Merge branch 'core-objtool-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-block.git] / drivers / nvme / host / pci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6
7 #include <linux/aer.h>
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq.h>
11 #include <linux/blk-mq-pci.h>
12 #include <linux/dmi.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/mutex.h>
19 #include <linux/once.h>
20 #include <linux/pci.h>
21 #include <linux/suspend.h>
22 #include <linux/t10-pi.h>
23 #include <linux/types.h>
24 #include <linux/io-64-nonatomic-lo-hi.h>
25 #include <linux/sed-opal.h>
26 #include <linux/pci-p2pdma.h>
27
28 #include "trace.h"
29 #include "nvme.h"
30
31 #define SQ_SIZE(q)      ((q)->q_depth << (q)->sqes)
32 #define CQ_SIZE(q)      ((q)->q_depth * sizeof(struct nvme_completion))
33
34 #define SGES_PER_PAGE   (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
35
36 /*
37  * These can be higher, but we need to ensure that any command doesn't
38  * require an sg allocation that needs more than a page of data.
39  */
40 #define NVME_MAX_KB_SZ  4096
41 #define NVME_MAX_SEGS   127
42
43 static int use_threaded_interrupts;
44 module_param(use_threaded_interrupts, int, 0);
45
46 static bool use_cmb_sqes = true;
47 module_param(use_cmb_sqes, bool, 0444);
48 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
49
50 static unsigned int max_host_mem_size_mb = 128;
51 module_param(max_host_mem_size_mb, uint, 0444);
52 MODULE_PARM_DESC(max_host_mem_size_mb,
53         "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
54
55 static unsigned int sgl_threshold = SZ_32K;
56 module_param(sgl_threshold, uint, 0644);
57 MODULE_PARM_DESC(sgl_threshold,
58                 "Use SGLs when average request segment size is larger or equal to "
59                 "this size. Use 0 to disable SGLs.");
60
61 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
62 static const struct kernel_param_ops io_queue_depth_ops = {
63         .set = io_queue_depth_set,
64         .get = param_get_int,
65 };
66
67 static int io_queue_depth = 1024;
68 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
69 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
70
71 static unsigned int write_queues;
72 module_param(write_queues, uint, 0644);
73 MODULE_PARM_DESC(write_queues,
74         "Number of queues to use for writes. If not set, reads and writes "
75         "will share a queue set.");
76
77 static unsigned int poll_queues;
78 module_param(poll_queues, uint, 0644);
79 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
80
81 struct nvme_dev;
82 struct nvme_queue;
83
84 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
85 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
86
87 /*
88  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
89  */
90 struct nvme_dev {
91         struct nvme_queue *queues;
92         struct blk_mq_tag_set tagset;
93         struct blk_mq_tag_set admin_tagset;
94         u32 __iomem *dbs;
95         struct device *dev;
96         struct dma_pool *prp_page_pool;
97         struct dma_pool *prp_small_pool;
98         unsigned online_queues;
99         unsigned max_qid;
100         unsigned io_queues[HCTX_MAX_TYPES];
101         unsigned int num_vecs;
102         int q_depth;
103         int io_sqes;
104         u32 db_stride;
105         void __iomem *bar;
106         unsigned long bar_mapped_size;
107         struct work_struct remove_work;
108         struct mutex shutdown_lock;
109         bool subsystem;
110         u64 cmb_size;
111         bool cmb_use_sqes;
112         u32 cmbsz;
113         u32 cmbloc;
114         struct nvme_ctrl ctrl;
115         u32 last_ps;
116
117         mempool_t *iod_mempool;
118
119         /* shadow doorbell buffer support: */
120         u32 *dbbuf_dbs;
121         dma_addr_t dbbuf_dbs_dma_addr;
122         u32 *dbbuf_eis;
123         dma_addr_t dbbuf_eis_dma_addr;
124
125         /* host memory buffer support: */
126         u64 host_mem_size;
127         u32 nr_host_mem_descs;
128         dma_addr_t host_mem_descs_dma;
129         struct nvme_host_mem_buf_desc *host_mem_descs;
130         void **host_mem_desc_bufs;
131 };
132
133 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
134 {
135         int n = 0, ret;
136
137         ret = kstrtoint(val, 10, &n);
138         if (ret != 0 || n < 2)
139                 return -EINVAL;
140
141         return param_set_int(val, kp);
142 }
143
144 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
145 {
146         return qid * 2 * stride;
147 }
148
149 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
150 {
151         return (qid * 2 + 1) * stride;
152 }
153
154 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
155 {
156         return container_of(ctrl, struct nvme_dev, ctrl);
157 }
158
159 /*
160  * An NVM Express queue.  Each device has at least two (one for admin
161  * commands and one for I/O commands).
162  */
163 struct nvme_queue {
164         struct nvme_dev *dev;
165         spinlock_t sq_lock;
166         void *sq_cmds;
167          /* only used for poll queues: */
168         spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
169         volatile struct nvme_completion *cqes;
170         dma_addr_t sq_dma_addr;
171         dma_addr_t cq_dma_addr;
172         u32 __iomem *q_db;
173         u16 q_depth;
174         u16 cq_vector;
175         u16 sq_tail;
176         u16 last_sq_tail;
177         u16 cq_head;
178         u16 qid;
179         u8 cq_phase;
180         u8 sqes;
181         unsigned long flags;
182 #define NVMEQ_ENABLED           0
183 #define NVMEQ_SQ_CMB            1
184 #define NVMEQ_DELETE_ERROR      2
185 #define NVMEQ_POLLED            3
186         u32 *dbbuf_sq_db;
187         u32 *dbbuf_cq_db;
188         u32 *dbbuf_sq_ei;
189         u32 *dbbuf_cq_ei;
190         struct completion delete_done;
191 };
192
193 /*
194  * The nvme_iod describes the data in an I/O.
195  *
196  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
197  * to the actual struct scatterlist.
198  */
199 struct nvme_iod {
200         struct nvme_request req;
201         struct nvme_queue *nvmeq;
202         bool use_sgl;
203         int aborted;
204         int npages;             /* In the PRP list. 0 means small pool in use */
205         int nents;              /* Used in scatterlist */
206         dma_addr_t first_dma;
207         unsigned int dma_len;   /* length of single DMA segment mapping */
208         dma_addr_t meta_dma;
209         struct scatterlist *sg;
210 };
211
212 static unsigned int max_io_queues(void)
213 {
214         return num_possible_cpus() + write_queues + poll_queues;
215 }
216
217 static unsigned int max_queue_count(void)
218 {
219         /* IO queues + admin queue */
220         return 1 + max_io_queues();
221 }
222
223 static inline unsigned int nvme_dbbuf_size(u32 stride)
224 {
225         return (max_queue_count() * 8 * stride);
226 }
227
228 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
229 {
230         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
231
232         if (dev->dbbuf_dbs)
233                 return 0;
234
235         dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
236                                             &dev->dbbuf_dbs_dma_addr,
237                                             GFP_KERNEL);
238         if (!dev->dbbuf_dbs)
239                 return -ENOMEM;
240         dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
241                                             &dev->dbbuf_eis_dma_addr,
242                                             GFP_KERNEL);
243         if (!dev->dbbuf_eis) {
244                 dma_free_coherent(dev->dev, mem_size,
245                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
246                 dev->dbbuf_dbs = NULL;
247                 return -ENOMEM;
248         }
249
250         return 0;
251 }
252
253 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
254 {
255         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
256
257         if (dev->dbbuf_dbs) {
258                 dma_free_coherent(dev->dev, mem_size,
259                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
260                 dev->dbbuf_dbs = NULL;
261         }
262         if (dev->dbbuf_eis) {
263                 dma_free_coherent(dev->dev, mem_size,
264                                   dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
265                 dev->dbbuf_eis = NULL;
266         }
267 }
268
269 static void nvme_dbbuf_init(struct nvme_dev *dev,
270                             struct nvme_queue *nvmeq, int qid)
271 {
272         if (!dev->dbbuf_dbs || !qid)
273                 return;
274
275         nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
276         nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
277         nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
278         nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
279 }
280
281 static void nvme_dbbuf_set(struct nvme_dev *dev)
282 {
283         struct nvme_command c;
284
285         if (!dev->dbbuf_dbs)
286                 return;
287
288         memset(&c, 0, sizeof(c));
289         c.dbbuf.opcode = nvme_admin_dbbuf;
290         c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
291         c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
292
293         if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
294                 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
295                 /* Free memory and continue on */
296                 nvme_dbbuf_dma_free(dev);
297         }
298 }
299
300 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
301 {
302         return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
303 }
304
305 /* Update dbbuf and return true if an MMIO is required */
306 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
307                                               volatile u32 *dbbuf_ei)
308 {
309         if (dbbuf_db) {
310                 u16 old_value;
311
312                 /*
313                  * Ensure that the queue is written before updating
314                  * the doorbell in memory
315                  */
316                 wmb();
317
318                 old_value = *dbbuf_db;
319                 *dbbuf_db = value;
320
321                 /*
322                  * Ensure that the doorbell is updated before reading the event
323                  * index from memory.  The controller needs to provide similar
324                  * ordering to ensure the envent index is updated before reading
325                  * the doorbell.
326                  */
327                 mb();
328
329                 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
330                         return false;
331         }
332
333         return true;
334 }
335
336 /*
337  * Will slightly overestimate the number of pages needed.  This is OK
338  * as it only leads to a small amount of wasted memory for the lifetime of
339  * the I/O.
340  */
341 static int nvme_npages(unsigned size, struct nvme_dev *dev)
342 {
343         unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
344                                       dev->ctrl.page_size);
345         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
346 }
347
348 /*
349  * Calculates the number of pages needed for the SGL segments. For example a 4k
350  * page can accommodate 256 SGL descriptors.
351  */
352 static int nvme_pci_npages_sgl(unsigned int num_seg)
353 {
354         return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
355 }
356
357 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
358                 unsigned int size, unsigned int nseg, bool use_sgl)
359 {
360         size_t alloc_size;
361
362         if (use_sgl)
363                 alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
364         else
365                 alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
366
367         return alloc_size + sizeof(struct scatterlist) * nseg;
368 }
369
370 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
371                                 unsigned int hctx_idx)
372 {
373         struct nvme_dev *dev = data;
374         struct nvme_queue *nvmeq = &dev->queues[0];
375
376         WARN_ON(hctx_idx != 0);
377         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
378
379         hctx->driver_data = nvmeq;
380         return 0;
381 }
382
383 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
384                           unsigned int hctx_idx)
385 {
386         struct nvme_dev *dev = data;
387         struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
388
389         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
390         hctx->driver_data = nvmeq;
391         return 0;
392 }
393
394 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
395                 unsigned int hctx_idx, unsigned int numa_node)
396 {
397         struct nvme_dev *dev = set->driver_data;
398         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
399         int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
400         struct nvme_queue *nvmeq = &dev->queues[queue_idx];
401
402         BUG_ON(!nvmeq);
403         iod->nvmeq = nvmeq;
404
405         nvme_req(req)->ctrl = &dev->ctrl;
406         return 0;
407 }
408
409 static int queue_irq_offset(struct nvme_dev *dev)
410 {
411         /* if we have more than 1 vec, admin queue offsets us by 1 */
412         if (dev->num_vecs > 1)
413                 return 1;
414
415         return 0;
416 }
417
418 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
419 {
420         struct nvme_dev *dev = set->driver_data;
421         int i, qoff, offset;
422
423         offset = queue_irq_offset(dev);
424         for (i = 0, qoff = 0; i < set->nr_maps; i++) {
425                 struct blk_mq_queue_map *map = &set->map[i];
426
427                 map->nr_queues = dev->io_queues[i];
428                 if (!map->nr_queues) {
429                         BUG_ON(i == HCTX_TYPE_DEFAULT);
430                         continue;
431                 }
432
433                 /*
434                  * The poll queue(s) doesn't have an IRQ (and hence IRQ
435                  * affinity), so use the regular blk-mq cpu mapping
436                  */
437                 map->queue_offset = qoff;
438                 if (i != HCTX_TYPE_POLL && offset)
439                         blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
440                 else
441                         blk_mq_map_queues(map);
442                 qoff += map->nr_queues;
443                 offset += map->nr_queues;
444         }
445
446         return 0;
447 }
448
449 /*
450  * Write sq tail if we are asked to, or if the next command would wrap.
