue *nvmeq = hctx->driver_data;
831         struct nvme_dev *dev = nvmeq->dev;
832         struct request *req = bd->rq;
833         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
834         struct nvme_iod *iod;
835         struct nvme_command cmnd;
836         int ret = BLK_MQ_RQ_QUEUE_OK;
837
838         /*
839          * If formated with metadata, require the block layer provide a buffer
840          * unless this namespace is formated such that the metadata can be
841          * stripped/generated by the controller with PRACT=1.
842          */
843         if (ns && ns->ms && !blk_integrity_rq(req)) {
844                 if (!(ns->pi_type && ns->ms == 8) &&
845                                         req->cmd_type != REQ_TYPE_DRV_PRIV) {
846                         blk_mq_complete_request(req, -EFAULT);
847                         return BLK_MQ_RQ_QUEUE_OK;
848                 }
849         }
850
851         iod = nvme_alloc_iod(req, dev, GFP_ATOMIC);
852         if (!iod)
853                 return BLK_MQ_RQ_QUEUE_BUSY;
854
855         if (req->cmd_flags & REQ_DISCARD) {
856                 ret = nvme_setup_discard(nvmeq, ns, iod, &cmnd);
857         } else {
858                 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
859                         memcpy(&cmnd, req->cmd, sizeof(cmnd));
860                 else if (req->cmd_flags & REQ_FLUSH)
861                         nvme_setup_flush(ns, &cmnd);
862                 else
863                         nvme_setup_rw(ns, req, &cmnd);
864
865                 if (req->nr_phys_segments)
866                         ret = nvme_map_data(dev, iod, &cmnd);
867         }
868
869         if (ret)
870                 goto out;
871
872         cmnd.common.command_id = req->tag;
873         nvme_set_info(cmd, iod, req_completion);
874
875         spin_lock_irq(&nvmeq->q_lock);
876         __nvme_submit_cmd(nvmeq, &cmnd);
877         nvme_process_cq(nvmeq);
878         spin_unlock_irq(&nvmeq->q_lock);
879         return BLK_MQ_RQ_QUEUE_OK;
880 out:
881         nvme_free_iod(dev, iod);
882         return ret;
883 }
884
885 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
886 {
887         u16 head, phase;
888
889         head = nvmeq->cq_head;
890         phase = nvmeq->cq_phase;
891
892         for (;;) {
893                 void *ctx;
894                 nvme_completion_fn fn;
895                 struct nvme_completion cqe = nvmeq->cqes[head];
896                 if ((le16_to_cpu(cqe.status) & 1) != phase)
897                         break;
898                 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
899                 if (++head == nvmeq->q_depth) {
900                         head = 0;
901                         phase = !phase;
902                 }
903                 if (tag && *tag == cqe.command_id)
904                         *tag = -1;
905                 ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
906                 fn(nvmeq, ctx, &cqe);
907         }
908
909         /* If the controller ignores the cq head doorbell and continuously
910          * writes to the queue, it is theoretically possible to wrap around
911          * the queue twice and mistakenly return IRQ_NONE.  Linux only
912          * requires that 0.1% of your interrupts are handled, so this isn't
913          * a big problem.
914          */
915         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
916                 return;
917
918         if (likely(nvmeq->cq_vector >= 0))
919                 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
920         nvmeq->cq_head = head;
921         nvmeq->cq_phase = phase;
922
923         nvmeq->cqe_seen = 1;
924 }
925
926 static void nvme_process_cq(struct nvme_queue *nvmeq)
927 {
928         __nvme_process_cq(nvmeq, NULL);
929 }
930
931 static irqreturn_t nvme_irq(int irq, void *data)
932 {
933         irqreturn_t result;
934         struct nvme_queue *nvmeq = data;
935         spin_lock(&nvmeq->q_lock);
936         nvme_process_cq(nvmeq);
937         result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
938         nvmeq->cqe_seen = 0;
939         spin_unlock(&nvmeq->q_lock);
940         return result;
941 }
942
943 static irqreturn_t nvme_irq_check(int irq, void *data)
944 {
945         struct nvme_queue *nvmeq = data;
946         struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
947         if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
948                 return IRQ_NONE;
949         return IRQ_WAKE_THREAD;
950 }
951
952 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
953 {
954         struct nvme_queue *nvmeq = hctx->driver_data;
955
956         if ((le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
957             nvmeq->cq_phase) {
958                 spin_lock_irq(&nvmeq->q_lock);
959                 __nvme_process_cq(nvmeq, &tag);
960                 spin_unlock_irq(&nvmeq->q_lock);
961
962                 if (tag == -1)
963                         return 1;
964         }
965
966         return 0;
967 }
968
969 static int nvme_submit_async_admin_req(struct nvme_dev *dev)
970 {
971         struct nvme_queue *nvmeq = dev->queues[0];
972         struct nvme_command c;
973         struct nvme_cmd_info *cmd_info;
974         struct request *req;
975
976         req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE,
977                         BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED);
978         if (IS_ERR(req))
979                 return PTR_ERR(req);
980
981         req->cmd_flags |= REQ_NO_TIMEOUT;
982         cmd_info = blk_mq_rq_to_pdu(req);
983         nvme_set_info(cmd_info, NULL, async_req_completion);
984
985         memset(&c, 0, sizeof(c));
986         c.common.opcode = nvme_admin_async_event;
987         c.common.command_id = req->tag;
988
989         blk_mq_free_request(req);
990         __nvme_submit_cmd(nvmeq, &c);
991         return 0;
992 }
993
994 static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
995                         struct nvme_command *cmd,
996                         struct async_cmd_info *cmdinfo, unsigned timeout)
997 {
998         struct nvme_queue *nvmeq = dev->queues[0];
999         struct request *req;
1000         struct nvme_cmd_info *cmd_rq;
1001
1002         req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE, 0);
1003         if (IS_ERR(req))
1004                 return PTR_ERR(req);
1005
1006         req->timeout = timeout;
1007         cmd_rq = blk_mq_rq_to_pdu(req);
1008         cmdinfo->req = req;
1009         nvme_set_info(cmd_rq, cmdinfo, async_completion);
1010         cmdinfo->status = -EINTR;
1011
1012         cmd->common.command_id = req->tag;
1013
1014         nvme_submit_cmd(nvmeq, cmd);
1015         return 0;
1016 }
1017
1018 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1019 {
1020         struct nvme_command c;
1021
1022         memset(&c, 0, sizeof(c));
1023         c.delete_queue.opcode = opcode;
1024         c.delete_queue.qid = cpu_to_le16(id);
1025
1026         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1027 }
1028
1029 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1030                                                 struct nvme_queue *nvmeq)
1031 {
1032         struct nvme_command c;
1033         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1034
1035         /*
1036          * Note: we (ab)use the fact the the prp fields survive if no data
1037          * is attached to the request.
