Merge tag 'sunxi-fixes-for-4.19' of https://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / drivers / nvme / host / pci.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/aer.h>
16 #include <linux/async.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/dmi.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/mm.h>
25 #include <linux/module.h>
26 #include <linux/mutex.h>
27 #include <linux/once.h>
28 #include <linux/pci.h>
29 #include <linux/t10-pi.h>
30 #include <linux/types.h>
31 #include <linux/io-64-nonatomic-lo-hi.h>
32 #include <linux/sed-opal.h>
33
34 #include "nvme.h"
35
36 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
37 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
38
39 #define SGES_PER_PAGE   (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
40
41 /*
42  * These can be higher, but we need to ensure that any command doesn't
43  * require an sg allocation that needs more than a page of data.
44  */
45 #define NVME_MAX_KB_SZ  4096
46 #define NVME_MAX_SEGS   127
47
48 static int use_threaded_interrupts;
49 module_param(use_threaded_interrupts, int, 0);
50
51 static bool use_cmb_sqes = true;
52 module_param(use_cmb_sqes, bool, 0444);
53 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
54
55 static unsigned int max_host_mem_size_mb = 128;
56 module_param(max_host_mem_size_mb, uint, 0444);
57 MODULE_PARM_DESC(max_host_mem_size_mb,
58         "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
59
60 static unsigned int sgl_threshold = SZ_32K;
61 module_param(sgl_threshold, uint, 0644);
62 MODULE_PARM_DESC(sgl_threshold,
63                 "Use SGLs when average request segment size is larger or equal to "
64                 "this size. Use 0 to disable SGLs.");
65
66 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
67 static const struct kernel_param_ops io_queue_depth_ops = {
68         .set = io_queue_depth_set,
69         .get = param_get_int,
70 };
71
72 static int io_queue_depth = 1024;
73 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
74 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
75
76 struct nvme_dev;
77 struct nvme_queue;
78
79 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
80
81 /*
82  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
83  */
84 struct nvme_dev {
85         struct nvme_queue *queues;
86         struct blk_mq_tag_set tagset;
87         struct blk_mq_tag_set admin_tagset;
88         u32 __iomem *dbs;
89         struct device *dev;
90         struct dma_pool *prp_page_pool;
91         struct dma_pool *prp_small_pool;
92         unsigned online_queues;
93         unsigned max_qid;
94         unsigned int num_vecs;
95         int q_depth;
96         u32 db_stride;
97         void __iomem *bar;
98         unsigned long bar_mapped_size;
99         struct work_struct remove_work;
100         struct mutex shutdown_lock;
101         bool subsystem;
102         void __iomem *cmb;
103         pci_bus_addr_t cmb_bus_addr;
104         u64 cmb_size;
105         u32 cmbsz;
106         u32 cmbloc;
107         struct nvme_ctrl ctrl;
108         struct completion ioq_wait;
109
110         mempool_t *iod_mempool;
111
112         /* shadow doorbell buffer support: */
113         u32 *dbbuf_dbs;
114         dma_addr_t dbbuf_dbs_dma_addr;
115         u32 *dbbuf_eis;
116         dma_addr_t dbbuf_eis_dma_addr;
117
118         /* host memory buffer support: */
119         u64 host_mem_size;
120         u32 nr_host_mem_descs;
121         dma_addr_t host_mem_descs_dma;
122         struct nvme_host_mem_buf_desc *host_mem_descs;
123         void **host_mem_desc_bufs;
124 };
125
126 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
127 {
128         int n = 0, ret;
129
130         ret = kstrtoint(val, 10, &n);
131         if (ret != 0 || n < 2)
132                 return -EINVAL;
133
134         return param_set_int(val, kp);
135 }
136
137 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
138 {
139         return qid * 2 * stride;
140 }
141
142 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
143 {
144         return (qid * 2 + 1) * stride;
145 }
146
147 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
148 {
149         return container_of(ctrl, struct nvme_dev, ctrl);
150 }
151
152 /*
153  * An NVM Express queue.  Each device has at least two (one for admin
154  * commands and one for I/O commands).
155  */
156 struct nvme_queue {
157         struct device *q_dmadev;
158         struct nvme_dev *dev;
159         spinlock_t sq_lock;
160         struct nvme_command *sq_cmds;
161         struct nvme_command __iomem *sq_cmds_io;
162         spinlock_t cq_lock ____cacheline_aligned_in_smp;
163         volatile struct nvme_completion *cqes;
164         struct blk_mq_tags **tags;
165         dma_addr_t sq_dma_addr;
166         dma_addr_t cq_dma_addr;
167         u32 __iomem *q_db;
168         u16 q_depth;
169         s16 cq_vector;
170         u16 sq_tail;
171         u16 cq_head;
172         u16 last_cq_head;
173         u16 qid;
174         u8 cq_phase;
175         u32 *dbbuf_sq_db;
176         u32 *dbbuf_cq_db;
177         u32 *dbbuf_sq_ei;
178         u32 *dbbuf_cq_ei;
179 };
180
181 /*
182  * The nvme_iod describes the data in an I/O, including the list of PRP
183  * entries.  You can't see it in this data structure because C doesn't let
184  * me express that.  Use nvme_init_iod to ensure there's enough space
185  * allocated to store the PRP list.
186  */
187 struct nvme_iod {
188         struct nvme_request req;
189         struct nvme_queue *nvmeq;
190         bool use_sgl;
191         int aborted;
192         int npages;             /* In the PRP list. 0 means small pool in use */
193         int nents;              /* Used in scatterlist */
194         int length;             /* Of data, in bytes */
195         dma_addr_t first_dma;
196         struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
197         struct scatterlist *sg;
198         struct scatterlist inline_sg[0];
199 };
200
201 /*
202  * Check we didin't inadvertently grow the command struct
203  */
204 static inline void _nvme_check_size(void)
205 {
206         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
207         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
208         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
209         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
210         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
211         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
212         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
213         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
214         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
215         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
216         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
217         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
218         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
219 }
220
221 static inline unsigned int nvme_dbbuf_size(u32 stride)
222 {
223         return ((num_possible_cpus() + 1) * 8 * stride);
224 }
225
226 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
227 {
228         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
229
230         if (dev->dbbuf_dbs)
231                 return 0;
232
233         dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
234                                             &dev->dbbuf_dbs_dma_addr,
235                                             GFP_KERNEL);
236         if (!dev->dbbuf_dbs)
237                 return -ENOMEM;
238         dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
239                                             &dev->dbbuf_eis_dma_addr,
240                                             GFP_KERNEL);
241         if (!dev->dbbuf_eis) {
242                 dma_free_coherent(dev->dev, mem_size,
243                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
244                 dev->dbbuf_dbs = NULL;
245                 return -ENOMEM;
246         }
247
248         return 0;
249 }
250
251 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
252 {
253         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
254
255         if (dev->dbbuf_dbs) {
256                 dma_free_coherent(dev->dev, mem_size,
257                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
258                 dev->dbbuf_dbs = NULL;
259         }
260         if (dev->dbbuf_eis) {
261                 dma_free_coherent(dev->dev, mem_size,
262                                   dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
263                 dev->dbbuf_eis = NULL;
264         }
265 }
266
267 static void nvme_dbbuf_init(struct nvme_dev *dev,
268                             struct nvme_queue *nvmeq, int qid)
269 {
270         if (!dev->dbbuf_dbs || !qid)
271                 return;
272
273         nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
274         nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
275         nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
276         nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
277 }
278
279 static void nvme_dbbuf_set(struct nvme_dev *dev)
280 {
281         struct nvme_command c;
282
283         if (!dev->dbbuf_dbs)
284                 return;
285
286         memset(&c, 0, sizeof(c));
287         c.dbbuf.opcode = nvme_admin_dbbuf;
288         c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
289         c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
290
291         if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
292                 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
293                 /* Free memory and continue on */
294                 nvme_dbbuf_dma_free(dev);
295         }
296 }
297
298 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
299 {
300         return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
301 }
302
303 /* Update dbbuf and return true if an MMIO is required */
304 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
305                                               volatile u32 *dbbuf_ei)
306 {
307         if (dbbuf_db) {
308                 u16 old_value;
309
310                 /*
311                  * Ensure that the queue is written before updating
312                  * the doorbell in memory
313                  */
314                 wmb();
315
316                 old_value = *dbbuf_db;
317                 *dbbuf_db = value;
318
319                 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
320                         return false;
321         }
322
323         return true;
324 }
325
326 /*
327  * Max size of iod being embedded in the request payload
328  */
329 #define NVME_INT_PAGES          2
330 #define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->ctrl.page_size)
331
332 /*
333  * Will slightly overestimate the number of pages needed.  This is OK
334  * as it only leads to a small amount of wasted memory for the lifetime of
335  * the I/O.
336  */
337 static int nvme_npages(unsigned size, struct nvme_dev *dev)
338 {
339         unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
340                                       dev->ctrl.page_size);
341         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
342 }
343
344 /*
345  * Calculates the number of pages needed for the SGL segments. For example a 4k
346  * page can accommodate 256 SGL descriptors.
