679a721ae229aaaf8432dc7206f4adbd3f305ec6
[linux-2.6-block.git] / drivers / nvme / host / fc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
4  */
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/parser.h>
8 #include <uapi/scsi/fc/fc_fs.h>
9 #include <uapi/scsi/fc/fc_els.h>
10 #include <linux/delay.h>
11 #include <linux/overflow.h>
12
13 #include "nvme.h"
14 #include "fabrics.h"
15 #include <linux/nvme-fc-driver.h>
16 #include <linux/nvme-fc.h>
17 #include <scsi/scsi_transport_fc.h>
18
19 /* *************************** Data Structures/Defines ****************** */
20
21
22 enum nvme_fc_queue_flags {
23         NVME_FC_Q_CONNECTED = 0,
24         NVME_FC_Q_LIVE,
25 };
26
27 #define NVME_FC_DEFAULT_DEV_LOSS_TMO    60      /* seconds */
28
29 struct nvme_fc_queue {
30         struct nvme_fc_ctrl     *ctrl;
31         struct device           *dev;
32         struct blk_mq_hw_ctx    *hctx;
33         void                    *lldd_handle;
34         size_t                  cmnd_capsule_len;
35         u32                     qnum;
36         u32                     rqcnt;
37         u32                     seqno;
38
39         u64                     connection_id;
40         atomic_t                csn;
41
42         unsigned long           flags;
43 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
44
45 enum nvme_fcop_flags {
46         FCOP_FLAGS_TERMIO       = (1 << 0),
47         FCOP_FLAGS_AEN          = (1 << 1),
48 };
49
50 struct nvmefc_ls_req_op {
51         struct nvmefc_ls_req    ls_req;
52
53         struct nvme_fc_rport    *rport;
54         struct nvme_fc_queue    *queue;
55         struct request          *rq;
56         u32                     flags;
57
58         int                     ls_error;
59         struct completion       ls_done;
60         struct list_head        lsreq_list;     /* rport->ls_req_list */
61         bool                    req_queued;
62 };
63
64 enum nvme_fcpop_state {
65         FCPOP_STATE_UNINIT      = 0,
66         FCPOP_STATE_IDLE        = 1,
67         FCPOP_STATE_ACTIVE      = 2,
68         FCPOP_STATE_ABORTED     = 3,
69         FCPOP_STATE_COMPLETE    = 4,
70 };
71
72 struct nvme_fc_fcp_op {
73         struct nvme_request     nreq;           /*
74                                                  * nvme/host/core.c
75                                                  * requires this to be
76                                                  * the 1st element in the
77                                                  * private structure
78                                                  * associated with the
79                                                  * request.
80                                                  */
81         struct nvmefc_fcp_req   fcp_req;
82
83         struct nvme_fc_ctrl     *ctrl;
84         struct nvme_fc_queue    *queue;
85         struct request          *rq;
86
87         atomic_t                state;
88         u32                     flags;
89         u32                     rqno;
90         u32                     nents;
91
92         struct nvme_fc_cmd_iu   cmd_iu;
93         struct nvme_fc_ersp_iu  rsp_iu;
94 };
95
96 struct nvme_fcp_op_w_sgl {
97         struct nvme_fc_fcp_op   op;
98         struct scatterlist      sgl[SG_CHUNK_SIZE];
99         uint8_t                 priv[0];
100 };
101
102 struct nvme_fc_lport {
103         struct nvme_fc_local_port       localport;
104
105         struct ida                      endp_cnt;
106         struct list_head                port_list;      /* nvme_fc_port_list */
107         struct list_head                endp_list;
108         struct device                   *dev;   /* physical device for dma */
109         struct nvme_fc_port_template    *ops;
110         struct kref                     ref;
111         atomic_t                        act_rport_cnt;
112 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
113
114 struct nvme_fc_rport {
115         struct nvme_fc_remote_port      remoteport;
116
117         struct list_head                endp_list; /* for lport->endp_list */
118         struct list_head                ctrl_list;
119         struct list_head                ls_req_list;
120         struct list_head                disc_list;
121         struct device                   *dev;   /* physical device for dma */
122         struct nvme_fc_lport            *lport;
123         spinlock_t                      lock;
124         struct kref                     ref;
125         atomic_t                        act_ctrl_cnt;
126         unsigned long                   dev_loss_end;
127 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
128
129 enum nvme_fcctrl_flags {
130         FCCTRL_TERMIO           = (1 << 0),
131 };
132
133 struct nvme_fc_ctrl {
134         spinlock_t              lock;
135         struct nvme_fc_queue    *queues;
136         struct device           *dev;
137         struct nvme_fc_lport    *lport;
138         struct nvme_fc_rport    *rport;
139         u32                     cnum;
140
141         bool                    ioq_live;
142         bool                    assoc_active;
143         atomic_t                err_work_active;
144         u64                     association_id;
145
146         struct list_head        ctrl_list;      /* rport->ctrl_list */
147
148         struct blk_mq_tag_set   admin_tag_set;
149         struct blk_mq_tag_set   tag_set;
150
151         struct delayed_work     connect_work;
152         struct work_struct      err_work;
153
154         struct kref             ref;
155         u32                     flags;
156         u32                     iocnt;
157         wait_queue_head_t       ioabort_wait;
158
159         struct nvme_fc_fcp_op   aen_ops[NVME_NR_AEN_COMMANDS];
160
161         struct nvme_ctrl        ctrl;
162 };
163
164 static inline struct nvme_fc_ctrl *
165 to_fc_ctrl(struct nvme_ctrl *ctrl)
166 {
167         return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
168 }
169
170 static inline struct nvme_fc_lport *
171 localport_to_lport(struct nvme_fc_local_port *portptr)
172 {
173         return container_of(portptr, struct nvme_fc_lport, localport);
174 }
175
176 static inline struct nvme_fc_rport *
177 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
178 {
179         return container_of(portptr, struct nvme_fc_rport, remoteport);
180 }
181
182 static inline struct nvmefc_ls_req_op *
183 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
184 {
185         return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
186 }
187
188 static inline struct nvme_fc_fcp_op *
189 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
190 {
191         return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
192 }
193
194
195
196 /* *************************** Globals **************************** */
197
198
199 static DEFINE_SPINLOCK(nvme_fc_lock);
200
201 static LIST_HEAD(nvme_fc_lport_list);
202 static DEFINE_IDA(nvme_fc_local_port_cnt);
203 static DEFINE_IDA(nvme_fc_ctrl_cnt);
204
205 static struct workqueue_struct *nvme_fc_wq;
206
207 static bool nvme_fc_waiting_to_unload;
208 static DECLARE_COMPLETION(nvme_fc_unload_proceed);
209
210 /*
211  * These items are short-term. They will eventually be moved into
212  * a generic FC class. See comments in module init.
213  */
214 static struct device *fc_udev_device;
215
216
217 /* *********************** FC-NVME Port Management ************************ */
218
219 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
220                         struct nvme_fc_queue *, unsigned int);
221
222 static void
223 nvme_fc_free_lport(struct kref *ref)
224 {
225         struct nvme_fc_lport *lport =
226                 container_of(ref, struct nvme_fc_lport, ref);
227         unsigned long flags;
228
229         WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
230         WARN_ON(!list_empty(&lport->endp_list));
231
232         /* remove from transport list */
233         spin_lock_irqsave(&nvme_fc_lock, flags);
234         list_del(&lport->port_list);
235         if (nvme_fc_waiting_to_unload && list_empty(&nvme_fc_lport_list))
236                 complete(&nvme_fc_unload_proceed);
237         spin_unlock_irqrestore(&nvme_fc_lock, flags);
238
239         ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
240         ida_destroy(&lport->endp_cnt);
241
242         put_device(lport->dev);
243
244         kfree(lport);
245 }
246
247 static void
248 nvme_fc_lport_put(struct nvme_fc_lport *lport)
249 {
250         kref_put(&lport->ref, nvme_fc_free_lport);
251 }
252
253 static int
254 nvme_fc_lport_get(struct nvme_fc_lport *lport)
255 {
256         return kref_get_unless_zero(&lport->ref);
257 }
258
259
260 static struct nvme_fc_lport *
261 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo,
262                         struct nvme_fc_port_template *ops,
263                         struct device *dev)
264 {
265         struct nvme_fc_lport *lport;
266         unsigned long flags;
267
268         spin_lock_irqsave(&nvme_fc_lock, flags);
269
270         list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
271                 if (lport->localport.node_name != pinfo->node_name ||
272                     lport->localport.port_name != pinfo->port_name)
273                         continue;
274
275                 if (lport->dev != dev) {
276                         lport = ERR_PTR(-EXDEV);
277                         goto out_done;
278                 }
279
280                 if (lport->localport.port_state != FC_OBJSTATE_DELETED) {
281                         lport = ERR_PTR(-EEXIST);
282                         goto out_done;
283                 }
284
285                 if (!nvme_fc_lport_get(lport)) {
286                         /*
287                          * fails if ref cnt already 0. If so,
288                          * act as if lport already deleted
289                          */
290                         lport = NULL;
291                         goto out_done;
292                 }
293
294                 /* resume the lport */
295
296                 lport->ops = ops;
297                 lport->localport.port_role = pinfo->port_role;
298                 lport->localport.port_id = pinfo->port_id;
299                 lport->localport.port_state = FC_OBJSTATE_ONLINE;
300
301                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
302
303                 return lport;
304         }
305
306         lport = NULL;
307
308 out_done:
309         spin_unlock_irqrestore(&nvme_fc_lock, flags);
310
311         return lport;
312 }
313
314 /**
315  * nvme_fc_register_localport - transport entry point called by an
316  *                              LLDD to register the existence of a NVME
317  *                              host FC port.
318  * @pinfo:     pointer to information about the port to be registered
319  * @template:  LLDD entrypoints and operational parameters for the port
320  * @dev:       physical hardware device node port corresponds to. Will be
321  *             used for DMA mappings
322  * @portptr:   pointer to a local port pointer. Upon success, the routine
323  *             will allocate a nvme_fc_local_port structure and place its
324  *             address in the local port pointer. Upon failure, local port
325  *             pointer will be set to 0.
326  *
327  * Returns:
328  * a completion status. Must be 0 upon success; a negative errno
329  * (ex: -ENXIO) upon failure.
330  */
331 int
332 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
333                         struct nvme_fc_port_template *template,
334                         struct device *dev,
335                         struct nvme_fc_local_port **portptr)
336 {
337         struct nvme_fc_lport *newrec;
338         unsigned long flags;
339         int ret, idx;
340
341         if (!template->localport_delete || !template->remoteport_delete ||
342             !template->ls_req || !template->fcp_io ||
343             !template->ls_abort || !template->fcp_abort ||
344             !template->max_hw_queues || !template->max_sgl_segments ||
345             !template->max_dif_sgl_segments || !template->dma_boundary) {
346                 ret = -EINVAL;
347                 goto out_reghost_failed;
348         }
349
350         /*
351          * look to see if there is already a localport that had been
352          * deregistered and in the process of waiting for all the
353          * references to fully be removed.  If the references haven't
354          * expired, we can simply re-enable the localport. Remoteports
355          * and controller reconnections should resume naturally.
356          */
357         newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev);
358
359         /* found an lport, but something about its state is bad */
360         if (IS_ERR(newrec)) {
361                 ret = PTR_ERR(newrec);
362                 goto out_reghost_failed;
363
364         /* found existing lport, which was resumed */
365         } else if (newrec) {
366                 *portptr = &newrec->localport;
367                 return 0;
368         }
369
370         /* nothing found - allocate a new localport struct */
371
372         newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
373                          GFP_KERNEL);
374         if (!newrec) {
375                 ret = -ENOMEM;
376                 goto out_reghost_failed;
377         }
378
379         idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
380         if (idx < 0) {
381                 ret = -ENOSPC;
382                 goto out_fail_kfree;
383         }
384
385         if (!get_device(dev) && dev) {
386                 ret = -ENODEV;
387                 goto out_ida_put;
388         }
389
390         INIT_LIST_HEAD(&newrec->port_list);
391         INIT_LIST_HEAD(&newrec->endp_list);
392         kref_init(&newrec->ref);
393         atomic_set(&newrec->act_rport_cnt, 0);
394         newrec->ops = template;
395         newrec->dev = dev;
396         ida_init(&newrec->endp_cnt);
397         newrec->localport.private = &newrec[1];
398         newrec->localport.node_name = pinfo->node_name;
399         newrec->localport.port_name = pinfo->port_name;
400         newrec->localport.port_role = pinfo->port_role;
401         newrec->localport.port_id = pinfo->port_id;
402         newrec->localport.port_state = FC_OBJSTATE_ONLINE;
403         newrec->localport.port_num = idx;
404
405         spin_lock_irqsave(&nvme_fc_lock, flags);
406         list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
407         spin_unlock_irqrestore(&nvme_fc_lock, flags);
408
409         if (dev)
410                 dma_set_seg_boundary(dev, template->dma_boundary);
411
412         *portptr = &newrec->localport;
413         return 0;
414
415 out_ida_put:
416         ida_simple_remove(&nvme_fc_local_port_cnt, idx);
417 out_fail_kfree:
418         kfree(newrec);
419 out_reghost_failed:
420         *portptr = NULL;
421
422         return ret;
423 }
424 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
425
426 /**
427  * nvme_fc_unregister_localport - transport entry point called by an
428  *                              LLDD to deregister/remove a previously
429  *                              registered a NVME host FC port.
430  * @portptr: pointer to the (registered) local port that is to be deregistered.
431  *
432  * Returns:
433  * a completion status. Must be 0 upon success; a negative errno
434  * (ex: -ENXIO) upon failure.