1038          */
1039         memset(&c, 0, sizeof(c));
1040         c.create_cq.opcode = nvme_admin_create_cq;
1041         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1042         c.create_cq.cqid = cpu_to_le16(qid);
1043         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1044         c.create_cq.cq_flags = cpu_to_le16(flags);
1045         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1046
1047         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1048 }
1049
1050 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1051                                                 struct nvme_queue *nvmeq)
1052 {
1053         struct nvme_command c;
1054         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1055
1056         /*
1057          * Note: we (ab)use the fact the the prp fields survive if no data
1058          * is attached to the request.
1059          */
1060         memset(&c, 0, sizeof(c));
1061         c.create_sq.opcode = nvme_admin_create_sq;
1062         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1063         c.create_sq.sqid = cpu_to_le16(qid);
1064         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1065         c.create_sq.sq_flags = cpu_to_le16(flags);
1066         c.create_sq.cqid = cpu_to_le16(qid);
1067
1068         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1069 }
1070
1071 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1072 {
1073         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1074 }
1075
1076 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1077 {
1078         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1079 }
1080
1081 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1082 {
1083         struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1084         struct nvme_queue *nvmeq = cmd_rq->nvmeq;
1085         struct nvme_dev *dev = nvmeq->dev;
1086         struct request *abort_req;
1087         struct nvme_cmd_info *abort_cmd;
1088         struct nvme_command cmd;
1089
1090         /*
1091          * Schedule controller reset if the command was already aborted once
1092          * before and still hasn't been returned to the driver, or if this is
1093          * the admin queue.
1094          */
1095         if (!nvmeq->qid || cmd_rq->aborted) {
1096                 spin_lock_irq(&dev_list_lock);
1097                 if (!__nvme_reset(dev)) {
1098                         dev_warn(dev->dev,
1099                                  "I/O %d QID %d timeout, reset controller\n",
1100                                  req->tag, nvmeq->qid);
1101                 }
1102                 spin_unlock_irq(&dev_list_lock);
1103                 return BLK_EH_RESET_TIMER;
1104         }
1105
1106         if (!dev->ctrl.abort_limit)
1107                 return BLK_EH_RESET_TIMER;
1108
1109         abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE,
1110                         BLK_MQ_REQ_NOWAIT);
1111         if (IS_ERR(abort_req))
1112                 return BLK_EH_RESET_TIMER;
1113
1114         abort_cmd = blk_mq_rq_to_pdu(abort_req);
1115         nvme_set_info(abort_cmd, abort_req, abort_completion);
1116
1117         memset(&cmd, 0, sizeof(cmd));
1118         cmd.abort.opcode = nvme_admin_abort_cmd;
1119         cmd.abort.cid = req->tag;
1120         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1121         cmd.abort.command_id = abort_req->tag;
1122
1123         --dev->ctrl.abort_limit;
1124         cmd_rq->aborted = 1;
1125
1126         dev_warn(nvmeq->q_dmadev, "I/O %d QID %d timeout, aborting\n",
1127                                  req->tag, nvmeq->qid);
1128         nvme_submit_cmd(dev->queues[0], &cmd);
1129
1130         /*
1131          * The aborted req will be completed on receiving the abort req.
1132          * We enable the timer again. If hit twice, it'll cause a device reset,
1133          * as the device then is in a faulty state.
1134          */
1135         return BLK_EH_RESET_TIMER;
1136 }
1137
1138 static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
1139 {
1140         struct nvme_queue *nvmeq = data;
1141         void *ctx;
1142         nvme_completion_fn fn;
1143         struct nvme_cmd_info *cmd;
1144         struct nvme_completion cqe;
1145
1146         if (!blk_mq_request_started(req))
1147                 return;
1148
1149         cmd = blk_mq_rq_to_pdu(req);
1150
1151         if (cmd->ctx == CMD_CTX_CANCELLED)
1152                 return;
1153
1154         if (blk_queue_dying(req->q))
1155                 cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1156         else
1157                 cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1158
1159
1160         dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1161                                                 req->tag, nvmeq->qid);
1162         ctx = cancel_cmd_info(cmd, &fn);
1163         fn(nvmeq, ctx, &cqe);
1164 }
1165
1166 static void nvme_free_queue(struct nvme_queue *nvmeq)
1167 {
1168         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1169                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1170         if (nvmeq->sq_cmds)
1171                 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1172                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1173         kfree(nvmeq);
1174 }
1175
1176 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1177 {
1178         int i;
1179
1180         for (i = dev->queue_count - 1; i >= lowest; i--) {
1181                 struct nvme_queue *nvmeq = dev->queues[i];
1182                 dev->queue_count--;
1183                 dev->queues[i] = NULL;
1184                 nvme_free_queue(nvmeq);
1185         }
1186 }
1187
1188 /**
1189  * nvme_suspend_queue - put queue into suspended state
1190  * @nvmeq - queue to suspend
1191  */
1192 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1193 {
1194         int vector;
1195
1196         spin_lock_irq(&nvmeq->q_lock);
1197         if (nvmeq->cq_vector == -1) {
1198                 spin_unlock_irq(&nvmeq->q_lock);
1199                 return 1;
1200         }
1201         vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1202         nvmeq->dev->online_queues--;
1203         nvmeq->cq_vector = -1;
1204         spin_unlock_irq(&nvmeq->q_lock);
1205
1206         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1207                 blk_mq_freeze_queue_start(nvmeq->dev->ctrl.admin_q);
1208
1209         irq_set_affinity_hint(vector, NULL);
1210         free_irq(vector, nvmeq);
1211
1212         return 0;
1213 }
1214
1215 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1216 {
1217         spin_lock_irq(&nvmeq->q_lock);
1218         if (nvmeq->tags && *nvmeq->tags)
1219                 blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
1220         spin_unlock_irq(&nvmeq->q_lock);
1221 }
1222
1223 static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1224 {
1225         struct nvme_queue *nvmeq = dev->queues[qid];
1226
1227         if (!nvmeq)
1228                 return;
1229         if (nvme_suspend_queue(nvmeq))
1230                 return;
1231
1232         /* Don't tell the adapter to delete the admin queue.