451  */
452 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
453 {
454         if (!write_sq) {
455                 u16 next_tail = nvmeq->sq_tail + 1;
456
457                 if (next_tail == nvmeq->q_depth)
458                         next_tail = 0;
459                 if (next_tail != nvmeq->last_sq_tail)
460                         return;
461         }
462
463         if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
464                         nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
465                 writel(nvmeq->sq_tail, nvmeq->q_db);
466         nvmeq->last_sq_tail = nvmeq->sq_tail;
467 }
468
469 /**
470  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
471  * @nvmeq: The queue to use
472  * @cmd: The command to send
473  * @write_sq: whether to write to the SQ doorbell
474  */
475 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
476                             bool write_sq)
477 {
478         spin_lock(&nvmeq->sq_lock);
479         memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
480                cmd, sizeof(*cmd));
481         if (++nvmeq->sq_tail == nvmeq->q_depth)
482                 nvmeq->sq_tail = 0;
483         nvme_write_sq_db(nvmeq, write_sq);
484         spin_unlock(&nvmeq->sq_lock);
485 }
486
487 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
488 {
489         struct nvme_queue *nvmeq = hctx->driver_data;
490
491         spin_lock(&nvmeq->sq_lock);
492         if (nvmeq->sq_tail != nvmeq->last_sq_tail)
493                 nvme_write_sq_db(nvmeq, true);
494         spin_unlock(&nvmeq->sq_lock);
495 }
496
497 static void **nvme_pci_iod_list(struct request *req)
498 {
499         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
500         return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
501 }
502
503 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
504 {
505         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
506         int nseg = blk_rq_nr_phys_segments(req);
507         unsigned int avg_seg_size;
508
509         if (nseg == 0)
510                 return false;
511
512         avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
513
514         if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
515                 return false;
516         if (!iod->nvmeq->qid)
517                 return false;
518         if (!sgl_threshold || avg_seg_size < sgl_threshold)
519                 return false;
520         return true;
521 }
522
523 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
524 {
525         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
526         const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
527         dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
528         int i;
529
530         if (iod->dma_len) {
531                 dma_unmap_page(dev->dev, dma_addr, iod->dma_len,
532                                rq_dma_dir(req));
533                 return;
534         }
535
536         WARN_ON_ONCE(!iod->nents);
537
538         if (is_pci_p2pdma_page(sg_page(iod->sg)))
539                 pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents,
540                                     rq_dma_dir(req));
541         else
542                 dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
543
544
545         if (iod->npages == 0)
546                 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
547                         dma_addr);
548
549         for (i = 0; i < iod->npages; i++) {
550                 void *addr = nvme_pci_iod_list(req)[i];
551
552                 if (iod->use_sgl) {
553                         struct nvme_sgl_desc *sg_list = addr;
554
555                         next_dma_addr =
556                             le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
557                 } else {
558                         __le64 *prp_list = addr;
559
560                         next_dma_addr = le64_to_cpu(prp_list[last_prp]);
561                 }
562
563                 dma_pool_free(dev->prp_page_pool, addr, dma_addr);
564                 dma_addr = next_dma_addr;
565         }
566
567         mempool_free(iod->sg, dev->iod_mempool);
568 }
569
570 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
571 {
572         int i;
573         struct scatterlist *sg;
574
575         for_each_sg(sgl, sg, nents, i) {
576                 dma_addr_t phys = sg_phys(sg);
577                 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
578                         "dma_address:%pad dma_length:%d\n",
579                         i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
580                         sg_dma_len(sg));
581         }
582 }
583
584 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
585                 struct request *req, struct nvme_rw_command *cmnd)
586 {
587         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
588         struct dma_pool *pool;
589         int length = blk_rq_payload_bytes(req);
590         struct scatterlist *sg = iod->sg;
591         int dma_len = sg_dma_len(sg);
592         u64 dma_addr = sg_dma_address(sg);
593         u32 page_size = dev->ctrl.page_size;
594         int offset = dma_addr & (page_size - 1);
595         __le64 *prp_list;
596         void **list = nvme_pci_iod_list(req);
597         dma_addr_t prp_dma;
598         int nprps, i;
599
600         length -= (page_size - offset);
601         if (length <= 0) {
602                 iod->first_dma = 0;
603                 goto done;
604         }
605
606         dma_len -= (page_size - offset);
607         if (dma_len) {
608                 dma_addr += (page_size - offset);
609         } else {
610                 sg = sg_next(sg);
611                 dma_addr = sg_dma_address(sg);
612                 dma_len = sg_dma_len(sg);
613         }
614
615         if (length <= page_size) {
616                 iod->first_dma = dma_addr;
617                 goto done;
618         }
619
620         nprps = DIV_ROUND_UP(length, page_size);
621         if (nprps <= (256 / 8)) {
622                 pool = dev->prp_small_pool;
623                 iod->npages = 0;
624         } else {
625                 pool = dev->prp_page_pool;
626                 iod->npages = 1;
627         }
628
629         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
630         if (!prp_list) {
631                 iod->first_dma = dma_addr;
632                 iod->npages = -1;
633                 return BLK_STS_RESOURCE;
634         }
635         list[0] = prp_list;
636         iod->first_dma = prp_dma;
637         i = 0;
638         for (;;) {
639                 if (i == page_size >> 3) {
640                         __le64 *old_prp_list = prp_list;
641                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
642                         if (!prp_list)
643                                 return BLK_STS_RESOURCE;
644                         list[iod->npages++] = prp_list;
645                         prp_list[0] = old_prp_list[i - 1];
646                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
647                         i = 1;
648                 }
649                 prp_list[i++] = cpu_to_le64(dma_addr);
650                 dma_len -= page_size;
651                 dma_addr += page_size;
652                 length -= page_size;
653                 if (length <= 0)
654                         break;
655                 if (dma_len > 0)
656                         continue;
657                 if (unlikely(dma_len < 0))
658                         goto bad_sgl;
659                 sg = sg_next(sg);
660                 dma_addr = sg_dma_address(sg);
661                 dma_len = sg_dma_len(sg);
662         }
663
664 done:
665         cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
666         cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
667
668         return BLK_STS_OK;
669
670  bad_sgl:
671         WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
672                         "Invalid SGL for payload:%d nents:%d\n",
673                         blk_rq_payload_bytes(req), iod->nents);
674         return BLK_STS_IOERR;
675 }
676
677 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
678                 struct scatterlist *sg)
679 {
680         sge->addr = cpu_to_le64(sg_dma_address(sg));
681         sge->length = cpu_to_le32(sg_dma_len(sg));
682         sge->type = NVME_SGL_FMT_DATA_DESC << 4;
683 }
684
685 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
686                 dma_addr_t dma_addr, int entries)
687 {
688         sge->addr = cpu_to_le64(dma_addr);
689         if (entries < SGES_PER_PAGE) {
690                 sge->length = cpu_to_le32(entries * sizeof(*sge));
691                 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
692         } else {
693                 sge->length = cpu_to_le32(PAGE_SIZE);
694                 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
695         }
696 }
697
698 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
699                 struct request *req, struct nvme_rw_command *cmd, int entries)
700 {
701         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
702         struct dma_pool *pool;
703         struct nvme_sgl_desc *sg_list;
704         struct scatterlist *sg = iod->sg;
705         dma_addr_t sgl_dma;
706         int i = 0;
707
708         /* setting the transfer type as SGL */
709         cmd->flags = NVME_CMD_SGL_METABUF;
710
711         if (entries == 1) {
712                 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
713                 return BLK_STS_OK;
714         }
715
716         if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
717                 pool = dev->prp_small_pool;
718                 iod->npages = 0;
719         } else {
720                 pool = dev->prp_page_pool;
721                 iod->npages = 1;
722         }
723
724         sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
725         if (!sg_list) {
726                 iod->npages = -1;
727                 return BLK_STS_RESOURCE;
728         }
729
730         nvme_pci_iod_list(req)[0] = sg_list;
731         iod->first_dma = sgl_dma;
732
733         nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
734
735         do {
736                 if (i == SGES_PER_PAGE) {
737                         struct nvme_sgl_desc *old_sg_desc = sg_list;
738                         struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
739
740                         sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
741                         if (!sg_list)
742                                 return BLK_STS_RESOURCE;
743
744                         i = 0;
745                         nvme_pci_iod_list(req)[iod->npages++] = sg_list;
746                         sg_list[i++] = *link;
747                         nvme_pci_sgl_set_seg(link, sgl_dma, entries);
748                 }
749
750                 nvme_pci_sgl_set_data(&sg_list[i++], sg);
751                 sg = sg_next(sg);
752         } while (--entries > 0);
753
754         return BLK_STS_OK;
755 }
756
757 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
758                 struct request *req, struct nvme_rw_command *cmnd,
759                 struct bio_vec *bv)
760 {
761         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
762         unsigned int offset = bv->bv_offset & (dev->ctrl.page_size - 1);
763         unsigned int first_prp_len = dev->ctrl.page_size - offset;
764
765         iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
766         if (dma_mapping_error(dev->dev, iod->first_dma))
767                 return BLK_STS_RESOURCE;
768         iod->dma_len = bv->bv_len;
769
770         cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
771         if (bv->bv_len > first_prp_len)
772                 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
773         return 0;
774 }
775
776 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
777                 struct request *req, struct nvme_rw_command *cmnd,
778                 struct bio_vec *bv)
779 {
780         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
781
782         iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
783         if (dma_mapping_error(dev->dev, iod->first_dma))
784                 return BLK_STS_RESOURCE;
785         iod->dma_len = bv->bv_len;
786
787         cmnd->flags = NVME_CMD_SGL_METABUF;
788         cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
789         cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
790         cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
791         return 0;
792 }
793
794 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
795                 struct nvme_command *cmnd)
796 {
797         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
798         blk_status_t ret = BLK_STS_RESOURCE;
799         int nr_mapped;
800
801         if (blk_rq_nr_phys_segments(req) == 1) {
802                 struct bio_vec bv = req_bvec(req);
803
804                 if (!is_pci_p2pdma_page(bv.bv_page)) {
805                         if (bv.bv_offset + bv.bv_len <= dev->ctrl.page_size * 2)
806                                 return nvme_setup_prp_simple(dev, req,
807                                                              &cmnd->rw, &bv);
808
809                         if (iod->nvmeq->qid &&
810                             dev->ctrl.sgls & ((1 << 0) | (1 << 1)))
811                                 return nvme_setup_sgl_simple(dev, req,
812                                                              &cmnd->rw, &bv);
813                 }
814         }
815
816         iod->dma_len = 0;
817         iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
818         if (!iod->sg)
819                 return BLK_STS_RESOURCE;
820         sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
821         iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
822         if (!iod->nents)
823                 goto out;
824
825         if (is_pci_p2pdma_page(sg_page(iod->sg)))
826                 nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg,
827                                 iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN);
828         else
829                 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
830                                              rq_dma_dir(req), DMA_ATTR_NO_WARN);
831         if (!nr_mapped)
832                 goto out;
833
834         iod->use_sgl = nvme_pci_use_sgls(dev, req);
835         if (iod->use_sgl)
836                 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
837         else
838                 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
839 out:
840         if (ret != BLK_STS_OK)
841                 nvme_unmap_data(dev, req);
842         return ret;
843 }
844
845 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
846                 struct nvme_command *cmnd)
847 {
848         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
849
850         iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
851                         rq_dma_dir(req), 0);
852         if (dma_mapping_error(dev->dev, iod->meta_dma))
853                 return BLK_STS_IOERR;
854         cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
855         return 0;
856 }
857
858 /*
859  * NOTE: ns is NULL when called on the admin queue.
