Merge branch 'for-4.6/core' of git://git.kernel.dk/linux-block
[linux-2.6-block.git] / drivers / nvme / host / pci.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/errno.h>
22 #include <linux/fs.h>
23 #include <linux/genhd.h>
24 #include <linux/hdreg.h>
25 #include <linux/idr.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/kdev_t.h>
30 #include <linux/kthread.h>
31 #include <linux/kernel.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/mutex.h>
36 #include <linux/pci.h>
37 #include <linux/poison.h>
38 #include <linux/ptrace.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/t10-pi.h>
42 #include <linux/types.h>
43 #include <linux/io-64-nonatomic-lo-hi.h>
44 #include <asm/unaligned.h>
45
46 #include "nvme.h"
47
48 #define NVME_Q_DEPTH            1024
49 #define NVME_AQ_DEPTH           256
50 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
51 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
52                 
53 /*
54  * We handle AEN commands ourselves and don't even let the
55  * block layer know about them.
56  */
57 #define NVME_NR_AEN_COMMANDS    1
58 #define NVME_AQ_BLKMQ_DEPTH     (NVME_AQ_DEPTH - NVME_NR_AEN_COMMANDS)
59
60 unsigned char admin_timeout = 60;
61 module_param(admin_timeout, byte, 0644);
62 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
63
64 unsigned char nvme_io_timeout = 30;
65 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
66 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
67
68 unsigned char shutdown_timeout = 5;
69 module_param(shutdown_timeout, byte, 0644);
70 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
71
72 static int use_threaded_interrupts;
73 module_param(use_threaded_interrupts, int, 0);
74
75 static bool use_cmb_sqes = true;
76 module_param(use_cmb_sqes, bool, 0644);
77 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
78
79 static LIST_HEAD(dev_list);
80 static struct task_struct *nvme_thread;
81 static struct workqueue_struct *nvme_workq;
82 static wait_queue_head_t nvme_kthread_wait;
83
84 struct nvme_dev;
85 struct nvme_queue;
86
87 static int nvme_reset(struct nvme_dev *dev);
88 static void nvme_process_cq(struct nvme_queue *nvmeq);
89 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
90
91 /*
92  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
93  */
94 struct nvme_dev {
95         struct list_head node;
96         struct nvme_queue **queues;
97         struct blk_mq_tag_set tagset;
98         struct blk_mq_tag_set admin_tagset;
99         u32 __iomem *dbs;
100         struct device *dev;
101         struct dma_pool *prp_page_pool;
102         struct dma_pool *prp_small_pool;
103         unsigned queue_count;
104         unsigned online_queues;
105         unsigned max_qid;
106         int q_depth;
107         u32 db_stride;
108         struct msix_entry *entry;
109         void __iomem *bar;
110         struct work_struct reset_work;
111         struct work_struct scan_work;
112         struct work_struct remove_work;
113         struct mutex shutdown_lock;
114         bool subsystem;
115         void __iomem *cmb;
116         dma_addr_t cmb_dma_addr;
117         u64 cmb_size;
118         u32 cmbsz;
119         unsigned long flags;
120
121 #define NVME_CTRL_RESETTING    0
122 #define NVME_CTRL_REMOVING     1
123
124         struct nvme_ctrl ctrl;
125         struct completion ioq_wait;
126 };
127
128 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
129 {
130         return container_of(ctrl, struct nvme_dev, ctrl);
131 }
132
133 /*
134  * An NVM Express queue.  Each device has at least two (one for admin
135  * commands and one for I/O commands).
136  */
137 struct nvme_queue {
138         struct device *q_dmadev;
139         struct nvme_dev *dev;
140         char irqname[24];       /* nvme4294967295-65535\0 */
141         spinlock_t q_lock;
142         struct nvme_command *sq_cmds;
143         struct nvme_command __iomem *sq_cmds_io;
144         volatile struct nvme_completion *cqes;
145         struct blk_mq_tags **tags;
146         dma_addr_t sq_dma_addr;
147         dma_addr_t cq_dma_addr;
148         u32 __iomem *q_db;
149         u16 q_depth;
150         s16 cq_vector;
151         u16 sq_head;
152         u16 sq_tail;
153         u16 cq_head;
154         u16 qid;
155         u8 cq_phase;
156         u8 cqe_seen;
157 };
158
159 /*
160  * The nvme_iod describes the data in an I/O, including the list of PRP
161  * entries.  You can't see it in this data structure because C doesn't let
162  * me express that.  Use nvme_init_iod to ensure there's enough space
163  * allocated to store the PRP list.
164  */
165 struct nvme_iod {
166         struct nvme_queue *nvmeq;
167         int aborted;
168         int npages;             /* In the PRP list. 0 means small pool in use */
169         int nents;              /* Used in scatterlist */
170         int length;             /* Of data, in bytes */
171         dma_addr_t first_dma;
172         struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
173         struct scatterlist *sg;
174         struct scatterlist inline_sg[0];
175 };
176
177 /*
178  * Check we didin't inadvertently grow the command struct
179  */
180 static inline void _nvme_check_size(void)
181 {
182         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
183         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
184         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
185         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
186         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
187         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
188         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
189         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
190         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
191         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
192         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
193         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
194 }
195
196 /*
197  * Max size of iod being embedded in the request payload
198  */
199 #define NVME_INT_PAGES          2
200 #define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->ctrl.page_size)
201
202 /*
203  * Will slightly overestimate the number of pages needed.  This is OK
204  * as it only leads to a small amount of wasted memory for the lifetime of
205  * the I/O.
206  */
207 static int nvme_npages(unsigned size, struct nvme_dev *dev)
208 {
209         unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
210                                       dev->ctrl.page_size);
211         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
212 }
213
214 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
215                 unsigned int size, unsigned int nseg)
216 {
217         return sizeof(__le64 *) * nvme_npages(size, dev) +
218                         sizeof(struct scatterlist) * nseg;
219 }
220
221 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
222 {
223         return sizeof(struct nvme_iod) +
224                 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
225 }
226
227 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
228                                 unsigned int hctx_idx)
229 {
230         struct nvme_dev *dev = data;
231         struct nvme_queue *nvmeq = dev->queues[0];
232
233         WARN_ON(hctx_idx != 0);
234         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
235         WARN_ON(nvmeq->tags);
236
237         hctx->driver_data = nvmeq;
238         nvmeq->tags = &dev->admin_tagset.tags[0];
239         return 0;
240 }
241
242 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
243 {
244         struct nvme_queue *nvmeq = hctx->driver_data;
245
246         nvmeq->tags = NULL;
247 }
248
249 static int nvme_admin_init_request(void *data, struct request *req,
250                                 unsigned int hctx_idx, unsigned int rq_idx,
251                                 unsigned int numa_node)
252 {
253         struct nvme_dev *dev = data;
254         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
255         struct nvme_queue *nvmeq = dev->queues[0];
256
257         BUG_ON(!nvmeq);
258         iod->nvmeq = nvmeq;
259         return 0;
260 }
261
262 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
263                           unsigned int hctx_idx)
264 {
265         struct nvme_dev *dev = data;
266         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
267
268         if (!nvmeq->tags)
269                 nvmeq->tags = &dev->tagset.tags[hctx_idx];
270
271         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
272         hctx->driver_data = nvmeq;
273         return 0;
274 }
275
276 static int nvme_init_request(void *data, struct request *req,
277                                 unsigned int hctx_idx, unsigned int rq_idx,
278                                 unsigned int numa_node)
279 {
280         struct nvme_dev *dev = data;
281         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
282         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
283
284         BUG_ON(!nvmeq);
285         iod->nvmeq = nvmeq;
286         return 0;
287 }
288
289 static void nvme_queue_scan(struct nvme_dev *dev)
290 {
291         /*
292          * Do not queue new scan work when a controller is reset during
293          * removal.
