NVMe: Simplify metadata setup
[linux-2.6-block.git] / drivers / nvme / host / core.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <scsi/sg.h>
30 #include <asm/unaligned.h>
31
32 #include "nvme.h"
33
34 #define NVME_MINORS             (1U << MINORBITS)
35
36 static int nvme_major;
37 module_param(nvme_major, int, 0);
38
39 static int nvme_char_major;
40 module_param(nvme_char_major, int, 0);
41
42 static LIST_HEAD(nvme_ctrl_list);
43 DEFINE_SPINLOCK(dev_list_lock);
44
45 static struct class *nvme_class;
46
47 static void nvme_free_ns(struct kref *kref)
48 {
49         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
50
51         if (ns->type == NVME_NS_LIGHTNVM)
52                 nvme_nvm_unregister(ns->queue, ns->disk->disk_name);
53
54         spin_lock(&dev_list_lock);
55         ns->disk->private_data = NULL;
56         spin_unlock(&dev_list_lock);
57
58         nvme_put_ctrl(ns->ctrl);
59         put_disk(ns->disk);
60         kfree(ns);
61 }
62
63 static void nvme_put_ns(struct nvme_ns *ns)
64 {
65         kref_put(&ns->kref, nvme_free_ns);
66 }
67
68 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
69 {
70         struct nvme_ns *ns;
71
72         spin_lock(&dev_list_lock);
73         ns = disk->private_data;
74         if (ns && !kref_get_unless_zero(&ns->kref))
75                 ns = NULL;
76         spin_unlock(&dev_list_lock);
77
78         return ns;
79 }
80
81 struct request *nvme_alloc_request(struct request_queue *q,
82                 struct nvme_command *cmd, unsigned int flags)
83 {
84         bool write = cmd->common.opcode & 1;
85         struct request *req;
86
87         req = blk_mq_alloc_request(q, write, flags);
88         if (IS_ERR(req))
89                 return req;
90
91         req->cmd_type = REQ_TYPE_DRV_PRIV;
92         req->cmd_flags |= REQ_FAILFAST_DRIVER;
93         req->__data_len = 0;
94         req->__sector = (sector_t) -1;
95         req->bio = req->biotail = NULL;
96
97         req->cmd = (unsigned char *)cmd;
98         req->cmd_len = sizeof(struct nvme_command);
99         req->special = (void *)0;
100
101         return req;
102 }
103
104 /*
105  * Returns 0 on success.  If the result is negative, it's a Linux error code;
106  * if the result is positive, it's an NVM Express status code
107  */
108 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
109                 void *buffer, unsigned bufflen, u32 *result, unsigned timeout)
110 {
111         struct request *req;
112         int ret;
113
114         req = nvme_alloc_request(q, cmd, 0);
115         if (IS_ERR(req))
116                 return PTR_ERR(req);
117
118         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
119
120         if (buffer && bufflen) {
121                 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
122                 if (ret)
123                         goto out;
124         }
125
126         blk_execute_rq(req->q, NULL, req, 0);
127         if (result)
128                 *result = (u32)(uintptr_t)req->special;
129         ret = req->errors;
130  out:
131         blk_mq_free_request(req);
132         return ret;
133 }
134
135 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
136                 void *buffer, unsigned bufflen)
137 {
138         return __nvme_submit_sync_cmd(q, cmd, buffer, bufflen, NULL, 0);
139 }
140
141 int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
142                 void __user *ubuffer, unsigned bufflen,
143                 void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
144                 u32 *result, unsigned timeout)
145 {
146         bool write = cmd->common.opcode & 1;
147         struct nvme_ns *ns = q->queuedata;
148         struct gendisk *disk = ns ? ns->disk : NULL;
149         struct request *req;
150         struct bio *bio = NULL;
151         void *meta = NULL;
152         int ret;
153
154         req = nvme_alloc_request(q, cmd, 0);
155         if (IS_ERR(req))
156                 return PTR_ERR(req);
157
158         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
159
160         if (ubuffer && bufflen) {
161                 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
162                                 GFP_KERNEL);
163                 if (ret)
164                         goto out;
165                 bio = req->bio;
166
167                 if (!disk)
168                         goto submit;
169                 bio->bi_bdev = bdget_disk(disk, 0);
170                 if (!bio->bi_bdev) {
171                         ret = -ENODEV;
172                         goto out_unmap;
173                 }
174
175                 if (meta_buffer) {
176                         struct bio_integrity_payload *bip;
177
178                         meta = kmalloc(meta_len, GFP_KERNEL);
179                         if (!meta) {
180                                 ret = -ENOMEM;
181                                 goto out_unmap;
182                         }
183
184                         if (write) {
185                                 if (copy_from_user(meta, meta_buffer,
186                                                 meta_len)) {
187                                         ret = -EFAULT;
188                                         goto out_free_meta;
189                                 }
190                         }
191
192                         bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
193                         if (IS_ERR(bip)) {
194                                 ret = PTR_ERR(bip);
195                                 goto out_free_meta;
196                         }
197
198                         bip->bip_iter.bi_size = meta_len;