860  */
861 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
862                          const struct blk_mq_queue_data *bd)
863 {
864         struct nvme_ns *ns = hctx->queue->queuedata;
865         struct nvme_queue *nvmeq = hctx->driver_data;
866         struct nvme_dev *dev = nvmeq->dev;
867         struct request *req = bd->rq;
868         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
869         struct nvme_command cmnd;
870         blk_status_t ret;
871
872         iod->aborted = 0;
873         iod->npages = -1;
874         iod->nents = 0;
875
876         /*
877          * We should not need to do this, but we're still using this to
878          * ensure we can drain requests on a dying queue.
879          */
880         if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
881                 return BLK_STS_IOERR;
882
883         ret = nvme_setup_cmd(ns, req, &cmnd);
884         if (ret)
885                 return ret;
886
887         if (blk_rq_nr_phys_segments(req)) {
888                 ret = nvme_map_data(dev, req, &cmnd);
889                 if (ret)
890                         goto out_free_cmd;
891         }
892
893         if (blk_integrity_rq(req)) {
894                 ret = nvme_map_metadata(dev, req, &cmnd);
895                 if (ret)
896                         goto out_unmap_data;
897         }
898
899         blk_mq_start_request(req);
900         nvme_submit_cmd(nvmeq, &cmnd, bd->last);
901         return BLK_STS_OK;
902 out_unmap_data:
903         nvme_unmap_data(dev, req);
904 out_free_cmd:
905         nvme_cleanup_cmd(req);
906         return ret;
907 }
908
909 static void nvme_pci_complete_rq(struct request *req)
910 {
911         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
912         struct nvme_dev *dev = iod->nvmeq->dev;
913
914         if (blk_integrity_rq(req))
915                 dma_unmap_page(dev->dev, iod->meta_dma,
916                                rq_integrity_vec(req)->bv_len, rq_data_dir(req));
917         if (blk_rq_nr_phys_segments(req))
918                 nvme_unmap_data(dev, req);
919         nvme_complete_rq(req);
920 }
921
922 /* We read the CQE phase first to check if the rest of the entry is valid */
923 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
924 {
925         return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
926                         nvmeq->cq_phase;
927 }
928
929 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
930 {
931         u16 head = nvmeq->cq_head;
932
933         if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
934                                               nvmeq->dbbuf_cq_ei))
935                 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
936 }
937
938 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
939 {
940         if (!nvmeq->qid)
941                 return nvmeq->dev->admin_tagset.tags[0];
942         return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
943 }
944
945 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
946 {
947         volatile struct nvme_completion *cqe = &nvmeq->cqes[idx];
948         struct request *req;
949
950         if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
951                 dev_warn(nvmeq->dev->ctrl.device,
952                         "invalid id %d completed on queue %d\n",
953                         cqe->command_id, le16_to_cpu(cqe->sq_id));
954                 return;
955         }
956
957         /*
958          * AEN requests are special as they don't time out and can
959          * survive any kind of queue freeze and often don't respond to
960          * aborts.  We don't even bother to allocate a struct request
961          * for them but rather special case them here.
962          */
963         if (unlikely(nvme_is_aen_req(nvmeq->qid, cqe->command_id))) {
964                 nvme_complete_async_event(&nvmeq->dev->ctrl,
965                                 cqe->status, &cqe->result);
966                 return;
967         }
968
969         req = blk_mq_tag_to_rq(nvme_queue_tagset(nvmeq), cqe->command_id);
970         trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
971         nvme_end_request(req, cqe->status, cqe->result);
972 }
973
974 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
975 {
976         if (++nvmeq->cq_head == nvmeq->q_depth) {
977                 nvmeq->cq_head = 0;
978                 nvmeq->cq_phase ^= 1;
979         }
980 }
981
982 static inline int nvme_process_cq(struct nvme_queue *nvmeq)
983 {
984         int found = 0;
985
986         while (nvme_cqe_pending(nvmeq)) {
987                 found++;
988                 nvme_handle_cqe(nvmeq, nvmeq->cq_head);
989                 nvme_update_cq_head(nvmeq);
990         }
991
992         if (found)
993                 nvme_ring_cq_doorbell(nvmeq);
994         return found;
995 }
996
997 static irqreturn_t nvme_irq(int irq, void *data)
998 {
999         struct nvme_queue *nvmeq = data;
1000         irqreturn_t ret = IRQ_NONE;
1001
1002         /*
1003          * The rmb/wmb pair ensures we see all updates from a previous run of
1004          * the irq handler, even if that was on another CPU.
1005          */
1006         rmb();
1007         if (nvme_process_cq(nvmeq))
1008                 ret = IRQ_HANDLED;
1009         wmb();
1010
1011         return ret;
1012 }
1013
1014 static irqreturn_t nvme_irq_check(int irq, void *data)
1015 {
1016         struct nvme_queue *nvmeq = data;
1017         if (nvme_cqe_pending(nvmeq))
1018                 return IRQ_WAKE_THREAD;
1019         return IRQ_NONE;
1020 }
1021
1022 /*
1023  * Poll for completions for any interrupt driven queue
1024  * Can be called from any context.
1025  */
1026 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1027 {
1028         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1029
1030         WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1031
1032         disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1033         nvme_process_cq(nvmeq);
1034         enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1035 }
1036
1037 static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1038 {
1039         struct nvme_queue *nvmeq = hctx->driver_data;
1040         bool found;
1041
1042         if (!nvme_cqe_pending(nvmeq))
1043                 return 0;
1044
1045         spin_lock(&nvmeq->cq_poll_lock);
1046         found = nvme_process_cq(nvmeq);
1047         spin_unlock(&nvmeq->cq_poll_lock);
1048
1049         return found;
1050 }
1051
1052 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1053 {
1054         struct nvme_dev *dev = to_nvme_dev(ctrl);
1055         struct nvme_queue *nvmeq = &dev->queues[0];
1056         struct nvme_command c;
1057
1058         memset(&c, 0, sizeof(c));
1059         c.common.opcode = nvme_admin_async_event;
1060         c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1061         nvme_submit_cmd(nvmeq, &c, true);
1062 }
1063
1064 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1065 {
1066         struct nvme_command c;
1067
1068         memset(&c, 0, sizeof(c));
1069         c.delete_queue.opcode = opcode;
1070         c.delete_queue.qid = cpu_to_le16(id);
1071
1072         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1073 }
1074
1075 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1076                 struct nvme_queue *nvmeq, s16 vector)
1077 {
1078         struct nvme_command c;
1079         int flags = NVME_QUEUE_PHYS_CONTIG;
1080
1081         if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1082                 flags |= NVME_CQ_IRQ_ENABLED;
1083
1084         /*
1085          * Note: we (ab)use the fact that the prp fields survive if no data
1086          * is attached to the request.
1087          */
1088         memset(&c, 0, sizeof(c));
1089         c.create_cq.opcode = nvme_admin_create_cq;
1090         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1091         c.create_cq.cqid = cpu_to_le16(qid);
1092         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1093         c.create_cq.cq_flags = cpu_to_le16(flags);
1094         c.create_cq.irq_vector = cpu_to_le16(vector);
1095
1096         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1097 }
1098
1099 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1100                                                 struct nvme_queue *nvmeq)
1101 {
1102         struct nvme_ctrl *ctrl = &dev->ctrl;
1103         struct nvme_command c;
1104         int flags = NVME_QUEUE_PHYS_CONTIG;
1105
1106         /*
1107          * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1108          * set. Since URGENT priority is zeroes, it makes all queues
1109          * URGENT.
1110          */
1111         if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1112                 flags |= NVME_SQ_PRIO_MEDIUM;
1113
1114         /*
1115          * Note: we (ab)use the fact that the prp fields survive if no data
1116          * is attached to the request.
1117          */
1118         memset(&c, 0, sizeof(c));
1119         c.create_sq.opcode = nvme_admin_create_sq;
1120         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1121         c.create_sq.sqid = cpu_to_le16(qid);
1122         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1123         c.create_sq.sq_flags = cpu_to_le16(flags);
1124         c.create_sq.cqid = cpu_to_le16(qid);
1125
1126         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1127 }
1128
1129 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1130 {
1131         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1132 }
1133
1134 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1135 {
1136         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1137 }
1138
1139 static void abort_endio(struct request *req, blk_status_t error)
1140 {
1141         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1142         struct nvme_queue *nvmeq = iod->nvmeq;
1143
1144         dev_warn(nvmeq->dev->ctrl.device,
1145                  "Abort status: 0x%x", nvme_req(req)->status);
1146         atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1147         blk_mq_free_request(req);
1148 }
1149
1150 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1151 {
1152
1153         /* If true, indicates loss of adapter communication, possibly by a
1154          * NVMe Subsystem reset.
1155          */
1156         bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1157
1158         /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1159         switch (dev->ctrl.state) {
1160         case NVME_CTRL_RESETTING:
1161         case NVME_CTRL_CONNECTING:
1162                 return false;
1163         default:
1164                 break;
1165         }
1166
1167         /* We shouldn't reset unless the controller is on fatal error state
1168          * _or_ if we lost the communication with it.
1169          */
1170         if (!(csts & NVME_CSTS_CFS) && !nssro)
1171                 return false;
1172
1173         return true;
1174 }
1175
1176 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1177 {
1178         /* Read a config register to help see what died. */
1179         u16 pci_status;
1180         int result;
1181
1182         result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1183                                       &pci_status);
1184         if (result == PCIBIOS_SUCCESSFUL)
1185                 dev_warn(dev->ctrl.device,
1186                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1187                          csts, pci_status);
1188         else
1189                 dev_warn(dev->ctrl.device,
1190                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1191                          csts, result);
1192 }
1193
1194 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1195 {
1196         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1197         struct nvme_queue *nvmeq = iod->nvmeq;
1198         struct nvme_dev *dev = nvmeq->dev;
1199         struct request *abort_req;
1200         struct nvme_command cmd;
1201         u32 csts = readl(dev->bar + NVME_REG_CSTS);
1202
1203         /* If PCI error recovery process is happening, we cannot reset or
1204          * the recovery mechanism will surely fail.
1205          */
1206         mb();
1207         if (pci_channel_offline(to_pci_dev(dev->dev)))
1208                 return BLK_EH_RESET_TIMER;
1209
1210         /*
1211          * Reset immediately if the controller is failed
1212          */
1213         if (nvme_should_reset(dev, csts)) {
1214                 nvme_warn_reset(dev, csts);
1215                 nvme_dev_disable(dev, false);
1216                 nvme_reset_ctrl(&dev->ctrl);
1217                 return BLK_EH_DONE;
1218         }
1219
1220         /*
1221          * Did we miss an interrupt?
1222          */
1223         if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1224                 nvme_poll(req->mq_hctx);
1225         else
1226                 nvme_poll_irqdisable(nvmeq);
1227
1228         if (blk_mq_request_completed(req)) {
1229                 dev_warn(dev->ctrl.device,
1230                          "I/O %d QID %d timeout, completion polled\n",
1231                          req->tag, nvmeq->qid);
1232                 return BLK_EH_DONE;
1233         }
1234
1235         /*
1236          * Shutdown immediately if controller times out while starting. The
1237          * reset work will see the pci device disabled when it gets the forced
1238          * cancellation error. All outstanding requests are completed on
1239          * shutdown, so we return BLK_EH_DONE.
