Merge tag 'mailbox-v5.8' of git://git.linaro.org/landing-teams/working/fujitsu/integr...
[linux-2.6-block.git] / drivers / nvme / host / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/compat.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/hdreg.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/list_sort.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24
25 #include "nvme.h"
26 #include "fabrics.h"
27
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
30
31 #define NVME_MINORS             (1U << MINORBITS)
32
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
37
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
42
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54                  "max power saving latency for new devices; use PM QOS to change per device");
55
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59
60 static bool streams;
61 module_param(streams, bool, 0644);
62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
63
64 /*
65  * nvme_wq - hosts nvme related works that are not reset or delete
66  * nvme_reset_wq - hosts nvme reset works
67  * nvme_delete_wq - hosts nvme delete works
68  *
69  * nvme_wq will host works such as scan, aen handling, fw activation,
70  * keep-alive, periodic reconnects etc. nvme_reset_wq
71  * runs reset works which also flush works hosted on nvme_wq for
72  * serialization purposes. nvme_delete_wq host controller deletion
73  * works which flush reset works for serialization.
74  */
75 struct workqueue_struct *nvme_wq;
76 EXPORT_SYMBOL_GPL(nvme_wq);
77
78 struct workqueue_struct *nvme_reset_wq;
79 EXPORT_SYMBOL_GPL(nvme_reset_wq);
80
81 struct workqueue_struct *nvme_delete_wq;
82 EXPORT_SYMBOL_GPL(nvme_delete_wq);
83
84 static LIST_HEAD(nvme_subsystems);
85 static DEFINE_MUTEX(nvme_subsystems_lock);
86
87 static DEFINE_IDA(nvme_instance_ida);
88 static dev_t nvme_chr_devt;
89 static struct class *nvme_class;
90 static struct class *nvme_subsys_class;
91
92 static int nvme_revalidate_disk(struct gendisk *disk);
93 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
94 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
95                                            unsigned nsid);
96
97 static void nvme_set_queue_dying(struct nvme_ns *ns)
98 {
99         /*
100          * Revalidating a dead namespace sets capacity to 0. This will end
101          * buffered writers dirtying pages that can't be synced.
102          */
103         if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
104                 return;
105         blk_set_queue_dying(ns->queue);
106         /* Forcibly unquiesce queues to avoid blocking dispatch */
107         blk_mq_unquiesce_queue(ns->queue);
108         /*
109          * Revalidate after unblocking dispatchers that may be holding bd_butex
110          */
111         revalidate_disk(ns->disk);
112 }
113
114 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
115 {
116         /*
117          * Only new queue scan work when admin and IO queues are both alive
118          */
119         if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
120                 queue_work(nvme_wq, &ctrl->scan_work);
121 }
122
123 /*
124  * Use this function to proceed with scheduling reset_work for a controller
125  * that had previously been set to the resetting state. This is intended for
126  * code paths that can't be interrupted by other reset attempts. A hot removal
127  * may prevent this from succeeding.
128  */
129 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
130 {
131         if (ctrl->state != NVME_CTRL_RESETTING)
132                 return -EBUSY;
133         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
134                 return -EBUSY;
135         return 0;
136 }
137 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
138
139 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
140 {
141         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
142                 return -EBUSY;
143         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
144                 return -EBUSY;
145         return 0;
146 }
147 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
148
149 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
150 {
151         int ret;
152
153         ret = nvme_reset_ctrl(ctrl);
154         if (!ret) {
155                 flush_work(&ctrl->reset_work);
156                 if (ctrl->state != NVME_CTRL_LIVE)
157                         ret = -ENETRESET;
158         }
159
160         return ret;
161 }
162 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
163
164 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
165 {
166         dev_info(ctrl->device,
167                  "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
168
169         flush_work(&ctrl->reset_work);
170         nvme_stop_ctrl(ctrl);
171         nvme_remove_namespaces(ctrl);
172         ctrl->ops->delete_ctrl(ctrl);
173         nvme_uninit_ctrl(ctrl);
174 }
175
176 static void nvme_delete_ctrl_work(struct work_struct *work)
177 {
178         struct nvme_ctrl *ctrl =
179                 container_of(work, struct nvme_ctrl, delete_work);
180
181         nvme_do_delete_ctrl(ctrl);
182 }
183
184 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
185 {
186         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
187                 return -EBUSY;
188         if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
189                 return -EBUSY;
190         return 0;
191 }
192 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
193
194 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
195 {
196         /*
197          * Keep a reference until nvme_do_delete_ctrl() complete,
198          * since ->delete_ctrl can free the controller.
199          */
200         nvme_get_ctrl(ctrl);
201         if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
202                 nvme_do_delete_ctrl(ctrl);
203         nvme_put_ctrl(ctrl);
204 }
205
206 static blk_status_t nvme_error_status(u16 status)
207 {
208         switch (status & 0x7ff) {
209         case NVME_SC_SUCCESS:
210                 return BLK_STS_OK;
211         case NVME_SC_CAP_EXCEEDED:
212                 return BLK_STS_NOSPC;
213         case NVME_SC_LBA_RANGE:
214         case NVME_SC_CMD_INTERRUPTED:
215         case NVME_SC_NS_NOT_READY:
216                 return BLK_STS_TARGET;
217         case NVME_SC_BAD_ATTRIBUTES:
218         case NVME_SC_ONCS_NOT_SUPPORTED:
219         case NVME_SC_INVALID_OPCODE:
220         case NVME_SC_INVALID_FIELD:
221         case NVME_SC_INVALID_NS:
222                 return BLK_STS_NOTSUPP;
223         case NVME_SC_WRITE_FAULT:
224         case NVME_SC_READ_ERROR:
225         case NVME_SC_UNWRITTEN_BLOCK:
226         case NVME_SC_ACCESS_DENIED:
227         case NVME_SC_READ_ONLY:
228         case NVME_SC_COMPARE_FAILED:
229                 return BLK_STS_MEDIUM;
230         case NVME_SC_GUARD_CHECK:
231         case NVME_SC_APPTAG_CHECK:
232         case NVME_SC_REFTAG_CHECK:
233         case NVME_SC_INVALID_PI:
234                 return BLK_STS_PROTECTION;
235         case NVME_SC_RESERVATION_CONFLICT:
236                 return BLK_STS_NEXUS;
237         case NVME_SC_HOST_PATH_ERROR:
238                 return BLK_STS_TRANSPORT;
239         default:
240                 return BLK_STS_IOERR;
241         }
242 }
243
244 static inline bool nvme_req_needs_retry(struct request *req)
245 {
246         if (blk_noretry_request(req))
247                 return false;
248         if (nvme_req(req)->status & NVME_SC_DNR)
249                 return false;
250         if (nvme_req(req)->retries >= nvme_max_retries)
251                 return false;
252         return true;
253 }
254
255 static void nvme_retry_req(struct request *req)
256 {
257         struct nvme_ns *ns = req->q->queuedata;
258         unsigned long delay = 0;
259         u16 crd;
260
261         /* The mask and shift result must be <= 3 */
262         crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
263         if (ns && crd)
264                 delay = ns->ctrl->crdt[crd - 1] * 100;
265
266         nvme_req(req)->retries++;
267         blk_mq_requeue_request(req, false);
268         blk_mq_delay_kick_requeue_list(req->q, delay);
269 }
270
271 void nvme_complete_rq(struct request *req)
272 {
273         blk_status_t status = nvme_error_status(nvme_req(req)->status);
274
275         trace_nvme_complete_rq(req);
276
277         nvme_cleanup_cmd(req);
278
279         if (nvme_req(req)->ctrl->kas)
280                 nvme_req(req)->ctrl->comp_seen = true;
281
282         if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) {
283                 if ((req->cmd_flags & REQ_NVME_MPATH) && nvme_failover_req(req))
284                         return;
285
286                 if (!blk_queue_dying(req->q)) {
287                         nvme_retry_req(req);
288                         return;
289                 }
290         }
291
292         nvme_trace_bio_complete(req, status);
293         blk_mq_end_request(req, status);
294 }
295 EXPORT_SYMBOL_GPL(nvme_complete_rq);
296
297 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
298 {
299         dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
300                                 "Cancelling I/O %d", req->tag);
301
302         /* don't abort one completed request */
303         if (blk_mq_request_completed(req))
304                 return true;
305
306         nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
307         blk_mq_force_complete_rq(req);
308         return true;
309 }
310 EXPORT_SYMBOL_GPL(nvme_cancel_request);
311
312 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
313                 enum nvme_ctrl_state new_state)
314 {
315         enum nvme_ctrl_state old_state;
316         unsigned long flags;
317         bool changed = false;
318
319         spin_lock_irqsave(&ctrl->lock, flags);
320
321         old_state = ctrl->state;
322         switch (new_state) {
323         case NVME_CTRL_LIVE:
324                 switch (old_state) {
325                 case NVME_CTRL_NEW:
326                 case NVME_CTRL_RESETTING:
327                 case NVME_CTRL_CONNECTING:
328                         changed = true;
329                         /* FALLTHRU */
330                 default:
331                         break;
332                 }
333                 break;
334         case NVME_CTRL_RESETTING:
335                 switch (old_state) {
336                 case NVME_CTRL_NEW:
337                 case NVME_CTRL_LIVE:
338                         changed = true;
339                         /* FALLTHRU */
340                 default:
341                         break;
342                 }
343                 break;
344         case NVME_CTRL_CONNECTING:
345                 switch (old_state) {
346                 case NVME_CTRL_NEW:
347                 case NVME_CTRL_RESETTING:
348                         changed = true;
349                         /* FALLTHRU */
350                 default:
351                         break;
352                 }
353                 break;
354         case NVME_CTRL_DELETING:
355                 switch (old_state) {
356                 case NVME_CTRL_LIVE:
357                 case NVME_CTRL_RESETTING:
358                 case NVME_CTRL_CONNECTING:
359                         changed = true;
360                         /* FALLTHRU */
361                 default:
362                         break;
363                 }
364                 break;
365         case NVME_CTRL_DEAD:
366                 switch (old_state) {
367                 case NVME_CTRL_DELETING:
368                         changed = true;
369                         /* FALLTHRU */
370                 default:
371                         break;
372                 }
373                 break;
374         default:
375                 break;
376         }
377
378         if (changed) {
379                 ctrl->state = new_state;
380                 wake_up_all(&ctrl->state_wq);
381         }
382
383         spin_unlock_irqrestore(&ctrl->lock, flags);
384         if (changed && ctrl->state == NVME_CTRL_LIVE)
385                 nvme_kick_requeue_lists(ctrl);
386         return changed;
387 }
388 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
389
390 /*
391  * Returns true for sink states that can't ever transition back to live.
392  */
393 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
394 {
395         switch (ctrl->state) {
396         case NVME_CTRL_NEW:
397         case NVME_CTRL_LIVE:
398         case NVME_CTRL_RESETTING:
399         case NVME_CTRL_CONNECTING:
400                 return false;
401         case NVME_CTRL_DELETING:
402         case NVME_CTRL_DEAD:
403                 return true;
404         default:
405                 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
406                 return true;
407         }
408 }
409
410 /*
411  * Waits for the controller state to be resetting, or returns false if it is
412  * not possible to ever transition to that state.
413  */
414 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
415 {
416         wait_event(ctrl->state_wq,
417                    nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
418                    nvme_state_terminal(ctrl));
419         return ctrl->state == NVME_CTRL_RESETTING;
420 }
421 EXPORT_SYMBOL_GPL(nvme_wait_reset);
422
423 static void nvme_free_ns_head(struct kref *ref)
424 {
425         struct nvme_ns_head *head =
426                 container_of(ref, struct nvme_ns_head, ref);
427
428         nvme_mpath_remove_disk(head);
429         ida_simple_remove(&head->subsys->ns_ida, head->instance);
430         cleanup_srcu_struct(&head->srcu);
431         nvme_put_subsystem(head->subsys);
432         kfree(head);
433 }
434
435 static void nvme_put_ns_head(struct nvme_ns_head *head)
436 {
437         kref_put(&head->ref, nvme_free_ns_head);
438 }
439
440 static void nvme_free_ns(struct kref *kref)
441 {
442         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
443
444         if (ns->ndev)
445                 nvme_nvm_unregister(ns);
446
447         put_disk(ns->disk);
448         nvme_put_ns_head(ns->head);
449         nvme_put_ctrl(ns->ctrl);
450         kfree(ns);
451 }
452
453 static void nvme_put_ns(struct nvme_ns *ns)
454 {
455         kref_put(&ns->kref, nvme_free_ns);
456 }
457
458 static inline void nvme_clear_nvme_request(struct request *req)
459 {
460         if (!(req->rq_flags & RQF_DONTPREP)) {
461                 nvme_req(req)->retries = 0;
462                 nvme_req(req)->flags = 0;
463                 req->rq_flags |= RQF_DONTPREP;
464         }
465 }
466
467 struct request *nvme_alloc_request(struct request_queue *q,
468                 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
469 {
470         unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
471         struct request *req;
472
473         if (qid == NVME_QID_ANY) {
474                 req = blk_mq_alloc_request(q, op, flags);
475         } else {
476                 req = blk_mq_alloc_request_hctx(q, op, flags,
477                                 qid ? qid - 1 : 0);
478         }
479         if (IS_ERR(req))
480                 return req;
481
482         req->cmd_flags |= REQ_FAILFAST_DRIVER;
483         nvme_clear_nvme_request(req);
484         nvme_req(req)->cmd = cmd;
485
486         return req;
487 }
488 EXPORT_SYMBOL_GPL(nvme_alloc_request);
489
490 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
491 {
492         struct nvme_command c;
493
494         memset(&c, 0, sizeof(c));
495
496         c.directive.opcode = nvme_admin_directive_send;
497         c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
498         c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
499         c.directive.dtype = NVME_DIR_IDENTIFY;
500         c.directive.tdtype = NVME_DIR_STREAMS;
501         c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
502
503         return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
504 }
505
506 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
507 {
508         return nvme_toggle_streams(ctrl, false);
509 }
510
511 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
512 {
513         return nvme_toggle_streams(ctrl, true);
514 }
515
516 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
517                                   struct streams_directive_params *s, u32 nsid)
518 {
519         struct nvme_command c;
520
521         memset(&c, 0, sizeof(c));
522         memset(s, 0, sizeof(*s));
523
524         c.directive.opcode = nvme_admin_directive_recv;
525         c.directive.nsid = cpu_to_le32(nsid);
526         c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
527         c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
528         c.directive.dtype = NVME_DIR_STREAMS;
529
530         return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
531 }
532
533 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
534 {
535         struct streams_directive_params s;
536         int ret;
537
538         if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
539                 return 0;
540         if (!streams)
541                 return 0;
542
543         ret = nvme_enable_streams(ctrl);
544         if (ret)
545                 return ret;
546
547         ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
548         if (ret)
549                 goto out_disable_stream;
550
551         ctrl->nssa = le16_to_cpu(s.nssa);
552         if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
553                 dev_info(ctrl->device, "too few streams (%u) available\n",
554                                         ctrl->nssa);
555                 goto out_disable_stream;
556         }
557
558         ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
559         dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
560         return 0;
561
562 out_disable_stream:
563         nvme_disable_streams(ctrl);
564         return ret;
565 }
566
567 /*
568  * Check if 'req' has a write hint associated with it. If it does, assign
569  * a valid namespace stream to the write.
570  */
571 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
572                                      struct request *req, u16 *control,
573                                      u32 *dsmgmt)
574 {
575         enum rw_hint streamid = req->write_hint;
576
577         if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
578                 streamid = 0;
579         else {
580                 streamid--;
581                 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
582                         return;
583
584                 *control |= NVME_RW_DTYPE_STREAMS;
585                 *dsmgmt |= streamid << 16;
586         }
587
588         if (streamid < ARRAY_SIZE(req->q->write_hints))
589                 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
590 }
591
592 static inline void nvme_setup_flush(struct nvme_ns *ns,
593                 struct nvme_command *cmnd)
594 {
595         cmnd->common.opcode = nvme_cmd_flush;
596         cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
597 }
598
599 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
600                 struct nvme_command *cmnd)
601 {
602         unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
603         struct nvme_dsm_range *range;
604         struct bio *bio;
605
606         /*
607          * Some devices do not consider the DSM 'Number of Ranges' field when
608          * determining how much data to DMA. Always allocate memory for maximum
609          * number of segments to prevent device reading beyond end of buffer.
610          */
611         static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
612
613         range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
614         if (!range) {
615                 /*
616                  * If we fail allocation our range, fallback to the controller
617                  * discard page. If that's also busy, it's safe to return
618                  * busy, as we know we can make progress once that's freed.