199                         bip->bip_iter.bi_sector = meta_seed;
200
201                         ret = bio_integrity_add_page(bio, virt_to_page(meta),
202                                         meta_len, offset_in_page(meta));
203                         if (ret != meta_len) {
204                                 ret = -ENOMEM;
205                                 goto out_free_meta;
206                         }
207                 }
208         }
209  submit:
210         blk_execute_rq(req->q, disk, req, 0);
211         ret = req->errors;
212         if (result)
213                 *result = (u32)(uintptr_t)req->special;
214         if (meta && !ret && !write) {
215                 if (copy_to_user(meta_buffer, meta, meta_len))
216                         ret = -EFAULT;
217         }
218  out_free_meta:
219         kfree(meta);
220  out_unmap:
221         if (bio) {
222                 if (disk && bio->bi_bdev)
223                         bdput(bio->bi_bdev);
224                 blk_rq_unmap_user(bio);
225         }
226  out:
227         blk_mq_free_request(req);
228         return ret;
229 }
230
231 int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
232                 void __user *ubuffer, unsigned bufflen, u32 *result,
233                 unsigned timeout)
234 {
235         return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
236                         result, timeout);
237 }
238
239 int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
240 {
241         struct nvme_command c = { };
242         int error;
243
244         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
245         c.identify.opcode = nvme_admin_identify;
246         c.identify.cns = cpu_to_le32(1);
247
248         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
249         if (!*id)
250                 return -ENOMEM;
251
252         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
253                         sizeof(struct nvme_id_ctrl));
254         if (error)
255                 kfree(*id);
256         return error;
257 }
258
259 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
260 {
261         struct nvme_command c = { };
262
263         c.identify.opcode = nvme_admin_identify;
264         c.identify.cns = cpu_to_le32(2);
265         c.identify.nsid = cpu_to_le32(nsid);
266         return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
267 }
268
269 int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
270                 struct nvme_id_ns **id)
271 {
272         struct nvme_command c = { };
273         int error;
274
275         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
276         c.identify.opcode = nvme_admin_identify,
277         c.identify.nsid = cpu_to_le32(nsid),
278
279         *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
280         if (!*id)
281                 return -ENOMEM;
282
283         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
284                         sizeof(struct nvme_id_ns));
285         if (error)
286                 kfree(*id);
287         return error;
288 }
289
290 int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
291                                         dma_addr_t dma_addr, u32 *result)
292 {
293         struct nvme_command c;
294
295         memset(&c, 0, sizeof(c));
296         c.features.opcode = nvme_admin_get_features;
297         c.features.nsid = cpu_to_le32(nsid);
298         c.features.prp1 = cpu_to_le64(dma_addr);
299         c.features.fid = cpu_to_le32(fid);
300
301         return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0, result, 0);
302 }
303
304 int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
305                                         dma_addr_t dma_addr, u32 *result)
306 {
307         struct nvme_command c;
308
309         memset(&c, 0, sizeof(c));
310         c.features.opcode = nvme_admin_set_features;
311         c.features.prp1 = cpu_to_le64(dma_addr);
312         c.features.fid = cpu_to_le32(fid);
313         c.features.dword11 = cpu_to_le32(dword11);
314
315         return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0, result, 0);
316 }
317
318 int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
319 {
320         struct nvme_command c = { };
321         int error;
322
323         c.common.opcode = nvme_admin_get_log_page,
324         c.common.nsid = cpu_to_le32(0xFFFFFFFF),
325         c.common.cdw10[0] = cpu_to_le32(
326                         (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
327                          NVME_LOG_SMART),
328
329         *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
330         if (!*log)
331                 return -ENOMEM;
332
333         error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
334                         sizeof(struct nvme_smart_log));
335         if (error)
336                 kfree(*log);
337         return error;
338 }
339
340 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
341 {
342         u32 q_count = (*count - 1) | ((*count - 1) << 16);
343         u32 result;
344         int status, nr_io_queues;
345
346         status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, 0,
347                         &result);
348         if (status)
349                 return status;
350
351         nr_io_queues = min(result & 0xffff, result >> 16) + 1;
352         *count = min(*count, nr_io_queues);
353         return 0;
354 }
355
356 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
357 {
358         struct nvme_user_io io;
359         struct nvme_command c;
360         unsigned length, meta_len;
