Merge tag 'kconfig-v4.21' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy...
[linux-2.6-block.git] / drivers / nvme / host / fc.c
1 /*
2  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful.
9  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
10  * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
11  * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
12  * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
13  * See the GNU General Public License for more details, a copy of which
14  * can be found in the file COPYING included with this package
15  *
16  */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/module.h>
19 #include <linux/parser.h>
20 #include <uapi/scsi/fc/fc_fs.h>
21 #include <uapi/scsi/fc/fc_els.h>
22 #include <linux/delay.h>
23 #include <linux/overflow.h>
24
25 #include "nvme.h"
26 #include "fabrics.h"
27 #include <linux/nvme-fc-driver.h>
28 #include <linux/nvme-fc.h>
29
30
31 /* *************************** Data Structures/Defines ****************** */
32
33
34 enum nvme_fc_queue_flags {
35         NVME_FC_Q_CONNECTED = 0,
36         NVME_FC_Q_LIVE,
37 };
38
39 #define NVME_FC_DEFAULT_DEV_LOSS_TMO    60      /* seconds */
40
41 struct nvme_fc_queue {
42         struct nvme_fc_ctrl     *ctrl;
43         struct device           *dev;
44         struct blk_mq_hw_ctx    *hctx;
45         void                    *lldd_handle;
46         size_t                  cmnd_capsule_len;
47         u32                     qnum;
48         u32                     rqcnt;
49         u32                     seqno;
50
51         u64                     connection_id;
52         atomic_t                csn;
53
54         unsigned long           flags;
55 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
56
57 enum nvme_fcop_flags {
58         FCOP_FLAGS_TERMIO       = (1 << 0),
59         FCOP_FLAGS_AEN          = (1 << 1),
60 };
61
62 struct nvmefc_ls_req_op {
63         struct nvmefc_ls_req    ls_req;
64
65         struct nvme_fc_rport    *rport;
66         struct nvme_fc_queue    *queue;
67         struct request          *rq;
68         u32                     flags;
69
70         int                     ls_error;
71         struct completion       ls_done;
72         struct list_head        lsreq_list;     /* rport->ls_req_list */
73         bool                    req_queued;
74 };
75
76 enum nvme_fcpop_state {
77         FCPOP_STATE_UNINIT      = 0,
78         FCPOP_STATE_IDLE        = 1,
79         FCPOP_STATE_ACTIVE      = 2,
80         FCPOP_STATE_ABORTED     = 3,
81         FCPOP_STATE_COMPLETE    = 4,
82 };
83
84 struct nvme_fc_fcp_op {
85         struct nvme_request     nreq;           /*
86                                                  * nvme/host/core.c
87                                                  * requires this to be
88                                                  * the 1st element in the
89                                                  * private structure
90                                                  * associated with the
91                                                  * request.
92                                                  */
93         struct nvmefc_fcp_req   fcp_req;
94
95         struct nvme_fc_ctrl     *ctrl;
96         struct nvme_fc_queue    *queue;
97         struct request          *rq;
98
99         atomic_t                state;
100         u32                     flags;
101         u32                     rqno;
102         u32                     nents;
103
104         struct nvme_fc_cmd_iu   cmd_iu;
105         struct nvme_fc_ersp_iu  rsp_iu;
106 };
107
108 struct nvme_fcp_op_w_sgl {
109         struct nvme_fc_fcp_op   op;
110         struct scatterlist      sgl[SG_CHUNK_SIZE];
111         uint8_t                 priv[0];
112 };
113
114 struct nvme_fc_lport {
115         struct nvme_fc_local_port       localport;
116
117         struct ida                      endp_cnt;
118         struct list_head                port_list;      /* nvme_fc_port_list */
119         struct list_head                endp_list;
120         struct device                   *dev;   /* physical device for dma */
121         struct nvme_fc_port_template    *ops;
122         struct kref                     ref;
123         atomic_t                        act_rport_cnt;
124 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
125
126 struct nvme_fc_rport {
127         struct nvme_fc_remote_port      remoteport;
128
129         struct list_head                endp_list; /* for lport->endp_list */
130         struct list_head                ctrl_list;
131         struct list_head                ls_req_list;
132         struct list_head                disc_list;
133         struct device                   *dev;   /* physical device for dma */
134         struct nvme_fc_lport            *lport;
135         spinlock_t                      lock;
136         struct kref                     ref;
137         atomic_t                        act_ctrl_cnt;
138         unsigned long                   dev_loss_end;
139 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
140
141 enum nvme_fcctrl_flags {
142         FCCTRL_TERMIO           = (1 << 0),
143 };
144
145 struct nvme_fc_ctrl {
146         spinlock_t              lock;
147         struct nvme_fc_queue    *queues;
148         struct device           *dev;
149         struct nvme_fc_lport    *lport;
150         struct nvme_fc_rport    *rport;
151         u32                     cnum;
152
153         bool                    ioq_live;
154         bool                    assoc_active;
155         atomic_t                err_work_active;
156         u64                     association_id;
157
158         struct list_head        ctrl_list;      /* rport->ctrl_list */
159
160         struct blk_mq_tag_set   admin_tag_set;
161         struct blk_mq_tag_set   tag_set;
162
163         struct delayed_work     connect_work;
164         struct work_struct      err_work;
165
166         struct kref             ref;
167         u32                     flags;
168         u32                     iocnt;
169         wait_queue_head_t       ioabort_wait;
170
171         struct nvme_fc_fcp_op   aen_ops[NVME_NR_AEN_COMMANDS];
172
173         struct nvme_ctrl        ctrl;
174 };
175
176 static inline struct nvme_fc_ctrl *
177 to_fc_ctrl(struct nvme_ctrl *ctrl)
178 {
179         return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
180 }
181
182 static inline struct nvme_fc_lport *
183 localport_to_lport(struct nvme_fc_local_port *portptr)
184 {
185         return container_of(portptr, struct nvme_fc_lport, localport);
186 }
187
188 static inline struct nvme_fc_rport *
189 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
190 {
191         return container_of(portptr, struct nvme_fc_rport, remoteport);
192 }
193
194 static inline struct nvmefc_ls_req_op *
195 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
196 {
197         return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
198 }
199
200 static inline struct nvme_fc_fcp_op *
201 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
202 {
203         return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
204 }
205
206
207
208 /* *************************** Globals **************************** */
209
210
211 static DEFINE_SPINLOCK(nvme_fc_lock);
212
213 static LIST_HEAD(nvme_fc_lport_list);
214 static DEFINE_IDA(nvme_fc_local_port_cnt);
215 static DEFINE_IDA(nvme_fc_ctrl_cnt);
216
217
218
219 /*
220  * These items are short-term. They will eventually be moved into
221  * a generic FC class. See comments in module init.
222  */
223 static struct device *fc_udev_device;
224
225
226 /* *********************** FC-NVME Port Management ************************ */
227
228 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
229                         struct nvme_fc_queue *, unsigned int);
230
231 static void
232 nvme_fc_free_lport(struct kref *ref)
233 {
234         struct nvme_fc_lport *lport =
235                 container_of(ref, struct nvme_fc_lport, ref);
236         unsigned long flags;
237
238         WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
239         WARN_ON(!list_empty(&lport->endp_list));
240
241         /* remove from transport list */
242         spin_lock_irqsave(&nvme_fc_lock, flags);
243         list_del(&lport->port_list);
244         spin_unlock_irqrestore(&nvme_fc_lock, flags);
245
246         ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
247         ida_destroy(&lport->endp_cnt);
248
249         put_device(lport->dev);
250
251         kfree(lport);
252 }
253
254 static void
255 nvme_fc_lport_put(struct nvme_fc_lport *lport)
256 {
257         kref_put(&lport->ref, nvme_fc_free_lport);
258 }
259
260 static int
261 nvme_fc_lport_get(struct nvme_fc_lport *lport)
262 {
263         return kref_get_unless_zero(&lport->ref);
264 }
265
266
267 static struct nvme_fc_lport *
268 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo,
269                         struct nvme_fc_port_template *ops,
270                         struct device *dev)
271 {
272         struct nvme_fc_lport *lport;
273         unsigned long flags;
274
275         spin_lock_irqsave(&nvme_fc_lock, flags);
276
277         list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
278                 if (lport->localport.node_name != pinfo->node_name ||
279                     lport->localport.port_name != pinfo->port_name)
280                         continue;
281
282                 if (lport->dev != dev) {
283                         lport = ERR_PTR(-EXDEV);
284                         goto out_done;
285                 }
286
287                 if (lport->localport.port_state != FC_OBJSTATE_DELETED) {
288                         lport = ERR_PTR(-EEXIST);
289                         goto out_done;
290                 }
291
292                 if (!nvme_fc_lport_get(lport)) {
293                         /*
294                          * fails if ref cnt already 0. If so,
295                          * act as if lport already deleted
296                          */
297                         lport = NULL;
298                         goto out_done;
299                 }
300
301                 /* resume the lport */
302
303                 lport->ops = ops;
304                 lport->localport.port_role = pinfo->port_role;
305                 lport->localport.port_id = pinfo->port_id;
306                 lport->localport.port_state = FC_OBJSTATE_ONLINE;
307
308                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
309
310                 return lport;
311         }
312
313         lport = NULL;
314
315 out_done:
316         spin_unlock_irqrestore(&nvme_fc_lock, flags);
317
318         return lport;
319 }
320
321 /**
322  * nvme_fc_register_localport - transport entry point called by an
323  *                              LLDD to register the existence of a NVME
324  *                              host FC port.
325  * @pinfo:     pointer to information about the port to be registered
326  * @template:  LLDD entrypoints and operational parameters for the port
327  * @dev:       physical hardware device node port corresponds to. Will be
328  *             used for DMA mappings
329  * @portptr:   pointer to a local port pointer. Upon success, the routine
330  *             will allocate a nvme_fc_local_port structure and place its
331  *             address in the local port pointer. Upon failure, local port
332  *             pointer will be set to 0.
333  *
334  * Returns:
335  * a completion status. Must be 0 upon success; a negative errno
336  * (ex: -ENXIO) upon failure.
337  */
338 int
339 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
340                         struct nvme_fc_port_template *template,
341                         struct device *dev,
342                         struct nvme_fc_local_port **portptr)
343 {
344         struct nvme_fc_lport *newrec;
345         unsigned long flags;
346         int ret, idx;
347
348         if (!template->localport_delete || !template->remoteport_delete ||
349             !template->ls_req || !template->fcp_io ||
350             !template->ls_abort || !template->fcp_abort ||
351             !template->max_hw_queues || !template->max_sgl_segments ||
352             !template->max_dif_sgl_segments || !template->dma_boundary) {
353                 ret = -EINVAL;
354                 goto out_reghost_failed;
355         }
356
357         /*
358          * look to see if there is already a localport that had been
359          * deregistered and in the process of waiting for all the
360          * references to fully be removed.  If the references haven't
361          * expired, we can simply re-enable the localport. Remoteports
362          * and controller reconnections should resume naturally.
363          */
364         newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev);
365
366         /* found an lport, but something about its state is bad */
367         if (IS_ERR(newrec)) {
368                 ret = PTR_ERR(newrec);
369                 goto out_reghost_failed;
370
371         /* found existing lport, which was resumed */
372         } else if (newrec) {
373                 *portptr = &newrec->localport;
374                 return 0;
375         }
376
377         /* nothing found - allocate a new localport struct */
378
379         newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
380                          GFP_KERNEL);
381         if (!newrec) {
382                 ret = -ENOMEM;
383                 goto out_reghost_failed;
384         }
385
386         idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
387         if (idx < 0) {
388                 ret = -ENOSPC;
389                 goto out_fail_kfree;
390         }
391
392         if (!get_device(dev) && dev) {
393                 ret = -ENODEV;
394                 goto out_ida_put;
395         }
396
397         INIT_LIST_HEAD(&newrec->port_list);
398         INIT_LIST_HEAD(&newrec->endp_list);
399         kref_init(&newrec->ref);
400         atomic_set(&newrec->act_rport_cnt, 0);
401         newrec->ops = template;
402         newrec->dev = dev;
403         ida_init(&newrec->endp_cnt);
404         newrec->localport.private = &newrec[1];
405         newrec->localport.node_name = pinfo->node_name;
406         newrec->localport.port_name = pinfo->port_name;
407         newrec->localport.port_role = pinfo->port_role;
408         newrec->localport.port_id = pinfo->port_id;
409         newrec->localport.port_state = FC_OBJSTATE_ONLINE;
410         newrec->localport.port_num = idx;
411
412         spin_lock_irqsave(&nvme_fc_lock, flags);
413         list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
414         spin_unlock_irqrestore(&nvme_fc_lock, flags);
415
416         if (dev)
417                 dma_set_seg_boundary(dev, template->dma_boundary);
418
419         *portptr = &newrec->localport;
420         return 0;
421
422 out_ida_put:
423         ida_simple_remove(&nvme_fc_local_port_cnt, idx);
424 out_fail_kfree:
425         kfree(newrec);
426 out_reghost_failed:
427         *portptr = NULL;
428
429         return ret;
430 }
431 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
432
433 /**
434  * nvme_fc_unregister_localport - transport entry point called by an
435  *                              LLDD to deregister/remove a previously
436  *                              registered a NVME host FC port.
437  * @portptr: pointer to the (registered) local port that is to be deregistered.
438  *
439  * Returns:
440  * a completion status. Must be 0 upon success; a negative errno
441  * (ex: -ENXIO) upon failure.