619                  */
620                 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
621                         return BLK_STS_RESOURCE;
622
623                 range = page_address(ns->ctrl->discard_page);
624         }
625
626         __rq_for_each_bio(bio, req) {
627                 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
628                 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
629
630                 if (n < segments) {
631                         range[n].cattr = cpu_to_le32(0);
632                         range[n].nlb = cpu_to_le32(nlb);
633                         range[n].slba = cpu_to_le64(slba);
634                 }
635                 n++;
636         }
637
638         if (WARN_ON_ONCE(n != segments)) {
639                 if (virt_to_page(range) == ns->ctrl->discard_page)
640                         clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
641                 else
642                         kfree(range);
643                 return BLK_STS_IOERR;
644         }
645
646         cmnd->dsm.opcode = nvme_cmd_dsm;
647         cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
648         cmnd->dsm.nr = cpu_to_le32(segments - 1);
649         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
650
651         req->special_vec.bv_page = virt_to_page(range);
652         req->special_vec.bv_offset = offset_in_page(range);
653         req->special_vec.bv_len = alloc_size;
654         req->rq_flags |= RQF_SPECIAL_PAYLOAD;
655
656         return BLK_STS_OK;
657 }
658
659 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
660                 struct request *req, struct nvme_command *cmnd)
661 {
662         if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
663                 return nvme_setup_discard(ns, req, cmnd);
664
665         cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
666         cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
667         cmnd->write_zeroes.slba =
668                 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
669         cmnd->write_zeroes.length =
670                 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
671         cmnd->write_zeroes.control = 0;
672         return BLK_STS_OK;
673 }
674
675 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
676                 struct request *req, struct nvme_command *cmnd)
677 {
678         struct nvme_ctrl *ctrl = ns->ctrl;
679         u16 control = 0;
680         u32 dsmgmt = 0;
681
682         if (req->cmd_flags & REQ_FUA)
683                 control |= NVME_RW_FUA;
684         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
685                 control |= NVME_RW_LR;
686
687         if (req->cmd_flags & REQ_RAHEAD)
688                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
689
690         cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
691         cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
692         cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
693         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
694
695         if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
696                 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
697
698         if (ns->ms) {
699                 /*
700                  * If formated with metadata, the block layer always provides a
701                  * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
702                  * we enable the PRACT bit for protection information or set the
703                  * namespace capacity to zero to prevent any I/O.
704                  */
705                 if (!blk_integrity_rq(req)) {
706                         if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
707                                 return BLK_STS_NOTSUPP;
708                         control |= NVME_RW_PRINFO_PRACT;
709                 }
710
711                 switch (ns->pi_type) {
712                 case NVME_NS_DPS_PI_TYPE3:
713                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
714                         break;
715                 case NVME_NS_DPS_PI_TYPE1:
716                 case NVME_NS_DPS_PI_TYPE2:
717                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
718                                         NVME_RW_PRINFO_PRCHK_REF;
719                         cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
720                         break;
721                 }
722         }
723
724         cmnd->rw.control = cpu_to_le16(control);
725         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
726         return 0;
727 }
728
729 void nvme_cleanup_cmd(struct request *req)
730 {
731         if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
732                 struct nvme_ns *ns = req->rq_disk->private_data;
733                 struct page *page = req->special_vec.bv_page;
734
735                 if (page == ns->ctrl->discard_page)
736                         clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
737                 else
738                         kfree(page_address(page) + req->special_vec.bv_offset);
739         }
740 }
741 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
742
743 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
744                 struct nvme_command *cmd)
745 {
746         blk_status_t ret = BLK_STS_OK;
747
748         nvme_clear_nvme_request(req);
749
750         memset(cmd, 0, sizeof(*cmd));
751         switch (req_op(req)) {
752         case REQ_OP_DRV_IN:
753         case REQ_OP_DRV_OUT:
754                 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
755                 break;
756         case REQ_OP_FLUSH:
757                 nvme_setup_flush(ns, cmd);
758                 break;
759         case REQ_OP_WRITE_ZEROES:
760                 ret = nvme_setup_write_zeroes(ns, req, cmd);
761                 break;
762         case REQ_OP_DISCARD:
763                 ret = nvme_setup_discard(ns, req, cmd);
764                 break;
765         case REQ_OP_READ:
766         case REQ_OP_WRITE:
767                 ret = nvme_setup_rw(ns, req, cmd);
768                 break;
769         default:
770                 WARN_ON_ONCE(1);
771                 return BLK_STS_IOERR;
772         }
773
774         cmd->common.command_id = req->tag;
775         trace_nvme_setup_cmd(req, cmd);
776         return ret;
777 }
778 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
779
780 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
781 {
782         struct completion *waiting = rq->end_io_data;
783
784         rq->end_io_data = NULL;
785         complete(waiting);
786 }
787
788 static void nvme_execute_rq_polled(struct request_queue *q,
789                 struct gendisk *bd_disk, struct request *rq, int at_head)
790 {
791         DECLARE_COMPLETION_ONSTACK(wait);
792
793         WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
794
795         rq->cmd_flags |= REQ_HIPRI;
796         rq->end_io_data = &wait;
797         blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq);
798
799         while (!completion_done(&wait)) {
800                 blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
801                 cond_resched();
802         }
803 }
804
805 /*
806  * Returns 0 on success.  If the result is negative, it's a Linux error code;
807  * if the result is positive, it's an NVM Express status code
808  */
809 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
810                 union nvme_result *result, void *buffer, unsigned bufflen,
811                 unsigned timeout, int qid, int at_head,
812                 blk_mq_req_flags_t flags, bool poll)
813 {
814         struct request *req;
815         int ret;
816
817         req = nvme_alloc_request(q, cmd, flags, qid);
818         if (IS_ERR(req))
819                 return PTR_ERR(req);
820
821         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
822
823         if (buffer && bufflen) {
824                 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
825                 if (ret)
826                         goto out;
827         }
828
829         if (poll)
830                 nvme_execute_rq_polled(req->q, NULL, req, at_head);
831         else
832                 blk_execute_rq(req->q, NULL, req, at_head);
833         if (result)
834                 *result = nvme_req(req)->result;
835         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
836                 ret = -EINTR;
837         else
838                 ret = nvme_req(req)->status;
839  out:
840         blk_mq_free_request(req);
841         return ret;
842 }
843 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
844
845 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
846                 void *buffer, unsigned bufflen)
847 {
848         return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
849                         NVME_QID_ANY, 0, 0, false);
850 }
851 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
852
853 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
854                 unsigned len, u32 seed, bool write)
855 {
856         struct bio_integrity_payload *bip;
857         int ret = -ENOMEM;
858         void *buf;
859
860         buf = kmalloc(len, GFP_KERNEL);
861         if (!buf)
862                 goto out;
863
864         ret = -EFAULT;
865         if (write && copy_from_user(buf, ubuf, len))
866                 goto out_free_meta;
867
868         bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
869         if (IS_ERR(bip)) {
870                 ret = PTR_ERR(bip);
871                 goto out_free_meta;
872         }
873
874         bip->bip_iter.bi_size = len;
875         bip->bip_iter.bi_sector = seed;
876         ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
877                         offset_in_page(buf));
878         if (ret == len)
879                 return buf;
880         ret = -ENOMEM;
881 out_free_meta:
882         kfree(buf);
883 out:
884         return ERR_PTR(ret);
885 }
886
887 static int nvme_submit_user_cmd(struct request_queue *q,
888                 struct nvme_command *cmd, void __user *ubuffer,
889                 unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
890                 u32 meta_seed, u64 *result, unsigned timeout)
891 {
892         bool write = nvme_is_write(cmd);
893         struct nvme_ns *ns = q->queuedata;
894         struct gendisk *disk = ns ? ns->disk : NULL;
895         struct request *req;
896         struct bio *bio = NULL;
897         void *meta = NULL;
898         int ret;
899
900         req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
901         if (IS_ERR(req))
902                 return PTR_ERR(req);
903
904         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
905         nvme_req(req)->flags |= NVME_REQ_USERCMD;
906
907         if (ubuffer && bufflen) {
908                 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
909                                 GFP_KERNEL);
910                 if (ret)
911                         goto out;
912                 bio = req->bio;
913                 bio->bi_disk = disk;
914                 if (disk && meta_buffer && meta_len) {
915                         meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
916                                         meta_seed, write);
917                         if (IS_ERR(meta)) {
918                                 ret = PTR_ERR(meta);
919                                 goto out_unmap;
920                         }
921                         req->cmd_flags |= REQ_INTEGRITY;
922                 }
923         }
924
925         blk_execute_rq(req->q, disk, req, 0);
926         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
927                 ret = -EINTR;
928         else
929                 ret = nvme_req(req)->status;
930         if (result)
931                 *result = le64_to_cpu(nvme_req(req)->result.u64);
932         if (meta && !ret && !write) {
933                 if (copy_to_user(meta_buffer, meta, meta_len))
934                         ret = -EFAULT;
935         }
936         kfree(meta);
937  out_unmap:
938         if (bio)
939                 blk_rq_unmap_user(bio);
940  out:
941         blk_mq_free_request(req);
942         return ret;
943 }
944
945 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
946 {
947         struct nvme_ctrl *ctrl = rq->end_io_data;
948         unsigned long flags;
949         bool startka = false;
950
951         blk_mq_free_request(rq);
952
953         if (status) {
954                 dev_err(ctrl->device,
955                         "failed nvme_keep_alive_end_io error=%d\n",
956                                 status);
957                 return;
958         }
959
960         ctrl->comp_seen = false;
961         spin_lock_irqsave(&ctrl->lock, flags);
962         if (ctrl->state == NVME_CTRL_LIVE ||
963             ctrl->state == NVME_CTRL_CONNECTING)
964                 startka = true;
965         spin_unlock_irqrestore(&ctrl->lock, flags);
966         if (startka)
967                 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
968 }
969
970 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
971 {
972         struct request *rq;
973
974         rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
975                         NVME_QID_ANY);
976         if (IS_ERR(rq))
977                 return PTR_ERR(rq);
978
979         rq->timeout = ctrl->kato * HZ;
980         rq->end_io_data = ctrl;
981
982         blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
983
984         return 0;
985 }
986
987 static void nvme_keep_alive_work(struct work_struct *work)
988 {
989         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
990                         struct nvme_ctrl, ka_work);
991         bool comp_seen = ctrl->comp_seen;
992
993         if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
994                 dev_dbg(ctrl->device,
995                         "reschedule traffic based keep-alive timer\n");
996                 ctrl->comp_seen = false;
997                 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
998                 return;
999         }
1000
1001         if (nvme_keep_alive(ctrl)) {
1002                 /* allocation failure, reset the controller */
1003                 dev_err(ctrl->device, "keep-alive failed\n");
1004                 nvme_reset_ctrl(ctrl);
1005                 return;
1006         }
1007 }
1008
1009 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1010 {
1011         if (unlikely(ctrl->kato == 0))
1012                 return;
1013
1014         queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1015 }
1016
1017 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1018 {
1019         if (unlikely(ctrl->kato == 0))
1020                 return;
1021
1022         cancel_delayed_work_sync(&ctrl->ka_work);
1023 }
1024 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1025
1026 /*
1027  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1028  * flag, thus sending any new CNS opcodes has a big chance of not working.
1029  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1030  * (but not for any later version).
1031  */
1032 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1033 {
1034         if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1035                 return ctrl->vs < NVME_VS(1, 2, 0);
1036         return ctrl->vs < NVME_VS(1, 1, 0);
1037 }
1038
1039 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1040 {
1041         struct nvme_command c = { };
1042         int error;
1043
1044         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1045         c.identify.opcode = nvme_admin_identify;
1046         c.identify.cns = NVME_ID_CNS_CTRL;
1047
1048         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1049         if (!*id)
1050                 return -ENOMEM;
1051
1052         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1053                         sizeof(struct nvme_id_ctrl));
1054         if (error)
1055                 kfree(*id);
1056         return error;
1057 }
1058
1059 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1060                 struct nvme_ns_id_desc *cur)
1061 {
1062         const char *warn_str = "ctrl returned bogus length:";
1063         void *data = cur;
1064
1065         switch (cur->nidt) {
1066         case NVME_NIDT_EUI64:
1067                 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1068                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1069                                  warn_str, cur->nidl);
1070                         return -1;
1071                 }
1072                 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1073                 return NVME_NIDT_EUI64_LEN;
1074         case NVME_NIDT_NGUID:
1075                 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1076                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1077                                  warn_str, cur->nidl);
1078                         return -1;
1079                 }
1080                 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1081                 return NVME_NIDT_NGUID_LEN;
1082         case NVME_NIDT_UUID:
1083                 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1084                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1085                                  warn_str, cur->nidl);
1086                         return -1;
1087                 }
1088                 uuid_copy(&ids->uuid, data + sizeof(*cur));
1089                 return NVME_NIDT_UUID_LEN;
1090         default:
1091                 /* Skip unknown types */
1092                 return cur->nidl;
1093         }
1094 }
1095
1096 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1097                 struct nvme_ns_ids *ids)
1098 {
1099         struct nvme_command c = { };
1100         int status;
1101         void *data;
1102         int pos;
1103         int len;
1104
1105         c.identify.opcode = nvme_admin_identify;
1106         c.identify.nsid = cpu_to_le32(nsid);
1107         c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1108
1109         data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1110         if (!data)
1111                 return -ENOMEM;
1112
1113         status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1114                                       NVME_IDENTIFY_DATA_SIZE);
1115         if (status) {
1116                 dev_warn(ctrl->device,
1117                         "Identify Descriptors failed (%d)\n", status);
1118                  /*
1119                   * Don't treat an error as fatal, as we potentially already
1120                   * have a NGUID or EUI-64.
1121                   */
1122                 if (status > 0 && !(status & NVME_SC_DNR))
1123                         status = 0;
1124                 goto free_data;
1125         }
1126
1127         for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1128                 struct nvme_ns_id_desc *cur = data + pos;
1129
1130                 if (cur->nidl == 0)
1131                         break;
1132
1133                 len = nvme_process_ns_desc(ctrl, ids, cur);
1134                 if (len < 0)
1135                         goto free_data;
1136
1137                 len += sizeof(*cur);
1138         }
1139 free_data:
1140         kfree(data);
1141         return status;
1142 }
1143
1144 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
1145 {
1146         struct nvme_command c = { };
1147
1148         c.identify.opcode = nvme_admin_identify;
1149         c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
1150         c.identify.nsid = cpu_to_le32(nsid);
1151         return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list,
1152                                     NVME_IDENTIFY_DATA_SIZE);
1153 }
1154
1155 static int nvme_identify_ns(struct nvme_ctrl *ctrl,
1156                 unsigned nsid, struct nvme_id_ns **id)
1157 {
1158         struct nvme_command c = { };
1159         int error;
1160
1161         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1162         c.identify.opcode = nvme_admin_identify;
1163         c.identify.nsid = cpu_to_le32(nsid);
1164         c.identify.cns = NVME_ID_CNS_NS;
1165
1166         *id = kmalloc(sizeof(**id), GFP_KERNEL);
1167         if (!*id)
1168                 return -ENOMEM;
1169
1170         error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1171         if (error) {
1172                 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1173                 kfree(*id);
1174         }
1175
1176         return error;
1177 }
1178
1179 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1180                 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1181 {
1182         union nvme_result res = { 0 };
1183         struct nvme_command c;
1184         int ret;
1185
1186         memset(&c, 0, sizeof(c));
1187         c.features.opcode = op;
1188         c.features.fid = cpu_to_le32(fid);
1189         c.features.dword11 = cpu_to_le32(dword11);
1190
1191         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1192                         buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1193         if (ret >= 0 && result)
1194                 *result = le32_to_cpu(res.u32);
1195         return ret;
1196 }
1197
1198 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1199                       unsigned int dword11, void *buffer, size_t buflen,
1200                       u32 *result)
1201 {
1202         return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1203                              buflen, result);
1204 }
1205 EXPORT_SYMBOL_GPL(nvme_set_features);
1206
1207 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1208                       unsigned int dword11, void *buffer, size_t buflen,
1209                       u32 *result)
1210 {
1211         return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1212                              buflen, result);
1213 }
1214 EXPORT_SYMBOL_GPL(nvme_get_features);
1215
1216 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1217 {
1218         u32 q_count = (*count - 1) | ((*count - 1) << 16);
1219         u32 result;
1220         int status, nr_io_queues;
1221
1222         status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1223                         &result);
1224         if (status < 0)
1225                 return status;
1226
1227         /*
1228          * Degraded controllers might return an error when setting the queue
1229          * count.  We still want to be able to bring them online and offer
1230          * access to the admin queue, as that might be only way to fix them up.