1233          * Don't tell a removed adapter to delete IO queues. */
1234         if (qid && readl(dev->bar + NVME_REG_CSTS) != -1) {
1235                 adapter_delete_sq(dev, qid);
1236                 adapter_delete_cq(dev, qid);
1237         }
1238
1239         spin_lock_irq(&nvmeq->q_lock);
1240         nvme_process_cq(nvmeq);
1241         spin_unlock_irq(&nvmeq->q_lock);
1242 }
1243
1244 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1245                                 int entry_size)
1246 {
1247         int q_depth = dev->q_depth;
1248         unsigned q_size_aligned = roundup(q_depth * entry_size,
1249                                           dev->ctrl.page_size);
1250
1251         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1252                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1253                 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1254                 q_depth = div_u64(mem_per_q, entry_size);
1255
1256                 /*
1257                  * Ensure the reduced q_depth is above some threshold where it
1258                  * would be better to map queues in system memory with the
1259                  * original depth
1260                  */
1261                 if (q_depth < 64)
1262                         return -ENOMEM;
1263         }
1264
1265         return q_depth;
1266 }
1267
1268 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1269                                 int qid, int depth)
1270 {
1271         if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1272                 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1273                                                       dev->ctrl.page_size);
1274                 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1275                 nvmeq->sq_cmds_io = dev->cmb + offset;
1276         } else {
1277                 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1278                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
1279                 if (!nvmeq->sq_cmds)
1280                         return -ENOMEM;
1281         }
1282
1283         return 0;
1284 }
1285
1286 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1287                                                         int depth)
1288 {
1289         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1290         if (!nvmeq)
1291                 return NULL;
1292
1293         nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1294                                           &nvmeq->cq_dma_addr, GFP_KERNEL);
1295         if (!nvmeq->cqes)
1296                 goto free_nvmeq;
1297
1298         if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1299                 goto free_cqdma;
1300
1301         nvmeq->q_dmadev = dev->dev;
1302         nvmeq->dev = dev;
1303         snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1304                         dev->ctrl.instance, qid);
1305         spin_lock_init(&nvmeq->q_lock);
1306         nvmeq->cq_head = 0;
1307         nvmeq->cq_phase = 1;
1308         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1309         nvmeq->q_depth = depth;
1310         nvmeq->qid = qid;
1311         nvmeq->cq_vector = -1;
1312         dev->queues[qid] = nvmeq;
1313
1314         /* make sure queue descriptor is set before queue count, for kthread */
1315         mb();
1316         dev->queue_count++;
1317
1318         return nvmeq;
1319
1320  free_cqdma:
1321         dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1322                                                         nvmeq->cq_dma_addr);
1323  free_nvmeq:
1324         kfree(nvmeq);
1325         return NULL;
1326 }
1327
1328 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1329                                                         const char *name)
1330 {
1331         if (use_threaded_interrupts)
1332                 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1333                                         nvme_irq_check, nvme_irq, IRQF_SHARED,
1334                                         name, nvmeq);
1335         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1336                                 IRQF_SHARED, name, nvmeq);
1337 }
1338
1339 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1340 {
1341         struct nvme_dev *dev = nvmeq->dev;
1342
1343         spin_lock_irq(&nvmeq->q_lock);
1344         nvmeq->sq_tail = 0;
1345         nvmeq->cq_head = 0;
1346         nvmeq->cq_phase = 1;
1347         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1348         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1349         dev->online_queues++;
1350         spin_unlock_irq(&nvmeq->q_lock);
1351 }
1352
1353 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1354 {
1355         struct nvme_dev *dev = nvmeq->dev;
1356         int result;
1357
1358         nvmeq->cq_vector = qid - 1;
1359         result = adapter_alloc_cq(dev, qid, nvmeq);
1360         if (result < 0)
1361                 return result;
1362
1363         result = adapter_alloc_sq(dev, qid, nvmeq);
1364         if (result < 0)
1365                 goto release_cq;
1366
1367         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1368         if (result < 0)
1369                 goto release_sq;
1370
1371         nvme_init_queue(nvmeq, qid);
1372         return result;
1373
1374  release_sq:
1375         adapter_delete_sq(dev, qid);
1376  release_cq:
1377         adapter_delete_cq(dev, qid);
1378         return result;
1379 }
1380
1381 static struct blk_mq_ops nvme_mq_admin_ops = {
1382         .queue_rq       = nvme_queue_rq,
1383         .map_queue      = blk_mq_map_queue,
1384         .init_hctx      = nvme_admin_init_hctx,
1385         .exit_hctx      = nvme_admin_exit_hctx,
1386         .init_request   = nvme_admin_init_request,
1387         .timeout        = nvme_timeout,
1388 };
1389
1390 static struct blk_mq_ops nvme_mq_ops = {
1391         .queue_rq       = nvme_queue_rq,
1392         .map_queue      = blk_mq_map_queue,
1393         .init_hctx      = nvme_init_hctx,
1394         .init_request   = nvme_init_request,
1395         .timeout        = nvme_timeout,
1396         .poll           = nvme_poll,
1397 };
1398
1399 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1400 {
1401         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1402                 blk_cleanup_queue(dev->ctrl.admin_q);
1403                 blk_mq_free_tag_set(&dev->admin_tagset);
1404         }
1405 }
1406
1407 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1408 {
1409         if (!dev->ctrl.admin_q) {
1410                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1411                 dev->admin_tagset.nr_hw_queues = 1;
1412                 dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
1413                 dev->admin_tagset.reserved_tags = 1;
1414                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1415                 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1416                 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1417                 dev->admin_tagset.driver_data = dev;
1418
1419                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1420                         return -ENOMEM;
1421
1422                 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1423                 if (IS_ERR(dev->ctrl.admin_q)) {
1424                         blk_mq_free_tag_set(&dev->admin_tagset);
1425                         return -ENOMEM;
1426                 }
1427                 if (!blk_get_queue(dev->ctrl.admin_q)) {
1428                         nvme_dev_remove_admin(dev);
1429                         dev->ctrl.admin_q = NULL;
1430                         return -ENODEV;
1431                 }
1432         } else
1433                 blk_mq_unfreeze_queue(dev->ctrl.admin_q);
1434
1435         return 0;
1436 }
1437
1438 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1439 {
1440         int result;
1441         u32 aqa;
1442         u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1443         struct nvme_queue *nvmeq;
1444
1445         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
1446                                                 NVME_CAP_NSSRC(cap) : 0;
1447
1448         if (dev->subsystem &&