347  */
348 static int nvme_pci_npages_sgl(unsigned int num_seg)
349 {
350         return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
351 }
352
353 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
354                 unsigned int size, unsigned int nseg, bool use_sgl)
355 {
356         size_t alloc_size;
357
358         if (use_sgl)
359                 alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
360         else
361                 alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
362
363         return alloc_size + sizeof(struct scatterlist) * nseg;
364 }
365
366 static unsigned int nvme_pci_cmd_size(struct nvme_dev *dev, bool use_sgl)
367 {
368         unsigned int alloc_size = nvme_pci_iod_alloc_size(dev,
369                                     NVME_INT_BYTES(dev), NVME_INT_PAGES,
370                                     use_sgl);
371
372         return sizeof(struct nvme_iod) + alloc_size;
373 }
374
375 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
376                                 unsigned int hctx_idx)
377 {
378         struct nvme_dev *dev = data;
379         struct nvme_queue *nvmeq = &dev->queues[0];
380
381         WARN_ON(hctx_idx != 0);
382         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
383         WARN_ON(nvmeq->tags);
384
385         hctx->driver_data = nvmeq;
386         nvmeq->tags = &dev->admin_tagset.tags[0];
387         return 0;
388 }
389
390 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
391 {
392         struct nvme_queue *nvmeq = hctx->driver_data;
393
394         nvmeq->tags = NULL;
395 }
396
397 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
398                           unsigned int hctx_idx)
399 {
400         struct nvme_dev *dev = data;
401         struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
402
403         if (!nvmeq->tags)
404                 nvmeq->tags = &dev->tagset.tags[hctx_idx];
405
406         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
407         hctx->driver_data = nvmeq;
408         return 0;
409 }
410
411 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
412                 unsigned int hctx_idx, unsigned int numa_node)
413 {
414         struct nvme_dev *dev = set->driver_data;
415         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
416         int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
417         struct nvme_queue *nvmeq = &dev->queues[queue_idx];
418
419         BUG_ON(!nvmeq);
420         iod->nvmeq = nvmeq;
421
422         nvme_req(req)->ctrl = &dev->ctrl;
423         return 0;
424 }
425
426 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
427 {
428         struct nvme_dev *dev = set->driver_data;
429
430         return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev),
431                         dev->num_vecs > 1 ? 1 /* admin queue */ : 0);
432 }
433
434 /**
435  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
436  * @nvmeq: The queue to use
437  * @cmd: The command to send
438  */
439 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
440 {
441         spin_lock(&nvmeq->sq_lock);
442         if (nvmeq->sq_cmds_io)
443                 memcpy_toio(&nvmeq->sq_cmds_io[nvmeq->sq_tail], cmd,
444                                 sizeof(*cmd));
445         else
446                 memcpy(&nvmeq->sq_cmds[nvmeq->sq_tail], cmd, sizeof(*cmd));
447
448         if (++nvmeq->sq_tail == nvmeq->q_depth)
449                 nvmeq->sq_tail = 0;
450         if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
451                         nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
452                 writel(nvmeq->sq_tail, nvmeq->q_db);
453         spin_unlock(&nvmeq->sq_lock);
454 }
455
456 static void **nvme_pci_iod_list(struct request *req)
457 {
458         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
459         return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
460 }
461
462 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
463 {
464         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
465         int nseg = blk_rq_nr_phys_segments(req);
466         unsigned int avg_seg_size;
467
468         if (nseg == 0)
469                 return false;
470
471         avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
472
473         if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
474                 return false;
475         if (!iod->nvmeq->qid)
476                 return false;
477         if (!sgl_threshold || avg_seg_size < sgl_threshold)
478                 return false;
479         return true;
480 }
481
482 static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
483 {
484         struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
485         int nseg = blk_rq_nr_phys_segments(rq);
486         unsigned int size = blk_rq_payload_bytes(rq);
487
488         iod->use_sgl = nvme_pci_use_sgls(dev, rq);
489
490         if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
491                 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
492                 if (!iod->sg)
493                         return BLK_STS_RESOURCE;
494         } else {
495                 iod->sg = iod->inline_sg;
496         }
497
498         iod->aborted = 0;
499         iod->npages = -1;
500         iod->nents = 0;
501         iod->length = size;
502
503         return BLK_STS_OK;
504 }
505
506 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
507 {
508         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
509         const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
510         dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
511
512         int i;
513
514         if (iod->npages == 0)
515                 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
516                         dma_addr);
517
518         for (i = 0; i < iod->npages; i++) {
519                 void *addr = nvme_pci_iod_list(req)[i];
520
521                 if (iod->use_sgl) {
522                         struct nvme_sgl_desc *sg_list = addr;
523
524                         next_dma_addr =
525                             le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
526                 } else {
527                         __le64 *prp_list = addr;
528
529                         next_dma_addr = le64_to_cpu(prp_list[last_prp]);
530                 }
531
532                 dma_pool_free(dev->prp_page_pool, addr, dma_addr);
533                 dma_addr = next_dma_addr;
534         }
535
536         if (iod->sg != iod->inline_sg)
537                 mempool_free(iod->sg, dev->iod_mempool);
538 }
539
540 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
541 {
542         int i;
543         struct scatterlist *sg;
544
545         for_each_sg(sgl, sg, nents, i) {
546                 dma_addr_t phys = sg_phys(sg);
547                 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
548                         "dma_address:%pad dma_length:%d\n",
549                         i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
550                         sg_dma_len(sg));
551         }
552 }
553
554 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
555                 struct request *req, struct nvme_rw_command *cmnd)
556 {
557         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
558         struct dma_pool *pool;
559         int length = blk_rq_payload_bytes(req);
560         struct scatterlist *sg = iod->sg;
561         int dma_len = sg_dma_len(sg);
562         u64 dma_addr = sg_dma_address(sg);
563         u32 page_size = dev->ctrl.page_size;
564         int offset = dma_addr & (page_size - 1);
565         __le64 *prp_list;
566         void **list = nvme_pci_iod_list(req);
567         dma_addr_t prp_dma;
568         int nprps, i;
569
570         length -= (page_size - offset);
571         if (length <= 0) {
572                 iod->first_dma = 0;
573                 goto done;
574         }
575
576         dma_len -= (page_size - offset);
577         if (dma_len) {
578                 dma_addr += (page_size - offset);
579         } else {
580                 sg = sg_next(sg);
581                 dma_addr = sg_dma_address(sg);
582                 dma_len = sg_dma_len(sg);
583         }
584
585         if (length <= page_size) {
586                 iod->first_dma = dma_addr;
587                 goto done;
588         }
589
590         nprps = DIV_ROUND_UP(length, page_size);
591         if (nprps <= (256 / 8)) {
592                 pool = dev->prp_small_pool;
593                 iod->npages = 0;
594         } else {
595                 pool = dev->prp_page_pool;
596                 iod->npages = 1;
597         }
598
599         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
600         if (!prp_list) {
601                 iod->first_dma = dma_addr;
602                 iod->npages = -1;
603                 return BLK_STS_RESOURCE;
604         }
605         list[0] = prp_list;
606         iod->first_dma = prp_dma;
607         i = 0;
608         for (;;) {
609                 if (i == page_size >> 3) {
610                         __le64 *old_prp_list = prp_list;
611                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
612                         if (!prp_list)
613                                 return BLK_STS_RESOURCE;
614                         list[iod->npages++] = prp_list;
615                         prp_list[0] = old_prp_list[i - 1];
616                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
617                         i = 1;
618                 }
619                 prp_list[i++] = cpu_to_le64(dma_addr);
620                 dma_len -= page_size;
621                 dma_addr += page_size;
622                 length -= page_size;
623                 if (length <= 0)
624                         break;
625                 if (dma_len > 0)
626                         continue;
627                 if (unlikely(dma_len < 0))
628                         goto bad_sgl;
629                 sg = sg_next(sg);
630                 dma_addr = sg_dma_address(sg);
631                 dma_len = sg_dma_len(sg);
632         }
633
634 done:
635         cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
636         cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
637
638         return BLK_STS_OK;
639
640  bad_sgl:
641         WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
642                         "Invalid SGL for payload:%d nents:%d\n",
643                         blk_rq_payload_bytes(req), iod->nents);
644         return BLK_STS_IOERR;
645 }
646
647 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
648                 struct scatterlist *sg)
649 {
650         sge->addr = cpu_to_le64(sg_dma_address(sg));
651         sge->length = cpu_to_le32(sg_dma_len(sg));
652         sge->type = NVME_SGL_FMT_DATA_DESC << 4;
653 }
654
655 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
656                 dma_addr_t dma_addr, int entries)
657 {
658         sge->addr = cpu_to_le64(dma_addr);
659         if (entries < SGES_PER_PAGE) {
660                 sge->length = cpu_to_le32(entries * sizeof(*sge));
661                 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
662         } else {
663                 sge->length = cpu_to_le32(PAGE_SIZE);
664                 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
665         }
666 }
667
668 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
669                 struct request *req, struct nvme_rw_command *cmd, int entries)
670 {
671         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
672         struct dma_pool *pool;
673         struct nvme_sgl_desc *sg_list;
674         struct scatterlist *sg = iod->sg;
675         dma_addr_t sgl_dma;
676         int i = 0;
677
678         /* setting the transfer type as SGL */
679         cmd->flags = NVME_CMD_SGL_METABUF;
680
681         if (entries == 1) {
682                 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
683                 return BLK_STS_OK;
684         }
685
686         if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
687                 pool = dev->prp_small_pool;
688                 iod->npages = 0;
689         } else {
690                 pool = dev->prp_page_pool;
691                 iod->npages = 1;
692         }
693
694         sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
695         if (!sg_list) {
696                 iod->npages = -1;
697                 return BLK_STS_RESOURCE;
698         }
699
700         nvme_pci_iod_list(req)[0] = sg_list;
701         iod->first_dma = sgl_dma;
702
703         nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
704
705         do {
706                 if (i == SGES_PER_PAGE) {
707                         struct nvme_sgl_desc *old_sg_desc = sg_list;
708                         struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
709
710                         sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
711                         if (!sg_list)
712                                 return BLK_STS_RESOURCE;
713
714                         i = 0;
715                         nvme_pci_iod_list(req)[iod->npages++] = sg_list;
716                         sg_list[i++] = *link;
717                         nvme_pci_sgl_set_seg(link, sgl_dma, entries);
718                 }
719
720                 nvme_pci_sgl_set_data(&sg_list[i++], sg);
721                 sg = sg_next(sg);
722         } while (--entries > 0);
723
724         return BLK_STS_OK;
725 }
726
727 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
728                 struct nvme_command *cmnd)
729 {
730         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
731         struct request_queue *q = req->q;
732         enum dma_data_direction dma_dir = rq_data_dir(req) ?