294          */
295         if (test_bit(NVME_CTRL_REMOVING, &dev->flags))
296                 return;
297         queue_work(nvme_workq, &dev->scan_work);
298 }
299
300 static void nvme_complete_async_event(struct nvme_dev *dev,
301                 struct nvme_completion *cqe)
302 {
303         u16 status = le16_to_cpu(cqe->status) >> 1;
304         u32 result = le32_to_cpu(cqe->result);
305
306         if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
307                 ++dev->ctrl.event_limit;
308         if (status != NVME_SC_SUCCESS)
309                 return;
310
311         switch (result & 0xff07) {
312         case NVME_AER_NOTICE_NS_CHANGED:
313                 dev_info(dev->dev, "rescanning\n");
314                 nvme_queue_scan(dev);
315         default:
316                 dev_warn(dev->dev, "async event result %08x\n", result);
317         }
318 }
319
320 /**
321  * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
322  * @nvmeq: The queue to use
323  * @cmd: The command to send
324  *
325  * Safe to use from interrupt context
326  */
327 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
328                                                 struct nvme_command *cmd)
329 {
330         u16 tail = nvmeq->sq_tail;
331
332         if (nvmeq->sq_cmds_io)
333                 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
334         else
335                 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
336
337         if (++tail == nvmeq->q_depth)
338                 tail = 0;
339         writel(tail, nvmeq->q_db);
340         nvmeq->sq_tail = tail;
341 }
342
343 static __le64 **iod_list(struct request *req)
344 {
345         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
346         return (__le64 **)(iod->sg + req->nr_phys_segments);
347 }
348
349 static int nvme_init_iod(struct request *rq, struct nvme_dev *dev)
350 {
351         struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
352         int nseg = rq->nr_phys_segments;
353         unsigned size;
354
355         if (rq->cmd_flags & REQ_DISCARD)
356                 size = sizeof(struct nvme_dsm_range);
357         else
358                 size = blk_rq_bytes(rq);
359
360         if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
361                 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
362                 if (!iod->sg)
363                         return BLK_MQ_RQ_QUEUE_BUSY;
364         } else {
365                 iod->sg = iod->inline_sg;
366         }
367
368         iod->aborted = 0;
369         iod->npages = -1;
370         iod->nents = 0;
371         iod->length = size;
372         return 0;
373 }
374
375 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
376 {
377         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
378         const int last_prp = dev->ctrl.page_size / 8 - 1;
379         int i;
380         __le64 **list = iod_list(req);
381         dma_addr_t prp_dma = iod->first_dma;
382
383         if (iod->npages == 0)
384                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
385         for (i = 0; i < iod->npages; i++) {
386                 __le64 *prp_list = list[i];
387                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
388                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
389                 prp_dma = next_prp_dma;
390         }
391
392         if (iod->sg != iod->inline_sg)
393                 kfree(iod->sg);
394 }
395
396 #ifdef CONFIG_BLK_DEV_INTEGRITY
397 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
398 {
399         if (be32_to_cpu(pi->ref_tag) == v)
400                 pi->ref_tag = cpu_to_be32(p);
401 }
402
403 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
404 {
405         if (be32_to_cpu(pi->ref_tag) == p)
406                 pi->ref_tag = cpu_to_be32(v);
407 }
408
409 /**
410  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
411  *
412  * The virtual start sector is the one that was originally submitted by the
413  * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
414  * start sector may be different. Remap protection information to match the
415  * physical LBA on writes, and back to the original seed on reads.
416  *
417  * Type 0 and 3 do not have a ref tag, so no remapping required.
418  */
419 static void nvme_dif_remap(struct request *req,
420                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
421 {
422         struct nvme_ns *ns = req->rq_disk->private_data;
423         struct bio_integrity_payload *bip;
424         struct t10_pi_tuple *pi;
425         void *p, *pmap;
426         u32 i, nlb, ts, phys, virt;
427
428         if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
429                 return;
430
431         bip = bio_integrity(req->bio);
432         if (!bip)
433                 return;
434
435         pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
436
437         p = pmap;
438         virt = bip_get_seed(bip);
439         phys = nvme_block_nr(ns, blk_rq_pos(req));
440         nlb = (blk_rq_bytes(req) >> ns->lba_shift);
441         ts = ns->disk->queue->integrity.tuple_size;
442
443         for (i = 0; i < nlb; i++, virt++, phys++) {
444                 pi = (struct t10_pi_tuple *)p;
445                 dif_swap(phys, virt, pi);
446                 p += ts;
447         }
448         kunmap_atomic(pmap);
449 }
450 #else /* CONFIG_BLK_DEV_INTEGRITY */
451 static void nvme_dif_remap(struct request *req,
452                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
453 {
454 }
455 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
456 {
457 }
458 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
459 {
460 }
461 #endif
462
463 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
464                 int total_len)
465 {
466         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
467         struct dma_pool *pool;
468         int length = total_len;
469         struct scatterlist *sg = iod->sg;
470         int dma_len = sg_dma_len(sg);
471         u64 dma_addr = sg_dma_address(sg);
472         u32 page_size = dev->ctrl.page_size;
473         int offset = dma_addr & (page_size - 1);
474         __le64 *prp_list;
475         __le64 **list = iod_list(req);
476         dma_addr_t prp_dma;
477         int nprps, i;
478
479         length -= (page_size - offset);
480         if (length <= 0)
481                 return true;
482
483         dma_len -= (page_size - offset);
484         if (dma_len) {
485                 dma_addr += (page_size - offset);
486         } else {
487                 sg = sg_next(sg);
488                 dma_addr = sg_dma_address(sg);
489                 dma_len = sg_dma_len(sg);
490         }
491
492         if (length <= page_size) {
493                 iod->first_dma = dma_addr;
494                 return true;
495         }
496
497         nprps = DIV_ROUND_UP(length, page_size);
498         if (nprps <= (256 / 8)) {
499                 pool = dev->prp_small_pool;
500                 iod->npages = 0;
501         } else {
502                 pool = dev->prp_page_pool;
503                 iod->npages = 1;
504         }
505
506         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
507         if (!prp_list) {
508                 iod->first_dma = dma_addr;
509                 iod->npages = -1;
510                 return false;
511         }
512         list[0] = prp_list;
513         iod->first_dma = prp_dma;
514         i = 0;
515         for (;;) {
516                 if (i == page_size >> 3) {
517                         __le64 *old_prp_list = prp_list;
518                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
519                         if (!prp_list)
520                                 return false;
521                         list[iod->npages++] = prp_list;
522                         prp_list[0] = old_prp_list[i - 1];
523                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
524                         i = 1;
525                 }
526                 prp_list[i++] = cpu_to_le64(dma_addr);
527                 dma_len -= page_size;
528                 dma_addr += page_size;
529                 length -= page_size;
530                 if (length <= 0)
531                         break;
532                 if (dma_len > 0)
533                         continue;
534                 BUG_ON(dma_len < 0);
535                 sg = sg_next(sg);
536                 dma_addr = sg_dma_address(sg);
537                 dma_len = sg_dma_len(sg);
538         }
539
540         return true;
541 }
542
543 static int nvme_map_data(struct nvme_dev *dev, struct request *req,
544                 struct nvme_command *cmnd)
545 {
546         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
547         struct request_queue *q = req->q;
548         enum dma_data_direction dma_dir = rq_data_dir(req) ?
549                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
550         int ret = BLK_MQ_RQ_QUEUE_ERROR;
551
552         sg_init_table(iod->sg, req->nr_phys_segments);
553         iod->nents = blk_rq_map_sg(q, req, iod->sg);
554         if (!iod->nents)
555                 goto out;
556
557         ret = BLK_MQ_RQ_QUEUE_BUSY;
558         if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
559                 goto out;
560
561         if (!nvme_setup_prps(dev, req, blk_rq_bytes(req)))
562                 goto out_unmap;
563
564         ret = BLK_MQ_RQ_QUEUE_ERROR;
565         if (blk_integrity_rq(req)) {
566                 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
567                         goto out_unmap;
568
569                 sg_init_table(&iod->meta_sg, 1);
570                 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
571                         goto out_unmap;
572
573                 if (rq_data_dir(req))
574                         nvme_dif_remap(req, nvme_dif_prep);
575
576                 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
577                         goto out_unmap;
578         }
579
580         cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
581         cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
582         if (blk_integrity_rq(req))
583                 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
584         return BLK_MQ_RQ_QUEUE_OK;
585
586 out_unmap:
587         dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
588 out:
589         return ret;
590 }
591
592 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
593 {
594         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
595         enum dma_data_direction dma_dir = rq_data_dir(req) ?
596                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
597
598         if (iod->nents) {
599                 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
600                 if (blk_integrity_rq(req)) {
601                         if (!rq_data_dir(req))
602                                 nvme_dif_remap(req, nvme_dif_complete);
603                         dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
604                 }
605         }
606
607         nvme_free_iod(dev, req);
608 }
609
610 /*
611  * We reuse the small pool to allocate the 16-byte range here as it is not
612  * worth having a special pool for these or additional cases to handle freeing
613  * the iod.
614  */
615 static int nvme_setup_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
616                 struct request *req, struct nvme_command *cmnd)
617 {
618         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
619         struct nvme_dsm_range *range;
620
621         range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
622                                                 &iod->first_dma);
623         if (!range)
624                 return BLK_MQ_RQ_QUEUE_BUSY;
625         iod_list(req)[0] = (__le64 *)range;
626         iod->npages = 0;
627
628         range->cattr = cpu_to_le32(0);
629         range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
630         range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
631
632         memset(cmnd, 0, sizeof(*cmnd));
633         cmnd->dsm.opcode = nvme_cmd_dsm;
634         cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
635         cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
636         cmnd->dsm.nr = 0;
637         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
638         return BLK_MQ_RQ_QUEUE_OK;
639 }
640
641 /*
642  * NOTE: ns is NULL when called on the admin queue.