1449             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1450                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1451
1452         result = nvme_disable_ctrl(&dev->ctrl, cap);
1453         if (result < 0)
1454                 return result;
1455
1456         nvmeq = dev->queues[0];
1457         if (!nvmeq) {
1458                 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1459                 if (!nvmeq)
1460                         return -ENOMEM;
1461         }
1462
1463         aqa = nvmeq->q_depth - 1;
1464         aqa |= aqa << 16;
1465
1466         writel(aqa, dev->bar + NVME_REG_AQA);
1467         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1468         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1469
1470         result = nvme_enable_ctrl(&dev->ctrl, cap);
1471         if (result)
1472                 goto free_nvmeq;
1473
1474         nvmeq->cq_vector = 0;
1475         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1476         if (result) {
1477                 nvmeq->cq_vector = -1;
1478                 goto free_nvmeq;
1479         }
1480
1481         return result;
1482
1483  free_nvmeq:
1484         nvme_free_queues(dev, 0);
1485         return result;
1486 }
1487
1488 static int nvme_kthread(void *data)
1489 {
1490         struct nvme_dev *dev, *next;
1491
1492         while (!kthread_should_stop()) {
1493                 set_current_state(TASK_INTERRUPTIBLE);
1494                 spin_lock(&dev_list_lock);
1495                 list_for_each_entry_safe(dev, next, &dev_list, node) {
1496                         int i;
1497                         u32 csts = readl(dev->bar + NVME_REG_CSTS);
1498
1499                         if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) ||
1500                                                         csts & NVME_CSTS_CFS) {
1501                                 if (!__nvme_reset(dev)) {
1502                                         dev_warn(dev->dev,
1503                                                 "Failed status: %x, reset controller\n",
1504                                                 readl(dev->bar + NVME_REG_CSTS));
1505                                 }
1506                                 continue;
1507                         }
1508                         for (i = 0; i < dev->queue_count; i++) {
1509                                 struct nvme_queue *nvmeq = dev->queues[i];
1510                                 if (!nvmeq)
1511                                         continue;
1512                                 spin_lock_irq(&nvmeq->q_lock);
1513                                 nvme_process_cq(nvmeq);
1514
1515                                 while (i == 0 && dev->ctrl.event_limit > 0) {
1516                                         if (nvme_submit_async_admin_req(dev))
1517                                                 break;
1518                                         dev->ctrl.event_limit--;
1519                                 }
1520                                 spin_unlock_irq(&nvmeq->q_lock);
1521                         }
1522                 }
1523                 spin_unlock(&dev_list_lock);
1524                 schedule_timeout(round_jiffies_relative(HZ));
1525         }
1526         return 0;
1527 }
1528
1529 static int nvme_create_io_queues(struct nvme_dev *dev)
1530 {
1531         unsigned i;
1532         int ret = 0;
1533
1534         for (i = dev->queue_count; i <= dev->max_qid; i++) {
1535                 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1536                         ret = -ENOMEM;
1537                         break;
1538                 }
1539         }
1540
1541         for (i = dev->online_queues; i <= dev->queue_count - 1; i++) {
1542                 ret = nvme_create_queue(dev->queues[i], i);
1543                 if (ret) {
1544                         nvme_free_queues(dev, i);
1545                         break;
1546                 }
1547         }
1548
1549         /*
1550          * Ignore failing Create SQ/CQ commands, we can continue with less
1551          * than the desired aount of queues, and even a controller without
1552          * I/O queues an still be used to issue admin commands.  This might
1553          * be useful to upgrade a buggy firmware for example.
1554          */
1555         return ret >= 0 ? 0 : ret;
1556 }
1557
1558 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1559 {
1560         u64 szu, size, offset;
1561         u32 cmbloc;
1562         resource_size_t bar_size;
1563         struct pci_dev *pdev = to_pci_dev(dev->dev);
1564         void __iomem *cmb;
1565         dma_addr_t dma_addr;
1566
1567         if (!use_cmb_sqes)
1568                 return NULL;
1569
1570         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1571         if (!(NVME_CMB_SZ(dev->cmbsz)))
1572                 return NULL;
1573
1574         cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1575
1576         szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1577         size = szu * NVME_CMB_SZ(dev->cmbsz);
1578         offset = szu * NVME_CMB_OFST(cmbloc);
1579         bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1580
1581         if (offset > bar_size)
1582                 return NULL;
1583
1584         /*
1585          * Controllers may support a CMB size larger than their BAR,
1586          * for example, due to being behind a bridge. Reduce the CMB to
1587          * the reported size of the BAR
1588          */
1589         if (size > bar_size - offset)
1590                 size = bar_size - offset;
1591
1592         dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1593         cmb = ioremap_wc(dma_addr, size);
1594         if (!cmb)
1595                 return NULL;
1596
1597         dev->cmb_dma_addr = dma_addr;
1598         dev->cmb_size = size;
1599         return cmb;
1600 }
1601
1602 static inline void nvme_release_cmb(struct nvme_dev *dev)
1603 {
1604         if (dev->cmb) {
1605                 iounmap(dev->cmb);
1606                 dev->cmb = NULL;
1607         }
1608 }
1609
1610 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1611 {
1612         return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1613 }
1614
1615 static int nvme_setup_io_queues(struct nvme_dev *dev)
1616 {
1617         struct nvme_queue *adminq = dev->queues[0];
1618         struct pci_dev *pdev = to_pci_dev(dev->dev);
1619         int result, i, vecs, nr_io_queues, size;
1620
1621         nr_io_queues = num_possible_cpus();
1622         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1623         if (result < 0)
1624                 return result;
1625
1626         /*
1627          * Degraded controllers might return an error when setting the queue
1628          * count.  We still want to be able to bring them online and offer
1629          * access to the admin queue, as that might be only way to fix them up.
1630          */
1631         if (result > 0) {
1632                 dev_err(dev->dev, "Could not set queue count (%d)\n", result);
1633                 nr_io_queues = 0;
1634                 result = 0;
1635         }
1636
1637         if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1638                 result = nvme_cmb_qdepth(dev, nr_io_queues,
1639                                 sizeof(struct nvme_command));
1640                 if (result > 0)
1641                         dev->q_depth = result;
1642                 else
1643                         nvme_release_cmb(dev);
1644         }
1645
1646         size = db_bar_size(dev, nr_io_queues);
1647         if (size > 8192) {
1648                 iounmap(dev->bar);
1649                 do {
1650                         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1651                         if (dev->bar)
1652                                 break;
1653                         if (!--nr_io_queues)
1654                                 return -ENOMEM;
1655                         size = db_bar_size(dev, nr_io_queues);
1656                 } while (1);
1657                 dev->dbs = dev->bar + 4096;
1658                 adminq->q_db = dev->dbs;
1659         }
1660
1661         /* Deregister the admin queue's interrupt */
1662         free_irq(dev->entry[0].vector, adminq);
1663
1664         /*
1665          * If we enable msix early due to not intx, disable it again before
1666          * setting up the full range we need.