442  */
443 int
444 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
445 {
446         struct nvme_fc_lport *lport = localport_to_lport(portptr);
447         unsigned long flags;
448
449         if (!portptr)
450                 return -EINVAL;
451
452         spin_lock_irqsave(&nvme_fc_lock, flags);
453
454         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
455                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
456                 return -EINVAL;
457         }
458         portptr->port_state = FC_OBJSTATE_DELETED;
459
460         spin_unlock_irqrestore(&nvme_fc_lock, flags);
461
462         if (atomic_read(&lport->act_rport_cnt) == 0)
463                 lport->ops->localport_delete(&lport->localport);
464
465         nvme_fc_lport_put(lport);
466
467         return 0;
468 }
469 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
470
471 /*
472  * TRADDR strings, per FC-NVME are fixed format:
473  *   "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters
474  * udev event will only differ by prefix of what field is
475  * being specified:
476  *    "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters
477  *  19 + 43 + null_fudge = 64 characters
478  */
479 #define FCNVME_TRADDR_LENGTH            64
480
481 static void
482 nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport,
483                 struct nvme_fc_rport *rport)
484 {
485         char hostaddr[FCNVME_TRADDR_LENGTH];    /* NVMEFC_HOST_TRADDR=...*/
486         char tgtaddr[FCNVME_TRADDR_LENGTH];     /* NVMEFC_TRADDR=...*/
487         char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL };
488
489         if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY))
490                 return;
491
492         snprintf(hostaddr, sizeof(hostaddr),
493                 "NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx",
494                 lport->localport.node_name, lport->localport.port_name);
495         snprintf(tgtaddr, sizeof(tgtaddr),
496                 "NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx",
497                 rport->remoteport.node_name, rport->remoteport.port_name);
498         kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp);
499 }
500
501 static void
502 nvme_fc_free_rport(struct kref *ref)
503 {
504         struct nvme_fc_rport *rport =
505                 container_of(ref, struct nvme_fc_rport, ref);
506         struct nvme_fc_lport *lport =
507                         localport_to_lport(rport->remoteport.localport);
508         unsigned long flags;
509
510         WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
511         WARN_ON(!list_empty(&rport->ctrl_list));
512
513         /* remove from lport list */
514         spin_lock_irqsave(&nvme_fc_lock, flags);
515         list_del(&rport->endp_list);
516         spin_unlock_irqrestore(&nvme_fc_lock, flags);
517
518         WARN_ON(!list_empty(&rport->disc_list));
519         ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
520
521         kfree(rport);
522
523         nvme_fc_lport_put(lport);
524 }
525
526 static void
527 nvme_fc_rport_put(struct nvme_fc_rport *rport)
528 {
529         kref_put(&rport->ref, nvme_fc_free_rport);
530 }
531
532 static int
533 nvme_fc_rport_get(struct nvme_fc_rport *rport)
534 {
535         return kref_get_unless_zero(&rport->ref);
536 }
537
538 static void
539 nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl)
540 {
541         switch (ctrl->ctrl.state) {
542         case NVME_CTRL_NEW:
543         case NVME_CTRL_CONNECTING:
544                 /*
545                  * As all reconnects were suppressed, schedule a
546                  * connect.
547                  */
548                 dev_info(ctrl->ctrl.device,
549                         "NVME-FC{%d}: connectivity re-established. "
550                         "Attempting reconnect\n", ctrl->cnum);
551
552                 queue_delayed_work(nvme_wq, &ctrl->connect_work, 0);
553                 break;
554
555         case NVME_CTRL_RESETTING:
556                 /*
557                  * Controller is already in the process of terminating the
558                  * association. No need to do anything further. The reconnect
559                  * step will naturally occur after the reset completes.
560                  */
561                 break;
562
563         default:
564                 /* no action to take - let it delete */
565                 break;
566         }
567 }
568
569 static struct nvme_fc_rport *
570 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport,
571                                 struct nvme_fc_port_info *pinfo)
572 {
573         struct nvme_fc_rport *rport;
574         struct nvme_fc_ctrl *ctrl;
575         unsigned long flags;
576
577         spin_lock_irqsave(&nvme_fc_lock, flags);
578
579         list_for_each_entry(rport, &lport->endp_list, endp_list) {
580                 if (rport->remoteport.node_name != pinfo->node_name ||
581                     rport->remoteport.port_name != pinfo->port_name)
582                         continue;
583
584                 if (!nvme_fc_rport_get(rport)) {
585                         rport = ERR_PTR(-ENOLCK);
586                         goto out_done;
587                 }
588
589                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
590
591                 spin_lock_irqsave(&rport->lock, flags);
592
593                 /* has it been unregistered */
594                 if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) {
595                         /* means lldd called us twice */
596                         spin_unlock_irqrestore(&rport->lock, flags);
597                         nvme_fc_rport_put(rport);
598                         return ERR_PTR(-ESTALE);
599                 }
600
601                 rport->remoteport.port_role = pinfo->port_role;
602                 rport->remoteport.port_id = pinfo->port_id;
603                 rport->remoteport.port_state = FC_OBJSTATE_ONLINE;
604                 rport->dev_loss_end = 0;
605
606                 /*
607                  * kick off a reconnect attempt on all associations to the
608                  * remote port. A successful reconnects will resume i/o.
609                  */
610                 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
611                         nvme_fc_resume_controller(ctrl);
612
613                 spin_unlock_irqrestore(&rport->lock, flags);
614
615                 return rport;
616         }
617
618         rport = NULL;
619
620 out_done:
621         spin_unlock_irqrestore(&nvme_fc_lock, flags);
622
623         return rport;
624 }
625
626 static inline void
627 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport,
628                         struct nvme_fc_port_info *pinfo)
629 {
630         if (pinfo->dev_loss_tmo)
631                 rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo;
632         else
633                 rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO;
634 }
635
636 /**
637  * nvme_fc_register_remoteport - transport entry point called by an
638  *                              LLDD to register the existence of a NVME
639  *                              subsystem FC port on its fabric.
640  * @localport: pointer to the (registered) local port that the remote
641  *             subsystem port is connected to.
642  * @pinfo:     pointer to information about the port to be registered
643  * @portptr:   pointer to a remote port pointer. Upon success, the routine
644  *             will allocate a nvme_fc_remote_port structure and place its
645  *             address in the remote port pointer. Upon failure, remote port
646  *             pointer will be set to 0.
647  *
648  * Returns:
649  * a completion status. Must be 0 upon success; a negative errno
650  * (ex: -ENXIO) upon failure.
651  */
652 int
653 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
654                                 struct nvme_fc_port_info *pinfo,
655                                 struct nvme_fc_remote_port **portptr)
656 {
657         struct nvme_fc_lport *lport = localport_to_lport(localport);
658         struct nvme_fc_rport *newrec;
659         unsigned long flags;
660         int ret, idx;
661
662         if (!nvme_fc_lport_get(lport)) {
663                 ret = -ESHUTDOWN;
664                 goto out_reghost_failed;
665         }
666
667         /*
668          * look to see if there is already a remoteport that is waiting
669          * for a reconnect (within dev_loss_tmo) with the same WWN's.
670          * If so, transition to it and reconnect.
671          */
672         newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo);
673
674         /* found an rport, but something about its state is bad */
675         if (IS_ERR(newrec)) {
676                 ret = PTR_ERR(newrec);
677                 goto out_lport_put;
678
679         /* found existing rport, which was resumed */
680         } else if (newrec) {
681                 nvme_fc_lport_put(lport);
682                 __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
683                 nvme_fc_signal_discovery_scan(lport, newrec);
684                 *portptr = &newrec->remoteport;
685                 return 0;
686         }
687
688         /* nothing found - allocate a new remoteport struct */
689
690         newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
691                          GFP_KERNEL);
692         if (!newrec) {
693                 ret = -ENOMEM;
694                 goto out_lport_put;
695         }
696
697         idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
698         if (idx < 0) {
699                 ret = -ENOSPC;
700                 goto out_kfree_rport;
701         }
702
703         INIT_LIST_HEAD(&newrec->endp_list);
704         INIT_LIST_HEAD(&newrec->ctrl_list);
705         INIT_LIST_HEAD(&newrec->ls_req_list);
706         INIT_LIST_HEAD(&newrec->disc_list);
707         kref_init(&newrec->ref);
708         atomic_set(&newrec->act_ctrl_cnt, 0);
709         spin_lock_init(&newrec->lock);
710         newrec->remoteport.localport = &lport->localport;
711         newrec->dev = lport->dev;
712         newrec->lport = lport;
713         newrec->remoteport.private = &newrec[1];
714         newrec->remoteport.port_role = pinfo->port_role;
715         newrec->remoteport.node_name = pinfo->node_name;
716         newrec->remoteport.port_name = pinfo->port_name;
717         newrec->remoteport.port_id = pinfo->port_id;
718         newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
719         newrec->remoteport.port_num = idx;
720         __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
721
722         spin_lock_irqsave(&nvme_fc_lock, flags);
723         list_add_tail(&newrec->endp_list, &lport->endp_list);
724         spin_unlock_irqrestore(&nvme_fc_lock, flags);
725
726         nvme_fc_signal_discovery_scan(lport, newrec);
727
728         *portptr = &newrec->remoteport;
729         return 0;
730
731 out_kfree_rport:
732         kfree(newrec);
733 out_lport_put:
734         nvme_fc_lport_put(lport);
735 out_reghost_failed:
736         *portptr = NULL;
737         return ret;
738 }
739 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
740
741 static int
742 nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
743 {
744         struct nvmefc_ls_req_op *lsop;
745         unsigned long flags;
746
747 restart:
748         spin_lock_irqsave(&rport->lock, flags);
749
750         list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
751                 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
752                         lsop->flags |= FCOP_FLAGS_TERMIO;
753                         spin_unlock_irqrestore(&rport->lock, flags);
754                         rport->lport->ops->ls_abort(&rport->lport->localport,
755                                                 &rport->remoteport,
756                                                 &lsop->ls_req);
757                         goto restart;
758                 }
759         }
760         spin_unlock_irqrestore(&rport->lock, flags);
761
762         return 0;
763 }
764
765 static void
766 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl)
767 {
768         dev_info(ctrl->ctrl.device,
769                 "NVME-FC{%d}: controller connectivity lost. Awaiting "
770                 "Reconnect", ctrl->cnum);
771
772         switch (ctrl->ctrl.state) {
773         case NVME_CTRL_NEW:
774         case NVME_CTRL_LIVE:
775                 /*
776                  * Schedule a controller reset. The reset will terminate the
777                  * association and schedule the reconnect timer.  Reconnects
778                  * will be attempted until either the ctlr_loss_tmo
779                  * (max_retries * connect_delay) expires or the remoteport's
780                  * dev_loss_tmo expires.
781                  */
782                 if (nvme_reset_ctrl(&ctrl->ctrl)) {
783                         dev_warn(ctrl->ctrl.device,
784                                 "NVME-FC{%d}: Couldn't schedule reset.\n",
785                                 ctrl->cnum);
786                         nvme_delete_ctrl(&ctrl->ctrl);
787                 }
788                 break;
789
790         case NVME_CTRL_CONNECTING:
791                 /*
792                  * The association has already been terminated and the
793                  * controller is attempting reconnects.  No need to do anything
794                  * futher.  Reconnects will be attempted until either the
795                  * ctlr_loss_tmo (max_retries * connect_delay) expires or the
796                  * remoteport's dev_loss_tmo expires.
797                  */
798                 break;
799
800         case NVME_CTRL_RESETTING:
801                 /*
802                  * Controller is already in the process of terminating the
803                  * association.  No need to do anything further. The reconnect
804                  * step will kick in naturally after the association is
805                  * terminated.
806                  */
807                 break;
808
809         case NVME_CTRL_DELETING:
810         default:
811                 /* no action to take - let it delete */
812                 break;
813         }
814 }
815
816 /**
817  * nvme_fc_unregister_remoteport - transport entry point called by an
818  *                              LLDD to deregister/remove a previously
819  *                              registered a NVME subsystem FC port.
820  * @portptr: pointer to the (registered) remote port that is to be
821  *           deregistered.
822  *
823  * Returns:
824  * a completion status. Must be 0 upon success; a negative errno
825  * (ex: -ENXIO) upon failure.
826  */
827 int
828 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
829 {
830         struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
831         struct nvme_fc_ctrl *ctrl;
832         unsigned long flags;
833
834         if (!portptr)
835                 return -EINVAL;
836
837         spin_lock_irqsave(&rport->lock, flags);
838
839         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
840                 spin_unlock_irqrestore(&rport->lock, flags);
841                 return -EINVAL;
842         }
843         portptr->port_state = FC_OBJSTATE_DELETED;
844
845         rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ);
846
847         list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
848                 /* if dev_loss_tmo==0, dev loss is immediate */
849                 if (!portptr->dev_loss_tmo) {
850                         dev_warn(ctrl->ctrl.device,
851                                 "NVME-FC{%d}: controller connectivity lost.\n",
852                                 ctrl->cnum);
853                         nvme_delete_ctrl(&ctrl->ctrl);
854                 } else
855                         nvme_fc_ctrl_connectivity_loss(ctrl);
856         }
857
858         spin_unlock_irqrestore(&rport->lock, flags);
859
860         nvme_fc_abort_lsops(rport);
861
862         if (atomic_read(&rport->act_ctrl_cnt) == 0)
863                 rport->lport->ops->remoteport_delete(portptr);
864
865         /*
866          * release the reference, which will allow, if all controllers
867          * go away, which should only occur after dev_loss_tmo occurs,
868          * for the rport to be torn down.
869          */
870         nvme_fc_rport_put(rport);
871
872         return 0;
873 }
874 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
875
876 /**
877  * nvme_fc_rescan_remoteport - transport entry point called by an
878  *                              LLDD to request a nvme device rescan.
879  * @remoteport: pointer to the (registered) remote port that is to be
880  *              rescanned.