1231          */
1232         if (status > 0) {
1233                 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1234                 *count = 0;
1235         } else {
1236                 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1237                 *count = min(*count, nr_io_queues);
1238         }
1239
1240         return 0;
1241 }
1242 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1243
1244 #define NVME_AEN_SUPPORTED \
1245         (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1246          NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1247
1248 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1249 {
1250         u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1251         int status;
1252
1253         if (!supported_aens)
1254                 return;
1255
1256         status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1257                         NULL, 0, &result);
1258         if (status)
1259                 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1260                          supported_aens);
1261
1262         queue_work(nvme_wq, &ctrl->async_event_work);
1263 }
1264
1265 /*
1266  * Convert integer values from ioctl structures to user pointers, silently
1267  * ignoring the upper bits in the compat case to match behaviour of 32-bit
1268  * kernels.
1269  */
1270 static void __user *nvme_to_user_ptr(uintptr_t ptrval)
1271 {
1272         if (in_compat_syscall())
1273                 ptrval = (compat_uptr_t)ptrval;
1274         return (void __user *)ptrval;
1275 }
1276
1277 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1278 {
1279         struct nvme_user_io io;
1280         struct nvme_command c;
1281         unsigned length, meta_len;
1282         void __user *metadata;
1283
1284         if (copy_from_user(&io, uio, sizeof(io)))
1285                 return -EFAULT;
1286         if (io.flags)
1287                 return -EINVAL;
1288
1289         switch (io.opcode) {
1290         case nvme_cmd_write:
1291         case nvme_cmd_read:
1292         case nvme_cmd_compare:
1293                 break;
1294         default:
1295                 return -EINVAL;
1296         }
1297
1298         length = (io.nblocks + 1) << ns->lba_shift;
1299         meta_len = (io.nblocks + 1) * ns->ms;
1300         metadata = nvme_to_user_ptr(io.metadata);
1301
1302         if (ns->features & NVME_NS_EXT_LBAS) {
1303                 length += meta_len;
1304                 meta_len = 0;
1305         } else if (meta_len) {
1306                 if ((io.metadata & 3) || !io.metadata)
1307                         return -EINVAL;
1308         }
1309
1310         memset(&c, 0, sizeof(c));
1311         c.rw.opcode = io.opcode;
1312         c.rw.flags = io.flags;
1313         c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1314         c.rw.slba = cpu_to_le64(io.slba);
1315         c.rw.length = cpu_to_le16(io.nblocks);
1316         c.rw.control = cpu_to_le16(io.control);
1317         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1318         c.rw.reftag = cpu_to_le32(io.reftag);
1319         c.rw.apptag = cpu_to_le16(io.apptag);
1320         c.rw.appmask = cpu_to_le16(io.appmask);
1321
1322         return nvme_submit_user_cmd(ns->queue, &c,
1323                         nvme_to_user_ptr(io.addr), length,
1324                         metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1325 }
1326
1327 static u32 nvme_known_admin_effects(u8 opcode)
1328 {
1329         switch (opcode) {
1330         case nvme_admin_format_nvm:
1331                 return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
1332                                         NVME_CMD_EFFECTS_CSE_MASK;
1333         case nvme_admin_sanitize_nvm:
1334                 return NVME_CMD_EFFECTS_CSE_MASK;
1335         default:
1336                 break;
1337         }
1338         return 0;
1339 }
1340
1341 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1342                                                                 u8 opcode)
1343 {
1344         u32 effects = 0;
1345
1346         if (ns) {
1347                 if (ctrl->effects)
1348                         effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1349                 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1350                         dev_warn(ctrl->device,
1351                                  "IO command:%02x has unhandled effects:%08x\n",
1352                                  opcode, effects);
1353                 return 0;
1354         }
1355
1356         if (ctrl->effects)
1357                 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1358         effects |= nvme_known_admin_effects(opcode);
1359
1360         /*
1361          * For simplicity, IO to all namespaces is quiesced even if the command
1362          * effects say only one namespace is affected.
1363          */
1364         if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1365                 mutex_lock(&ctrl->scan_lock);
1366                 mutex_lock(&ctrl->subsys->lock);
1367                 nvme_mpath_start_freeze(ctrl->subsys);
1368                 nvme_mpath_wait_freeze(ctrl->subsys);
1369                 nvme_start_freeze(ctrl);
1370                 nvme_wait_freeze(ctrl);
1371         }
1372         return effects;
1373 }
1374
1375 static void nvme_update_formats(struct nvme_ctrl *ctrl)
1376 {
1377         struct nvme_ns *ns;
1378
1379         down_read(&ctrl->namespaces_rwsem);
1380         list_for_each_entry(ns, &ctrl->namespaces, list)
1381                 if (ns->disk && nvme_revalidate_disk(ns->disk))
1382                         nvme_set_queue_dying(ns);
1383         up_read(&ctrl->namespaces_rwsem);
1384 }
1385
1386 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1387 {
1388         /*
1389          * Revalidate LBA changes prior to unfreezing. This is necessary to
1390          * prevent memory corruption if a logical block size was changed by
1391          * this command.
1392          */
1393         if (effects & NVME_CMD_EFFECTS_LBCC)
1394                 nvme_update_formats(ctrl);
1395         if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1396                 nvme_unfreeze(ctrl);
1397                 nvme_mpath_unfreeze(ctrl->subsys);
1398                 mutex_unlock(&ctrl->subsys->lock);
1399                 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1400                 mutex_unlock(&ctrl->scan_lock);
1401         }
1402         if (effects & NVME_CMD_EFFECTS_CCC)
1403                 nvme_init_identify(ctrl);
1404         if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1405                 nvme_queue_scan(ctrl);
1406                 flush_work(&ctrl->scan_work);
1407         }
1408 }
1409
1410 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1411                         struct nvme_passthru_cmd __user *ucmd)
1412 {
1413         struct nvme_passthru_cmd cmd;
1414         struct nvme_command c;
1415         unsigned timeout = 0;
1416         u32 effects;
1417         u64 result;
1418         int status;
1419
1420         if (!capable(CAP_SYS_ADMIN))
1421                 return -EACCES;
1422         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1423                 return -EFAULT;
1424         if (cmd.flags)
1425                 return -EINVAL;
1426
1427         memset(&c, 0, sizeof(c));
1428         c.common.opcode = cmd.opcode;
1429         c.common.flags = cmd.flags;
1430         c.common.nsid = cpu_to_le32(cmd.nsid);
1431         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1432         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1433         c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1434         c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1435         c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1436         c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1437         c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1438         c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1439
1440         if (cmd.timeout_ms)
1441                 timeout = msecs_to_jiffies(cmd.timeout_ms);
1442
1443         effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1444         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1445                         nvme_to_user_ptr(cmd.addr), cmd.data_len,
1446                         nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1447                         0, &result, timeout);
1448         nvme_passthru_end(ctrl, effects);
1449
1450         if (status >= 0) {
1451                 if (put_user(result, &ucmd->result))
1452                         return -EFAULT;
1453         }
1454
1455         return status;
1456 }
1457
1458 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1459                         struct nvme_passthru_cmd64 __user *ucmd)
1460 {
1461         struct nvme_passthru_cmd64 cmd;
1462         struct nvme_command c;
1463         unsigned timeout = 0;
1464         u32 effects;
1465         int status;
1466
1467         if (!capable(CAP_SYS_ADMIN))
1468                 return -EACCES;
1469         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1470                 return -EFAULT;
1471         if (cmd.flags)
1472                 return -EINVAL;
1473
1474         memset(&c, 0, sizeof(c));
1475         c.common.opcode = cmd.opcode;
1476         c.common.flags = cmd.flags;
1477         c.common.nsid = cpu_to_le32(cmd.nsid);
1478         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1479         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1480         c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1481         c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1482         c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1483         c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1484         c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1485         c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1486
1487         if (cmd.timeout_ms)
1488                 timeout = msecs_to_jiffies(cmd.timeout_ms);
1489
1490         effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1491         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1492                         nvme_to_user_ptr(cmd.addr), cmd.data_len,
1493                         nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1494                         0, &cmd.result, timeout);
1495         nvme_passthru_end(ctrl, effects);
1496
1497         if (status >= 0) {
1498                 if (put_user(cmd.result, &ucmd->result))
1499                         return -EFAULT;
1500         }
1501
1502         return status;
1503 }
1504
1505 /*
1506  * Issue ioctl requests on the first available path.  Note that unlike normal
1507  * block layer requests we will not retry failed request on another controller.
1508  */
1509 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1510                 struct nvme_ns_head **head, int *srcu_idx)
1511 {
1512 #ifdef CONFIG_NVME_MULTIPATH
1513         if (disk->fops == &nvme_ns_head_ops) {
1514                 struct nvme_ns *ns;
1515
1516                 *head = disk->private_data;
1517                 *srcu_idx = srcu_read_lock(&(*head)->srcu);
1518                 ns = nvme_find_path(*head);
1519                 if (!ns)
1520                         srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1521                 return ns;
1522         }
1523 #endif
1524         *head = NULL;
1525         *srcu_idx = -1;
1526         return disk->private_data;
1527 }
1528
1529 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1530 {
1531         if (head)
1532                 srcu_read_unlock(&head->srcu, idx);
1533 }
1534
1535 static bool is_ctrl_ioctl(unsigned int cmd)
1536 {
1537         if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD)
1538                 return true;
1539         if (is_sed_ioctl(cmd))
1540                 return true;
1541         return false;
1542 }
1543
1544 static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd,
1545                                   void __user *argp,
1546                                   struct nvme_ns_head *head,
1547                                   int srcu_idx)
1548 {
1549         struct nvme_ctrl *ctrl = ns->ctrl;
1550         int ret;
1551
1552         nvme_get_ctrl(ns->ctrl);
1553         nvme_put_ns_from_disk(head, srcu_idx);
1554
1555         switch (cmd) {
1556         case NVME_IOCTL_ADMIN_CMD:
1557                 ret = nvme_user_cmd(ctrl, NULL, argp);
1558                 break;
1559         case NVME_IOCTL_ADMIN64_CMD:
1560                 ret = nvme_user_cmd64(ctrl, NULL, argp);
1561                 break;
1562         default:
1563                 ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
1564                 break;
1565         }
1566         nvme_put_ctrl(ctrl);
1567         return ret;
1568 }
1569
1570 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1571                 unsigned int cmd, unsigned long arg)
1572 {
1573         struct nvme_ns_head *head = NULL;
1574         void __user *argp = (void __user *)arg;
1575         struct nvme_ns *ns;
1576         int srcu_idx, ret;
1577
1578         ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1579         if (unlikely(!ns))
1580                 return -EWOULDBLOCK;
1581
1582         /*
1583          * Handle ioctls that apply to the controller instead of the namespace
1584          * seperately and drop the ns SRCU reference early.  This avoids a
1585          * deadlock when deleting namespaces using the passthrough interface.
1586          */
1587         if (is_ctrl_ioctl(cmd))
1588                 return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx);
1589
1590         switch (cmd) {
1591         case NVME_IOCTL_ID:
1592                 force_successful_syscall_return();
1593                 ret = ns->head->ns_id;
1594                 break;
1595         case NVME_IOCTL_IO_CMD:
1596                 ret = nvme_user_cmd(ns->ctrl, ns, argp);
1597                 break;
1598         case NVME_IOCTL_SUBMIT_IO:
1599                 ret = nvme_submit_io(ns, argp);
1600                 break;
1601         case NVME_IOCTL_IO64_CMD:
1602                 ret = nvme_user_cmd64(ns->ctrl, ns, argp);
1603                 break;
1604         default:
1605                 if (ns->ndev)
1606                         ret = nvme_nvm_ioctl(ns, cmd, arg);
1607                 else
1608                         ret = -ENOTTY;
1609         }
1610
1611         nvme_put_ns_from_disk(head, srcu_idx);
1612         return ret;
1613 }
1614
1615 #ifdef CONFIG_COMPAT
1616 struct nvme_user_io32 {
1617         __u8    opcode;
1618         __u8    flags;
1619         __u16   control;
1620         __u16   nblocks;
1621         __u16   rsvd;
1622         __u64   metadata;
1623         __u64   addr;
1624         __u64   slba;
1625         __u32   dsmgmt;
1626         __u32   reftag;
1627         __u16   apptag;
1628         __u16   appmask;
1629 } __attribute__((__packed__));
1630
1631 #define NVME_IOCTL_SUBMIT_IO32  _IOW('N', 0x42, struct nvme_user_io32)
1632
1633 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1634                 unsigned int cmd, unsigned long arg)
1635 {
1636         /*
1637          * Corresponds to the difference of NVME_IOCTL_SUBMIT_IO
1638          * between 32 bit programs and 64 bit kernel.
1639          * The cause is that the results of sizeof(struct nvme_user_io),
1640          * which is used to define NVME_IOCTL_SUBMIT_IO,
1641          * are not same between 32 bit compiler and 64 bit compiler.
1642          * NVME_IOCTL_SUBMIT_IO32 is for 64 bit kernel handling
1643          * NVME_IOCTL_SUBMIT_IO issued from 32 bit programs.
1644          * Other IOCTL numbers are same between 32 bit and 64 bit.
1645          * So there is nothing to do regarding to other IOCTL numbers.
1646          */
1647         if (cmd == NVME_IOCTL_SUBMIT_IO32)
1648                 return nvme_ioctl(bdev, mode, NVME_IOCTL_SUBMIT_IO, arg);
1649
1650         return nvme_ioctl(bdev, mode, cmd, arg);
1651 }
1652 #else
1653 #define nvme_compat_ioctl       NULL
1654 #endif /* CONFIG_COMPAT */
1655
1656 static int nvme_open(struct block_device *bdev, fmode_t mode)
1657 {
1658         struct nvme_ns *ns = bdev->bd_disk->private_data;
1659
1660 #ifdef CONFIG_NVME_MULTIPATH
1661         /* should never be called due to GENHD_FL_HIDDEN */
1662         if (WARN_ON_ONCE(ns->head->disk))
1663                 goto fail;
1664 #endif
1665         if (!kref_get_unless_zero(&ns->kref))
1666                 goto fail;
1667         if (!try_module_get(ns->ctrl->ops->module))
1668                 goto fail_put_ns;
1669
1670         return 0;
1671
1672 fail_put_ns:
1673         nvme_put_ns(ns);
1674 fail:
1675         return -ENXIO;
1676 }
1677
1678 static void nvme_release(struct gendisk *disk, fmode_t mode)
1679 {
1680         struct nvme_ns *ns = disk->private_data;
1681
1682         module_put(ns->ctrl->ops->module);
1683         nvme_put_ns(ns);
1684 }
1685
1686 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1687 {
1688         /* some standard values */
1689         geo->heads = 1 << 6;
1690         geo->sectors = 1 << 5;
1691         geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1692         return 0;
1693 }
1694
1695 #ifdef CONFIG_BLK_DEV_INTEGRITY
1696 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1697                                 u32 max_integrity_segments)
1698 {
1699         struct blk_integrity integrity;
1700
1701         memset(&integrity, 0, sizeof(integrity));
1702         switch (pi_type) {
1703         case NVME_NS_DPS_PI_TYPE3:
1704                 integrity.profile = &t10_pi_type3_crc;
1705                 integrity.tag_size = sizeof(u16) + sizeof(u32);
1706                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1707                 break;
1708         case NVME_NS_DPS_PI_TYPE1:
1709         case NVME_NS_DPS_PI_TYPE2:
1710                 integrity.profile = &t10_pi_type1_crc;
1711                 integrity.tag_size = sizeof(u16);
1712                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1713                 break;
1714         default:
1715                 integrity.profile = NULL;
1716                 break;
1717         }
1718         integrity.tuple_size = ms;
1719         blk_integrity_register(disk, &integrity);
1720         blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1721 }
1722 #else
1723 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1724                                 u32 max_integrity_segments)
1725 {
1726 }
1727 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1728
1729 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1730 {
1731         struct nvme_ctrl *ctrl = ns->ctrl;
1732         struct request_queue *queue = disk->queue;
1733         u32 size = queue_logical_block_size(queue);
1734
1735         if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1736                 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1737                 return;
1738         }
1739
1740         if (ctrl->nr_streams && ns->sws && ns->sgs)
1741                 size *= ns->sws * ns->sgs;
1742
1743         BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1744                         NVME_DSM_MAX_RANGES);
1745
1746         queue->limits.discard_alignment = 0;
1747         queue->limits.discard_granularity = size;
1748
1749         /* If discard is already enabled, don't reset queue limits */
1750         if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1751                 return;
1752
1753         blk_queue_max_discard_sectors(queue, UINT_MAX);
1754         blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1755
1756         if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1757                 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1758 }
1759
1760 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns)
1761 {
1762         u64 max_blocks;
1763
1764         if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) ||
1765             (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
1766                 return;
1767         /*
1768          * Even though NVMe spec explicitly states that MDTS is not
1769          * applicable to the write-zeroes:- "The restriction does not apply to
1770          * commands that do not transfer data between the host and the
1771          * controller (e.g., Write Uncorrectable ro Write Zeroes command).".