1667          */
1668         if (!pdev->irq)
1669                 pci_disable_msix(pdev);
1670
1671         for (i = 0; i < nr_io_queues; i++)
1672                 dev->entry[i].entry = i;
1673         vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
1674         if (vecs < 0) {
1675                 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
1676                 if (vecs < 0) {
1677                         vecs = 1;
1678                 } else {
1679                         for (i = 0; i < vecs; i++)
1680                                 dev->entry[i].vector = i + pdev->irq;
1681                 }
1682         }
1683
1684         /*
1685          * Should investigate if there's a performance win from allocating
1686          * more queues than interrupt vectors; it might allow the submission
1687          * path to scale better, even if the receive path is limited by the
1688          * number of interrupts.
1689          */
1690         nr_io_queues = vecs;
1691         dev->max_qid = nr_io_queues;
1692
1693         result = queue_request_irq(dev, adminq, adminq->irqname);
1694         if (result) {
1695                 adminq->cq_vector = -1;
1696                 goto free_queues;
1697         }
1698
1699         /* Free previously allocated queues that are no longer usable */
1700         nvme_free_queues(dev, nr_io_queues + 1);
1701         return nvme_create_io_queues(dev);
1702
1703  free_queues:
1704         nvme_free_queues(dev, 1);
1705         return result;
1706 }
1707
1708 static void nvme_set_irq_hints(struct nvme_dev *dev)
1709 {
1710         struct nvme_queue *nvmeq;
1711         int i;
1712
1713         for (i = 0; i < dev->online_queues; i++) {
1714                 nvmeq = dev->queues[i];
1715
1716                 if (!nvmeq->tags || !(*nvmeq->tags))
1717                         continue;
1718
1719                 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1720                                         blk_mq_tags_cpumask(*nvmeq->tags));
1721         }
1722 }
1723
1724 static void nvme_dev_scan(struct work_struct *work)
1725 {
1726         struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
1727
1728         if (!dev->tagset.tags)
1729                 return;
1730         nvme_scan_namespaces(&dev->ctrl);
1731         nvme_set_irq_hints(dev);
1732 }
1733
1734 /*
1735  * Return: error value if an error occurred setting up the queues or calling
1736  * Identify Device.  0 if these succeeded, even if adding some of the
1737  * namespaces failed.  At the moment, these failures are silent.  TBD which
1738  * failures should be reported.
1739  */
1740 static int nvme_dev_add(struct nvme_dev *dev)
1741 {
1742         if (!dev->ctrl.tagset) {
1743                 dev->tagset.ops = &nvme_mq_ops;
1744                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1745                 dev->tagset.timeout = NVME_IO_TIMEOUT;
1746                 dev->tagset.numa_node = dev_to_node(dev->dev);
1747                 dev->tagset.queue_depth =
1748                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1749                 dev->tagset.cmd_size = nvme_cmd_size(dev);
1750                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1751                 dev->tagset.driver_data = dev;
1752
1753                 if (blk_mq_alloc_tag_set(&dev->tagset))
1754                         return 0;
1755                 dev->ctrl.tagset = &dev->tagset;
1756         }
1757         schedule_work(&dev->scan_work);
1758         return 0;
1759 }
1760
1761 static int nvme_dev_map(struct nvme_dev *dev)
1762 {
1763         u64 cap;
1764         int bars, result = -ENOMEM;
1765         struct pci_dev *pdev = to_pci_dev(dev->dev);
1766
1767         if (pci_enable_device_mem(pdev))
1768                 return result;
1769
1770         dev->entry[0].vector = pdev->irq;
1771         pci_set_master(pdev);
1772         bars = pci_select_bars(pdev, IORESOURCE_MEM);
1773         if (!bars)
1774                 goto disable_pci;
1775
1776         if (pci_request_selected_regions(pdev, bars, "nvme"))
1777                 goto disable_pci;
1778
1779         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1780             dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1781                 goto disable;
1782
1783         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1784         if (!dev->bar)
1785                 goto disable;
1786
1787         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1788                 result = -ENODEV;
1789                 goto unmap;
1790         }
1791
1792         /*
1793          * Some devices don't advertse INTx interrupts, pre-enable a single
1794          * MSIX vec for setup. We'll adjust this later.
1795          */
1796         if (!pdev->irq) {
1797                 result = pci_enable_msix(pdev, dev->entry, 1);
1798                 if (result < 0)
1799                         goto unmap;
1800         }
1801
1802         cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1803
1804         dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1805         dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1806         dev->dbs = dev->bar + 4096;
1807         if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
1808                 dev->cmb = nvme_map_cmb(dev);
1809
1810         return 0;
1811
1812  unmap:
1813         iounmap(dev->bar);
1814         dev->bar = NULL;
1815  disable:
1816         pci_release_regions(pdev);
1817  disable_pci:
1818         pci_disable_device(pdev);
1819         return result;
1820 }
1821
1822 static void nvme_dev_unmap(struct nvme_dev *dev)
1823 {
1824         struct pci_dev *pdev = to_pci_dev(dev->dev);
1825
1826         if (pdev->msi_enabled)
1827                 pci_disable_msi(pdev);
1828         else if (pdev->msix_enabled)
1829                 pci_disable_msix(pdev);
1830
1831         if (dev->bar) {
1832                 iounmap(dev->bar);
1833                 dev->bar = NULL;
1834                 pci_release_regions(pdev);
1835         }
1836
1837         if (pci_is_enabled(pdev))
1838                 pci_disable_device(pdev);
1839 }
1840
1841 struct nvme_delq_ctx {
1842         struct task_struct *waiter;
1843         struct kthread_worker *worker;
1844         atomic_t refcount;
1845 };
1846
1847 static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
1848 {
1849         dq->waiter = current;
1850         mb();
1851
1852         for (;;) {
1853                 set_current_state(TASK_KILLABLE);
1854                 if (!atomic_read(&dq->refcount))
1855                         break;
1856                 if (!schedule_timeout(ADMIN_TIMEOUT) ||
1857                                         fatal_signal_pending(current)) {
1858                         /*
1859                          * Disable the controller first since we can't trust it
1860                          * at this point, but leave the admin queue enabled
1861                          * until all queue deletion requests are flushed.
1862                          * FIXME: This may take a while if there are more h/w
1863                          * queues than admin tags.