643  */
644 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
645                          const struct blk_mq_queue_data *bd)
646 {
647         struct nvme_ns *ns = hctx->queue->queuedata;
648         struct nvme_queue *nvmeq = hctx->driver_data;
649         struct nvme_dev *dev = nvmeq->dev;
650         struct request *req = bd->rq;
651         struct nvme_command cmnd;
652         int ret = BLK_MQ_RQ_QUEUE_OK;
653
654         /*
655          * If formated with metadata, require the block layer provide a buffer
656          * unless this namespace is formated such that the metadata can be
657          * stripped/generated by the controller with PRACT=1.
658          */
659         if (ns && ns->ms && !blk_integrity_rq(req)) {
660                 if (!(ns->pi_type && ns->ms == 8) &&
661                                         req->cmd_type != REQ_TYPE_DRV_PRIV) {
662                         blk_mq_end_request(req, -EFAULT);
663                         return BLK_MQ_RQ_QUEUE_OK;
664                 }
665         }
666
667         ret = nvme_init_iod(req, dev);
668         if (ret)
669                 return ret;
670
671         if (req->cmd_flags & REQ_DISCARD) {
672                 ret = nvme_setup_discard(nvmeq, ns, req, &cmnd);
673         } else {
674                 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
675                         memcpy(&cmnd, req->cmd, sizeof(cmnd));
676                 else if (req->cmd_flags & REQ_FLUSH)
677                         nvme_setup_flush(ns, &cmnd);
678                 else
679                         nvme_setup_rw(ns, req, &cmnd);
680
681                 if (req->nr_phys_segments)
682                         ret = nvme_map_data(dev, req, &cmnd);
683         }
684
685         if (ret)
686                 goto out;
687
688         cmnd.common.command_id = req->tag;
689         blk_mq_start_request(req);
690
691         spin_lock_irq(&nvmeq->q_lock);
692         if (unlikely(nvmeq->cq_vector < 0)) {
693                 if (ns && !test_bit(NVME_NS_DEAD, &ns->flags))
694                         ret = BLK_MQ_RQ_QUEUE_BUSY;
695                 else
696                         ret = BLK_MQ_RQ_QUEUE_ERROR;
697                 spin_unlock_irq(&nvmeq->q_lock);
698                 goto out;
699         }
700         __nvme_submit_cmd(nvmeq, &cmnd);
701         nvme_process_cq(nvmeq);
702         spin_unlock_irq(&nvmeq->q_lock);
703         return BLK_MQ_RQ_QUEUE_OK;
704 out:
705         nvme_free_iod(dev, req);
706         return ret;
707 }
708
709 static void nvme_complete_rq(struct request *req)
710 {
711         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
712         struct nvme_dev *dev = iod->nvmeq->dev;
713         int error = 0;
714
715         nvme_unmap_data(dev, req);
716
717         if (unlikely(req->errors)) {
718                 if (nvme_req_needs_retry(req, req->errors)) {
719                         nvme_requeue_req(req);
720                         return;
721                 }
722
723                 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
724                         error = req->errors;
725                 else
726                         error = nvme_error_status(req->errors);
727         }
728
729         if (unlikely(iod->aborted)) {
730                 dev_warn(dev->dev,
731                         "completing aborted command with status: %04x\n",
732                         req->errors);
733         }
734
735         blk_mq_end_request(req, error);
736 }
737
738 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
739 {
740         u16 head, phase;
741
742         head = nvmeq->cq_head;
743         phase = nvmeq->cq_phase;
744
745         for (;;) {
746                 struct nvme_completion cqe = nvmeq->cqes[head];
747                 u16 status = le16_to_cpu(cqe.status);
748                 struct request *req;
749
750                 if ((status & 1) != phase)
751                         break;
752                 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
753                 if (++head == nvmeq->q_depth) {
754                         head = 0;
755                         phase = !phase;
756                 }
757
758                 if (tag && *tag == cqe.command_id)
759                         *tag = -1;
760
761                 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
762                         dev_warn(nvmeq->q_dmadev,
763                                 "invalid id %d completed on queue %d\n",
764                                 cqe.command_id, le16_to_cpu(cqe.sq_id));
765                         continue;
766                 }
767
768                 /*
769                  * AEN requests are special as they don't time out and can
770                  * survive any kind of queue freeze and often don't respond to
771                  * aborts.  We don't even bother to allocate a struct request
772                  * for them but rather special case them here.
773                  */
774                 if (unlikely(nvmeq->qid == 0 &&
775                                 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
776                         nvme_complete_async_event(nvmeq->dev, &cqe);
777                         continue;
778                 }
779
780                 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
781                 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
782                         u32 result = le32_to_cpu(cqe.result);
783                         req->special = (void *)(uintptr_t)result;
784                 }
785                 blk_mq_complete_request(req, status >> 1);
786
787         }
788
789         /* If the controller ignores the cq head doorbell and continuously
790          * writes to the queue, it is theoretically possible to wrap around
791          * the queue twice and mistakenly return IRQ_NONE.  Linux only
792          * requires that 0.1% of your interrupts are handled, so this isn't
793          * a big problem.
794          */
795         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
796                 return;
797
798         if (likely(nvmeq->cq_vector >= 0))
799                 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
800         nvmeq->cq_head = head;
801         nvmeq->cq_phase = phase;
802
803         nvmeq->cqe_seen = 1;
804 }
805
806 static void nvme_process_cq(struct nvme_queue *nvmeq)
807 {
808         __nvme_process_cq(nvmeq, NULL);
809 }
810
811 static irqreturn_t nvme_irq(int irq, void *data)
812 {
813         irqreturn_t result;
814         struct nvme_queue *nvmeq = data;
815         spin_lock(&nvmeq->q_lock);
816         nvme_process_cq(nvmeq);
817         result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
818         nvmeq->cqe_seen = 0;
819         spin_unlock(&nvmeq->q_lock);
820         return result;
821 }
822
823 static irqreturn_t nvme_irq_check(int irq, void *data)
824 {
825         struct nvme_queue *nvmeq = data;
826         struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
827         if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
828                 return IRQ_NONE;
829         return IRQ_WAKE_THREAD;
830 }
831
832 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
833 {
834         struct nvme_queue *nvmeq = hctx->driver_data;
835
836         if ((le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
837             nvmeq->cq_phase) {
838                 spin_lock_irq(&nvmeq->q_lock);
839                 __nvme_process_cq(nvmeq, &tag);
840                 spin_unlock_irq(&nvmeq->q_lock);
841
842                 if (tag == -1)
843                         return 1;
844         }
845
846         return 0;
847 }
848
849 static void nvme_submit_async_event(struct nvme_dev *dev)
850 {
851         struct nvme_command c;
852
853         memset(&c, 0, sizeof(c));
854         c.common.opcode = nvme_admin_async_event;
855         c.common.command_id = NVME_AQ_BLKMQ_DEPTH + --dev->ctrl.event_limit;
856
857         __nvme_submit_cmd(dev->queues[0], &c);
858 }
859
860 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
861 {
862         struct nvme_command c;
863
864         memset(&c, 0, sizeof(c));
865         c.delete_queue.opcode = opcode;
866         c.delete_queue.qid = cpu_to_le16(id);
867
868         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
869 }
870
871 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
872                                                 struct nvme_queue *nvmeq)
873 {
874         struct nvme_command c;
875         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
876
877         /*
878          * Note: we (ab)use the fact the the prp fields survive if no data
879          * is attached to the request.
880          */
881         memset(&c, 0, sizeof(c));
882         c.create_cq.opcode = nvme_admin_create_cq;
883         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
884         c.create_cq.cqid = cpu_to_le16(qid);
885         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
886         c.create_cq.cq_flags = cpu_to_le16(flags);
887         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
888
889         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
890 }
891
892 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
893                                                 struct nvme_queue *nvmeq)
894 {
895         struct nvme_command c;
896         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
897
898         /*
899          * Note: we (ab)use the fact the the prp fields survive if no data
900          * is attached to the request.