1772          * In order to be more cautious use controller's max_hw_sectors value
1773          * to configure the maximum sectors for the write-zeroes which is
1774          * configured based on the controller's MDTS field in the
1775          * nvme_init_identify() if available.
1776          */
1777         if (ns->ctrl->max_hw_sectors == UINT_MAX)
1778                 max_blocks = (u64)USHRT_MAX + 1;
1779         else
1780                 max_blocks = ns->ctrl->max_hw_sectors + 1;
1781
1782         blk_queue_max_write_zeroes_sectors(disk->queue,
1783                                            nvme_lba_to_sect(ns, max_blocks));
1784 }
1785
1786 static int nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1787                 struct nvme_id_ns *id, struct nvme_ns_ids *ids)
1788 {
1789         memset(ids, 0, sizeof(*ids));
1790
1791         if (ctrl->vs >= NVME_VS(1, 1, 0))
1792                 memcpy(ids->eui64, id->eui64, sizeof(id->eui64));
1793         if (ctrl->vs >= NVME_VS(1, 2, 0))
1794                 memcpy(ids->nguid, id->nguid, sizeof(id->nguid));
1795         if (ctrl->vs >= NVME_VS(1, 3, 0))
1796                 return nvme_identify_ns_descs(ctrl, nsid, ids);
1797         return 0;
1798 }
1799
1800 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1801 {
1802         return !uuid_is_null(&ids->uuid) ||
1803                 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1804                 memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1805 }
1806
1807 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1808 {
1809         return uuid_equal(&a->uuid, &b->uuid) &&
1810                 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1811                 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0;
1812 }
1813
1814 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1815                                  u32 *phys_bs, u32 *io_opt)
1816 {
1817         struct streams_directive_params s;
1818         int ret;
1819
1820         if (!ctrl->nr_streams)
1821                 return 0;
1822
1823         ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
1824         if (ret)
1825                 return ret;
1826
1827         ns->sws = le32_to_cpu(s.sws);
1828         ns->sgs = le16_to_cpu(s.sgs);
1829
1830         if (ns->sws) {
1831                 *phys_bs = ns->sws * (1 << ns->lba_shift);
1832                 if (ns->sgs)
1833                         *io_opt = *phys_bs * ns->sgs;
1834         }
1835
1836         return 0;
1837 }
1838
1839 static void nvme_update_disk_info(struct gendisk *disk,
1840                 struct nvme_ns *ns, struct nvme_id_ns *id)
1841 {
1842         sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1843         unsigned short bs = 1 << ns->lba_shift;
1844         u32 atomic_bs, phys_bs, io_opt = 0;
1845
1846         if (ns->lba_shift > PAGE_SHIFT) {
1847                 /* unsupported block size, set capacity to 0 later */
1848                 bs = (1 << 9);
1849         }
1850         blk_mq_freeze_queue(disk->queue);
1851         blk_integrity_unregister(disk);
1852
1853         atomic_bs = phys_bs = bs;
1854         nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt);
1855         if (id->nabo == 0) {
1856                 /*
1857                  * Bit 1 indicates whether NAWUPF is defined for this namespace
1858                  * and whether it should be used instead of AWUPF. If NAWUPF ==
1859                  * 0 then AWUPF must be used instead.
1860                  */
1861                 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1862                         atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1863                 else
1864                         atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1865         }
1866
1867         if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1868                 /* NPWG = Namespace Preferred Write Granularity */
1869                 phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1870                 /* NOWS = Namespace Optimal Write Size */
1871                 io_opt = bs * (1 + le16_to_cpu(id->nows));
1872         }
1873
1874         blk_queue_logical_block_size(disk->queue, bs);
1875         /*
1876          * Linux filesystems assume writing a single physical block is
1877          * an atomic operation. Hence limit the physical block size to the
1878          * value of the Atomic Write Unit Power Fail parameter.
1879          */
1880         blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1881         blk_queue_io_min(disk->queue, phys_bs);
1882         blk_queue_io_opt(disk->queue, io_opt);
1883
1884         /*
1885          * The block layer can't support LBA sizes larger than the page size
1886          * yet, so catch this early and don't allow block I/O.
1887          */
1888         if (ns->lba_shift > PAGE_SHIFT)
1889                 capacity = 0;
1890
1891         /*
1892          * Register a metadata profile for PI, or the plain non-integrity NVMe
1893          * metadata masquerading as Type 0 if supported, otherwise reject block
1894          * I/O to namespaces with metadata except when the namespace supports
1895          * PI, as it can strip/insert in that case.
1896          */
1897         if (ns->ms) {
1898                 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1899                     (ns->features & NVME_NS_METADATA_SUPPORTED))
1900                         nvme_init_integrity(disk, ns->ms, ns->pi_type,
1901                                             ns->ctrl->max_integrity_segments);
1902                 else if (!nvme_ns_has_pi(ns))
1903                         capacity = 0;
1904         }
1905
1906         set_capacity_revalidate_and_notify(disk, capacity, false);
1907
1908         nvme_config_discard(disk, ns);
1909         nvme_config_write_zeroes(disk, ns);
1910
1911         if (id->nsattr & NVME_NS_ATTR_RO)
1912                 set_disk_ro(disk, true);
1913         else
1914                 set_disk_ro(disk, false);
1915
1916         blk_mq_unfreeze_queue(disk->queue);
1917 }
1918
1919 static int __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1920 {
1921         struct nvme_ns *ns = disk->private_data;
1922         struct nvme_ctrl *ctrl = ns->ctrl;
1923         u32 iob;
1924
1925         /*
1926          * If identify namespace failed, use default 512 byte block size so
1927          * block layer can use before failing read/write for 0 capacity.
1928          */
1929         ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1930         if (ns->lba_shift == 0)
1931                 ns->lba_shift = 9;
1932
1933         if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1934             is_power_of_2(ctrl->max_hw_sectors))
1935                 iob = ctrl->max_hw_sectors;
1936         else
1937                 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
1938
1939         ns->features = 0;
1940         ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1941         /* the PI implementation requires metadata equal t10 pi tuple size */
1942         if (ns->ms == sizeof(struct t10_pi_tuple))
1943                 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1944         else
1945                 ns->pi_type = 0;
1946
1947         if (ns->ms) {
1948                 /*
1949                  * For PCIe only the separate metadata pointer is supported,
1950                  * as the block layer supplies metadata in a separate bio_vec
1951                  * chain. For Fabrics, only metadata as part of extended data
1952                  * LBA is supported on the wire per the Fabrics specification,
1953                  * but the HBA/HCA will do the remapping from the separate
1954                  * metadata buffers for us.
1955                  */
1956                 if (id->flbas & NVME_NS_FLBAS_META_EXT) {
1957                         ns->features |= NVME_NS_EXT_LBAS;
1958                         if ((ctrl->ops->flags & NVME_F_FABRICS) &&
1959                             (ctrl->ops->flags & NVME_F_METADATA_SUPPORTED) &&
1960                             ctrl->max_integrity_segments)
1961                                 ns->features |= NVME_NS_METADATA_SUPPORTED;
1962                 } else {
1963                         if (WARN_ON_ONCE(ctrl->ops->flags & NVME_F_FABRICS))
1964                                 return -EINVAL;
1965                         if (ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)
1966                                 ns->features |= NVME_NS_METADATA_SUPPORTED;
1967                 }
1968         }
1969
1970         if (iob)
1971                 blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(iob));
1972         nvme_update_disk_info(disk, ns, id);
1973 #ifdef CONFIG_NVME_MULTIPATH
1974         if (ns->head->disk) {
1975                 nvme_update_disk_info(ns->head->disk, ns, id);
1976                 blk_queue_stack_limits(ns->head->disk->queue, ns->queue);
1977                 revalidate_disk(ns->head->disk);
1978         }
1979 #endif
1980         return 0;
1981 }
1982
1983 static int nvme_revalidate_disk(struct gendisk *disk)
1984 {
1985         struct nvme_ns *ns = disk->private_data;
1986         struct nvme_ctrl *ctrl = ns->ctrl;
1987         struct nvme_id_ns *id;
1988         struct nvme_ns_ids ids;
1989         int ret = 0;
1990
1991         if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1992                 set_capacity(disk, 0);
1993                 return -ENODEV;
1994         }
1995
1996         ret = nvme_identify_ns(ctrl, ns->head->ns_id, &id);
1997         if (ret)
1998                 goto out;
1999
2000         if (id->ncap == 0) {
2001                 ret = -ENODEV;
2002                 goto free_id;
2003         }
2004
2005         ret = nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids);
2006         if (ret)
2007                 goto free_id;
2008
2009         if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) {
2010                 dev_err(ctrl->device,
2011                         "identifiers changed for nsid %d\n", ns->head->ns_id);
2012                 ret = -ENODEV;
2013                 goto free_id;
2014         }
2015
2016         ret = __nvme_revalidate_disk(disk, id);
2017 free_id:
2018         kfree(id);
2019 out:
2020         /*
2021          * Only fail the function if we got a fatal error back from the
2022          * device, otherwise ignore the error and just move on.
2023          */
2024         if (ret == -ENOMEM || (ret > 0 && !(ret & NVME_SC_DNR)))
2025                 ret = 0;
2026         else if (ret > 0)
2027                 ret = blk_status_to_errno(nvme_error_status(ret));
2028         return ret;
2029 }
2030
2031 static char nvme_pr_type(enum pr_type type)
2032 {
2033         switch (type) {
2034         case PR_WRITE_EXCLUSIVE:
2035                 return 1;
2036         case PR_EXCLUSIVE_ACCESS:
2037                 return 2;
2038         case PR_WRITE_EXCLUSIVE_REG_ONLY:
2039                 return 3;
2040         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
2041                 return 4;
2042         case PR_WRITE_EXCLUSIVE_ALL_REGS:
2043                 return 5;
2044         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
2045                 return 6;
2046         default:
2047                 return 0;
2048         }
2049 };
2050
2051 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
2052                                 u64 key, u64 sa_key, u8 op)
2053 {
2054         struct nvme_ns_head *head = NULL;
2055         struct nvme_ns *ns;
2056         struct nvme_command c;
2057         int srcu_idx, ret;
2058         u8 data[16] = { 0, };
2059
2060         ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
2061         if (unlikely(!ns))
2062                 return -EWOULDBLOCK;
2063
2064         put_unaligned_le64(key, &data[0]);
2065         put_unaligned_le64(sa_key, &data[8]);
2066
2067         memset(&c, 0, sizeof(c));
2068         c.common.opcode = op;
2069         c.common.nsid = cpu_to_le32(ns->head->ns_id);
2070         c.common.cdw10 = cpu_to_le32(cdw10);
2071
2072         ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
2073         nvme_put_ns_from_disk(head, srcu_idx);
2074         return ret;
2075 }
2076
2077 static int nvme_pr_register(struct block_device *bdev, u64 old,
2078                 u64 new, unsigned flags)
2079 {
2080         u32 cdw10;
2081
2082         if (flags & ~PR_FL_IGNORE_KEY)
2083                 return -EOPNOTSUPP;
2084
2085         cdw10 = old ? 2 : 0;
2086         cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2087         cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2088         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2089 }
2090
2091 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2092                 enum pr_type type, unsigned flags)
2093 {
2094         u32 cdw10;
2095
2096         if (flags & ~PR_FL_IGNORE_KEY)
2097                 return -EOPNOTSUPP;
2098
2099         cdw10 = nvme_pr_type(type) << 8;
2100         cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2101         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2102 }
2103
2104 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2105                 enum pr_type type, bool abort)
2106 {
2107         u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2108         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2109 }
2110
2111 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2112 {
2113         u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2114         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2115 }
2116
2117 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2118 {
2119         u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2120         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2121 }
2122
2123 static const struct pr_ops nvme_pr_ops = {
2124         .pr_register    = nvme_pr_register,
2125         .pr_reserve     = nvme_pr_reserve,
2126         .pr_release     = nvme_pr_release,
2127         .pr_preempt     = nvme_pr_preempt,
2128         .pr_clear       = nvme_pr_clear,
2129 };
2130
2131 #ifdef CONFIG_BLK_SED_OPAL
2132 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2133                 bool send)
2134 {
2135         struct nvme_ctrl *ctrl = data;
2136         struct nvme_command cmd;
2137
2138         memset(&cmd, 0, sizeof(cmd));
2139         if (send)
2140                 cmd.common.opcode = nvme_admin_security_send;
2141         else
2142                 cmd.common.opcode = nvme_admin_security_recv;
2143         cmd.common.nsid = 0;
2144         cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2145         cmd.common.cdw11 = cpu_to_le32(len);
2146
2147         return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2148                                       ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false);
2149 }
2150 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2151 #endif /* CONFIG_BLK_SED_OPAL */
2152
2153 static const struct block_device_operations nvme_fops = {
2154         .owner          = THIS_MODULE,
2155         .ioctl          = nvme_ioctl,
2156         .compat_ioctl   = nvme_compat_ioctl,
2157         .open           = nvme_open,
2158         .release        = nvme_release,
2159         .getgeo         = nvme_getgeo,
2160         .revalidate_disk= nvme_revalidate_disk,
2161         .pr_ops         = &nvme_pr_ops,
2162 };
2163
2164 #ifdef CONFIG_NVME_MULTIPATH
2165 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
2166 {
2167         struct nvme_ns_head *head = bdev->bd_disk->private_data;
2168
2169         if (!kref_get_unless_zero(&head->ref))
2170                 return -ENXIO;
2171         return 0;
2172 }
2173
2174 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
2175 {
2176         nvme_put_ns_head(disk->private_data);
2177 }
2178
2179 const struct block_device_operations nvme_ns_head_ops = {
2180         .owner          = THIS_MODULE,
2181         .open           = nvme_ns_head_open,
2182         .release        = nvme_ns_head_release,
2183         .ioctl          = nvme_ioctl,
2184         .compat_ioctl   = nvme_compat_ioctl,
2185         .getgeo         = nvme_getgeo,
2186         .pr_ops         = &nvme_pr_ops,
2187 };
2188 #endif /* CONFIG_NVME_MULTIPATH */
2189
2190 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2191 {
2192         unsigned long timeout =
2193                 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2194         u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2195         int ret;
2196
2197         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2198                 if (csts == ~0)
2199                         return -ENODEV;
2200                 if ((csts & NVME_CSTS_RDY) == bit)
2201                         break;
2202
2203                 usleep_range(1000, 2000);
2204                 if (fatal_signal_pending(current))
2205                         return -EINTR;
2206                 if (time_after(jiffies, timeout)) {
2207                         dev_err(ctrl->device,
2208                                 "Device not ready; aborting %s, CSTS=0x%x\n",
2209                                 enabled ? "initialisation" : "reset", csts);
2210                         return -ENODEV;
2211                 }
2212         }
2213
2214         return ret;
2215 }
2216
2217 /*
2218  * If the device has been passed off to us in an enabled state, just clear
2219  * the enabled bit.  The spec says we should set the 'shutdown notification
2220  * bits', but doing so may cause the device to complete commands to the
2221  * admin queue ... and we don't know what memory that might be pointing at!
2222  */
2223 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2224 {
2225         int ret;
2226
2227         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2228         ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2229
2230         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2231         if (ret)
2232                 return ret;
2233
2234         if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2235                 msleep(NVME_QUIRK_DELAY_AMOUNT);
2236
2237         return nvme_wait_ready(ctrl, ctrl->cap, false);
2238 }
2239 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2240
2241 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2242 {
2243         /*
2244          * Default to a 4K page size, with the intention to update this
2245          * path in the future to accomodate architectures with differing
2246          * kernel and IO page sizes.