881  *
882  * Returns: N/A
883  */
884 void
885 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport)
886 {
887         struct nvme_fc_rport *rport = remoteport_to_rport(remoteport);
888
889         nvme_fc_signal_discovery_scan(rport->lport, rport);
890 }
891 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport);
892
893 int
894 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr,
895                         u32 dev_loss_tmo)
896 {
897         struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
898         unsigned long flags;
899
900         spin_lock_irqsave(&rport->lock, flags);
901
902         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
903                 spin_unlock_irqrestore(&rport->lock, flags);
904                 return -EINVAL;
905         }
906
907         /* a dev_loss_tmo of 0 (immediate) is allowed to be set */
908         rport->remoteport.dev_loss_tmo = dev_loss_tmo;
909
910         spin_unlock_irqrestore(&rport->lock, flags);
911
912         return 0;
913 }
914 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss);
915
916
917 /* *********************** FC-NVME DMA Handling **************************** */
918
919 /*
920  * The fcloop device passes in a NULL device pointer. Real LLD's will
921  * pass in a valid device pointer. If NULL is passed to the dma mapping
922  * routines, depending on the platform, it may or may not succeed, and
923  * may crash.
924  *
925  * As such:
926  * Wrapper all the dma routines and check the dev pointer.
927  *
928  * If simple mappings (return just a dma address, we'll noop them,
929  * returning a dma address of 0.
930  *
931  * On more complex mappings (dma_map_sg), a pseudo routine fills
932  * in the scatter list, setting all dma addresses to 0.
933  */
934
935 static inline dma_addr_t
936 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
937                 enum dma_data_direction dir)
938 {
939         return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
940 }
941
942 static inline int
943 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
944 {
945         return dev ? dma_mapping_error(dev, dma_addr) : 0;
946 }
947
948 static inline void
949 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
950         enum dma_data_direction dir)
951 {
952         if (dev)
953                 dma_unmap_single(dev, addr, size, dir);
954 }
955
956 static inline void
957 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
958                 enum dma_data_direction dir)
959 {
960         if (dev)
961                 dma_sync_single_for_cpu(dev, addr, size, dir);
962 }
963
964 static inline void
965 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
966                 enum dma_data_direction dir)
967 {
968         if (dev)
969                 dma_sync_single_for_device(dev, addr, size, dir);
970 }
971
972 /* pseudo dma_map_sg call */
973 static int
974 fc_map_sg(struct scatterlist *sg, int nents)
975 {
976         struct scatterlist *s;
977         int i;
978
979         WARN_ON(nents == 0 || sg[0].length == 0);
980
981         for_each_sg(sg, s, nents, i) {
982                 s->dma_address = 0L;
983 #ifdef CONFIG_NEED_SG_DMA_LENGTH
984                 s->dma_length = s->length;
985 #endif
986         }
987         return nents;
988 }
989
990 static inline int
991 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
992                 enum dma_data_direction dir)
993 {
994         return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
995 }
996
997 static inline void
998 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
999                 enum dma_data_direction dir)
1000 {
1001         if (dev)
1002                 dma_unmap_sg(dev, sg, nents, dir);
1003 }
1004
1005 /* *********************** FC-NVME LS Handling **************************** */
1006
1007 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
1008 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
1009
1010
1011 static void
1012 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
1013 {
1014         struct nvme_fc_rport *rport = lsop->rport;
1015         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1016         unsigned long flags;
1017
1018         spin_lock_irqsave(&rport->lock, flags);
1019
1020         if (!lsop->req_queued) {
1021                 spin_unlock_irqrestore(&rport->lock, flags);
1022                 return;
1023         }
1024
1025         list_del(&lsop->lsreq_list);
1026
1027         lsop->req_queued = false;
1028
1029         spin_unlock_irqrestore(&rport->lock, flags);
1030
1031         fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1032                                   (lsreq->rqstlen + lsreq->rsplen),
1033                                   DMA_BIDIRECTIONAL);
1034
1035         nvme_fc_rport_put(rport);
1036 }
1037
1038 static int
1039 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
1040                 struct nvmefc_ls_req_op *lsop,
1041                 void (*done)(struct nvmefc_ls_req *req, int status))
1042 {
1043         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1044         unsigned long flags;
1045         int ret = 0;
1046
1047         if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1048                 return -ECONNREFUSED;
1049
1050         if (!nvme_fc_rport_get(rport))
1051                 return -ESHUTDOWN;
1052
1053         lsreq->done = done;
1054         lsop->rport = rport;
1055         lsop->req_queued = false;
1056         INIT_LIST_HEAD(&lsop->lsreq_list);
1057         init_completion(&lsop->ls_done);
1058
1059         lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
1060                                   lsreq->rqstlen + lsreq->rsplen,
1061                                   DMA_BIDIRECTIONAL);
1062         if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
1063                 ret = -EFAULT;
1064                 goto out_putrport;
1065         }
1066         lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
1067
1068         spin_lock_irqsave(&rport->lock, flags);
1069
1070         list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
1071
1072         lsop->req_queued = true;
1073
1074         spin_unlock_irqrestore(&rport->lock, flags);
1075
1076         ret = rport->lport->ops->ls_req(&rport->lport->localport,
1077                                         &rport->remoteport, lsreq);
1078         if (ret)
1079                 goto out_unlink;
1080
1081         return 0;
1082
1083 out_unlink:
1084         lsop->ls_error = ret;
1085         spin_lock_irqsave(&rport->lock, flags);
1086         lsop->req_queued = false;
1087         list_del(&lsop->lsreq_list);
1088         spin_unlock_irqrestore(&rport->lock, flags);
1089         fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1090                                   (lsreq->rqstlen + lsreq->rsplen),
1091                                   DMA_BIDIRECTIONAL);
1092 out_putrport:
1093         nvme_fc_rport_put(rport);
1094
1095         return ret;
1096 }
1097
1098 static void
1099 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
1100 {
1101         struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1102
1103         lsop->ls_error = status;
1104         complete(&lsop->ls_done);
1105 }
1106
1107 static int
1108 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
1109 {
1110         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1111         struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
1112         int ret;
1113
1114         ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
1115
1116         if (!ret) {
1117                 /*
1118                  * No timeout/not interruptible as we need the struct
1119                  * to exist until the lldd calls us back. Thus mandate
1120                  * wait until driver calls back. lldd responsible for
1121                  * the timeout action
1122                  */
1123                 wait_for_completion(&lsop->ls_done);
1124
1125                 __nvme_fc_finish_ls_req(lsop);
1126
1127                 ret = lsop->ls_error;
1128         }
1129
1130         if (ret)
1131                 return ret;
1132
1133         /* ACC or RJT payload ? */
1134         if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
1135                 return -ENXIO;
1136
1137         return 0;
1138 }
1139
1140 static int
1141 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
1142                 struct nvmefc_ls_req_op *lsop,
1143                 void (*done)(struct nvmefc_ls_req *req, int status))
1144 {
1145         /* don't wait for completion */
1146
1147         return __nvme_fc_send_ls_req(rport, lsop, done);
1148 }
1149
1150 /* Validation Error indexes into the string table below */
1151 enum {
1152         VERR_NO_ERROR           = 0,
1153         VERR_LSACC              = 1,
1154         VERR_LSDESC_RQST        = 2,
1155         VERR_LSDESC_RQST_LEN    = 3,
1156         VERR_ASSOC_ID           = 4,
1157         VERR_ASSOC_ID_LEN       = 5,
1158         VERR_CONN_ID            = 6,
1159         VERR_CONN_ID_LEN        = 7,
1160         VERR_CR_ASSOC           = 8,
1161         VERR_CR_ASSOC_ACC_LEN   = 9,
1162         VERR_CR_CONN            = 10,
1163         VERR_CR_CONN_ACC_LEN    = 11,
1164         VERR_DISCONN            = 12,
1165         VERR_DISCONN_ACC_LEN    = 13,
1166 };
1167
1168 static char *validation_errors[] = {
1169         "OK",
1170         "Not LS_ACC",
1171         "Not LSDESC_RQST",
1172         "Bad LSDESC_RQST Length",
1173         "Not Association ID",
1174         "Bad Association ID Length",
1175         "Not Connection ID",
1176         "Bad Connection ID Length",
1177         "Not CR_ASSOC Rqst",
1178         "Bad CR_ASSOC ACC Length",
1179         "Not CR_CONN Rqst",
1180         "Bad CR_CONN ACC Length",
1181         "Not Disconnect Rqst",
1182         "Bad Disconnect ACC Length",
1183 };
1184
1185 static int
1186 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
1187         struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
1188 {
1189         struct nvmefc_ls_req_op *lsop;
1190         struct nvmefc_ls_req *lsreq;
1191         struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
1192         struct fcnvme_ls_cr_assoc_acc *assoc_acc;
1193         int ret, fcret = 0;
1194
1195         lsop = kzalloc((sizeof(*lsop) +
1196                          ctrl->lport->ops->lsrqst_priv_sz +
1197                          sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
1198         if (!lsop) {
1199                 ret = -ENOMEM;
1200                 goto out_no_memory;
1201         }
1202         lsreq = &lsop->ls_req;
1203
1204         lsreq->private = (void *)&lsop[1];
1205         assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
1206                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1207         assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
1208
1209         assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
1210         assoc_rqst->desc_list_len =
1211                         cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1212
1213         assoc_rqst->assoc_cmd.desc_tag =
1214                         cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
1215         assoc_rqst->assoc_cmd.desc_len =
1216                         fcnvme_lsdesc_len(
1217                                 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1218
1219         assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1220         assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize - 1);
1221         /* Linux supports only Dynamic controllers */
1222         assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
1223         uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
1224         strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
1225                 min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
1226         strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
1227                 min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
1228
1229         lsop->queue = queue;
1230         lsreq->rqstaddr = assoc_rqst;
1231         lsreq->rqstlen = sizeof(*assoc_rqst);
1232         lsreq->rspaddr = assoc_acc;
1233         lsreq->rsplen = sizeof(*assoc_acc);
1234         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1235
1236         ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1237         if (ret)
1238                 goto out_free_buffer;
1239
1240         /* process connect LS completion */
1241
1242         /* validate the ACC response */
1243         if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1244                 fcret = VERR_LSACC;
1245         else if (assoc_acc->hdr.desc_list_len !=
1246                         fcnvme_lsdesc_len(
1247                                 sizeof(struct fcnvme_ls_cr_assoc_acc)))
1248                 fcret = VERR_CR_ASSOC_ACC_LEN;
1249         else if (assoc_acc->hdr.rqst.desc_tag !=
1250                         cpu_to_be32(FCNVME_LSDESC_RQST))
1251                 fcret = VERR_LSDESC_RQST;
1252         else if (assoc_acc->hdr.rqst.desc_len !=
1253                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1254                 fcret = VERR_LSDESC_RQST_LEN;
1255         else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
1256                 fcret = VERR_CR_ASSOC;
1257         else if (assoc_acc->associd.desc_tag !=
1258                         cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1259                 fcret = VERR_ASSOC_ID;
1260         else if (assoc_acc->associd.desc_len !=
1261                         fcnvme_lsdesc_len(
1262                                 sizeof(struct fcnvme_lsdesc_assoc_id)))
1263                 fcret = VERR_ASSOC_ID_LEN;
1264         else if (assoc_acc->connectid.desc_tag !=
1265                         cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1266                 fcret = VERR_CONN_ID;
1267         else if (assoc_acc->connectid.desc_len !=
1268                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1269                 fcret = VERR_CONN_ID_LEN;
1270
1271         if (fcret) {
1272                 ret = -EBADF;
1273                 dev_err(ctrl->dev,
1274                         "q %d connect failed: %s\n",
1275                         queue->qnum, validation_errors[fcret]);
1276         } else {
1277                 ctrl->association_id =
1278                         be64_to_cpu(assoc_acc->associd.association_id);
1279                 queue->connection_id =
1280                         be64_to_cpu(assoc_acc->connectid.connection_id);
1281                 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1282         }
1283
1284 out_free_buffer:
1285         kfree(lsop);
1286 out_no_memory:
1287         if (ret)
1288                 dev_err(ctrl->dev,
1289                         "queue %d connect admin queue failed (%d).\n",
1290                         queue->qnum, ret);
1291         return ret;
1292 }
1293
1294 static int
1295 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1296                         u16 qsize, u16 ersp_ratio)
1297 {
1298         struct nvmefc_ls_req_op *lsop;
1299         struct nvmefc_ls_req *lsreq;
1300         struct fcnvme_ls_cr_conn_rqst *conn_rqst;
1301         struct fcnvme_ls_cr_conn_acc *conn_acc;
1302         int ret, fcret = 0;
1303
1304         lsop = kzalloc((sizeof(*lsop) +
1305                          ctrl->lport->ops->lsrqst_priv_sz +
1306                          sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
1307         if (!lsop) {
1308                 ret = -ENOMEM;
1309                 goto out_no_memory;
1310         }
1311         lsreq = &lsop->ls_req;
1312
1313         lsreq->private = (void *)&lsop[1];
1314         conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
1315                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1316         conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
1317
1318         conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
1319         conn_rqst->desc_list_len = cpu_to_be32(
1320                                 sizeof(struct fcnvme_lsdesc_assoc_id) +
1321                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1322
1323         conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1324         conn_rqst->associd.desc_len =
1325                         fcnvme_lsdesc_len(
1326                                 sizeof(struct fcnvme_lsdesc_assoc_id));
1327         conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1328         conn_rqst->connect_cmd.desc_tag =
1329                         cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
1330         conn_rqst->connect_cmd.desc_len =
1331                         fcnvme_lsdesc_len(
1332                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1333         conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1334         conn_rqst->connect_cmd.qid  = cpu_to_be16(queue->qnum);
1335         conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize - 1);
1336
1337         lsop->queue = queue;
1338         lsreq->rqstaddr = conn_rqst;
1339         lsreq->rqstlen = sizeof(*conn_rqst);
1340         lsreq->rspaddr = conn_acc;
1341         lsreq->rsplen = sizeof(*conn_acc);
1342         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1343
1344         ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1345         if (ret)
1346                 goto out_free_buffer;
1347
1348         /* process connect LS completion */
1349
1350         /* validate the ACC response */
1351         if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1352                 fcret = VERR_LSACC;
1353         else if (conn_acc->hdr.desc_list_len !=
1354                         fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1355                 fcret = VERR_CR_CONN_ACC_LEN;
1356         else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1357                 fcret = VERR_LSDESC_RQST;
1358         else if (conn_acc->hdr.rqst.desc_len !=
1359                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1360                 fcret = VERR_LSDESC_RQST_LEN;
1361         else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1362                 fcret = VERR_CR_CONN;
1363         else if (conn_acc->connectid.desc_tag !=
1364                         cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1365                 fcret = VERR_CONN_ID;
1366         else if (conn_acc->connectid.desc_len !=
1367                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1368                 fcret = VERR_CONN_ID_LEN;
1369
1370         if (fcret) {
1371                 ret = -EBADF;
1372                 dev_err(ctrl->dev,
1373                         "q %d connect failed: %s\n",
1374                         queue->qnum, validation_errors[fcret]);
1375         } else {
1376                 queue->connection_id =
1377                         be64_to_cpu(conn_acc->connectid.connection_id);
1378                 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1379         }
1380
1381 out_free_buffer:
1382         kfree(lsop);
1383 out_no_memory:
1384         if (ret)
1385                 dev_err(ctrl->dev,
1386                         "queue %d connect command failed (%d).\n",
1387                         queue->qnum, ret);
1388         return ret;
1389 }
1390
1391 static void
1392 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1393 {
1394         struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1395
1396         __nvme_fc_finish_ls_req(lsop);
1397
1398         /* fc-nvme initiator doesn't care about success or failure of cmd */
1399
1400         kfree(lsop);
1401 }
1402
1403 /*
1404  * This routine sends a FC-NVME LS to disconnect (aka terminate)
1405  * the FC-NVME Association.  Terminating the association also
1406  * terminates the FC-NVME connections (per queue, both admin and io
1407  * queues) that are part of the association. E.g. things are torn
1408  * down, and the related FC-NVME Association ID and Connection IDs
1409  * become invalid.