733                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
734         blk_status_t ret = BLK_STS_IOERR;
735         int nr_mapped;
736
737         sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
738         iod->nents = blk_rq_map_sg(q, req, iod->sg);
739         if (!iod->nents)
740                 goto out;
741
742         ret = BLK_STS_RESOURCE;
743         nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
744                         DMA_ATTR_NO_WARN);
745         if (!nr_mapped)
746                 goto out;
747
748         if (iod->use_sgl)
749                 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
750         else
751                 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
752
753         if (ret != BLK_STS_OK)
754                 goto out_unmap;
755
756         ret = BLK_STS_IOERR;
757         if (blk_integrity_rq(req)) {
758                 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
759                         goto out_unmap;
760
761                 sg_init_table(&iod->meta_sg, 1);
762                 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
763                         goto out_unmap;
764
765                 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
766                         goto out_unmap;
767         }
768
769         if (blk_integrity_rq(req))
770                 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
771         return BLK_STS_OK;
772
773 out_unmap:
774         dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
775 out:
776         return ret;
777 }
778
779 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
780 {
781         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
782         enum dma_data_direction dma_dir = rq_data_dir(req) ?
783                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
784
785         if (iod->nents) {
786                 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
787                 if (blk_integrity_rq(req))
788                         dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
789         }
790
791         nvme_cleanup_cmd(req);
792         nvme_free_iod(dev, req);
793 }
794
795 /*
796  * NOTE: ns is NULL when called on the admin queue.
797  */
798 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
799                          const struct blk_mq_queue_data *bd)
800 {
801         struct nvme_ns *ns = hctx->queue->queuedata;
802         struct nvme_queue *nvmeq = hctx->driver_data;
803         struct nvme_dev *dev = nvmeq->dev;
804         struct request *req = bd->rq;
805         struct nvme_command cmnd;
806         blk_status_t ret;
807
808         /*
809          * We should not need to do this, but we're still using this to
810          * ensure we can drain requests on a dying queue.
811          */
812         if (unlikely(nvmeq->cq_vector < 0))
813                 return BLK_STS_IOERR;
814
815         ret = nvme_setup_cmd(ns, req, &cmnd);
816         if (ret)
817                 return ret;
818
819         ret = nvme_init_iod(req, dev);
820         if (ret)
821                 goto out_free_cmd;
822
823         if (blk_rq_nr_phys_segments(req)) {
824                 ret = nvme_map_data(dev, req, &cmnd);
825                 if (ret)
826                         goto out_cleanup_iod;
827         }
828
829         blk_mq_start_request(req);
830         nvme_submit_cmd(nvmeq, &cmnd);
831         return BLK_STS_OK;
832 out_cleanup_iod:
833         nvme_free_iod(dev, req);
834 out_free_cmd:
835         nvme_cleanup_cmd(req);
836         return ret;
837 }
838
839 static void nvme_pci_complete_rq(struct request *req)
840 {
841         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
842
843         nvme_unmap_data(iod->nvmeq->dev, req);
844         nvme_complete_rq(req);
845 }
846
847 /* We read the CQE phase first to check if the rest of the entry is valid */
848 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
849 {
850         return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
851                         nvmeq->cq_phase;
852 }
853
854 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
855 {
856         u16 head = nvmeq->cq_head;
857
858         if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
859                                               nvmeq->dbbuf_cq_ei))
860                 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
861 }
862
863 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
864 {
865         volatile struct nvme_completion *cqe = &nvmeq->cqes[idx];
866         struct request *req;
867
868         if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
869                 dev_warn(nvmeq->dev->ctrl.device,
870                         "invalid id %d completed on queue %d\n",
871                         cqe->command_id, le16_to_cpu(cqe->sq_id));
872                 return;
873         }
874
875         /*
876          * AEN requests are special as they don't time out and can
877          * survive any kind of queue freeze and often don't respond to
878          * aborts.  We don't even bother to allocate a struct request
879          * for them but rather special case them here.
880          */
881         if (unlikely(nvmeq->qid == 0 &&
882                         cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) {
883                 nvme_complete_async_event(&nvmeq->dev->ctrl,
884                                 cqe->status, &cqe->result);
885                 return;
886         }
887
888         req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
889         nvme_end_request(req, cqe->status, cqe->result);
890 }
891
892 static void nvme_complete_cqes(struct nvme_queue *nvmeq, u16 start, u16 end)
893 {
894         while (start != end) {
895                 nvme_handle_cqe(nvmeq, start);
896                 if (++start == nvmeq->q_depth)
897                         start = 0;
898         }
899 }
900
901 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
902 {
903         if (++nvmeq->cq_head == nvmeq->q_depth) {
904                 nvmeq->cq_head = 0;
905                 nvmeq->cq_phase = !nvmeq->cq_phase;
906         }
907 }
908
909 static inline bool nvme_process_cq(struct nvme_queue *nvmeq, u16 *start,
910                 u16 *end, int tag)
911 {
912         bool found = false;
913
914         *start = nvmeq->cq_head;
915         while (!found && nvme_cqe_pending(nvmeq)) {
916                 if (nvmeq->cqes[nvmeq->cq_head].command_id == tag)
917                         found = true;
918                 nvme_update_cq_head(nvmeq);
919         }
920         *end = nvmeq->cq_head;
921
922         if (*start != *end)
923                 nvme_ring_cq_doorbell(nvmeq);
924         return found;
925 }
926
927 static irqreturn_t nvme_irq(int irq, void *data)
928 {
929         struct nvme_queue *nvmeq = data;
930         irqreturn_t ret = IRQ_NONE;
931         u16 start, end;
932
933         spin_lock(&nvmeq->cq_lock);
934         if (nvmeq->cq_head != nvmeq->last_cq_head)
935                 ret = IRQ_HANDLED;
936         nvme_process_cq(nvmeq, &start, &end, -1);
937         nvmeq->last_cq_head = nvmeq->cq_head;
938         spin_unlock(&nvmeq->cq_lock);
939
940         if (start != end) {
941                 nvme_complete_cqes(nvmeq, start, end);
942                 return IRQ_HANDLED;
943         }
944
945         return ret;
946 }
947
948 static irqreturn_t nvme_irq_check(int irq, void *data)
949 {
950         struct nvme_queue *nvmeq = data;
951         if (nvme_cqe_pending(nvmeq))
952                 return IRQ_WAKE_THREAD;
953         return IRQ_NONE;
954 }
955
956 static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
957 {
958         u16 start, end;
959         bool found;
960
961         if (!nvme_cqe_pending(nvmeq))
962                 return 0;
963
964         spin_lock_irq(&nvmeq->cq_lock);
965         found = nvme_process_cq(nvmeq, &start, &end, tag);
966         spin_unlock_irq(&nvmeq->cq_lock);
967
968         nvme_complete_cqes(nvmeq, start, end);
969         return found;
970 }
971
972 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
973 {
974         struct nvme_queue *nvmeq = hctx->driver_data;
975
976         return __nvme_poll(nvmeq, tag);
977 }
978
979 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
980 {
981         struct nvme_dev *dev = to_nvme_dev(ctrl);
982         struct nvme_queue *nvmeq = &dev->queues[0];
983         struct nvme_command c;
984
985         memset(&c, 0, sizeof(c));
986         c.common.opcode = nvme_admin_async_event;
987         c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
988         nvme_submit_cmd(nvmeq, &c);
989 }
990
991 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
992 {
993         struct nvme_command c;
994
995         memset(&c, 0, sizeof(c));
996         c.delete_queue.opcode = opcode;
997         c.delete_queue.qid = cpu_to_le16(id);
998
999         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1000 }
1001
1002 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1003                 struct nvme_queue *nvmeq, s16 vector)
1004 {
1005         struct nvme_command c;
1006         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1007
1008         /*
1009          * Note: we (ab)use the fact that the prp fields survive if no data
1010          * is attached to the request.
1011          */
1012         memset(&c, 0, sizeof(c));
1013         c.create_cq.opcode = nvme_admin_create_cq;
1014         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1015         c.create_cq.cqid = cpu_to_le16(qid);
1016         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1017         c.create_cq.cq_flags = cpu_to_le16(flags);
1018         c.create_cq.irq_vector = cpu_to_le16(vector);
1019
1020         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1021 }
1022
1023 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1024                                                 struct nvme_queue *nvmeq)
1025 {
1026         struct nvme_ctrl *ctrl = &dev->ctrl;
1027         struct nvme_command c;
1028         int flags = NVME_QUEUE_PHYS_CONTIG;
1029
1030         /*
1031          * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1032          * set. Since URGENT priority is zeroes, it makes all queues
1033          * URGENT.
1034          */
1035         if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1036                 flags |= NVME_SQ_PRIO_MEDIUM;
1037
1038         /*
1039          * Note: we (ab)use the fact that the prp fields survive if no data
1040          * is attached to the request.
1041          */
1042         memset(&c, 0, sizeof(c));
1043         c.create_sq.opcode = nvme_admin_create_sq;
1044         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1045         c.create_sq.sqid = cpu_to_le16(qid);
1046         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1047         c.create_sq.sq_flags = cpu_to_le16(flags);
1048         c.create_sq.cqid = cpu_to_le16(qid);
1049
1050         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1051 }
1052
1053 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1054 {
1055         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1056 }
1057
1058 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1059 {
1060         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1061 }
1062
1063 static void abort_endio(struct request *req, blk_status_t error)
1064 {
1065         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1066         struct nvme_queue *nvmeq = iod->nvmeq;
1067
1068         dev_warn(nvmeq->dev->ctrl.device,
1069                  "Abort status: 0x%x", nvme_req(req)->status);
1070         atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1071         blk_mq_free_request(req);
1072 }
1073
1074 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1075 {
1076
1077         /* If true, indicates loss of adapter communication, possibly by a
1078          * NVMe Subsystem reset.
1079          */
1080         bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1081
1082         /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1083         switch (dev->ctrl.state) {
1084         case NVME_CTRL_RESETTING:
1085         case NVME_CTRL_CONNECTING:
1086                 return false;
1087         default:
1088                 break;
1089         }
1090
1091         /* We shouldn't reset unless the controller is on fatal error state
1092          * _or_ if we lost the communication with it.
1093          */
1094         if (!(csts & NVME_CSTS_CFS) && !nssro)
1095                 return false;
1096
1097         return true;
1098 }
1099
1100 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1101 {
1102         /* Read a config register to help see what died. */
1103         u16 pci_status;
1104         int result;
1105
1106         result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1107                                       &pci_status);
1108         if (result == PCIBIOS_SUCCESSFUL)
1109                 dev_warn(dev->ctrl.device,
1110                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1111                          csts, pci_status);
1112         else
1113                 dev_warn(dev->ctrl.device,
1114                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1115                          csts, result);
1116 }
1117
1118 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1119 {
1120         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1121         struct nvme_queue *nvmeq = iod->nvmeq;
1122         struct nvme_dev *dev = nvmeq->dev;
1123         struct request *abort_req;
1124         struct nvme_command cmd;
1125         u32 csts = readl(dev->bar + NVME_REG_CSTS);
1126
1127         /* If PCI error recovery process is happening, we cannot reset or
1128          * the recovery mechanism will surely fail.
