block: move ->make_request_fn to struct block_device_operations
[linux-2.6-block.git] / drivers / nvme / host / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/compat.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/hdreg.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/list_sort.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24
25 #include "nvme.h"
26 #include "fabrics.h"
27
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
30
31 #define NVME_MINORS             (1U << MINORBITS)
32
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
37
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
42
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54                  "max power saving latency for new devices; use PM QOS to change per device");
55
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59
60 static bool streams;
61 module_param(streams, bool, 0644);
62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
63
64 /*
65  * nvme_wq - hosts nvme related works that are not reset or delete
66  * nvme_reset_wq - hosts nvme reset works
67  * nvme_delete_wq - hosts nvme delete works
68  *
69  * nvme_wq will host works such as scan, aen handling, fw activation,
70  * keep-alive, periodic reconnects etc. nvme_reset_wq
71  * runs reset works which also flush works hosted on nvme_wq for
72  * serialization purposes. nvme_delete_wq host controller deletion
73  * works which flush reset works for serialization.
74  */
75 struct workqueue_struct *nvme_wq;
76 EXPORT_SYMBOL_GPL(nvme_wq);
77
78 struct workqueue_struct *nvme_reset_wq;
79 EXPORT_SYMBOL_GPL(nvme_reset_wq);
80
81 struct workqueue_struct *nvme_delete_wq;
82 EXPORT_SYMBOL_GPL(nvme_delete_wq);
83
84 static LIST_HEAD(nvme_subsystems);
85 static DEFINE_MUTEX(nvme_subsystems_lock);
86
87 static DEFINE_IDA(nvme_instance_ida);
88 static dev_t nvme_chr_devt;
89 static struct class *nvme_class;
90 static struct class *nvme_subsys_class;
91
92 static int nvme_revalidate_disk(struct gendisk *disk);
93 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
94 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
95                                            unsigned nsid);
96
97 static void nvme_set_queue_dying(struct nvme_ns *ns)
98 {
99         /*
100          * Revalidating a dead namespace sets capacity to 0. This will end
101          * buffered writers dirtying pages that can't be synced.
102          */
103         if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
104                 return;
105         blk_set_queue_dying(ns->queue);
106         /* Forcibly unquiesce queues to avoid blocking dispatch */
107         blk_mq_unquiesce_queue(ns->queue);
108         /*
109          * Revalidate after unblocking dispatchers that may be holding bd_butex
110          */
111         revalidate_disk(ns->disk);
112 }
113
114 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
115 {
116         /*
117          * Only new queue scan work when admin and IO queues are both alive
118          */
119         if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
120                 queue_work(nvme_wq, &ctrl->scan_work);
121 }
122
123 /*
124  * Use this function to proceed with scheduling reset_work for a controller
125  * that had previously been set to the resetting state. This is intended for
126  * code paths that can't be interrupted by other reset attempts. A hot removal
127  * may prevent this from succeeding.
128  */
129 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
130 {
131         if (ctrl->state != NVME_CTRL_RESETTING)
132                 return -EBUSY;
133         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
134                 return -EBUSY;
135         return 0;
136 }
137 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
138
139 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
140 {
141         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
142                 return -EBUSY;
143         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
144                 return -EBUSY;
145         return 0;
146 }
147 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
148
149 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
150 {
151         int ret;
152
153         ret = nvme_reset_ctrl(ctrl);
154         if (!ret) {
155                 flush_work(&ctrl->reset_work);
156                 if (ctrl->state != NVME_CTRL_LIVE)
157                         ret = -ENETRESET;
158         }
159
160         return ret;
161 }
162 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
163
164 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
165 {
166         dev_info(ctrl->device,
167                  "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
168
169         flush_work(&ctrl->reset_work);
170         nvme_stop_ctrl(ctrl);
171         nvme_remove_namespaces(ctrl);
172         ctrl->ops->delete_ctrl(ctrl);
173         nvme_uninit_ctrl(ctrl);
174 }
175
176 static void nvme_delete_ctrl_work(struct work_struct *work)
177 {
178         struct nvme_ctrl *ctrl =
179                 container_of(work, struct nvme_ctrl, delete_work);
180
181         nvme_do_delete_ctrl(ctrl);
182 }
183
184 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
185 {
186         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
187                 return -EBUSY;
188         if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
189                 return -EBUSY;
190         return 0;
191 }
192 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
193
194 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
195 {
196         /*
197          * Keep a reference until nvme_do_delete_ctrl() complete,
198          * since ->delete_ctrl can free the controller.