1410  *
1411  * The behavior of the fc-nvme initiator is such that it's
1412  * understanding of the association and connections will implicitly
1413  * be torn down. The action is implicit as it may be due to a loss of
1414  * connectivity with the fc-nvme target, so you may never get a
1415  * response even if you tried.  As such, the action of this routine
1416  * is to asynchronously send the LS, ignore any results of the LS, and
1417  * continue on with terminating the association. If the fc-nvme target
1418  * is present and receives the LS, it too can tear down.
1419  */
1420 static void
1421 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1422 {
1423         struct fcnvme_ls_disconnect_rqst *discon_rqst;
1424         struct fcnvme_ls_disconnect_acc *discon_acc;
1425         struct nvmefc_ls_req_op *lsop;
1426         struct nvmefc_ls_req *lsreq;
1427         int ret;
1428
1429         lsop = kzalloc((sizeof(*lsop) +
1430                          ctrl->lport->ops->lsrqst_priv_sz +
1431                          sizeof(*discon_rqst) + sizeof(*discon_acc)),
1432                         GFP_KERNEL);
1433         if (!lsop)
1434                 /* couldn't sent it... too bad */
1435                 return;
1436
1437         lsreq = &lsop->ls_req;
1438
1439         lsreq->private = (void *)&lsop[1];
1440         discon_rqst = (struct fcnvme_ls_disconnect_rqst *)
1441                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1442         discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1];
1443
1444         discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT;
1445         discon_rqst->desc_list_len = cpu_to_be32(
1446                                 sizeof(struct fcnvme_lsdesc_assoc_id) +
1447                                 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1448
1449         discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1450         discon_rqst->associd.desc_len =
1451                         fcnvme_lsdesc_len(
1452                                 sizeof(struct fcnvme_lsdesc_assoc_id));
1453
1454         discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1455
1456         discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
1457                                                 FCNVME_LSDESC_DISCONN_CMD);
1458         discon_rqst->discon_cmd.desc_len =
1459                         fcnvme_lsdesc_len(
1460                                 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1461         discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION;
1462         discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id);
1463
1464         lsreq->rqstaddr = discon_rqst;
1465         lsreq->rqstlen = sizeof(*discon_rqst);
1466         lsreq->rspaddr = discon_acc;
1467         lsreq->rsplen = sizeof(*discon_acc);
1468         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1469
1470         ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1471                                 nvme_fc_disconnect_assoc_done);
1472         if (ret)
1473                 kfree(lsop);
1474
1475         /* only meaningful part to terminating the association */
1476         ctrl->association_id = 0;
1477 }
1478
1479
1480 /* *********************** NVME Ctrl Routines **************************** */
1481
1482 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
1483
1484 static void
1485 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1486                 struct nvme_fc_fcp_op *op)
1487 {
1488         fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1489                                 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1490         fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1491                                 sizeof(op->cmd_iu), DMA_TO_DEVICE);
1492
1493         atomic_set(&op->state, FCPOP_STATE_UNINIT);
1494 }
1495
1496 static void
1497 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1498                 unsigned int hctx_idx)
1499 {
1500         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1501
1502         return __nvme_fc_exit_request(set->driver_data, op);
1503 }
1504
1505 static int
1506 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1507 {
1508         unsigned long flags;
1509         int opstate;
1510
1511         spin_lock_irqsave(&ctrl->lock, flags);
1512         opstate = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1513         if (opstate != FCPOP_STATE_ACTIVE)
1514                 atomic_set(&op->state, opstate);
1515         else if (ctrl->flags & FCCTRL_TERMIO)
1516                 ctrl->iocnt++;
1517         spin_unlock_irqrestore(&ctrl->lock, flags);
1518
1519         if (opstate != FCPOP_STATE_ACTIVE)
1520                 return -ECANCELED;
1521
1522         ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1523                                         &ctrl->rport->remoteport,
1524                                         op->queue->lldd_handle,
1525                                         &op->fcp_req);
1526
1527         return 0;
1528 }
1529
1530 static void
1531 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1532 {
1533         struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1534         int i;
1535
1536         /* ensure we've initialized the ops once */
1537         if (!(aen_op->flags & FCOP_FLAGS_AEN))
1538                 return;
1539
1540         for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++)
1541                 __nvme_fc_abort_op(ctrl, aen_op);
1542 }
1543
1544 static inline void
1545 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1546                 struct nvme_fc_fcp_op *op, int opstate)
1547 {
1548         unsigned long flags;
1549
1550         if (opstate == FCPOP_STATE_ABORTED) {
1551                 spin_lock_irqsave(&ctrl->lock, flags);
1552                 if (ctrl->flags & FCCTRL_TERMIO) {
1553                         if (!--ctrl->iocnt)
1554                                 wake_up(&ctrl->ioabort_wait);
1555                 }
1556                 spin_unlock_irqrestore(&ctrl->lock, flags);
1557         }
1558 }
1559
1560 static void
1561 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1562 {
1563         struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1564         struct request *rq = op->rq;
1565         struct nvmefc_fcp_req *freq = &op->fcp_req;
1566         struct nvme_fc_ctrl *ctrl = op->ctrl;
1567         struct nvme_fc_queue *queue = op->queue;
1568         struct nvme_completion *cqe = &op->rsp_iu.cqe;
1569         struct nvme_command *sqe = &op->cmd_iu.sqe;
1570         __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1571         union nvme_result result;
1572         bool terminate_assoc = true;
1573         int opstate;
1574
1575         /*
1576          * WARNING:
1577          * The current linux implementation of a nvme controller
1578          * allocates a single tag set for all io queues and sizes
1579          * the io queues to fully hold all possible tags. Thus, the
1580          * implementation does not reference or care about the sqhd
1581          * value as it never needs to use the sqhd/sqtail pointers
1582          * for submission pacing.
1583          *
1584          * This affects the FC-NVME implementation in two ways:
1585          * 1) As the value doesn't matter, we don't need to waste
1586          *    cycles extracting it from ERSPs and stamping it in the
1587          *    cases where the transport fabricates CQEs on successful
1588          *    completions.
1589          * 2) The FC-NVME implementation requires that delivery of
1590          *    ERSP completions are to go back to the nvme layer in order
1591          *    relative to the rsn, such that the sqhd value will always
1592          *    be "in order" for the nvme layer. As the nvme layer in
1593          *    linux doesn't care about sqhd, there's no need to return
1594          *    them in order.
1595          *
1596          * Additionally:
1597          * As the core nvme layer in linux currently does not look at
1598          * every field in the cqe - in cases where the FC transport must
1599          * fabricate a CQE, the following fields will not be set as they
1600          * are not referenced:
1601          *      cqe.sqid,  cqe.sqhd,  cqe.command_id
1602          *
1603          * Failure or error of an individual i/o, in a transport
1604          * detected fashion unrelated to the nvme completion status,
1605          * potentially cause the initiator and target sides to get out
1606          * of sync on SQ head/tail (aka outstanding io count allowed).
1607          * Per FC-NVME spec, failure of an individual command requires
1608          * the connection to be terminated, which in turn requires the
1609          * association to be terminated.
1610          */
1611
1612         opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
1613
1614         fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1615                                 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1616
1617         if (opstate == FCPOP_STATE_ABORTED)
1618                 status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1619         else if (freq->status)
1620                 status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1621
1622         /*
1623          * For the linux implementation, if we have an unsuccesful
1624          * status, they blk-mq layer can typically be called with the
1625          * non-zero status and the content of the cqe isn't important.
1626          */
1627         if (status)
1628                 goto done;
1629
1630         /*
1631          * command completed successfully relative to the wire
1632          * protocol. However, validate anything received and
1633          * extract the status and result from the cqe (create it
1634          * where necessary).
1635          */
1636
1637         switch (freq->rcv_rsplen) {
1638
1639         case 0:
1640         case NVME_FC_SIZEOF_ZEROS_RSP:
1641                 /*
1642                  * No response payload or 12 bytes of payload (which
1643                  * should all be zeros) are considered successful and
1644                  * no payload in the CQE by the transport.
1645                  */
1646                 if (freq->transferred_length !=
1647                         be32_to_cpu(op->cmd_iu.data_len)) {
1648                         status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1649                         goto done;
1650                 }
1651                 result.u64 = 0;
1652                 break;
1653
1654         case sizeof(struct nvme_fc_ersp_iu):
1655                 /*
1656                  * The ERSP IU contains a full completion with CQE.
1657                  * Validate ERSP IU and look at cqe.
1658                  */
1659                 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1660                                         (freq->rcv_rsplen / 4) ||
1661                              be32_to_cpu(op->rsp_iu.xfrd_len) !=
1662                                         freq->transferred_length ||
1663                              op->rsp_iu.status_code ||
1664                              sqe->common.command_id != cqe->command_id)) {
1665                         status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1666                         goto done;
1667                 }
1668                 result = cqe->result;
1669                 status = cqe->status;
1670                 break;
1671
1672         default:
1673                 status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1674                 goto done;
1675         }
1676
1677         terminate_assoc = false;
1678
1679 done:
1680         if (op->flags & FCOP_FLAGS_AEN) {
1681                 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
1682                 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
1683                 atomic_set(&op->state, FCPOP_STATE_IDLE);
1684                 op->flags = FCOP_FLAGS_AEN;     /* clear other flags */
1685                 nvme_fc_ctrl_put(ctrl);
1686                 goto check_error;
1687         }
1688
1689         __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
1690         nvme_end_request(rq, status, result);
1691
1692 check_error:
1693         if (terminate_assoc)
1694                 nvme_fc_error_recovery(ctrl, "transport detected io error");
1695 }
1696
1697 static int
1698 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
1699                 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
1700                 struct request *rq, u32 rqno)
1701 {
1702         struct nvme_fcp_op_w_sgl *op_w_sgl =
1703                 container_of(op, typeof(*op_w_sgl), op);
1704         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1705         int ret = 0;
1706
1707         memset(op, 0, sizeof(*op));
1708         op->fcp_req.cmdaddr = &op->cmd_iu;
1709         op->fcp_req.cmdlen = sizeof(op->cmd_iu);
1710         op->fcp_req.rspaddr = &op->rsp_iu;
1711         op->fcp_req.rsplen = sizeof(op->rsp_iu);
1712         op->fcp_req.done = nvme_fc_fcpio_done;
1713         op->ctrl = ctrl;
1714         op->queue = queue;
1715         op->rq = rq;
1716         op->rqno = rqno;
1717
1718         cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1719         cmdiu->fc_id = NVME_CMD_FC_ID;
1720         cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1721
1722         op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
1723                                 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
1724         if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
1725                 dev_err(ctrl->dev,
1726                         "FCP Op failed - cmdiu dma mapping failed.\n");
1727                 ret = EFAULT;
1728                 goto out_on_error;
1729         }
1730
1731         op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
1732                                 &op->rsp_iu, sizeof(op->rsp_iu),
1733                                 DMA_FROM_DEVICE);
1734         if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
1735                 dev_err(ctrl->dev,
1736                         "FCP Op failed - rspiu dma mapping failed.\n");
1737                 ret = EFAULT;
1738         }
1739
1740         atomic_set(&op->state, FCPOP_STATE_IDLE);
1741 out_on_error:
1742         return ret;
1743 }
1744
1745 static int
1746 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
1747                 unsigned int hctx_idx, unsigned int numa_node)
1748 {
1749         struct nvme_fc_ctrl *ctrl = set->driver_data;
1750         struct nvme_fcp_op_w_sgl *op = blk_mq_rq_to_pdu(rq);
1751         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
1752         struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
1753         int res;
1754
1755         res = __nvme_fc_init_request(ctrl, queue, &op->op, rq, queue->rqcnt++);
1756         if (res)
1757                 return res;
1758         op->op.fcp_req.first_sgl = &op->sgl[0];
1759         op->op.fcp_req.private = &op->priv[0];
1760         nvme_req(rq)->ctrl = &ctrl->ctrl;
1761         return res;
1762 }
1763
1764 static int
1765 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
1766 {
1767         struct nvme_fc_fcp_op *aen_op;
1768         struct nvme_fc_cmd_iu *cmdiu;
1769         struct nvme_command *sqe;
1770         void *private;
1771         int i, ret;
1772
1773         aen_op = ctrl->aen_ops;
1774         for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1775                 private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
1776                                                 GFP_KERNEL);
1777                 if (!private)
1778                         return -ENOMEM;
1779
1780                 cmdiu = &aen_op->cmd_iu;
1781                 sqe = &cmdiu->sqe;
1782                 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
1783                                 aen_op, (struct request *)NULL,
1784                                 (NVME_AQ_BLK_MQ_DEPTH + i));
1785                 if (ret) {
1786                         kfree(private);
1787                         return ret;
1788                 }
1789
1790                 aen_op->flags = FCOP_FLAGS_AEN;
1791                 aen_op->fcp_req.private = private;
1792
1793                 memset(sqe, 0, sizeof(*sqe));
1794                 sqe->common.opcode = nvme_admin_async_event;
1795                 /* Note: core layer may overwrite the sqe.command_id value */
1796                 sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i;
1797         }
1798         return 0;
1799 }
1800
1801 static void
1802 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
1803 {
1804         struct nvme_fc_fcp_op *aen_op;
1805         int i;
1806
1807         aen_op = ctrl->aen_ops;
1808         for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1809                 if (!aen_op->fcp_req.private)
1810                         continue;
1811
1812                 __nvme_fc_exit_request(ctrl, aen_op);
1813
1814                 kfree(aen_op->fcp_req.private);
1815                 aen_op->fcp_req.private = NULL;
1816         }
1817 }
1818
1819 static inline void
1820 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
1821                 unsigned int qidx)
1822 {
1823         struct nvme_fc_queue *queue = &ctrl->queues[qidx];
1824
1825         hctx->driver_data = queue;
1826         queue->hctx = hctx;
1827 }
1828
1829 static int
1830 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1831                 unsigned int hctx_idx)
1832 {
1833         struct nvme_fc_ctrl *ctrl = data;
1834
1835         __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
1836
1837         return 0;
1838 }
1839
1840 static int
1841 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1842                 unsigned int hctx_idx)
1843 {
1844         struct nvme_fc_ctrl *ctrl = data;
1845
1846         __nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
1847
1848         return 0;
1849 }
1850
1851 static void
1852 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx)
1853 {
1854         struct nvme_fc_queue *queue;
1855
1856         queue = &ctrl->queues[idx];
1857         memset(queue, 0, sizeof(*queue));
1858         queue->ctrl = ctrl;
1859         queue->qnum = idx;
1860         atomic_set(&queue->csn, 1);
1861         queue->dev = ctrl->dev;
1862
1863         if (idx > 0)
1864                 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1865         else
1866                 queue->cmnd_capsule_len = sizeof(struct nvme_command);
1867
1868         /*
1869          * Considered whether we should allocate buffers for all SQEs
1870          * and CQEs and dma map them - mapping their respective entries
1871          * into the request structures (kernel vm addr and dma address)
1872          * thus the driver could use the buffers/mappings directly.