2247          */
2248         unsigned dev_page_min, page_shift = 12;
2249         int ret;
2250
2251         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2252         if (ret) {
2253                 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2254                 return ret;
2255         }
2256         dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2257
2258         if (page_shift < dev_page_min) {
2259                 dev_err(ctrl->device,
2260                         "Minimum device page size %u too large for host (%u)\n",
2261                         1 << dev_page_min, 1 << page_shift);
2262                 return -ENODEV;
2263         }
2264
2265         ctrl->page_size = 1 << page_shift;
2266
2267         ctrl->ctrl_config = NVME_CC_CSS_NVM;
2268         ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
2269         ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2270         ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2271         ctrl->ctrl_config |= NVME_CC_ENABLE;
2272
2273         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2274         if (ret)
2275                 return ret;
2276         return nvme_wait_ready(ctrl, ctrl->cap, true);
2277 }
2278 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2279
2280 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2281 {
2282         unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2283         u32 csts;
2284         int ret;
2285
2286         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2287         ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2288
2289         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2290         if (ret)
2291                 return ret;
2292
2293         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2294                 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2295                         break;
2296
2297                 msleep(100);
2298                 if (fatal_signal_pending(current))
2299                         return -EINTR;
2300                 if (time_after(jiffies, timeout)) {
2301                         dev_err(ctrl->device,
2302                                 "Device shutdown incomplete; abort shutdown\n");
2303                         return -ENODEV;
2304                 }
2305         }
2306
2307         return ret;
2308 }
2309 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2310
2311 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
2312                 struct request_queue *q)
2313 {
2314         bool vwc = false;
2315
2316         if (ctrl->max_hw_sectors) {
2317                 u32 max_segments =
2318                         (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
2319
2320                 max_segments = min_not_zero(max_segments, ctrl->max_segments);
2321                 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
2322                 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
2323         }
2324         blk_queue_virt_boundary(q, ctrl->page_size - 1);
2325         blk_queue_dma_alignment(q, 7);
2326         if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
2327                 vwc = true;
2328         blk_queue_write_cache(q, vwc, vwc);
2329 }
2330
2331 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2332 {
2333         __le64 ts;
2334         int ret;
2335
2336         if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2337                 return 0;
2338
2339         ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2340         ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2341                         NULL);
2342         if (ret)
2343                 dev_warn_once(ctrl->device,
2344                         "could not set timestamp (%d)\n", ret);
2345         return ret;
2346 }
2347
2348 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2349 {
2350         struct nvme_feat_host_behavior *host;
2351         int ret;
2352
2353         /* Don't bother enabling the feature if retry delay is not reported */
2354         if (!ctrl->crdt[0])
2355                 return 0;
2356
2357         host = kzalloc(sizeof(*host), GFP_KERNEL);
2358         if (!host)
2359                 return 0;
2360
2361         host->acre = NVME_ENABLE_ACRE;
2362         ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2363                                 host, sizeof(*host), NULL);
2364         kfree(host);
2365         return ret;
2366 }
2367
2368 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2369 {
2370         /*
2371          * APST (Autonomous Power State Transition) lets us program a
2372          * table of power state transitions that the controller will
2373          * perform automatically.  We configure it with a simple
2374          * heuristic: we are willing to spend at most 2% of the time
2375          * transitioning between power states.  Therefore, when running
2376          * in any given state, we will enter the next lower-power
2377          * non-operational state after waiting 50 * (enlat + exlat)
2378          * microseconds, as long as that state's exit latency is under
2379          * the requested maximum latency.
2380          *
2381          * We will not autonomously enter any non-operational state for
2382          * which the total latency exceeds ps_max_latency_us.  Users
2383          * can set ps_max_latency_us to zero to turn off APST.
2384          */
2385
2386         unsigned apste;
2387         struct nvme_feat_auto_pst *table;
2388         u64 max_lat_us = 0;
2389         int max_ps = -1;
2390         int ret;
2391
2392         /*
2393          * If APST isn't supported or if we haven't been initialized yet,
2394          * then don't do anything.
2395          */
2396         if (!ctrl->apsta)
2397                 return 0;
2398
2399         if (ctrl->npss > 31) {
2400                 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2401                 return 0;
2402         }
2403
2404         table = kzalloc(sizeof(*table), GFP_KERNEL);
2405         if (!table)
2406                 return 0;
2407
2408         if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2409                 /* Turn off APST. */
2410                 apste = 0;
2411                 dev_dbg(ctrl->device, "APST disabled\n");
2412         } else {
2413                 __le64 target = cpu_to_le64(0);
2414                 int state;
2415
2416                 /*
2417                  * Walk through all states from lowest- to highest-power.
2418                  * According to the spec, lower-numbered states use more
2419                  * power.  NPSS, despite the name, is the index of the
2420                  * lowest-power state, not the number of states.
2421                  */
2422                 for (state = (int)ctrl->npss; state >= 0; state--) {
2423                         u64 total_latency_us, exit_latency_us, transition_ms;
2424
2425                         if (target)
2426                                 table->entries[state] = target;
2427
2428                         /*
2429                          * Don't allow transitions to the deepest state
2430                          * if it's quirked off.
2431                          */
2432                         if (state == ctrl->npss &&
2433                             (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2434                                 continue;
2435
2436                         /*
2437                          * Is this state a useful non-operational state for
2438                          * higher-power states to autonomously transition to?
2439                          */
2440                         if (!(ctrl->psd[state].flags &
2441                               NVME_PS_FLAGS_NON_OP_STATE))
2442                                 continue;
2443
2444                         exit_latency_us =
2445                                 (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2446                         if (exit_latency_us > ctrl->ps_max_latency_us)
2447                                 continue;
2448
2449                         total_latency_us =
2450                                 exit_latency_us +
2451                                 le32_to_cpu(ctrl->psd[state].entry_lat);
2452
2453                         /*
2454                          * This state is good.  Use it as the APST idle
2455                          * target for higher power states.
2456                          */
2457                         transition_ms = total_latency_us + 19;
2458                         do_div(transition_ms, 20);
2459                         if (transition_ms > (1 << 24) - 1)
2460                                 transition_ms = (1 << 24) - 1;
2461
2462                         target = cpu_to_le64((state << 3) |
2463                                              (transition_ms << 8));
2464
2465                         if (max_ps == -1)
2466                                 max_ps = state;
2467
2468                         if (total_latency_us > max_lat_us)
2469                                 max_lat_us = total_latency_us;
2470                 }
2471
2472                 apste = 1;
2473
2474                 if (max_ps == -1) {
2475                         dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2476                 } else {
2477                         dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2478                                 max_ps, max_lat_us, (int)sizeof(*table), table);
2479                 }
2480         }
2481
2482         ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2483                                 table, sizeof(*table), NULL);
2484         if (ret)
2485                 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2486
2487         kfree(table);
2488         return ret;
2489 }
2490
2491 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2492 {
2493         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2494         u64 latency;
2495
2496         switch (val) {
2497         case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2498         case PM_QOS_LATENCY_ANY:
2499                 latency = U64_MAX;
2500                 break;
2501
2502         default:
2503                 latency = val;
2504         }
2505
2506         if (ctrl->ps_max_latency_us != latency) {
2507                 ctrl->ps_max_latency_us = latency;
2508                 nvme_configure_apst(ctrl);
2509         }
2510 }
2511
2512 struct nvme_core_quirk_entry {
2513         /*
2514          * NVMe model and firmware strings are padded with spaces.  For
2515          * simplicity, strings in the quirk table are padded with NULLs
2516          * instead.
2517          */
2518         u16 vid;
2519         const char *mn;
2520         const char *fr;
2521         unsigned long quirks;
2522 };
2523
2524 static const struct nvme_core_quirk_entry core_quirks[] = {
2525         {
2526                 /*
2527                  * This Toshiba device seems to die using any APST states.  See:
2528                  * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2529                  */
2530                 .vid = 0x1179,
2531                 .mn = "THNSF5256GPUK TOSHIBA",
2532                 .quirks = NVME_QUIRK_NO_APST,
2533         },
2534         {
2535                 /*
2536                  * This LiteON CL1-3D*-Q11 firmware version has a race
2537                  * condition associated with actions related to suspend to idle
2538                  * LiteON has resolved the problem in future firmware
2539                  */
2540                 .vid = 0x14a4,
2541                 .fr = "22301111",
2542                 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2543         }
2544 };
2545
2546 /* match is null-terminated but idstr is space-padded. */
2547 static bool string_matches(const char *idstr, const char *match, size_t len)
2548 {
2549         size_t matchlen;
2550
2551         if (!match)
2552                 return true;
2553
2554         matchlen = strlen(match);
2555         WARN_ON_ONCE(matchlen > len);
2556
2557         if (memcmp(idstr, match, matchlen))
2558                 return false;
2559
2560         for (; matchlen < len; matchlen++)
2561                 if (idstr[matchlen] != ' ')
2562                         return false;
2563
2564         return true;
2565 }
2566
2567 static bool quirk_matches(const struct nvme_id_ctrl *id,
2568                           const struct nvme_core_quirk_entry *q)
2569 {
2570         return q->vid == le16_to_cpu(id->vid) &&
2571                 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2572                 string_matches(id->fr, q->fr, sizeof(id->fr));
2573 }
2574
2575 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2576                 struct nvme_id_ctrl *id)
2577 {
2578         size_t nqnlen;
2579         int off;
2580
2581         if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2582                 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2583                 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2584                         strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2585                         return;
2586                 }
2587
2588                 if (ctrl->vs >= NVME_VS(1, 2, 1))
2589                         dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2590         }
2591
2592         /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2593         off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2594                         "nqn.2014.08.org.nvmexpress:%04x%04x",
2595                         le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2596         memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2597         off += sizeof(id->sn);
2598         memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2599         off += sizeof(id->mn);
2600         memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2601 }
2602
2603 static void nvme_release_subsystem(struct device *dev)
2604 {
2605         struct nvme_subsystem *subsys =
2606                 container_of(dev, struct nvme_subsystem, dev);
2607
2608         if (subsys->instance >= 0)
2609                 ida_simple_remove(&nvme_instance_ida, subsys->instance);
2610         kfree(subsys);
2611 }
2612
2613 static void nvme_destroy_subsystem(struct kref *ref)
2614 {
2615         struct nvme_subsystem *subsys =
2616                         container_of(ref, struct nvme_subsystem, ref);
2617
2618         mutex_lock(&nvme_subsystems_lock);
2619         list_del(&subsys->entry);
2620         mutex_unlock(&nvme_subsystems_lock);
2621
2622         ida_destroy(&subsys->ns_ida);
2623         device_del(&subsys->dev);
2624         put_device(&subsys->dev);
2625 }
2626
2627 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2628 {
2629         kref_put(&subsys->ref, nvme_destroy_subsystem);
2630 }
2631
2632 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2633 {
2634         struct nvme_subsystem *subsys;
2635
2636         lockdep_assert_held(&nvme_subsystems_lock);
2637
2638         /*
2639          * Fail matches for discovery subsystems. This results
2640          * in each discovery controller bound to a unique subsystem.
2641          * This avoids issues with validating controller values
2642          * that can only be true when there is a single unique subsystem.
2643          * There may be multiple and completely independent entities
2644          * that provide discovery controllers.
2645          */
2646         if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2647                 return NULL;
2648
2649         list_for_each_entry(subsys, &nvme_subsystems, entry) {
2650                 if (strcmp(subsys->subnqn, subsysnqn))
2651                         continue;
2652                 if (!kref_get_unless_zero(&subsys->ref))
2653                         continue;
2654                 return subsys;
2655         }
2656
2657         return NULL;
2658 }
2659
2660 #define SUBSYS_ATTR_RO(_name, _mode, _show)                     \
2661         struct device_attribute subsys_attr_##_name = \
2662                 __ATTR(_name, _mode, _show, NULL)
2663
2664 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2665                                     struct device_attribute *attr,
2666                                     char *buf)
2667 {
2668         struct nvme_subsystem *subsys =
2669                 container_of(dev, struct nvme_subsystem, dev);
2670
2671         return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2672 }
2673 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2674
2675 #define nvme_subsys_show_str_function(field)                            \
2676 static ssize_t subsys_##field##_show(struct device *dev,                \
2677                             struct device_attribute *attr, char *buf)   \
2678 {                                                                       \
2679         struct nvme_subsystem *subsys =                                 \
2680                 container_of(dev, struct nvme_subsystem, dev);          \
2681         return sprintf(buf, "%.*s\n",                                   \
2682                        (int)sizeof(subsys->field), subsys->field);      \
2683 }                                                                       \
2684 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2685
2686 nvme_subsys_show_str_function(model);
2687 nvme_subsys_show_str_function(serial);
2688 nvme_subsys_show_str_function(firmware_rev);
2689
2690 static struct attribute *nvme_subsys_attrs[] = {
2691         &subsys_attr_model.attr,
2692         &subsys_attr_serial.attr,
2693         &subsys_attr_firmware_rev.attr,
2694         &subsys_attr_subsysnqn.attr,
2695 #ifdef CONFIG_NVME_MULTIPATH
2696         &subsys_attr_iopolicy.attr,
2697 #endif
2698         NULL,
2699 };
2700
2701 static struct attribute_group nvme_subsys_attrs_group = {
2702         .attrs = nvme_subsys_attrs,
2703 };
2704
2705 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2706         &nvme_subsys_attrs_group,
2707         NULL,
2708 };
2709
2710 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2711                 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2712 {
2713         struct nvme_ctrl *tmp;
2714
2715         lockdep_assert_held(&nvme_subsystems_lock);
2716
2717         list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2718                 if (nvme_state_terminal(tmp))
2719                         continue;
2720
2721                 if (tmp->cntlid == ctrl->cntlid) {
2722                         dev_err(ctrl->device,
2723                                 "Duplicate cntlid %u with %s, rejecting\n",
2724                                 ctrl->cntlid, dev_name(tmp->device));
2725                         return false;
2726                 }
2727
2728                 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2729                     (ctrl->opts && ctrl->opts->discovery_nqn))
2730                         continue;
2731
2732                 dev_err(ctrl->device,
2733                         "Subsystem does not support multiple controllers\n");
2734                 return false;
2735         }
2736
2737         return true;
2738 }
2739
2740 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2741 {
2742         struct nvme_subsystem *subsys, *found;
2743         int ret;
2744
2745         subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2746         if (!subsys)
2747                 return -ENOMEM;
2748
2749         subsys->instance = -1;
2750         mutex_init(&subsys->lock);
2751         kref_init(&subsys->ref);
2752         INIT_LIST_HEAD(&subsys->ctrls);
2753         INIT_LIST_HEAD(&subsys->nsheads);
2754         nvme_init_subnqn(subsys, ctrl, id);
2755         memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2756         memcpy(subsys->model, id->mn, sizeof(subsys->model));
2757         memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2758         subsys->vendor_id = le16_to_cpu(id->vid);
2759         subsys->cmic = id->cmic;
2760         subsys->awupf = le16_to_cpu(id->awupf);
2761 #ifdef CONFIG_NVME_MULTIPATH
2762         subsys->iopolicy = NVME_IOPOLICY_NUMA;
2763 #endif
2764
2765         subsys->dev.class = nvme_subsys_class;
2766         subsys->dev.release = nvme_release_subsystem;
2767         subsys->dev.groups = nvme_subsys_attrs_groups;
2768         dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2769         device_initialize(&subsys->dev);
2770
2771         mutex_lock(&nvme_subsystems_lock);
2772         found = __nvme_find_get_subsystem(subsys->subnqn);
2773         if (found) {
2774                 put_device(&subsys->dev);
2775                 subsys = found;
2776
2777                 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2778                         ret = -EINVAL;
2779                         goto out_put_subsystem;
2780                 }
2781         } else {
2782                 ret = device_add(&subsys->dev);
2783                 if (ret) {
2784                         dev_err(ctrl->device,
2785                                 "failed to register subsystem device.\n");
2786                         put_device(&subsys->dev);
2787                         goto out_unlock;
2788                 }
2789                 ida_init(&subsys->ns_ida);
2790                 list_add_tail(&subsys->entry, &nvme_subsystems);
2791         }
2792
2793         ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2794                                 dev_name(ctrl->device));
2795         if (ret) {
2796                 dev_err(ctrl->device,
2797                         "failed to create sysfs link from subsystem.\n");
2798                 goto out_put_subsystem;
2799         }
2800
2801         if (!found)
2802                 subsys->instance = ctrl->instance;
2803         ctrl->subsys = subsys;
2804         list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2805         mutex_unlock(&nvme_subsystems_lock);
2806         return 0;
2807
2808 out_put_subsystem:
2809         nvme_put_subsystem(subsys);
2810 out_unlock:
2811         mutex_unlock(&nvme_subsystems_lock);
2812         return ret;
2813 }
2814
2815 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp,
2816                 void *log, size_t size, u64 offset)
2817 {
2818         struct nvme_command c = { };
2819         u32 dwlen = nvme_bytes_to_numd(size);
2820
2821         c.get_log_page.opcode = nvme_admin_get_log_page;
2822         c.get_log_page.nsid = cpu_to_le32(nsid);
2823         c.get_log_page.lid = log_page;
2824         c.get_log_page.lsp = lsp;
2825         c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2826         c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2827         c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2828         c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2829
2830         return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2831 }
2832
2833 static int nvme_get_effects_log(struct nvme_ctrl *ctrl)
2834 {
2835         int ret;
2836
2837         if (!ctrl->effects)
2838                 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2839
2840         if (!ctrl->effects)
2841                 return 0;
2842
2843         ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0,
2844                         ctrl->effects, sizeof(*ctrl->effects), 0);
2845         if (ret) {
2846                 kfree(ctrl->effects);
2847                 ctrl->effects = NULL;
2848         }
2849         return ret;
2850 }
2851
2852 /*
2853  * Initialize the cached copies of the Identify data and various controller
2854  * register in our nvme_ctrl structure.  This should be called as soon as
2855  * the admin queue is fully up and running.