199          */
200         nvme_get_ctrl(ctrl);
201         if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
202                 nvme_do_delete_ctrl(ctrl);
203         nvme_put_ctrl(ctrl);
204 }
205
206 static blk_status_t nvme_error_status(u16 status)
207 {
208         switch (status & 0x7ff) {
209         case NVME_SC_SUCCESS:
210                 return BLK_STS_OK;
211         case NVME_SC_CAP_EXCEEDED:
212                 return BLK_STS_NOSPC;
213         case NVME_SC_LBA_RANGE:
214         case NVME_SC_CMD_INTERRUPTED:
215         case NVME_SC_NS_NOT_READY:
216                 return BLK_STS_TARGET;
217         case NVME_SC_BAD_ATTRIBUTES:
218         case NVME_SC_ONCS_NOT_SUPPORTED:
219         case NVME_SC_INVALID_OPCODE:
220         case NVME_SC_INVALID_FIELD:
221         case NVME_SC_INVALID_NS:
222                 return BLK_STS_NOTSUPP;
223         case NVME_SC_WRITE_FAULT:
224         case NVME_SC_READ_ERROR:
225         case NVME_SC_UNWRITTEN_BLOCK:
226         case NVME_SC_ACCESS_DENIED:
227         case NVME_SC_READ_ONLY:
228         case NVME_SC_COMPARE_FAILED:
229                 return BLK_STS_MEDIUM;
230         case NVME_SC_GUARD_CHECK:
231         case NVME_SC_APPTAG_CHECK:
232         case NVME_SC_REFTAG_CHECK:
233         case NVME_SC_INVALID_PI:
234                 return BLK_STS_PROTECTION;
235         case NVME_SC_RESERVATION_CONFLICT:
236                 return BLK_STS_NEXUS;
237         case NVME_SC_HOST_PATH_ERROR:
238                 return BLK_STS_TRANSPORT;
239         default:
240                 return BLK_STS_IOERR;
241         }
242 }
243
244 static inline bool nvme_req_needs_retry(struct request *req)
245 {
246         if (blk_noretry_request(req))
247                 return false;
248         if (nvme_req(req)->status & NVME_SC_DNR)
249                 return false;
250         if (nvme_req(req)->retries >= nvme_max_retries)
251                 return false;
252         return true;
253 }
254
255 static void nvme_retry_req(struct request *req)
256 {
257         struct nvme_ns *ns = req->q->queuedata;
258         unsigned long delay = 0;
259         u16 crd;
260
261         /* The mask and shift result must be <= 3 */
262         crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
263         if (ns && crd)
264                 delay = ns->ctrl->crdt[crd - 1] * 100;
265
266         nvme_req(req)->retries++;
267         blk_mq_requeue_request(req, false);
268         blk_mq_delay_kick_requeue_list(req->q, delay);
269 }
270
271 void nvme_complete_rq(struct request *req)
272 {
273         blk_status_t status = nvme_error_status(nvme_req(req)->status);
274
275         trace_nvme_complete_rq(req);
276
277         nvme_cleanup_cmd(req);
278
279         if (nvme_req(req)->ctrl->kas)
280                 nvme_req(req)->ctrl->comp_seen = true;
281
282         if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) {
283                 if ((req->cmd_flags & REQ_NVME_MPATH) && nvme_failover_req(req))
284                         return;
285
286                 if (!blk_queue_dying(req->q)) {
287                         nvme_retry_req(req);
288                         return;
289                 }
290         }
291
292         nvme_trace_bio_complete(req, status);
293         blk_mq_end_request(req, status);
294 }
295 EXPORT_SYMBOL_GPL(nvme_complete_rq);
296
297 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
298 {
299         dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
300                                 "Cancelling I/O %d", req->tag);
301
302         /* don't abort one completed request */
303         if (blk_mq_request_completed(req))
304                 return true;
305
306         nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
307         blk_mq_complete_request(req);
308         return true;
309 }
310 EXPORT_SYMBOL_GPL(nvme_cancel_request);
311
312 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
313                 enum nvme_ctrl_state new_state)
314 {
315         enum nvme_ctrl_state old_state;
316         unsigned long flags;
317         bool changed = false;
318
319         spin_lock_irqsave(&ctrl->lock, flags);
320
321         old_state = ctrl->state;
322         switch (new_state) {
323         case NVME_CTRL_LIVE:
324                 switch (old_state) {
325                 case NVME_CTRL_NEW:
326                 case NVME_CTRL_RESETTING:
327                 case NVME_CTRL_CONNECTING:
328                         changed = true;
329                         /* FALLTHRU */
330                 default:
331                         break;
332                 }
333                 break;
334         case NVME_CTRL_RESETTING:
335                 switch (old_state) {
336                 case NVME_CTRL_NEW:
337                 case NVME_CTRL_LIVE:
338                         changed = true;
339                         /* FALLTHRU */
340                 default:
341                         break;
342                 }
343                 break;
344         case NVME_CTRL_CONNECTING:
345                 switch (old_state) {
346                 case NVME_CTRL_NEW:
347                 case NVME_CTRL_RESETTING:
348                         changed = true;
349                         /* FALLTHRU */
350                 default:
351                         break;
352                 }
353                 break;
354         case NVME_CTRL_DELETING:
355                 switch (old_state) {
356                 case NVME_CTRL_LIVE:
357                 case NVME_CTRL_RESETTING:
358                 case NVME_CTRL_CONNECTING:
359                         changed = true;
360                         /* FALLTHRU */
361                 default:
362                         break;
363                 }
364                 break;
365         case NVME_CTRL_DEAD:
366                 switch (old_state) {
367                 case NVME_CTRL_DELETING:
368                         changed = true;
369                         /* FALLTHRU */
370                 default:
371                         break;
372                 }
373                 break;
374         default:
375                 break;
376         }
377
378         if (changed) {
379                 ctrl->state = new_state;
380                 wake_up_all(&ctrl->state_wq);
381         }
382
383         spin_unlock_irqrestore(&ctrl->lock, flags);
384         if (changed && ctrl->state == NVME_CTRL_LIVE)
385                 nvme_kick_requeue_lists(ctrl);
386         return changed;
387 }
388 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
389
390 /*
391  * Returns true for sink states that can't ever transition back to live.