1873          * It only makes sense if the LLDD would use them for its
1874          * messaging api. It's very unlikely most adapter api's would use
1875          * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1876          * structures were used instead.
1877          */
1878 }
1879
1880 /*
1881  * This routine terminates a queue at the transport level.
1882  * The transport has already ensured that all outstanding ios on
1883  * the queue have been terminated.
1884  * The transport will send a Disconnect LS request to terminate
1885  * the queue's connection. Termination of the admin queue will also
1886  * terminate the association at the target.
1887  */
1888 static void
1889 nvme_fc_free_queue(struct nvme_fc_queue *queue)
1890 {
1891         if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
1892                 return;
1893
1894         clear_bit(NVME_FC_Q_LIVE, &queue->flags);
1895         /*
1896          * Current implementation never disconnects a single queue.
1897          * It always terminates a whole association. So there is never
1898          * a disconnect(queue) LS sent to the target.
1899          */
1900
1901         queue->connection_id = 0;
1902         atomic_set(&queue->csn, 1);
1903 }
1904
1905 static void
1906 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
1907         struct nvme_fc_queue *queue, unsigned int qidx)
1908 {
1909         if (ctrl->lport->ops->delete_queue)
1910                 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
1911                                 queue->lldd_handle);
1912         queue->lldd_handle = NULL;
1913 }
1914
1915 static void
1916 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
1917 {
1918         int i;
1919
1920         for (i = 1; i < ctrl->ctrl.queue_count; i++)
1921                 nvme_fc_free_queue(&ctrl->queues[i]);
1922 }
1923
1924 static int
1925 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
1926         struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
1927 {
1928         int ret = 0;
1929
1930         queue->lldd_handle = NULL;
1931         if (ctrl->lport->ops->create_queue)
1932                 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
1933                                 qidx, qsize, &queue->lldd_handle);
1934
1935         return ret;
1936 }
1937
1938 static void
1939 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
1940 {
1941         struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
1942         int i;
1943
1944         for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
1945                 __nvme_fc_delete_hw_queue(ctrl, queue, i);
1946 }
1947
1948 static int
1949 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1950 {
1951         struct nvme_fc_queue *queue = &ctrl->queues[1];
1952         int i, ret;
1953
1954         for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
1955                 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
1956                 if (ret)
1957                         goto delete_queues;
1958         }
1959
1960         return 0;
1961
1962 delete_queues:
1963         for (; i >= 0; i--)
1964                 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
1965         return ret;
1966 }
1967
1968 static int
1969 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1970 {
1971         int i, ret = 0;
1972
1973         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
1974                 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
1975                                         (qsize / 5));
1976                 if (ret)
1977                         break;
1978                 ret = nvmf_connect_io_queue(&ctrl->ctrl, i, false);
1979                 if (ret)
1980                         break;
1981
1982                 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags);
1983         }
1984
1985         return ret;
1986 }
1987
1988 static void
1989 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
1990 {
1991         int i;
1992
1993         for (i = 1; i < ctrl->ctrl.queue_count; i++)
1994                 nvme_fc_init_queue(ctrl, i);
1995 }
1996
1997 static void
1998 nvme_fc_ctrl_free(struct kref *ref)
1999 {
2000         struct nvme_fc_ctrl *ctrl =
2001                 container_of(ref, struct nvme_fc_ctrl, ref);
2002         unsigned long flags;
2003
2004         if (ctrl->ctrl.tagset) {
2005                 blk_cleanup_queue(ctrl->ctrl.connect_q);
2006                 blk_mq_free_tag_set(&ctrl->tag_set);
2007         }
2008
2009         /* remove from rport list */
2010         spin_lock_irqsave(&ctrl->rport->lock, flags);
2011         list_del(&ctrl->ctrl_list);
2012         spin_unlock_irqrestore(&ctrl->rport->lock, flags);
2013
2014         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2015         blk_cleanup_queue(ctrl->ctrl.admin_q);
2016         blk_mq_free_tag_set(&ctrl->admin_tag_set);
2017
2018         kfree(ctrl->queues);
2019
2020         put_device(ctrl->dev);
2021         nvme_fc_rport_put(ctrl->rport);
2022
2023         ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2024         if (ctrl->ctrl.opts)
2025                 nvmf_free_options(ctrl->ctrl.opts);
2026         kfree(ctrl);
2027 }
2028
2029 static void
2030 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
2031 {
2032         kref_put(&ctrl->ref, nvme_fc_ctrl_free);
2033 }
2034
2035 static int
2036 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
2037 {
2038         return kref_get_unless_zero(&ctrl->ref);
2039 }
2040
2041 /*
2042  * All accesses from nvme core layer done - can now free the
2043  * controller. Called after last nvme_put_ctrl() call
2044  */
2045 static void
2046 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
2047 {
2048         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2049
2050         WARN_ON(nctrl != &ctrl->ctrl);
2051
2052         nvme_fc_ctrl_put(ctrl);
2053 }
2054
2055 static void
2056 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
2057 {
2058         int active;
2059
2060         /*
2061          * if an error (io timeout, etc) while (re)connecting,
2062          * it's an error on creating the new association.
2063          * Start the error recovery thread if it hasn't already
2064          * been started. It is expected there could be multiple
2065          * ios hitting this path before things are cleaned up.
2066          */
2067         if (ctrl->ctrl.state == NVME_CTRL_CONNECTING) {
2068                 active = atomic_xchg(&ctrl->err_work_active, 1);
2069                 if (!active && !schedule_work(&ctrl->err_work)) {
2070                         atomic_set(&ctrl->err_work_active, 0);
2071                         WARN_ON(1);
2072                 }
2073                 return;
2074         }
2075
2076         /* Otherwise, only proceed if in LIVE state - e.g. on first error */
2077         if (ctrl->ctrl.state != NVME_CTRL_LIVE)
2078                 return;
2079
2080         dev_warn(ctrl->ctrl.device,
2081                 "NVME-FC{%d}: transport association error detected: %s\n",
2082                 ctrl->cnum, errmsg);
2083         dev_warn(ctrl->ctrl.device,
2084                 "NVME-FC{%d}: resetting controller\n", ctrl->cnum);
2085
2086         nvme_reset_ctrl(&ctrl->ctrl);
2087 }
2088
2089 static enum blk_eh_timer_return
2090 nvme_fc_timeout(struct request *rq, bool reserved)
2091 {
2092         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2093         struct nvme_fc_ctrl *ctrl = op->ctrl;
2094
2095         /*
2096          * we can't individually ABTS an io without affecting the queue,
2097          * thus killing the queue, and thus the association.
2098          * So resolve by performing a controller reset, which will stop
2099          * the host/io stack, terminate the association on the link,
2100          * and recreate an association on the link.
2101          */
2102         nvme_fc_error_recovery(ctrl, "io timeout error");
2103
2104         /*
2105          * the io abort has been initiated. Have the reset timer
2106          * restarted and the abort completion will complete the io
2107          * shortly. Avoids a synchronous wait while the abort finishes.
2108          */
2109         return BLK_EH_RESET_TIMER;
2110 }
2111
2112 static int
2113 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2114                 struct nvme_fc_fcp_op *op)
2115 {
2116         struct nvmefc_fcp_req *freq = &op->fcp_req;
2117         enum dma_data_direction dir;
2118         int ret;
2119
2120         freq->sg_cnt = 0;
2121
2122         if (!blk_rq_payload_bytes(rq))
2123                 return 0;
2124
2125         freq->sg_table.sgl = freq->first_sgl;
2126         ret = sg_alloc_table_chained(&freq->sg_table,
2127                         blk_rq_nr_phys_segments(rq), freq->sg_table.sgl);
2128         if (ret)
2129                 return -ENOMEM;
2130
2131         op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
2132         WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
2133         dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
2134         freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
2135                                 op->nents, dir);
2136         if (unlikely(freq->sg_cnt <= 0)) {
2137                 sg_free_table_chained(&freq->sg_table, true);
2138                 freq->sg_cnt = 0;
2139                 return -EFAULT;
2140         }
2141
2142         /*
2143          * TODO: blk_integrity_rq(rq)  for DIF
2144          */
2145         return 0;
2146 }
2147
2148 static void
2149 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2150                 struct nvme_fc_fcp_op *op)
2151 {
2152         struct nvmefc_fcp_req *freq = &op->fcp_req;
2153
2154         if (!freq->sg_cnt)
2155                 return;
2156
2157         fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
2158                                 ((rq_data_dir(rq) == WRITE) ?
2159                                         DMA_TO_DEVICE : DMA_FROM_DEVICE));
2160
2161         nvme_cleanup_cmd(rq);
2162
2163         sg_free_table_chained(&freq->sg_table, true);
2164
2165         freq->sg_cnt = 0;
2166 }
2167
2168 /*
2169  * In FC, the queue is a logical thing. At transport connect, the target
2170  * creates its "queue" and returns a handle that is to be given to the
2171  * target whenever it posts something to the corresponding SQ.  When an
2172  * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
2173  * command contained within the SQE, an io, and assigns a FC exchange
2174  * to it. The SQE and the associated SQ handle are sent in the initial
2175  * CMD IU sents on the exchange. All transfers relative to the io occur
2176  * as part of the exchange.  The CQE is the last thing for the io,
2177  * which is transferred (explicitly or implicitly) with the RSP IU
2178  * sent on the exchange. After the CQE is received, the FC exchange is
2179  * terminaed and the Exchange may be used on a different io.
2180  *
2181  * The transport to LLDD api has the transport making a request for a
2182  * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
2183  * resource and transfers the command. The LLDD will then process all
2184  * steps to complete the io. Upon completion, the transport done routine
2185  * is called.
2186  *
2187  * So - while the operation is outstanding to the LLDD, there is a link
2188  * level FC exchange resource that is also outstanding. This must be
2189  * considered in all cleanup operations.