435  */
436 int
437 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
438 {
439         struct nvme_fc_lport *lport = localport_to_lport(portptr);
440         unsigned long flags;
441
442         if (!portptr)
443                 return -EINVAL;
444
445         spin_lock_irqsave(&nvme_fc_lock, flags);
446
447         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
448                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
449                 return -EINVAL;
450         }
451         portptr->port_state = FC_OBJSTATE_DELETED;
452
453         spin_unlock_irqrestore(&nvme_fc_lock, flags);
454
455         if (atomic_read(&lport->act_rport_cnt) == 0)
456                 lport->ops->localport_delete(&lport->localport);
457
458         nvme_fc_lport_put(lport);
459
460         return 0;
461 }
462 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
463
464 /*
465  * TRADDR strings, per FC-NVME are fixed format:
466  *   "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters
467  * udev event will only differ by prefix of what field is
468  * being specified:
469  *    "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters
470  *  19 + 43 + null_fudge = 64 characters
471  */
472 #define FCNVME_TRADDR_LENGTH            64
473
474 static void
475 nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport,
476                 struct nvme_fc_rport *rport)
477 {
478         char hostaddr[FCNVME_TRADDR_LENGTH];    /* NVMEFC_HOST_TRADDR=...*/
479         char tgtaddr[FCNVME_TRADDR_LENGTH];     /* NVMEFC_TRADDR=...*/
480         char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL };
481
482         if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY))
483                 return;
484
485         snprintf(hostaddr, sizeof(hostaddr),
486                 "NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx",
487                 lport->localport.node_name, lport->localport.port_name);
488         snprintf(tgtaddr, sizeof(tgtaddr),
489                 "NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx",
490                 rport->remoteport.node_name, rport->remoteport.port_name);
491         kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp);
492 }
493
494 static void
495 nvme_fc_free_rport(struct kref *ref)
496 {
497         struct nvme_fc_rport *rport =
498                 container_of(ref, struct nvme_fc_rport, ref);
499         struct nvme_fc_lport *lport =
500                         localport_to_lport(rport->remoteport.localport);
501         unsigned long flags;
502
503         WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
504         WARN_ON(!list_empty(&rport->ctrl_list));
505
506         /* remove from lport list */
507         spin_lock_irqsave(&nvme_fc_lock, flags);
508         list_del(&rport->endp_list);
509         spin_unlock_irqrestore(&nvme_fc_lock, flags);
510
511         WARN_ON(!list_empty(&rport->disc_list));
512         ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
513
514         kfree(rport);
515
516         nvme_fc_lport_put(lport);
517 }
518
519 static void
520 nvme_fc_rport_put(struct nvme_fc_rport *rport)
521 {
522         kref_put(&rport->ref, nvme_fc_free_rport);
523 }
524
525 static int
526 nvme_fc_rport_get(struct nvme_fc_rport *rport)
527 {
528         return kref_get_unless_zero(&rport->ref);
529 }
530
531 static void
532 nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl)
533 {
534         switch (ctrl->ctrl.state) {
535         case NVME_CTRL_NEW:
536         case NVME_CTRL_CONNECTING:
537                 /*
538                  * As all reconnects were suppressed, schedule a
539                  * connect.
540                  */
541                 dev_info(ctrl->ctrl.device,
542                         "NVME-FC{%d}: connectivity re-established. "
543                         "Attempting reconnect\n", ctrl->cnum);
544
545                 queue_delayed_work(nvme_wq, &ctrl->connect_work, 0);
546                 break;
547
548         case NVME_CTRL_RESETTING:
549                 /*
550                  * Controller is already in the process of terminating the
551                  * association. No need to do anything further. The reconnect
552                  * step will naturally occur after the reset completes.
553                  */
554                 break;
555
556         default:
557                 /* no action to take - let it delete */
558                 break;
559         }
560 }
561
562 static struct nvme_fc_rport *
563 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport,
564                                 struct nvme_fc_port_info *pinfo)
565 {
566         struct nvme_fc_rport *rport;
567         struct nvme_fc_ctrl *ctrl;
568         unsigned long flags;
569
570         spin_lock_irqsave(&nvme_fc_lock, flags);
571
572         list_for_each_entry(rport, &lport->endp_list, endp_list) {
573                 if (rport->remoteport.node_name != pinfo->node_name ||
574                     rport->remoteport.port_name != pinfo->port_name)
575                         continue;
576
577                 if (!nvme_fc_rport_get(rport)) {
578                         rport = ERR_PTR(-ENOLCK);
579                         goto out_done;
580                 }
581
582                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
583
584                 spin_lock_irqsave(&rport->lock, flags);
585
586                 /* has it been unregistered */
587                 if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) {
588                         /* means lldd called us twice */
589                         spin_unlock_irqrestore(&rport->lock, flags);
590                         nvme_fc_rport_put(rport);
591                         return ERR_PTR(-ESTALE);
592                 }
593
594                 rport->remoteport.port_role = pinfo->port_role;
595                 rport->remoteport.port_id = pinfo->port_id;
596                 rport->remoteport.port_state = FC_OBJSTATE_ONLINE;
597                 rport->dev_loss_end = 0;
598
599                 /*
600                  * kick off a reconnect attempt on all associations to the
601                  * remote port. A successful reconnects will resume i/o.
602                  */
603                 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
604                         nvme_fc_resume_controller(ctrl);
605
606                 spin_unlock_irqrestore(&rport->lock, flags);
607
608                 return rport;
609         }
610
611         rport = NULL;
612
613 out_done:
614         spin_unlock_irqrestore(&nvme_fc_lock, flags);
615
616         return rport;
617 }
618
619 static inline void
620 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport,
621                         struct nvme_fc_port_info *pinfo)
622 {
623         if (pinfo->dev_loss_tmo)
624                 rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo;
625         else
626                 rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO;
627 }
628
629 /**
630  * nvme_fc_register_remoteport - transport entry point called by an
631  *                              LLDD to register the existence of a NVME
632  *                              subsystem FC port on its fabric.
633  * @localport: pointer to the (registered) local port that the remote
634  *             subsystem port is connected to.
635  * @pinfo:     pointer to information about the port to be registered
636  * @portptr:   pointer to a remote port pointer. Upon success, the routine
637  *             will allocate a nvme_fc_remote_port structure and place its
638  *             address in the remote port pointer. Upon failure, remote port
639  *             pointer will be set to 0.
640  *
641  * Returns:
642  * a completion status. Must be 0 upon success; a negative errno
643  * (ex: -ENXIO) upon failure.
644  */
645 int
646 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
647                                 struct nvme_fc_port_info *pinfo,
648                                 struct nvme_fc_remote_port **portptr)
649 {
650         struct nvme_fc_lport *lport = localport_to_lport(localport);
651         struct nvme_fc_rport *newrec;
652         unsigned long flags;
653         int ret, idx;
654
655         if (!nvme_fc_lport_get(lport)) {
656                 ret = -ESHUTDOWN;
657                 goto out_reghost_failed;
658         }
659
660         /*
661          * look to see if there is already a remoteport that is waiting
662          * for a reconnect (within dev_loss_tmo) with the same WWN's.
663          * If so, transition to it and reconnect.
664          */
665         newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo);
666
667         /* found an rport, but something about its state is bad */
668         if (IS_ERR(newrec)) {
669                 ret = PTR_ERR(newrec);
670                 goto out_lport_put;
671
672         /* found existing rport, which was resumed */
673         } else if (newrec) {
674                 nvme_fc_lport_put(lport);
675                 __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
676                 nvme_fc_signal_discovery_scan(lport, newrec);
677                 *portptr = &newrec->remoteport;
678                 return 0;
679         }
680
681         /* nothing found - allocate a new remoteport struct */
682
683         newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
684                          GFP_KERNEL);
685         if (!newrec) {
686                 ret = -ENOMEM;
687                 goto out_lport_put;
688         }
689
690         idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
691         if (idx < 0) {
692                 ret = -ENOSPC;
693                 goto out_kfree_rport;
694         }
695
696         INIT_LIST_HEAD(&newrec->endp_list);
697         INIT_LIST_HEAD(&newrec->ctrl_list);
698         INIT_LIST_HEAD(&newrec->ls_req_list);
699         INIT_LIST_HEAD(&newrec->disc_list);
700         kref_init(&newrec->ref);
701         atomic_set(&newrec->act_ctrl_cnt, 0);
702         spin_lock_init(&newrec->lock);
703         newrec->remoteport.localport = &lport->localport;
704         newrec->dev = lport->dev;
705         newrec->lport = lport;
706         newrec->remoteport.private = &newrec[1];
707         newrec->remoteport.port_role = pinfo->port_role;
708         newrec->remoteport.node_name = pinfo->node_name;
709         newrec->remoteport.port_name = pinfo->port_name;
710         newrec->remoteport.port_id = pinfo->port_id;
711         newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
712         newrec->remoteport.port_num = idx;
713         __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
714
715         spin_lock_irqsave(&nvme_fc_lock, flags);
716         list_add_tail(&newrec->endp_list, &lport->endp_list);
717         spin_unlock_irqrestore(&nvme_fc_lock, flags);
718
719         nvme_fc_signal_discovery_scan(lport, newrec);
720
721         *portptr = &newrec->remoteport;
722         return 0;
723
724 out_kfree_rport:
725         kfree(newrec);
726 out_lport_put:
727         nvme_fc_lport_put(lport);
728 out_reghost_failed:
729         *portptr = NULL;
730         return ret;
731 }
732 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
733
734 static int
735 nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
736 {
737         struct nvmefc_ls_req_op *lsop;
738         unsigned long flags;
739
740 restart:
741         spin_lock_irqsave(&rport->lock, flags);
742
743         list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
744                 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
745                         lsop->flags |= FCOP_FLAGS_TERMIO;
746                         spin_unlock_irqrestore(&rport->lock, flags);
747                         rport->lport->ops->ls_abort(&rport->lport->localport,
748                                                 &rport->remoteport,
749                                                 &lsop->ls_req);
750                         goto restart;
751                 }
752         }
753         spin_unlock_irqrestore(&rport->lock, flags);
754
755         return 0;
756 }
757
758 static void
759 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl)
760 {
761         dev_info(ctrl->ctrl.device,
762                 "NVME-FC{%d}: controller connectivity lost. Awaiting "
763                 "Reconnect", ctrl->cnum);
764
765         switch (ctrl->ctrl.state) {
766         case NVME_CTRL_NEW:
767         case NVME_CTRL_LIVE:
768                 /*
769                  * Schedule a controller reset. The reset will terminate the
770                  * association and schedule the reconnect timer.  Reconnects
771                  * will be attempted until either the ctlr_loss_tmo
772                  * (max_retries * connect_delay) expires or the remoteport's
773                  * dev_loss_tmo expires.
774                  */
775                 if (nvme_reset_ctrl(&ctrl->ctrl)) {
776                         dev_warn(ctrl->ctrl.device,
777                                 "NVME-FC{%d}: Couldn't schedule reset.\n",
778                                 ctrl->cnum);
779                         nvme_delete_ctrl(&ctrl->ctrl);
780                 }
781                 break;
782
783         case NVME_CTRL_CONNECTING:
784                 /*
785                  * The association has already been terminated and the
786                  * controller is attempting reconnects.  No need to do anything
787                  * futher.  Reconnects will be attempted until either the
788                  * ctlr_loss_tmo (max_retries * connect_delay) expires or the
789                  * remoteport's dev_loss_tmo expires.
790                  */
791                 break;
792
793         case NVME_CTRL_RESETTING:
794                 /*
795                  * Controller is already in the process of terminating the
796                  * association.  No need to do anything further. The reconnect
797                  * step will kick in naturally after the association is
798                  * terminated.
799                  */
800                 break;
801
802         case NVME_CTRL_DELETING:
803         default:
804                 /* no action to take - let it delete */
805                 break;
806         }
807 }
808
809 /**
810  * nvme_fc_unregister_remoteport - transport entry point called by an
811  *                              LLDD to deregister/remove a previously
812  *                              registered a NVME subsystem FC port.
813  * @portptr: pointer to the (registered) remote port that is to be
814  *           deregistered.
815  *
816  * Returns:
817  * a completion status. Must be 0 upon success; a negative errno
818  * (ex: -ENXIO) upon failure.
819  */
820 int
821 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
822 {
823         struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
824         struct nvme_fc_ctrl *ctrl;
825         unsigned long flags;
826
827         if (!portptr)
828                 return -EINVAL;
829
830         spin_lock_irqsave(&rport->lock, flags);
831
832         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
833                 spin_unlock_irqrestore(&rport->lock, flags);
834                 return -EINVAL;
835         }
836         portptr->port_state = FC_OBJSTATE_DELETED;
837
838         rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ);
839
840         list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
841                 /* if dev_loss_tmo==0, dev loss is immediate */
842                 if (!portptr->dev_loss_tmo) {
843                         dev_warn(ctrl->ctrl.device,
844                                 "NVME-FC{%d}: controller connectivity lost.\n",
845                                 ctrl->cnum);
846                         nvme_delete_ctrl(&ctrl->ctrl);
847                 } else
848                         nvme_fc_ctrl_connectivity_loss(ctrl);
849         }
850
851         spin_unlock_irqrestore(&rport->lock, flags);
852
853         nvme_fc_abort_lsops(rport);
854
855         if (atomic_read(&rport->act_ctrl_cnt) == 0)
856                 rport->lport->ops->remoteport_delete(portptr);
857
858         /*
859          * release the reference, which will allow, if all controllers
860          * go away, which should only occur after dev_loss_tmo occurs,
861          * for the rport to be torn down.
862          */
863         nvme_fc_rport_put(rport);
864
865         return 0;
866 }
867 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
868
869 /**
870  * nvme_fc_rescan_remoteport - transport entry point called by an
871  *                              LLDD to request a nvme device rescan.
872  * @remoteport: pointer to the (registered) remote port that is to be
873  *              rescanned.
874  *
875  * Returns: N/A
876  */
877 void
878 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport)
879 {
880         struct nvme_fc_rport *rport = remoteport_to_rport(remoteport);
881
882         nvme_fc_signal_discovery_scan(rport->lport, rport);
883 }
884 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport);
885
886 int
887 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr,
888                         u32 dev_loss_tmo)
889 {
890         struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
891         unsigned long flags;
892
893         spin_lock_irqsave(&rport->lock, flags);
894
895         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
896                 spin_unlock_irqrestore(&rport->lock, flags);
897                 return -EINVAL;
898         }
899
900         /* a dev_loss_tmo of 0 (immediate) is allowed to be set */
901         rport->remoteport.dev_loss_tmo = dev_loss_tmo;
902
903         spin_unlock_irqrestore(&rport->lock, flags);
904
905         return 0;
906 }
907 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss);
908
909
910 /* *********************** FC-NVME DMA Handling **************************** */
911
912 /*
913  * The fcloop device passes in a NULL device pointer. Real LLD's will
914  * pass in a valid device pointer. If NULL is passed to the dma mapping
915  * routines, depending on the platform, it may or may not succeed, and
916  * may crash.
917  *
918  * As such:
919  * Wrapper all the dma routines and check the dev pointer.
920  *
921  * If simple mappings (return just a dma address, we'll noop them,
922  * returning a dma address of 0.
923  *
924  * On more complex mappings (dma_map_sg), a pseudo routine fills
925  * in the scatter list, setting all dma addresses to 0.