392  */
393 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
394 {
395         switch (ctrl->state) {
396         case NVME_CTRL_NEW:
397         case NVME_CTRL_LIVE:
398         case NVME_CTRL_RESETTING:
399         case NVME_CTRL_CONNECTING:
400                 return false;
401         case NVME_CTRL_DELETING:
402         case NVME_CTRL_DEAD:
403                 return true;
404         default:
405                 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
406                 return true;
407         }
408 }
409
410 /*
411  * Waits for the controller state to be resetting, or returns false if it is
412  * not possible to ever transition to that state.
413  */
414 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
415 {
416         wait_event(ctrl->state_wq,
417                    nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
418                    nvme_state_terminal(ctrl));
419         return ctrl->state == NVME_CTRL_RESETTING;
420 }
421 EXPORT_SYMBOL_GPL(nvme_wait_reset);
422
423 static void nvme_free_ns_head(struct kref *ref)
424 {
425         struct nvme_ns_head *head =
426                 container_of(ref, struct nvme_ns_head, ref);
427
428         nvme_mpath_remove_disk(head);
429         ida_simple_remove(&head->subsys->ns_ida, head->instance);
430         cleanup_srcu_struct(&head->srcu);
431         nvme_put_subsystem(head->subsys);
432         kfree(head);
433 }
434
435 static void nvme_put_ns_head(struct nvme_ns_head *head)
436 {
437         kref_put(&head->ref, nvme_free_ns_head);
438 }
439
440 static void nvme_free_ns(struct kref *kref)
441 {
442         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
443
444         if (ns->ndev)
445                 nvme_nvm_unregister(ns);
446
447         put_disk(ns->disk);
448         nvme_put_ns_head(ns->head);
449         nvme_put_ctrl(ns->ctrl);
450         kfree(ns);
451 }
452
453 static void nvme_put_ns(struct nvme_ns *ns)
454 {
455         kref_put(&ns->kref, nvme_free_ns);
456 }
457
458 static inline void nvme_clear_nvme_request(struct request *req)
459 {
460         if (!(req->rq_flags & RQF_DONTPREP)) {
461                 nvme_req(req)->retries = 0;
462                 nvme_req(req)->flags = 0;
463                 req->rq_flags |= RQF_DONTPREP;
464         }
465 }
466
467 struct request *nvme_alloc_request(struct request_queue *q,
468                 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
469 {
470         unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
471         struct request *req;
472
473         if (qid == NVME_QID_ANY) {
474                 req = blk_mq_alloc_request(q, op, flags);
475         } else {
476                 req = blk_mq_alloc_request_hctx(q, op, flags,
477                                 qid ? qid - 1 : 0);
478         }
479         if (IS_ERR(req))
480                 return req;
481
482         req->cmd_flags |= REQ_FAILFAST_DRIVER;
483         nvme_clear_nvme_request(req);
484         nvme_req(req)->cmd = cmd;
485
486         return req;
487 }
488 EXPORT_SYMBOL_GPL(nvme_alloc_request);
489
490 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
491 {
492         struct nvme_command c;
493
494         memset(&c, 0, sizeof(c));
495
496         c.directive.opcode = nvme_admin_directive_send;
497         c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
498         c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
499         c.directive.dtype = NVME_DIR_IDENTIFY;
500         c.directive.tdtype = NVME_DIR_STREAMS;
501         c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
502
503         return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
504 }
505
506 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
507 {
508         return nvme_toggle_streams(ctrl, false);
509 }
510
511 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
512 {
513         return nvme_toggle_streams(ctrl, true);
514 }
515
516 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
517                                   struct streams_directive_params *s, u32 nsid)
518 {
519         struct nvme_command c;
520
521         memset(&c, 0, sizeof(c));
522         memset(s, 0, sizeof(*s));
523
524         c.directive.opcode = nvme_admin_directive_recv;
525         c.directive.nsid = cpu_to_le32(nsid);
526         c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
527         c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
528         c.directive.dtype = NVME_DIR_STREAMS;
529
530         return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
531 }
532
533 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
534 {
535         struct streams_directive_params s;
536         int ret;
537
538         if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
539                 return 0;
540         if (!streams)
541                 return 0;
542
543         ret = nvme_enable_streams(ctrl);
544         if (ret)
545                 return ret;
546
547         ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
548         if (ret)
549                 goto out_disable_stream;
550
551         ctrl->nssa = le16_to_cpu(s.nssa);
552         if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
553                 dev_info(ctrl->device, "too few streams (%u) available\n",
554                                         ctrl->nssa);
555                 goto out_disable_stream;
556         }
557
558         ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
559         dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
560         return 0;
561
562 out_disable_stream:
563         nvme_disable_streams(ctrl);
564         return ret;
565 }
566
567 /*
568  * Check if 'req' has a write hint associated with it. If it does, assign
569  * a valid namespace stream to the write.
570  */
571 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
572                                      struct request *req, u16 *control,
573                                      u32 *dsmgmt)
574 {
575         enum rw_hint streamid = req->write_hint;
576
577         if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
578                 streamid = 0;
579         else {
580                 streamid--;
581                 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
582                         return;
583
584                 *control |= NVME_RW_DTYPE_STREAMS;
585                 *dsmgmt |= streamid << 16;
586         }
587
588         if (streamid < ARRAY_SIZE(req->q->write_hints))
589                 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
590 }
591
592 static inline void nvme_setup_flush(struct nvme_ns *ns,
593                 struct nvme_command *cmnd)
594 {
595         cmnd->common.opcode = nvme_cmd_flush;
596         cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
597 }
598
599 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
600                 struct nvme_command *cmnd)
601 {
602         unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
603         struct nvme_dsm_range *range;
604         struct bio *bio;
605
606         /*
607          * Some devices do not consider the DSM 'Number of Ranges' field when
608          * determining how much data to DMA. Always allocate memory for maximum
609          * number of segments to prevent device reading beyond end of buffer.