1864                          */
1865                         set_current_state(TASK_RUNNING);
1866                         nvme_disable_ctrl(&dev->ctrl,
1867                                 lo_hi_readq(dev->bar + NVME_REG_CAP));
1868                         nvme_clear_queue(dev->queues[0]);
1869                         flush_kthread_worker(dq->worker);
1870                         nvme_disable_queue(dev, 0);
1871                         return;
1872                 }
1873         }
1874         set_current_state(TASK_RUNNING);
1875 }
1876
1877 static void nvme_put_dq(struct nvme_delq_ctx *dq)
1878 {
1879         atomic_dec(&dq->refcount);
1880         if (dq->waiter)
1881                 wake_up_process(dq->waiter);
1882 }
1883
1884 static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
1885 {
1886         atomic_inc(&dq->refcount);
1887         return dq;
1888 }
1889
1890 static void nvme_del_queue_end(struct nvme_queue *nvmeq)
1891 {
1892         struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
1893         nvme_put_dq(dq);
1894
1895         spin_lock_irq(&nvmeq->q_lock);
1896         nvme_process_cq(nvmeq);
1897         spin_unlock_irq(&nvmeq->q_lock);
1898 }
1899
1900 static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
1901                                                 kthread_work_func_t fn)
1902 {
1903         struct nvme_command c;
1904
1905         memset(&c, 0, sizeof(c));
1906         c.delete_queue.opcode = opcode;
1907         c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1908
1909         init_kthread_work(&nvmeq->cmdinfo.work, fn);
1910         return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
1911                                                                 ADMIN_TIMEOUT);
1912 }
1913
1914 static void nvme_del_cq_work_handler(struct kthread_work *work)
1915 {
1916         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
1917                                                         cmdinfo.work);
1918         nvme_del_queue_end(nvmeq);
1919 }
1920
1921 static int nvme_delete_cq(struct nvme_queue *nvmeq)
1922 {
1923         return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
1924                                                 nvme_del_cq_work_handler);
1925 }
1926
1927 static void nvme_del_sq_work_handler(struct kthread_work *work)
1928 {
1929         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
1930                                                         cmdinfo.work);
1931         int status = nvmeq->cmdinfo.status;
1932
1933         if (!status)
1934                 status = nvme_delete_cq(nvmeq);
1935         if (status)
1936                 nvme_del_queue_end(nvmeq);
1937 }
1938
1939 static int nvme_delete_sq(struct nvme_queue *nvmeq)
1940 {
1941         return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
1942                                                 nvme_del_sq_work_handler);
1943 }
1944
1945 static void nvme_del_queue_start(struct kthread_work *work)
1946 {
1947         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
1948                                                         cmdinfo.work);
1949         if (nvme_delete_sq(nvmeq))
1950                 nvme_del_queue_end(nvmeq);
1951 }
1952
1953 static void nvme_disable_io_queues(struct nvme_dev *dev)
1954 {
1955         int i;
1956         DEFINE_KTHREAD_WORKER_ONSTACK(worker);
1957         struct nvme_delq_ctx dq;
1958         struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
1959                                         &worker, "nvme%d", dev->ctrl.instance);
1960
1961         if (IS_ERR(kworker_task)) {
1962                 dev_err(dev->dev,
1963                         "Failed to create queue del task\n");
1964                 for (i = dev->queue_count - 1; i > 0; i--)
1965                         nvme_disable_queue(dev, i);
1966                 return;
1967         }
1968
1969         dq.waiter = NULL;
1970         atomic_set(&dq.refcount, 0);
1971         dq.worker = &worker;
1972         for (i = dev->queue_count - 1; i > 0; i--) {
1973                 struct nvme_queue *nvmeq = dev->queues[i];
1974
1975                 if (nvme_suspend_queue(nvmeq))
1976                         continue;
1977                 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
1978                 nvmeq->cmdinfo.worker = dq.worker;
1979                 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
1980                 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
1981         }
1982         nvme_wait_dq(&dq, dev);
1983         kthread_stop(kworker_task);
1984 }
1985
1986 static int nvme_dev_list_add(struct nvme_dev *dev)
1987 {
1988         bool start_thread = false;
1989
1990         spin_lock(&dev_list_lock);
1991         if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
1992                 start_thread = true;
1993                 nvme_thread = NULL;
1994         }
1995         list_add(&dev->node, &dev_list);
1996         spin_unlock(&dev_list_lock);
1997
1998         if (start_thread) {
1999                 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2000                 wake_up_all(&nvme_kthread_wait);
2001         } else
2002                 wait_event_killable(nvme_kthread_wait, nvme_thread);
2003
2004         if (IS_ERR_OR_NULL(nvme_thread))
2005                 return nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2006
2007         return 0;
2008 }
2009
2010 /*
2011 * Remove the node from the device list and check
2012 * for whether or not we need to stop the nvme_thread.
2013 */
2014 static void nvme_dev_list_remove(struct nvme_dev *dev)
2015 {
2016         struct task_struct *tmp = NULL;
2017
2018         spin_lock(&dev_list_lock);
2019         list_del_init(&dev->node);
2020         if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2021                 tmp = nvme_thread;
2022                 nvme_thread = NULL;
2023         }
2024         spin_unlock(&dev_list_lock);
2025
2026         if (tmp)
2027                 kthread_stop(tmp);
2028 }
2029
2030 static void nvme_freeze_queues(struct nvme_dev *dev)
2031 {
2032         struct nvme_ns *ns;
2033
2034         list_for_each_entry(ns, &dev->ctrl.namespaces, list) {
2035                 blk_mq_freeze_queue_start(ns->queue);
2036
2037                 spin_lock_irq(ns->queue->queue_lock);
2038                 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
2039                 spin_unlock_irq(ns->queue->queue_lock);
2040
2041                 blk_mq_cancel_requeue_work(ns->queue);
2042                 blk_mq_stop_hw_queues(ns->queue);
2043         }
2044 }
2045
2046 static void nvme_unfreeze_queues(struct nvme_dev *dev)
2047 {
2048         struct nvme_ns *ns;
2049
2050         list_for_each_entry(ns, &dev->ctrl.namespaces, list) {
2051                 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2052                 blk_mq_unfreeze_queue(ns->queue);
2053                 blk_mq_start_stopped_hw_queues(ns->queue, true);
2054                 blk_mq_kick_requeue_list(ns->queue);
2055         }
2056 }
2057
2058 static void nvme_dev_shutdown(struct nvme_dev *dev)