1240          */
1241         switch (dev->ctrl.state) {
1242         case NVME_CTRL_CONNECTING:
1243                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1244                 /* fall through */
1245         case NVME_CTRL_DELETING:
1246                 dev_warn_ratelimited(dev->ctrl.device,
1247                          "I/O %d QID %d timeout, disable controller\n",
1248                          req->tag, nvmeq->qid);
1249                 nvme_dev_disable(dev, true);
1250                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1251                 return BLK_EH_DONE;
1252         case NVME_CTRL_RESETTING:
1253                 return BLK_EH_RESET_TIMER;
1254         default:
1255                 break;
1256         }
1257
1258         /*
1259          * Shutdown the controller immediately and schedule a reset if the
1260          * command was already aborted once before and still hasn't been
1261          * returned to the driver, or if this is the admin queue.
1262          */
1263         if (!nvmeq->qid || iod->aborted) {
1264                 dev_warn(dev->ctrl.device,
1265                          "I/O %d QID %d timeout, reset controller\n",
1266                          req->tag, nvmeq->qid);
1267                 nvme_dev_disable(dev, false);
1268                 nvme_reset_ctrl(&dev->ctrl);
1269
1270                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1271                 return BLK_EH_DONE;
1272         }
1273
1274         if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1275                 atomic_inc(&dev->ctrl.abort_limit);
1276                 return BLK_EH_RESET_TIMER;
1277         }
1278         iod->aborted = 1;
1279
1280         memset(&cmd, 0, sizeof(cmd));
1281         cmd.abort.opcode = nvme_admin_abort_cmd;
1282         cmd.abort.cid = req->tag;
1283         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1284
1285         dev_warn(nvmeq->dev->ctrl.device,
1286                 "I/O %d QID %d timeout, aborting\n",
1287                  req->tag, nvmeq->qid);
1288
1289         abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1290                         BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1291         if (IS_ERR(abort_req)) {
1292                 atomic_inc(&dev->ctrl.abort_limit);
1293                 return BLK_EH_RESET_TIMER;
1294         }
1295
1296         abort_req->timeout = ADMIN_TIMEOUT;
1297         abort_req->end_io_data = NULL;
1298         blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1299
1300         /*
1301          * The aborted req will be completed on receiving the abort req.
1302          * We enable the timer again. If hit twice, it'll cause a device reset,
1303          * as the device then is in a faulty state.
1304          */
1305         return BLK_EH_RESET_TIMER;
1306 }
1307
1308 static void nvme_free_queue(struct nvme_queue *nvmeq)
1309 {
1310         dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1311                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1312         if (!nvmeq->sq_cmds)
1313                 return;
1314
1315         if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1316                 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1317                                 nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1318         } else {
1319                 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1320                                 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1321         }
1322 }
1323
1324 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1325 {
1326         int i;
1327
1328         for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1329                 dev->ctrl.queue_count--;
1330                 nvme_free_queue(&dev->queues[i]);
1331         }
1332 }
1333
1334 /**
1335  * nvme_suspend_queue - put queue into suspended state
1336  * @nvmeq: queue to suspend
1337  */
1338 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1339 {
1340         if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1341                 return 1;
1342
1343         /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1344         mb();
1345
1346         nvmeq->dev->online_queues--;
1347         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1348                 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1349         if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1350                 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1351         return 0;
1352 }
1353
1354 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1355 {
1356         int i;
1357
1358         for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1359                 nvme_suspend_queue(&dev->queues[i]);
1360 }
1361
1362 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1363 {
1364         struct nvme_queue *nvmeq = &dev->queues[0];
1365
1366         if (shutdown)
1367                 nvme_shutdown_ctrl(&dev->ctrl);
1368         else
1369                 nvme_disable_ctrl(&dev->ctrl);
1370
1371         nvme_poll_irqdisable(nvmeq);
1372 }
1373
1374 /*
1375  * Called only on a device that has been disabled and after all other threads
1376  * that can check this device's completion queues have synced. This is the
1377  * last chance for the driver to see a natural completion before
1378  * nvme_cancel_request() terminates all incomplete requests.
1379  */
1380 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1381 {
1382         int i;
1383
1384         for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1385                 nvme_process_cq(&dev->queues[i]);
1386 }
1387
1388 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1389                                 int entry_size)
1390 {
1391         int q_depth = dev->q_depth;
1392         unsigned q_size_aligned = roundup(q_depth * entry_size,
1393                                           dev->ctrl.page_size);
1394
1395         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1396                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1397                 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1398                 q_depth = div_u64(mem_per_q, entry_size);
1399
1400                 /*
1401                  * Ensure the reduced q_depth is above some threshold where it
1402                  * would be better to map queues in system memory with the
1403                  * original depth
1404                  */
1405                 if (q_depth < 64)
1406                         return -ENOMEM;
1407         }
1408
1409         return q_depth;
1410 }
1411
1412 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1413                                 int qid)
1414 {
1415         struct pci_dev *pdev = to_pci_dev(dev->dev);
1416
1417         if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1418                 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1419                 if (nvmeq->sq_cmds) {
1420                         nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1421                                                         nvmeq->sq_cmds);
1422                         if (nvmeq->sq_dma_addr) {
1423                                 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1424                                 return 0;
1425                         }
1426
1427                         pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1428                 }
1429         }
1430
1431         nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1432                                 &nvmeq->sq_dma_addr, GFP_KERNEL);
1433         if (!nvmeq->sq_cmds)
1434                 return -ENOMEM;
1435         return 0;
1436 }
1437
1438 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1439 {
1440         struct nvme_queue *nvmeq = &dev->queues[qid];
1441
1442         if (dev->ctrl.queue_count > qid)
1443                 return 0;
1444
1445         nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1446         nvmeq->q_depth = depth;
1447         nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1448                                          &nvmeq->cq_dma_addr, GFP_KERNEL);
1449         if (!nvmeq->cqes)
1450                 goto free_nvmeq;
1451
1452         if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1453                 goto free_cqdma;
1454
1455         nvmeq->dev = dev;
1456         spin_lock_init(&nvmeq->sq_lock);
1457         spin_lock_init(&nvmeq->cq_poll_lock);
1458         nvmeq->cq_head = 0;
1459         nvmeq->cq_phase = 1;
1460         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1461         nvmeq->qid = qid;
1462         dev->ctrl.queue_count++;
1463
1464         return 0;
1465
1466  free_cqdma:
1467         dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1468                           nvmeq->cq_dma_addr);
1469  free_nvmeq:
1470         return -ENOMEM;
1471 }
1472
1473 static int queue_request_irq(struct nvme_queue *nvmeq)
1474 {
1475         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1476         int nr = nvmeq->dev->ctrl.instance;
1477
1478         if (use_threaded_interrupts) {
1479                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1480                                 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1481         } else {
1482                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1483                                 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1484         }
1485 }
1486
1487 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1488 {
1489         struct nvme_dev *dev = nvmeq->dev;
1490
1491         nvmeq->sq_tail = 0;
1492         nvmeq->last_sq_tail = 0;
1493         nvmeq->cq_head = 0;
1494         nvmeq->cq_phase = 1;
1495         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1496         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1497         nvme_dbbuf_init(dev, nvmeq, qid);
1498         dev->online_queues++;
1499         wmb(); /* ensure the first interrupt sees the initialization */
1500 }
1501
1502 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1503 {
1504         struct nvme_dev *dev = nvmeq->dev;
1505         int result;
1506         u16 vector = 0;
1507
1508         clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1509
1510         /*
1511          * A queue's vector matches the queue identifier unless the controller
1512          * has only one vector available.
1513          */
1514         if (!polled)
1515                 vector = dev->num_vecs == 1 ? 0 : qid;
1516         else
1517                 set_bit(NVMEQ_POLLED, &nvmeq->flags);
1518
1519         result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1520         if (result)
1521                 return result;
1522
1523         result = adapter_alloc_sq(dev, qid, nvmeq);
1524         if (result < 0)
1525                 return result;
1526         if (result)
1527                 goto release_cq;
1528
1529         nvmeq->cq_vector = vector;
1530         nvme_init_queue(nvmeq, qid);
1531
1532         if (!polled) {
1533                 result = queue_request_irq(nvmeq);
1534                 if (result < 0)
1535                         goto release_sq;
1536         }
1537
1538         set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1539         return result;
1540
1541 release_sq:
1542         dev->online_queues--;
1543         adapter_delete_sq(dev, qid);
1544 release_cq:
1545         adapter_delete_cq(dev, qid);
1546         return result;
1547 }
1548
1549 static const struct blk_mq_ops nvme_mq_admin_ops = {
1550         .queue_rq       = nvme_queue_rq,
1551         .complete       = nvme_pci_complete_rq,
1552         .init_hctx      = nvme_admin_init_hctx,
1553         .init_request   = nvme_init_request,
1554         .timeout        = nvme_timeout,
1555 };
1556
1557 static const struct blk_mq_ops nvme_mq_ops = {
1558         .queue_rq       = nvme_queue_rq,
1559         .complete       = nvme_pci_complete_rq,
1560         .commit_rqs     = nvme_commit_rqs,
1561         .init_hctx      = nvme_init_hctx,
1562         .init_request   = nvme_init_request,
1563         .map_queues     = nvme_pci_map_queues,
1564         .timeout        = nvme_timeout,
1565         .poll           = nvme_poll,
1566 };
1567
1568 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1569 {
1570         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1571                 /*
1572                  * If the controller was reset during removal, it's possible
1573                  * user requests may be waiting on a stopped queue. Start the
1574                  * queue to flush these to completion.