361         void __user *metadata;
362
363         if (copy_from_user(&io, uio, sizeof(io)))
364                 return -EFAULT;
365
366         switch (io.opcode) {
367         case nvme_cmd_write:
368         case nvme_cmd_read:
369         case nvme_cmd_compare:
370                 break;
371         default:
372                 return -EINVAL;
373         }
374
375         length = (io.nblocks + 1) << ns->lba_shift;
376         meta_len = (io.nblocks + 1) * ns->ms;
377         metadata = (void __user *)(uintptr_t)io.metadata;
378
379         if (ns->ext) {
380                 length += meta_len;
381                 meta_len = 0;
382         } else if (meta_len) {
383                 if ((io.metadata & 3) || !io.metadata)
384                         return -EINVAL;
385         }
386
387         memset(&c, 0, sizeof(c));
388         c.rw.opcode = io.opcode;
389         c.rw.flags = io.flags;
390         c.rw.nsid = cpu_to_le32(ns->ns_id);
391         c.rw.slba = cpu_to_le64(io.slba);
392         c.rw.length = cpu_to_le16(io.nblocks);
393         c.rw.control = cpu_to_le16(io.control);
394         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
395         c.rw.reftag = cpu_to_le32(io.reftag);
396         c.rw.apptag = cpu_to_le16(io.apptag);
397         c.rw.appmask = cpu_to_le16(io.appmask);
398
399         return __nvme_submit_user_cmd(ns->queue, &c,
400                         (void __user *)(uintptr_t)io.addr, length,
401                         metadata, meta_len, io.slba, NULL, 0);
402 }
403
404 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
405                         struct nvme_passthru_cmd __user *ucmd)
406 {
407         struct nvme_passthru_cmd cmd;
408         struct nvme_command c;
409         unsigned timeout = 0;
410         int status;
411
412         if (!capable(CAP_SYS_ADMIN))
413                 return -EACCES;
414         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
415                 return -EFAULT;
416
417         memset(&c, 0, sizeof(c));
418         c.common.opcode = cmd.opcode;
419         c.common.flags = cmd.flags;
420         c.common.nsid = cpu_to_le32(cmd.nsid);
421         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
422         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
423         c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
424         c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
425         c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
426         c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
427         c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
428         c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
429
430         if (cmd.timeout_ms)
431                 timeout = msecs_to_jiffies(cmd.timeout_ms);
432
433         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
434                         (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
435                         &cmd.result, timeout);
436         if (status >= 0) {
437                 if (put_user(cmd.result, &ucmd->result))
438                         return -EFAULT;
439         }
440
441         return status;
442 }
443
444 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
445                 unsigned int cmd, unsigned long arg)
446 {
447         struct nvme_ns *ns = bdev->bd_disk->private_data;
448
449         switch (cmd) {
450         case NVME_IOCTL_ID:
451                 force_successful_syscall_return();
452                 return ns->ns_id;
453         case NVME_IOCTL_ADMIN_CMD:
454                 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
455         case NVME_IOCTL_IO_CMD:
456                 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
457         case NVME_IOCTL_SUBMIT_IO:
458                 return nvme_submit_io(ns, (void __user *)arg);
459         case SG_GET_VERSION_NUM:
460                 return nvme_sg_get_version_num((void __user *)arg);
461         case SG_IO:
462                 return nvme_sg_io(ns, (void __user *)arg);
463         default:
464                 return -ENOTTY;
465         }
466 }
467
468 #ifdef CONFIG_COMPAT
469 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
470                         unsigned int cmd, unsigned long arg)
471 {
472         switch (cmd) {
473         case SG_IO:
474                 return -ENOIOCTLCMD;
475         }
476         return nvme_ioctl(bdev, mode, cmd, arg);
477 }
478 #else
479 #define nvme_compat_ioctl       NULL
480 #endif
481
482 static int nvme_open(struct block_device *bdev, fmode_t mode)
483 {
484         return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
485 }
486
487 static void nvme_release(struct gendisk *disk, fmode_t mode)
488 {
489         nvme_put_ns(disk->private_data);
490 }
491
492 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
493 {
494         /* some standard values */
495         geo->heads = 1 << 6;
496         geo->sectors = 1 << 5;
497         geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
498         return 0;
499 }
500
501 #ifdef CONFIG_BLK_DEV_INTEGRITY
502 static void nvme_init_integrity(struct nvme_ns *ns)
503 {
504         struct blk_integrity integrity;
505
506         switch (ns->pi_type) {
507         case NVME_NS_DPS_PI_TYPE3:
508                 integrity.profile = &t10_pi_type3_crc;
509                 break;
510         case NVME_NS_DPS_PI_TYPE1:
511         case NVME_NS_DPS_PI_TYPE2:
512                 integrity.profile = &t10_pi_type1_crc;
513                 break;
514         default:
515                 integrity.profile = NULL;
516                 break;
517         }
518         integrity.tuple_size = ns->ms;