1129          */
1130         mb();
1131         if (pci_channel_offline(to_pci_dev(dev->dev)))
1132                 return BLK_EH_RESET_TIMER;
1133
1134         /*
1135          * Reset immediately if the controller is failed
1136          */
1137         if (nvme_should_reset(dev, csts)) {
1138                 nvme_warn_reset(dev, csts);
1139                 nvme_dev_disable(dev, false);
1140                 nvme_reset_ctrl(&dev->ctrl);
1141                 return BLK_EH_DONE;
1142         }
1143
1144         /*
1145          * Did we miss an interrupt?
1146          */
1147         if (__nvme_poll(nvmeq, req->tag)) {
1148                 dev_warn(dev->ctrl.device,
1149                          "I/O %d QID %d timeout, completion polled\n",
1150                          req->tag, nvmeq->qid);
1151                 return BLK_EH_DONE;
1152         }
1153
1154         /*
1155          * Shutdown immediately if controller times out while starting. The
1156          * reset work will see the pci device disabled when it gets the forced
1157          * cancellation error. All outstanding requests are completed on
1158          * shutdown, so we return BLK_EH_DONE.
1159          */
1160         switch (dev->ctrl.state) {
1161         case NVME_CTRL_CONNECTING:
1162         case NVME_CTRL_RESETTING:
1163                 dev_warn_ratelimited(dev->ctrl.device,
1164                          "I/O %d QID %d timeout, disable controller\n",
1165                          req->tag, nvmeq->qid);
1166                 nvme_dev_disable(dev, false);
1167                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1168                 return BLK_EH_DONE;
1169         default:
1170                 break;
1171         }
1172
1173         /*
1174          * Shutdown the controller immediately and schedule a reset if the
1175          * command was already aborted once before and still hasn't been
1176          * returned to the driver, or if this is the admin queue.
1177          */
1178         if (!nvmeq->qid || iod->aborted) {
1179                 dev_warn(dev->ctrl.device,
1180                          "I/O %d QID %d timeout, reset controller\n",
1181                          req->tag, nvmeq->qid);
1182                 nvme_dev_disable(dev, false);
1183                 nvme_reset_ctrl(&dev->ctrl);
1184
1185                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1186                 return BLK_EH_DONE;
1187         }
1188
1189         if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1190                 atomic_inc(&dev->ctrl.abort_limit);
1191                 return BLK_EH_RESET_TIMER;
1192         }
1193         iod->aborted = 1;
1194
1195         memset(&cmd, 0, sizeof(cmd));
1196         cmd.abort.opcode = nvme_admin_abort_cmd;
1197         cmd.abort.cid = req->tag;
1198         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1199
1200         dev_warn(nvmeq->dev->ctrl.device,
1201                 "I/O %d QID %d timeout, aborting\n",
1202                  req->tag, nvmeq->qid);
1203
1204         abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1205                         BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1206         if (IS_ERR(abort_req)) {
1207                 atomic_inc(&dev->ctrl.abort_limit);
1208                 return BLK_EH_RESET_TIMER;
1209         }
1210
1211         abort_req->timeout = ADMIN_TIMEOUT;
1212         abort_req->end_io_data = NULL;
1213         blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1214
1215         /*
1216          * The aborted req will be completed on receiving the abort req.
1217          * We enable the timer again. If hit twice, it'll cause a device reset,
1218          * as the device then is in a faulty state.
1219          */
1220         return BLK_EH_RESET_TIMER;
1221 }
1222
1223 static void nvme_free_queue(struct nvme_queue *nvmeq)
1224 {
1225         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1226                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1227         if (nvmeq->sq_cmds)
1228                 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1229                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1230 }
1231
1232 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1233 {
1234         int i;
1235
1236         for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1237                 dev->ctrl.queue_count--;
1238                 nvme_free_queue(&dev->queues[i]);
1239         }
1240 }
1241
1242 /**
1243  * nvme_suspend_queue - put queue into suspended state
1244  * @nvmeq - queue to suspend
1245  */
1246 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1247 {
1248         int vector;
1249
1250         spin_lock_irq(&nvmeq->cq_lock);
1251         if (nvmeq->cq_vector == -1) {
1252                 spin_unlock_irq(&nvmeq->cq_lock);
1253                 return 1;
1254         }
1255         vector = nvmeq->cq_vector;
1256         nvmeq->dev->online_queues--;
1257         nvmeq->cq_vector = -1;
1258         spin_unlock_irq(&nvmeq->cq_lock);
1259
1260         /*
1261          * Ensure that nvme_queue_rq() sees it ->cq_vector == -1 without
1262          * having to grab the lock.
1263          */
1264         mb();
1265
1266         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1267                 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1268
1269         pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
1270
1271         return 0;
1272 }
1273
1274 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1275 {
1276         struct nvme_queue *nvmeq = &dev->queues[0];
1277         u16 start, end;
1278
1279         if (shutdown)
1280                 nvme_shutdown_ctrl(&dev->ctrl);
1281         else
1282                 nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1283
1284         spin_lock_irq(&nvmeq->cq_lock);
1285         nvme_process_cq(nvmeq, &start, &end, -1);
1286         spin_unlock_irq(&nvmeq->cq_lock);
1287
1288         nvme_complete_cqes(nvmeq, start, end);
1289 }
1290
1291 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1292                                 int entry_size)
1293 {
1294         int q_depth = dev->q_depth;
1295         unsigned q_size_aligned = roundup(q_depth * entry_size,
1296                                           dev->ctrl.page_size);
1297
1298         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1299                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1300                 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1301                 q_depth = div_u64(mem_per_q, entry_size);
1302
1303                 /*
1304                  * Ensure the reduced q_depth is above some threshold where it
1305                  * would be better to map queues in system memory with the
1306                  * original depth
1307                  */
1308                 if (q_depth < 64)
1309                         return -ENOMEM;
1310         }
1311
1312         return q_depth;
1313 }
1314
1315 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1316                                 int qid, int depth)
1317 {
1318         /* CMB SQEs will be mapped before creation */
1319         if (qid && dev->cmb && use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS))
1320                 return 0;
1321
1322         nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1323                                             &nvmeq->sq_dma_addr, GFP_KERNEL);
1324         if (!nvmeq->sq_cmds)
1325                 return -ENOMEM;
1326         return 0;
1327 }
1328
1329 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1330 {
1331         struct nvme_queue *nvmeq = &dev->queues[qid];
1332
1333         if (dev->ctrl.queue_count > qid)
1334                 return 0;
1335
1336         nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1337                                           &nvmeq->cq_dma_addr, GFP_KERNEL);
1338         if (!nvmeq->cqes)
1339                 goto free_nvmeq;
1340
1341         if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1342                 goto free_cqdma;
1343
1344         nvmeq->q_dmadev = dev->dev;
1345         nvmeq->dev = dev;
1346         spin_lock_init(&nvmeq->sq_lock);
1347         spin_lock_init(&nvmeq->cq_lock);
1348         nvmeq->cq_head = 0;
1349         nvmeq->cq_phase = 1;
1350         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1351         nvmeq->q_depth = depth;
1352         nvmeq->qid = qid;
1353         nvmeq->cq_vector = -1;
1354         dev->ctrl.queue_count++;
1355
1356         return 0;
1357
1358  free_cqdma:
1359         dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1360                                                         nvmeq->cq_dma_addr);
1361  free_nvmeq:
1362         return -ENOMEM;
1363 }
1364
1365 static int queue_request_irq(struct nvme_queue *nvmeq)
1366 {
1367         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1368         int nr = nvmeq->dev->ctrl.instance;
1369
1370         if (use_threaded_interrupts) {
1371                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1372                                 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1373         } else {
1374                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1375                                 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1376         }
1377 }
1378
1379 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1380 {
1381         struct nvme_dev *dev = nvmeq->dev;
1382
1383         spin_lock_irq(&nvmeq->cq_lock);
1384         nvmeq->sq_tail = 0;
1385         nvmeq->cq_head = 0;
1386         nvmeq->cq_phase = 1;
1387         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1388         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1389         nvme_dbbuf_init(dev, nvmeq, qid);
1390         dev->online_queues++;
1391         spin_unlock_irq(&nvmeq->cq_lock);
1392 }
1393
1394 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1395 {
1396         struct nvme_dev *dev = nvmeq->dev;
1397         int result;
1398         s16 vector;
1399
1400         if (dev->cmb && use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1401                 unsigned offset = (qid - 1) * roundup(SQ_SIZE(nvmeq->q_depth),
1402                                                       dev->ctrl.page_size);
1403                 nvmeq->sq_dma_addr = dev->cmb_bus_addr + offset;
1404                 nvmeq->sq_cmds_io = dev->cmb + offset;
1405         }
1406
1407         /*
1408          * A queue's vector matches the queue identifier unless the controller
1409          * has only one vector available.
1410          */
1411         vector = dev->num_vecs == 1 ? 0 : qid;
1412         result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1413         if (result)
1414                 return result;
1415
1416         result = adapter_alloc_sq(dev, qid, nvmeq);
1417         if (result < 0)
1418                 return result;
1419         else if (result)
1420                 goto release_cq;
1421
1422         /*
1423          * Set cq_vector after alloc cq/sq, otherwise nvme_suspend_queue will
1424          * invoke free_irq for it and cause a 'Trying to free already-free IRQ
1425          * xxx' warning if the create CQ/SQ command times out.