901          */
902         memset(&c, 0, sizeof(c));
903         c.create_sq.opcode = nvme_admin_create_sq;
904         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
905         c.create_sq.sqid = cpu_to_le16(qid);
906         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
907         c.create_sq.sq_flags = cpu_to_le16(flags);
908         c.create_sq.cqid = cpu_to_le16(qid);
909
910         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
911 }
912
913 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
914 {
915         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
916 }
917
918 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
919 {
920         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
921 }
922
923 static void abort_endio(struct request *req, int error)
924 {
925         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
926         struct nvme_queue *nvmeq = iod->nvmeq;
927         u32 result = (u32)(uintptr_t)req->special;
928         u16 status = req->errors;
929
930         dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
931         atomic_inc(&nvmeq->dev->ctrl.abort_limit);
932
933         blk_mq_free_request(req);
934 }
935
936 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
937 {
938         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
939         struct nvme_queue *nvmeq = iod->nvmeq;
940         struct nvme_dev *dev = nvmeq->dev;
941         struct request *abort_req;
942         struct nvme_command cmd;
943
944         /*
945          * Shutdown immediately if controller times out while starting. The
946          * reset work will see the pci device disabled when it gets the forced
947          * cancellation error. All outstanding requests are completed on
948          * shutdown, so we return BLK_EH_HANDLED.
949          */
950         if (test_bit(NVME_CTRL_RESETTING, &dev->flags)) {
951                 dev_warn(dev->dev,
952                          "I/O %d QID %d timeout, disable controller\n",
953                          req->tag, nvmeq->qid);
954                 nvme_dev_disable(dev, false);
955                 req->errors = NVME_SC_CANCELLED;
956                 return BLK_EH_HANDLED;
957         }
958
959         /*
960          * Shutdown the controller immediately and schedule a reset if the
961          * command was already aborted once before and still hasn't been
962          * returned to the driver, or if this is the admin queue.
963          */
964         if (!nvmeq->qid || iod->aborted) {
965                 dev_warn(dev->dev,
966                          "I/O %d QID %d timeout, reset controller\n",
967                          req->tag, nvmeq->qid);
968                 nvme_dev_disable(dev, false);
969                 queue_work(nvme_workq, &dev->reset_work);
970
971                 /*
972                  * Mark the request as handled, since the inline shutdown
973                  * forces all outstanding requests to complete.
974                  */
975                 req->errors = NVME_SC_CANCELLED;
976                 return BLK_EH_HANDLED;
977         }
978
979         iod->aborted = 1;
980
981         if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
982                 atomic_inc(&dev->ctrl.abort_limit);
983                 return BLK_EH_RESET_TIMER;
984         }
985
986         memset(&cmd, 0, sizeof(cmd));
987         cmd.abort.opcode = nvme_admin_abort_cmd;
988         cmd.abort.cid = req->tag;
989         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
990
991         dev_warn(nvmeq->q_dmadev, "I/O %d QID %d timeout, aborting\n",
992                                  req->tag, nvmeq->qid);
993
994         abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
995                         BLK_MQ_REQ_NOWAIT);
996         if (IS_ERR(abort_req)) {
997                 atomic_inc(&dev->ctrl.abort_limit);
998                 return BLK_EH_RESET_TIMER;
999         }
1000
1001         abort_req->timeout = ADMIN_TIMEOUT;
1002         abort_req->end_io_data = NULL;
1003         blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1004
1005         /*
1006          * The aborted req will be completed on receiving the abort req.
1007          * We enable the timer again. If hit twice, it'll cause a device reset,
1008          * as the device then is in a faulty state.
1009          */
1010         return BLK_EH_RESET_TIMER;
1011 }
1012
1013 static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
1014 {
1015         struct nvme_queue *nvmeq = data;
1016         int status;
1017
1018         if (!blk_mq_request_started(req))
1019                 return;
1020
1021         dev_dbg_ratelimited(nvmeq->q_dmadev,
1022                  "Cancelling I/O %d QID %d\n", req->tag, nvmeq->qid);
1023
1024         status = NVME_SC_ABORT_REQ;
1025         if (blk_queue_dying(req->q))
1026                 status |= NVME_SC_DNR;
1027         blk_mq_complete_request(req, status);
1028 }
1029
1030 static void nvme_free_queue(struct nvme_queue *nvmeq)
1031 {
1032         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1033                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1034         if (nvmeq->sq_cmds)
1035                 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1036                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1037         kfree(nvmeq);
1038 }
1039
1040 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1041 {
1042         int i;
1043
1044         for (i = dev->queue_count - 1; i >= lowest; i--) {
1045                 struct nvme_queue *nvmeq = dev->queues[i];
1046                 dev->queue_count--;
1047                 dev->queues[i] = NULL;
1048                 nvme_free_queue(nvmeq);
1049         }
1050 }
1051
1052 /**
1053  * nvme_suspend_queue - put queue into suspended state
1054  * @nvmeq - queue to suspend
1055  */
1056 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1057 {
1058         int vector;
1059
1060         spin_lock_irq(&nvmeq->q_lock);
1061         if (nvmeq->cq_vector == -1) {
1062                 spin_unlock_irq(&nvmeq->q_lock);
1063                 return 1;
1064         }
1065         vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1066         nvmeq->dev->online_queues--;
1067         nvmeq->cq_vector = -1;
1068         spin_unlock_irq(&nvmeq->q_lock);
1069
1070         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1071                 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
1072
1073         irq_set_affinity_hint(vector, NULL);
1074         free_irq(vector, nvmeq);
1075
1076         return 0;
1077 }
1078
1079 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1080 {
1081         spin_lock_irq(&nvmeq->q_lock);
1082         if (nvmeq->tags && *nvmeq->tags)
1083                 blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
1084         spin_unlock_irq(&nvmeq->q_lock);
1085 }
1086
1087 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1088 {
1089         struct nvme_queue *nvmeq = dev->queues[0];
1090
1091         if (!nvmeq)
1092                 return;
1093         if (nvme_suspend_queue(nvmeq))
1094                 return;
1095
1096         if (shutdown)
1097                 nvme_shutdown_ctrl(&dev->ctrl);
1098         else
1099                 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
1100                                                 dev->bar + NVME_REG_CAP));
1101
1102         spin_lock_irq(&nvmeq->q_lock);
1103         nvme_process_cq(nvmeq);
1104         spin_unlock_irq(&nvmeq->q_lock);
1105 }
1106
1107 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1108                                 int entry_size)
1109 {
1110         int q_depth = dev->q_depth;
1111         unsigned q_size_aligned = roundup(q_depth * entry_size,
1112                                           dev->ctrl.page_size);
1113
1114         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1115                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1116                 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1117                 q_depth = div_u64(mem_per_q, entry_size);
1118
1119                 /*
1120                  * Ensure the reduced q_depth is above some threshold where it
1121                  * would be better to map queues in system memory with the
1122                  * original depth
1123                  */
1124                 if (q_depth < 64)
1125                         return -ENOMEM;
1126         }
1127
1128         return q_depth;
1129 }
1130
1131 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1132                                 int qid, int depth)
1133 {
1134         if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1135                 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1136                                                       dev->ctrl.page_size);
1137                 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1138                 nvmeq->sq_cmds_io = dev->cmb + offset;
1139         } else {
1140                 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1141                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
1142                 if (!nvmeq->sq_cmds)
1143                         return -ENOMEM;
1144         }
1145
1146         return 0;
1147 }
1148
1149 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1150                                                         int depth)
1151 {
1152         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1153         if (!nvmeq)
1154                 return NULL;
1155
1156         nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1157                                           &nvmeq->cq_dma_addr, GFP_KERNEL);
1158         if (!nvmeq->cqes)
1159                 goto free_nvmeq;
1160
1161         if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1162                 goto free_cqdma;
1163
1164         nvmeq->q_dmadev = dev->dev;
1165         nvmeq->dev = dev;
1166         snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1167                         dev->ctrl.instance, qid);
1168         spin_lock_init(&nvmeq->q_lock);
1169         nvmeq->cq_head = 0;
1170         nvmeq->cq_phase = 1;
1171         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1172         nvmeq->q_depth = depth;
1173         nvmeq->qid = qid;
1174         nvmeq->cq_vector = -1;
1175         dev->queues[qid] = nvmeq;
1176
1177         /* make sure queue descriptor is set before queue count, for kthread */
1178         mb();
1179         dev->queue_count++;
1180
1181         return nvmeq;
1182
1183  free_cqdma:
1184         dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1185                                                         nvmeq->cq_dma_addr);
1186  free_nvmeq:
1187         kfree(nvmeq);
1188         return NULL;
1189 }
1190
1191 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1192                                                         const char *name)
1193 {
1194         if (use_threaded_interrupts)
1195                 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1196                                         nvme_irq_check, nvme_irq, IRQF_SHARED,
1197                                         name, nvmeq);
1198         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1199                                 IRQF_SHARED, name, nvmeq);
1200 }
1201
1202 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1203 {
1204         struct nvme_dev *dev = nvmeq->dev;
1205
1206         spin_lock_irq(&nvmeq->q_lock);
1207         nvmeq->sq_tail = 0;
1208         nvmeq->cq_head = 0;
1209         nvmeq->cq_phase = 1;
1210         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1211         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1212         dev->online_queues++;
1213         spin_unlock_irq(&nvmeq->q_lock);
1214 }
1215
1216 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1217 {
1218         struct nvme_dev *dev = nvmeq->dev;
1219         int result;
1220
1221         nvmeq->cq_vector = qid - 1;
1222         result = adapter_alloc_cq(dev, qid, nvmeq);
1223         if (result < 0)
1224                 return result;
1225
1226         result = adapter_alloc_sq(dev, qid, nvmeq);
1227         if (result < 0)
1228                 goto release_cq;
1229
1230         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1231         if (result < 0)
1232                 goto release_sq;
1233
1234         nvme_init_queue(nvmeq, qid);
1235         return result;
1236
1237  release_sq:
1238         adapter_delete_sq(dev, qid);
1239  release_cq:
1240         adapter_delete_cq(dev, qid);
1241         return result;
1242 }
1243
1244 static struct blk_mq_ops nvme_mq_admin_ops = {
1245         .queue_rq       = nvme_queue_rq,
1246         .complete       = nvme_complete_rq,
1247         .map_queue      = blk_mq_map_queue,
1248         .init_hctx      = nvme_admin_init_hctx,
1249         .exit_hctx      = nvme_admin_exit_hctx,
1250         .init_request   = nvme_admin_init_request,
1251         .timeout        = nvme_timeout,
1252 };
1253
1254 static struct blk_mq_ops nvme_mq_ops = {
1255         .queue_rq       = nvme_queue_rq,
1256         .complete       = nvme_complete_rq,
1257         .map_queue      = blk_mq_map_queue,
1258         .init_hctx      = nvme_init_hctx,
1259         .init_request   = nvme_init_request,
1260         .timeout        = nvme_timeout,
1261         .poll           = nvme_poll,
1262 };
1263
1264 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1265 {
1266         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1267                 /*
1268                  * If the controller was reset during removal, it's possible
1269                  * user requests may be waiting on a stopped queue. Start the
1270                  * queue to flush these to completion.