610          */
611         static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
612
613         range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
614         if (!range) {
615                 /*
616                  * If we fail allocation our range, fallback to the controller
617                  * discard page. If that's also busy, it's safe to return
618                  * busy, as we know we can make progress once that's freed.
619                  */
620                 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
621                         return BLK_STS_RESOURCE;
622
623                 range = page_address(ns->ctrl->discard_page);
624         }
625
626         __rq_for_each_bio(bio, req) {
627                 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
628                 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
629
630                 if (n < segments) {
631                         range[n].cattr = cpu_to_le32(0);
632                         range[n].nlb = cpu_to_le32(nlb);
633                         range[n].slba = cpu_to_le64(slba);
634                 }
635                 n++;
636         }
637
638         if (WARN_ON_ONCE(n != segments)) {
639                 if (virt_to_page(range) == ns->ctrl->discard_page)
640                         clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
641                 else
642                         kfree(range);
643                 return BLK_STS_IOERR;
644         }
645
646         cmnd->dsm.opcode = nvme_cmd_dsm;
647         cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
648         cmnd->dsm.nr = cpu_to_le32(segments - 1);
649         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
650
651         req->special_vec.bv_page = virt_to_page(range);
652         req->special_vec.bv_offset = offset_in_page(range);
653         req->special_vec.bv_len = alloc_size;
654         req->rq_flags |= RQF_SPECIAL_PAYLOAD;
655
656         return BLK_STS_OK;
657 }
658
659 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
660                 struct request *req, struct nvme_command *cmnd)
661 {
662         if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
663                 return nvme_setup_discard(ns, req, cmnd);
664
665         cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
666         cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
667         cmnd->write_zeroes.slba =
668                 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
669         cmnd->write_zeroes.length =
670                 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
671         cmnd->write_zeroes.control = 0;
672         return BLK_STS_OK;
673 }
674
675 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
676                 struct request *req, struct nvme_command *cmnd)
677 {
678         struct nvme_ctrl *ctrl = ns->ctrl;
679         u16 control = 0;
680         u32 dsmgmt = 0;
681
682         if (req->cmd_flags & REQ_FUA)
683                 control |= NVME_RW_FUA;
684         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
685                 control |= NVME_RW_LR;
686
687         if (req->cmd_flags & REQ_RAHEAD)
688                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
689
690         cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
691         cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
692         cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
693         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
694
695         if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
696                 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
697
698         if (ns->ms) {
699                 /*
700                  * If formated with metadata, the block layer always provides a
701                  * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
702                  * we enable the PRACT bit for protection information or set the
703                  * namespace capacity to zero to prevent any I/O.
704                  */
705                 if (!blk_integrity_rq(req)) {
706                         if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
707                                 return BLK_STS_NOTSUPP;
708                         control |= NVME_RW_PRINFO_PRACT;
709                 }
710
711                 switch (ns->pi_type) {
712                 case NVME_NS_DPS_PI_TYPE3:
713                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
714                         break;
715                 case NVME_NS_DPS_PI_TYPE1:
716                 case NVME_NS_DPS_PI_TYPE2:
717                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
718                                         NVME_RW_PRINFO_PRCHK_REF;
719                         cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
720                         break;
721                 }
722         }
723
724         cmnd->rw.control = cpu_to_le16(control);
725         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
726         return 0;
727 }
728
729 void nvme_cleanup_cmd(struct request *req)
730 {
731         if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
732                 struct nvme_ns *ns = req->rq_disk->private_data;
733                 struct page *page = req->special_vec.bv_page;
734
735                 if (page == ns->ctrl->discard_page)
736                         clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
737                 else
738                         kfree(page_address(page) + req->special_vec.bv_offset);
739         }
740 }
741 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
742
743 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
744                 struct nvme_command *cmd)
745 {
746         blk_status_t ret = BLK_STS_OK;
747
748         nvme_clear_nvme_request(req);
749
750         memset(cmd, 0, sizeof(*cmd));
751         switch (req_op(req)) {
752         case REQ_OP_DRV_IN:
753         case REQ_OP_DRV_OUT:
754                 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
755                 break;
756         case REQ_OP_FLUSH:
757                 nvme_setup_flush(ns, cmd);
758                 break;
759         case REQ_OP_WRITE_ZEROES:
760                 ret = nvme_setup_write_zeroes(ns, req, cmd);
761                 break;
762         case REQ_OP_DISCARD:
763                 ret = nvme_setup_discard(ns, req, cmd);
764                 break;
765         case REQ_OP_READ:
766         case REQ_OP_WRITE:
767                 ret = nvme_setup_rw(ns, req, cmd);
768                 break;
769         default:
770                 WARN_ON_ONCE(1);
771                 return BLK_STS_IOERR;
772         }
773
774         cmd->common.command_id = req->tag;
775         trace_nvme_setup_cmd(req, cmd);
776         return ret;
777 }
778 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
779
780 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
781 {
782         struct completion *waiting = rq->end_io_data;
783
784         rq->end_io_data = NULL;
785         complete(waiting);
786 }
787
788 static void nvme_execute_rq_polled(struct request_queue *q,
789                 struct gendisk *bd_disk, struct request *rq, int at_head)
790 {
791         DECLARE_COMPLETION_ONSTACK(wait);
792
793         WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
794
795         rq->cmd_flags |= REQ_HIPRI;
796         rq->end_io_data = &wait;
797         blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq);
798
799         while (!completion_done(&wait)) {
800                 blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
801                 cond_resched();
802         }
803 }
804
805 /*
806  * Returns 0 on success.  If the result is negative, it's a Linux error code;