2190  */
2191 static blk_status_t
2192 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
2193         struct nvme_fc_fcp_op *op, u32 data_len,
2194         enum nvmefc_fcp_datadir io_dir)
2195 {
2196         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2197         struct nvme_command *sqe = &cmdiu->sqe;
2198         u32 csn;
2199         int ret, opstate;
2200
2201         /*
2202          * before attempting to send the io, check to see if we believe
2203          * the target device is present
2204          */
2205         if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2206                 return BLK_STS_RESOURCE;
2207
2208         if (!nvme_fc_ctrl_get(ctrl))
2209                 return BLK_STS_IOERR;
2210
2211         /* format the FC-NVME CMD IU and fcp_req */
2212         cmdiu->connection_id = cpu_to_be64(queue->connection_id);
2213         csn = atomic_inc_return(&queue->csn);
2214         cmdiu->csn = cpu_to_be32(csn);
2215         cmdiu->data_len = cpu_to_be32(data_len);
2216         switch (io_dir) {
2217         case NVMEFC_FCP_WRITE:
2218                 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
2219                 break;
2220         case NVMEFC_FCP_READ:
2221                 cmdiu->flags = FCNVME_CMD_FLAGS_READ;
2222                 break;
2223         case NVMEFC_FCP_NODATA:
2224                 cmdiu->flags = 0;
2225                 break;
2226         }
2227         op->fcp_req.payload_length = data_len;
2228         op->fcp_req.io_dir = io_dir;
2229         op->fcp_req.transferred_length = 0;
2230         op->fcp_req.rcv_rsplen = 0;
2231         op->fcp_req.status = NVME_SC_SUCCESS;
2232         op->fcp_req.sqid = cpu_to_le16(queue->qnum);
2233
2234         /*
2235          * validate per fabric rules, set fields mandated by fabric spec
2236          * as well as those by FC-NVME spec.
2237          */
2238         WARN_ON_ONCE(sqe->common.metadata);
2239         sqe->common.flags |= NVME_CMD_SGL_METABUF;
2240
2241         /*
2242          * format SQE DPTR field per FC-NVME rules:
2243          *    type=0x5     Transport SGL Data Block Descriptor
2244          *    subtype=0xA  Transport-specific value
2245          *    address=0
2246          *    length=length of the data series
2247          */
2248         sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2249                                         NVME_SGL_FMT_TRANSPORT_A;
2250         sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
2251         sqe->rw.dptr.sgl.addr = 0;
2252
2253         if (!(op->flags & FCOP_FLAGS_AEN)) {
2254                 ret = nvme_fc_map_data(ctrl, op->rq, op);
2255                 if (ret < 0) {
2256                         nvme_cleanup_cmd(op->rq);
2257                         nvme_fc_ctrl_put(ctrl);
2258                         if (ret == -ENOMEM || ret == -EAGAIN)
2259                                 return BLK_STS_RESOURCE;
2260                         return BLK_STS_IOERR;
2261                 }
2262         }
2263
2264         fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
2265                                   sizeof(op->cmd_iu), DMA_TO_DEVICE);
2266
2267         atomic_set(&op->state, FCPOP_STATE_ACTIVE);
2268
2269         if (!(op->flags & FCOP_FLAGS_AEN))
2270                 blk_mq_start_request(op->rq);
2271
2272         ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
2273                                         &ctrl->rport->remoteport,
2274                                         queue->lldd_handle, &op->fcp_req);
2275
2276         if (ret) {
2277                 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
2278                 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2279
2280                 if (!(op->flags & FCOP_FLAGS_AEN))
2281                         nvme_fc_unmap_data(ctrl, op->rq, op);
2282
2283                 nvme_fc_ctrl_put(ctrl);
2284
2285                 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
2286                                 ret != -EBUSY)
2287                         return BLK_STS_IOERR;
2288
2289                 return BLK_STS_RESOURCE;
2290         }
2291
2292         return BLK_STS_OK;
2293 }
2294
2295 static blk_status_t
2296 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
2297                         const struct blk_mq_queue_data *bd)
2298 {
2299         struct nvme_ns *ns = hctx->queue->queuedata;
2300         struct nvme_fc_queue *queue = hctx->driver_data;
2301         struct nvme_fc_ctrl *ctrl = queue->ctrl;
2302         struct request *rq = bd->rq;
2303         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2304         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2305         struct nvme_command *sqe = &cmdiu->sqe;
2306         enum nvmefc_fcp_datadir io_dir;
2307         bool queue_ready = test_bit(NVME_FC_Q_LIVE, &queue->flags);
2308         u32 data_len;
2309         blk_status_t ret;
2310
2311         if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE ||
2312             !nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2313                 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2314
2315         ret = nvme_setup_cmd(ns, rq, sqe);
2316         if (ret)
2317                 return ret;
2318
2319         data_len = blk_rq_payload_bytes(rq);
2320         if (data_len)
2321                 io_dir = ((rq_data_dir(rq) == WRITE) ?
2322                                         NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2323         else
2324                 io_dir = NVMEFC_FCP_NODATA;
2325
2326         return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2327 }
2328
2329 static void
2330 nvme_fc_submit_async_event(struct nvme_ctrl *arg)
2331 {
2332         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2333         struct nvme_fc_fcp_op *aen_op;
2334         unsigned long flags;
2335         bool terminating = false;
2336         blk_status_t ret;
2337
2338         spin_lock_irqsave(&ctrl->lock, flags);
2339         if (ctrl->flags & FCCTRL_TERMIO)
2340                 terminating = true;
2341         spin_unlock_irqrestore(&ctrl->lock, flags);
2342
2343         if (terminating)
2344                 return;
2345
2346         aen_op = &ctrl->aen_ops[0];
2347
2348         ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2349                                         NVMEFC_FCP_NODATA);
2350         if (ret)
2351                 dev_err(ctrl->ctrl.device,
2352                         "failed async event work\n");
2353 }
2354
2355 static void
2356 nvme_fc_complete_rq(struct request *rq)
2357 {
2358         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2359         struct nvme_fc_ctrl *ctrl = op->ctrl;
2360
2361         atomic_set(&op->state, FCPOP_STATE_IDLE);
2362
2363         nvme_fc_unmap_data(ctrl, rq, op);
2364         nvme_complete_rq(rq);
2365         nvme_fc_ctrl_put(ctrl);
2366 }
2367
2368 /*
2369  * This routine is used by the transport when it needs to find active
2370  * io on a queue that is to be terminated. The transport uses
2371  * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2372  * this routine to kill them on a 1 by 1 basis.
2373  *
2374  * As FC allocates FC exchange for each io, the transport must contact
2375  * the LLDD to terminate the exchange, thus releasing the FC exchange.
2376  * After terminating the exchange the LLDD will call the transport's
2377  * normal io done path for the request, but it will have an aborted
2378  * status. The done path will return the io request back to the block
2379  * layer with an error status.
2380  */
2381 static bool
2382 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2383 {
2384         struct nvme_ctrl *nctrl = data;
2385         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2386         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2387
2388         __nvme_fc_abort_op(ctrl, op);
2389         return true;
2390 }
2391
2392
2393 static const struct blk_mq_ops nvme_fc_mq_ops = {
2394         .queue_rq       = nvme_fc_queue_rq,
2395         .complete       = nvme_fc_complete_rq,
2396         .init_request   = nvme_fc_init_request,
2397         .exit_request   = nvme_fc_exit_request,
2398         .init_hctx      = nvme_fc_init_hctx,
2399         .timeout        = nvme_fc_timeout,
2400 };
2401
2402 static int
2403 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2404 {
2405         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2406         unsigned int nr_io_queues;
2407         int ret;
2408
2409         nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2410                                 ctrl->lport->ops->max_hw_queues);
2411         ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2412         if (ret) {
2413                 dev_info(ctrl->ctrl.device,
2414                         "set_queue_count failed: %d\n", ret);
2415                 return ret;
2416         }
2417
2418         ctrl->ctrl.queue_count = nr_io_queues + 1;
2419         if (!nr_io_queues)
2420                 return 0;
2421
2422         nvme_fc_init_io_queues(ctrl);
2423
2424         memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2425         ctrl->tag_set.ops = &nvme_fc_mq_ops;
2426         ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2427         ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2428         ctrl->tag_set.numa_node = ctrl->ctrl.numa_node;
2429         ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2430         ctrl->tag_set.cmd_size =
2431                 struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv,
2432                             ctrl->lport->ops->fcprqst_priv_sz);
2433         ctrl->tag_set.driver_data = ctrl;
2434         ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1;
2435         ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2436
2437         ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2438         if (ret)
2439                 return ret;
2440
2441         ctrl->ctrl.tagset = &ctrl->tag_set;
2442
2443         ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2444         if (IS_ERR(ctrl->ctrl.connect_q)) {
2445                 ret = PTR_ERR(ctrl->ctrl.connect_q);
2446                 goto out_free_tag_set;
2447         }
2448
2449         ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2450         if (ret)
2451                 goto out_cleanup_blk_queue;
2452
2453         ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2454         if (ret)
2455                 goto out_delete_hw_queues;
2456
2457         ctrl->ioq_live = true;
2458
2459         return 0;
2460
2461 out_delete_hw_queues:
2462         nvme_fc_delete_hw_io_queues(ctrl);
2463 out_cleanup_blk_queue:
2464         blk_cleanup_queue(ctrl->ctrl.connect_q);
2465 out_free_tag_set:
2466         blk_mq_free_tag_set(&ctrl->tag_set);
2467         nvme_fc_free_io_queues(ctrl);
2468
2469         /* force put free routine to ignore io queues */
2470         ctrl->ctrl.tagset = NULL;
2471
2472         return ret;
2473 }
2474
2475 static int
2476 nvme_fc_recreate_io_queues(struct nvme_fc_ctrl *ctrl)
2477 {
2478         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2479         unsigned int nr_io_queues;
2480         int ret;
2481
2482         nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2483                                 ctrl->lport->ops->max_hw_queues);
2484         ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2485         if (ret) {
2486                 dev_info(ctrl->ctrl.device,
2487                         "set_queue_count failed: %d\n", ret);
2488                 return ret;
2489         }
2490
2491         ctrl->ctrl.queue_count = nr_io_queues + 1;
2492         /* check for io queues existing */
2493         if (ctrl->ctrl.queue_count == 1)
2494                 return 0;
2495
2496         ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2497         if (ret)
2498                 goto out_free_io_queues;
2499
2500         ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2501         if (ret)
2502                 goto out_delete_hw_queues;
2503
2504         blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
2505
2506         return 0;
2507
2508 out_delete_hw_queues:
2509         nvme_fc_delete_hw_io_queues(ctrl);
2510 out_free_io_queues:
2511         nvme_fc_free_io_queues(ctrl);
2512         return ret;
2513 }
2514
2515 static void
2516 nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport)
2517 {
2518         struct nvme_fc_lport *lport = rport->lport;
2519
2520         atomic_inc(&lport->act_rport_cnt);
2521 }
2522
2523 static void
2524 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport)
2525 {
2526         struct nvme_fc_lport *lport = rport->lport;
2527         u32 cnt;
2528
2529         cnt = atomic_dec_return(&lport->act_rport_cnt);
2530         if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED)
2531                 lport->ops->localport_delete(&lport->localport);
2532 }
2533
2534 static int
2535 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl)
2536 {
2537         struct nvme_fc_rport *rport = ctrl->rport;
2538         u32 cnt;
2539
2540         if (ctrl->assoc_active)
2541                 return 1;
2542
2543         ctrl->assoc_active = true;
2544         cnt = atomic_inc_return(&rport->act_ctrl_cnt);
2545         if (cnt == 1)
2546                 nvme_fc_rport_active_on_lport(rport);
2547
2548         return 0;
2549 }
2550
2551 static int
2552 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl)
2553 {
2554         struct nvme_fc_rport *rport = ctrl->rport;
2555         struct nvme_fc_lport *lport = rport->lport;
2556         u32 cnt;
2557
2558         /* ctrl->assoc_active=false will be set independently */
2559
2560         cnt = atomic_dec_return(&rport->act_ctrl_cnt);
2561         if (cnt == 0) {
2562                 if (rport->remoteport.port_state == FC_OBJSTATE_DELETED)
2563                         lport->ops->remoteport_delete(&rport->remoteport);
2564                 nvme_fc_rport_inactive_on_lport(rport);
2565         }
2566
2567         return 0;
2568 }
2569
2570 /*
2571  * This routine restarts the controller on the host side, and
2572  * on the link side, recreates the controller association.
2573  */
2574 static int
2575 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
2576 {
2577         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2578         int ret;
2579         bool changed;
2580
2581         ++ctrl->ctrl.nr_reconnects;
2582
2583         if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2584                 return -ENODEV;
2585
2586         if (nvme_fc_ctlr_active_on_rport(ctrl))
2587                 return -ENOTUNIQ;
2588
2589         /*
2590          * Create the admin queue
2591          */
2592
2593         ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
2594                                 NVME_AQ_DEPTH);
2595         if (ret)
2596                 goto out_free_queue;
2597
2598         ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
2599                                 NVME_AQ_DEPTH, (NVME_AQ_DEPTH / 4));
2600         if (ret)
2601                 goto out_delete_hw_queue;
2602
2603         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2604
2605         ret = nvmf_connect_admin_queue(&ctrl->ctrl);
2606         if (ret)
2607                 goto out_disconnect_admin_queue;
2608
2609         set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
2610
2611         /*
2612          * Check controller capabilities
2613          *
2614          * todo:- add code to check if ctrl attributes changed from
2615          * prior connection values
2616          */
2617
2618         ret = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->ctrl.cap);
2619         if (ret) {
2620                 dev_err(ctrl->ctrl.device,
2621                         "prop_get NVME_REG_CAP failed\n");
2622                 goto out_disconnect_admin_queue;
2623         }
2624
2625         ctrl->ctrl.sqsize =
2626                 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
2627
2628         ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
2629         if (ret)
2630                 goto out_disconnect_admin_queue;
2631
2632         ctrl->ctrl.max_hw_sectors =
2633                 (ctrl->lport->ops->max_sgl_segments - 1) << (PAGE_SHIFT - 9);
2634
2635         ret = nvme_init_identify(&ctrl->ctrl);
2636         if (ret)
2637                 goto out_disconnect_admin_queue;
2638
2639         /* sanity checks */
2640
2641         /* FC-NVME does not have other data in the capsule */
2642         if (ctrl->ctrl.icdoff) {
2643                 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
2644                                 ctrl->ctrl.icdoff);
2645                 goto out_disconnect_admin_queue;
2646         }
2647
2648         /* FC-NVME supports normal SGL Data Block Descriptors */
2649
2650         if (opts->queue_size > ctrl->ctrl.maxcmd) {
2651                 /* warn if maxcmd is lower than queue_size */
2652                 dev_warn(ctrl->ctrl.device,
2653                         "queue_size %zu > ctrl maxcmd %u, reducing "
2654                         "to queue_size\n",
2655                         opts->queue_size, ctrl->ctrl.maxcmd);
2656                 opts->queue_size = ctrl->ctrl.maxcmd;
2657         }
2658
2659         if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
2660                 /* warn if sqsize is lower than queue_size */
2661                 dev_warn(ctrl->ctrl.device,
2662                         "queue_size %zu > ctrl sqsize %u, clamping down\n",
2663                         opts->queue_size, ctrl->ctrl.sqsize + 1);
2664                 opts->queue_size = ctrl->ctrl.sqsize + 1;
2665         }
2666
2667         ret = nvme_fc_init_aen_ops(ctrl);
2668         if (ret)
2669                 goto out_term_aen_ops;
2670
2671         /*
2672          * Create the io queues
2673          */
2674
2675         if (ctrl->ctrl.queue_count > 1) {
2676                 if (!ctrl->ioq_live)
2677                         ret = nvme_fc_create_io_queues(ctrl);
2678                 else
2679                         ret = nvme_fc_recreate_io_queues(ctrl);
2680                 if (ret)
2681                         goto out_term_aen_ops;
2682         }
2683
2684         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2685
2686         ctrl->ctrl.nr_reconnects = 0;
2687
2688         if (changed)
2689                 nvme_start_ctrl(&ctrl->ctrl);
2690
2691         return 0;       /* Success */
2692
2693 out_term_aen_ops:
2694         nvme_fc_term_aen_ops(ctrl);
2695 out_disconnect_admin_queue:
2696         /* send a Disconnect(association) LS to fc-nvme target */
2697         nvme_fc_xmt_disconnect_assoc(ctrl);
2698 out_delete_hw_queue:
2699         __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2700 out_free_queue:
2701         nvme_fc_free_queue(&ctrl->queues[0]);
2702         ctrl->assoc_active = false;
2703         nvme_fc_ctlr_inactive_on_rport(ctrl);
2704
2705         return ret;
2706 }
2707
2708 /*
2709  * This routine stops operation of the controller on the host side.