926  */
927
928 static inline dma_addr_t
929 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
930                 enum dma_data_direction dir)
931 {
932         return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
933 }
934
935 static inline int
936 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
937 {
938         return dev ? dma_mapping_error(dev, dma_addr) : 0;
939 }
940
941 static inline void
942 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
943         enum dma_data_direction dir)
944 {
945         if (dev)
946                 dma_unmap_single(dev, addr, size, dir);
947 }
948
949 static inline void
950 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
951                 enum dma_data_direction dir)
952 {
953         if (dev)
954                 dma_sync_single_for_cpu(dev, addr, size, dir);
955 }
956
957 static inline void
958 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
959                 enum dma_data_direction dir)
960 {
961         if (dev)
962                 dma_sync_single_for_device(dev, addr, size, dir);
963 }
964
965 /* pseudo dma_map_sg call */
966 static int
967 fc_map_sg(struct scatterlist *sg, int nents)
968 {
969         struct scatterlist *s;
970         int i;
971
972         WARN_ON(nents == 0 || sg[0].length == 0);
973
974         for_each_sg(sg, s, nents, i) {
975                 s->dma_address = 0L;
976 #ifdef CONFIG_NEED_SG_DMA_LENGTH
977                 s->dma_length = s->length;
978 #endif
979         }
980         return nents;
981 }
982
983 static inline int
984 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
985                 enum dma_data_direction dir)
986 {
987         return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
988 }
989
990 static inline void
991 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
992                 enum dma_data_direction dir)
993 {
994         if (dev)
995                 dma_unmap_sg(dev, sg, nents, dir);
996 }
997
998 /* *********************** FC-NVME LS Handling **************************** */
999
1000 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
1001 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
1002
1003
1004 static void
1005 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
1006 {
1007         struct nvme_fc_rport *rport = lsop->rport;
1008         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1009         unsigned long flags;
1010
1011         spin_lock_irqsave(&rport->lock, flags);
1012
1013         if (!lsop->req_queued) {
1014                 spin_unlock_irqrestore(&rport->lock, flags);
1015                 return;
1016         }
1017
1018         list_del(&lsop->lsreq_list);
1019
1020         lsop->req_queued = false;
1021
1022         spin_unlock_irqrestore(&rport->lock, flags);
1023
1024         fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1025                                   (lsreq->rqstlen + lsreq->rsplen),
1026                                   DMA_BIDIRECTIONAL);
1027
1028         nvme_fc_rport_put(rport);
1029 }
1030
1031 static int
1032 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
1033                 struct nvmefc_ls_req_op *lsop,
1034                 void (*done)(struct nvmefc_ls_req *req, int status))
1035 {
1036         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1037         unsigned long flags;
1038         int ret = 0;
1039
1040         if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1041                 return -ECONNREFUSED;
1042
1043         if (!nvme_fc_rport_get(rport))
1044                 return -ESHUTDOWN;
1045
1046         lsreq->done = done;
1047         lsop->rport = rport;
1048         lsop->req_queued = false;
1049         INIT_LIST_HEAD(&lsop->lsreq_list);
1050         init_completion(&lsop->ls_done);
1051
1052         lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
1053                                   lsreq->rqstlen + lsreq->rsplen,
1054                                   DMA_BIDIRECTIONAL);
1055         if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
1056                 ret = -EFAULT;
1057                 goto out_putrport;
1058         }
1059         lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
1060
1061         spin_lock_irqsave(&rport->lock, flags);
1062
1063         list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
1064
1065         lsop->req_queued = true;
1066
1067         spin_unlock_irqrestore(&rport->lock, flags);
1068
1069         ret = rport->lport->ops->ls_req(&rport->lport->localport,
1070                                         &rport->remoteport, lsreq);
1071         if (ret)
1072                 goto out_unlink;
1073
1074         return 0;
1075
1076 out_unlink:
1077         lsop->ls_error = ret;
1078         spin_lock_irqsave(&rport->lock, flags);
1079         lsop->req_queued = false;
1080         list_del(&lsop->lsreq_list);
1081         spin_unlock_irqrestore(&rport->lock, flags);
1082         fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1083                                   (lsreq->rqstlen + lsreq->rsplen),
1084                                   DMA_BIDIRECTIONAL);
1085 out_putrport:
1086         nvme_fc_rport_put(rport);
1087
1088         return ret;
1089 }
1090
1091 static void
1092 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
1093 {
1094         struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1095
1096         lsop->ls_error = status;
1097         complete(&lsop->ls_done);
1098 }
1099
1100 static int
1101 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
1102 {
1103         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1104         struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
1105         int ret;
1106
1107         ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
1108
1109         if (!ret) {
1110                 /*
1111                  * No timeout/not interruptible as we need the struct
1112                  * to exist until the lldd calls us back. Thus mandate
1113                  * wait until driver calls back. lldd responsible for
1114                  * the timeout action
1115                  */
1116                 wait_for_completion(&lsop->ls_done);
1117
1118                 __nvme_fc_finish_ls_req(lsop);
1119
1120                 ret = lsop->ls_error;
1121         }
1122
1123         if (ret)
1124                 return ret;
1125
1126         /* ACC or RJT payload ? */
1127         if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
1128                 return -ENXIO;
1129
1130         return 0;
1131 }
1132
1133 static int
1134 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
1135                 struct nvmefc_ls_req_op *lsop,
1136                 void (*done)(struct nvmefc_ls_req *req, int status))
1137 {
1138         /* don't wait for completion */
1139
1140         return __nvme_fc_send_ls_req(rport, lsop, done);
1141 }
1142
1143 /* Validation Error indexes into the string table below */
1144 enum {
1145         VERR_NO_ERROR           = 0,
1146         VERR_LSACC              = 1,
1147         VERR_LSDESC_RQST        = 2,
1148         VERR_LSDESC_RQST_LEN    = 3,
1149         VERR_ASSOC_ID           = 4,
1150         VERR_ASSOC_ID_LEN       = 5,
1151         VERR_CONN_ID            = 6,
1152         VERR_CONN_ID_LEN        = 7,
1153         VERR_CR_ASSOC           = 8,
1154         VERR_CR_ASSOC_ACC_LEN   = 9,
1155         VERR_CR_CONN            = 10,
1156         VERR_CR_CONN_ACC_LEN    = 11,
1157         VERR_DISCONN            = 12,
1158         VERR_DISCONN_ACC_LEN    = 13,
1159 };
1160
1161 static char *validation_errors[] = {
1162         "OK",
1163         "Not LS_ACC",
1164         "Not LSDESC_RQST",
1165         "Bad LSDESC_RQST Length",
1166         "Not Association ID",
1167         "Bad Association ID Length",
1168         "Not Connection ID",
1169         "Bad Connection ID Length",
1170         "Not CR_ASSOC Rqst",
1171         "Bad CR_ASSOC ACC Length",
1172         "Not CR_CONN Rqst",
1173         "Bad CR_CONN ACC Length",
1174         "Not Disconnect Rqst",
1175         "Bad Disconnect ACC Length",
1176 };
1177
1178 static int
1179 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
1180         struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
1181 {
1182         struct nvmefc_ls_req_op *lsop;
1183         struct nvmefc_ls_req *lsreq;
1184         struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
1185         struct fcnvme_ls_cr_assoc_acc *assoc_acc;
1186         int ret, fcret = 0;
1187
1188         lsop = kzalloc((sizeof(*lsop) +
1189                          ctrl->lport->ops->lsrqst_priv_sz +
1190                          sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
1191         if (!lsop) {
1192                 ret = -ENOMEM;
1193                 goto out_no_memory;
1194         }
1195         lsreq = &lsop->ls_req;
1196
1197         lsreq->private = (void *)&lsop[1];
1198         assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
1199                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1200         assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
1201
1202         assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
1203         assoc_rqst->desc_list_len =
1204                         cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1205
1206         assoc_rqst->assoc_cmd.desc_tag =
1207                         cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
1208         assoc_rqst->assoc_cmd.desc_len =
1209                         fcnvme_lsdesc_len(
1210                                 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1211
1212         assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1213         assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize - 1);
1214         /* Linux supports only Dynamic controllers */
1215         assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
1216         uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
1217         strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
1218                 min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
1219         strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
1220                 min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
1221
1222         lsop->queue = queue;
1223         lsreq->rqstaddr = assoc_rqst;
1224         lsreq->rqstlen = sizeof(*assoc_rqst);
1225         lsreq->rspaddr = assoc_acc;
1226         lsreq->rsplen = sizeof(*assoc_acc);
1227         lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
1228
1229         ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1230         if (ret)
1231                 goto out_free_buffer;
1232
1233         /* process connect LS completion */
1234
1235         /* validate the ACC response */
1236         if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1237                 fcret = VERR_LSACC;
1238         else if (assoc_acc->hdr.desc_list_len !=
1239                         fcnvme_lsdesc_len(
1240                                 sizeof(struct fcnvme_ls_cr_assoc_acc)))
1241                 fcret = VERR_CR_ASSOC_ACC_LEN;
1242         else if (assoc_acc->hdr.rqst.desc_tag !=
1243                         cpu_to_be32(FCNVME_LSDESC_RQST))
1244                 fcret = VERR_LSDESC_RQST;
1245         else if (assoc_acc->hdr.rqst.desc_len !=
1246                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1247                 fcret = VERR_LSDESC_RQST_LEN;
1248         else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
1249                 fcret = VERR_CR_ASSOC;
1250         else if (assoc_acc->associd.desc_tag !=
1251                         cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1252                 fcret = VERR_ASSOC_ID;
1253         else if (assoc_acc->associd.desc_len !=
1254                         fcnvme_lsdesc_len(
1255                                 sizeof(struct fcnvme_lsdesc_assoc_id)))
1256                 fcret = VERR_ASSOC_ID_LEN;
1257         else if (assoc_acc->connectid.desc_tag !=
1258                         cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1259                 fcret = VERR_CONN_ID;
1260         else if (assoc_acc->connectid.desc_len !=
1261                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1262                 fcret = VERR_CONN_ID_LEN;
1263
1264         if (fcret) {
1265                 ret = -EBADF;
1266                 dev_err(ctrl->dev,
1267                         "q %d Create Association LS failed: %s\n",
1268                         queue->qnum, validation_errors[fcret]);
1269         } else {
1270                 ctrl->association_id =
1271                         be64_to_cpu(assoc_acc->associd.association_id);
1272                 queue->connection_id =
1273                         be64_to_cpu(assoc_acc->connectid.connection_id);
1274                 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1275         }
1276
1277 out_free_buffer:
1278         kfree(lsop);
1279 out_no_memory:
1280         if (ret)
1281                 dev_err(ctrl->dev,
1282                         "queue %d connect admin queue failed (%d).\n",
1283                         queue->qnum, ret);
1284         return ret;
1285 }
1286
1287 static int
1288 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1289                         u16 qsize, u16 ersp_ratio)
1290 {
1291         struct nvmefc_ls_req_op *lsop;
1292         struct nvmefc_ls_req *lsreq;
1293         struct fcnvme_ls_cr_conn_rqst *conn_rqst;
1294         struct fcnvme_ls_cr_conn_acc *conn_acc;
1295         int ret, fcret = 0;
1296
1297         lsop = kzalloc((sizeof(*lsop) +
1298                          ctrl->lport->ops->lsrqst_priv_sz +
1299                          sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
1300         if (!lsop) {
1301                 ret = -ENOMEM;
1302                 goto out_no_memory;
1303         }
1304         lsreq = &lsop->ls_req;
1305
1306         lsreq->private = (void *)&lsop[1];
1307         conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
1308                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1309         conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
1310
1311         conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
1312         conn_rqst->desc_list_len = cpu_to_be32(
1313                                 sizeof(struct fcnvme_lsdesc_assoc_id) +
1314                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1315
1316         conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1317         conn_rqst->associd.desc_len =
1318                         fcnvme_lsdesc_len(
1319                                 sizeof(struct fcnvme_lsdesc_assoc_id));
1320         conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1321         conn_rqst->connect_cmd.desc_tag =
1322                         cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
1323         conn_rqst->connect_cmd.desc_len =
1324                         fcnvme_lsdesc_len(
1325                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1326         conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1327         conn_rqst->connect_cmd.qid  = cpu_to_be16(queue->qnum);
1328         conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize - 1);
1329
1330         lsop->queue = queue;
1331         lsreq->rqstaddr = conn_rqst;
1332         lsreq->rqstlen = sizeof(*conn_rqst);
1333         lsreq->rspaddr = conn_acc;
1334         lsreq->rsplen = sizeof(*conn_acc);
1335         lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
1336
1337         ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1338         if (ret)
1339                 goto out_free_buffer;
1340
1341         /* process connect LS completion */
1342
1343         /* validate the ACC response */
1344         if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1345                 fcret = VERR_LSACC;
1346         else if (conn_acc->hdr.desc_list_len !=
1347                         fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1348                 fcret = VERR_CR_CONN_ACC_LEN;
1349         else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1350                 fcret = VERR_LSDESC_RQST;
1351         else if (conn_acc->hdr.rqst.desc_len !=
1352                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1353                 fcret = VERR_LSDESC_RQST_LEN;
1354         else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1355                 fcret = VERR_CR_CONN;
1356         else if (conn_acc->connectid.desc_tag !=
1357                         cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1358                 fcret = VERR_CONN_ID;
1359         else if (conn_acc->connectid.desc_len !=
1360                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1361                 fcret = VERR_CONN_ID_LEN;
1362
1363         if (fcret) {
1364                 ret = -EBADF;
1365                 dev_err(ctrl->dev,
1366                         "q %d Create I/O Connection LS failed: %s\n",
1367                         queue->qnum, validation_errors[fcret]);
1368         } else {
1369                 queue->connection_id =
1370                         be64_to_cpu(conn_acc->connectid.connection_id);
1371                 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1372         }
1373
1374 out_free_buffer:
1375         kfree(lsop);
1376 out_no_memory:
1377         if (ret)
1378                 dev_err(ctrl->dev,
1379                         "queue %d connect I/O queue failed (%d).\n",
1380                         queue->qnum, ret);
1381         return ret;
1382 }
1383
1384 static void
1385 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1386 {
1387         struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1388
1389         __nvme_fc_finish_ls_req(lsop);
1390
1391         /* fc-nvme initiator doesn't care about success or failure of cmd */
1392
1393         kfree(lsop);
1394 }
1395
1396 /*
1397  * This routine sends a FC-NVME LS to disconnect (aka terminate)
1398  * the FC-NVME Association.  Terminating the association also
1399  * terminates the FC-NVME connections (per queue, both admin and io
1400  * queues) that are part of the association. E.g. things are torn
1401  * down, and the related FC-NVME Association ID and Connection IDs
1402  * become invalid.