1575                  */
1576                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1577                 blk_cleanup_queue(dev->ctrl.admin_q);
1578                 blk_mq_free_tag_set(&dev->admin_tagset);
1579         }
1580 }
1581
1582 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1583 {
1584         if (!dev->ctrl.admin_q) {
1585                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1586                 dev->admin_tagset.nr_hw_queues = 1;
1587
1588                 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1589                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1590                 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1591                 dev->admin_tagset.cmd_size = sizeof(struct nvme_iod);
1592                 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1593                 dev->admin_tagset.driver_data = dev;
1594
1595                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1596                         return -ENOMEM;
1597                 dev->ctrl.admin_tagset = &dev->admin_tagset;
1598
1599                 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1600                 if (IS_ERR(dev->ctrl.admin_q)) {
1601                         blk_mq_free_tag_set(&dev->admin_tagset);
1602                         return -ENOMEM;
1603                 }
1604                 if (!blk_get_queue(dev->ctrl.admin_q)) {
1605                         nvme_dev_remove_admin(dev);
1606                         dev->ctrl.admin_q = NULL;
1607                         return -ENODEV;
1608                 }
1609         } else
1610                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1611
1612         return 0;
1613 }
1614
1615 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1616 {
1617         return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1618 }
1619
1620 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1621 {
1622         struct pci_dev *pdev = to_pci_dev(dev->dev);
1623
1624         if (size <= dev->bar_mapped_size)
1625                 return 0;
1626         if (size > pci_resource_len(pdev, 0))
1627                 return -ENOMEM;
1628         if (dev->bar)
1629                 iounmap(dev->bar);
1630         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1631         if (!dev->bar) {
1632                 dev->bar_mapped_size = 0;
1633                 return -ENOMEM;
1634         }
1635         dev->bar_mapped_size = size;
1636         dev->dbs = dev->bar + NVME_REG_DBS;
1637
1638         return 0;
1639 }
1640
1641 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1642 {
1643         int result;
1644         u32 aqa;
1645         struct nvme_queue *nvmeq;
1646
1647         result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1648         if (result < 0)
1649                 return result;
1650
1651         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1652                                 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1653
1654         if (dev->subsystem &&
1655             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1656                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1657
1658         result = nvme_disable_ctrl(&dev->ctrl);
1659         if (result < 0)
1660                 return result;
1661
1662         result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1663         if (result)
1664                 return result;
1665
1666         nvmeq = &dev->queues[0];
1667         aqa = nvmeq->q_depth - 1;
1668         aqa |= aqa << 16;
1669
1670         writel(aqa, dev->bar + NVME_REG_AQA);
1671         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1672         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1673
1674         result = nvme_enable_ctrl(&dev->ctrl);
1675         if (result)
1676                 return result;
1677
1678         nvmeq->cq_vector = 0;
1679         nvme_init_queue(nvmeq, 0);
1680         result = queue_request_irq(nvmeq);
1681         if (result) {
1682                 dev->online_queues--;
1683                 return result;
1684         }
1685
1686         set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1687         return result;
1688 }
1689
1690 static int nvme_create_io_queues(struct nvme_dev *dev)
1691 {
1692         unsigned i, max, rw_queues;
1693         int ret = 0;
1694
1695         for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1696                 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1697                         ret = -ENOMEM;
1698                         break;
1699                 }
1700         }
1701
1702         max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1703         if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1704                 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1705                                 dev->io_queues[HCTX_TYPE_READ];
1706         } else {
1707                 rw_queues = max;
1708         }
1709
1710         for (i = dev->online_queues; i <= max; i++) {
1711                 bool polled = i > rw_queues;
1712
1713                 ret = nvme_create_queue(&dev->queues[i], i, polled);
1714                 if (ret)
1715                         break;
1716         }
1717
1718         /*
1719          * Ignore failing Create SQ/CQ commands, we can continue with less
1720          * than the desired amount of queues, and even a controller without
1721          * I/O queues can still be used to issue admin commands.  This might
1722          * be useful to upgrade a buggy firmware for example.
1723          */
1724         return ret >= 0 ? 0 : ret;
1725 }
1726
1727 static ssize_t nvme_cmb_show(struct device *dev,
1728                              struct device_attribute *attr,
1729                              char *buf)
1730 {
1731         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1732
1733         return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1734                        ndev->cmbloc, ndev->cmbsz);
1735 }
1736 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1737
1738 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1739 {
1740         u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1741
1742         return 1ULL << (12 + 4 * szu);
1743 }
1744
1745 static u32 nvme_cmb_size(struct nvme_dev *dev)
1746 {
1747         return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1748 }
1749
1750 static void nvme_map_cmb(struct nvme_dev *dev)
1751 {
1752         u64 size, offset;
1753         resource_size_t bar_size;
1754         struct pci_dev *pdev = to_pci_dev(dev->dev);
1755         int bar;
1756
1757         if (dev->cmb_size)
1758                 return;
1759
1760         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1761         if (!dev->cmbsz)
1762                 return;
1763         dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1764
1765         size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1766         offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1767         bar = NVME_CMB_BIR(dev->cmbloc);
1768         bar_size = pci_resource_len(pdev, bar);
1769
1770         if (offset > bar_size)
1771                 return;
1772
1773         /*
1774          * Controllers may support a CMB size larger than their BAR,
1775          * for example, due to being behind a bridge. Reduce the CMB to
1776          * the reported size of the BAR
1777          */
1778         if (size > bar_size - offset)
1779                 size = bar_size - offset;
1780
1781         if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1782                 dev_warn(dev->ctrl.device,
1783                          "failed to register the CMB\n");
1784                 return;
1785         }
1786
1787         dev->cmb_size = size;
1788         dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1789
1790         if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1791                         (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1792                 pci_p2pmem_publish(pdev, true);
1793
1794         if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1795                                     &dev_attr_cmb.attr, NULL))
1796                 dev_warn(dev->ctrl.device,
1797                          "failed to add sysfs attribute for CMB\n");
1798 }
1799
1800 static inline void nvme_release_cmb(struct nvme_dev *dev)
1801 {
1802         if (dev->cmb_size) {
1803                 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1804                                              &dev_attr_cmb.attr, NULL);
1805                 dev->cmb_size = 0;
1806         }
1807 }
1808
1809 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1810 {
1811         u64 dma_addr = dev->host_mem_descs_dma;
1812         struct nvme_command c;
1813         int ret;
1814
1815         memset(&c, 0, sizeof(c));
1816         c.features.opcode       = nvme_admin_set_features;
1817         c.features.fid          = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1818         c.features.dword11      = cpu_to_le32(bits);
1819         c.features.dword12      = cpu_to_le32(dev->host_mem_size >>
1820                                               ilog2(dev->ctrl.page_size));
1821         c.features.dword13      = cpu_to_le32(lower_32_bits(dma_addr));
1822         c.features.dword14      = cpu_to_le32(upper_32_bits(dma_addr));
1823         c.features.dword15      = cpu_to_le32(dev->nr_host_mem_descs);
1824
1825         ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1826         if (ret) {
1827                 dev_warn(dev->ctrl.device,
1828                          "failed to set host mem (err %d, flags %#x).\n",
1829                          ret, bits);
1830         }
1831         return ret;
1832 }
1833
1834 static void nvme_free_host_mem(struct nvme_dev *dev)
1835 {
1836         int i;
1837
1838         for (i = 0; i < dev->nr_host_mem_descs; i++) {
1839                 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1840                 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1841
1842                 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1843                                le64_to_cpu(desc->addr),
1844                                DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1845         }
1846
1847         kfree(dev->host_mem_desc_bufs);
1848         dev->host_mem_desc_bufs = NULL;
1849         dma_free_coherent(dev->dev,
1850                         dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1851                         dev->host_mem_descs, dev->host_mem_descs_dma);
1852         dev->host_mem_descs = NULL;
1853         dev->nr_host_mem_descs = 0;
1854 }
1855
1856 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1857                 u32 chunk_size)
1858 {
1859         struct nvme_host_mem_buf_desc *descs;
1860         u32 max_entries, len;
1861         dma_addr_t descs_dma;
1862         int i = 0;
1863         void **bufs;
1864         u64 size, tmp;
1865
1866         tmp = (preferred + chunk_size - 1);
1867         do_div(tmp, chunk_size);
1868         max_entries = tmp;
1869
1870         if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1871                 max_entries = dev->ctrl.hmmaxd;
1872
1873         descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1874                                    &descs_dma, GFP_KERNEL);
1875         if (!descs)
1876                 goto out;
1877
1878         bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1879         if (!bufs)
1880                 goto out_free_descs;
1881
1882         for (size = 0; size < preferred && i < max_entries; size += len) {
1883                 dma_addr_t dma_addr;
1884
1885                 len = min_t(u64, chunk_size, preferred - size);
1886                 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1887                                 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1888                 if (!bufs[i])
1889                         break;
1890
1891                 descs[i].addr = cpu_to_le64(dma_addr);
1892                 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1893                 i++;
1894         }
1895
1896         if (!size)
1897                 goto out_free_bufs;
1898
1899         dev->nr_host_mem_descs = i;
1900         dev->host_mem_size = size;
1901         dev->host_mem_descs = descs;
1902         dev->host_mem_descs_dma = descs_dma;
1903         dev->host_mem_desc_bufs = bufs;
1904         return 0;
1905
1906 out_free_bufs:
1907         while (--i >= 0) {
1908                 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1909
1910                 dma_free_attrs(dev->dev, size, bufs[i],
1911                                le64_to_cpu(descs[i].addr),
1912                                DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1913         }
1914
1915         kfree(bufs);
1916 out_free_descs:
1917         dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1918                         descs_dma);
1919 out:
1920         dev->host_mem_descs = NULL;
1921         return -ENOMEM;
1922 }
1923
1924 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1925 {
1926         u32 chunk_size;
1927
1928         /* start big and work our way down */
1929         for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1930              chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1931              chunk_size /= 2) {
1932                 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1933                         if (!min || dev->host_mem_size >= min)
1934                                 return 0;
1935                         nvme_free_host_mem(dev);
1936                 }
1937         }
1938
1939         return -ENOMEM;
1940 }
1941
1942 static int nvme_setup_host_mem(struct nvme_dev *dev)
1943 {
1944         u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1945         u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1946         u64 min = (u64)dev->ctrl.hmmin * 4096;
1947         u32 enable_bits = NVME_HOST_MEM_ENABLE;
1948         int ret;
1949
1950         preferred = min(preferred, max);
1951         if (min > max) {
1952                 dev_warn(dev->ctrl.device,
1953                         "min host memory (%lld MiB) above limit (%d MiB).\n",
1954                         min >> ilog2(SZ_1M), max_host_mem_size_mb);
1955                 nvme_free_host_mem(dev);
1956                 return 0;
1957         }
1958
1959         /*
1960          * If we already have a buffer allocated check if we can reuse it.
1961          */
1962         if (dev->host_mem_descs) {
1963                 if (dev->host_mem_size >= min)
1964                         enable_bits |= NVME_HOST_MEM_RETURN;
1965                 else
1966                         nvme_free_host_mem(dev);
1967         }
1968
1969         if (!dev->host_mem_descs) {
1970                 if (nvme_alloc_host_mem(dev, min, preferred)) {
1971                         dev_warn(dev->ctrl.device,
1972                                 "failed to allocate host memory buffer.\n");
1973                         return 0; /* controller must work without HMB */
1974                 }
1975
1976                 dev_info(dev->ctrl.device,
1977                         "allocated %lld MiB host memory buffer.\n",
1978                         dev->host_mem_size >> ilog2(SZ_1M));
1979         }
1980
1981         ret = nvme_set_host_mem(dev, enable_bits);
1982         if (ret)
1983                 nvme_free_host_mem(dev);
1984         return ret;
1985 }
1986
1987 /*
1988  * nirqs is the number of interrupts available for write and read
1989  * queues. The core already reserved an interrupt for the admin queue.
1990  */
1991 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
1992 {
1993         struct nvme_dev *dev = affd->priv;
1994         unsigned int nr_read_queues;
1995
1996         /*
1997          * If there is no interupt available for queues, ensure that
1998          * the default queue is set to 1. The affinity set size is
1999          * also set to one, but the irq core ignores it for this case.
2000          *
2001          * If only one interrupt is available or 'write_queue' == 0, combine
2002          * write and read queues.
2003          *
2004          * If 'write_queues' > 0, ensure it leaves room for at least one read
2005          * queue.
2006          */
2007         if (!nrirqs) {
2008                 nrirqs = 1;
2009                 nr_read_queues = 0;
2010         } else if (nrirqs == 1 || !write_queues) {
2011                 nr_read_queues = 0;
2012         } else if (write_queues >= nrirqs) {
2013                 nr_read_queues = 1;
2014         } else {
2015                 nr_read_queues = nrirqs - write_queues;
2016         }
2017
2018         dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2019         affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2020         dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2021         affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2022         affd->nr_sets = nr_read_queues ? 2 : 1;
2023 }
2024
2025 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2026 {
2027         struct pci_dev *pdev = to_pci_dev(dev->dev);
2028         struct irq_affinity affd = {
2029                 .pre_vectors    = 1,
2030                 .calc_sets      = nvme_calc_irq_sets,
2031                 .priv           = dev,
2032         };
2033         unsigned int irq_queues, this_p_queues;
2034
2035         /*
2036          * Poll queues don't need interrupts, but we need at least one IO
2037          * queue left over for non-polled IO.