2710  * On the host os stack side: Admin and IO queues are stopped,
2711  *   outstanding ios on them terminated via FC ABTS.
2712  * On the link side: the association is terminated.
2713  */
2714 static void
2715 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
2716 {
2717         unsigned long flags;
2718
2719         if (!ctrl->assoc_active)
2720                 return;
2721         ctrl->assoc_active = false;
2722
2723         spin_lock_irqsave(&ctrl->lock, flags);
2724         ctrl->flags |= FCCTRL_TERMIO;
2725         ctrl->iocnt = 0;
2726         spin_unlock_irqrestore(&ctrl->lock, flags);
2727
2728         /*
2729          * If io queues are present, stop them and terminate all outstanding
2730          * ios on them. As FC allocates FC exchange for each io, the
2731          * transport must contact the LLDD to terminate the exchange,
2732          * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2733          * to tell us what io's are busy and invoke a transport routine
2734          * to kill them with the LLDD.  After terminating the exchange
2735          * the LLDD will call the transport's normal io done path, but it
2736          * will have an aborted status. The done path will return the
2737          * io requests back to the block layer as part of normal completions
2738          * (but with error status).
2739          */
2740         if (ctrl->ctrl.queue_count > 1) {
2741                 nvme_stop_queues(&ctrl->ctrl);
2742                 blk_mq_tagset_busy_iter(&ctrl->tag_set,
2743                                 nvme_fc_terminate_exchange, &ctrl->ctrl);
2744         }
2745
2746         /*
2747          * Other transports, which don't have link-level contexts bound
2748          * to sqe's, would try to gracefully shutdown the controller by
2749          * writing the registers for shutdown and polling (call
2750          * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2751          * just aborted and we will wait on those contexts, and given
2752          * there was no indication of how live the controlelr is on the
2753          * link, don't send more io to create more contexts for the
2754          * shutdown. Let the controller fail via keepalive failure if
2755          * its still present.
2756          */
2757
2758         /*
2759          * clean up the admin queue. Same thing as above.
2760          * use blk_mq_tagset_busy_itr() and the transport routine to
2761          * terminate the exchanges.
2762          */
2763         blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
2764         blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2765                                 nvme_fc_terminate_exchange, &ctrl->ctrl);
2766
2767         /* kill the aens as they are a separate path */
2768         nvme_fc_abort_aen_ops(ctrl);
2769
2770         /* wait for all io that had to be aborted */
2771         spin_lock_irq(&ctrl->lock);
2772         wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
2773         ctrl->flags &= ~FCCTRL_TERMIO;
2774         spin_unlock_irq(&ctrl->lock);
2775
2776         nvme_fc_term_aen_ops(ctrl);
2777
2778         /*
2779          * send a Disconnect(association) LS to fc-nvme target
2780          * Note: could have been sent at top of process, but
2781          * cleaner on link traffic if after the aborts complete.
2782          * Note: if association doesn't exist, association_id will be 0
2783          */
2784         if (ctrl->association_id)
2785                 nvme_fc_xmt_disconnect_assoc(ctrl);
2786
2787         if (ctrl->ctrl.tagset) {
2788                 nvme_fc_delete_hw_io_queues(ctrl);
2789                 nvme_fc_free_io_queues(ctrl);
2790         }
2791
2792         __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2793         nvme_fc_free_queue(&ctrl->queues[0]);
2794
2795         /* re-enable the admin_q so anything new can fast fail */
2796         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2797
2798         /* resume the io queues so that things will fast fail */
2799         nvme_start_queues(&ctrl->ctrl);
2800
2801         nvme_fc_ctlr_inactive_on_rport(ctrl);
2802 }
2803
2804 static void
2805 nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl)
2806 {
2807         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2808
2809         cancel_work_sync(&ctrl->err_work);
2810         cancel_delayed_work_sync(&ctrl->connect_work);
2811         /*
2812          * kill the association on the link side.  this will block
2813          * waiting for io to terminate
2814          */
2815         nvme_fc_delete_association(ctrl);
2816 }
2817
2818 static void
2819 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
2820 {
2821         struct nvme_fc_rport *rport = ctrl->rport;
2822         struct nvme_fc_remote_port *portptr = &rport->remoteport;
2823         unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ;
2824         bool recon = true;
2825
2826         if (ctrl->ctrl.state != NVME_CTRL_CONNECTING)
2827                 return;
2828
2829         if (portptr->port_state == FC_OBJSTATE_ONLINE)
2830                 dev_info(ctrl->ctrl.device,
2831                         "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
2832                         ctrl->cnum, status);
2833         else if (time_after_eq(jiffies, rport->dev_loss_end))
2834                 recon = false;
2835
2836         if (recon && nvmf_should_reconnect(&ctrl->ctrl)) {
2837                 if (portptr->port_state == FC_OBJSTATE_ONLINE)
2838                         dev_info(ctrl->ctrl.device,
2839                                 "NVME-FC{%d}: Reconnect attempt in %ld "
2840                                 "seconds\n",
2841                                 ctrl->cnum, recon_delay / HZ);
2842                 else if (time_after(jiffies + recon_delay, rport->dev_loss_end))
2843                         recon_delay = rport->dev_loss_end - jiffies;
2844
2845                 queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay);
2846         } else {
2847                 if (portptr->port_state == FC_OBJSTATE_ONLINE)
2848                         dev_warn(ctrl->ctrl.device,
2849                                 "NVME-FC{%d}: Max reconnect attempts (%d) "
2850                                 "reached.\n",
2851                                 ctrl->cnum, ctrl->ctrl.nr_reconnects);
2852                 else
2853                         dev_warn(ctrl->ctrl.device,
2854                                 "NVME-FC{%d}: dev_loss_tmo (%d) expired "
2855                                 "while waiting for remoteport connectivity.\n",
2856                                 ctrl->cnum, portptr->dev_loss_tmo);
2857                 WARN_ON(nvme_delete_ctrl(&ctrl->ctrl));
2858         }
2859 }
2860
2861 static void
2862 __nvme_fc_terminate_io(struct nvme_fc_ctrl *ctrl)
2863 {
2864         nvme_stop_keep_alive(&ctrl->ctrl);
2865
2866         /* will block will waiting for io to terminate */
2867         nvme_fc_delete_association(ctrl);
2868
2869         if (ctrl->ctrl.state != NVME_CTRL_CONNECTING &&
2870             !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING))
2871                 dev_err(ctrl->ctrl.device,
2872                         "NVME-FC{%d}: error_recovery: Couldn't change state "
2873                         "to CONNECTING\n", ctrl->cnum);
2874 }
2875
2876 static void
2877 nvme_fc_reset_ctrl_work(struct work_struct *work)
2878 {
2879         struct nvme_fc_ctrl *ctrl =
2880                 container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
2881         int ret;
2882
2883         __nvme_fc_terminate_io(ctrl);
2884
2885         nvme_stop_ctrl(&ctrl->ctrl);
2886
2887         if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE)
2888                 ret = nvme_fc_create_association(ctrl);
2889         else
2890                 ret = -ENOTCONN;
2891
2892         if (ret)
2893                 nvme_fc_reconnect_or_delete(ctrl, ret);
2894         else
2895                 dev_info(ctrl->ctrl.device,
2896                         "NVME-FC{%d}: controller reset complete\n",
2897                         ctrl->cnum);
2898 }
2899
2900 static void
2901 nvme_fc_connect_err_work(struct work_struct *work)
2902 {
2903         struct nvme_fc_ctrl *ctrl =
2904                         container_of(work, struct nvme_fc_ctrl, err_work);
2905
2906         __nvme_fc_terminate_io(ctrl);
2907
2908         atomic_set(&ctrl->err_work_active, 0);
2909
2910         /*
2911          * Rescheduling the connection after recovering
2912          * from the io error is left to the reconnect work
2913          * item, which is what should have stalled waiting on
2914          * the io that had the error that scheduled this work.
2915          */
2916 }
2917
2918 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
2919         .name                   = "fc",
2920         .module                 = THIS_MODULE,
2921         .flags                  = NVME_F_FABRICS,
2922         .reg_read32             = nvmf_reg_read32,
2923         .reg_read64             = nvmf_reg_read64,
2924         .reg_write32            = nvmf_reg_write32,
2925         .free_ctrl              = nvme_fc_nvme_ctrl_freed,
2926         .submit_async_event     = nvme_fc_submit_async_event,
2927         .delete_ctrl            = nvme_fc_delete_ctrl,
2928         .get_address            = nvmf_get_address,
2929 };
2930
2931 static void
2932 nvme_fc_connect_ctrl_work(struct work_struct *work)
2933 {
2934         int ret;
2935
2936         struct nvme_fc_ctrl *ctrl =
2937                         container_of(to_delayed_work(work),
2938                                 struct nvme_fc_ctrl, connect_work);
2939
2940         ret = nvme_fc_create_association(ctrl);
2941         if (ret)
2942                 nvme_fc_reconnect_or_delete(ctrl, ret);
2943         else
2944                 dev_info(ctrl->ctrl.device,
2945                         "NVME-FC{%d}: controller connect complete\n",
2946                         ctrl->cnum);
2947 }
2948
2949
2950 static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
2951         .queue_rq       = nvme_fc_queue_rq,
2952         .complete       = nvme_fc_complete_rq,
2953         .init_request   = nvme_fc_init_request,
2954         .exit_request   = nvme_fc_exit_request,
2955         .init_hctx      = nvme_fc_init_admin_hctx,
2956         .timeout        = nvme_fc_timeout,
2957 };
2958
2959
2960 /*
2961  * Fails a controller request if it matches an existing controller
2962  * (association) with the same tuple:
2963  * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN>
2964  *
2965  * The ports don't need to be compared as they are intrinsically
2966  * already matched by the port pointers supplied.
2967  */
2968 static bool
2969 nvme_fc_existing_controller(struct nvme_fc_rport *rport,
2970                 struct nvmf_ctrl_options *opts)
2971 {
2972         struct nvme_fc_ctrl *ctrl;
2973         unsigned long flags;
2974         bool found = false;
2975
2976         spin_lock_irqsave(&rport->lock, flags);
2977         list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
2978                 found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts);
2979                 if (found)
2980                         break;
2981         }
2982         spin_unlock_irqrestore(&rport->lock, flags);
2983
2984         return found;
2985 }
2986
2987 static struct nvme_ctrl *
2988 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
2989         struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
2990 {
2991         struct nvme_fc_ctrl *ctrl;
2992         unsigned long flags;
2993         int ret, idx;
2994
2995         if (!(rport->remoteport.port_role &
2996             (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
2997                 ret = -EBADR;
2998                 goto out_fail;
2999         }
3000
3001         if (!opts->duplicate_connect &&
3002             nvme_fc_existing_controller(rport, opts)) {
3003                 ret = -EALREADY;
3004                 goto out_fail;
3005         }
3006
3007         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
3008         if (!ctrl) {
3009                 ret = -ENOMEM;
3010                 goto out_fail;
3011         }
3012
3013         idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
3014         if (idx < 0) {
3015                 ret = -ENOSPC;
3016                 goto out_free_ctrl;
3017         }
3018
3019         ctrl->ctrl.opts = opts;
3020         ctrl->ctrl.nr_reconnects = 0;
3021         ctrl->ctrl.numa_node = dev_to_node(lport->dev);
3022         INIT_LIST_HEAD(&ctrl->ctrl_list);
3023         ctrl->lport = lport;
3024         ctrl->rport = rport;
3025         ctrl->dev = lport->dev;
3026         ctrl->cnum = idx;
3027         ctrl->ioq_live = false;
3028         ctrl->assoc_active = false;
3029         atomic_set(&ctrl->err_work_active, 0);
3030         init_waitqueue_head(&ctrl->ioabort_wait);
3031
3032         get_device(ctrl->dev);
3033         kref_init(&ctrl->ref);
3034
3035         INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
3036         INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
3037         INIT_WORK(&ctrl->err_work, nvme_fc_connect_err_work);
3038         spin_lock_init(&ctrl->lock);
3039
3040         /* io queue count */
3041         ctrl->ctrl.queue_count = min_t(unsigned int,
3042                                 opts->nr_io_queues,
3043                                 lport->ops->max_hw_queues);
3044         ctrl->ctrl.queue_count++;       /* +1 for admin queue */
3045
3046         ctrl->ctrl.sqsize = opts->queue_size - 1;
3047         ctrl->ctrl.kato = opts->kato;
3048         ctrl->ctrl.cntlid = 0xffff;
3049
3050         ret = -ENOMEM;
3051         ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
3052                                 sizeof(struct nvme_fc_queue), GFP_KERNEL);
3053         if (!ctrl->queues)
3054                 goto out_free_ida;
3055
3056         nvme_fc_init_queue(ctrl, 0);
3057
3058         memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
3059         ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
3060         ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
3061         ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
3062         ctrl->admin_tag_set.numa_node = ctrl->ctrl.numa_node;
3063         ctrl->admin_tag_set.cmd_size =
3064                 struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv,
3065                             ctrl->lport->ops->fcprqst_priv_sz);
3066         ctrl->admin_tag_set.driver_data = ctrl;
3067         ctrl->admin_tag_set.nr_hw_queues = 1;
3068         ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
3069         ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED;
3070
3071         ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
3072         if (ret)
3073                 goto out_free_queues;
3074         ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set;
3075
3076         ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
3077         if (IS_ERR(ctrl->ctrl.admin_q)) {
3078                 ret = PTR_ERR(ctrl->ctrl.admin_q);
3079                 goto out_free_admin_tag_set;
3080         }
3081
3082         /*
3083          * Would have been nice to init io queues tag set as well.