1426          */
1427         nvmeq->cq_vector = vector;
1428         nvme_init_queue(nvmeq, qid);
1429         result = queue_request_irq(nvmeq);
1430         if (result < 0)
1431                 goto release_sq;
1432
1433         return result;
1434
1435 release_sq:
1436         nvmeq->cq_vector = -1;
1437         dev->online_queues--;
1438         adapter_delete_sq(dev, qid);
1439 release_cq:
1440         adapter_delete_cq(dev, qid);
1441         return result;
1442 }
1443
1444 static const struct blk_mq_ops nvme_mq_admin_ops = {
1445         .queue_rq       = nvme_queue_rq,
1446         .complete       = nvme_pci_complete_rq,
1447         .init_hctx      = nvme_admin_init_hctx,
1448         .exit_hctx      = nvme_admin_exit_hctx,
1449         .init_request   = nvme_init_request,
1450         .timeout        = nvme_timeout,
1451 };
1452
1453 static const struct blk_mq_ops nvme_mq_ops = {
1454         .queue_rq       = nvme_queue_rq,
1455         .complete       = nvme_pci_complete_rq,
1456         .init_hctx      = nvme_init_hctx,
1457         .init_request   = nvme_init_request,
1458         .map_queues     = nvme_pci_map_queues,
1459         .timeout        = nvme_timeout,
1460         .poll           = nvme_poll,
1461 };
1462
1463 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1464 {
1465         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1466                 /*
1467                  * If the controller was reset during removal, it's possible
1468                  * user requests may be waiting on a stopped queue. Start the
1469                  * queue to flush these to completion.
1470                  */
1471                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1472                 blk_cleanup_queue(dev->ctrl.admin_q);
1473                 blk_mq_free_tag_set(&dev->admin_tagset);
1474         }
1475 }
1476
1477 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1478 {
1479         if (!dev->ctrl.admin_q) {
1480                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1481                 dev->admin_tagset.nr_hw_queues = 1;
1482
1483                 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1484                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1485                 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1486                 dev->admin_tagset.cmd_size = nvme_pci_cmd_size(dev, false);
1487                 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1488                 dev->admin_tagset.driver_data = dev;
1489
1490                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1491                         return -ENOMEM;
1492                 dev->ctrl.admin_tagset = &dev->admin_tagset;
1493
1494                 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1495                 if (IS_ERR(dev->ctrl.admin_q)) {
1496                         blk_mq_free_tag_set(&dev->admin_tagset);
1497                         return -ENOMEM;
1498                 }
1499                 if (!blk_get_queue(dev->ctrl.admin_q)) {
1500                         nvme_dev_remove_admin(dev);
1501                         dev->ctrl.admin_q = NULL;
1502                         return -ENODEV;
1503                 }
1504         } else
1505                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1506
1507         return 0;
1508 }
1509
1510 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1511 {
1512         return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1513 }
1514
1515 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1516 {
1517         struct pci_dev *pdev = to_pci_dev(dev->dev);
1518
1519         if (size <= dev->bar_mapped_size)
1520                 return 0;
1521         if (size > pci_resource_len(pdev, 0))
1522                 return -ENOMEM;
1523         if (dev->bar)
1524                 iounmap(dev->bar);
1525         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1526         if (!dev->bar) {
1527                 dev->bar_mapped_size = 0;
1528                 return -ENOMEM;
1529         }
1530         dev->bar_mapped_size = size;
1531         dev->dbs = dev->bar + NVME_REG_DBS;
1532
1533         return 0;
1534 }
1535
1536 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1537 {
1538         int result;
1539         u32 aqa;
1540         struct nvme_queue *nvmeq;
1541
1542         result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1543         if (result < 0)
1544                 return result;
1545
1546         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1547                                 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1548
1549         if (dev->subsystem &&
1550             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1551                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1552
1553         result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1554         if (result < 0)
1555                 return result;
1556
1557         result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1558         if (result)
1559                 return result;
1560
1561         nvmeq = &dev->queues[0];
1562         aqa = nvmeq->q_depth - 1;
1563         aqa |= aqa << 16;
1564
1565         writel(aqa, dev->bar + NVME_REG_AQA);
1566         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1567         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1568
1569         result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
1570         if (result)
1571                 return result;
1572
1573         nvmeq->cq_vector = 0;
1574         nvme_init_queue(nvmeq, 0);
1575         result = queue_request_irq(nvmeq);
1576         if (result) {
1577                 nvmeq->cq_vector = -1;
1578                 return result;
1579         }
1580
1581         return result;
1582 }
1583
1584 static int nvme_create_io_queues(struct nvme_dev *dev)
1585 {
1586         unsigned i, max;
1587         int ret = 0;
1588
1589         for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1590                 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1591                         ret = -ENOMEM;
1592                         break;
1593                 }
1594         }
1595
1596         max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1597         for (i = dev->online_queues; i <= max; i++) {
1598                 ret = nvme_create_queue(&dev->queues[i], i);
1599                 if (ret)
1600                         break;
1601         }
1602
1603         /*
1604          * Ignore failing Create SQ/CQ commands, we can continue with less
1605          * than the desired amount of queues, and even a controller without
1606          * I/O queues can still be used to issue admin commands.  This might
1607          * be useful to upgrade a buggy firmware for example.
1608          */
1609         return ret >= 0 ? 0 : ret;
1610 }
1611
1612 static ssize_t nvme_cmb_show(struct device *dev,
1613                              struct device_attribute *attr,
1614                              char *buf)
1615 {
1616         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1617
1618         return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1619                        ndev->cmbloc, ndev->cmbsz);
1620 }
1621 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1622
1623 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1624 {
1625         u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1626
1627         return 1ULL << (12 + 4 * szu);
1628 }
1629
1630 static u32 nvme_cmb_size(struct nvme_dev *dev)
1631 {
1632         return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1633 }
1634
1635 static void nvme_map_cmb(struct nvme_dev *dev)
1636 {
1637         u64 size, offset;
1638         resource_size_t bar_size;
1639         struct pci_dev *pdev = to_pci_dev(dev->dev);
1640         int bar;
1641
1642         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1643         if (!dev->cmbsz)
1644                 return;
1645         dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1646
1647         if (!use_cmb_sqes)
1648                 return;
1649
1650         size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1651         offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1652         bar = NVME_CMB_BIR(dev->cmbloc);
1653         bar_size = pci_resource_len(pdev, bar);
1654
1655         if (offset > bar_size)
1656                 return;
1657
1658         /*
1659          * Controllers may support a CMB size larger than their BAR,
1660          * for example, due to being behind a bridge. Reduce the CMB to
1661          * the reported size of the BAR
1662          */
1663         if (size > bar_size - offset)
1664                 size = bar_size - offset;
1665
1666         dev->cmb = ioremap_wc(pci_resource_start(pdev, bar) + offset, size);
1667         if (!dev->cmb)
1668                 return;
1669         dev->cmb_bus_addr = pci_bus_address(pdev, bar) + offset;
1670         dev->cmb_size = size;
1671
1672         if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1673                                     &dev_attr_cmb.attr, NULL))
1674                 dev_warn(dev->ctrl.device,
1675                          "failed to add sysfs attribute for CMB\n");
1676 }
1677
1678 static inline void nvme_release_cmb(struct nvme_dev *dev)
1679 {
1680         if (dev->cmb) {
1681                 iounmap(dev->cmb);
1682                 dev->cmb = NULL;
1683                 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1684                                              &dev_attr_cmb.attr, NULL);
1685                 dev->cmbsz = 0;
1686         }
1687 }
1688
1689 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1690 {
1691         u64 dma_addr = dev->host_mem_descs_dma;
1692         struct nvme_command c;
1693         int ret;
1694
1695         memset(&c, 0, sizeof(c));
1696         c.features.opcode       = nvme_admin_set_features;
1697         c.features.fid          = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1698         c.features.dword11      = cpu_to_le32(bits);
1699         c.features.dword12      = cpu_to_le32(dev->host_mem_size >>
1700                                               ilog2(dev->ctrl.page_size));
1701         c.features.dword13      = cpu_to_le32(lower_32_bits(dma_addr));
1702         c.features.dword14      = cpu_to_le32(upper_32_bits(dma_addr));
1703         c.features.dword15      = cpu_to_le32(dev->nr_host_mem_descs);
1704
1705         ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1706         if (ret) {
1707                 dev_warn(dev->ctrl.device,
1708                          "failed to set host mem (err %d, flags %#x).\n",
1709                          ret, bits);
1710         }
1711         return ret;
1712 }
1713
1714 static void nvme_free_host_mem(struct nvme_dev *dev)
1715 {
1716         int i;
1717
1718         for (i = 0; i < dev->nr_host_mem_descs; i++) {
1719                 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1720                 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1721
1722                 dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
1723                                 le64_to_cpu(desc->addr));
1724         }
1725
1726         kfree(dev->host_mem_desc_bufs);
1727         dev->host_mem_desc_bufs = NULL;
1728         dma_free_coherent(dev->dev,
1729                         dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1730                         dev->host_mem_descs, dev->host_mem_descs_dma);
1731         dev->host_mem_descs = NULL;
1732         dev->nr_host_mem_descs = 0;
1733 }
1734
1735 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1736                 u32 chunk_size)
1737 {
1738         struct nvme_host_mem_buf_desc *descs;
1739         u32 max_entries, len;
1740         dma_addr_t descs_dma;
1741         int i = 0;
1742         void **bufs;
1743         u64 size, tmp;
1744
1745         tmp = (preferred + chunk_size - 1);
1746         do_div(tmp, chunk_size);
1747         max_entries = tmp;
1748
1749         if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1750                 max_entries = dev->ctrl.hmmaxd;
1751
1752         descs = dma_zalloc_coherent(dev->dev, max_entries * sizeof(*descs),
1753                         &descs_dma, GFP_KERNEL);
1754         if (!descs)
1755                 goto out;
1756
1757         bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1758         if (!bufs)
1759                 goto out_free_descs;
1760
1761         for (size = 0; size < preferred && i < max_entries; size += len) {
1762                 dma_addr_t dma_addr;
1763
1764                 len = min_t(u64, chunk_size, preferred - size);
1765                 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1766                                 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1767                 if (!bufs[i])
1768                         break;
1769
1770                 descs[i].addr = cpu_to_le64(dma_addr);
1771                 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1772                 i++;
1773         }
1774
1775         if (!size)
1776                 goto out_free_bufs;
1777
1778         dev->nr_host_mem_descs = i;
1779         dev->host_mem_size = size;
1780         dev->host_mem_descs = descs;
1781         dev->host_mem_descs_dma = descs_dma;
1782         dev->host_mem_desc_bufs = bufs;
1783         return 0;
1784
1785 out_free_bufs:
1786         while (--i >= 0) {
1787                 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1788
1789                 dma_free_coherent(dev->dev, size, bufs[i],
1790                                 le64_to_cpu(descs[i].addr));
1791         }
1792
1793         kfree(bufs);
1794 out_free_descs:
1795         dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1796                         descs_dma);
1797 out:
1798         dev->host_mem_descs = NULL;
1799         return -ENOMEM;
1800 }
1801
1802 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1803 {
1804         u32 chunk_size;
1805
1806         /* start big and work our way down */
1807         for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1808              chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1809              chunk_size /= 2) {
1810                 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1811                         if (!min || dev->host_mem_size >= min)
1812                                 return 0;
1813                         nvme_free_host_mem(dev);
1814                 }
1815         }
1816
1817         return -ENOMEM;
1818 }
1819
1820 static int nvme_setup_host_mem(struct nvme_dev *dev)
1821 {
1822         u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1823         u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1824         u64 min = (u64)dev->ctrl.hmmin * 4096;
1825         u32 enable_bits = NVME_HOST_MEM_ENABLE;
1826         int ret;
1827
1828         preferred = min(preferred, max);
1829         if (min > max) {
1830                 dev_warn(dev->ctrl.device,
1831                         "min host memory (%lld MiB) above limit (%d MiB).\n",
1832                         min >> ilog2(SZ_1M), max_host_mem_size_mb);
1833                 nvme_free_host_mem(dev);
1834                 return 0;
1835         }
1836
1837         /*
1838          * If we already have a buffer allocated check if we can reuse it.