1271                  */
1272                 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1273                 blk_cleanup_queue(dev->ctrl.admin_q);
1274                 blk_mq_free_tag_set(&dev->admin_tagset);
1275         }
1276 }
1277
1278 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1279 {
1280         if (!dev->ctrl.admin_q) {
1281                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1282                 dev->admin_tagset.nr_hw_queues = 1;
1283
1284                 /*
1285                  * Subtract one to leave an empty queue entry for 'Full Queue'
1286                  * condition. See NVM-Express 1.2 specification, section 4.1.2.
1287                  */
1288                 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1289                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1290                 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1291                 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1292                 dev->admin_tagset.driver_data = dev;
1293
1294                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1295                         return -ENOMEM;
1296
1297                 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1298                 if (IS_ERR(dev->ctrl.admin_q)) {
1299                         blk_mq_free_tag_set(&dev->admin_tagset);
1300                         return -ENOMEM;
1301                 }
1302                 if (!blk_get_queue(dev->ctrl.admin_q)) {
1303                         nvme_dev_remove_admin(dev);
1304                         dev->ctrl.admin_q = NULL;
1305                         return -ENODEV;
1306                 }
1307         } else
1308                 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1309
1310         return 0;
1311 }
1312
1313 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1314 {
1315         int result;
1316         u32 aqa;
1317         u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1318         struct nvme_queue *nvmeq;
1319
1320         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
1321                                                 NVME_CAP_NSSRC(cap) : 0;
1322
1323         if (dev->subsystem &&
1324             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1325                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1326
1327         result = nvme_disable_ctrl(&dev->ctrl, cap);
1328         if (result < 0)
1329                 return result;
1330
1331         nvmeq = dev->queues[0];
1332         if (!nvmeq) {
1333                 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1334                 if (!nvmeq)
1335                         return -ENOMEM;
1336         }
1337
1338         aqa = nvmeq->q_depth - 1;
1339         aqa |= aqa << 16;
1340
1341         writel(aqa, dev->bar + NVME_REG_AQA);
1342         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1343         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1344
1345         result = nvme_enable_ctrl(&dev->ctrl, cap);
1346         if (result)
1347                 goto free_nvmeq;
1348
1349         nvmeq->cq_vector = 0;
1350         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1351         if (result) {
1352                 nvmeq->cq_vector = -1;
1353                 goto free_nvmeq;
1354         }
1355
1356         return result;
1357
1358  free_nvmeq:
1359         nvme_free_queues(dev, 0);
1360         return result;
1361 }
1362
1363 static int nvme_kthread(void *data)
1364 {
1365         struct nvme_dev *dev, *next;
1366
1367         while (!kthread_should_stop()) {
1368                 set_current_state(TASK_INTERRUPTIBLE);
1369                 spin_lock(&dev_list_lock);
1370                 list_for_each_entry_safe(dev, next, &dev_list, node) {
1371                         int i;
1372                         u32 csts = readl(dev->bar + NVME_REG_CSTS);
1373
1374                         /*
1375                          * Skip controllers currently under reset.
1376                          */
1377                         if (work_pending(&dev->reset_work) || work_busy(&dev->reset_work))
1378                                 continue;
1379
1380                         if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) ||
1381                                                         csts & NVME_CSTS_CFS) {
1382                                 if (queue_work(nvme_workq, &dev->reset_work)) {
1383                                         dev_warn(dev->dev,
1384                                                 "Failed status: %x, reset controller\n",
1385                                                 readl(dev->bar + NVME_REG_CSTS));
1386                                 }
1387                                 continue;
1388                         }
1389                         for (i = 0; i < dev->queue_count; i++) {
1390                                 struct nvme_queue *nvmeq = dev->queues[i];
1391                                 if (!nvmeq)
1392                                         continue;
1393                                 spin_lock_irq(&nvmeq->q_lock);
1394                                 nvme_process_cq(nvmeq);
1395
1396                                 while (i == 0 && dev->ctrl.event_limit > 0)
1397                                         nvme_submit_async_event(dev);
1398                                 spin_unlock_irq(&nvmeq->q_lock);
1399                         }
1400                 }
1401                 spin_unlock(&dev_list_lock);
1402                 schedule_timeout(round_jiffies_relative(HZ));
1403         }
1404         return 0;
1405 }
1406
1407 static int nvme_create_io_queues(struct nvme_dev *dev)
1408 {
1409         unsigned i;
1410         int ret = 0;
1411
1412         for (i = dev->queue_count; i <= dev->max_qid; i++) {
1413                 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1414                         ret = -ENOMEM;
1415                         break;
1416                 }
1417         }
1418
1419         for (i = dev->online_queues; i <= dev->queue_count - 1; i++) {
1420                 ret = nvme_create_queue(dev->queues[i], i);
1421                 if (ret) {
1422                         nvme_free_queues(dev, i);
1423                         break;
1424                 }
1425         }
1426
1427         /*
1428          * Ignore failing Create SQ/CQ commands, we can continue with less
1429          * than the desired aount of queues, and even a controller without
1430          * I/O queues an still be used to issue admin commands.  This might
1431          * be useful to upgrade a buggy firmware for example.
1432          */
1433         return ret >= 0 ? 0 : ret;
1434 }
1435
1436 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1437 {
1438         u64 szu, size, offset;
1439         u32 cmbloc;
1440         resource_size_t bar_size;
1441         struct pci_dev *pdev = to_pci_dev(dev->dev);
1442         void __iomem *cmb;
1443         dma_addr_t dma_addr;
1444
1445         if (!use_cmb_sqes)
1446                 return NULL;
1447
1448         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1449         if (!(NVME_CMB_SZ(dev->cmbsz)))
1450                 return NULL;
1451
1452         cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1453
1454         szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1455         size = szu * NVME_CMB_SZ(dev->cmbsz);
1456         offset = szu * NVME_CMB_OFST(cmbloc);
1457         bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1458
1459         if (offset > bar_size)
1460                 return NULL;
1461
1462         /*
1463          * Controllers may support a CMB size larger than their BAR,
1464          * for example, due to being behind a bridge. Reduce the CMB to
1465          * the reported size of the BAR
1466          */
1467         if (size > bar_size - offset)
1468                 size = bar_size - offset;
1469
1470         dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1471         cmb = ioremap_wc(dma_addr, size);
1472         if (!cmb)
1473                 return NULL;
1474
1475         dev->cmb_dma_addr = dma_addr;
1476         dev->cmb_size = size;
1477         return cmb;
1478 }
1479
1480 static inline void nvme_release_cmb(struct nvme_dev *dev)
1481 {
1482         if (dev->cmb) {
1483                 iounmap(dev->cmb);
1484                 dev->cmb = NULL;
1485         }
1486 }
1487
1488 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1489 {
1490         return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1491 }
1492
1493 static int nvme_setup_io_queues(struct nvme_dev *dev)
1494 {
1495         struct nvme_queue *adminq = dev->queues[0];
1496         struct pci_dev *pdev = to_pci_dev(dev->dev);
1497         int result, i, vecs, nr_io_queues, size;
1498
1499         nr_io_queues = num_possible_cpus();
1500         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1501         if (result < 0)
1502                 return result;
1503
1504         /*
1505          * Degraded controllers might return an error when setting the queue
1506          * count.  We still want to be able to bring them online and offer
1507          * access to the admin queue, as that might be only way to fix them up.