3084          * However, we require interaction from the controller
3085          * for max io queue count before we can do so.
3086          * Defer this to the connect path.
3087          */
3088
3089         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
3090         if (ret)
3091                 goto out_cleanup_admin_q;
3092
3093         /* at this point, teardown path changes to ref counting on nvme ctrl */
3094
3095         spin_lock_irqsave(&rport->lock, flags);
3096         list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
3097         spin_unlock_irqrestore(&rport->lock, flags);
3098
3099         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING) ||
3100             !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
3101                 dev_err(ctrl->ctrl.device,
3102                         "NVME-FC{%d}: failed to init ctrl state\n", ctrl->cnum);
3103                 goto fail_ctrl;
3104         }
3105
3106         nvme_get_ctrl(&ctrl->ctrl);
3107
3108         if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
3109                 nvme_put_ctrl(&ctrl->ctrl);
3110                 dev_err(ctrl->ctrl.device,
3111                         "NVME-FC{%d}: failed to schedule initial connect\n",
3112                         ctrl->cnum);
3113                 goto fail_ctrl;
3114         }
3115
3116         flush_delayed_work(&ctrl->connect_work);
3117
3118         dev_info(ctrl->ctrl.device,
3119                 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
3120                 ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
3121
3122         return &ctrl->ctrl;
3123
3124 fail_ctrl:
3125         nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING);
3126         cancel_work_sync(&ctrl->ctrl.reset_work);
3127         cancel_work_sync(&ctrl->err_work);
3128         cancel_delayed_work_sync(&ctrl->connect_work);
3129
3130         ctrl->ctrl.opts = NULL;
3131
3132         /* initiate nvme ctrl ref counting teardown */
3133         nvme_uninit_ctrl(&ctrl->ctrl);
3134
3135         /* Remove core ctrl ref. */
3136         nvme_put_ctrl(&ctrl->ctrl);
3137
3138         /* as we're past the point where we transition to the ref
3139          * counting teardown path, if we return a bad pointer here,
3140          * the calling routine, thinking it's prior to the
3141          * transition, will do an rport put. Since the teardown
3142          * path also does a rport put, we do an extra get here to
3143          * so proper order/teardown happens.
3144          */
3145         nvme_fc_rport_get(rport);
3146
3147         return ERR_PTR(-EIO);
3148
3149 out_cleanup_admin_q:
3150         blk_cleanup_queue(ctrl->ctrl.admin_q);
3151 out_free_admin_tag_set:
3152         blk_mq_free_tag_set(&ctrl->admin_tag_set);
3153 out_free_queues:
3154         kfree(ctrl->queues);
3155 out_free_ida:
3156         put_device(ctrl->dev);
3157         ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
3158 out_free_ctrl:
3159         kfree(ctrl);
3160 out_fail:
3161         /* exit via here doesn't follow ctlr ref points */
3162         return ERR_PTR(ret);
3163 }
3164
3165
3166 struct nvmet_fc_traddr {
3167         u64     nn;
3168         u64     pn;
3169 };
3170
3171 static int
3172 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
3173 {
3174         u64 token64;
3175
3176         if (match_u64(sstr, &token64))
3177                 return -EINVAL;
3178         *val = token64;
3179
3180         return 0;
3181 }
3182
3183 /*
3184  * This routine validates and extracts the WWN's from the TRADDR string.
3185  * As kernel parsers need the 0x to determine number base, universally
3186  * build string to parse with 0x prefix before parsing name strings.
3187  */
3188 static int
3189 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
3190 {
3191         char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
3192         substring_t wwn = { name, &name[sizeof(name)-1] };
3193         int nnoffset, pnoffset;
3194
3195         /* validate if string is one of the 2 allowed formats */
3196         if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
3197                         !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
3198                         !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
3199                                 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
3200                 nnoffset = NVME_FC_TRADDR_OXNNLEN;
3201                 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
3202                                                 NVME_FC_TRADDR_OXNNLEN;
3203         } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
3204                         !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
3205                         !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
3206                                 "pn-", NVME_FC_TRADDR_NNLEN))) {
3207                 nnoffset = NVME_FC_TRADDR_NNLEN;
3208                 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
3209         } else
3210                 goto out_einval;
3211
3212         name[0] = '0';
3213         name[1] = 'x';
3214         name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
3215
3216         memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3217         if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
3218                 goto out_einval;
3219
3220         memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3221         if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
3222                 goto out_einval;
3223
3224         return 0;
3225
3226 out_einval:
3227         pr_warn("%s: bad traddr string\n", __func__);
3228         return -EINVAL;
3229 }
3230
3231 static struct nvme_ctrl *
3232 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
3233 {
3234         struct nvme_fc_lport *lport;
3235         struct nvme_fc_rport *rport;
3236         struct nvme_ctrl *ctrl;
3237         struct nvmet_fc_traddr laddr = { 0L, 0L };
3238         struct nvmet_fc_traddr raddr = { 0L, 0L };
3239         unsigned long flags;
3240         int ret;
3241
3242         ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
3243         if (ret || !raddr.nn || !raddr.pn)
3244                 return ERR_PTR(-EINVAL);
3245
3246         ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
3247         if (ret || !laddr.nn || !laddr.pn)
3248                 return ERR_PTR(-EINVAL);
3249
3250         /* find the host and remote ports to connect together */
3251         spin_lock_irqsave(&nvme_fc_lock, flags);
3252         list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3253                 if (lport->localport.node_name != laddr.nn ||
3254                     lport->localport.port_name != laddr.pn)
3255                         continue;
3256
3257                 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3258                         if (rport->remoteport.node_name != raddr.nn ||
3259                             rport->remoteport.port_name != raddr.pn)
3260                                 continue;
3261
3262                         /* if fail to get reference fall through. Will error */
3263                         if (!nvme_fc_rport_get(rport))
3264                                 break;
3265
3266                         spin_unlock_irqrestore(&nvme_fc_lock, flags);
3267
3268                         ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
3269                         if (IS_ERR(ctrl))
3270                                 nvme_fc_rport_put(rport);
3271                         return ctrl;
3272                 }
3273         }
3274         spin_unlock_irqrestore(&nvme_fc_lock, flags);
3275
3276         pr_warn("%s: %s - %s combination not found\n",
3277                 __func__, opts->traddr, opts->host_traddr);
3278         return ERR_PTR(-ENOENT);
3279 }
3280
3281
3282 static struct nvmf_transport_ops nvme_fc_transport = {
3283         .name           = "fc",
3284         .module         = THIS_MODULE,
3285         .required_opts  = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
3286         .allowed_opts   = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
3287         .create_ctrl    = nvme_fc_create_ctrl,
3288 };
3289
3290 /* Arbitrary successive failures max. With lots of subsystems could be high */
3291 #define DISCOVERY_MAX_FAIL      20
3292
3293 static ssize_t nvme_fc_nvme_discovery_store(struct device *dev,
3294                 struct device_attribute *attr, const char *buf, size_t count)
3295 {
3296         unsigned long flags;
3297         LIST_HEAD(local_disc_list);
3298         struct nvme_fc_lport *lport;
3299         struct nvme_fc_rport *rport;
3300         int failcnt = 0;
3301
3302         spin_lock_irqsave(&nvme_fc_lock, flags);
3303 restart:
3304         list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3305                 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3306                         if (!nvme_fc_lport_get(lport))
3307                                 continue;
3308                         if (!nvme_fc_rport_get(rport)) {
3309                                 /*
3310                                  * This is a temporary condition. Upon restart
3311                                  * this rport will be gone from the list.
3312                                  *
3313                                  * Revert the lport put and retry.  Anything
3314                                  * added to the list already will be skipped (as
3315                                  * they are no longer list_empty).  Loops should
3316                                  * resume at rports that were not yet seen.
3317                                  */
3318                                 nvme_fc_lport_put(lport);
3319
3320                                 if (failcnt++ < DISCOVERY_MAX_FAIL)
3321                                         goto restart;
3322
3323                                 pr_err("nvme_discovery: too many reference "
3324                                        "failures\n");
3325                                 goto process_local_list;
3326                         }
3327                         if (list_empty(&rport->disc_list))
3328                                 list_add_tail(&rport->disc_list,
3329                                               &local_disc_list);
3330                 }
3331         }
3332
3333 process_local_list:
3334         while (!list_empty(&local_disc_list)) {
3335                 rport = list_first_entry(&local_disc_list,
3336                                          struct nvme_fc_rport, disc_list);
3337                 list_del_init(&rport->disc_list);
3338                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3339
3340                 lport = rport->lport;
3341                 /* signal discovery. Won't hurt if it repeats */
3342                 nvme_fc_signal_discovery_scan(lport, rport);
3343                 nvme_fc_rport_put(rport);
3344                 nvme_fc_lport_put(lport);
3345
3346                 spin_lock_irqsave(&nvme_fc_lock, flags);
3347         }
3348         spin_unlock_irqrestore(&nvme_fc_lock, flags);
3349
3350         return count;
3351 }
3352 static DEVICE_ATTR(nvme_discovery, 0200, NULL, nvme_fc_nvme_discovery_store);
3353
3354 static struct attribute *nvme_fc_attrs[] = {
3355         &dev_attr_nvme_discovery.attr,
3356         NULL
3357 };
3358
3359 static struct attribute_group nvme_fc_attr_group = {
3360         .attrs = nvme_fc_attrs,
3361 };
3362
3363 static const struct attribute_group *nvme_fc_attr_groups[] = {
3364         &nvme_fc_attr_group,
3365         NULL
3366 };
3367
3368 static struct class fc_class = {
3369         .name = "fc",
3370         .dev_groups = nvme_fc_attr_groups,
3371         .owner = THIS_MODULE,
3372 };
3373
3374 static int __init nvme_fc_init_module(void)
3375 {
3376         int ret;
3377
3378         /*
3379          * NOTE:
3380          * It is expected that in the future the kernel will combine
3381          * the FC-isms that are currently under scsi and now being
3382          * added to by NVME into a new standalone FC class. The SCSI
3383          * and NVME protocols and their devices would be under this
3384          * new FC class.
3385          *
3386          * As we need something to post FC-specific udev events to,
3387          * specifically for nvme probe events, start by creating the
3388          * new device class.  When the new standalone FC class is
3389          * put in place, this code will move to a more generic
3390          * location for the class.
3391          */
3392         ret = class_register(&fc_class);
3393         if (ret) {
3394                 pr_err("couldn't register class fc\n");
3395                 return ret;
3396         }
3397
3398         /*
3399          * Create a device for the FC-centric udev events
3400          */
3401         fc_udev_device = device_create(&fc_class, NULL, MKDEV(0, 0), NULL,
3402                                 "fc_udev_device");
3403         if (IS_ERR(fc_udev_device)) {
3404                 pr_err("couldn't create fc_udev device!\n");
3405                 ret = PTR_ERR(fc_udev_device);
3406                 goto out_destroy_class;
3407         }
3408
3409         ret = nvmf_register_transport(&nvme_fc_transport);
3410         if (ret)
3411                 goto out_destroy_device;
3412
3413         return 0;
3414
3415 out_destroy_device:
3416         device_destroy(&fc_class, MKDEV(0, 0));
3417 out_destroy_class:
3418         class_unregister(&fc_class);
3419         return ret;
3420 }
3421
3422 static void __exit nvme_fc_exit_module(void)
3423 {
3424         /* sanity check - all lports should be removed */
3425         if (!list_empty(&nvme_fc_lport_list))
3426                 pr_warn("%s: localport list not empty\n", __func__);
3427
3428         nvmf_unregister_transport(&nvme_fc_transport);
3429
3430         ida_destroy(&nvme_fc_local_port_cnt);
3431         ida_destroy(&nvme_fc_ctrl_cnt);
3432
3433         device_destroy(&fc_class, MKDEV(0, 0));
3434         class_unregister(&fc_class);
3435 }
3436
3437 module_init(nvme_fc_init_module);
3438 module_exit(nvme_fc_exit_module);
3439
3440 MODULE_LICENSE("GPL v2");