2856  */
2857 int nvme_init_identify(struct nvme_ctrl *ctrl)
2858 {
2859         struct nvme_id_ctrl *id;
2860         int ret, page_shift;
2861         u32 max_hw_sectors;
2862         bool prev_apst_enabled;
2863
2864         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2865         if (ret) {
2866                 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2867                 return ret;
2868         }
2869         page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2870         ctrl->sqsize = min_t(int, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
2871
2872         if (ctrl->vs >= NVME_VS(1, 1, 0))
2873                 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
2874
2875         ret = nvme_identify_ctrl(ctrl, &id);
2876         if (ret) {
2877                 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2878                 return -EIO;
2879         }
2880
2881         if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2882                 ret = nvme_get_effects_log(ctrl);
2883                 if (ret < 0)
2884                         goto out_free;
2885         }
2886
2887         if (!(ctrl->ops->flags & NVME_F_FABRICS))
2888                 ctrl->cntlid = le16_to_cpu(id->cntlid);
2889
2890         if (!ctrl->identified) {
2891                 int i;
2892
2893                 ret = nvme_init_subsystem(ctrl, id);
2894                 if (ret)
2895                         goto out_free;
2896
2897                 /*
2898                  * Check for quirks.  Quirk can depend on firmware version,
2899                  * so, in principle, the set of quirks present can change
2900                  * across a reset.  As a possible future enhancement, we
2901                  * could re-scan for quirks every time we reinitialize
2902                  * the device, but we'd have to make sure that the driver
2903                  * behaves intelligently if the quirks change.
2904                  */
2905                 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2906                         if (quirk_matches(id, &core_quirks[i]))
2907                                 ctrl->quirks |= core_quirks[i].quirks;
2908                 }
2909         }
2910
2911         if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2912                 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2913                 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2914         }
2915
2916         ctrl->crdt[0] = le16_to_cpu(id->crdt1);
2917         ctrl->crdt[1] = le16_to_cpu(id->crdt2);
2918         ctrl->crdt[2] = le16_to_cpu(id->crdt3);
2919
2920         ctrl->oacs = le16_to_cpu(id->oacs);
2921         ctrl->oncs = le16_to_cpu(id->oncs);
2922         ctrl->mtfa = le16_to_cpu(id->mtfa);
2923         ctrl->oaes = le32_to_cpu(id->oaes);
2924         ctrl->wctemp = le16_to_cpu(id->wctemp);
2925         ctrl->cctemp = le16_to_cpu(id->cctemp);
2926
2927         atomic_set(&ctrl->abort_limit, id->acl + 1);
2928         ctrl->vwc = id->vwc;
2929         if (id->mdts)
2930                 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
2931         else
2932                 max_hw_sectors = UINT_MAX;
2933         ctrl->max_hw_sectors =
2934                 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2935
2936         nvme_set_queue_limits(ctrl, ctrl->admin_q);
2937         ctrl->sgls = le32_to_cpu(id->sgls);
2938         ctrl->kas = le16_to_cpu(id->kas);
2939         ctrl->max_namespaces = le32_to_cpu(id->mnan);
2940         ctrl->ctratt = le32_to_cpu(id->ctratt);
2941
2942         if (id->rtd3e) {
2943                 /* us -> s */
2944                 u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000;
2945
2946                 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2947                                                  shutdown_timeout, 60);
2948
2949                 if (ctrl->shutdown_timeout != shutdown_timeout)
2950                         dev_info(ctrl->device,
2951                                  "Shutdown timeout set to %u seconds\n",
2952                                  ctrl->shutdown_timeout);
2953         } else
2954                 ctrl->shutdown_timeout = shutdown_timeout;
2955
2956         ctrl->npss = id->npss;
2957         ctrl->apsta = id->apsta;
2958         prev_apst_enabled = ctrl->apst_enabled;
2959         if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2960                 if (force_apst && id->apsta) {
2961                         dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2962                         ctrl->apst_enabled = true;
2963                 } else {
2964                         ctrl->apst_enabled = false;
2965                 }
2966         } else {
2967                 ctrl->apst_enabled = id->apsta;
2968         }
2969         memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2970
2971         if (ctrl->ops->flags & NVME_F_FABRICS) {
2972                 ctrl->icdoff = le16_to_cpu(id->icdoff);
2973                 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2974                 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2975                 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2976
2977                 /*
2978                  * In fabrics we need to verify the cntlid matches the
2979                  * admin connect
2980                  */
2981                 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2982                         dev_err(ctrl->device,
2983                                 "Mismatching cntlid: Connect %u vs Identify "
2984                                 "%u, rejecting\n",
2985                                 ctrl->cntlid, le16_to_cpu(id->cntlid));
2986                         ret = -EINVAL;
2987                         goto out_free;
2988                 }
2989
2990                 if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
2991                         dev_err(ctrl->device,
2992                                 "keep-alive support is mandatory for fabrics\n");
2993                         ret = -EINVAL;
2994                         goto out_free;
2995                 }
2996         } else {
2997                 ctrl->hmpre = le32_to_cpu(id->hmpre);
2998                 ctrl->hmmin = le32_to_cpu(id->hmmin);
2999                 ctrl->hmminds = le32_to_cpu(id->hmminds);
3000                 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3001         }
3002
3003         ret = nvme_mpath_init(ctrl, id);
3004         kfree(id);
3005
3006         if (ret < 0)
3007                 return ret;
3008
3009         if (ctrl->apst_enabled && !prev_apst_enabled)
3010                 dev_pm_qos_expose_latency_tolerance(ctrl->device);
3011         else if (!ctrl->apst_enabled && prev_apst_enabled)
3012                 dev_pm_qos_hide_latency_tolerance(ctrl->device);
3013
3014         ret = nvme_configure_apst(ctrl);
3015         if (ret < 0)
3016                 return ret;
3017         
3018         ret = nvme_configure_timestamp(ctrl);
3019         if (ret < 0)
3020                 return ret;
3021
3022         ret = nvme_configure_directives(ctrl);
3023         if (ret < 0)
3024                 return ret;
3025
3026         ret = nvme_configure_acre(ctrl);
3027         if (ret < 0)
3028                 return ret;
3029
3030         if (!ctrl->identified)
3031                 nvme_hwmon_init(ctrl);
3032
3033         ctrl->identified = true;
3034
3035         return 0;
3036
3037 out_free:
3038         kfree(id);
3039         return ret;
3040 }
3041 EXPORT_SYMBOL_GPL(nvme_init_identify);
3042
3043 static int nvme_dev_open(struct inode *inode, struct file *file)
3044 {
3045         struct nvme_ctrl *ctrl =
3046                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3047
3048         switch (ctrl->state) {
3049         case NVME_CTRL_LIVE:
3050                 break;
3051         default:
3052                 return -EWOULDBLOCK;
3053         }
3054
3055         file->private_data = ctrl;
3056         return 0;
3057 }
3058
3059 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
3060 {
3061         struct nvme_ns *ns;
3062         int ret;
3063
3064         down_read(&ctrl->namespaces_rwsem);
3065         if (list_empty(&ctrl->namespaces)) {
3066                 ret = -ENOTTY;
3067                 goto out_unlock;
3068         }
3069
3070         ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
3071         if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
3072                 dev_warn(ctrl->device,
3073                         "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
3074                 ret = -EINVAL;
3075                 goto out_unlock;
3076         }
3077
3078         dev_warn(ctrl->device,
3079                 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
3080         kref_get(&ns->kref);
3081         up_read(&ctrl->namespaces_rwsem);
3082
3083         ret = nvme_user_cmd(ctrl, ns, argp);
3084         nvme_put_ns(ns);
3085         return ret;
3086
3087 out_unlock:
3088         up_read(&ctrl->namespaces_rwsem);
3089         return ret;
3090 }
3091
3092 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
3093                 unsigned long arg)
3094 {
3095         struct nvme_ctrl *ctrl = file->private_data;
3096         void __user *argp = (void __user *)arg;
3097
3098         switch (cmd) {
3099         case NVME_IOCTL_ADMIN_CMD:
3100                 return nvme_user_cmd(ctrl, NULL, argp);
3101         case NVME_IOCTL_ADMIN64_CMD:
3102                 return nvme_user_cmd64(ctrl, NULL, argp);
3103         case NVME_IOCTL_IO_CMD:
3104                 return nvme_dev_user_cmd(ctrl, argp);
3105         case NVME_IOCTL_RESET:
3106                 dev_warn(ctrl->device, "resetting controller\n");
3107                 return nvme_reset_ctrl_sync(ctrl);
3108         case NVME_IOCTL_SUBSYS_RESET:
3109                 return nvme_reset_subsystem(ctrl);
3110         case NVME_IOCTL_RESCAN:
3111                 nvme_queue_scan(ctrl);
3112                 return 0;
3113         default:
3114                 return -ENOTTY;
3115         }
3116 }
3117
3118 static const struct file_operations nvme_dev_fops = {
3119         .owner          = THIS_MODULE,
3120         .open           = nvme_dev_open,
3121         .unlocked_ioctl = nvme_dev_ioctl,
3122         .compat_ioctl   = compat_ptr_ioctl,
3123 };
3124
3125 static ssize_t nvme_sysfs_reset(struct device *dev,
3126                                 struct device_attribute *attr, const char *buf,
3127                                 size_t count)
3128 {
3129         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3130         int ret;
3131
3132         ret = nvme_reset_ctrl_sync(ctrl);
3133         if (ret < 0)
3134                 return ret;
3135         return count;
3136 }
3137 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3138
3139 static ssize_t nvme_sysfs_rescan(struct device *dev,
3140                                 struct device_attribute *attr, const char *buf,
3141                                 size_t count)
3142 {
3143         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3144
3145         nvme_queue_scan(ctrl);
3146         return count;
3147 }
3148 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3149
3150 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3151 {
3152         struct gendisk *disk = dev_to_disk(dev);
3153
3154         if (disk->fops == &nvme_fops)
3155                 return nvme_get_ns_from_dev(dev)->head;
3156         else
3157                 return disk->private_data;
3158 }
3159
3160 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3161                 char *buf)
3162 {
3163         struct nvme_ns_head *head = dev_to_ns_head(dev);
3164         struct nvme_ns_ids *ids = &head->ids;
3165         struct nvme_subsystem *subsys = head->subsys;
3166         int serial_len = sizeof(subsys->serial);
3167         int model_len = sizeof(subsys->model);
3168
3169         if (!uuid_is_null(&ids->uuid))
3170                 return sprintf(buf, "uuid.%pU\n", &ids->uuid);
3171
3172         if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3173                 return sprintf(buf, "eui.%16phN\n", ids->nguid);
3174
3175         if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3176                 return sprintf(buf, "eui.%8phN\n", ids->eui64);
3177
3178         while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3179                                   subsys->serial[serial_len - 1] == '\0'))
3180                 serial_len--;
3181         while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3182                                  subsys->model[model_len - 1] == '\0'))
3183                 model_len--;
3184
3185         return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3186                 serial_len, subsys->serial, model_len, subsys->model,
3187                 head->ns_id);
3188 }
3189 static DEVICE_ATTR_RO(wwid);
3190
3191 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3192                 char *buf)
3193 {
3194         return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3195 }
3196 static DEVICE_ATTR_RO(nguid);
3197
3198 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3199                 char *buf)
3200 {
3201         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3202
3203         /* For backward compatibility expose the NGUID to userspace if
3204          * we have no UUID set
3205          */
3206         if (uuid_is_null(&ids->uuid)) {
3207                 printk_ratelimited(KERN_WARNING
3208                                    "No UUID available providing old NGUID\n");
3209                 return sprintf(buf, "%pU\n", ids->nguid);
3210         }
3211         return sprintf(buf, "%pU\n", &ids->uuid);
3212 }
3213 static DEVICE_ATTR_RO(uuid);
3214
3215 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3216                 char *buf)
3217 {
3218         return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3219 }
3220 static DEVICE_ATTR_RO(eui);
3221
3222 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3223                 char *buf)
3224 {
3225         return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3226 }
3227 static DEVICE_ATTR_RO(nsid);
3228
3229 static struct attribute *nvme_ns_id_attrs[] = {
3230         &dev_attr_wwid.attr,
3231         &dev_attr_uuid.attr,
3232         &dev_attr_nguid.attr,
3233         &dev_attr_eui.attr,
3234         &dev_attr_nsid.attr,
3235 #ifdef CONFIG_NVME_MULTIPATH
3236         &dev_attr_ana_grpid.attr,
3237         &dev_attr_ana_state.attr,
3238 #endif
3239         NULL,
3240 };
3241
3242 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3243                 struct attribute *a, int n)
3244 {
3245         struct device *dev = container_of(kobj, struct device, kobj);
3246         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3247
3248         if (a == &dev_attr_uuid.attr) {
3249                 if (uuid_is_null(&ids->uuid) &&
3250                     !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3251                         return 0;
3252         }
3253         if (a == &dev_attr_nguid.attr) {
3254                 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3255                         return 0;
3256         }
3257         if (a == &dev_attr_eui.attr) {
3258                 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3259                         return 0;
3260         }
3261 #ifdef CONFIG_NVME_MULTIPATH
3262         if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3263                 if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */
3264                         return 0;
3265                 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3266                         return 0;
3267         }
3268 #endif
3269         return a->mode;
3270 }
3271
3272 static const struct attribute_group nvme_ns_id_attr_group = {
3273         .attrs          = nvme_ns_id_attrs,
3274         .is_visible     = nvme_ns_id_attrs_are_visible,
3275 };
3276
3277 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3278         &nvme_ns_id_attr_group,
3279 #ifdef CONFIG_NVM
3280         &nvme_nvm_attr_group,
3281 #endif
3282         NULL,
3283 };
3284
3285 #define nvme_show_str_function(field)                                           \
3286 static ssize_t  field##_show(struct device *dev,                                \
3287                             struct device_attribute *attr, char *buf)           \
3288 {                                                                               \
3289         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3290         return sprintf(buf, "%.*s\n",                                           \
3291                 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field);         \
3292 }                                                                               \
3293 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3294
3295 nvme_show_str_function(model);
3296 nvme_show_str_function(serial);
3297 nvme_show_str_function(firmware_rev);
3298
3299 #define nvme_show_int_function(field)                                           \
3300 static ssize_t  field##_show(struct device *dev,                                \
3301                             struct device_attribute *attr, char *buf)           \
3302 {                                                                               \
3303         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3304         return sprintf(buf, "%d\n", ctrl->field);       \
3305 }                                                                               \
3306 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3307
3308 nvme_show_int_function(cntlid);
3309 nvme_show_int_function(numa_node);
3310 nvme_show_int_function(queue_count);
3311 nvme_show_int_function(sqsize);
3312
3313 static ssize_t nvme_sysfs_delete(struct device *dev,
3314                                 struct device_attribute *attr, const char *buf,
3315                                 size_t count)
3316 {
3317         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3318
3319         /* Can't delete non-created controllers */
3320         if (!ctrl->created)
3321                 return -EBUSY;
3322
3323         if (device_remove_file_self(dev, attr))
3324                 nvme_delete_ctrl_sync(ctrl);
3325         return count;
3326 }
3327 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3328
3329 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3330                                          struct device_attribute *attr,
3331                                          char *buf)
3332 {
3333         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3334
3335         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
3336 }
3337 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3338
3339 static ssize_t nvme_sysfs_show_state(struct device *dev,
3340                                      struct device_attribute *attr,
3341                                      char *buf)
3342 {
3343         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3344         static const char *const state_name[] = {
3345                 [NVME_CTRL_NEW]         = "new",
3346                 [NVME_CTRL_LIVE]        = "live",
3347                 [NVME_CTRL_RESETTING]   = "resetting",