1403  *
1404  * The behavior of the fc-nvme initiator is such that it's
1405  * understanding of the association and connections will implicitly
1406  * be torn down. The action is implicit as it may be due to a loss of
1407  * connectivity with the fc-nvme target, so you may never get a
1408  * response even if you tried.  As such, the action of this routine
1409  * is to asynchronously send the LS, ignore any results of the LS, and
1410  * continue on with terminating the association. If the fc-nvme target
1411  * is present and receives the LS, it too can tear down.
1412  */
1413 static void
1414 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1415 {
1416         struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst;
1417         struct fcnvme_ls_disconnect_assoc_acc *discon_acc;
1418         struct nvmefc_ls_req_op *lsop;
1419         struct nvmefc_ls_req *lsreq;
1420         int ret;
1421
1422         lsop = kzalloc((sizeof(*lsop) +
1423                          ctrl->lport->ops->lsrqst_priv_sz +
1424                          sizeof(*discon_rqst) + sizeof(*discon_acc)),
1425                         GFP_KERNEL);
1426         if (!lsop)
1427                 /* couldn't sent it... too bad */
1428                 return;
1429
1430         lsreq = &lsop->ls_req;
1431
1432         lsreq->private = (void *)&lsop[1];
1433         discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)
1434                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1435         discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1];
1436
1437         discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT_ASSOC;
1438         discon_rqst->desc_list_len = cpu_to_be32(
1439                                 sizeof(struct fcnvme_lsdesc_assoc_id) +
1440                                 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1441
1442         discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1443         discon_rqst->associd.desc_len =
1444                         fcnvme_lsdesc_len(
1445                                 sizeof(struct fcnvme_lsdesc_assoc_id));
1446
1447         discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1448
1449         discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
1450                                                 FCNVME_LSDESC_DISCONN_CMD);
1451         discon_rqst->discon_cmd.desc_len =
1452                         fcnvme_lsdesc_len(
1453                                 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1454
1455         lsreq->rqstaddr = discon_rqst;
1456         lsreq->rqstlen = sizeof(*discon_rqst);
1457         lsreq->rspaddr = discon_acc;
1458         lsreq->rsplen = sizeof(*discon_acc);
1459         lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
1460
1461         ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1462                                 nvme_fc_disconnect_assoc_done);
1463         if (ret)
1464                 kfree(lsop);
1465 }
1466
1467
1468 /* *********************** NVME Ctrl Routines **************************** */
1469
1470 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
1471
1472 static void
1473 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1474                 struct nvme_fc_fcp_op *op)
1475 {
1476         fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1477                                 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1478         fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1479                                 sizeof(op->cmd_iu), DMA_TO_DEVICE);
1480
1481         atomic_set(&op->state, FCPOP_STATE_UNINIT);
1482 }
1483
1484 static void
1485 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1486                 unsigned int hctx_idx)
1487 {
1488         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1489
1490         return __nvme_fc_exit_request(set->driver_data, op);
1491 }
1492
1493 static int
1494 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1495 {
1496         unsigned long flags;
1497         int opstate;
1498
1499         spin_lock_irqsave(&ctrl->lock, flags);
1500         opstate = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1501         if (opstate != FCPOP_STATE_ACTIVE)
1502                 atomic_set(&op->state, opstate);
1503         else if (ctrl->flags & FCCTRL_TERMIO)
1504                 ctrl->iocnt++;
1505         spin_unlock_irqrestore(&ctrl->lock, flags);
1506
1507         if (opstate != FCPOP_STATE_ACTIVE)
1508                 return -ECANCELED;
1509
1510         ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1511                                         &ctrl->rport->remoteport,
1512                                         op->queue->lldd_handle,
1513                                         &op->fcp_req);
1514
1515         return 0;
1516 }
1517
1518 static void
1519 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1520 {
1521         struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1522         int i;
1523
1524         /* ensure we've initialized the ops once */
1525         if (!(aen_op->flags & FCOP_FLAGS_AEN))
1526                 return;
1527
1528         for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++)
1529                 __nvme_fc_abort_op(ctrl, aen_op);
1530 }
1531
1532 static inline void
1533 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1534                 struct nvme_fc_fcp_op *op, int opstate)
1535 {
1536         unsigned long flags;
1537
1538         if (opstate == FCPOP_STATE_ABORTED) {
1539                 spin_lock_irqsave(&ctrl->lock, flags);
1540                 if (ctrl->flags & FCCTRL_TERMIO) {
1541                         if (!--ctrl->iocnt)
1542                                 wake_up(&ctrl->ioabort_wait);
1543                 }
1544                 spin_unlock_irqrestore(&ctrl->lock, flags);
1545         }
1546 }
1547
1548 static void
1549 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1550 {
1551         struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1552         struct request *rq = op->rq;
1553         struct nvmefc_fcp_req *freq = &op->fcp_req;
1554         struct nvme_fc_ctrl *ctrl = op->ctrl;
1555         struct nvme_fc_queue *queue = op->queue;
1556         struct nvme_completion *cqe = &op->rsp_iu.cqe;
1557         struct nvme_command *sqe = &op->cmd_iu.sqe;
1558         __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1559         union nvme_result result;
1560         bool terminate_assoc = true;
1561         int opstate;
1562
1563         /*
1564          * WARNING:
1565          * The current linux implementation of a nvme controller
1566          * allocates a single tag set for all io queues and sizes
1567          * the io queues to fully hold all possible tags. Thus, the
1568          * implementation does not reference or care about the sqhd
1569          * value as it never needs to use the sqhd/sqtail pointers
1570          * for submission pacing.
1571          *
1572          * This affects the FC-NVME implementation in two ways:
1573          * 1) As the value doesn't matter, we don't need to waste
1574          *    cycles extracting it from ERSPs and stamping it in the
1575          *    cases where the transport fabricates CQEs on successful
1576          *    completions.
1577          * 2) The FC-NVME implementation requires that delivery of
1578          *    ERSP completions are to go back to the nvme layer in order
1579          *    relative to the rsn, such that the sqhd value will always
1580          *    be "in order" for the nvme layer. As the nvme layer in
1581          *    linux doesn't care about sqhd, there's no need to return
1582          *    them in order.
1583          *
1584          * Additionally:
1585          * As the core nvme layer in linux currently does not look at
1586          * every field in the cqe - in cases where the FC transport must
1587          * fabricate a CQE, the following fields will not be set as they
1588          * are not referenced:
1589          *      cqe.sqid,  cqe.sqhd,  cqe.command_id
1590          *
1591          * Failure or error of an individual i/o, in a transport
1592          * detected fashion unrelated to the nvme completion status,
1593          * potentially cause the initiator and target sides to get out
1594          * of sync on SQ head/tail (aka outstanding io count allowed).
1595          * Per FC-NVME spec, failure of an individual command requires
1596          * the connection to be terminated, which in turn requires the
1597          * association to be terminated.
1598          */
1599
1600         opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
1601
1602         fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1603                                 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1604
1605         if (opstate == FCPOP_STATE_ABORTED)
1606                 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1607         else if (freq->status) {
1608                 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1609                 dev_info(ctrl->ctrl.device,
1610                         "NVME-FC{%d}: io failed due to lldd error %d\n",
1611                         ctrl->cnum, freq->status);
1612         }
1613
1614         /*
1615          * For the linux implementation, if we have an unsuccesful
1616          * status, they blk-mq layer can typically be called with the
1617          * non-zero status and the content of the cqe isn't important.
1618          */
1619         if (status)
1620                 goto done;
1621
1622         /*
1623          * command completed successfully relative to the wire
1624          * protocol. However, validate anything received and
1625          * extract the status and result from the cqe (create it
1626          * where necessary).
1627          */
1628
1629         switch (freq->rcv_rsplen) {
1630
1631         case 0:
1632         case NVME_FC_SIZEOF_ZEROS_RSP:
1633                 /*
1634                  * No response payload or 12 bytes of payload (which
1635                  * should all be zeros) are considered successful and
1636                  * no payload in the CQE by the transport.
1637                  */
1638                 if (freq->transferred_length !=
1639                     be32_to_cpu(op->cmd_iu.data_len)) {
1640                         status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1641                         dev_info(ctrl->ctrl.device,
1642                                 "NVME-FC{%d}: io failed due to bad transfer "
1643                                 "length: %d vs expected %d\n",
1644                                 ctrl->cnum, freq->transferred_length,
1645                                 be32_to_cpu(op->cmd_iu.data_len));
1646                         goto done;
1647                 }
1648                 result.u64 = 0;
1649                 break;
1650
1651         case sizeof(struct nvme_fc_ersp_iu):
1652                 /*
1653                  * The ERSP IU contains a full completion with CQE.
1654                  * Validate ERSP IU and look at cqe.
1655                  */
1656                 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1657                                         (freq->rcv_rsplen / 4) ||
1658                              be32_to_cpu(op->rsp_iu.xfrd_len) !=
1659                                         freq->transferred_length ||
1660                              op->rsp_iu.ersp_result ||
1661                              sqe->common.command_id != cqe->command_id)) {
1662                         status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1663                         dev_info(ctrl->ctrl.device,
1664                                 "NVME-FC{%d}: io failed due to bad NVMe_ERSP: "
1665                                 "iu len %d, xfr len %d vs %d, status code "
1666                                 "%d, cmdid %d vs %d\n",
1667                                 ctrl->cnum, be16_to_cpu(op->rsp_iu.iu_len),
1668                                 be32_to_cpu(op->rsp_iu.xfrd_len),
1669                                 freq->transferred_length,
1670                                 op->rsp_iu.ersp_result,
1671                                 sqe->common.command_id,
1672                                 cqe->command_id);
1673                         goto done;
1674                 }
1675                 result = cqe->result;
1676                 status = cqe->status;
1677                 break;
1678
1679         default:
1680                 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1681                 dev_info(ctrl->ctrl.device,
1682                         "NVME-FC{%d}: io failed due to odd NVMe_xRSP iu "
1683                         "len %d\n",
1684                         ctrl->cnum, freq->rcv_rsplen);
1685                 goto done;
1686         }
1687
1688         terminate_assoc = false;
1689
1690 done:
1691         if (op->flags & FCOP_FLAGS_AEN) {
1692                 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
1693                 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
1694                 atomic_set(&op->state, FCPOP_STATE_IDLE);
1695                 op->flags = FCOP_FLAGS_AEN;     /* clear other flags */
1696                 nvme_fc_ctrl_put(ctrl);
1697                 goto check_error;
1698         }
1699
1700         __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
1701         nvme_end_request(rq, status, result);
1702
1703 check_error:
1704         if (terminate_assoc)
1705                 nvme_fc_error_recovery(ctrl, "transport detected io error");
1706 }
1707
1708 static int
1709 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
1710                 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
1711                 struct request *rq, u32 rqno)
1712 {
1713         struct nvme_fcp_op_w_sgl *op_w_sgl =
1714                 container_of(op, typeof(*op_w_sgl), op);
1715         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1716         int ret = 0;
1717
1718         memset(op, 0, sizeof(*op));
1719         op->fcp_req.cmdaddr = &op->cmd_iu;
1720         op->fcp_req.cmdlen = sizeof(op->cmd_iu);
1721         op->fcp_req.rspaddr = &op->rsp_iu;
1722         op->fcp_req.rsplen = sizeof(op->rsp_iu);
1723         op->fcp_req.done = nvme_fc_fcpio_done;
1724         op->ctrl = ctrl;
1725         op->queue = queue;
1726         op->rq = rq;
1727         op->rqno = rqno;
1728
1729         cmdiu->format_id = NVME_CMD_FORMAT_ID;
1730         cmdiu->fc_id = NVME_CMD_FC_ID;
1731         cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1732         if (queue->qnum)
1733                 cmdiu->rsv_cat = fccmnd_set_cat_css(0,
1734                                         (NVME_CC_CSS_NVM >> NVME_CC_CSS_SHIFT));
1735         else
1736                 cmdiu->rsv_cat = fccmnd_set_cat_admin(0);
1737
1738         op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
1739                                 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
1740         if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
1741                 dev_err(ctrl->dev,
1742                         "FCP Op failed - cmdiu dma mapping failed.\n");
1743                 ret = EFAULT;
1744                 goto out_on_error;
1745         }
1746
1747         op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
1748                                 &op->rsp_iu, sizeof(op->rsp_iu),
1749                                 DMA_FROM_DEVICE);
1750         if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
1751                 dev_err(ctrl->dev,
1752                         "FCP Op failed - rspiu dma mapping failed.\n");
1753                 ret = EFAULT;
1754         }
1755
1756         atomic_set(&op->state, FCPOP_STATE_IDLE);
1757 out_on_error:
1758         return ret;
1759 }
1760
1761 static int
1762 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
1763                 unsigned int hctx_idx, unsigned int numa_node)
1764 {
1765         struct nvme_fc_ctrl *ctrl = set->driver_data;
1766         struct nvme_fcp_op_w_sgl *op = blk_mq_rq_to_pdu(rq);
1767         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
1768         struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
1769         int res;
1770
1771         res = __nvme_fc_init_request(ctrl, queue, &op->op, rq, queue->rqcnt++);
1772         if (res)
1773                 return res;
1774         op->op.fcp_req.first_sgl = &op->sgl[0];
1775         op->op.fcp_req.private = &op->priv[0];
1776         nvme_req(rq)->ctrl = &ctrl->ctrl;
1777         return res;
1778 }
1779
1780 static int
1781 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
1782 {
1783         struct nvme_fc_fcp_op *aen_op;
1784         struct nvme_fc_cmd_iu *cmdiu;
1785         struct nvme_command *sqe;
1786         void *private;
1787         int i, ret;
1788
1789         aen_op = ctrl->aen_ops;
1790         for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1791                 private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
1792                                                 GFP_KERNEL);
1793                 if (!private)
1794                         return -ENOMEM;
1795
1796                 cmdiu = &aen_op->cmd_iu;
1797                 sqe = &cmdiu->sqe;
1798                 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
1799                                 aen_op, (struct request *)NULL,
1800                                 (NVME_AQ_BLK_MQ_DEPTH + i));
1801                 if (ret) {
1802                         kfree(private);
1803                         return ret;
1804                 }
1805
1806                 aen_op->flags = FCOP_FLAGS_AEN;
1807                 aen_op->fcp_req.private = private;
1808
1809                 memset(sqe, 0, sizeof(*sqe));
1810                 sqe->common.opcode = nvme_admin_async_event;
1811                 /* Note: core layer may overwrite the sqe.command_id value */
1812                 sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i;
1813         }
1814         return 0;
1815 }
1816
1817 static void
1818 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
1819 {
1820         struct nvme_fc_fcp_op *aen_op;
1821         int i;
1822
1823         aen_op = ctrl->aen_ops;
1824         for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1825                 if (!aen_op->fcp_req.private)
1826                         continue;
1827
1828                 __nvme_fc_exit_request(ctrl, aen_op);
1829
1830                 kfree(aen_op->fcp_req.private);
1831                 aen_op->fcp_req.private = NULL;
1832         }
1833 }
1834
1835 static inline void
1836 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
1837                 unsigned int qidx)
1838 {
1839         struct nvme_fc_queue *queue = &ctrl->queues[qidx];
1840
1841         hctx->driver_data = queue;
1842         queue->hctx = hctx;
1843 }
1844
1845 static int
1846 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1847                 unsigned int hctx_idx)
1848 {
1849         struct nvme_fc_ctrl *ctrl = data;
1850
1851         __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
1852
1853         return 0;
1854 }
1855
1856 static int
1857 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1858                 unsigned int hctx_idx)
1859 {
1860         struct nvme_fc_ctrl *ctrl = data;
1861
1862         __nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
1863
1864         return 0;
1865 }
1866
1867 static void
1868 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx)
1869 {
1870         struct nvme_fc_queue *queue;
1871
1872         queue = &ctrl->queues[idx];
1873         memset(queue, 0, sizeof(*queue));
1874         queue->ctrl = ctrl;
1875         queue->qnum = idx;
1876         atomic_set(&queue->csn, 0);
1877         queue->dev = ctrl->dev;
1878
1879         if (idx > 0)
1880                 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1881         else
1882                 queue->cmnd_capsule_len = sizeof(struct nvme_command);
1883
1884         /*
1885          * Considered whether we should allocate buffers for all SQEs
1886          * and CQEs and dma map them - mapping their respective entries
1887          * into the request structures (kernel vm addr and dma address)
1888          * thus the driver could use the buffers/mappings directly.