807  * if the result is positive, it's an NVM Express status code
808  */
809 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
810                 union nvme_result *result, void *buffer, unsigned bufflen,
811                 unsigned timeout, int qid, int at_head,
812                 blk_mq_req_flags_t flags, bool poll)
813 {
814         struct request *req;
815         int ret;
816
817         req = nvme_alloc_request(q, cmd, flags, qid);
818         if (IS_ERR(req))
819                 return PTR_ERR(req);
820
821         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
822
823         if (buffer && bufflen) {
824                 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
825                 if (ret)
826                         goto out;
827         }
828
829         if (poll)
830                 nvme_execute_rq_polled(req->q, NULL, req, at_head);
831         else
832                 blk_execute_rq(req->q, NULL, req, at_head);
833         if (result)
834                 *result = nvme_req(req)->result;
835         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
836                 ret = -EINTR;
837         else
838                 ret = nvme_req(req)->status;
839  out:
840         blk_mq_free_request(req);
841         return ret;
842 }
843 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
844
845 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
846                 void *buffer, unsigned bufflen)
847 {
848         return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
849                         NVME_QID_ANY, 0, 0, false);
850 }
851 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
852
853 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
854                 unsigned len, u32 seed, bool write)
855 {
856         struct bio_integrity_payload *bip;
857         int ret = -ENOMEM;
858         void *buf;
859
860         buf = kmalloc(len, GFP_KERNEL);
861         if (!buf)
862                 goto out;
863
864         ret = -EFAULT;
865         if (write && copy_from_user(buf, ubuf, len))
866                 goto out_free_meta;
867
868         bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
869         if (IS_ERR(bip)) {
870                 ret = PTR_ERR(bip);
871                 goto out_free_meta;
872         }
873
874         bip->bip_iter.bi_size = len;
875         bip->bip_iter.bi_sector = seed;
876         ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
877                         offset_in_page(buf));
878         if (ret == len)
879                 return buf;
880         ret = -ENOMEM;
881 out_free_meta:
882         kfree(buf);
883 out:
884         return ERR_PTR(ret);
885 }
886
887 static int nvme_submit_user_cmd(struct request_queue *q,
888                 struct nvme_command *cmd, void __user *ubuffer,
889                 unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
890                 u32 meta_seed, u64 *result, unsigned timeout)
891 {
892         bool write = nvme_is_write(cmd);
893         struct nvme_ns *ns = q->queuedata;
894         struct gendisk *disk = ns ? ns->disk : NULL;
895         struct request *req;
896         struct bio *bio = NULL;
897         void *meta = NULL;
898         int ret;
899
900         req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
901         if (IS_ERR(req))
902                 return PTR_ERR(req);
903
904         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
905         nvme_req(req)->flags |= NVME_REQ_USERCMD;
906
907         if (ubuffer && bufflen) {
908                 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
909                                 GFP_KERNEL);
910                 if (ret)
911                         goto out;
912                 bio = req->bio;
913                 bio->bi_disk = disk;
914                 if (disk && meta_buffer && meta_len) {
915                         meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
916                                         meta_seed, write);
917                         if (IS_ERR(meta)) {
918                                 ret = PTR_ERR(meta);
919                                 goto out_unmap;
920                         }
921                         req->cmd_flags |= REQ_INTEGRITY;
922                 }
923         }
924
925         blk_execute_rq(req->q, disk, req, 0);
926         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
927                 ret = -EINTR;
928         else
929                 ret = nvme_req(req)->status;
930         if (result)
931                 *result = le64_to_cpu(nvme_req(req)->result.u64);
932         if (meta && !ret && !write) {
933                 if (copy_to_user(meta_buffer, meta, meta_len))
934                         ret = -EFAULT;
935         }
936         kfree(meta);
937  out_unmap:
938         if (bio)
939                 blk_rq_unmap_user(bio);
940  out:
941         blk_mq_free_request(req);
942         return ret;
943 }
944
945 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
946 {
947         struct nvme_ctrl *ctrl = rq->end_io_data;
948         unsigned long flags;
949         bool startka = false;
950
951         blk_mq_free_request(rq);
952
953         if (status) {
954                 dev_err(ctrl->device,
955                         "failed nvme_keep_alive_end_io error=%d\n",
956                                 status);
957                 return;
958         }
959
960         ctrl->comp_seen = false;
961         spin_lock_irqsave(&ctrl->lock, flags);
962         if (ctrl->state == NVME_CTRL_LIVE ||
963             ctrl->state == NVME_CTRL_CONNECTING)
964                 startka = true;
965         spin_unlock_irqrestore(&ctrl->lock, flags);
966         if (startka)
967                 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
968 }
969
970 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
971 {
972         struct request *rq;
973
974         rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
975                         NVME_QID_ANY);
976         if (IS_ERR(rq))
977                 return PTR_ERR(rq);
978
979         rq->timeout = ctrl->kato * HZ;
980         rq->end_io_data = ctrl;
981
982         blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
983
984         return 0;
985 }
986
987 static void nvme_keep_alive_work(struct work_struct *work)
988 {
989         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
990                         struct nvme_ctrl, ka_work);
991         bool comp_seen = ctrl->comp_seen;
992
993         if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
994                 dev_dbg(ctrl->device,
995                         "reschedule traffic based keep-alive timer\n");
996                 ctrl->comp_seen = false;
997                 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
998                 return;
999         }
1000
1001         if (nvme_keep_alive(ctrl)) {
1002                 /* allocation failure, reset the controller */
1003                 dev_err(ctrl->device, "keep-alive failed\n");
1004                 nvme_reset_ctrl(ctrl);
1005                 return;
1006         }
1007 }
1008
1009 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1010 {
1011         if (unlikely(ctrl->kato == 0))
1012                 return;
1013
1014         queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1015 }
1016
1017 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1018 {
1019         if (unlikely(ctrl->kato == 0))
1020                 return;
1021
1022         cancel_delayed_work_sync(&ctrl->ka_work);
1023 }
1024 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1025
1026 /*
1027  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1028  * flag, thus sending any new CNS opcodes has a big chance of not working.