1839          */
1840         if (dev->host_mem_descs) {
1841                 if (dev->host_mem_size >= min)
1842                         enable_bits |= NVME_HOST_MEM_RETURN;
1843                 else
1844                         nvme_free_host_mem(dev);
1845         }
1846
1847         if (!dev->host_mem_descs) {
1848                 if (nvme_alloc_host_mem(dev, min, preferred)) {
1849                         dev_warn(dev->ctrl.device,
1850                                 "failed to allocate host memory buffer.\n");
1851                         return 0; /* controller must work without HMB */
1852                 }
1853
1854                 dev_info(dev->ctrl.device,
1855                         "allocated %lld MiB host memory buffer.\n",
1856                         dev->host_mem_size >> ilog2(SZ_1M));
1857         }
1858
1859         ret = nvme_set_host_mem(dev, enable_bits);
1860         if (ret)
1861                 nvme_free_host_mem(dev);
1862         return ret;
1863 }
1864
1865 static int nvme_setup_io_queues(struct nvme_dev *dev)
1866 {
1867         struct nvme_queue *adminq = &dev->queues[0];
1868         struct pci_dev *pdev = to_pci_dev(dev->dev);
1869         int result, nr_io_queues;
1870         unsigned long size;
1871
1872         struct irq_affinity affd = {
1873                 .pre_vectors = 1
1874         };
1875
1876         nr_io_queues = num_possible_cpus();
1877         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1878         if (result < 0)
1879                 return result;
1880
1881         if (nr_io_queues == 0)
1882                 return 0;
1883
1884         if (dev->cmb && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1885                 result = nvme_cmb_qdepth(dev, nr_io_queues,
1886                                 sizeof(struct nvme_command));
1887                 if (result > 0)
1888                         dev->q_depth = result;
1889                 else
1890                         nvme_release_cmb(dev);
1891         }
1892
1893         do {
1894                 size = db_bar_size(dev, nr_io_queues);
1895                 result = nvme_remap_bar(dev, size);
1896                 if (!result)
1897                         break;
1898                 if (!--nr_io_queues)
1899                         return -ENOMEM;
1900         } while (1);
1901         adminq->q_db = dev->dbs;
1902
1903         /* Deregister the admin queue's interrupt */
1904         pci_free_irq(pdev, 0, adminq);
1905
1906         /*
1907          * If we enable msix early due to not intx, disable it again before
1908          * setting up the full range we need.
1909          */
1910         pci_free_irq_vectors(pdev);
1911         result = pci_alloc_irq_vectors_affinity(pdev, 1, nr_io_queues + 1,
1912                         PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
1913         if (result <= 0)
1914                 return -EIO;
1915         dev->num_vecs = result;
1916         dev->max_qid = max(result - 1, 1);
1917
1918         /*
1919          * Should investigate if there's a performance win from allocating
1920          * more queues than interrupt vectors; it might allow the submission
1921          * path to scale better, even if the receive path is limited by the
1922          * number of interrupts.
1923          */
1924
1925         result = queue_request_irq(adminq);
1926         if (result) {
1927                 adminq->cq_vector = -1;
1928                 return result;
1929         }
1930         return nvme_create_io_queues(dev);
1931 }
1932
1933 static void nvme_del_queue_end(struct request *req, blk_status_t error)
1934 {
1935         struct nvme_queue *nvmeq = req->end_io_data;
1936
1937         blk_mq_free_request(req);
1938         complete(&nvmeq->dev->ioq_wait);
1939 }
1940
1941 static void nvme_del_cq_end(struct request *req, blk_status_t error)
1942 {
1943         struct nvme_queue *nvmeq = req->end_io_data;
1944         u16 start, end;
1945
1946         if (!error) {
1947                 unsigned long flags;
1948
1949                 spin_lock_irqsave(&nvmeq->cq_lock, flags);
1950                 nvme_process_cq(nvmeq, &start, &end, -1);
1951                 spin_unlock_irqrestore(&nvmeq->cq_lock, flags);
1952
1953                 nvme_complete_cqes(nvmeq, start, end);
1954         }
1955
1956         nvme_del_queue_end(req, error);
1957 }
1958
1959 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1960 {
1961         struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1962         struct request *req;
1963         struct nvme_command cmd;
1964
1965         memset(&cmd, 0, sizeof(cmd));
1966         cmd.delete_queue.opcode = opcode;
1967         cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1968
1969         req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1970         if (IS_ERR(req))
1971                 return PTR_ERR(req);
1972
1973         req->timeout = ADMIN_TIMEOUT;
1974         req->end_io_data = nvmeq;
1975
1976         blk_execute_rq_nowait(q, NULL, req, false,
1977                         opcode == nvme_admin_delete_cq ?
1978                                 nvme_del_cq_end : nvme_del_queue_end);
1979         return 0;
1980 }
1981
1982 static void nvme_disable_io_queues(struct nvme_dev *dev)
1983 {
1984         int pass, queues = dev->online_queues - 1;
1985         unsigned long timeout;
1986         u8 opcode = nvme_admin_delete_sq;
1987
1988         for (pass = 0; pass < 2; pass++) {
1989                 int sent = 0, i = queues;
1990
1991                 reinit_completion(&dev->ioq_wait);
1992  retry:
1993                 timeout = ADMIN_TIMEOUT;
1994                 for (; i > 0; i--, sent++)
1995                         if (nvme_delete_queue(&dev->queues[i], opcode))
1996                                 break;
1997
1998                 while (sent--) {
1999                         timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
2000                         if (timeout == 0)
2001                                 return;
2002                         if (i)
2003                                 goto retry;
2004                 }
2005                 opcode = nvme_admin_delete_cq;
2006         }
2007 }
2008
2009 /*
2010  * return error value only when tagset allocation failed
2011  */
2012 static int nvme_dev_add(struct nvme_dev *dev)
2013 {
2014         int ret;
2015
2016         if (!dev->ctrl.tagset) {
2017                 dev->tagset.ops = &nvme_mq_ops;
2018                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2019                 dev->tagset.timeout = NVME_IO_TIMEOUT;
2020                 dev->tagset.numa_node = dev_to_node(dev->dev);
2021                 dev->tagset.queue_depth =
2022                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2023                 dev->tagset.cmd_size = nvme_pci_cmd_size(dev, false);
2024                 if ((dev->ctrl.sgls & ((1 << 0) | (1 << 1))) && sgl_threshold) {
2025                         dev->tagset.cmd_size = max(dev->tagset.cmd_size,
2026                                         nvme_pci_cmd_size(dev, true));
2027                 }
2028                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2029                 dev->tagset.driver_data = dev;
2030
2031                 ret = blk_mq_alloc_tag_set(&dev->tagset);
2032                 if (ret) {
2033                         dev_warn(dev->ctrl.device,
2034                                 "IO queues tagset allocation failed %d\n", ret);
2035                         return ret;
2036                 }
2037                 dev->ctrl.tagset = &dev->tagset;
2038
2039                 nvme_dbbuf_set(dev);
2040         } else {
2041                 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2042
2043                 /* Free previously allocated queues that are no longer usable */
2044                 nvme_free_queues(dev, dev->online_queues);
2045         }
2046
2047         return 0;
2048 }
2049
2050 static int nvme_pci_enable(struct nvme_dev *dev)
2051 {
2052         int result = -ENOMEM;
2053         struct pci_dev *pdev = to_pci_dev(dev->dev);
2054
2055         if (pci_enable_device_mem(pdev))
2056                 return result;
2057
2058         pci_set_master(pdev);
2059
2060         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2061             dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
2062                 goto disable;
2063
2064         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2065                 result = -ENODEV;
2066                 goto disable;
2067         }
2068
2069         /*
2070          * Some devices and/or platforms don't advertise or work with INTx
2071          * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2072          * adjust this later.
2073          */
2074         result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2075         if (result < 0)
2076                 return result;
2077
2078         dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2079
2080         dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2081                                 io_queue_depth);
2082         dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2083         dev->dbs = dev->bar + 4096;
2084
2085         /*
2086          * Temporary fix for the Apple controller found in the MacBook8,1 and
2087          * some MacBook7,1 to avoid controller resets and data loss.