1889          * It only makes sense if the LLDD would use them for its
1890          * messaging api. It's very unlikely most adapter api's would use
1891          * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1892          * structures were used instead.
1893          */
1894 }
1895
1896 /*
1897  * This routine terminates a queue at the transport level.
1898  * The transport has already ensured that all outstanding ios on
1899  * the queue have been terminated.
1900  * The transport will send a Disconnect LS request to terminate
1901  * the queue's connection. Termination of the admin queue will also
1902  * terminate the association at the target.
1903  */
1904 static void
1905 nvme_fc_free_queue(struct nvme_fc_queue *queue)
1906 {
1907         if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
1908                 return;
1909
1910         clear_bit(NVME_FC_Q_LIVE, &queue->flags);
1911         /*
1912          * Current implementation never disconnects a single queue.
1913          * It always terminates a whole association. So there is never
1914          * a disconnect(queue) LS sent to the target.
1915          */
1916
1917         queue->connection_id = 0;
1918         atomic_set(&queue->csn, 0);
1919 }
1920
1921 static void
1922 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
1923         struct nvme_fc_queue *queue, unsigned int qidx)
1924 {
1925         if (ctrl->lport->ops->delete_queue)
1926                 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
1927                                 queue->lldd_handle);
1928         queue->lldd_handle = NULL;
1929 }
1930
1931 static void
1932 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
1933 {
1934         int i;
1935
1936         for (i = 1; i < ctrl->ctrl.queue_count; i++)
1937                 nvme_fc_free_queue(&ctrl->queues[i]);
1938 }
1939
1940 static int
1941 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
1942         struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
1943 {
1944         int ret = 0;
1945
1946         queue->lldd_handle = NULL;
1947         if (ctrl->lport->ops->create_queue)
1948                 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
1949                                 qidx, qsize, &queue->lldd_handle);
1950
1951         return ret;
1952 }
1953
1954 static void
1955 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
1956 {
1957         struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
1958         int i;
1959
1960         for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
1961                 __nvme_fc_delete_hw_queue(ctrl, queue, i);
1962 }
1963
1964 static int
1965 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1966 {
1967         struct nvme_fc_queue *queue = &ctrl->queues[1];
1968         int i, ret;
1969
1970         for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
1971                 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
1972                 if (ret)
1973                         goto delete_queues;
1974         }
1975
1976         return 0;
1977
1978 delete_queues:
1979         for (; i >= 0; i--)
1980                 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
1981         return ret;
1982 }
1983
1984 static int
1985 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1986 {
1987         int i, ret = 0;
1988
1989         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
1990                 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
1991                                         (qsize / 5));
1992                 if (ret)
1993                         break;
1994                 ret = nvmf_connect_io_queue(&ctrl->ctrl, i, false);
1995                 if (ret)
1996                         break;
1997
1998                 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags);
1999         }
2000
2001         return ret;
2002 }
2003
2004 static void
2005 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
2006 {
2007         int i;
2008
2009         for (i = 1; i < ctrl->ctrl.queue_count; i++)
2010                 nvme_fc_init_queue(ctrl, i);
2011 }
2012
2013 static void
2014 nvme_fc_ctrl_free(struct kref *ref)
2015 {
2016         struct nvme_fc_ctrl *ctrl =
2017                 container_of(ref, struct nvme_fc_ctrl, ref);
2018         unsigned long flags;
2019
2020         if (ctrl->ctrl.tagset) {
2021                 blk_cleanup_queue(ctrl->ctrl.connect_q);
2022                 blk_mq_free_tag_set(&ctrl->tag_set);
2023         }
2024
2025         /* remove from rport list */
2026         spin_lock_irqsave(&ctrl->rport->lock, flags);
2027         list_del(&ctrl->ctrl_list);
2028         spin_unlock_irqrestore(&ctrl->rport->lock, flags);
2029
2030         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2031         blk_cleanup_queue(ctrl->ctrl.admin_q);
2032         blk_cleanup_queue(ctrl->ctrl.fabrics_q);
2033         blk_mq_free_tag_set(&ctrl->admin_tag_set);
2034
2035         kfree(ctrl->queues);
2036
2037         put_device(ctrl->dev);
2038         nvme_fc_rport_put(ctrl->rport);
2039
2040         ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2041         if (ctrl->ctrl.opts)
2042                 nvmf_free_options(ctrl->ctrl.opts);
2043         kfree(ctrl);
2044 }
2045
2046 static void
2047 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
2048 {
2049         kref_put(&ctrl->ref, nvme_fc_ctrl_free);
2050 }
2051
2052 static int
2053 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
2054 {
2055         return kref_get_unless_zero(&ctrl->ref);
2056 }
2057
2058 /*
2059  * All accesses from nvme core layer done - can now free the
2060  * controller. Called after last nvme_put_ctrl() call
2061  */
2062 static void
2063 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
2064 {
2065         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2066
2067         WARN_ON(nctrl != &ctrl->ctrl);
2068
2069         nvme_fc_ctrl_put(ctrl);
2070 }
2071
2072 static void
2073 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
2074 {
2075         int active;
2076
2077         /*
2078          * if an error (io timeout, etc) while (re)connecting,
2079          * it's an error on creating the new association.
2080          * Start the error recovery thread if it hasn't already
2081          * been started. It is expected there could be multiple
2082          * ios hitting this path before things are cleaned up.
2083          */
2084         if (ctrl->ctrl.state == NVME_CTRL_CONNECTING) {
2085                 active = atomic_xchg(&ctrl->err_work_active, 1);
2086                 if (!active && !queue_work(nvme_fc_wq, &ctrl->err_work)) {
2087                         atomic_set(&ctrl->err_work_active, 0);
2088                         WARN_ON(1);
2089                 }
2090                 return;
2091         }
2092
2093         /* Otherwise, only proceed if in LIVE state - e.g. on first error */
2094         if (ctrl->ctrl.state != NVME_CTRL_LIVE)
2095                 return;
2096
2097         dev_warn(ctrl->ctrl.device,
2098                 "NVME-FC{%d}: transport association error detected: %s\n",
2099                 ctrl->cnum, errmsg);
2100         dev_warn(ctrl->ctrl.device,
2101                 "NVME-FC{%d}: resetting controller\n", ctrl->cnum);
2102
2103         nvme_reset_ctrl(&ctrl->ctrl);
2104 }
2105
2106 static enum blk_eh_timer_return
2107 nvme_fc_timeout(struct request *rq, bool reserved)
2108 {
2109         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2110         struct nvme_fc_ctrl *ctrl = op->ctrl;
2111
2112         /*
2113          * we can't individually ABTS an io without affecting the queue,
2114          * thus killing the queue, and thus the association.
2115          * So resolve by performing a controller reset, which will stop
2116          * the host/io stack, terminate the association on the link,
2117          * and recreate an association on the link.
2118          */
2119         nvme_fc_error_recovery(ctrl, "io timeout error");
2120
2121         /*
2122          * the io abort has been initiated. Have the reset timer
2123          * restarted and the abort completion will complete the io
2124          * shortly. Avoids a synchronous wait while the abort finishes.
2125          */
2126         return BLK_EH_RESET_TIMER;
2127 }
2128
2129 static int
2130 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2131                 struct nvme_fc_fcp_op *op)
2132 {
2133         struct nvmefc_fcp_req *freq = &op->fcp_req;
2134         int ret;
2135
2136         freq->sg_cnt = 0;
2137
2138         if (!blk_rq_nr_phys_segments(rq))
2139                 return 0;
2140
2141         freq->sg_table.sgl = freq->first_sgl;
2142         ret = sg_alloc_table_chained(&freq->sg_table,
2143                         blk_rq_nr_phys_segments(rq), freq->sg_table.sgl,
2144                         SG_CHUNK_SIZE);
2145         if (ret)
2146                 return -ENOMEM;
2147
2148         op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
2149         WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
2150         freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
2151                                 op->nents, rq_dma_dir(rq));
2152         if (unlikely(freq->sg_cnt <= 0)) {
2153                 sg_free_table_chained(&freq->sg_table, SG_CHUNK_SIZE);
2154                 freq->sg_cnt = 0;
2155                 return -EFAULT;
2156         }
2157
2158         /*
2159          * TODO: blk_integrity_rq(rq)  for DIF
2160          */
2161         return 0;
2162 }
2163
2164 static void
2165 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2166                 struct nvme_fc_fcp_op *op)
2167 {
2168         struct nvmefc_fcp_req *freq = &op->fcp_req;
2169
2170         if (!freq->sg_cnt)
2171                 return;
2172
2173         fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
2174                         rq_dma_dir(rq));
2175
2176         sg_free_table_chained(&freq->sg_table, SG_CHUNK_SIZE);
2177
2178         freq->sg_cnt = 0;
2179 }
2180
2181 /*
2182  * In FC, the queue is a logical thing. At transport connect, the target
2183  * creates its "queue" and returns a handle that is to be given to the
2184  * target whenever it posts something to the corresponding SQ.  When an
2185  * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
2186  * command contained within the SQE, an io, and assigns a FC exchange
2187  * to it. The SQE and the associated SQ handle are sent in the initial
2188  * CMD IU sents on the exchange. All transfers relative to the io occur
2189  * as part of the exchange.  The CQE is the last thing for the io,
2190  * which is transferred (explicitly or implicitly) with the RSP IU
2191  * sent on the exchange. After the CQE is received, the FC exchange is
2192  * terminaed and the Exchange may be used on a different io.
2193  *
2194  * The transport to LLDD api has the transport making a request for a
2195  * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
2196  * resource and transfers the command. The LLDD will then process all
2197  * steps to complete the io. Upon completion, the transport done routine
2198  * is called.
2199  *
2200  * So - while the operation is outstanding to the LLDD, there is a link
2201  * level FC exchange resource that is also outstanding. This must be
2202  * considered in all cleanup operations.
2203  */
2204 static blk_status_t
2205 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
2206         struct nvme_fc_fcp_op *op, u32 data_len,
2207         enum nvmefc_fcp_datadir io_dir)
2208 {
2209         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2210         struct nvme_command *sqe = &cmdiu->sqe;
2211         int ret, opstate;
2212
2213         /*
2214          * before attempting to send the io, check to see if we believe
2215          * the target device is present
2216          */
2217         if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2218                 return BLK_STS_RESOURCE;
2219
2220         if (!nvme_fc_ctrl_get(ctrl))
2221                 return BLK_STS_IOERR;
2222
2223         /* format the FC-NVME CMD IU and fcp_req */
2224         cmdiu->connection_id = cpu_to_be64(queue->connection_id);
2225         cmdiu->data_len = cpu_to_be32(data_len);
2226         switch (io_dir) {
2227         case NVMEFC_FCP_WRITE:
2228                 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
2229                 break;
2230         case NVMEFC_FCP_READ:
2231                 cmdiu->flags = FCNVME_CMD_FLAGS_READ;
2232                 break;
2233         case NVMEFC_FCP_NODATA:
2234                 cmdiu->flags = 0;
2235                 break;
2236         }
2237         op->fcp_req.payload_length = data_len;
2238         op->fcp_req.io_dir = io_dir;
2239         op->fcp_req.transferred_length = 0;
2240         op->fcp_req.rcv_rsplen = 0;
2241         op->fcp_req.status = NVME_SC_SUCCESS;
2242         op->fcp_req.sqid = cpu_to_le16(queue->qnum);
2243
2244         /*
2245          * validate per fabric rules, set fields mandated by fabric spec
2246          * as well as those by FC-NVME spec.
2247          */
2248         WARN_ON_ONCE(sqe->common.metadata);
2249         sqe->common.flags |= NVME_CMD_SGL_METABUF;
2250
2251         /*
2252          * format SQE DPTR field per FC-NVME rules:
2253          *    type=0x5     Transport SGL Data Block Descriptor
2254          *    subtype=0xA  Transport-specific value
2255          *    address=0
2256          *    length=length of the data series
2257          */
2258         sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2259                                         NVME_SGL_FMT_TRANSPORT_A;
2260         sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
2261         sqe->rw.dptr.sgl.addr = 0;
2262
2263         if (!(op->flags & FCOP_FLAGS_AEN)) {
2264                 ret = nvme_fc_map_data(ctrl, op->rq, op);
2265                 if (ret < 0) {
2266                         nvme_cleanup_cmd(op->rq);
2267                         nvme_fc_ctrl_put(ctrl);
2268                         if (ret == -ENOMEM || ret == -EAGAIN)
2269                                 return BLK_STS_RESOURCE;
2270                         return BLK_STS_IOERR;
2271                 }
2272         }
2273
2274         fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
2275                                   sizeof(op->cmd_iu), DMA_TO_DEVICE);
2276
2277         atomic_set(&op->state, FCPOP_STATE_ACTIVE);
2278
2279         if (!(op->flags & FCOP_FLAGS_AEN))
2280                 blk_mq_start_request(op->rq);
2281
2282         cmdiu->csn = cpu_to_be32(atomic_inc_return(&queue->csn));
2283         ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
2284                                         &ctrl->rport->remoteport,
2285                                         queue->lldd_handle, &op->fcp_req);
2286
2287         if (ret) {
2288                 /*
2289                  * If the lld fails to send the command is there an issue with
2290                  * the csn value?  If the command that fails is the Connect,
2291                  * no - as the connection won't be live.  If it is a command
2292                  * post-connect, it's possible a gap in csn may be created.