2038          */
2039         this_p_queues = poll_queues;
2040         if (this_p_queues >= nr_io_queues) {
2041                 this_p_queues = nr_io_queues - 1;
2042                 irq_queues = 1;
2043         } else {
2044                 irq_queues = nr_io_queues - this_p_queues + 1;
2045         }
2046         dev->io_queues[HCTX_TYPE_POLL] = this_p_queues;
2047
2048         /* Initialize for the single interrupt case */
2049         dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2050         dev->io_queues[HCTX_TYPE_READ] = 0;
2051
2052         /*
2053          * Some Apple controllers require all queues to use the
2054          * first vector.
2055          */
2056         if (dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR)
2057                 irq_queues = 1;
2058
2059         return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2060                               PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2061 }
2062
2063 static void nvme_disable_io_queues(struct nvme_dev *dev)
2064 {
2065         if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2066                 __nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2067 }
2068
2069 static int nvme_setup_io_queues(struct nvme_dev *dev)
2070 {
2071         struct nvme_queue *adminq = &dev->queues[0];
2072         struct pci_dev *pdev = to_pci_dev(dev->dev);
2073         int result, nr_io_queues;
2074         unsigned long size;
2075
2076         nr_io_queues = max_io_queues();
2077
2078         /*
2079          * If tags are shared with admin queue (Apple bug), then
2080          * make sure we only use one IO queue.
2081          */
2082         if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2083                 nr_io_queues = 1;
2084
2085         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2086         if (result < 0)
2087                 return result;
2088
2089         if (nr_io_queues == 0)
2090                 return 0;
2091         
2092         clear_bit(NVMEQ_ENABLED, &adminq->flags);
2093
2094         if (dev->cmb_use_sqes) {
2095                 result = nvme_cmb_qdepth(dev, nr_io_queues,
2096                                 sizeof(struct nvme_command));
2097                 if (result > 0)
2098                         dev->q_depth = result;
2099                 else
2100                         dev->cmb_use_sqes = false;
2101         }
2102
2103         do {
2104                 size = db_bar_size(dev, nr_io_queues);
2105                 result = nvme_remap_bar(dev, size);
2106                 if (!result)
2107                         break;
2108                 if (!--nr_io_queues)
2109                         return -ENOMEM;
2110         } while (1);
2111         adminq->q_db = dev->dbs;
2112
2113  retry:
2114         /* Deregister the admin queue's interrupt */
2115         pci_free_irq(pdev, 0, adminq);
2116
2117         /*
2118          * If we enable msix early due to not intx, disable it again before
2119          * setting up the full range we need.
2120          */
2121         pci_free_irq_vectors(pdev);
2122
2123         result = nvme_setup_irqs(dev, nr_io_queues);
2124         if (result <= 0)
2125                 return -EIO;
2126
2127         dev->num_vecs = result;
2128         result = max(result - 1, 1);
2129         dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2130
2131         /*
2132          * Should investigate if there's a performance win from allocating
2133          * more queues than interrupt vectors; it might allow the submission
2134          * path to scale better, even if the receive path is limited by the
2135          * number of interrupts.
2136          */
2137         result = queue_request_irq(adminq);
2138         if (result)
2139                 return result;
2140         set_bit(NVMEQ_ENABLED, &adminq->flags);
2141
2142         result = nvme_create_io_queues(dev);
2143         if (result || dev->online_queues < 2)
2144                 return result;
2145
2146         if (dev->online_queues - 1 < dev->max_qid) {
2147                 nr_io_queues = dev->online_queues - 1;
2148                 nvme_disable_io_queues(dev);
2149                 nvme_suspend_io_queues(dev);
2150                 goto retry;
2151         }
2152         dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2153                                         dev->io_queues[HCTX_TYPE_DEFAULT],
2154                                         dev->io_queues[HCTX_TYPE_READ],
2155                                         dev->io_queues[HCTX_TYPE_POLL]);
2156         return 0;
2157 }
2158
2159 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2160 {
2161         struct nvme_queue *nvmeq = req->end_io_data;
2162
2163         blk_mq_free_request(req);
2164         complete(&nvmeq->delete_done);
2165 }
2166
2167 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2168 {
2169         struct nvme_queue *nvmeq = req->end_io_data;
2170
2171         if (error)
2172                 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2173
2174         nvme_del_queue_end(req, error);
2175 }
2176
2177 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2178 {
2179         struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2180         struct request *req;
2181         struct nvme_command cmd;
2182
2183         memset(&cmd, 0, sizeof(cmd));
2184         cmd.delete_queue.opcode = opcode;
2185         cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2186
2187         req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
2188         if (IS_ERR(req))
2189                 return PTR_ERR(req);
2190
2191         req->timeout = ADMIN_TIMEOUT;
2192         req->end_io_data = nvmeq;
2193
2194         init_completion(&nvmeq->delete_done);
2195         blk_execute_rq_nowait(q, NULL, req, false,
2196                         opcode == nvme_admin_delete_cq ?
2197                                 nvme_del_cq_end : nvme_del_queue_end);
2198         return 0;
2199 }
2200
2201 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2202 {
2203         int nr_queues = dev->online_queues - 1, sent = 0;
2204         unsigned long timeout;
2205
2206  retry:
2207         timeout = ADMIN_TIMEOUT;
2208         while (nr_queues > 0) {
2209                 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2210                         break;
2211                 nr_queues--;
2212                 sent++;
2213         }
2214         while (sent) {
2215                 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2216
2217                 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2218                                 timeout);
2219                 if (timeout == 0)
2220                         return false;
2221
2222                 sent--;
2223                 if (nr_queues)
2224                         goto retry;
2225         }
2226         return true;
2227 }
2228
2229 static void nvme_dev_add(struct nvme_dev *dev)
2230 {
2231         int ret;
2232
2233         if (!dev->ctrl.tagset) {
2234                 dev->tagset.ops = &nvme_mq_ops;
2235                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2236                 dev->tagset.nr_maps = 2; /* default + read */
2237                 if (dev->io_queues[HCTX_TYPE_POLL])
2238                         dev->tagset.nr_maps++;
2239                 dev->tagset.timeout = NVME_IO_TIMEOUT;
2240                 dev->tagset.numa_node = dev_to_node(dev->dev);
2241                 dev->tagset.queue_depth =
2242                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2243                 dev->tagset.cmd_size = sizeof(struct nvme_iod);
2244                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2245                 dev->tagset.driver_data = dev;
2246
2247                 /*
2248                  * Some Apple controllers requires tags to be unique
2249                  * across admin and IO queue, so reserve the first 32
2250                  * tags of the IO queue.
2251                  */
2252                 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2253                         dev->tagset.reserved_tags = NVME_AQ_DEPTH;
2254
2255                 ret = blk_mq_alloc_tag_set(&dev->tagset);
2256                 if (ret) {
2257                         dev_warn(dev->ctrl.device,
2258                                 "IO queues tagset allocation failed %d\n", ret);
2259                         return;
2260                 }
2261                 dev->ctrl.tagset = &dev->tagset;
2262         } else {
2263                 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2264
2265                 /* Free previously allocated queues that are no longer usable */
2266                 nvme_free_queues(dev, dev->online_queues);
2267         }
2268
2269         nvme_dbbuf_set(dev);
2270 }
2271
2272 static int nvme_pci_enable(struct nvme_dev *dev)
2273 {
2274         int result = -ENOMEM;
2275         struct pci_dev *pdev = to_pci_dev(dev->dev);
2276
2277         if (pci_enable_device_mem(pdev))
2278                 return result;
2279
2280         pci_set_master(pdev);
2281
2282         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)))
2283                 goto disable;
2284
2285         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2286                 result = -ENODEV;
2287                 goto disable;
2288         }
2289
2290         /*
2291          * Some devices and/or platforms don't advertise or work with INTx
2292          * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2293          * adjust this later.
2294          */
2295         result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2296         if (result < 0)
2297                 return result;
2298
2299         dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2300
2301         dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2302                                 io_queue_depth);
2303         dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2304         dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2305         dev->dbs = dev->bar + 4096;
2306
2307         /*
2308          * Some Apple controllers require a non-standard SQE size.
2309          * Interestingly they also seem to ignore the CC:IOSQES register
2310          * so we don't bother updating it here.
2311          */
2312         if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2313                 dev->io_sqes = 7;
2314         else
2315                 dev->io_sqes = NVME_NVM_IOSQES;
2316
2317         /*
2318          * Temporary fix for the Apple controller found in the MacBook8,1 and
2319          * some MacBook7,1 to avoid controller resets and data loss.
2320          */
2321         if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2322                 dev->q_depth = 2;
2323                 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2324                         "set queue depth=%u to work around controller resets\n",
2325                         dev->q_depth);
2326         } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2327                    (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2328                    NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2329                 dev->q_depth = 64;
2330                 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2331                         "set queue depth=%u\n", dev->q_depth);
2332         }
2333
2334         /*
2335          * Controllers with the shared tags quirk need the IO queue to be
2336          * big enough so that we get 32 tags for the admin queue
2337          */
2338         if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2339             (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2340                 dev->q_depth = NVME_AQ_DEPTH + 2;
2341                 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2342                          dev->q_depth);
2343         }
2344
2345
2346         nvme_map_cmb(dev);
2347
2348         pci_enable_pcie_error_reporting(pdev);
2349         pci_save_state(pdev);
2350         return 0;
2351
2352  disable:
2353         pci_disable_device(pdev);
2354         return result;
2355 }
2356
2357 static void nvme_dev_unmap(struct nvme_dev *dev)
2358 {
2359         if (dev->bar)
2360                 iounmap(dev->bar);
2361         pci_release_mem_regions(to_pci_dev(dev->dev));
2362 }
2363
2364 static void nvme_pci_disable(struct nvme_dev *dev)
2365 {
2366         struct pci_dev *pdev = to_pci_dev(dev->dev);
2367
2368         pci_free_irq_vectors(pdev);
2369
2370         if (pci_is_enabled(pdev)) {
2371                 pci_disable_pcie_error_reporting(pdev);
2372                 pci_disable_device(pdev);
2373         }
2374 }
2375
2376 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2377 {
2378         bool dead = true, freeze = false;
2379         struct pci_dev *pdev = to_pci_dev(dev->dev);
2380
2381         mutex_lock(&dev->shutdown_lock);
2382         if (pci_is_enabled(pdev)) {
2383                 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2384
2385                 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2386                     dev->ctrl.state == NVME_CTRL_RESETTING) {
2387                         freeze = true;
2388                         nvme_start_freeze(&dev->ctrl);
2389                 }
2390                 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2391                         pdev->error_state  != pci_channel_io_normal);
2392         }
2393
2394         /*
2395          * Give the controller a chance to complete all entered requests if
2396          * doing a safe shutdown.
2397          */
2398         if (!dead && shutdown && freeze)
2399                 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2400
2401         nvme_stop_queues(&dev->ctrl);
2402
2403         if (!dead && dev->ctrl.queue_count > 0) {
2404                 nvme_disable_io_queues(dev);
2405                 nvme_disable_admin_queue(dev, shutdown);
2406         }
2407         nvme_suspend_io_queues(dev);
2408         nvme_suspend_queue(&dev->queues[0]);
2409         nvme_pci_disable(dev);
2410         nvme_reap_pending_cqes(dev);
2411
2412         blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2413         blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2414         blk_mq_tagset_wait_completed_request(&dev->tagset);
2415         blk_mq_tagset_wait_completed_request(&dev->admin_tagset);
2416
2417         /*
2418          * The driver will not be starting up queues again if shutting down so
2419          * must flush all entered requests to their failed completion to avoid
2420          * deadlocking blk-mq hot-cpu notifier.