1508          */
1509         if (result > 0) {
1510                 dev_err(dev->dev, "Could not set queue count (%d)\n", result);
1511                 nr_io_queues = 0;
1512                 result = 0;
1513         }
1514
1515         if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1516                 result = nvme_cmb_qdepth(dev, nr_io_queues,
1517                                 sizeof(struct nvme_command));
1518                 if (result > 0)
1519                         dev->q_depth = result;
1520                 else
1521                         nvme_release_cmb(dev);
1522         }
1523
1524         size = db_bar_size(dev, nr_io_queues);
1525         if (size > 8192) {
1526                 iounmap(dev->bar);
1527                 do {
1528                         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1529                         if (dev->bar)
1530                                 break;
1531                         if (!--nr_io_queues)
1532                                 return -ENOMEM;
1533                         size = db_bar_size(dev, nr_io_queues);
1534                 } while (1);
1535                 dev->dbs = dev->bar + 4096;
1536                 adminq->q_db = dev->dbs;
1537         }
1538
1539         /* Deregister the admin queue's interrupt */
1540         free_irq(dev->entry[0].vector, adminq);
1541
1542         /*
1543          * If we enable msix early due to not intx, disable it again before
1544          * setting up the full range we need.
1545          */
1546         if (!pdev->irq)
1547                 pci_disable_msix(pdev);
1548
1549         for (i = 0; i < nr_io_queues; i++)
1550                 dev->entry[i].entry = i;
1551         vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
1552         if (vecs < 0) {
1553                 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
1554                 if (vecs < 0) {
1555                         vecs = 1;
1556                 } else {
1557                         for (i = 0; i < vecs; i++)
1558                                 dev->entry[i].vector = i + pdev->irq;
1559                 }
1560         }
1561
1562         /*
1563          * Should investigate if there's a performance win from allocating
1564          * more queues than interrupt vectors; it might allow the submission
1565          * path to scale better, even if the receive path is limited by the
1566          * number of interrupts.
1567          */
1568         nr_io_queues = vecs;
1569         dev->max_qid = nr_io_queues;
1570
1571         result = queue_request_irq(dev, adminq, adminq->irqname);
1572         if (result) {
1573                 adminq->cq_vector = -1;
1574                 goto free_queues;
1575         }
1576
1577         /* Free previously allocated queues that are no longer usable */
1578         nvme_free_queues(dev, nr_io_queues + 1);
1579         return nvme_create_io_queues(dev);
1580
1581  free_queues:
1582         nvme_free_queues(dev, 1);
1583         return result;
1584 }
1585
1586 static void nvme_set_irq_hints(struct nvme_dev *dev)
1587 {
1588         struct nvme_queue *nvmeq;
1589         int i;
1590
1591         for (i = 0; i < dev->online_queues; i++) {
1592                 nvmeq = dev->queues[i];
1593
1594                 if (!nvmeq->tags || !(*nvmeq->tags))
1595                         continue;
1596
1597                 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1598                                         blk_mq_tags_cpumask(*nvmeq->tags));
1599         }
1600 }
1601
1602 static void nvme_dev_scan(struct work_struct *work)
1603 {
1604         struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
1605
1606         if (!dev->tagset.tags)
1607                 return;
1608         nvme_scan_namespaces(&dev->ctrl);
1609         nvme_set_irq_hints(dev);
1610 }
1611
1612 static void nvme_del_queue_end(struct request *req, int error)
1613 {
1614         struct nvme_queue *nvmeq = req->end_io_data;
1615
1616         blk_mq_free_request(req);
1617         complete(&nvmeq->dev->ioq_wait);
1618 }
1619
1620 static void nvme_del_cq_end(struct request *req, int error)
1621 {
1622         struct nvme_queue *nvmeq = req->end_io_data;
1623
1624         if (!error) {
1625                 unsigned long flags;
1626
1627                 spin_lock_irqsave(&nvmeq->q_lock, flags);
1628                 nvme_process_cq(nvmeq);
1629                 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1630         }
1631
1632         nvme_del_queue_end(req, error);
1633 }
1634
1635 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1636 {
1637         struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1638         struct request *req;
1639         struct nvme_command cmd;
1640
1641         memset(&cmd, 0, sizeof(cmd));
1642         cmd.delete_queue.opcode = opcode;
1643         cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1644
1645         req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
1646         if (IS_ERR(req))
1647                 return PTR_ERR(req);
1648
1649         req->timeout = ADMIN_TIMEOUT;
1650         req->end_io_data = nvmeq;
1651
1652         blk_execute_rq_nowait(q, NULL, req, false,
1653                         opcode == nvme_admin_delete_cq ?
1654                                 nvme_del_cq_end : nvme_del_queue_end);
1655         return 0;
1656 }
1657
1658 static void nvme_disable_io_queues(struct nvme_dev *dev)
1659 {
1660         int pass;
1661         unsigned long timeout;
1662         u8 opcode = nvme_admin_delete_sq;
1663
1664         for (pass = 0; pass < 2; pass++) {
1665                 int sent = 0, i = dev->queue_count - 1;
1666
1667                 reinit_completion(&dev->ioq_wait);
1668  retry:
1669                 timeout = ADMIN_TIMEOUT;
1670                 for (; i > 0; i--) {
1671                         struct nvme_queue *nvmeq = dev->queues[i];
1672
1673                         if (!pass)
1674                                 nvme_suspend_queue(nvmeq);
1675                         if (nvme_delete_queue(nvmeq, opcode))
1676                                 break;
1677                         ++sent;
1678                 }
1679                 while (sent--) {
1680                         timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1681                         if (timeout == 0)
1682                                 return;
1683                         if (i)
1684                                 goto retry;
1685                 }
1686                 opcode = nvme_admin_delete_cq;
1687         }
1688 }
1689
1690 /*
1691  * Return: error value if an error occurred setting up the queues or calling
1692  * Identify Device.  0 if these succeeded, even if adding some of the
1693  * namespaces failed.  At the moment, these failures are silent.  TBD which
1694  * failures should be reported.
1695  */
1696 static int nvme_dev_add(struct nvme_dev *dev)
1697 {
1698         if (!dev->ctrl.tagset) {
1699                 dev->tagset.ops = &nvme_mq_ops;
1700                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1701                 dev->tagset.timeout = NVME_IO_TIMEOUT;
1702                 dev->tagset.numa_node = dev_to_node(dev->dev);
1703                 dev->tagset.queue_depth =
1704                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1705                 dev->tagset.cmd_size = nvme_cmd_size(dev);
1706                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1707                 dev->tagset.driver_data = dev;
1708
1709                 if (blk_mq_alloc_tag_set(&dev->tagset))
1710                         return 0;
1711                 dev->ctrl.tagset = &dev->tagset;
1712         }
1713         nvme_queue_scan(dev);
1714         return 0;
1715 }
1716
1717 static int nvme_pci_enable(struct nvme_dev *dev)
1718 {
1719         u64 cap;
1720         int result = -ENOMEM;
1721         struct pci_dev *pdev = to_pci_dev(dev->dev);
1722
1723         if (pci_enable_device_mem(pdev))
1724                 return result;
1725
1726         dev->entry[0].vector = pdev->irq;
1727         pci_set_master(pdev);
1728
1729         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1730             dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1731                 goto disable;
1732
1733         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1734                 result = -ENODEV;
1735                 goto disable;
1736         }
1737
1738         /*
1739          * Some devices don't advertse INTx interrupts, pre-enable a single
1740          * MSIX vec for setup. We'll adjust this later.