2293                  * Does this matter?  As Linux initiators don't send fused
2294                  * commands, no.  The gap would exist, but as there's nothing
2295                  * that depends on csn order to be delivered on the target
2296                  * side, it shouldn't hurt.  It would be difficult for a
2297                  * target to even detect the csn gap as it has no idea when the
2298                  * cmd with the csn was supposed to arrive.
2299                  */
2300                 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
2301                 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2302
2303                 if (!(op->flags & FCOP_FLAGS_AEN))
2304                         nvme_fc_unmap_data(ctrl, op->rq, op);
2305
2306                 nvme_cleanup_cmd(op->rq);
2307                 nvme_fc_ctrl_put(ctrl);
2308
2309                 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
2310                                 ret != -EBUSY)
2311                         return BLK_STS_IOERR;
2312
2313                 return BLK_STS_RESOURCE;
2314         }
2315
2316         return BLK_STS_OK;
2317 }
2318
2319 static blk_status_t
2320 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
2321                         const struct blk_mq_queue_data *bd)
2322 {
2323         struct nvme_ns *ns = hctx->queue->queuedata;
2324         struct nvme_fc_queue *queue = hctx->driver_data;
2325         struct nvme_fc_ctrl *ctrl = queue->ctrl;
2326         struct request *rq = bd->rq;
2327         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2328         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2329         struct nvme_command *sqe = &cmdiu->sqe;
2330         enum nvmefc_fcp_datadir io_dir;
2331         bool queue_ready = test_bit(NVME_FC_Q_LIVE, &queue->flags);
2332         u32 data_len;
2333         blk_status_t ret;
2334
2335         if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE ||
2336             !nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2337                 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2338
2339         ret = nvme_setup_cmd(ns, rq, sqe);
2340         if (ret)
2341                 return ret;
2342
2343         /*
2344          * nvme core doesn't quite treat the rq opaquely. Commands such
2345          * as WRITE ZEROES will return a non-zero rq payload_bytes yet
2346          * there is no actual payload to be transferred.
2347          * To get it right, key data transmission on there being 1 or
2348          * more physical segments in the sg list. If there is no
2349          * physical segments, there is no payload.
2350          */
2351         if (blk_rq_nr_phys_segments(rq)) {
2352                 data_len = blk_rq_payload_bytes(rq);
2353                 io_dir = ((rq_data_dir(rq) == WRITE) ?
2354                                         NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2355         } else {
2356                 data_len = 0;
2357                 io_dir = NVMEFC_FCP_NODATA;
2358         }
2359
2360
2361         return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2362 }
2363
2364 static void
2365 nvme_fc_submit_async_event(struct nvme_ctrl *arg)
2366 {
2367         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2368         struct nvme_fc_fcp_op *aen_op;
2369         unsigned long flags;
2370         bool terminating = false;
2371         blk_status_t ret;
2372
2373         spin_lock_irqsave(&ctrl->lock, flags);
2374         if (ctrl->flags & FCCTRL_TERMIO)
2375                 terminating = true;
2376         spin_unlock_irqrestore(&ctrl->lock, flags);
2377
2378         if (terminating)
2379                 return;
2380
2381         aen_op = &ctrl->aen_ops[0];
2382
2383         ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2384                                         NVMEFC_FCP_NODATA);
2385         if (ret)
2386                 dev_err(ctrl->ctrl.device,
2387                         "failed async event work\n");
2388 }
2389
2390 static void
2391 nvme_fc_complete_rq(struct request *rq)
2392 {
2393         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2394         struct nvme_fc_ctrl *ctrl = op->ctrl;
2395
2396         atomic_set(&op->state, FCPOP_STATE_IDLE);
2397
2398         nvme_fc_unmap_data(ctrl, rq, op);
2399         nvme_complete_rq(rq);
2400         nvme_fc_ctrl_put(ctrl);
2401 }
2402
2403 /*
2404  * This routine is used by the transport when it needs to find active
2405  * io on a queue that is to be terminated. The transport uses
2406  * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2407  * this routine to kill them on a 1 by 1 basis.
2408  *
2409  * As FC allocates FC exchange for each io, the transport must contact
2410  * the LLDD to terminate the exchange, thus releasing the FC exchange.
2411  * After terminating the exchange the LLDD will call the transport's
2412  * normal io done path for the request, but it will have an aborted
2413  * status. The done path will return the io request back to the block
2414  * layer with an error status.
2415  */
2416 static bool
2417 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2418 {
2419         struct nvme_ctrl *nctrl = data;
2420         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2421         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2422
2423         __nvme_fc_abort_op(ctrl, op);
2424         return true;
2425 }
2426
2427
2428 static const struct blk_mq_ops nvme_fc_mq_ops = {
2429         .queue_rq       = nvme_fc_queue_rq,
2430         .complete       = nvme_fc_complete_rq,
2431         .init_request   = nvme_fc_init_request,
2432         .exit_request   = nvme_fc_exit_request,
2433         .init_hctx      = nvme_fc_init_hctx,
2434         .timeout        = nvme_fc_timeout,
2435 };
2436
2437 static int
2438 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2439 {
2440         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2441         unsigned int nr_io_queues;
2442         int ret;
2443
2444         nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2445                                 ctrl->lport->ops->max_hw_queues);
2446         ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2447         if (ret) {
2448                 dev_info(ctrl->ctrl.device,
2449                         "set_queue_count failed: %d\n", ret);
2450                 return ret;
2451         }
2452
2453         ctrl->ctrl.queue_count = nr_io_queues + 1;
2454         if (!nr_io_queues)
2455                 return 0;
2456
2457         nvme_fc_init_io_queues(ctrl);
2458
2459         memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2460         ctrl->tag_set.ops = &nvme_fc_mq_ops;
2461         ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2462         ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2463         ctrl->tag_set.numa_node = ctrl->ctrl.numa_node;
2464         ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2465         ctrl->tag_set.cmd_size =
2466                 struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv,
2467                             ctrl->lport->ops->fcprqst_priv_sz);
2468         ctrl->tag_set.driver_data = ctrl;
2469         ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1;
2470         ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2471
2472         ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2473         if (ret)
2474                 return ret;
2475
2476         ctrl->ctrl.tagset = &ctrl->tag_set;
2477
2478         ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2479         if (IS_ERR(ctrl->ctrl.connect_q)) {
2480                 ret = PTR_ERR(ctrl->ctrl.connect_q);
2481                 goto out_free_tag_set;
2482         }
2483
2484         ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2485         if (ret)
2486                 goto out_cleanup_blk_queue;
2487
2488         ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2489         if (ret)
2490                 goto out_delete_hw_queues;
2491
2492         ctrl->ioq_live = true;
2493
2494         return 0;
2495
2496 out_delete_hw_queues:
2497         nvme_fc_delete_hw_io_queues(ctrl);
2498 out_cleanup_blk_queue:
2499         blk_cleanup_queue(ctrl->ctrl.connect_q);
2500 out_free_tag_set:
2501         blk_mq_free_tag_set(&ctrl->tag_set);
2502         nvme_fc_free_io_queues(ctrl);
2503
2504         /* force put free routine to ignore io queues */
2505         ctrl->ctrl.tagset = NULL;
2506
2507         return ret;
2508 }
2509
2510 static int
2511 nvme_fc_recreate_io_queues(struct nvme_fc_ctrl *ctrl)
2512 {
2513         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2514         u32 prior_ioq_cnt = ctrl->ctrl.queue_count - 1;
2515         unsigned int nr_io_queues;
2516         int ret;
2517
2518         nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2519                                 ctrl->lport->ops->max_hw_queues);
2520         ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2521         if (ret) {
2522                 dev_info(ctrl->ctrl.device,
2523                         "set_queue_count failed: %d\n", ret);
2524                 return ret;
2525         }
2526
2527         if (!nr_io_queues && prior_ioq_cnt) {
2528                 dev_info(ctrl->ctrl.device,
2529                         "Fail Reconnect: At least 1 io queue "
2530                         "required (was %d)\n", prior_ioq_cnt);
2531                 return -ENOSPC;
2532         }
2533
2534         ctrl->ctrl.queue_count = nr_io_queues + 1;
2535         /* check for io queues existing */
2536         if (ctrl->ctrl.queue_count == 1)
2537                 return 0;
2538
2539         ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2540         if (ret)
2541                 goto out_free_io_queues;
2542
2543         ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2544         if (ret)
2545                 goto out_delete_hw_queues;
2546
2547         if (prior_ioq_cnt != nr_io_queues)
2548                 dev_info(ctrl->ctrl.device,
2549                         "reconnect: revising io queue count from %d to %d\n",
2550                         prior_ioq_cnt, nr_io_queues);
2551         blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
2552
2553         return 0;
2554
2555 out_delete_hw_queues:
2556         nvme_fc_delete_hw_io_queues(ctrl);
2557 out_free_io_queues:
2558         nvme_fc_free_io_queues(ctrl);
2559         return ret;
2560 }
2561
2562 static void
2563 nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport)
2564 {
2565         struct nvme_fc_lport *lport = rport->lport;
2566
2567         atomic_inc(&lport->act_rport_cnt);
2568 }
2569
2570 static void
2571 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport)
2572 {
2573         struct nvme_fc_lport *lport = rport->lport;
2574         u32 cnt;
2575
2576         cnt = atomic_dec_return(&lport->act_rport_cnt);
2577         if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED)
2578                 lport->ops->localport_delete(&lport->localport);
2579 }
2580
2581 static int
2582 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl)
2583 {
2584         struct nvme_fc_rport *rport = ctrl->rport;
2585         u32 cnt;
2586
2587         if (ctrl->assoc_active)
2588                 return 1;
2589
2590         ctrl->assoc_active = true;
2591         cnt = atomic_inc_return(&rport->act_ctrl_cnt);
2592         if (cnt == 1)
2593                 nvme_fc_rport_active_on_lport(rport);
2594
2595         return 0;
2596 }
2597
2598 static int
2599 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl)
2600 {
2601         struct nvme_fc_rport *rport = ctrl->rport;
2602         struct nvme_fc_lport *lport = rport->lport;
2603         u32 cnt;
2604
2605         /* ctrl->assoc_active=false will be set independently */
2606
2607         cnt = atomic_dec_return(&rport->act_ctrl_cnt);
2608         if (cnt == 0) {
2609                 if (rport->remoteport.port_state == FC_OBJSTATE_DELETED)
2610                         lport->ops->remoteport_delete(&rport->remoteport);
2611                 nvme_fc_rport_inactive_on_lport(rport);
2612         }
2613
2614         return 0;
2615 }
2616
2617 /*
2618  * This routine restarts the controller on the host side, and
2619  * on the link side, recreates the controller association.
2620  */
2621 static int
2622 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
2623 {
2624         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2625         int ret;
2626         bool changed;
2627
2628         ++ctrl->ctrl.nr_reconnects;
2629
2630         if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2631                 return -ENODEV;
2632
2633         if (nvme_fc_ctlr_active_on_rport(ctrl))
2634                 return -ENOTUNIQ;
2635
2636         dev_info(ctrl->ctrl.device,
2637                 "NVME-FC{%d}: create association : host wwpn 0x%016llx "
2638                 " rport wwpn 0x%016llx: NQN \"%s\"\n",
2639                 ctrl->cnum, ctrl->lport->localport.port_name,
2640                 ctrl->rport->remoteport.port_name, ctrl->ctrl.opts->subsysnqn);
2641
2642         /*
2643          * Create the admin queue
2644          */
2645
2646         ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
2647                                 NVME_AQ_DEPTH);
2648         if (ret)
2649                 goto out_free_queue;
2650
2651         ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
2652                                 NVME_AQ_DEPTH, (NVME_AQ_DEPTH / 4));
2653         if (ret)
2654                 goto out_delete_hw_queue;
2655
2656         ret = nvmf_connect_admin_queue(&ctrl->ctrl);
2657         if (ret)
2658                 goto out_disconnect_admin_queue;
2659
2660         set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
2661
2662         /*
2663          * Check controller capabilities
2664          *
2665          * todo:- add code to check if ctrl attributes changed from
2666          * prior connection values
2667          */
2668
2669         ret = nvme_enable_ctrl(&ctrl->ctrl);
2670         if (ret)
2671                 goto out_disconnect_admin_queue;
2672
2673         ctrl->ctrl.max_hw_sectors =
2674                 (ctrl->lport->ops->max_sgl_segments - 1) << (PAGE_SHIFT - 9);
2675
2676         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2677
2678         ret = nvme_init_identify(&ctrl->ctrl);
2679         if (ret)
2680                 goto out_disconnect_admin_queue;
2681
2682         /* sanity checks */
2683
2684         /* FC-NVME does not have other data in the capsule */
2685         if (ctrl->ctrl.icdoff) {
2686                 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
2687                                 ctrl->ctrl.icdoff);
2688                 goto out_disconnect_admin_queue;
2689         }
2690
2691         /* FC-NVME supports normal SGL Data Block Descriptors */
2692
2693         if (opts->queue_size > ctrl->ctrl.maxcmd) {
2694                 /* warn if maxcmd is lower than queue_size */
2695                 dev_warn(ctrl->ctrl.device,
2696                         "queue_size %zu > ctrl maxcmd %u, reducing "
2697                         "to maxcmd\n",
2698                         opts->queue_size, ctrl->ctrl.maxcmd);
2699                 opts->queue_size = ctrl->ctrl.maxcmd;
2700         }
2701
2702         if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
2703                 /* warn if sqsize is lower than queue_size */
2704                 dev_warn(ctrl->ctrl.device,
2705                         "queue_size %zu > ctrl sqsize %u, reducing "
2706                         "to sqsize\n",
2707                         opts->queue_size, ctrl->ctrl.sqsize + 1);
2708                 opts->queue_size = ctrl->ctrl.sqsize + 1;
2709         }
2710
2711         ret = nvme_fc_init_aen_ops(ctrl);
2712         if (ret)
2713                 goto out_term_aen_ops;
2714
2715         /*
2716          * Create the io queues
2717          */
2718
2719         if (ctrl->ctrl.queue_count > 1) {
2720                 if (!ctrl->ioq_live)
2721                         ret = nvme_fc_create_io_queues(ctrl);
2722                 else
2723                         ret = nvme_fc_recreate_io_queues(ctrl);
2724                 if (ret)
2725                         goto out_term_aen_ops;
2726         }
2727
2728         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2729
2730         ctrl->ctrl.nr_reconnects = 0;
2731
2732         if (changed)
2733                 nvme_start_ctrl(&ctrl->ctrl);
2734
2735         return 0;       /* Success */
2736
2737 out_term_aen_ops:
2738         nvme_fc_term_aen_ops(ctrl);
2739 out_disconnect_admin_queue:
2740         /* send a Disconnect(association) LS to fc-nvme target */
2741         nvme_fc_xmt_disconnect_assoc(ctrl);
2742         ctrl->association_id = 0;
2743 out_delete_hw_queue:
2744         __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2745 out_free_queue:
2746         nvme_fc_free_queue(&ctrl->queues[0]);
2747         ctrl->assoc_active = false;
2748         nvme_fc_ctlr_inactive_on_rport(ctrl);
2749
2750         return ret;
2751 }
2752
2753 /*
2754  * This routine stops operation of the controller on the host side.