3348                 [NVME_CTRL_CONNECTING]  = "connecting",
3349                 [NVME_CTRL_DELETING]    = "deleting",
3350                 [NVME_CTRL_DEAD]        = "dead",
3351         };
3352
3353         if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3354             state_name[ctrl->state])
3355                 return sprintf(buf, "%s\n", state_name[ctrl->state]);
3356
3357         return sprintf(buf, "unknown state\n");
3358 }
3359
3360 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3361
3362 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3363                                          struct device_attribute *attr,
3364                                          char *buf)
3365 {
3366         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3367
3368         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
3369 }
3370 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3371
3372 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3373                                         struct device_attribute *attr,
3374                                         char *buf)
3375 {
3376         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3377
3378         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->opts->host->nqn);
3379 }
3380 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3381
3382 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3383                                         struct device_attribute *attr,
3384                                         char *buf)
3385 {
3386         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3387
3388         return snprintf(buf, PAGE_SIZE, "%pU\n", &ctrl->opts->host->id);
3389 }
3390 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3391
3392 static ssize_t nvme_sysfs_show_address(struct device *dev,
3393                                          struct device_attribute *attr,
3394                                          char *buf)
3395 {
3396         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3397
3398         return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3399 }
3400 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3401
3402 static struct attribute *nvme_dev_attrs[] = {
3403         &dev_attr_reset_controller.attr,
3404         &dev_attr_rescan_controller.attr,
3405         &dev_attr_model.attr,
3406         &dev_attr_serial.attr,
3407         &dev_attr_firmware_rev.attr,
3408         &dev_attr_cntlid.attr,
3409         &dev_attr_delete_controller.attr,
3410         &dev_attr_transport.attr,
3411         &dev_attr_subsysnqn.attr,
3412         &dev_attr_address.attr,
3413         &dev_attr_state.attr,
3414         &dev_attr_numa_node.attr,
3415         &dev_attr_queue_count.attr,
3416         &dev_attr_sqsize.attr,
3417         &dev_attr_hostnqn.attr,
3418         &dev_attr_hostid.attr,
3419         NULL
3420 };
3421
3422 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3423                 struct attribute *a, int n)
3424 {
3425         struct device *dev = container_of(kobj, struct device, kobj);
3426         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3427
3428         if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3429                 return 0;
3430         if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3431                 return 0;
3432         if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3433                 return 0;
3434         if (a == &dev_attr_hostid.attr && !ctrl->opts)
3435                 return 0;
3436
3437         return a->mode;
3438 }
3439
3440 static struct attribute_group nvme_dev_attrs_group = {
3441         .attrs          = nvme_dev_attrs,
3442         .is_visible     = nvme_dev_attrs_are_visible,
3443 };
3444
3445 static const struct attribute_group *nvme_dev_attr_groups[] = {
3446         &nvme_dev_attrs_group,
3447         NULL,
3448 };
3449
3450 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3451                 unsigned nsid)
3452 {
3453         struct nvme_ns_head *h;
3454
3455         lockdep_assert_held(&subsys->lock);
3456
3457         list_for_each_entry(h, &subsys->nsheads, entry) {
3458                 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
3459                         return h;
3460         }
3461
3462         return NULL;
3463 }
3464
3465 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3466                 struct nvme_ns_head *new)
3467 {
3468         struct nvme_ns_head *h;
3469
3470         lockdep_assert_held(&subsys->lock);
3471
3472         list_for_each_entry(h, &subsys->nsheads, entry) {
3473                 if (nvme_ns_ids_valid(&new->ids) &&
3474                     nvme_ns_ids_equal(&new->ids, &h->ids))
3475                         return -EINVAL;
3476         }
3477
3478         return 0;
3479 }
3480
3481 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3482                 unsigned nsid, struct nvme_ns_ids *ids)
3483 {
3484         struct nvme_ns_head *head;
3485         size_t size = sizeof(*head);
3486         int ret = -ENOMEM;
3487
3488 #ifdef CONFIG_NVME_MULTIPATH
3489         size += num_possible_nodes() * sizeof(struct nvme_ns *);
3490 #endif
3491
3492         head = kzalloc(size, GFP_KERNEL);
3493         if (!head)
3494                 goto out;
3495         ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3496         if (ret < 0)
3497                 goto out_free_head;
3498         head->instance = ret;
3499         INIT_LIST_HEAD(&head->list);
3500         ret = init_srcu_struct(&head->srcu);
3501         if (ret)
3502                 goto out_ida_remove;
3503         head->subsys = ctrl->subsys;
3504         head->ns_id = nsid;
3505         head->ids = *ids;
3506         kref_init(&head->ref);
3507
3508         ret = __nvme_check_ids(ctrl->subsys, head);
3509         if (ret) {
3510                 dev_err(ctrl->device,
3511                         "duplicate IDs for nsid %d\n", nsid);
3512                 goto out_cleanup_srcu;
3513         }
3514
3515         ret = nvme_mpath_alloc_disk(ctrl, head);
3516         if (ret)
3517                 goto out_cleanup_srcu;
3518
3519         list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3520
3521         kref_get(&ctrl->subsys->ref);
3522
3523         return head;
3524 out_cleanup_srcu:
3525         cleanup_srcu_struct(&head->srcu);
3526 out_ida_remove:
3527         ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3528 out_free_head:
3529         kfree(head);
3530 out:
3531         if (ret > 0)
3532                 ret = blk_status_to_errno(nvme_error_status(ret));
3533         return ERR_PTR(ret);
3534 }
3535
3536 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3537                 struct nvme_id_ns *id)
3538 {
3539         struct nvme_ctrl *ctrl = ns->ctrl;
3540         bool is_shared = id->nmic & NVME_NS_NMIC_SHARED;
3541         struct nvme_ns_head *head = NULL;
3542         struct nvme_ns_ids ids;
3543         int ret = 0;
3544
3545         ret = nvme_report_ns_ids(ctrl, nsid, id, &ids);
3546         if (ret) {
3547                 if (ret < 0)
3548                         return ret;
3549                 return blk_status_to_errno(nvme_error_status(ret));
3550         }
3551
3552         mutex_lock(&ctrl->subsys->lock);
3553         head = nvme_find_ns_head(ctrl->subsys, nsid);
3554         if (!head) {
3555                 head = nvme_alloc_ns_head(ctrl, nsid, &ids);
3556                 if (IS_ERR(head)) {
3557                         ret = PTR_ERR(head);
3558                         goto out_unlock;
3559                 }
3560                 head->shared = is_shared;
3561         } else {
3562                 ret = -EINVAL;
3563                 if (!is_shared || !head->shared) {
3564                         dev_err(ctrl->device,
3565                                 "Duplicate unshared namespace %d\n", nsid);
3566                         goto out_put_ns_head;
3567                 }
3568                 if (!nvme_ns_ids_equal(&head->ids, &ids)) {
3569                         dev_err(ctrl->device,
3570                                 "IDs don't match for shared namespace %d\n",
3571                                         nsid);
3572                         goto out_put_ns_head;
3573                 }
3574         }
3575
3576         list_add_tail(&ns->siblings, &head->list);
3577         ns->head = head;
3578         mutex_unlock(&ctrl->subsys->lock);
3579         return 0;
3580
3581 out_put_ns_head:
3582         nvme_put_ns_head(head);
3583 out_unlock:
3584         mutex_unlock(&ctrl->subsys->lock);
3585         return ret;
3586 }
3587
3588 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3589 {
3590         struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3591         struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3592
3593         return nsa->head->ns_id - nsb->head->ns_id;
3594 }
3595
3596 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3597 {
3598         struct nvme_ns *ns, *ret = NULL;
3599
3600         down_read(&ctrl->namespaces_rwsem);
3601         list_for_each_entry(ns, &ctrl->namespaces, list) {
3602                 if (ns->head->ns_id == nsid) {
3603                         if (!kref_get_unless_zero(&ns->kref))
3604                                 continue;
3605                         ret = ns;
3606                         break;
3607                 }
3608                 if (ns->head->ns_id > nsid)
3609                         break;
3610         }
3611         up_read(&ctrl->namespaces_rwsem);
3612         return ret;
3613 }
3614
3615 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3616 {
3617         struct nvme_ns *ns;
3618         struct gendisk *disk;
3619         struct nvme_id_ns *id;
3620         char disk_name[DISK_NAME_LEN];
3621         int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret;
3622
3623         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3624         if (!ns)
3625                 return;
3626
3627         ns->queue = blk_mq_init_queue(ctrl->tagset);
3628         if (IS_ERR(ns->queue))
3629                 goto out_free_ns;
3630
3631         if (ctrl->opts && ctrl->opts->data_digest)
3632                 ns->queue->backing_dev_info->capabilities
3633                         |= BDI_CAP_STABLE_WRITES;
3634
3635         blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3636         if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3637                 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3638
3639         ns->queue->queuedata = ns;
3640         ns->ctrl = ctrl;
3641
3642         kref_init(&ns->kref);
3643         ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
3644
3645         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
3646         nvme_set_queue_limits(ctrl, ns->queue);
3647
3648         ret = nvme_identify_ns(ctrl, nsid, &id);
3649         if (ret)
3650                 goto out_free_queue;
3651
3652         if (id->ncap == 0)      /* no namespace (legacy quirk) */
3653                 goto out_free_id;
3654
3655         ret = nvme_init_ns_head(ns, nsid, id);
3656         if (ret)
3657                 goto out_free_id;
3658         nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3659
3660         disk = alloc_disk_node(0, node);
3661         if (!disk)
3662                 goto out_unlink_ns;
3663
3664         disk->fops = &nvme_fops;
3665         disk->private_data = ns;
3666         disk->queue = ns->queue;
3667         disk->flags = flags;
3668         memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3669         ns->disk = disk;
3670
3671         if (__nvme_revalidate_disk(disk, id))
3672                 goto out_free_disk;
3673
3674         if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3675                 ret = nvme_nvm_register(ns, disk_name, node);
3676                 if (ret) {
3677                         dev_warn(ctrl->device, "LightNVM init failure\n");
3678                         goto out_put_disk;
3679                 }
3680         }
3681
3682         down_write(&ctrl->namespaces_rwsem);
3683         list_add_tail(&ns->list, &ctrl->namespaces);
3684         up_write(&ctrl->namespaces_rwsem);
3685
3686         nvme_get_ctrl(ctrl);
3687
3688         device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3689
3690         nvme_mpath_add_disk(ns, id);
3691         nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3692         kfree(id);
3693
3694         return;
3695  out_put_disk:
3696         /* prevent double queue cleanup */
3697         ns->disk->queue = NULL;
3698         put_disk(ns->disk);
3699  out_free_disk:
3700         del_gendisk(ns->disk);
3701  out_unlink_ns:
3702         mutex_lock(&ctrl->subsys->lock);
3703         list_del_rcu(&ns->siblings);
3704         if (list_empty(&ns->head->list))
3705                 list_del_init(&ns->head->entry);
3706         mutex_unlock(&ctrl->subsys->lock);
3707         nvme_put_ns_head(ns->head);
3708  out_free_id:
3709         kfree(id);
3710  out_free_queue:
3711         blk_cleanup_queue(ns->queue);
3712  out_free_ns:
3713         kfree(ns);
3714 }
3715
3716 static void nvme_ns_remove(struct nvme_ns *ns)
3717 {
3718         if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3719                 return;
3720
3721         nvme_fault_inject_fini(&ns->fault_inject);
3722
3723         mutex_lock(&ns->ctrl->subsys->lock);
3724         list_del_rcu(&ns->siblings);
3725         if (list_empty(&ns->head->list))
3726                 list_del_init(&ns->head->entry);
3727         mutex_unlock(&ns->ctrl->subsys->lock);
3728
3729         synchronize_rcu(); /* guarantee not available in head->list */
3730         nvme_mpath_clear_current_path(ns);
3731         synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3732
3733         if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
3734                 del_gendisk(ns->disk);
3735                 blk_cleanup_queue(ns->queue);
3736                 if (blk_get_integrity(ns->disk))
3737                         blk_integrity_unregister(ns->disk);
3738         }
3739
3740         down_write(&ns->ctrl->namespaces_rwsem);
3741         list_del_init(&ns->list);
3742         up_write(&ns->ctrl->namespaces_rwsem);
3743
3744         nvme_mpath_check_last_path(ns);
3745         nvme_put_ns(ns);
3746 }
3747
3748 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3749 {
3750         struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3751
3752         if (ns) {
3753                 nvme_ns_remove(ns);
3754                 nvme_put_ns(ns);
3755         }
3756 }
3757
3758 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3759 {
3760         struct nvme_ns *ns;
3761
3762         ns = nvme_find_get_ns(ctrl, nsid);
3763         if (ns) {
3764                 if (ns->disk && revalidate_disk(ns->disk))
3765                         nvme_ns_remove(ns);
3766                 nvme_put_ns(ns);
3767         } else
3768                 nvme_alloc_ns(ctrl, nsid);
3769 }
3770
3771 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3772                                         unsigned nsid)
3773 {
3774         struct nvme_ns *ns, *next;
3775         LIST_HEAD(rm_list);
3776
3777         down_write(&ctrl->namespaces_rwsem);
3778         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3779                 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
3780                         list_move_tail(&ns->list, &rm_list);
3781         }
3782         up_write(&ctrl->namespaces_rwsem);
3783
3784         list_for_each_entry_safe(ns, next, &rm_list, list)
3785                 nvme_ns_remove(ns);
3786
3787 }
3788
3789 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
3790 {
3791         const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
3792         __le32 *ns_list;
3793         u32 prev = 0;
3794         int ret = 0, i;
3795
3796         if (nvme_ctrl_limited_cns(ctrl))
3797                 return -EOPNOTSUPP;
3798
3799         ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3800         if (!ns_list)
3801                 return -ENOMEM;
3802
3803         for (;;) {
3804                 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
3805                 if (ret)
3806                         goto free;
3807
3808                 for (i = 0; i < nr_entries; i++) {
3809                         u32 nsid = le32_to_cpu(ns_list[i]);
3810
3811                         if (!nsid)      /* end of the list? */
3812                                 goto out;
3813                         nvme_validate_ns(ctrl, nsid);
3814                         while (++prev < nsid)
3815                                 nvme_ns_remove_by_nsid(ctrl, prev);
3816                 }
3817         }
3818  out:
3819         nvme_remove_invalid_namespaces(ctrl, prev);
3820  free:
3821         kfree(ns_list);
3822         return ret;
3823 }
3824
3825 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
3826 {
3827         struct nvme_id_ctrl *id;
3828         u32 nn, i;
3829
3830         if (nvme_identify_ctrl(ctrl, &id))
3831                 return;
3832         nn = le32_to_cpu(id->nn);
3833         kfree(id);
3834
3835         for (i = 1; i <= nn; i++)
3836                 nvme_validate_ns(ctrl, i);
3837
3838         nvme_remove_invalid_namespaces(ctrl, nn);
3839 }
3840
3841 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
3842 {
3843         size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3844         __le32 *log;
3845         int error;
3846
3847         log = kzalloc(log_size, GFP_KERNEL);
3848         if (!log)
3849                 return;
3850
3851         /*
3852          * We need to read the log to clear the AEN, but we don't want to rely
3853          * on it for the changed namespace information as userspace could have
3854          * raced with us in reading the log page, which could cause us to miss
3855          * updates.
3856          */
3857         error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, log,
3858                         log_size, 0);
3859         if (error)
3860                 dev_warn(ctrl->device,
3861                         "reading changed ns log failed: %d\n", error);
3862
3863         kfree(log);
3864 }
3865
3866 static void nvme_scan_work(struct work_struct *work)
3867 {
3868         struct nvme_ctrl *ctrl =
3869                 container_of(work, struct nvme_ctrl, scan_work);
3870
3871         /* No tagset on a live ctrl means IO queues could not created */
3872         if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
3873                 return;
3874
3875         if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
3876                 dev_info(ctrl->device, "rescanning namespaces.\n");
3877                 nvme_clear_changed_ns_log(ctrl);
3878         }
3879
3880         mutex_lock(&ctrl->scan_lock);
3881         if (nvme_scan_ns_list(ctrl) != 0)
3882                 nvme_scan_ns_sequential(ctrl);
3883         mutex_unlock(&ctrl->scan_lock);
3884
3885         down_write(&ctrl->namespaces_rwsem);
3886         list_sort(NULL, &ctrl->namespaces, ns_cmp);
3887         up_write(&ctrl->namespaces_rwsem);
3888 }
3889
3890 /*
3891  * This function iterates the namespace list unlocked to allow recovery from
3892  * controller failure. It is up to the caller to ensure the namespace list is
3893  * not modified by scan work while this function is executing.