2088          */
2089         if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2090                 dev->q_depth = 2;
2091                 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2092                         "set queue depth=%u to work around controller resets\n",
2093                         dev->q_depth);
2094         } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2095                    (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2096                    NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2097                 dev->q_depth = 64;
2098                 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2099                         "set queue depth=%u\n", dev->q_depth);
2100         }
2101
2102         nvme_map_cmb(dev);
2103
2104         pci_enable_pcie_error_reporting(pdev);
2105         pci_save_state(pdev);
2106         return 0;
2107
2108  disable:
2109         pci_disable_device(pdev);
2110         return result;
2111 }
2112
2113 static void nvme_dev_unmap(struct nvme_dev *dev)
2114 {
2115         if (dev->bar)
2116                 iounmap(dev->bar);
2117         pci_release_mem_regions(to_pci_dev(dev->dev));
2118 }
2119
2120 static void nvme_pci_disable(struct nvme_dev *dev)
2121 {
2122         struct pci_dev *pdev = to_pci_dev(dev->dev);
2123
2124         nvme_release_cmb(dev);
2125         pci_free_irq_vectors(pdev);
2126
2127         if (pci_is_enabled(pdev)) {
2128                 pci_disable_pcie_error_reporting(pdev);
2129                 pci_disable_device(pdev);
2130         }
2131 }
2132
2133 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2134 {
2135         int i;
2136         bool dead = true;
2137         struct pci_dev *pdev = to_pci_dev(dev->dev);
2138
2139         mutex_lock(&dev->shutdown_lock);
2140         if (pci_is_enabled(pdev)) {
2141                 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2142
2143                 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2144                     dev->ctrl.state == NVME_CTRL_RESETTING)
2145                         nvme_start_freeze(&dev->ctrl);
2146                 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2147                         pdev->error_state  != pci_channel_io_normal);
2148         }
2149
2150         /*
2151          * Give the controller a chance to complete all entered requests if
2152          * doing a safe shutdown.
2153          */
2154         if (!dead) {
2155                 if (shutdown)
2156                         nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2157         }
2158
2159         nvme_stop_queues(&dev->ctrl);
2160
2161         if (!dead && dev->ctrl.queue_count > 0) {
2162                 nvme_disable_io_queues(dev);
2163                 nvme_disable_admin_queue(dev, shutdown);
2164         }
2165         for (i = dev->ctrl.queue_count - 1; i >= 0; i--)
2166                 nvme_suspend_queue(&dev->queues[i]);
2167
2168         nvme_pci_disable(dev);
2169
2170         blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2171         blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2172
2173         /*
2174          * The driver will not be starting up queues again if shutting down so
2175          * must flush all entered requests to their failed completion to avoid
2176          * deadlocking blk-mq hot-cpu notifier.
2177          */
2178         if (shutdown)
2179                 nvme_start_queues(&dev->ctrl);
2180         mutex_unlock(&dev->shutdown_lock);
2181 }
2182
2183 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2184 {
2185         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2186                                                 PAGE_SIZE, PAGE_SIZE, 0);
2187         if (!dev->prp_page_pool)
2188                 return -ENOMEM;
2189
2190         /* Optimisation for I/Os between 4k and 128k */
2191         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2192                                                 256, 256, 0);
2193         if (!dev->prp_small_pool) {
2194                 dma_pool_destroy(dev->prp_page_pool);
2195                 return -ENOMEM;
2196         }
2197         return 0;
2198 }
2199
2200 static void nvme_release_prp_pools(struct nvme_dev *dev)
2201 {
2202         dma_pool_destroy(dev->prp_page_pool);
2203         dma_pool_destroy(dev->prp_small_pool);
2204 }
2205
2206 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2207 {
2208         struct nvme_dev *dev = to_nvme_dev(ctrl);
2209
2210         nvme_dbbuf_dma_free(dev);
2211         put_device(dev->dev);
2212         if (dev->tagset.tags)
2213                 blk_mq_free_tag_set(&dev->tagset);
2214         if (dev->ctrl.admin_q)
2215                 blk_put_queue(dev->ctrl.admin_q);
2216         kfree(dev->queues);
2217         free_opal_dev(dev->ctrl.opal_dev);
2218         mempool_destroy(dev->iod_mempool);
2219         kfree(dev);
2220 }
2221
2222 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2223 {
2224         dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
2225
2226         nvme_get_ctrl(&dev->ctrl);
2227         nvme_dev_disable(dev, false);
2228         nvme_kill_queues(&dev->ctrl);
2229         if (!queue_work(nvme_wq, &dev->remove_work))
2230                 nvme_put_ctrl(&dev->ctrl);
2231 }
2232
2233 static void nvme_reset_work(struct work_struct *work)
2234 {
2235         struct nvme_dev *dev =
2236                 container_of(work, struct nvme_dev, ctrl.reset_work);
2237         bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2238         int result = -ENODEV;
2239         enum nvme_ctrl_state new_state = NVME_CTRL_LIVE;
2240
2241         if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
2242                 goto out;
2243
2244         /*
2245          * If we're called to reset a live controller first shut it down before
2246          * moving on.
2247          */
2248         if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2249                 nvme_dev_disable(dev, false);
2250
2251         /*
2252          * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2253          * initializing procedure here.
2254          */
2255         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2256                 dev_warn(dev->ctrl.device,
2257                         "failed to mark controller CONNECTING\n");
2258                 goto out;
2259         }
2260
2261         result = nvme_pci_enable(dev);
2262         if (result)
2263                 goto out;
2264
2265         result = nvme_pci_configure_admin_queue(dev);
2266         if (result)
2267                 goto out;
2268
2269         result = nvme_alloc_admin_tags(dev);
2270         if (result)
2271                 goto out;
2272
2273         /*
2274          * Limit the max command size to prevent iod->sg allocations going
2275          * over a single page.
2276          */
2277         dev->ctrl.max_hw_sectors = NVME_MAX_KB_SZ << 1;
2278         dev->ctrl.max_segments = NVME_MAX_SEGS;
2279
2280         result = nvme_init_identify(&dev->ctrl);
2281         if (result)
2282                 goto out;
2283
2284         if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2285                 if (!dev->ctrl.opal_dev)
2286                         dev->ctrl.opal_dev =
2287                                 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2288                 else if (was_suspend)
2289                         opal_unlock_from_suspend(dev->ctrl.opal_dev);
2290         } else {
2291                 free_opal_dev(dev->ctrl.opal_dev);
2292                 dev->ctrl.opal_dev = NULL;
2293         }
2294
2295         if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2296                 result = nvme_dbbuf_dma_alloc(dev);
2297                 if (result)
2298                         dev_warn(dev->dev,
2299                                  "unable to allocate dma for dbbuf\n");
2300         }
2301
2302         if (dev->ctrl.hmpre) {
2303                 result = nvme_setup_host_mem(dev);
2304                 if (result < 0)
2305                         goto out;
2306         }
2307
2308         result = nvme_setup_io_queues(dev);
2309         if (result)
2310                 goto out;
2311
2312         /*
2313          * Keep the controller around but remove all namespaces if we don't have
2314          * any working I/O queue.
2315          */
2316         if (dev->online_queues < 2) {
2317                 dev_warn(dev->ctrl.device, "IO queues not created\n");
2318                 nvme_kill_queues(&dev->ctrl);
2319                 nvme_remove_namespaces(&dev->ctrl);
2320                 new_state = NVME_CTRL_ADMIN_ONLY;
2321         } else {
2322                 nvme_start_queues(&dev->ctrl);
2323                 nvme_wait_freeze(&dev->ctrl);
2324                 /* hit this only when allocate tagset fails */
2325                 if (nvme_dev_add(dev))
2326                         new_state = NVME_CTRL_ADMIN_ONLY;
2327                 nvme_unfreeze(&dev->ctrl);
2328         }
2329
2330         /*
2331          * If only admin queue live, keep it to do further investigation or
2332          * recovery.
2333          */
2334         if (!nvme_change_ctrl_state(&dev->ctrl, new_state)) {
2335                 dev_warn(dev->ctrl.device,
2336                         "failed to mark controller state %d\n", new_state);
2337                 goto out;
2338         }
2339
2340         nvme_start_ctrl(&dev->ctrl);
2341         return;
2342
2343  out:
2344         nvme_remove_dead_ctrl(dev, result);
2345 }
2346
2347 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2348 {
2349         struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2350         struct pci_dev *pdev = to_pci_dev(dev->dev);
2351
2352         if (pci_get_drvdata(pdev))
2353                 device_release_driver(&pdev->dev);
2354         nvme_put_ctrl(&dev->ctrl);
2355 }
2356
2357 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2358 {
2359         *val = readl(to_nvme_dev(ctrl)->bar + off);
2360         return 0;
2361 }
2362
2363 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2364 {
2365         writel(val, to_nvme_dev(ctrl)->bar + off);
2366         return 0;
2367 }
2368
2369 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2370 {
2371         *val = readq(to_nvme_dev(ctrl)->bar + off);
2372         return 0;
2373 }
2374
2375 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2376 {
2377         struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2378
2379         return snprintf(buf, size, "%s", dev_name(&pdev->dev));
2380 }
2381
2382 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2383         .name                   = "pcie",
2384         .module                 = THIS_MODULE,
2385         .flags                  = NVME_F_METADATA_SUPPORTED,
2386         .reg_read32             = nvme_pci_reg_read32,
2387         .reg_write32            = nvme_pci_reg_write32,
2388         .reg_read64             = nvme_pci_reg_read64,
2389         .free_ctrl              = nvme_pci_free_ctrl,
2390         .submit_async_event     = nvme_pci_submit_async_event,
2391         .get_address            = nvme_pci_get_address,
2392 };
2393
2394 static int nvme_dev_map(struct nvme_dev *dev)
2395 {
2396         struct pci_dev *pdev = to_pci_dev(dev->dev);
2397
2398         if (pci_request_mem_regions(pdev, "nvme"))
2399                 return -ENODEV;
2400
2401         if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2402                 goto release;
2403
2404         return 0;
2405   release:
2406         pci_release_mem_regions(pdev);
2407         return -ENODEV;
2408 }
2409
2410 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2411 {
2412         if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2413                 /*
2414                  * Several Samsung devices seem to drop off the PCIe bus
2415                  * randomly when APST is on and uses the deepest sleep state.
2416                  * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2417                  * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2418                  * 950 PRO 256GB", but it seems to be restricted to two Dell
2419                  * laptops.