2421          */
2422         if (shutdown) {
2423                 nvme_start_queues(&dev->ctrl);
2424                 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2425                         blk_mq_unquiesce_queue(dev->ctrl.admin_q);
2426         }
2427         mutex_unlock(&dev->shutdown_lock);
2428 }
2429
2430 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2431 {
2432         if (!nvme_wait_reset(&dev->ctrl))
2433                 return -EBUSY;
2434         nvme_dev_disable(dev, shutdown);
2435         return 0;
2436 }
2437
2438 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2439 {
2440         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2441                                                 PAGE_SIZE, PAGE_SIZE, 0);
2442         if (!dev->prp_page_pool)
2443                 return -ENOMEM;
2444
2445         /* Optimisation for I/Os between 4k and 128k */
2446         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2447                                                 256, 256, 0);
2448         if (!dev->prp_small_pool) {
2449                 dma_pool_destroy(dev->prp_page_pool);
2450                 return -ENOMEM;
2451         }
2452         return 0;
2453 }
2454
2455 static void nvme_release_prp_pools(struct nvme_dev *dev)
2456 {
2457         dma_pool_destroy(dev->prp_page_pool);
2458         dma_pool_destroy(dev->prp_small_pool);
2459 }
2460
2461 static void nvme_free_tagset(struct nvme_dev *dev)
2462 {
2463         if (dev->tagset.tags)
2464                 blk_mq_free_tag_set(&dev->tagset);
2465         dev->ctrl.tagset = NULL;
2466 }
2467
2468 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2469 {
2470         struct nvme_dev *dev = to_nvme_dev(ctrl);
2471
2472         nvme_dbbuf_dma_free(dev);
2473         nvme_free_tagset(dev);
2474         if (dev->ctrl.admin_q)
2475                 blk_put_queue(dev->ctrl.admin_q);
2476         free_opal_dev(dev->ctrl.opal_dev);
2477         mempool_destroy(dev->iod_mempool);
2478         put_device(dev->dev);
2479         kfree(dev->queues);
2480         kfree(dev);
2481 }
2482
2483 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2484 {
2485         /*
2486          * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2487          * may be holding this pci_dev's device lock.
2488          */
2489         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2490         nvme_get_ctrl(&dev->ctrl);
2491         nvme_dev_disable(dev, false);
2492         nvme_kill_queues(&dev->ctrl);
2493         if (!queue_work(nvme_wq, &dev->remove_work))
2494                 nvme_put_ctrl(&dev->ctrl);
2495 }
2496
2497 static void nvme_reset_work(struct work_struct *work)
2498 {
2499         struct nvme_dev *dev =
2500                 container_of(work, struct nvme_dev, ctrl.reset_work);
2501         bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2502         int result;
2503
2504         if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING)) {
2505                 result = -ENODEV;
2506                 goto out;
2507         }
2508
2509         /*
2510          * If we're called to reset a live controller first shut it down before
2511          * moving on.
2512          */
2513         if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2514                 nvme_dev_disable(dev, false);
2515         nvme_sync_queues(&dev->ctrl);
2516
2517         mutex_lock(&dev->shutdown_lock);
2518         result = nvme_pci_enable(dev);
2519         if (result)
2520                 goto out_unlock;
2521
2522         result = nvme_pci_configure_admin_queue(dev);
2523         if (result)
2524                 goto out_unlock;
2525
2526         result = nvme_alloc_admin_tags(dev);
2527         if (result)
2528                 goto out_unlock;
2529
2530         /*
2531          * Limit the max command size to prevent iod->sg allocations going
2532          * over a single page.
2533          */
2534         dev->ctrl.max_hw_sectors = min_t(u32,
2535                 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2536         dev->ctrl.max_segments = NVME_MAX_SEGS;
2537
2538         /*
2539          * Don't limit the IOMMU merged segment size.
2540          */
2541         dma_set_max_seg_size(dev->dev, 0xffffffff);
2542
2543         mutex_unlock(&dev->shutdown_lock);
2544
2545         /*
2546          * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2547          * initializing procedure here.
2548          */
2549         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2550                 dev_warn(dev->ctrl.device,
2551                         "failed to mark controller CONNECTING\n");
2552                 result = -EBUSY;
2553                 goto out;
2554         }
2555
2556         result = nvme_init_identify(&dev->ctrl);
2557         if (result)
2558                 goto out;
2559
2560         if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2561                 if (!dev->ctrl.opal_dev)
2562                         dev->ctrl.opal_dev =
2563                                 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2564                 else if (was_suspend)
2565                         opal_unlock_from_suspend(dev->ctrl.opal_dev);
2566         } else {
2567                 free_opal_dev(dev->ctrl.opal_dev);
2568                 dev->ctrl.opal_dev = NULL;
2569         }
2570
2571         if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2572                 result = nvme_dbbuf_dma_alloc(dev);
2573                 if (result)
2574                         dev_warn(dev->dev,
2575                                  "unable to allocate dma for dbbuf\n");
2576         }
2577
2578         if (dev->ctrl.hmpre) {
2579                 result = nvme_setup_host_mem(dev);
2580                 if (result < 0)
2581                         goto out;
2582         }
2583
2584         result = nvme_setup_io_queues(dev);
2585         if (result)
2586                 goto out;
2587
2588         /*
2589          * Keep the controller around but remove all namespaces if we don't have
2590          * any working I/O queue.
2591          */
2592         if (dev->online_queues < 2) {
2593                 dev_warn(dev->ctrl.device, "IO queues not created\n");
2594                 nvme_kill_queues(&dev->ctrl);
2595                 nvme_remove_namespaces(&dev->ctrl);
2596                 nvme_free_tagset(dev);
2597         } else {
2598                 nvme_start_queues(&dev->ctrl);
2599                 nvme_wait_freeze(&dev->ctrl);
2600                 nvme_dev_add(dev);
2601                 nvme_unfreeze(&dev->ctrl);
2602         }
2603
2604         /*
2605          * If only admin queue live, keep it to do further investigation or
2606          * recovery.
2607          */
2608         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2609                 dev_warn(dev->ctrl.device,
2610                         "failed to mark controller live state\n");
2611                 result = -ENODEV;
2612                 goto out;
2613         }
2614
2615         nvme_start_ctrl(&dev->ctrl);
2616         return;
2617
2618  out_unlock:
2619         mutex_unlock(&dev->shutdown_lock);
2620  out:
2621         if (result)
2622                 dev_warn(dev->ctrl.device,
2623                          "Removing after probe failure status: %d\n", result);
2624         nvme_remove_dead_ctrl(dev);
2625 }
2626
2627 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2628 {
2629         struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2630         struct pci_dev *pdev = to_pci_dev(dev->dev);
2631
2632         if (pci_get_drvdata(pdev))
2633                 device_release_driver(&pdev->dev);
2634         nvme_put_ctrl(&dev->ctrl);
2635 }
2636
2637 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2638 {
2639         *val = readl(to_nvme_dev(ctrl)->bar + off);
2640         return 0;
2641 }
2642
2643 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2644 {
2645         writel(val, to_nvme_dev(ctrl)->bar + off);
2646         return 0;
2647 }
2648
2649 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2650 {
2651         *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2652         return 0;
2653 }
2654
2655 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2656 {
2657         struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2658
2659         return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2660 }
2661
2662 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2663         .name                   = "pcie",
2664         .module                 = THIS_MODULE,
2665         .flags                  = NVME_F_METADATA_SUPPORTED |
2666                                   NVME_F_PCI_P2PDMA,
2667         .reg_read32             = nvme_pci_reg_read32,
2668         .reg_write32            = nvme_pci_reg_write32,
2669         .reg_read64             = nvme_pci_reg_read64,
2670         .free_ctrl              = nvme_pci_free_ctrl,
2671         .submit_async_event     = nvme_pci_submit_async_event,
2672         .get_address            = nvme_pci_get_address,
2673 };
2674
2675 static int nvme_dev_map(struct nvme_dev *dev)
2676 {
2677         struct pci_dev *pdev = to_pci_dev(dev->dev);
2678
2679         if (pci_request_mem_regions(pdev, "nvme"))
2680                 return -ENODEV;
2681
2682         if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2683                 goto release;
2684
2685         return 0;
2686   release:
2687         pci_release_mem_regions(pdev);
2688         return -ENODEV;
2689 }
2690
2691 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2692 {
2693         if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2694                 /*
2695                  * Several Samsung devices seem to drop off the PCIe bus
2696                  * randomly when APST is on and uses the deepest sleep state.
2697                  * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2698                  * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2699                  * 950 PRO 256GB", but it seems to be restricted to two Dell
2700                  * laptops.
2701                  */
2702                 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2703                     (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2704                      dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2705                         return NVME_QUIRK_NO_DEEPEST_PS;
2706         } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2707                 /*
2708                  * Samsung SSD 960 EVO drops off the PCIe bus after system
2709                  * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2710                  * within few minutes after bootup on a Coffee Lake board -
2711                  * ASUS PRIME Z370-A
2712                  */
2713                 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2714                     (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2715                      dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2716                         return NVME_QUIRK_NO_APST;
2717         } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2718                     pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2719                    (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2720                 /*
2721                  * Forcing to use host managed nvme power settings for
2722                  * lowest idle power with quick resume latency on
2723                  * Samsung and Toshiba SSDs based on suspend behavior
2724                  * on Coffee Lake board for LENOVO C640
2725                  */
2726                 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2727                      dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2728                         return NVME_QUIRK_SIMPLE_SUSPEND;
2729         }
2730
2731         return 0;
2732 }
2733
2734 static void nvme_async_probe(void *data, async_cookie_t cookie)
2735 {
2736         struct nvme_dev *dev = data;
2737
2738         flush_work(&dev->ctrl.reset_work);
2739         flush_work(&dev->ctrl.scan_work);
2740         nvme_put_ctrl(&dev->ctrl);
2741 }
2742
2743 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2744 {
2745         int node, result = -ENOMEM;
2746         struct nvme_dev *dev;
2747         unsigned long quirks = id->driver_data;
2748         size_t alloc_size;
2749
2750         node = dev_to_node(&pdev->dev);
2751         if (node == NUMA_NO_NODE)
2752                 set_dev_node(&pdev->dev, first_memory_node);
2753
2754         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2755         if (!dev)
2756                 return -ENOMEM;
2757
2758         dev->queues = kcalloc_node(max_queue_count(), sizeof(struct nvme_queue),
2759                                         GFP_KERNEL, node);
2760         if (!dev->queues)
2761                 goto free;
2762
2763         dev->dev = get_device(&pdev->dev);
2764         pci_set_drvdata(pdev, dev);
2765
2766         result = nvme_dev_map(dev);
2767         if (result)
2768                 goto put_pci;
2769
2770         INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2771         INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2772         mutex_init(&dev->shutdown_lock);
2773
2774         result = nvme_setup_prp_pools(dev);
2775         if (result)
2776                 goto unmap;
2777
2778         quirks |= check_vendor_combination_bug(pdev);
2779
2780         /*
2781          * Double check that our mempool alloc size will cover the biggest
2782          * command we support.