519         blk_integrity_register(ns->disk, &integrity);
520         blk_queue_max_integrity_segments(ns->queue, 1);
521 }
522 #else
523 static void nvme_init_integrity(struct nvme_ns *ns)
524 {
525 }
526 #endif /* CONFIG_BLK_DEV_INTEGRITY */
527
528 static void nvme_config_discard(struct nvme_ns *ns)
529 {
530         u32 logical_block_size = queue_logical_block_size(ns->queue);
531         ns->queue->limits.discard_zeroes_data = 0;
532         ns->queue->limits.discard_alignment = logical_block_size;
533         ns->queue->limits.discard_granularity = logical_block_size;
534         blk_queue_max_discard_sectors(ns->queue, 0xffffffff);
535         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
536 }
537
538 static int nvme_revalidate_disk(struct gendisk *disk)
539 {
540         struct nvme_ns *ns = disk->private_data;
541         struct nvme_id_ns *id;
542         u8 lbaf, pi_type;
543         u16 old_ms;
544         unsigned short bs;
545
546         if (nvme_identify_ns(ns->ctrl, ns->ns_id, &id)) {
547                 dev_warn(ns->ctrl->dev, "%s: Identify failure nvme%dn%d\n",
548                                 __func__, ns->ctrl->instance, ns->ns_id);
549                 return -ENODEV;
550         }
551         if (id->ncap == 0) {
552                 kfree(id);
553                 return -ENODEV;
554         }
555
556         if (nvme_nvm_ns_supported(ns, id) && ns->type != NVME_NS_LIGHTNVM) {
557                 if (nvme_nvm_register(ns->queue, disk->disk_name)) {
558                         dev_warn(ns->ctrl->dev,
559                                 "%s: LightNVM init failure\n", __func__);
560                         kfree(id);
561                         return -ENODEV;
562                 }
563                 ns->type = NVME_NS_LIGHTNVM;
564         }
565
566         old_ms = ns->ms;
567         lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
568         ns->lba_shift = id->lbaf[lbaf].ds;
569         ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
570         ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
571
572         /*
573          * If identify namespace failed, use default 512 byte block size so
574          * block layer can use before failing read/write for 0 capacity.
575          */
576         if (ns->lba_shift == 0)
577                 ns->lba_shift = 9;
578         bs = 1 << ns->lba_shift;
579         /* XXX: PI implementation requires metadata equal t10 pi tuple size */
580         pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
581                                         id->dps & NVME_NS_DPS_PI_MASK : 0;
582
583         blk_mq_freeze_queue(disk->queue);
584         if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
585                                 ns->ms != old_ms ||
586                                 bs != queue_logical_block_size(disk->queue) ||
587                                 (ns->ms && ns->ext)))
588                 blk_integrity_unregister(disk);
589
590         ns->pi_type = pi_type;
591         blk_queue_logical_block_size(ns->queue, bs);
592
593         if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
594                 nvme_init_integrity(ns);
595         if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
596                 set_capacity(disk, 0);
597         else
598                 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
599
600         if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
601                 nvme_config_discard(ns);
602         blk_mq_unfreeze_queue(disk->queue);
603
604         kfree(id);
605         return 0;
606 }
607
608 static char nvme_pr_type(enum pr_type type)
609 {
610         switch (type) {
611         case PR_WRITE_EXCLUSIVE:
612                 return 1;
613         case PR_EXCLUSIVE_ACCESS:
614                 return 2;
615         case PR_WRITE_EXCLUSIVE_REG_ONLY:
616                 return 3;
617         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
618                 return 4;
619         case PR_WRITE_EXCLUSIVE_ALL_REGS:
620                 return 5;
621         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
622                 return 6;
623         default:
624                 return 0;
625         }
626 };
627
628 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
629                                 u64 key, u64 sa_key, u8 op)
630 {
631         struct nvme_ns *ns = bdev->bd_disk->private_data;
632         struct nvme_command c;
633         u8 data[16] = { 0, };
634
635         put_unaligned_le64(key, &data[0]);
636         put_unaligned_le64(sa_key, &data[8]);
637
638         memset(&c, 0, sizeof(c));
639         c.common.opcode = op;
640         c.common.nsid = cpu_to_le32(ns->ns_id);
641         c.common.cdw10[0] = cpu_to_le32(cdw10);
642
643         return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
644 }
645
646 static int nvme_pr_register(struct block_device *bdev, u64 old,
647                 u64 new, unsigned flags)
648 {
649         u32 cdw10;
650
651         if (flags & ~PR_FL_IGNORE_KEY)
652                 return -EOPNOTSUPP;
653
654         cdw10 = old ? 2 : 0;
655         cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
656         cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
657         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
658 }
659
660 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
661                 enum pr_type type, unsigned flags)
662 {
663         u32 cdw10;
664
665         if (flags & ~PR_FL_IGNORE_KEY)
666                 return -EOPNOTSUPP;
667
668         cdw10 = nvme_pr_type(type) << 8;