2755  * On the host os stack side: Admin and IO queues are stopped,
2756  *   outstanding ios on them terminated via FC ABTS.
2757  * On the link side: the association is terminated.
2758  */
2759 static void
2760 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
2761 {
2762         unsigned long flags;
2763
2764         if (!ctrl->assoc_active)
2765                 return;
2766         ctrl->assoc_active = false;
2767
2768         spin_lock_irqsave(&ctrl->lock, flags);
2769         ctrl->flags |= FCCTRL_TERMIO;
2770         ctrl->iocnt = 0;
2771         spin_unlock_irqrestore(&ctrl->lock, flags);
2772
2773         /*
2774          * If io queues are present, stop them and terminate all outstanding
2775          * ios on them. As FC allocates FC exchange for each io, the
2776          * transport must contact the LLDD to terminate the exchange,
2777          * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2778          * to tell us what io's are busy and invoke a transport routine
2779          * to kill them with the LLDD.  After terminating the exchange
2780          * the LLDD will call the transport's normal io done path, but it
2781          * will have an aborted status. The done path will return the
2782          * io requests back to the block layer as part of normal completions
2783          * (but with error status).
2784          */
2785         if (ctrl->ctrl.queue_count > 1) {
2786                 nvme_stop_queues(&ctrl->ctrl);
2787                 blk_mq_tagset_busy_iter(&ctrl->tag_set,
2788                                 nvme_fc_terminate_exchange, &ctrl->ctrl);
2789                 blk_mq_tagset_wait_completed_request(&ctrl->tag_set);
2790         }
2791
2792         /*
2793          * Other transports, which don't have link-level contexts bound
2794          * to sqe's, would try to gracefully shutdown the controller by
2795          * writing the registers for shutdown and polling (call
2796          * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2797          * just aborted and we will wait on those contexts, and given
2798          * there was no indication of how live the controlelr is on the
2799          * link, don't send more io to create more contexts for the
2800          * shutdown. Let the controller fail via keepalive failure if
2801          * its still present.
2802          */
2803
2804         /*
2805          * clean up the admin queue. Same thing as above.
2806          * use blk_mq_tagset_busy_itr() and the transport routine to
2807          * terminate the exchanges.
2808          */
2809         blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
2810         blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2811                                 nvme_fc_terminate_exchange, &ctrl->ctrl);
2812         blk_mq_tagset_wait_completed_request(&ctrl->admin_tag_set);
2813
2814         /* kill the aens as they are a separate path */
2815         nvme_fc_abort_aen_ops(ctrl);
2816
2817         /* wait for all io that had to be aborted */
2818         spin_lock_irq(&ctrl->lock);
2819         wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
2820         ctrl->flags &= ~FCCTRL_TERMIO;
2821         spin_unlock_irq(&ctrl->lock);
2822
2823         nvme_fc_term_aen_ops(ctrl);
2824
2825         /*
2826          * send a Disconnect(association) LS to fc-nvme target
2827          * Note: could have been sent at top of process, but
2828          * cleaner on link traffic if after the aborts complete.
2829          * Note: if association doesn't exist, association_id will be 0
2830          */
2831         if (ctrl->association_id)
2832                 nvme_fc_xmt_disconnect_assoc(ctrl);
2833
2834         ctrl->association_id = 0;
2835
2836         if (ctrl->ctrl.tagset) {
2837                 nvme_fc_delete_hw_io_queues(ctrl);
2838                 nvme_fc_free_io_queues(ctrl);
2839         }
2840
2841         __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2842         nvme_fc_free_queue(&ctrl->queues[0]);
2843
2844         /* re-enable the admin_q so anything new can fast fail */
2845         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2846
2847         /* resume the io queues so that things will fast fail */
2848         nvme_start_queues(&ctrl->ctrl);
2849
2850         nvme_fc_ctlr_inactive_on_rport(ctrl);
2851 }
2852
2853 static void
2854 nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl)
2855 {
2856         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2857
2858         cancel_work_sync(&ctrl->err_work);
2859         cancel_delayed_work_sync(&ctrl->connect_work);
2860         /*
2861          * kill the association on the link side.  this will block
2862          * waiting for io to terminate
2863          */
2864         nvme_fc_delete_association(ctrl);
2865 }
2866
2867 static void
2868 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
2869 {
2870         struct nvme_fc_rport *rport = ctrl->rport;
2871         struct nvme_fc_remote_port *portptr = &rport->remoteport;
2872         unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ;
2873         bool recon = true;
2874
2875         if (ctrl->ctrl.state != NVME_CTRL_CONNECTING)
2876                 return;
2877
2878         if (portptr->port_state == FC_OBJSTATE_ONLINE)
2879                 dev_info(ctrl->ctrl.device,
2880                         "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
2881                         ctrl->cnum, status);
2882         else if (time_after_eq(jiffies, rport->dev_loss_end))
2883                 recon = false;
2884
2885         if (recon && nvmf_should_reconnect(&ctrl->ctrl)) {
2886                 if (portptr->port_state == FC_OBJSTATE_ONLINE)
2887                         dev_info(ctrl->ctrl.device,
2888                                 "NVME-FC{%d}: Reconnect attempt in %ld "
2889                                 "seconds\n",
2890                                 ctrl->cnum, recon_delay / HZ);
2891                 else if (time_after(jiffies + recon_delay, rport->dev_loss_end))
2892                         recon_delay = rport->dev_loss_end - jiffies;
2893
2894                 queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay);
2895         } else {
2896                 if (portptr->port_state == FC_OBJSTATE_ONLINE)
2897                         dev_warn(ctrl->ctrl.device,
2898                                 "NVME-FC{%d}: Max reconnect attempts (%d) "
2899                                 "reached.\n",
2900                                 ctrl->cnum, ctrl->ctrl.nr_reconnects);
2901                 else
2902                         dev_warn(ctrl->ctrl.device,
2903                                 "NVME-FC{%d}: dev_loss_tmo (%d) expired "
2904                                 "while waiting for remoteport connectivity.\n",
2905                                 ctrl->cnum, portptr->dev_loss_tmo);
2906                 WARN_ON(nvme_delete_ctrl(&ctrl->ctrl));
2907         }
2908 }
2909
2910 static void
2911 __nvme_fc_terminate_io(struct nvme_fc_ctrl *ctrl)
2912 {
2913         nvme_stop_keep_alive(&ctrl->ctrl);
2914
2915         /* will block will waiting for io to terminate */
2916         nvme_fc_delete_association(ctrl);
2917
2918         if (ctrl->ctrl.state != NVME_CTRL_CONNECTING &&
2919             !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING))
2920                 dev_err(ctrl->ctrl.device,
2921                         "NVME-FC{%d}: error_recovery: Couldn't change state "
2922                         "to CONNECTING\n", ctrl->cnum);
2923 }
2924
2925 static void
2926 nvme_fc_reset_ctrl_work(struct work_struct *work)
2927 {
2928         struct nvme_fc_ctrl *ctrl =
2929                 container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
2930         int ret;
2931
2932         __nvme_fc_terminate_io(ctrl);
2933
2934         nvme_stop_ctrl(&ctrl->ctrl);
2935
2936         if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE)
2937                 ret = nvme_fc_create_association(ctrl);
2938         else
2939                 ret = -ENOTCONN;
2940
2941         if (ret)
2942                 nvme_fc_reconnect_or_delete(ctrl, ret);
2943         else
2944                 dev_info(ctrl->ctrl.device,
2945                         "NVME-FC{%d}: controller reset complete\n",
2946                         ctrl->cnum);
2947 }
2948
2949 static void
2950 nvme_fc_connect_err_work(struct work_struct *work)
2951 {
2952         struct nvme_fc_ctrl *ctrl =
2953                         container_of(work, struct nvme_fc_ctrl, err_work);
2954
2955         __nvme_fc_terminate_io(ctrl);
2956
2957         atomic_set(&ctrl->err_work_active, 0);
2958
2959         /*
2960          * Rescheduling the connection after recovering
2961          * from the io error is left to the reconnect work
2962          * item, which is what should have stalled waiting on
2963          * the io that had the error that scheduled this work.
2964          */
2965 }
2966
2967 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
2968         .name                   = "fc",
2969         .module                 = THIS_MODULE,
2970         .flags                  = NVME_F_FABRICS,
2971         .reg_read32             = nvmf_reg_read32,
2972         .reg_read64             = nvmf_reg_read64,
2973         .reg_write32            = nvmf_reg_write32,
2974         .free_ctrl              = nvme_fc_nvme_ctrl_freed,
2975         .submit_async_event     = nvme_fc_submit_async_event,
2976         .delete_ctrl            = nvme_fc_delete_ctrl,
2977         .get_address            = nvmf_get_address,
2978 };
2979
2980 static void
2981 nvme_fc_connect_ctrl_work(struct work_struct *work)
2982 {
2983         int ret;
2984
2985         struct nvme_fc_ctrl *ctrl =
2986                         container_of(to_delayed_work(work),
2987                                 struct nvme_fc_ctrl, connect_work);
2988
2989         ret = nvme_fc_create_association(ctrl);
2990         if (ret)
2991                 nvme_fc_reconnect_or_delete(ctrl, ret);
2992         else
2993                 dev_info(ctrl->ctrl.device,
2994                         "NVME-FC{%d}: controller connect complete\n",
2995                         ctrl->cnum);
2996 }
2997
2998
2999 static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
3000         .queue_rq       = nvme_fc_queue_rq,
3001         .complete       = nvme_fc_complete_rq,
3002         .init_request   = nvme_fc_init_request,
3003         .exit_request   = nvme_fc_exit_request,
3004         .init_hctx      = nvme_fc_init_admin_hctx,
3005         .timeout        = nvme_fc_timeout,
3006 };
3007
3008
3009 /*
3010  * Fails a controller request if it matches an existing controller
3011  * (association) with the same tuple:
3012  * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN>
3013  *
3014  * The ports don't need to be compared as they are intrinsically
3015  * already matched by the port pointers supplied.
3016  */
3017 static bool
3018 nvme_fc_existing_controller(struct nvme_fc_rport *rport,
3019                 struct nvmf_ctrl_options *opts)
3020 {
3021         struct nvme_fc_ctrl *ctrl;
3022         unsigned long flags;
3023         bool found = false;
3024
3025         spin_lock_irqsave(&rport->lock, flags);
3026         list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3027                 found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts);
3028                 if (found)
3029                         break;
3030         }
3031         spin_unlock_irqrestore(&rport->lock, flags);
3032
3033         return found;
3034 }
3035
3036 static struct nvme_ctrl *
3037 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
3038         struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
3039 {
3040         struct nvme_fc_ctrl *ctrl;
3041         unsigned long flags;
3042         int ret, idx;
3043
3044         if (!(rport->remoteport.port_role &
3045             (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
3046                 ret = -EBADR;
3047                 goto out_fail;
3048         }
3049
3050         if (!opts->duplicate_connect &&
3051             nvme_fc_existing_controller(rport, opts)) {
3052                 ret = -EALREADY;
3053                 goto out_fail;
3054         }
3055
3056         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
3057         if (!ctrl) {
3058                 ret = -ENOMEM;
3059                 goto out_fail;
3060         }
3061
3062         idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
3063         if (idx < 0) {
3064                 ret = -ENOSPC;
3065                 goto out_free_ctrl;
3066         }
3067
3068         ctrl->ctrl.opts = opts;
3069         ctrl->ctrl.nr_reconnects = 0;
3070         if (lport->dev)
3071                 ctrl->ctrl.numa_node = dev_to_node(lport->dev);
3072         else
3073                 ctrl->ctrl.numa_node = NUMA_NO_NODE;
3074         INIT_LIST_HEAD(&ctrl->ctrl_list);
3075         ctrl->lport = lport;
3076         ctrl->rport = rport;
3077         ctrl->dev = lport->dev;
3078         ctrl->cnum = idx;
3079         ctrl->ioq_live = false;
3080         ctrl->assoc_active = false;
3081         atomic_set(&ctrl->err_work_active, 0);
3082         init_waitqueue_head(&ctrl->ioabort_wait);
3083
3084         get_device(ctrl->dev);
3085         kref_init(&ctrl->ref);
3086
3087         INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
3088         INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
3089         INIT_WORK(&ctrl->err_work, nvme_fc_connect_err_work);
3090         spin_lock_init(&ctrl->lock);
3091
3092         /* io queue count */
3093         ctrl->ctrl.queue_count = min_t(unsigned int,
3094                                 opts->nr_io_queues,
3095                                 lport->ops->max_hw_queues);
3096         ctrl->ctrl.queue_count++;       /* +1 for admin queue */
3097
3098         ctrl->ctrl.sqsize = opts->queue_size - 1;
3099         ctrl->ctrl.kato = opts->kato;
3100         ctrl->ctrl.cntlid = 0xffff;
3101
3102         ret = -ENOMEM;
3103         ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
3104                                 sizeof(struct nvme_fc_queue), GFP_KERNEL);
3105         if (!ctrl->queues)
3106                 goto out_free_ida;
3107
3108         nvme_fc_init_queue(ctrl, 0);
3109
3110         memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
3111         ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
3112         ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
3113         ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
3114         ctrl->admin_tag_set.numa_node = ctrl->ctrl.numa_node;
3115         ctrl->admin_tag_set.cmd_size =
3116                 struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv,
3117                             ctrl->lport->ops->fcprqst_priv_sz);
3118         ctrl->admin_tag_set.driver_data = ctrl;
3119         ctrl->admin_tag_set.nr_hw_queues = 1;
3120         ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
3121         ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED;
3122
3123         ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
3124         if (ret)
3125                 goto out_free_queues;
3126         ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set;
3127
3128         ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set);
3129         if (IS_ERR(ctrl->ctrl.fabrics_q)) {
3130                 ret = PTR_ERR(ctrl->ctrl.fabrics_q);
3131                 goto out_free_admin_tag_set;
3132         }
3133
3134         ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
3135         if (IS_ERR(ctrl->ctrl.admin_q)) {
3136                 ret = PTR_ERR(ctrl->ctrl.admin_q);
3137                 goto out_cleanup_fabrics_q;
3138         }
3139
3140         /*
3141          * Would have been nice to init io queues tag set as well.