1741          */
1742         if (!pdev->irq) {
1743                 result = pci_enable_msix(pdev, dev->entry, 1);
1744                 if (result < 0)
1745                         goto disable;
1746         }
1747
1748         cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1749
1750         dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1751         dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1752         dev->dbs = dev->bar + 4096;
1753
1754         /*
1755          * Temporary fix for the Apple controller found in the MacBook8,1 and
1756          * some MacBook7,1 to avoid controller resets and data loss.
1757          */
1758         if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1759                 dev->q_depth = 2;
1760                 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1761                         "queue depth=%u to work around controller resets\n",
1762                         dev->q_depth);
1763         }
1764
1765         if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
1766                 dev->cmb = nvme_map_cmb(dev);
1767
1768         pci_enable_pcie_error_reporting(pdev);
1769         pci_save_state(pdev);
1770         return 0;
1771
1772  disable:
1773         pci_disable_device(pdev);
1774         return result;
1775 }
1776
1777 static void nvme_dev_unmap(struct nvme_dev *dev)
1778 {
1779         if (dev->bar)
1780                 iounmap(dev->bar);
1781         pci_release_regions(to_pci_dev(dev->dev));
1782 }
1783
1784 static void nvme_pci_disable(struct nvme_dev *dev)
1785 {
1786         struct pci_dev *pdev = to_pci_dev(dev->dev);
1787
1788         if (pdev->msi_enabled)
1789                 pci_disable_msi(pdev);
1790         else if (pdev->msix_enabled)
1791                 pci_disable_msix(pdev);
1792
1793         if (pci_is_enabled(pdev)) {
1794                 pci_disable_pcie_error_reporting(pdev);
1795                 pci_disable_device(pdev);
1796         }
1797 }
1798
1799 static int nvme_dev_list_add(struct nvme_dev *dev)
1800 {
1801         bool start_thread = false;
1802
1803         spin_lock(&dev_list_lock);
1804         if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
1805                 start_thread = true;
1806                 nvme_thread = NULL;
1807         }
1808         list_add(&dev->node, &dev_list);
1809         spin_unlock(&dev_list_lock);
1810
1811         if (start_thread) {
1812                 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
1813                 wake_up_all(&nvme_kthread_wait);
1814         } else
1815                 wait_event_killable(nvme_kthread_wait, nvme_thread);
1816
1817         if (IS_ERR_OR_NULL(nvme_thread))
1818                 return nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
1819
1820         return 0;
1821 }
1822
1823 /*
1824 * Remove the node from the device list and check
1825 * for whether or not we need to stop the nvme_thread.
1826 */
1827 static void nvme_dev_list_remove(struct nvme_dev *dev)
1828 {
1829         struct task_struct *tmp = NULL;
1830
1831         spin_lock(&dev_list_lock);
1832         list_del_init(&dev->node);
1833         if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
1834                 tmp = nvme_thread;
1835                 nvme_thread = NULL;
1836         }
1837         spin_unlock(&dev_list_lock);
1838
1839         if (tmp)
1840                 kthread_stop(tmp);
1841 }
1842
1843 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1844 {
1845         int i;
1846         u32 csts = -1;
1847
1848         nvme_dev_list_remove(dev);
1849
1850         mutex_lock(&dev->shutdown_lock);
1851         if (pci_is_enabled(to_pci_dev(dev->dev))) {
1852                 nvme_stop_queues(&dev->ctrl);
1853                 csts = readl(dev->bar + NVME_REG_CSTS);
1854         }
1855         if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
1856                 for (i = dev->queue_count - 1; i >= 0; i--) {
1857                         struct nvme_queue *nvmeq = dev->queues[i];
1858                         nvme_suspend_queue(nvmeq);
1859                 }
1860         } else {
1861                 nvme_disable_io_queues(dev);
1862                 nvme_disable_admin_queue(dev, shutdown);
1863         }
1864         nvme_pci_disable(dev);
1865
1866         for (i = dev->queue_count - 1; i >= 0; i--)
1867                 nvme_clear_queue(dev->queues[i]);
1868         mutex_unlock(&dev->shutdown_lock);
1869 }
1870
1871 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1872 {
1873         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1874                                                 PAGE_SIZE, PAGE_SIZE, 0);
1875         if (!dev->prp_page_pool)
1876                 return -ENOMEM;
1877
1878         /* Optimisation for I/Os between 4k and 128k */
1879         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1880                                                 256, 256, 0);
1881         if (!dev->prp_small_pool) {
1882                 dma_pool_destroy(dev->prp_page_pool);
1883                 return -ENOMEM;
1884         }
1885         return 0;
1886 }
1887
1888 static void nvme_release_prp_pools(struct nvme_dev *dev)
1889 {
1890         dma_pool_destroy(dev->prp_page_pool);
1891         dma_pool_destroy(dev->prp_small_pool);
1892 }
1893
1894 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1895 {
1896         struct nvme_dev *dev = to_nvme_dev(ctrl);
1897
1898         put_device(dev->dev);
1899         if (dev->tagset.tags)
1900                 blk_mq_free_tag_set(&dev->tagset);
1901         if (dev->ctrl.admin_q)
1902                 blk_put_queue(dev->ctrl.admin_q);
1903         kfree(dev->queues);
1904         kfree(dev->entry);
1905         kfree(dev);
1906 }
1907
1908 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1909 {
1910         dev_warn(dev->dev, "Removing after probe failure status: %d\n", status);
1911
1912         kref_get(&dev->ctrl.kref);
1913         nvme_dev_disable(dev, false);
1914         if (!schedule_work(&dev->remove_work))
1915                 nvme_put_ctrl(&dev->ctrl);
1916 }
1917
1918 static void nvme_reset_work(struct work_struct *work)
1919 {
1920         struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
1921         int result = -ENODEV;
1922
1923         if (WARN_ON(test_bit(NVME_CTRL_RESETTING, &dev->flags)))
1924                 goto out;
1925
1926         /*
1927          * If we're called to reset a live controller first shut it down before
1928          * moving on.
1929          */
1930         if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
1931                 nvme_dev_disable(dev, false);
1932
1933         set_bit(NVME_CTRL_RESETTING, &dev->flags);
1934
1935         result = nvme_pci_enable(dev);
1936         if (result)
1937                 goto out;
1938
1939         result = nvme_configure_admin_queue(dev);
1940         if (result)
1941                 goto out;
1942
1943         nvme_init_queue(dev->queues[0], 0);
1944         result = nvme_alloc_admin_tags(dev);
1945         if (result)
1946                 goto out;
1947
1948         result = nvme_init_identify(&dev->ctrl);
1949         if (result)
1950                 goto out;
1951
1952         result = nvme_setup_io_queues(dev);
1953         if (result)
1954                 goto out;
1955
1956         dev->ctrl.event_limit = NVME_NR_AEN_COMMANDS;
1957
1958         result = nvme_dev_list_add(dev);
1959         if (result)
1960                 goto out;
1961
1962         /*
1963          * Keep the controller around but remove all namespaces if we don't have
1964          * any working I/O queue.