669         cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
670         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
671 }
672
673 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
674                 enum pr_type type, bool abort)
675 {
676         u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
677         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
678 }
679
680 static int nvme_pr_clear(struct block_device *bdev, u64 key)
681 {
682         u32 cdw10 = 1 | (key ? 1 << 3 : 0);
683         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
684 }
685
686 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
687 {
688         u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
689         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
690 }
691
692 static const struct pr_ops nvme_pr_ops = {
693         .pr_register    = nvme_pr_register,
694         .pr_reserve     = nvme_pr_reserve,
695         .pr_release     = nvme_pr_release,
696         .pr_preempt     = nvme_pr_preempt,
697         .pr_clear       = nvme_pr_clear,
698 };
699
700 static const struct block_device_operations nvme_fops = {
701         .owner          = THIS_MODULE,
702         .ioctl          = nvme_ioctl,
703         .compat_ioctl   = nvme_compat_ioctl,
704         .open           = nvme_open,
705         .release        = nvme_release,
706         .getgeo         = nvme_getgeo,
707         .revalidate_disk= nvme_revalidate_disk,
708         .pr_ops         = &nvme_pr_ops,
709 };
710
711 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
712 {
713         unsigned long timeout =
714                 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
715         u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
716         int ret;
717
718         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
719                 if ((csts & NVME_CSTS_RDY) == bit)
720                         break;
721
722                 msleep(100);
723                 if (fatal_signal_pending(current))
724                         return -EINTR;
725                 if (time_after(jiffies, timeout)) {
726                         dev_err(ctrl->dev,
727                                 "Device not ready; aborting %s\n", enabled ?
728                                                 "initialisation" : "reset");
729                         return -ENODEV;
730                 }
731         }
732
733         return ret;
734 }
735
736 /*
737  * If the device has been passed off to us in an enabled state, just clear
738  * the enabled bit.  The spec says we should set the 'shutdown notification
739  * bits', but doing so may cause the device to complete commands to the
740  * admin queue ... and we don't know what memory that might be pointing at!
741  */
742 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
743 {
744         int ret;
745
746         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
747         ctrl->ctrl_config &= ~NVME_CC_ENABLE;
748
749         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
750         if (ret)
751                 return ret;
752         return nvme_wait_ready(ctrl, cap, false);
753 }
754
755 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
756 {
757         /*
758          * Default to a 4K page size, with the intention to update this
759          * path in the future to accomodate architectures with differing
760          * kernel and IO page sizes.
761          */
762         unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
763         int ret;
764
765         if (page_shift < dev_page_min) {
766                 dev_err(ctrl->dev,
767                         "Minimum device page size %u too large for host (%u)\n",
768                         1 << dev_page_min, 1 << page_shift);
769                 return -ENODEV;
770         }
771
772         ctrl->page_size = 1 << page_shift;
773
774         ctrl->ctrl_config = NVME_CC_CSS_NVM;
775         ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
776         ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
777         ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
778         ctrl->ctrl_config |= NVME_CC_ENABLE;
779
780         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
781         if (ret)
782                 return ret;
783         return nvme_wait_ready(ctrl, cap, true);
784 }
785
786 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
787 {
788         unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies;
789         u32 csts;
790         int ret;
791
792         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
793         ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
794
795         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
796         if (ret)
797                 return ret;
798
799         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
800                 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
801                         break;
802
803                 msleep(100);
804                 if (fatal_signal_pending(current))
805                         return -EINTR;
806                 if (time_after(jiffies, timeout)) {
807                         dev_err(ctrl->dev,
808                                 "Device shutdown incomplete; abort shutdown\n");
809                         return -ENODEV;
810                 }
811         }
812
813         return ret;
814 }
815
816 /*
817  * Initialize the cached copies of the Identify data and various controller
818  * register in our nvme_ctrl structure.  This should be called as soon as
819  * the admin queue is fully up and running.