2783          */
2784         alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ,
2785                                                 NVME_MAX_SEGS, true);
2786         WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2787
2788         dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2789                                                 mempool_kfree,
2790                                                 (void *) alloc_size,
2791                                                 GFP_KERNEL, node);
2792         if (!dev->iod_mempool) {
2793                 result = -ENOMEM;
2794                 goto release_pools;
2795         }
2796
2797         result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2798                         quirks);
2799         if (result)
2800                 goto release_mempool;
2801
2802         dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2803
2804         nvme_reset_ctrl(&dev->ctrl);
2805         async_schedule(nvme_async_probe, dev);
2806
2807         return 0;
2808
2809  release_mempool:
2810         mempool_destroy(dev->iod_mempool);
2811  release_pools:
2812         nvme_release_prp_pools(dev);
2813  unmap:
2814         nvme_dev_unmap(dev);
2815  put_pci:
2816         put_device(dev->dev);
2817  free:
2818         kfree(dev->queues);
2819         kfree(dev);
2820         return result;
2821 }
2822
2823 static void nvme_reset_prepare(struct pci_dev *pdev)
2824 {
2825         struct nvme_dev *dev = pci_get_drvdata(pdev);
2826
2827         /*
2828          * We don't need to check the return value from waiting for the reset
2829          * state as pci_dev device lock is held, making it impossible to race
2830          * with ->remove().
2831          */
2832         nvme_disable_prepare_reset(dev, false);
2833         nvme_sync_queues(&dev->ctrl);
2834 }
2835
2836 static void nvme_reset_done(struct pci_dev *pdev)
2837 {
2838         struct nvme_dev *dev = pci_get_drvdata(pdev);
2839
2840         if (!nvme_try_sched_reset(&dev->ctrl))
2841                 flush_work(&dev->ctrl.reset_work);
2842 }
2843
2844 static void nvme_shutdown(struct pci_dev *pdev)
2845 {
2846         struct nvme_dev *dev = pci_get_drvdata(pdev);
2847         nvme_disable_prepare_reset(dev, true);
2848 }
2849
2850 /*
2851  * The driver's remove may be called on a device in a partially initialized
2852  * state. This function must not have any dependencies on the device state in
2853  * order to proceed.
2854  */
2855 static void nvme_remove(struct pci_dev *pdev)
2856 {
2857         struct nvme_dev *dev = pci_get_drvdata(pdev);
2858
2859         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2860         pci_set_drvdata(pdev, NULL);
2861
2862         if (!pci_device_is_present(pdev)) {
2863                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2864                 nvme_dev_disable(dev, true);
2865                 nvme_dev_remove_admin(dev);
2866         }
2867
2868         flush_work(&dev->ctrl.reset_work);
2869         nvme_stop_ctrl(&dev->ctrl);
2870         nvme_remove_namespaces(&dev->ctrl);
2871         nvme_dev_disable(dev, true);
2872         nvme_release_cmb(dev);
2873         nvme_free_host_mem(dev);
2874         nvme_dev_remove_admin(dev);
2875         nvme_free_queues(dev, 0);
2876         nvme_release_prp_pools(dev);
2877         nvme_dev_unmap(dev);
2878         nvme_uninit_ctrl(&dev->ctrl);
2879 }
2880
2881 #ifdef CONFIG_PM_SLEEP
2882 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
2883 {
2884         return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
2885 }
2886
2887 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
2888 {
2889         return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
2890 }
2891
2892 static int nvme_resume(struct device *dev)
2893 {
2894         struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
2895         struct nvme_ctrl *ctrl = &ndev->ctrl;
2896
2897         if (ndev->last_ps == U32_MAX ||
2898             nvme_set_power_state(ctrl, ndev->last_ps) != 0)
2899                 return nvme_try_sched_reset(&ndev->ctrl);
2900         return 0;
2901 }
2902
2903 static int nvme_suspend(struct device *dev)
2904 {
2905         struct pci_dev *pdev = to_pci_dev(dev);
2906         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2907         struct nvme_ctrl *ctrl = &ndev->ctrl;
2908         int ret = -EBUSY;
2909
2910         ndev->last_ps = U32_MAX;
2911
2912         /*
2913          * The platform does not remove power for a kernel managed suspend so
2914          * use host managed nvme power settings for lowest idle power if
2915          * possible. This should have quicker resume latency than a full device
2916          * shutdown.  But if the firmware is involved after the suspend or the
2917          * device does not support any non-default power states, shut down the
2918          * device fully.
2919          *
2920          * If ASPM is not enabled for the device, shut down the device and allow
2921          * the PCI bus layer to put it into D3 in order to take the PCIe link
2922          * down, so as to allow the platform to achieve its minimum low-power
2923          * state (which may not be possible if the link is up).
2924          */
2925         if (pm_suspend_via_firmware() || !ctrl->npss ||
2926             !pcie_aspm_enabled(pdev) ||
2927             (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
2928                 return nvme_disable_prepare_reset(ndev, true);
2929
2930         nvme_start_freeze(ctrl);
2931         nvme_wait_freeze(ctrl);
2932         nvme_sync_queues(ctrl);
2933
2934         if (ctrl->state != NVME_CTRL_LIVE)
2935                 goto unfreeze;
2936
2937         ret = nvme_get_power_state(ctrl, &ndev->last_ps);
2938         if (ret < 0)
2939                 goto unfreeze;
2940
2941         /*
2942          * A saved state prevents pci pm from generically controlling the
2943          * device's power. If we're using protocol specific settings, we don't
2944          * want pci interfering.
2945          */
2946         pci_save_state(pdev);
2947
2948         ret = nvme_set_power_state(ctrl, ctrl->npss);
2949         if (ret < 0)
2950                 goto unfreeze;
2951
2952         if (ret) {
2953                 /* discard the saved state */
2954                 pci_load_saved_state(pdev, NULL);
2955
2956                 /*
2957                  * Clearing npss forces a controller reset on resume. The
2958                  * correct value will be rediscovered then.
2959                  */
2960                 ret = nvme_disable_prepare_reset(ndev, true);
2961                 ctrl->npss = 0;
2962         }
2963 unfreeze:
2964         nvme_unfreeze(ctrl);
2965         return ret;
2966 }
2967
2968 static int nvme_simple_suspend(struct device *dev)
2969 {
2970         struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
2971         return nvme_disable_prepare_reset(ndev, true);
2972 }
2973
2974 static int nvme_simple_resume(struct device *dev)
2975 {
2976         struct pci_dev *pdev = to_pci_dev(dev);
2977         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2978
2979         return nvme_try_sched_reset(&ndev->ctrl);
2980 }
2981
2982 static const struct dev_pm_ops nvme_dev_pm_ops = {
2983         .suspend        = nvme_suspend,
2984         .resume         = nvme_resume,
2985         .freeze         = nvme_simple_suspend,
2986         .thaw           = nvme_simple_resume,
2987         .poweroff       = nvme_simple_suspend,
2988         .restore        = nvme_simple_resume,
2989 };
2990 #endif /* CONFIG_PM_SLEEP */
2991
2992 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2993                                                 pci_channel_state_t state)
2994 {
2995         struct nvme_dev *dev = pci_get_drvdata(pdev);
2996
2997         /*
2998          * A frozen channel requires a reset. When detected, this method will
2999          * shutdown the controller to quiesce. The controller will be restarted
3000          * after the slot reset through driver's slot_reset callback.
3001          */
3002         switch (state) {
3003         case pci_channel_io_normal:
3004                 return PCI_ERS_RESULT_CAN_RECOVER;
3005         case pci_channel_io_frozen:
3006                 dev_warn(dev->ctrl.device,
3007                         "frozen state error detected, reset controller\n");
3008                 nvme_dev_disable(dev, false);
3009                 return PCI_ERS_RESULT_NEED_RESET;
3010         case pci_channel_io_perm_failure:
3011                 dev_warn(dev->ctrl.device,
3012                         "failure state error detected, request disconnect\n");
3013                 return PCI_ERS_RESULT_DISCONNECT;
3014         }
3015         return PCI_ERS_RESULT_NEED_RESET;
3016 }
3017
3018 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3019 {
3020         struct nvme_dev *dev = pci_get_drvdata(pdev);
3021
3022         dev_info(dev->ctrl.device, "restart after slot reset\n");
3023         pci_restore_state(pdev);
3024         nvme_reset_ctrl(&dev->ctrl);
3025         return PCI_ERS_RESULT_RECOVERED;
3026 }
3027
3028 static void nvme_error_resume(struct pci_dev *pdev)
3029 {
3030         struct nvme_dev *dev = pci_get_drvdata(pdev);
3031
3032         flush_work(&dev->ctrl.reset_work);
3033 }
3034
3035 static const struct pci_error_handlers nvme_err_handler = {
3036         .error_detected = nvme_error_detected,
3037         .slot_reset     = nvme_slot_reset,
3038         .resume         = nvme_error_resume,
3039         .reset_prepare  = nvme_reset_prepare,
3040         .reset_done     = nvme_reset_done,
3041 };
3042
3043 static const struct pci_device_id nvme_id_table[] = {
3044         { PCI_VDEVICE(INTEL, 0x0953),
3045                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3046                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3047         { PCI_VDEVICE(INTEL, 0x0a53),
3048                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3049                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3050         { PCI_VDEVICE(INTEL, 0x0a54),
3051                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3052                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3053         { PCI_VDEVICE(INTEL, 0x0a55),
3054                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3055                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3056         { PCI_VDEVICE(INTEL, 0xf1a5),   /* Intel 600P/P3100 */
3057                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3058                                 NVME_QUIRK_MEDIUM_PRIO_SQ |
3059                                 NVME_QUIRK_NO_TEMP_THRESH_CHANGE },
3060         { PCI_VDEVICE(INTEL, 0xf1a6),   /* Intel 760p/Pro 7600p */
3061                 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3062         { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
3063                 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3064                                 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3065         { PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3066                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3067         { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
3068                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3069         { PCI_DEVICE(0x1c58, 0x0023),   /* WDC SN200 adapter */
3070                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3071         { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
3072                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3073         { PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3074                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3075         { PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3076                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3077         { PCI_DEVICE(0x1d1d, 0x1f1f),   /* LighNVM qemu device */
3078                 .driver_data = NVME_QUIRK_LIGHTNVM, },
3079         { PCI_DEVICE(0x1d1d, 0x2807),   /* CNEX WL */
3080                 .driver_data = NVME_QUIRK_LIGHTNVM, },
3081         { PCI_DEVICE(0x1d1d, 0x2601),   /* CNEX Granby */
3082                 .driver_data = NVME_QUIRK_LIGHTNVM, },
3083         { PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3084                 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3085         { PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3086                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3087                                 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3088         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3089         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3090                 .driver_data = NVME_QUIRK_SINGLE_VECTOR },
3091         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3092         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3093                 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3094                                 NVME_QUIRK_128_BYTES_SQES |
3095                                 NVME_QUIRK_SHARED_TAGS },
3096         { 0, }
3097 };
3098 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3099
3100 static struct pci_driver nvme_driver = {
3101         .name           = "nvme",
3102         .id_table       = nvme_id_table,
3103         .probe          = nvme_probe,
3104         .remove         = nvme_remove,
3105         .shutdown       = nvme_shutdown,
3106 #ifdef CONFIG_PM_SLEEP
3107         .driver         = {
3108                 .pm     = &nvme_dev_pm_ops,
3109         },
3110 #endif
3111         .sriov_configure = pci_sriov_configure_simple,
3112         .err_handler    = &nvme_err_handler,
3113 };
3114
3115 static int __init nvme_init(void)
3116 {
3117         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3118         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3119         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3120         BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3121
3122         write_queues = min(write_queues, num_possible_cpus());
3123         poll_queues = min(poll_queues, num_possible_cpus());
3124         return pci_register_driver(&nvme_driver);
3125 }
3126
3127 static void __exit nvme_exit(void)
3128 {
3129         pci_unregister_driver(&nvme_driver);
3130         flush_workqueue(nvme_wq);
3131 }
3132
3133 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3134 MODULE_LICENSE("GPL");
3135 MODULE_VERSION("1.0");
3136 module_init(nvme_init);
3137 module_exit(nvme_exit);