1965          */
1966         if (dev->online_queues < 2) {
1967                 dev_warn(dev->dev, "IO queues not created\n");
1968                 nvme_remove_namespaces(&dev->ctrl);
1969         } else {
1970                 nvme_start_queues(&dev->ctrl);
1971                 nvme_dev_add(dev);
1972         }
1973
1974         clear_bit(NVME_CTRL_RESETTING, &dev->flags);
1975         return;
1976
1977  out:
1978         nvme_remove_dead_ctrl(dev, result);
1979 }
1980
1981 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
1982 {
1983         struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
1984         struct pci_dev *pdev = to_pci_dev(dev->dev);
1985
1986         nvme_kill_queues(&dev->ctrl);
1987         if (pci_get_drvdata(pdev))
1988                 pci_stop_and_remove_bus_device_locked(pdev);
1989         nvme_put_ctrl(&dev->ctrl);
1990 }
1991
1992 static int nvme_reset(struct nvme_dev *dev)
1993 {
1994         if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
1995                 return -ENODEV;
1996
1997         if (!queue_work(nvme_workq, &dev->reset_work))
1998                 return -EBUSY;
1999
2000         flush_work(&dev->reset_work);
2001         return 0;
2002 }
2003
2004 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2005 {
2006         *val = readl(to_nvme_dev(ctrl)->bar + off);
2007         return 0;
2008 }
2009
2010 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2011 {
2012         writel(val, to_nvme_dev(ctrl)->bar + off);
2013         return 0;
2014 }
2015
2016 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2017 {
2018         *val = readq(to_nvme_dev(ctrl)->bar + off);
2019         return 0;
2020 }
2021
2022 static bool nvme_pci_io_incapable(struct nvme_ctrl *ctrl)
2023 {
2024         struct nvme_dev *dev = to_nvme_dev(ctrl);
2025
2026         return !dev->bar || dev->online_queues < 2;
2027 }
2028
2029 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
2030 {
2031         return nvme_reset(to_nvme_dev(ctrl));
2032 }
2033
2034 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2035         .reg_read32             = nvme_pci_reg_read32,
2036         .reg_write32            = nvme_pci_reg_write32,
2037         .reg_read64             = nvme_pci_reg_read64,
2038         .io_incapable           = nvme_pci_io_incapable,
2039         .reset_ctrl             = nvme_pci_reset_ctrl,
2040         .free_ctrl              = nvme_pci_free_ctrl,
2041 };
2042
2043 static int nvme_dev_map(struct nvme_dev *dev)
2044 {
2045         int bars;
2046         struct pci_dev *pdev = to_pci_dev(dev->dev);
2047
2048         bars = pci_select_bars(pdev, IORESOURCE_MEM);
2049         if (!bars)
2050                 return -ENODEV;
2051         if (pci_request_selected_regions(pdev, bars, "nvme"))
2052                 return -ENODEV;
2053
2054         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2055         if (!dev->bar)
2056                 goto release;
2057
2058        return 0;
2059   release:
2060        pci_release_regions(pdev);
2061        return -ENODEV;
2062 }
2063
2064 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2065 {
2066         int node, result = -ENOMEM;
2067         struct nvme_dev *dev;
2068
2069         node = dev_to_node(&pdev->dev);
2070         if (node == NUMA_NO_NODE)
2071                 set_dev_node(&pdev->dev, 0);
2072
2073         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2074         if (!dev)
2075                 return -ENOMEM;
2076         dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2077                                                         GFP_KERNEL, node);
2078         if (!dev->entry)
2079                 goto free;
2080         dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2081                                                         GFP_KERNEL, node);
2082         if (!dev->queues)
2083                 goto free;
2084
2085         dev->dev = get_device(&pdev->dev);
2086         pci_set_drvdata(pdev, dev);
2087
2088         result = nvme_dev_map(dev);
2089         if (result)
2090                 goto free;
2091
2092         INIT_LIST_HEAD(&dev->node);
2093         INIT_WORK(&dev->scan_work, nvme_dev_scan);
2094         INIT_WORK(&dev->reset_work, nvme_reset_work);
2095         INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2096         mutex_init(&dev->shutdown_lock);
2097         init_completion(&dev->ioq_wait);
2098
2099         result = nvme_setup_prp_pools(dev);
2100         if (result)
2101                 goto put_pci;
2102
2103         result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2104                         id->driver_data);
2105         if (result)
2106                 goto release_pools;
2107
2108         queue_work(nvme_workq, &dev->reset_work);
2109         return 0;
2110
2111  release_pools:
2112         nvme_release_prp_pools(dev);
2113  put_pci:
2114         put_device(dev->dev);
2115         nvme_dev_unmap(dev);
2116  free:
2117         kfree(dev->queues);
2118         kfree(dev->entry);
2119         kfree(dev);
2120         return result;
2121 }
2122
2123 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2124 {
2125         struct nvme_dev *dev = pci_get_drvdata(pdev);
2126
2127         if (prepare)
2128                 nvme_dev_disable(dev, false);
2129         else
2130                 queue_work(nvme_workq, &dev->reset_work);
2131 }
2132
2133 static void nvme_shutdown(struct pci_dev *pdev)
2134 {
2135         struct nvme_dev *dev = pci_get_drvdata(pdev);
2136         nvme_dev_disable(dev, true);
2137 }
2138
2139 /*
2140  * The driver's remove may be called on a device in a partially initialized
2141  * state. This function must not have any dependencies on the device state in
2142  * order to proceed.
2143  */
2144 static void nvme_remove(struct pci_dev *pdev)
2145 {
2146         struct nvme_dev *dev = pci_get_drvdata(pdev);
2147
2148         set_bit(NVME_CTRL_REMOVING, &dev->flags);
2149         pci_set_drvdata(pdev, NULL);
2150         flush_work(&dev->scan_work);
2151         nvme_remove_namespaces(&dev->ctrl);
2152         nvme_uninit_ctrl(&dev->ctrl);
2153         nvme_dev_disable(dev, true);
2154         flush_work(&dev->reset_work);
2155         nvme_dev_remove_admin(dev);
2156         nvme_free_queues(dev, 0);
2157         nvme_release_cmb(dev);
2158         nvme_release_prp_pools(dev);
2159         nvme_dev_unmap(dev);
2160         nvme_put_ctrl(&dev->ctrl);
2161 }
2162
2163 #ifdef CONFIG_PM_SLEEP
2164 static int nvme_suspend(struct device *dev)
2165 {
2166         struct pci_dev *pdev = to_pci_dev(dev);
2167         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2168
2169         nvme_dev_disable(ndev, true);
2170         return 0;
2171 }
2172
2173 static int nvme_resume(struct device *dev)
2174 {
2175         struct pci_dev *pdev = to_pci_dev(dev);
2176         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2177
2178         queue_work(nvme_workq, &ndev->reset_work);
2179         return 0;
2180 }
2181 #endif
2182
2183 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2184
2185 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2186                                                 pci_channel_state_t state)
2187 {
2188         struct nvme_dev *dev = pci_get_drvdata(pdev);
2189
2190         /*
2191          * A frozen channel requires a reset. When detected, this method will
2192          * shutdown the controller to quiesce. The controller will be restarted
2193          * after the slot reset through driver's slot_reset callback.
2194          */
2195         dev_warn(&pdev->dev, "error detected: state:%d\n", state);
2196         switch (state) {
2197         case pci_channel_io_normal:
2198                 return PCI_ERS_RESULT_CAN_RECOVER;
2199         case pci_channel_io_frozen:
2200                 nvme_dev_disable(dev, false);
2201                 return PCI_ERS_RESULT_NEED_RESET;
2202         case pci_channel_io_perm_failure:
2203                 return PCI_ERS_RESULT_DISCONNECT;
2204         }
2205         return PCI_ERS_RESULT_NEED_RESET;
2206 }
2207
2208 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2209 {
2210         struct nvme_dev *dev = pci_get_drvdata(pdev);
2211
2212         dev_info(&pdev->dev, "restart after slot reset\n");
2213         pci_restore_state(pdev);
2214         queue_work(nvme_workq, &dev->reset_work);
2215         return PCI_ERS_RESULT_RECOVERED;
2216 }
2217
2218 static void nvme_error_resume(struct pci_dev *pdev)
2219 {
2220         pci_cleanup_aer_uncorrect_error_status(pdev);
2221 }
2222
2223 static const struct pci_error_handlers nvme_err_handler = {
2224         .error_detected = nvme_error_detected,
2225         .slot_reset     = nvme_slot_reset,
2226         .resume         = nvme_error_resume,
2227         .reset_notify   = nvme_reset_notify,
2228 };
2229
2230 /* Move to pci_ids.h later */
2231 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
2232
2233 static const struct pci_device_id nvme_id_table[] = {
2234         { PCI_VDEVICE(INTEL, 0x0953),
2235                 .driver_data = NVME_QUIRK_STRIPE_SIZE, },
2236         { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
2237                 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2238         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2239         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2240         { 0, }
2241 };
2242 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2243
2244 static struct pci_driver nvme_driver = {
2245         .name           = "nvme",
2246         .id_table       = nvme_id_table,
2247         .probe          = nvme_probe,
2248         .remove         = nvme_remove,
2249         .shutdown       = nvme_shutdown,
2250         .driver         = {
2251                 .pm     = &nvme_dev_pm_ops,
2252         },
2253         .err_handler    = &nvme_err_handler,
2254 };
2255
2256 static int __init nvme_init(void)
2257 {
2258         int result;
2259
2260         init_waitqueue_head(&nvme_kthread_wait);
2261
2262         nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2263         if (!nvme_workq)
2264                 return -ENOMEM;
2265
2266         result = nvme_core_init();
2267         if (result < 0)
2268                 goto kill_workq;
2269
2270         result = pci_register_driver(&nvme_driver);
2271         if (result)
2272                 goto core_exit;
2273         return 0;
2274
2275  core_exit:
2276         nvme_core_exit();
2277  kill_workq:
2278         destroy_workqueue(nvme_workq);
2279         return result;
2280 }
2281
2282 static void __exit nvme_exit(void)
2283 {
2284         pci_unregister_driver(&nvme_driver);
2285         nvme_core_exit();
2286         destroy_workqueue(nvme_workq);
2287         BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
2288         _nvme_check_size();
2289 }
2290
2291 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2292 MODULE_LICENSE("GPL");
2293 MODULE_VERSION("1.0");
2294 module_init(nvme_init);
2295 module_exit(nvme_exit);