820  */
821 int nvme_init_identify(struct nvme_ctrl *ctrl)
822 {
823         struct nvme_id_ctrl *id;
824         u64 cap;
825         int ret, page_shift;
826
827         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
828         if (ret) {
829                 dev_err(ctrl->dev, "Reading VS failed (%d)\n", ret);
830                 return ret;
831         }
832
833         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
834         if (ret) {
835                 dev_err(ctrl->dev, "Reading CAP failed (%d)\n", ret);
836                 return ret;
837         }
838         page_shift = NVME_CAP_MPSMIN(cap) + 12;
839
840         if (ctrl->vs >= NVME_VS(1, 1))
841                 ctrl->subsystem = NVME_CAP_NSSRC(cap);
842
843         ret = nvme_identify_ctrl(ctrl, &id);
844         if (ret) {
845                 dev_err(ctrl->dev, "Identify Controller failed (%d)\n", ret);
846                 return -EIO;
847         }
848
849         ctrl->oncs = le16_to_cpup(&id->oncs);
850         atomic_set(&ctrl->abort_limit, id->acl + 1);
851         ctrl->vwc = id->vwc;
852         memcpy(ctrl->serial, id->sn, sizeof(id->sn));
853         memcpy(ctrl->model, id->mn, sizeof(id->mn));
854         memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
855         if (id->mdts)
856                 ctrl->max_hw_sectors = 1 << (id->mdts + page_shift - 9);
857         else
858                 ctrl->max_hw_sectors = UINT_MAX;
859
860         if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && id->vs[3]) {
861                 unsigned int max_hw_sectors;
862
863                 ctrl->stripe_size = 1 << (id->vs[3] + page_shift);
864                 max_hw_sectors = ctrl->stripe_size >> (page_shift - 9);
865                 if (ctrl->max_hw_sectors) {
866                         ctrl->max_hw_sectors = min(max_hw_sectors,
867                                                         ctrl->max_hw_sectors);
868                 } else {
869                         ctrl->max_hw_sectors = max_hw_sectors;
870                 }
871         }
872
873         kfree(id);
874         return 0;
875 }
876
877 static int nvme_dev_open(struct inode *inode, struct file *file)
878 {
879         struct nvme_ctrl *ctrl;
880         int instance = iminor(inode);
881         int ret = -ENODEV;
882
883         spin_lock(&dev_list_lock);
884         list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
885                 if (ctrl->instance != instance)
886                         continue;
887
888                 if (!ctrl->admin_q) {
889                         ret = -EWOULDBLOCK;
890                         break;
891                 }
892                 if (!kref_get_unless_zero(&ctrl->kref))
893                         break;
894                 file->private_data = ctrl;
895                 ret = 0;
896                 break;
897         }
898         spin_unlock(&dev_list_lock);
899
900         return ret;
901 }
902
903 static int nvme_dev_release(struct inode *inode, struct file *file)
904 {
905         nvme_put_ctrl(file->private_data);
906         return 0;
907 }
908
909 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
910                 unsigned long arg)
911 {
912         struct nvme_ctrl *ctrl = file->private_data;
913         void __user *argp = (void __user *)arg;
914         struct nvme_ns *ns;
915
916         switch (cmd) {
917         case NVME_IOCTL_ADMIN_CMD:
918                 return nvme_user_cmd(ctrl, NULL, argp);
919         case NVME_IOCTL_IO_CMD:
920                 if (list_empty(&ctrl->namespaces))
921                         return -ENOTTY;
922                 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
923                 return nvme_user_cmd(ctrl, ns, argp);
924         case NVME_IOCTL_RESET:
925                 dev_warn(ctrl->dev, "resetting controller\n");
926                 return ctrl->ops->reset_ctrl(ctrl);
927         case NVME_IOCTL_SUBSYS_RESET:
928                 return nvme_reset_subsystem(ctrl);
929         default:
930                 return -ENOTTY;
931         }
932 }
933
934 static const struct file_operations nvme_dev_fops = {
935         .owner          = THIS_MODULE,
936         .open           = nvme_dev_open,
937         .release        = nvme_dev_release,
938         .unlocked_ioctl = nvme_dev_ioctl,
939         .compat_ioctl   = nvme_dev_ioctl,
940 };
941
942 static ssize_t nvme_sysfs_reset(struct device *dev,
943                                 struct device_attribute *attr, const char *buf,
944                                 size_t count)
945 {
946         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
947         int ret;
948
949         ret = ctrl->ops->reset_ctrl(ctrl);
950         if (ret < 0)
951                 return ret;
952         return count;
953 }
954 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
955
956 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
957 {
958         struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
959         struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
960
961         return nsa->ns_id - nsb->ns_id;
962 }
963
964 static struct nvme_ns *nvme_find_ns(struct nvme_ctrl *ctrl, unsigned nsid)
965 {
966         struct nvme_ns *ns;
967
968         list_for_each_entry(ns, &ctrl->namespaces, list) {
969                 if (ns->ns_id == nsid)
970                         return ns;