1029  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1030  * (but not for any later version).
1031  */
1032 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1033 {
1034         if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1035                 return ctrl->vs < NVME_VS(1, 2, 0);
1036         return ctrl->vs < NVME_VS(1, 1, 0);
1037 }
1038
1039 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1040 {
1041         struct nvme_command c = { };
1042         int error;
1043
1044         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1045         c.identify.opcode = nvme_admin_identify;
1046         c.identify.cns = NVME_ID_CNS_CTRL;
1047
1048         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1049         if (!*id)
1050                 return -ENOMEM;
1051
1052         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1053                         sizeof(struct nvme_id_ctrl));
1054         if (error)
1055                 kfree(*id);
1056         return error;
1057 }
1058
1059 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1060                 struct nvme_ns_id_desc *cur)
1061 {
1062         const char *warn_str = "ctrl returned bogus length:";
1063         void *data = cur;
1064
1065         switch (cur->nidt) {
1066         case NVME_NIDT_EUI64:
1067                 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1068                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1069                                  warn_str, cur->nidl);
1070                         return -1;
1071                 }
1072                 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1073                 return NVME_NIDT_EUI64_LEN;
1074         case NVME_NIDT_NGUID:
1075                 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1076                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1077                                  warn_str, cur->nidl);
1078                         return -1;
1079                 }
1080                 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1081                 return NVME_NIDT_NGUID_LEN;
1082         case NVME_NIDT_UUID:
1083                 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1084                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1085                                  warn_str, cur->nidl);
1086                         return -1;
1087                 }
1088                 uuid_copy(&ids->uuid, data + sizeof(*cur));
1089                 return NVME_NIDT_UUID_LEN;
1090         default:
1091                 /* Skip unknown types */
1092                 return cur->nidl;
1093         }
1094 }
1095
1096 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1097                 struct nvme_ns_ids *ids)
1098 {
1099         struct nvme_command c = { };
1100         int status;
1101         void *data;
1102         int pos;
1103         int len;
1104
1105         c.identify.opcode = nvme_admin_identify;
1106         c.identify.nsid = cpu_to_le32(nsid);
1107         c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1108
1109         data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1110         if (!data)
1111                 return -ENOMEM;
1112
1113         status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1114                                       NVME_IDENTIFY_DATA_SIZE);
1115         if (status) {
1116                 dev_warn(ctrl->device,
1117                         "Identify Descriptors failed (%d)\n", status);
1118                  /*
1119                   * Don't treat an error as fatal, as we potentially already
1120                   * have a NGUID or EUI-64.
1121                   */
1122                 if (status > 0 && !(status & NVME_SC_DNR))
1123                         status = 0;
1124                 goto free_data;
1125         }
1126
1127         for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1128                 struct nvme_ns_id_desc *cur = data + pos;
1129
1130                 if (cur->nidl == 0)
1131                         break;
1132
1133                 len = nvme_process_ns_desc(ctrl, ids, cur);
1134                 if (len < 0)
1135                         goto free_data;
1136
1137                 len += sizeof(*cur);
1138         }
1139 free_data:
1140         kfree(data);
1141         return status;
1142 }
1143
1144 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
1145 {
1146         struct nvme_command c = { };
1147
1148         c.identify.opcode = nvme_admin_identify;
1149         c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
1150         c.identify.nsid = cpu_to_le32(nsid);
1151         return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list,
1152                                     NVME_IDENTIFY_DATA_SIZE);
1153 }
1154
1155 static int nvme_identify_ns(struct nvme_ctrl *ctrl,
1156                 unsigned nsid, struct nvme_id_ns **id)
1157 {
1158         struct nvme_command c = { };
1159         int error;
1160
1161         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1162         c.identify.opcode = nvme_admin_identify;
1163         c.identify.nsid = cpu_to_le32(nsid);
1164         c.identify.cns = NVME_ID_CNS_NS;
1165
1166         *id = kmalloc(sizeof(**id), GFP_KERNEL);
1167         if (!*id)
1168                 return -ENOMEM;
1169
1170         error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1171         if (error) {
1172                 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1173                 kfree(*id);
1174         }
1175
1176         return error;
1177 }
1178
1179 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1180                 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1181 {
1182         union nvme_result res = { 0 };
1183         struct nvme_command c;
1184         int ret;
1185
1186         memset(&c, 0, sizeof(c));
1187         c.features.opcode = op;
1188         c.features.fid = cpu_to_le32(fid);
1189         c.features.dword11 = cpu_to_le32(dword11);
1190
1191         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1192                         buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1193         if (ret >= 0 && result)
1194                 *result = le32_to_cpu(res.u32);
1195         return ret;
1196 }
1197
1198 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1199                       unsigned int dword11, void *buffer, size_t buflen,
1200                       u32 *result)
1201 {
1202         return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1203                              buflen, result);
1204 }
1205 EXPORT_SYMBOL_GPL(nvme_set_features);
1206
1207 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1208                       unsigned int dword11, void *buffer, size_t buflen,
1209                       u32 *result)
1210 {
1211         return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1212                              buflen, result);
1213 }
1214 EXPORT_SYMBOL_GPL(nvme_get_features);
1215
1216 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1217 {
1218         u32 q_count = (*count - 1) | ((*count - 1) << 16);
1219         u32 result;
1220         int status, nr_io_queues;
1221
1222         status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1223                         &result);
1224         if (status < 0)
1225                 return status;
1226
1227         /*
1228          * Degraded controllers might return an error when setting the queue
1229          * count.  We still want to be able to bring them online and offer
1230          * access to the admin queue, as that might be only way to fix them up.