3142          * However, we require interaction from the controller
3143          * for max io queue count before we can do so.
3144          * Defer this to the connect path.
3145          */
3146
3147         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
3148         if (ret)
3149                 goto out_cleanup_admin_q;
3150
3151         /* at this point, teardown path changes to ref counting on nvme ctrl */
3152
3153         spin_lock_irqsave(&rport->lock, flags);
3154         list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
3155         spin_unlock_irqrestore(&rport->lock, flags);
3156
3157         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING) ||
3158             !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
3159                 dev_err(ctrl->ctrl.device,
3160                         "NVME-FC{%d}: failed to init ctrl state\n", ctrl->cnum);
3161                 goto fail_ctrl;
3162         }
3163
3164         nvme_get_ctrl(&ctrl->ctrl);
3165
3166         if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
3167                 nvme_put_ctrl(&ctrl->ctrl);
3168                 dev_err(ctrl->ctrl.device,
3169                         "NVME-FC{%d}: failed to schedule initial connect\n",
3170                         ctrl->cnum);
3171                 goto fail_ctrl;
3172         }
3173
3174         flush_delayed_work(&ctrl->connect_work);
3175
3176         dev_info(ctrl->ctrl.device,
3177                 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
3178                 ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
3179
3180         return &ctrl->ctrl;
3181
3182 fail_ctrl:
3183         nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING);
3184         cancel_work_sync(&ctrl->ctrl.reset_work);
3185         cancel_work_sync(&ctrl->err_work);
3186         cancel_delayed_work_sync(&ctrl->connect_work);
3187
3188         ctrl->ctrl.opts = NULL;
3189
3190         /* initiate nvme ctrl ref counting teardown */
3191         nvme_uninit_ctrl(&ctrl->ctrl);
3192
3193         /* Remove core ctrl ref. */
3194         nvme_put_ctrl(&ctrl->ctrl);
3195
3196         /* as we're past the point where we transition to the ref
3197          * counting teardown path, if we return a bad pointer here,
3198          * the calling routine, thinking it's prior to the
3199          * transition, will do an rport put. Since the teardown
3200          * path also does a rport put, we do an extra get here to
3201          * so proper order/teardown happens.
3202          */
3203         nvme_fc_rport_get(rport);
3204
3205         return ERR_PTR(-EIO);
3206
3207 out_cleanup_admin_q:
3208         blk_cleanup_queue(ctrl->ctrl.admin_q);
3209 out_cleanup_fabrics_q:
3210         blk_cleanup_queue(ctrl->ctrl.fabrics_q);
3211 out_free_admin_tag_set:
3212         blk_mq_free_tag_set(&ctrl->admin_tag_set);
3213 out_free_queues:
3214         kfree(ctrl->queues);
3215 out_free_ida:
3216         put_device(ctrl->dev);
3217         ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
3218 out_free_ctrl:
3219         kfree(ctrl);
3220 out_fail:
3221         /* exit via here doesn't follow ctlr ref points */
3222         return ERR_PTR(ret);
3223 }
3224
3225
3226 struct nvmet_fc_traddr {
3227         u64     nn;
3228         u64     pn;
3229 };
3230
3231 static int
3232 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
3233 {
3234         u64 token64;
3235
3236         if (match_u64(sstr, &token64))
3237                 return -EINVAL;
3238         *val = token64;
3239
3240         return 0;
3241 }
3242
3243 /*
3244  * This routine validates and extracts the WWN's from the TRADDR string.
3245  * As kernel parsers need the 0x to determine number base, universally
3246  * build string to parse with 0x prefix before parsing name strings.
3247  */
3248 static int
3249 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
3250 {
3251         char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
3252         substring_t wwn = { name, &name[sizeof(name)-1] };
3253         int nnoffset, pnoffset;
3254
3255         /* validate if string is one of the 2 allowed formats */
3256         if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
3257                         !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
3258                         !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
3259                                 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
3260                 nnoffset = NVME_FC_TRADDR_OXNNLEN;
3261                 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
3262                                                 NVME_FC_TRADDR_OXNNLEN;
3263         } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
3264                         !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
3265                         !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
3266                                 "pn-", NVME_FC_TRADDR_NNLEN))) {
3267                 nnoffset = NVME_FC_TRADDR_NNLEN;
3268                 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
3269         } else
3270                 goto out_einval;
3271
3272         name[0] = '0';
3273         name[1] = 'x';
3274         name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
3275
3276         memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3277         if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
3278                 goto out_einval;
3279
3280         memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3281         if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
3282                 goto out_einval;
3283
3284         return 0;
3285
3286 out_einval:
3287         pr_warn("%s: bad traddr string\n", __func__);
3288         return -EINVAL;
3289 }
3290
3291 static struct nvme_ctrl *
3292 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
3293 {
3294         struct nvme_fc_lport *lport;
3295         struct nvme_fc_rport *rport;
3296         struct nvme_ctrl *ctrl;
3297         struct nvmet_fc_traddr laddr = { 0L, 0L };
3298         struct nvmet_fc_traddr raddr = { 0L, 0L };
3299         unsigned long flags;
3300         int ret;
3301
3302         ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
3303         if (ret || !raddr.nn || !raddr.pn)
3304                 return ERR_PTR(-EINVAL);
3305
3306         ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
3307         if (ret || !laddr.nn || !laddr.pn)
3308                 return ERR_PTR(-EINVAL);
3309
3310         /* find the host and remote ports to connect together */
3311         spin_lock_irqsave(&nvme_fc_lock, flags);
3312         list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3313                 if (lport->localport.node_name != laddr.nn ||
3314                     lport->localport.port_name != laddr.pn)
3315                         continue;
3316
3317                 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3318                         if (rport->remoteport.node_name != raddr.nn ||
3319                             rport->remoteport.port_name != raddr.pn)
3320                                 continue;
3321
3322                         /* if fail to get reference fall through. Will error */
3323                         if (!nvme_fc_rport_get(rport))
3324                                 break;
3325
3326                         spin_unlock_irqrestore(&nvme_fc_lock, flags);
3327
3328                         ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
3329                         if (IS_ERR(ctrl))
3330                                 nvme_fc_rport_put(rport);
3331                         return ctrl;
3332                 }
3333         }
3334         spin_unlock_irqrestore(&nvme_fc_lock, flags);
3335
3336         pr_warn("%s: %s - %s combination not found\n",
3337                 __func__, opts->traddr, opts->host_traddr);
3338         return ERR_PTR(-ENOENT);
3339 }
3340
3341
3342 static struct nvmf_transport_ops nvme_fc_transport = {
3343         .name           = "fc",
3344         .module         = THIS_MODULE,
3345         .required_opts  = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
3346         .allowed_opts   = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
3347         .create_ctrl    = nvme_fc_create_ctrl,
3348 };
3349
3350 /* Arbitrary successive failures max. With lots of subsystems could be high */
3351 #define DISCOVERY_MAX_FAIL      20
3352
3353 static ssize_t nvme_fc_nvme_discovery_store(struct device *dev,
3354                 struct device_attribute *attr, const char *buf, size_t count)
3355 {
3356         unsigned long flags;
3357         LIST_HEAD(local_disc_list);
3358         struct nvme_fc_lport *lport;
3359         struct nvme_fc_rport *rport;
3360         int failcnt = 0;
3361
3362         spin_lock_irqsave(&nvme_fc_lock, flags);
3363 restart:
3364         list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3365                 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3366                         if (!nvme_fc_lport_get(lport))
3367                                 continue;
3368                         if (!nvme_fc_rport_get(rport)) {
3369                                 /*
3370                                  * This is a temporary condition. Upon restart
3371                                  * this rport will be gone from the list.
3372                                  *
3373                                  * Revert the lport put and retry.  Anything
3374                                  * added to the list already will be skipped (as
3375                                  * they are no longer list_empty).  Loops should
3376                                  * resume at rports that were not yet seen.
3377                                  */
3378                                 nvme_fc_lport_put(lport);
3379
3380                                 if (failcnt++ < DISCOVERY_MAX_FAIL)
3381                                         goto restart;
3382
3383                                 pr_err("nvme_discovery: too many reference "
3384                                        "failures\n");
3385                                 goto process_local_list;
3386                         }
3387                         if (list_empty(&rport->disc_list))
3388                                 list_add_tail(&rport->disc_list,
3389                                               &local_disc_list);
3390                 }
3391         }
3392
3393 process_local_list:
3394         while (!list_empty(&local_disc_list)) {
3395                 rport = list_first_entry(&local_disc_list,
3396                                          struct nvme_fc_rport, disc_list);
3397                 list_del_init(&rport->disc_list);
3398                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3399
3400                 lport = rport->lport;
3401                 /* signal discovery. Won't hurt if it repeats */
3402                 nvme_fc_signal_discovery_scan(lport, rport);
3403                 nvme_fc_rport_put(rport);
3404                 nvme_fc_lport_put(lport);
3405
3406                 spin_lock_irqsave(&nvme_fc_lock, flags);
3407         }
3408         spin_unlock_irqrestore(&nvme_fc_lock, flags);
3409
3410         return count;
3411 }
3412 static DEVICE_ATTR(nvme_discovery, 0200, NULL, nvme_fc_nvme_discovery_store);
3413
3414 static struct attribute *nvme_fc_attrs[] = {
3415         &dev_attr_nvme_discovery.attr,
3416         NULL
3417 };
3418
3419 static struct attribute_group nvme_fc_attr_group = {
3420         .attrs = nvme_fc_attrs,
3421 };
3422
3423 static const struct attribute_group *nvme_fc_attr_groups[] = {
3424         &nvme_fc_attr_group,
3425         NULL
3426 };
3427
3428 static struct class fc_class = {
3429         .name = "fc",
3430         .dev_groups = nvme_fc_attr_groups,
3431         .owner = THIS_MODULE,
3432 };
3433
3434 static int __init nvme_fc_init_module(void)
3435 {
3436         int ret;
3437
3438         nvme_fc_wq = alloc_workqueue("nvme_fc_wq", WQ_MEM_RECLAIM, 0);
3439         if (!nvme_fc_wq)
3440                 return -ENOMEM;
3441
3442         /*
3443          * NOTE:
3444          * It is expected that in the future the kernel will combine
3445          * the FC-isms that are currently under scsi and now being
3446          * added to by NVME into a new standalone FC class. The SCSI
3447          * and NVME protocols and their devices would be under this
3448          * new FC class.
3449          *
3450          * As we need something to post FC-specific udev events to,
3451          * specifically for nvme probe events, start by creating the
3452          * new device class.  When the new standalone FC class is
3453          * put in place, this code will move to a more generic
3454          * location for the class.
3455          */
3456         ret = class_register(&fc_class);
3457         if (ret) {
3458                 pr_err("couldn't register class fc\n");
3459                 goto out_destroy_wq;
3460         }
3461
3462         /*
3463          * Create a device for the FC-centric udev events
3464          */
3465         fc_udev_device = device_create(&fc_class, NULL, MKDEV(0, 0), NULL,
3466                                 "fc_udev_device");
3467         if (IS_ERR(fc_udev_device)) {
3468                 pr_err("couldn't create fc_udev device!\n");
3469                 ret = PTR_ERR(fc_udev_device);
3470                 goto out_destroy_class;
3471         }
3472
3473         ret = nvmf_register_transport(&nvme_fc_transport);
3474         if (ret)
3475                 goto out_destroy_device;
3476
3477         return 0;
3478
3479 out_destroy_device:
3480         device_destroy(&fc_class, MKDEV(0, 0));
3481 out_destroy_class:
3482         class_unregister(&fc_class);
3483 out_destroy_wq:
3484         destroy_workqueue(nvme_fc_wq);
3485
3486         return ret;
3487 }
3488
3489 static void
3490 nvme_fc_delete_controllers(struct nvme_fc_rport *rport)
3491 {
3492         struct nvme_fc_ctrl *ctrl;
3493
3494         spin_lock(&rport->lock);
3495         list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3496                 dev_warn(ctrl->ctrl.device,
3497                         "NVME-FC{%d}: transport unloading: deleting ctrl\n",
3498                         ctrl->cnum);
3499                 nvme_delete_ctrl(&ctrl->ctrl);
3500         }
3501         spin_unlock(&rport->lock);
3502 }
3503
3504 static void
3505 nvme_fc_cleanup_for_unload(void)
3506 {
3507         struct nvme_fc_lport *lport;
3508         struct nvme_fc_rport *rport;
3509
3510         list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3511                 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3512                         nvme_fc_delete_controllers(rport);
3513                 }
3514         }
3515 }
3516
3517 static void __exit nvme_fc_exit_module(void)
3518 {
3519         unsigned long flags;
3520         bool need_cleanup = false;
3521
3522         spin_lock_irqsave(&nvme_fc_lock, flags);
3523         nvme_fc_waiting_to_unload = true;
3524         if (!list_empty(&nvme_fc_lport_list)) {
3525                 need_cleanup = true;
3526                 nvme_fc_cleanup_for_unload();
3527         }
3528         spin_unlock_irqrestore(&nvme_fc_lock, flags);
3529         if (need_cleanup) {
3530                 pr_info("%s: waiting for ctlr deletes\n", __func__);
3531                 wait_for_completion(&nvme_fc_unload_proceed);
3532                 pr_info("%s: ctrl deletes complete\n", __func__);
3533         }
3534
3535         nvmf_unregister_transport(&nvme_fc_transport);
3536
3537         ida_destroy(&nvme_fc_local_port_cnt);
3538         ida_destroy(&nvme_fc_ctrl_cnt);
3539
3540         device_destroy(&fc_class, MKDEV(0, 0));
3541         class_unregister(&fc_class);
3542         destroy_workqueue(nvme_fc_wq);
3543 }
3544
3545 module_init(nvme_fc_init_module);
3546 module_exit(nvme_fc_exit_module);
3547
3548 MODULE_LICENSE("GPL v2");