971                 if (ns->ns_id > nsid)
972                         break;
973         }
974         return NULL;
975 }
976
977 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
978 {
979         struct nvme_ns *ns;
980         struct gendisk *disk;
981         int node = dev_to_node(ctrl->dev);
982
983         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
984         if (!ns)
985                 return;
986
987         ns->queue = blk_mq_init_queue(ctrl->tagset);
988         if (IS_ERR(ns->queue))
989                 goto out_free_ns;
990         queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
991         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
992         ns->queue->queuedata = ns;
993         ns->ctrl = ctrl;
994
995         disk = alloc_disk_node(0, node);
996         if (!disk)
997                 goto out_free_queue;
998
999         kref_init(&ns->kref);
1000         ns->ns_id = nsid;
1001         ns->disk = disk;
1002         ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
1003
1004         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1005         if (ctrl->max_hw_sectors) {
1006                 blk_queue_max_hw_sectors(ns->queue, ctrl->max_hw_sectors);
1007                 blk_queue_max_segments(ns->queue,
1008                         (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1);
1009         }
1010         if (ctrl->stripe_size)
1011                 blk_queue_chunk_sectors(ns->queue, ctrl->stripe_size >> 9);
1012         if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1013                 blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
1014         blk_queue_virt_boundary(ns->queue, ctrl->page_size - 1);
1015
1016         disk->major = nvme_major;
1017         disk->first_minor = 0;
1018         disk->fops = &nvme_fops;
1019         disk->private_data = ns;
1020         disk->queue = ns->queue;
1021         disk->driverfs_dev = ctrl->device;
1022         disk->flags = GENHD_FL_EXT_DEVT;
1023         sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, nsid);
1024
1025         if (nvme_revalidate_disk(ns->disk))
1026                 goto out_free_disk;
1027
1028         list_add_tail(&ns->list, &ctrl->namespaces);
1029         kref_get(&ctrl->kref);
1030         if (ns->type != NVME_NS_LIGHTNVM)
1031                 add_disk(ns->disk);
1032
1033         return;
1034  out_free_disk:
1035         kfree(disk);
1036  out_free_queue:
1037         blk_cleanup_queue(ns->queue);
1038  out_free_ns:
1039         kfree(ns);
1040 }
1041
1042 static void nvme_ns_remove(struct nvme_ns *ns)
1043 {
1044         bool kill = nvme_io_incapable(ns->ctrl) &&
1045                         !blk_queue_dying(ns->queue);
1046
1047         if (kill)
1048                 blk_set_queue_dying(ns->queue);
1049         if (ns->disk->flags & GENHD_FL_UP) {
1050                 if (blk_get_integrity(ns->disk))
1051                         blk_integrity_unregister(ns->disk);
1052                 del_gendisk(ns->disk);
1053         }
1054         if (kill || !blk_queue_dying(ns->queue)) {
1055                 blk_mq_abort_requeue_list(ns->queue);
1056                 blk_cleanup_queue(ns->queue);
1057         }
1058         list_del_init(&ns->list);
1059         nvme_put_ns(ns);
1060 }
1061
1062 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1063 {
1064         struct nvme_ns *ns;
1065
1066         ns = nvme_find_ns(ctrl, nsid);
1067         if (ns) {
1068                 if (revalidate_disk(ns->disk))
1069                         nvme_ns_remove(ns);
1070         } else
1071                 nvme_alloc_ns(ctrl, nsid);
1072 }
1073
1074 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
1075 {
1076         struct nvme_ns *ns;
1077         __le32 *ns_list;
1078         unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
1079         int ret = 0;
1080
1081         ns_list = kzalloc(0x1000, GFP_KERNEL);
1082         if (!ns_list)
1083                 return -ENOMEM;
1084
1085         for (i = 0; i < num_lists; i++) {
1086                 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
1087                 if (ret)
1088                         goto out;
1089
1090                 for (j = 0; j < min(nn, 1024U); j++) {
1091                         nsid = le32_to_cpu(ns_list[j]);
1092                         if (!nsid)
1093                                 goto out;
1094
1095                         nvme_validate_ns(ctrl, nsid);
1096
1097                         while (++prev < nsid) {
1098                                 ns = nvme_find_ns(ctrl, prev);
1099                                 if (ns)
1100                                         nvme_ns_remove(ns);
1101                         }
1102                 }
1103                 nn -= j;
1104         }
1105  out:
1106         kfree(ns_list);
1107         return ret;
1108 }
1109
1110 static void __nvme_scan_namespaces(struct nvme_ctrl *ctrl, unsigned nn)
1111 {
1112         struct nvme_ns *ns, *next;
1113         unsigned i;
1114
1115         for (i = 1; i <= nn; i++)
1116                 nvme_validate_ns(ctrl, i);
1117
1118         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
1119                 if (ns->ns_id > nn)
1120                         nvme_ns_remove(ns);
1121         }
1122 }
1123
1124 void nvme_scan_namespaces(struct nvme_ctrl *ctrl)