3894  */
3895 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3896 {
3897         struct nvme_ns *ns, *next;
3898         LIST_HEAD(ns_list);
3899
3900         /*
3901          * make sure to requeue I/O to all namespaces as these
3902          * might result from the scan itself and must complete
3903          * for the scan_work to make progress
3904          */
3905         nvme_mpath_clear_ctrl_paths(ctrl);
3906
3907         /* prevent racing with ns scanning */
3908         flush_work(&ctrl->scan_work);
3909
3910         /*
3911          * The dead states indicates the controller was not gracefully
3912          * disconnected. In that case, we won't be able to flush any data while
3913          * removing the namespaces' disks; fail all the queues now to avoid
3914          * potentially having to clean up the failed sync later.
3915          */
3916         if (ctrl->state == NVME_CTRL_DEAD)
3917                 nvme_kill_queues(ctrl);
3918
3919         down_write(&ctrl->namespaces_rwsem);
3920         list_splice_init(&ctrl->namespaces, &ns_list);
3921         up_write(&ctrl->namespaces_rwsem);
3922
3923         list_for_each_entry_safe(ns, next, &ns_list, list)
3924                 nvme_ns_remove(ns);
3925 }
3926 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3927
3928 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
3929 {
3930         struct nvme_ctrl *ctrl =
3931                 container_of(dev, struct nvme_ctrl, ctrl_device);
3932         struct nvmf_ctrl_options *opts = ctrl->opts;
3933         int ret;
3934
3935         ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
3936         if (ret)
3937                 return ret;
3938
3939         if (opts) {
3940                 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
3941                 if (ret)
3942                         return ret;
3943
3944                 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
3945                                 opts->trsvcid ?: "none");
3946                 if (ret)
3947                         return ret;
3948
3949                 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
3950                                 opts->host_traddr ?: "none");
3951         }
3952         return ret;
3953 }
3954
3955 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
3956 {
3957         char *envp[2] = { NULL, NULL };
3958         u32 aen_result = ctrl->aen_result;
3959
3960         ctrl->aen_result = 0;
3961         if (!aen_result)
3962                 return;
3963
3964         envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
3965         if (!envp[0])
3966                 return;
3967         kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
3968         kfree(envp[0]);
3969 }
3970
3971 static void nvme_async_event_work(struct work_struct *work)
3972 {
3973         struct nvme_ctrl *ctrl =
3974                 container_of(work, struct nvme_ctrl, async_event_work);
3975
3976         nvme_aen_uevent(ctrl);
3977         ctrl->ops->submit_async_event(ctrl);
3978 }
3979
3980 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
3981 {
3982
3983         u32 csts;
3984
3985         if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
3986                 return false;
3987
3988         if (csts == ~0)
3989                 return false;
3990
3991         return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
3992 }
3993
3994 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
3995 {
3996         struct nvme_fw_slot_info_log *log;
3997
3998         log = kmalloc(sizeof(*log), GFP_KERNEL);
3999         if (!log)
4000                 return;
4001
4002         if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, log,
4003                         sizeof(*log), 0))
4004                 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4005         kfree(log);
4006 }
4007
4008 static void nvme_fw_act_work(struct work_struct *work)
4009 {
4010         struct nvme_ctrl *ctrl = container_of(work,
4011                                 struct nvme_ctrl, fw_act_work);
4012         unsigned long fw_act_timeout;
4013
4014         if (ctrl->mtfa)
4015                 fw_act_timeout = jiffies +
4016                                 msecs_to_jiffies(ctrl->mtfa * 100);
4017         else
4018                 fw_act_timeout = jiffies +
4019                                 msecs_to_jiffies(admin_timeout * 1000);
4020
4021         nvme_stop_queues(ctrl);
4022         while (nvme_ctrl_pp_status(ctrl)) {
4023                 if (time_after(jiffies, fw_act_timeout)) {
4024                         dev_warn(ctrl->device,
4025                                 "Fw activation timeout, reset controller\n");
4026                         nvme_try_sched_reset(ctrl);
4027                         return;
4028                 }
4029                 msleep(100);
4030         }
4031
4032         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4033                 return;
4034
4035         nvme_start_queues(ctrl);
4036         /* read FW slot information to clear the AER */
4037         nvme_get_fw_slot_info(ctrl);
4038 }
4039
4040 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4041 {
4042         u32 aer_notice_type = (result & 0xff00) >> 8;
4043
4044         trace_nvme_async_event(ctrl, aer_notice_type);
4045
4046         switch (aer_notice_type) {
4047         case NVME_AER_NOTICE_NS_CHANGED:
4048                 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4049                 nvme_queue_scan(ctrl);
4050                 break;
4051         case NVME_AER_NOTICE_FW_ACT_STARTING:
4052                 /*
4053                  * We are (ab)using the RESETTING state to prevent subsequent
4054                  * recovery actions from interfering with the controller's
4055                  * firmware activation.
4056                  */
4057                 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4058                         queue_work(nvme_wq, &ctrl->fw_act_work);
4059                 break;
4060 #ifdef CONFIG_NVME_MULTIPATH
4061         case NVME_AER_NOTICE_ANA:
4062                 if (!ctrl->ana_log_buf)
4063                         break;
4064                 queue_work(nvme_wq, &ctrl->ana_work);
4065                 break;
4066 #endif
4067         case NVME_AER_NOTICE_DISC_CHANGED:
4068                 ctrl->aen_result = result;
4069                 break;
4070         default:
4071                 dev_warn(ctrl->device, "async event result %08x\n", result);
4072         }
4073 }
4074
4075 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4076                 volatile union nvme_result *res)
4077 {
4078         u32 result = le32_to_cpu(res->u32);
4079         u32 aer_type = result & 0x07;
4080
4081         if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4082                 return;
4083
4084         switch (aer_type) {
4085         case NVME_AER_NOTICE:
4086                 nvme_handle_aen_notice(ctrl, result);
4087                 break;
4088         case NVME_AER_ERROR:
4089         case NVME_AER_SMART:
4090         case NVME_AER_CSS:
4091         case NVME_AER_VS:
4092                 trace_nvme_async_event(ctrl, aer_type);
4093                 ctrl->aen_result = result;
4094                 break;
4095         default:
4096                 break;
4097         }
4098         queue_work(nvme_wq, &ctrl->async_event_work);
4099 }
4100 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4101
4102 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4103 {
4104         nvme_mpath_stop(ctrl);
4105         nvme_stop_keep_alive(ctrl);
4106         flush_work(&ctrl->async_event_work);
4107         cancel_work_sync(&ctrl->fw_act_work);
4108 }
4109 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4110
4111 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4112 {
4113         if (ctrl->kato)
4114                 nvme_start_keep_alive(ctrl);
4115
4116         nvme_enable_aen(ctrl);
4117
4118         if (ctrl->queue_count > 1) {
4119                 nvme_queue_scan(ctrl);
4120                 nvme_start_queues(ctrl);
4121         }
4122         ctrl->created = true;
4123 }
4124 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4125
4126 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4127 {
4128         nvme_fault_inject_fini(&ctrl->fault_inject);
4129         dev_pm_qos_hide_latency_tolerance(ctrl->device);
4130         cdev_device_del(&ctrl->cdev, ctrl->device);
4131         nvme_put_ctrl(ctrl);
4132 }
4133 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4134
4135 static void nvme_free_ctrl(struct device *dev)
4136 {
4137         struct nvme_ctrl *ctrl =
4138                 container_of(dev, struct nvme_ctrl, ctrl_device);
4139         struct nvme_subsystem *subsys = ctrl->subsys;
4140
4141         if (subsys && ctrl->instance != subsys->instance)
4142                 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4143
4144         kfree(ctrl->effects);
4145         nvme_mpath_uninit(ctrl);
4146         __free_page(ctrl->discard_page);
4147
4148         if (subsys) {
4149                 mutex_lock(&nvme_subsystems_lock);
4150                 list_del(&ctrl->subsys_entry);
4151                 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4152                 mutex_unlock(&nvme_subsystems_lock);
4153         }
4154
4155         ctrl->ops->free_ctrl(ctrl);
4156
4157         if (subsys)
4158                 nvme_put_subsystem(subsys);
4159 }
4160
4161 /*
4162  * Initialize a NVMe controller structures.  This needs to be called during
4163  * earliest initialization so that we have the initialized structured around
4164  * during probing.
4165  */
4166 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4167                 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4168 {
4169         int ret;
4170
4171         ctrl->state = NVME_CTRL_NEW;
4172         spin_lock_init(&ctrl->lock);
4173         mutex_init(&ctrl->scan_lock);
4174         INIT_LIST_HEAD(&ctrl->namespaces);
4175         init_rwsem(&ctrl->namespaces_rwsem);
4176         ctrl->dev = dev;
4177         ctrl->ops = ops;
4178         ctrl->quirks = quirks;
4179         INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4180         INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4181         INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4182         INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4183         init_waitqueue_head(&ctrl->state_wq);
4184
4185         INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4186         memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4187         ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4188
4189         BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4190                         PAGE_SIZE);
4191         ctrl->discard_page = alloc_page(GFP_KERNEL);
4192         if (!ctrl->discard_page) {
4193                 ret = -ENOMEM;
4194                 goto out;
4195         }
4196
4197         ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4198         if (ret < 0)
4199                 goto out;
4200         ctrl->instance = ret;
4201
4202         device_initialize(&ctrl->ctrl_device);
4203         ctrl->device = &ctrl->ctrl_device;
4204         ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
4205         ctrl->device->class = nvme_class;
4206         ctrl->device->parent = ctrl->dev;
4207         ctrl->device->groups = nvme_dev_attr_groups;
4208         ctrl->device->release = nvme_free_ctrl;
4209         dev_set_drvdata(ctrl->device, ctrl);
4210         ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4211         if (ret)
4212                 goto out_release_instance;
4213
4214         nvme_get_ctrl(ctrl);
4215         cdev_init(&ctrl->cdev, &nvme_dev_fops);
4216         ctrl->cdev.owner = ops->module;
4217         ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4218         if (ret)
4219                 goto out_free_name;
4220
4221         /*
4222          * Initialize latency tolerance controls.  The sysfs files won't
4223          * be visible to userspace unless the device actually supports APST.
4224          */
4225         ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4226         dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4227                 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4228
4229         nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4230
4231         return 0;
4232 out_free_name:
4233         nvme_put_ctrl(ctrl);
4234         kfree_const(ctrl->device->kobj.name);
4235 out_release_instance:
4236         ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4237 out:
4238         if (ctrl->discard_page)
4239                 __free_page(ctrl->discard_page);
4240         return ret;
4241 }
4242 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4243
4244 /**
4245  * nvme_kill_queues(): Ends all namespace queues
4246  * @ctrl: the dead controller that needs to end
4247  *
4248  * Call this function when the driver determines it is unable to get the
4249  * controller in a state capable of servicing IO.
4250  */
4251 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4252 {
4253         struct nvme_ns *ns;
4254
4255         down_read(&ctrl->namespaces_rwsem);
4256
4257         /* Forcibly unquiesce queues to avoid blocking dispatch */
4258         if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4259                 blk_mq_unquiesce_queue(ctrl->admin_q);
4260
4261         list_for_each_entry(ns, &ctrl->namespaces, list)
4262                 nvme_set_queue_dying(ns);
4263
4264         up_read(&ctrl->namespaces_rwsem);
4265 }
4266 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4267
4268 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4269 {
4270         struct nvme_ns *ns;
4271
4272         down_read(&ctrl->namespaces_rwsem);
4273         list_for_each_entry(ns, &ctrl->namespaces, list)
4274                 blk_mq_unfreeze_queue(ns->queue);
4275         up_read(&ctrl->namespaces_rwsem);
4276 }
4277 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4278
4279 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4280 {
4281         struct nvme_ns *ns;
4282
4283         down_read(&ctrl->namespaces_rwsem);
4284         list_for_each_entry(ns, &ctrl->namespaces, list) {
4285                 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4286                 if (timeout <= 0)
4287                         break;
4288         }
4289         up_read(&ctrl->namespaces_rwsem);
4290 }
4291 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4292
4293 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4294 {
4295         struct nvme_ns *ns;
4296
4297         down_read(&ctrl->namespaces_rwsem);
4298         list_for_each_entry(ns, &ctrl->namespaces, list)
4299                 blk_mq_freeze_queue_wait(ns->queue);
4300         up_read(&ctrl->namespaces_rwsem);
4301 }
4302 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4303
4304 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4305 {
4306         struct nvme_ns *ns;
4307
4308         down_read(&ctrl->namespaces_rwsem);
4309         list_for_each_entry(ns, &ctrl->namespaces, list)
4310                 blk_freeze_queue_start(ns->queue);
4311         up_read(&ctrl->namespaces_rwsem);
4312 }
4313 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4314
4315 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4316 {
4317         struct nvme_ns *ns;
4318
4319         down_read(&ctrl->namespaces_rwsem);
4320         list_for_each_entry(ns, &ctrl->namespaces, list)
4321                 blk_mq_quiesce_queue(ns->queue);
4322         up_read(&ctrl->namespaces_rwsem);
4323 }
4324 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4325
4326 void nvme_start_queues(struct nvme_ctrl *ctrl)
4327 {
4328         struct nvme_ns *ns;
4329
4330         down_read(&ctrl->namespaces_rwsem);
4331         list_for_each_entry(ns, &ctrl->namespaces, list)
4332                 blk_mq_unquiesce_queue(ns->queue);
4333         up_read(&ctrl->namespaces_rwsem);
4334 }
4335 EXPORT_SYMBOL_GPL(nvme_start_queues);
4336
4337
4338 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4339 {
4340         struct nvme_ns *ns;
4341
4342         down_read(&ctrl->namespaces_rwsem);
4343         list_for_each_entry(ns, &ctrl->namespaces, list)
4344                 blk_sync_queue(ns->queue);
4345         up_read(&ctrl->namespaces_rwsem);
4346
4347         if (ctrl->admin_q)
4348                 blk_sync_queue(ctrl->admin_q);
4349 }
4350 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4351
4352 /*
4353  * Check we didn't inadvertently grow the command structure sizes:
4354  */
4355 static inline void _nvme_check_size(void)
4356 {
4357         BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4358         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4359         BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4360         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4361         BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4362         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4363         BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4364         BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4365         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4366         BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4367         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4368         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4369         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4370         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4371         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4372         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4373         BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4374 }
4375
4376
4377 static int __init nvme_core_init(void)
4378 {
4379         int result = -ENOMEM;
4380
4381         _nvme_check_size();
4382
4383         nvme_wq = alloc_workqueue("nvme-wq",
4384                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4385         if (!nvme_wq)
4386                 goto out;
4387
4388         nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4389                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4390         if (!nvme_reset_wq)
4391                 goto destroy_wq;
4392
4393         nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4394                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4395         if (!nvme_delete_wq)
4396                 goto destroy_reset_wq;
4397
4398         result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
4399         if (result < 0)
4400                 goto destroy_delete_wq;
4401
4402         nvme_class = class_create(THIS_MODULE, "nvme");
4403         if (IS_ERR(nvme_class)) {
4404                 result = PTR_ERR(nvme_class);
4405                 goto unregister_chrdev;
4406         }
4407         nvme_class->dev_uevent = nvme_class_uevent;
4408
4409         nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4410         if (IS_ERR(nvme_subsys_class)) {
4411                 result = PTR_ERR(nvme_subsys_class);
4412                 goto destroy_class;
4413         }
4414         return 0;
4415
4416 destroy_class:
4417         class_destroy(nvme_class);
4418 unregister_chrdev:
4419         unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4420 destroy_delete_wq:
4421         destroy_workqueue(nvme_delete_wq);
4422 destroy_reset_wq:
4423         destroy_workqueue(nvme_reset_wq);
4424 destroy_wq:
4425         destroy_workqueue(nvme_wq);
4426 out:
4427         return result;
4428 }
4429
4430 static void __exit nvme_core_exit(void)
4431 {
4432         class_destroy(nvme_subsys_class);
4433         class_destroy(nvme_class);
4434         unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4435         destroy_workqueue(nvme_delete_wq);
4436         destroy_workqueue(nvme_reset_wq);
4437         destroy_workqueue(nvme_wq);
4438         ida_destroy(&nvme_instance_ida);
4439 }
4440
4441 MODULE_LICENSE("GPL");
4442 MODULE_VERSION("1.0");
4443 module_init(nvme_core_init);
4444 module_exit(nvme_core_exit);