2059 {
2060         int i;
2061         u32 csts = -1;
2062
2063         nvme_dev_list_remove(dev);
2064
2065         mutex_lock(&dev->shutdown_lock);
2066         if (dev->bar) {
2067                 nvme_freeze_queues(dev);
2068                 csts = readl(dev->bar + NVME_REG_CSTS);
2069         }
2070         if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
2071                 for (i = dev->queue_count - 1; i >= 0; i--) {
2072                         struct nvme_queue *nvmeq = dev->queues[i];
2073                         nvme_suspend_queue(nvmeq);
2074                 }
2075         } else {
2076                 nvme_disable_io_queues(dev);
2077                 nvme_shutdown_ctrl(&dev->ctrl);
2078                 nvme_disable_queue(dev, 0);
2079         }
2080         nvme_dev_unmap(dev);
2081
2082         for (i = dev->queue_count - 1; i >= 0; i--)
2083                 nvme_clear_queue(dev->queues[i]);
2084         mutex_unlock(&dev->shutdown_lock);
2085 }
2086
2087 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2088 {
2089         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2090                                                 PAGE_SIZE, PAGE_SIZE, 0);
2091         if (!dev->prp_page_pool)
2092                 return -ENOMEM;
2093
2094         /* Optimisation for I/Os between 4k and 128k */
2095         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2096                                                 256, 256, 0);
2097         if (!dev->prp_small_pool) {
2098                 dma_pool_destroy(dev->prp_page_pool);
2099                 return -ENOMEM;
2100         }
2101         return 0;
2102 }
2103
2104 static void nvme_release_prp_pools(struct nvme_dev *dev)
2105 {
2106         dma_pool_destroy(dev->prp_page_pool);
2107         dma_pool_destroy(dev->prp_small_pool);
2108 }
2109
2110 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2111 {
2112         struct nvme_dev *dev = to_nvme_dev(ctrl);
2113
2114         put_device(dev->dev);
2115         if (dev->tagset.tags)
2116                 blk_mq_free_tag_set(&dev->tagset);
2117         if (dev->ctrl.admin_q)
2118                 blk_put_queue(dev->ctrl.admin_q);
2119         kfree(dev->queues);
2120         kfree(dev->entry);
2121         kfree(dev);
2122 }
2123
2124 static void nvme_probe_work(struct work_struct *work)
2125 {
2126         struct nvme_dev *dev = container_of(work, struct nvme_dev, probe_work);
2127         int result;
2128
2129         result = nvme_dev_map(dev);
2130         if (result)
2131                 goto out;
2132
2133         result = nvme_configure_admin_queue(dev);
2134         if (result)
2135                 goto unmap;
2136
2137         nvme_init_queue(dev->queues[0], 0);
2138         result = nvme_alloc_admin_tags(dev);
2139         if (result)
2140                 goto disable;
2141
2142         result = nvme_init_identify(&dev->ctrl);
2143         if (result)
2144                 goto free_tags;
2145
2146         result = nvme_setup_io_queues(dev);
2147         if (result)
2148                 goto free_tags;
2149
2150         dev->ctrl.event_limit = 1;
2151
2152         result = nvme_dev_list_add(dev);
2153         if (result)
2154                 goto remove;
2155
2156         /*
2157          * Keep the controller around but remove all namespaces if we don't have
2158          * any working I/O queue.
2159          */
2160         if (dev->online_queues < 2) {
2161                 dev_warn(dev->dev, "IO queues not created\n");
2162                 nvme_remove_namespaces(&dev->ctrl);
2163         } else {
2164                 nvme_unfreeze_queues(dev);
2165                 nvme_dev_add(dev);
2166         }
2167
2168         return;
2169
2170  remove:
2171         nvme_dev_list_remove(dev);
2172  free_tags:
2173         nvme_dev_remove_admin(dev);
2174         blk_put_queue(dev->ctrl.admin_q);
2175         dev->ctrl.admin_q = NULL;
2176         dev->queues[0]->tags = NULL;
2177  disable:
2178         nvme_disable_queue(dev, 0);
2179  unmap:
2180         nvme_dev_unmap(dev);
2181  out:
2182         if (!work_busy(&dev->reset_work))
2183                 nvme_dead_ctrl(dev);
2184 }
2185
2186 static int nvme_remove_dead_ctrl(void *arg)
2187 {
2188         struct nvme_dev *dev = (struct nvme_dev *)arg;
2189         struct pci_dev *pdev = to_pci_dev(dev->dev);
2190
2191         if (pci_get_drvdata(pdev))
2192                 pci_stop_and_remove_bus_device_locked(pdev);
2193         nvme_put_ctrl(&dev->ctrl);
2194         return 0;
2195 }
2196
2197 static void nvme_dead_ctrl(struct nvme_dev *dev)
2198 {
2199         dev_warn(dev->dev, "Device failed to resume\n");
2200         kref_get(&dev->ctrl.kref);
2201         if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
2202                                                 dev->ctrl.instance))) {
2203                 dev_err(dev->dev,
2204                         "Failed to start controller remove task\n");
2205                 nvme_put_ctrl(&dev->ctrl);
2206         }
2207 }
2208
2209 static void nvme_reset_work(struct work_struct *ws)
2210 {
2211         struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2212         bool in_probe = work_busy(&dev->probe_work);
2213
2214         nvme_dev_shutdown(dev);
2215
2216         /* Synchronize with device probe so that work will see failure status
2217          * and exit gracefully without trying to schedule another reset */
2218         flush_work(&dev->probe_work);
2219
2220         /* Fail this device if reset occured during probe to avoid
2221          * infinite initialization loops. */
2222         if (in_probe) {
2223                 nvme_dead_ctrl(dev);
2224                 return;
2225         }
2226         /* Schedule device resume asynchronously so the reset work is available
2227          * to cleanup errors that may occur during reinitialization */
2228         schedule_work(&dev->probe_work);
2229 }
2230
2231 static int __nvme_reset(struct nvme_dev *dev)
2232 {
2233         if (work_pending(&dev->reset_work))
2234                 return -EBUSY;
2235         list_del_init(&dev->node);
2236         queue_work(nvme_workq, &dev->reset_work);
2237         return 0;
2238 }
2239
2240 static int nvme_reset(struct nvme_dev *dev)
2241 {
2242         int ret;
2243
2244         if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
2245                 return -ENODEV;
2246
2247         spin_lock(&dev_list_lock);
2248         ret = __nvme_reset(dev);
2249         spin_unlock(&dev_list_lock);
2250
2251         if (!ret) {
2252                 flush_work(&dev->reset_work);
2253                 flush_work(&dev->probe_work);
2254                 return 0;
2255         }
2256
2257         return ret;
2258 }
2259
2260 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2261 {
2262         *val = readl(to_nvme_dev(ctrl)->bar + off);
2263         return 0;
2264 }
2265
2266 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2267 {
2268         writel(val, to_nvme_dev(ctrl)->bar + off);
2269         return 0;
2270 }
2271
2272 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2273 {