1231          */
1232         if (status > 0) {
1233                 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1234                 *count = 0;
1235         } else {
1236                 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1237                 *count = min(*count, nr_io_queues);
1238         }
1239
1240         return 0;
1241 }
1242 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1243
1244 #define NVME_AEN_SUPPORTED \
1245         (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1246          NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1247
1248 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1249 {
1250         u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1251         int status;
1252
1253         if (!supported_aens)
1254                 return;
1255
1256         status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1257                         NULL, 0, &result);
1258         if (status)
1259                 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1260                          supported_aens);
1261
1262         queue_work(nvme_wq, &ctrl->async_event_work);
1263 }
1264
1265 /*
1266  * Convert integer values from ioctl structures to user pointers, silently
1267  * ignoring the upper bits in the compat case to match behaviour of 32-bit
1268  * kernels.
1269  */
1270 static void __user *nvme_to_user_ptr(uintptr_t ptrval)
1271 {
1272         if (in_compat_syscall())
1273                 ptrval = (compat_uptr_t)ptrval;
1274         return (void __user *)ptrval;
1275 }
1276
1277 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1278 {
1279         struct nvme_user_io io;
1280         struct nvme_command c;
1281         unsigned length, meta_len;
1282         void __user *metadata;
1283
1284         if (copy_from_user(&io, uio, sizeof(io)))
1285                 return -EFAULT;
1286         if (io.flags)
1287                 return -EINVAL;
1288
1289         switch (io.opcode) {
1290         case nvme_cmd_write:
1291         case nvme_cmd_read:
1292         case nvme_cmd_compare:
1293                 break;
1294         default:
1295                 return -EINVAL;
1296         }
1297
1298         length = (io.nblocks + 1) << ns->lba_shift;
1299         meta_len = (io.nblocks + 1) * ns->ms;
1300         metadata = nvme_to_user_ptr(io.metadata);
1301
1302         if (ns->features & NVME_NS_EXT_LBAS) {
1303                 length += meta_len;
1304                 meta_len = 0;
1305         } else if (meta_len) {
1306                 if ((io.metadata & 3) || !io.metadata)
1307                         return -EINVAL;
1308         }
1309
1310         memset(&c, 0, sizeof(c));
1311         c.rw.opcode = io.opcode;
1312         c.rw.flags = io.flags;
1313         c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1314         c.rw.slba = cpu_to_le64(io.slba);
1315         c.rw.length = cpu_to_le16(io.nblocks);
1316         c.rw.control = cpu_to_le16(io.control);
1317         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1318         c.rw.reftag = cpu_to_le32(io.reftag);
1319         c.rw.apptag = cpu_to_le16(io.apptag);
1320         c.rw.appmask = cpu_to_le16(io.appmask);
1321
1322         return nvme_submit_user_cmd(ns->queue, &c,
1323                         nvme_to_user_ptr(io.addr), length,
1324                         metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1325 }
1326
1327 static u32 nvme_known_admin_effects(u8 opcode)
1328 {
1329         switch (opcode) {
1330         case nvme_admin_format_nvm:
1331                 return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
1332                                         NVME_CMD_EFFECTS_CSE_MASK;
1333         case nvme_admin_sanitize_nvm:
1334                 return NVME_CMD_EFFECTS_CSE_MASK;
1335         default:
1336                 break;
1337         }
1338         return 0;
1339 }
1340
1341 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1342                                                                 u8 opcode)
1343 {
1344         u32 effects = 0;
1345
1346         if (ns) {
1347                 if (ctrl->effects)
1348                         effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1349                 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1350                         dev_warn(ctrl->device,
1351                                  "IO command:%02x has unhandled effects:%08x\n",
1352                                  opcode, effects);
1353                 return 0;
1354         }
1355
1356         if (ctrl->effects)
1357                 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1358         effects |= nvme_known_admin_effects(opcode);
1359
1360         /*
1361          * For simplicity, IO to all namespaces is quiesced even if the command
1362          * effects say only one namespace is affected.