1125 {
1126         struct nvme_id_ctrl *id;
1127         unsigned nn;
1128
1129         if (nvme_identify_ctrl(ctrl, &id))
1130                 return;
1131
1132         nn = le32_to_cpu(id->nn);
1133         if (ctrl->vs >= NVME_VS(1, 1) &&
1134             !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
1135                 if (!nvme_scan_ns_list(ctrl, nn))
1136                         goto done;
1137         }
1138         __nvme_scan_namespaces(ctrl, le32_to_cpup(&id->nn));
1139  done:
1140         list_sort(NULL, &ctrl->namespaces, ns_cmp);
1141         kfree(id);
1142 }
1143
1144 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
1145 {
1146         struct nvme_ns *ns, *next;
1147
1148         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
1149                 nvme_ns_remove(ns);
1150 }
1151
1152 static DEFINE_IDA(nvme_instance_ida);
1153
1154 static int nvme_set_instance(struct nvme_ctrl *ctrl)
1155 {
1156         int instance, error;
1157
1158         do {
1159                 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
1160                         return -ENODEV;
1161
1162                 spin_lock(&dev_list_lock);
1163                 error = ida_get_new(&nvme_instance_ida, &instance);
1164                 spin_unlock(&dev_list_lock);
1165         } while (error == -EAGAIN);
1166
1167         if (error)
1168                 return -ENODEV;
1169
1170         ctrl->instance = instance;
1171         return 0;
1172 }
1173
1174 static void nvme_release_instance(struct nvme_ctrl *ctrl)
1175 {
1176         spin_lock(&dev_list_lock);
1177         ida_remove(&nvme_instance_ida, ctrl->instance);
1178         spin_unlock(&dev_list_lock);
1179 }
1180
1181 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
1182  {
1183         device_remove_file(ctrl->device, &dev_attr_reset_controller);
1184         device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
1185
1186         spin_lock(&dev_list_lock);
1187         list_del(&ctrl->node);
1188         spin_unlock(&dev_list_lock);
1189 }
1190
1191 static void nvme_free_ctrl(struct kref *kref)
1192 {
1193         struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
1194
1195         put_device(ctrl->device);
1196         nvme_release_instance(ctrl);
1197
1198         ctrl->ops->free_ctrl(ctrl);
1199 }
1200
1201 void nvme_put_ctrl(struct nvme_ctrl *ctrl)
1202 {
1203         kref_put(&ctrl->kref, nvme_free_ctrl);
1204 }
1205
1206 /*
1207  * Initialize a NVMe controller structures.  This needs to be called during
1208  * earliest initialization so that we have the initialized structured around
1209  * during probing.
1210  */
1211 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
1212                 const struct nvme_ctrl_ops *ops, unsigned long quirks)
1213 {
1214         int ret;
1215
1216         INIT_LIST_HEAD(&ctrl->namespaces);
1217         kref_init(&ctrl->kref);
1218         ctrl->dev = dev;
1219         ctrl->ops = ops;
1220         ctrl->quirks = quirks;
1221
1222         ret = nvme_set_instance(ctrl);
1223         if (ret)
1224                 goto out;
1225
1226         ctrl->device = device_create(nvme_class, ctrl->dev,
1227                                 MKDEV(nvme_char_major, ctrl->instance),
1228                                 dev, "nvme%d", ctrl->instance);
1229         if (IS_ERR(ctrl->device)) {
1230                 ret = PTR_ERR(ctrl->device);
1231                 goto out_release_instance;
1232         }
1233         get_device(ctrl->device);
1234         dev_set_drvdata(ctrl->device, ctrl);
1235
1236         ret = device_create_file(ctrl->device, &dev_attr_reset_controller);
1237         if (ret)
1238                 goto out_put_device;
1239
1240         spin_lock(&dev_list_lock);
1241         list_add_tail(&ctrl->node, &nvme_ctrl_list);
1242         spin_unlock(&dev_list_lock);
1243
1244         return 0;
1245
1246 out_put_device:
1247         put_device(ctrl->device);
1248         device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
1249 out_release_instance:
1250         nvme_release_instance(ctrl);
1251 out:
1252         return ret;
1253 }
1254
1255 int __init nvme_core_init(void)
1256 {
1257         int result;
1258
1259         result = register_blkdev(nvme_major, "nvme");
1260         if (result < 0)
1261                 return result;
1262         else if (result > 0)
1263                 nvme_major = result;
1264
1265         result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
1266                                                         &nvme_dev_fops);
1267         if (result < 0)
1268                 goto unregister_blkdev;
1269         else if (result > 0)
1270                 nvme_char_major = result;
1271
1272         nvme_class = class_create(THIS_MODULE, "nvme");
1273         if (IS_ERR(nvme_class)) {
1274                 result = PTR_ERR(nvme_class);
1275                 goto unregister_chrdev;
1276         }
1277
1278         return 0;
1279
1280  unregister_chrdev:
1281         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
1282  unregister_blkdev:
1283         unregister_blkdev(nvme_major, "nvme");
1284         return result;
1285 }
1286
1287 void nvme_core_exit(void)
1288 {
1289         unregister_blkdev(nvme_major, "nvme");
1290         class_destroy(nvme_class);
1291         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
1292 }