2420                  */
2421                 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2422                     (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2423                      dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2424                         return NVME_QUIRK_NO_DEEPEST_PS;
2425         } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2426                 /*
2427                  * Samsung SSD 960 EVO drops off the PCIe bus after system
2428                  * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2429                  * within few minutes after bootup on a Coffee Lake board -
2430                  * ASUS PRIME Z370-A
2431                  */
2432                 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2433                     (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2434                      dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2435                         return NVME_QUIRK_NO_APST;
2436         }
2437
2438         return 0;
2439 }
2440
2441 static void nvme_async_probe(void *data, async_cookie_t cookie)
2442 {
2443         struct nvme_dev *dev = data;
2444
2445         nvme_reset_ctrl_sync(&dev->ctrl);
2446         flush_work(&dev->ctrl.scan_work);
2447         nvme_put_ctrl(&dev->ctrl);
2448 }
2449
2450 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2451 {
2452         int node, result = -ENOMEM;
2453         struct nvme_dev *dev;
2454         unsigned long quirks = id->driver_data;
2455         size_t alloc_size;
2456
2457         node = dev_to_node(&pdev->dev);
2458         if (node == NUMA_NO_NODE)
2459                 set_dev_node(&pdev->dev, first_memory_node);
2460
2461         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2462         if (!dev)
2463                 return -ENOMEM;
2464
2465         dev->queues = kcalloc_node(num_possible_cpus() + 1,
2466                         sizeof(struct nvme_queue), GFP_KERNEL, node);
2467         if (!dev->queues)
2468                 goto free;
2469
2470         dev->dev = get_device(&pdev->dev);
2471         pci_set_drvdata(pdev, dev);
2472
2473         result = nvme_dev_map(dev);
2474         if (result)
2475                 goto put_pci;
2476
2477         INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2478         INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2479         mutex_init(&dev->shutdown_lock);
2480         init_completion(&dev->ioq_wait);
2481
2482         result = nvme_setup_prp_pools(dev);
2483         if (result)
2484                 goto unmap;
2485
2486         quirks |= check_vendor_combination_bug(pdev);
2487
2488         /*
2489          * Double check that our mempool alloc size will cover the biggest
2490          * command we support.
2491          */
2492         alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ,
2493                                                 NVME_MAX_SEGS, true);
2494         WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2495
2496         dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2497                                                 mempool_kfree,
2498                                                 (void *) alloc_size,
2499                                                 GFP_KERNEL, node);
2500         if (!dev->iod_mempool) {
2501                 result = -ENOMEM;
2502                 goto release_pools;
2503         }
2504
2505         result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2506                         quirks);
2507         if (result)
2508                 goto release_mempool;
2509
2510         dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2511
2512         nvme_get_ctrl(&dev->ctrl);
2513         async_schedule(nvme_async_probe, dev);
2514
2515         return 0;
2516
2517  release_mempool:
2518         mempool_destroy(dev->iod_mempool);
2519  release_pools:
2520         nvme_release_prp_pools(dev);
2521  unmap:
2522         nvme_dev_unmap(dev);
2523  put_pci:
2524         put_device(dev->dev);
2525  free:
2526         kfree(dev->queues);
2527         kfree(dev);
2528         return result;
2529 }
2530
2531 static void nvme_reset_prepare(struct pci_dev *pdev)
2532 {
2533         struct nvme_dev *dev = pci_get_drvdata(pdev);
2534         nvme_dev_disable(dev, false);
2535 }
2536
2537 static void nvme_reset_done(struct pci_dev *pdev)
2538 {
2539         struct nvme_dev *dev = pci_get_drvdata(pdev);
2540         nvme_reset_ctrl_sync(&dev->ctrl);
2541 }
2542
2543 static void nvme_shutdown(struct pci_dev *pdev)
2544 {
2545         struct nvme_dev *dev = pci_get_drvdata(pdev);
2546         nvme_dev_disable(dev, true);
2547 }
2548
2549 /*
2550  * The driver's remove may be called on a device in a partially initialized
2551  * state. This function must not have any dependencies on the device state in
2552  * order to proceed.
2553  */
2554 static void nvme_remove(struct pci_dev *pdev)
2555 {
2556         struct nvme_dev *dev = pci_get_drvdata(pdev);
2557
2558         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2559
2560         cancel_work_sync(&dev->ctrl.reset_work);
2561         pci_set_drvdata(pdev, NULL);
2562
2563         if (!pci_device_is_present(pdev)) {
2564                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2565                 nvme_dev_disable(dev, true);
2566         }
2567
2568         flush_work(&dev->ctrl.reset_work);
2569         nvme_stop_ctrl(&dev->ctrl);
2570         nvme_remove_namespaces(&dev->ctrl);
2571         nvme_dev_disable(dev, true);
2572         nvme_free_host_mem(dev);
2573         nvme_dev_remove_admin(dev);
2574         nvme_free_queues(dev, 0);
2575         nvme_uninit_ctrl(&dev->ctrl);
2576         nvme_release_prp_pools(dev);
2577         nvme_dev_unmap(dev);
2578         nvme_put_ctrl(&dev->ctrl);
2579 }
2580
2581 #ifdef CONFIG_PM_SLEEP
2582 static int nvme_suspend(struct device *dev)
2583 {
2584         struct pci_dev *pdev = to_pci_dev(dev);
2585         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2586
2587         nvme_dev_disable(ndev, true);
2588         return 0;
2589 }
2590
2591 static int nvme_resume(struct device *dev)
2592 {
2593         struct pci_dev *pdev = to_pci_dev(dev);
2594         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2595
2596         nvme_reset_ctrl(&ndev->ctrl);
2597         return 0;
2598 }
2599 #endif
2600
2601 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2602
2603 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2604                                                 pci_channel_state_t state)
2605 {
2606         struct nvme_dev *dev = pci_get_drvdata(pdev);
2607
2608         /*
2609          * A frozen channel requires a reset. When detected, this method will
2610          * shutdown the controller to quiesce. The controller will be restarted
2611          * after the slot reset through driver's slot_reset callback.
2612          */
2613         switch (state) {
2614         case pci_channel_io_normal:
2615                 return PCI_ERS_RESULT_CAN_RECOVER;
2616         case pci_channel_io_frozen:
2617                 dev_warn(dev->ctrl.device,
2618                         "frozen state error detected, reset controller\n");
2619                 nvme_dev_disable(dev, false);
2620                 return PCI_ERS_RESULT_NEED_RESET;
2621         case pci_channel_io_perm_failure:
2622                 dev_warn(dev->ctrl.device,
2623                         "failure state error detected, request disconnect\n");
2624                 return PCI_ERS_RESULT_DISCONNECT;
2625         }
2626         return PCI_ERS_RESULT_NEED_RESET;
2627 }
2628
2629 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2630 {
2631         struct nvme_dev *dev = pci_get_drvdata(pdev);
2632
2633         dev_info(dev->ctrl.device, "restart after slot reset\n");
2634         pci_restore_state(pdev);
2635         nvme_reset_ctrl(&dev->ctrl);
2636         return PCI_ERS_RESULT_RECOVERED;
2637 }
2638
2639 static void nvme_error_resume(struct pci_dev *pdev)
2640 {
2641         struct nvme_dev *dev = pci_get_drvdata(pdev);
2642
2643         flush_work(&dev->ctrl.reset_work);
2644         pci_cleanup_aer_uncorrect_error_status(pdev);
2645 }
2646
2647 static const struct pci_error_handlers nvme_err_handler = {
2648         .error_detected = nvme_error_detected,
2649         .slot_reset     = nvme_slot_reset,
2650         .resume         = nvme_error_resume,
2651         .reset_prepare  = nvme_reset_prepare,
2652         .reset_done     = nvme_reset_done,
2653 };
2654
2655 static const struct pci_device_id nvme_id_table[] = {
2656         { PCI_VDEVICE(INTEL, 0x0953),
2657                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2658                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2659         { PCI_VDEVICE(INTEL, 0x0a53),
2660                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2661                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2662         { PCI_VDEVICE(INTEL, 0x0a54),
2663                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2664                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2665         { PCI_VDEVICE(INTEL, 0x0a55),
2666                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2667                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2668         { PCI_VDEVICE(INTEL, 0xf1a5),   /* Intel 600P/P3100 */
2669                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
2670                                 NVME_QUIRK_MEDIUM_PRIO_SQ },
2671         { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
2672                 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2673         { PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
2674                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2675         { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
2676                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2677         { PCI_DEVICE(0x1c58, 0x0023),   /* WDC SN200 adapter */
2678                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2679         { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
2680                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2681         { PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
2682                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2683         { PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
2684                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2685         { PCI_DEVICE(0x1d1d, 0x1f1f),   /* LighNVM qemu device */
2686                 .driver_data = NVME_QUIRK_LIGHTNVM, },
2687         { PCI_DEVICE(0x1d1d, 0x2807),   /* CNEX WL */
2688                 .driver_data = NVME_QUIRK_LIGHTNVM, },
2689         { PCI_DEVICE(0x1d1d, 0x2601),   /* CNEX Granby */
2690                 .driver_data = NVME_QUIRK_LIGHTNVM, },
2691         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2692         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2693         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2694         { 0, }
2695 };
2696 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2697
2698 static struct pci_driver nvme_driver = {
2699         .name           = "nvme",
2700         .id_table       = nvme_id_table,
2701         .probe          = nvme_probe,
2702         .remove         = nvme_remove,
2703         .shutdown       = nvme_shutdown,
2704         .driver         = {
2705                 .pm     = &nvme_dev_pm_ops,
2706         },
2707         .sriov_configure = pci_sriov_configure_simple,
2708         .err_handler    = &nvme_err_handler,
2709 };
2710
2711 static int __init nvme_init(void)
2712 {
2713         return pci_register_driver(&nvme_driver);
2714 }
2715
2716 static void __exit nvme_exit(void)
2717 {
2718         pci_unregister_driver(&nvme_driver);
2719         flush_workqueue(nvme_wq);
2720         _nvme_check_size();
2721 }
2722
2723 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2724 MODULE_LICENSE("GPL");
2725 MODULE_VERSION("1.0");
2726 module_init(nvme_init);
2727 module_exit(nvme_exit);