2274         *val = readq(to_nvme_dev(ctrl)->bar + off);
2275         return 0;
2276 }
2277
2278 static bool nvme_pci_io_incapable(struct nvme_ctrl *ctrl)
2279 {
2280         struct nvme_dev *dev = to_nvme_dev(ctrl);
2281
2282         return !dev->bar || dev->online_queues < 2;
2283 }
2284
2285 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
2286 {
2287         return nvme_reset(to_nvme_dev(ctrl));
2288 }
2289
2290 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2291         .reg_read32             = nvme_pci_reg_read32,
2292         .reg_write32            = nvme_pci_reg_write32,
2293         .reg_read64             = nvme_pci_reg_read64,
2294         .io_incapable           = nvme_pci_io_incapable,
2295         .reset_ctrl             = nvme_pci_reset_ctrl,
2296         .free_ctrl              = nvme_pci_free_ctrl,
2297 };
2298
2299 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2300 {
2301         int node, result = -ENOMEM;
2302         struct nvme_dev *dev;
2303
2304         node = dev_to_node(&pdev->dev);
2305         if (node == NUMA_NO_NODE)
2306                 set_dev_node(&pdev->dev, 0);
2307
2308         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2309         if (!dev)
2310                 return -ENOMEM;
2311         dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2312                                                         GFP_KERNEL, node);
2313         if (!dev->entry)
2314                 goto free;
2315         dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2316                                                         GFP_KERNEL, node);
2317         if (!dev->queues)
2318                 goto free;
2319
2320         dev->dev = get_device(&pdev->dev);
2321         pci_set_drvdata(pdev, dev);
2322
2323         INIT_LIST_HEAD(&dev->node);
2324         INIT_WORK(&dev->scan_work, nvme_dev_scan);
2325         INIT_WORK(&dev->probe_work, nvme_probe_work);
2326         INIT_WORK(&dev->reset_work, nvme_reset_work);
2327         mutex_init(&dev->shutdown_lock);
2328
2329         result = nvme_setup_prp_pools(dev);
2330         if (result)
2331                 goto put_pci;
2332
2333         result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2334                         id->driver_data);
2335         if (result)
2336                 goto release_pools;
2337
2338         schedule_work(&dev->probe_work);
2339         return 0;
2340
2341  release_pools:
2342         nvme_release_prp_pools(dev);
2343  put_pci:
2344         put_device(dev->dev);
2345  free:
2346         kfree(dev->queues);
2347         kfree(dev->entry);
2348         kfree(dev);
2349         return result;
2350 }
2351
2352 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2353 {
2354         struct nvme_dev *dev = pci_get_drvdata(pdev);
2355
2356         if (prepare)
2357                 nvme_dev_shutdown(dev);
2358         else
2359                 schedule_work(&dev->probe_work);
2360 }
2361
2362 static void nvme_shutdown(struct pci_dev *pdev)
2363 {
2364         struct nvme_dev *dev = pci_get_drvdata(pdev);
2365         nvme_dev_shutdown(dev);
2366 }
2367
2368 static void nvme_remove(struct pci_dev *pdev)
2369 {
2370         struct nvme_dev *dev = pci_get_drvdata(pdev);
2371
2372         spin_lock(&dev_list_lock);
2373         list_del_init(&dev->node);
2374         spin_unlock(&dev_list_lock);
2375
2376         pci_set_drvdata(pdev, NULL);
2377         flush_work(&dev->probe_work);
2378         flush_work(&dev->reset_work);
2379         flush_work(&dev->scan_work);
2380         nvme_remove_namespaces(&dev->ctrl);
2381         nvme_dev_shutdown(dev);
2382         nvme_dev_remove_admin(dev);
2383         nvme_free_queues(dev, 0);
2384         nvme_release_cmb(dev);
2385         nvme_release_prp_pools(dev);
2386         nvme_put_ctrl(&dev->ctrl);
2387 }
2388
2389 /* These functions are yet to be implemented */
2390 #define nvme_error_detected NULL
2391 #define nvme_dump_registers NULL
2392 #define nvme_link_reset NULL
2393 #define nvme_slot_reset NULL
2394 #define nvme_error_resume NULL
2395
2396 #ifdef CONFIG_PM_SLEEP
2397 static int nvme_suspend(struct device *dev)
2398 {
2399         struct pci_dev *pdev = to_pci_dev(dev);
2400         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2401
2402         nvme_dev_shutdown(ndev);
2403         return 0;
2404 }
2405
2406 static int nvme_resume(struct device *dev)
2407 {
2408         struct pci_dev *pdev = to_pci_dev(dev);
2409         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2410
2411         schedule_work(&ndev->probe_work);
2412         return 0;
2413 }
2414 #endif
2415
2416 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2417
2418 static const struct pci_error_handlers nvme_err_handler = {
2419         .error_detected = nvme_error_detected,
2420         .mmio_enabled   = nvme_dump_registers,
2421         .link_reset     = nvme_link_reset,
2422         .slot_reset     = nvme_slot_reset,
2423         .resume         = nvme_error_resume,
2424         .reset_notify   = nvme_reset_notify,
2425 };
2426
2427 /* Move to pci_ids.h later */
2428 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
2429
2430 static const struct pci_device_id nvme_id_table[] = {
2431         { PCI_VDEVICE(INTEL, 0x0953),
2432                 .driver_data = NVME_QUIRK_STRIPE_SIZE, },
2433         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2434         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2435         { 0, }
2436 };
2437 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2438
2439 static struct pci_driver nvme_driver = {
2440         .name           = "nvme",
2441         .id_table       = nvme_id_table,
2442         .probe          = nvme_probe,
2443         .remove         = nvme_remove,
2444         .shutdown       = nvme_shutdown,
2445         .driver         = {
2446                 .pm     = &nvme_dev_pm_ops,
2447         },
2448         .err_handler    = &nvme_err_handler,
2449 };
2450
2451 static int __init nvme_init(void)
2452 {
2453         int result;
2454
2455         init_waitqueue_head(&nvme_kthread_wait);
2456
2457         nvme_workq = create_singlethread_workqueue("nvme");
2458         if (!nvme_workq)
2459                 return -ENOMEM;
2460
2461         result = nvme_core_init();
2462         if (result < 0)
2463                 goto kill_workq;
2464
2465         result = pci_register_driver(&nvme_driver);
2466         if (result)
2467                 goto core_exit;
2468         return 0;
2469
2470  core_exit:
2471         nvme_core_exit();
2472  kill_workq:
2473         destroy_workqueue(nvme_workq);
2474         return result;
2475 }
2476
2477 static void __exit nvme_exit(void)
2478 {
2479         pci_unregister_driver(&nvme_driver);
2480         nvme_core_exit();
2481         destroy_workqueue(nvme_workq);
2482         BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
2483         _nvme_check_size();
2484 }
2485
2486 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2487 MODULE_LICENSE("GPL");
2488 MODULE_VERSION("1.0");
2489 module_init(nvme_init);
2490 module_exit(nvme_exit);