1363          */
1364         if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1365                 mutex_lock(&ctrl->scan_lock);
1366                 mutex_lock(&ctrl->subsys->lock);
1367                 nvme_mpath_start_freeze(ctrl->subsys);
1368                 nvme_mpath_wait_freeze(ctrl->subsys);
1369                 nvme_start_freeze(ctrl);
1370                 nvme_wait_freeze(ctrl);
1371         }
1372         return effects;
1373 }
1374
1375 static void nvme_update_formats(struct nvme_ctrl *ctrl)
1376 {
1377         struct nvme_ns *ns;
1378
1379         down_read(&ctrl->namespaces_rwsem);
1380         list_for_each_entry(ns, &ctrl->namespaces, list)
1381                 if (ns->disk && nvme_revalidate_disk(ns->disk))
1382                         nvme_set_queue_dying(ns);
1383         up_read(&ctrl->namespaces_rwsem);
1384 }
1385
1386 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1387 {
1388         /*
1389          * Revalidate LBA changes prior to unfreezing. This is necessary to
1390          * prevent memory corruption if a logical block size was changed by
1391          * this command.
1392          */
1393         if (effects & NVME_CMD_EFFECTS_LBCC)
1394                 nvme_update_formats(ctrl);
1395         if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1396                 nvme_unfreeze(ctrl);
1397                 nvme_mpath_unfreeze(ctrl->subsys);
1398                 mutex_unlock(&ctrl->subsys->lock);
1399                 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1400                 mutex_unlock(&ctrl->scan_lock);
1401         }
1402         if (effects & NVME_CMD_EFFECTS_CCC)
1403                 nvme_init_identify(ctrl);
1404         if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1405                 nvme_queue_scan(ctrl);
1406                 flush_work(&ctrl->scan_work);
1407         }
1408 }
1409
1410 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1411                         struct nvme_passthru_cmd __user *ucmd)
1412 {
1413         struct nvme_passthru_cmd cmd;
1414         struct nvme_command c;
1415         unsigned timeout = 0;
1416         u32 effects;
1417         u64 result;
1418         int status;
1419
1420         if (!capable(CAP_SYS_ADMIN))
1421                 return -EACCES;
1422         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1423                 return -EFAULT;
1424         if (cmd.flags)
1425                 return -EINVAL;
1426
1427         memset(&c, 0, sizeof(c));
1428         c.common.opcode = cmd.opcode;
1429         c.common.flags = cmd.flags;
1430         c.common.nsid = cpu_to_le32(cmd.nsid);
1431         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1432         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1433         c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1434         c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1435         c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1436         c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1437         c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1438         c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1439
1440         if (cmd.timeout_ms)
1441                 timeout = msecs_to_jiffies(cmd.timeout_ms);
1442
1443         effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1444         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1445                         nvme_to_user_ptr(cmd.addr), cmd.data_len,
1446                         nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1447                         0, &result, timeout);
1448         nvme_passthru_end(ctrl, effects);
1449
1450         if (status >= 0) {
1451                 if (put_user(result, &ucmd->result))
1452                         return -EFAULT;
1453         }
1454
1455         return status;
1456 }
1457
1458 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1459                         struct nvme_passthru_cmd64 __user *ucmd)
1460 {
1461         struct nvme_passthru_cmd64 cmd;
1462         struct nvme_command c;
1463         unsigned timeout = 0;
1464         u32 effects;
1465         int status;
1466
1467         if (!capable(CAP_SYS_ADMIN))
1468                 return -EACCES;
1469         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1470                 return -EFAULT;
1471         if (cmd.flags)
1472                 return -EINVAL;
1473
1474         memset(&c, 0, sizeof(c));
1475         c.common.opcode = cmd.opcode;
1476         c.common.flags = cmd.flags;
1477         c.common.nsid = cpu_to_le32(cmd.nsid);
1478         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1479         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1480         c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1481         c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1482         c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1483         c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1484         c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1485         c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1486
1487         if (cmd.timeout_ms)
1488                 timeout = msecs_to_jiffies(cmd.timeout_ms);
1489
1490         effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1491         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1492                         nvme_to_user_ptr(cmd.addr), cmd.data_len,
1493                         nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1494                         0, &cmd.result, timeout);
1495         nvme_passthru_end(ctrl, effects);
1496
1497         if (status >= 0) {
1498                 if (put_user(cmd.result, &ucmd->result))
1499                         return -EFAULT;
1500         }
1501
1502         return status;
1503 }
1504
1505 /*
1506  * Issue ioctl requests on the first available path.  Note that unlike normal
1507  * block layer requests we will not retry failed request on another controller.
1508  */
1509 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1510                 struct nvme_ns_head **head, int *srcu_idx)
1511 {
1512 #ifdef CONFIG_NVME_MULTIPATH
1513         if (disk->fops == &nvme_ns_head_ops) {
1514                 struct nvme_ns *ns;
1515
1516                 *head = disk->private_data;
1517                 *srcu_idx = srcu_read_lock(&(*head)->srcu);
1518                 ns = nvme_find_path(*head);
1519                 if (!ns)
1520                         srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1521                 return ns;
1522         }
1523 #endif
1524         *head = NULL;
1525         *srcu_idx = -1;
1526         return disk->private_data;
1527 }
1528
1529 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1530 {
1531         if (head)
1532                 srcu_read_unlock(&head->srcu, idx);
1533 }
1534
1535 static bool is_ctrl_ioctl(unsigned int cmd)
1536 {
1537         if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD)
1538                 return true;
1539         if (is_sed_ioctl(cmd))
1540                 return true;
1541         return false;
1542 }
1543
1544 static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd,
1545                                   void __user *argp,
1546                                   struct nvme_ns_head *head,
1547                                   int srcu_idx)
1548 {
1549         struct nvme_ctrl *ctrl = ns->ctrl;
1550         int ret;
1551
1552         nvme_get_ctrl(ns->ctrl);
1553         nvme_put_ns_from_disk(head, srcu_idx);
1554
1555         switch (cmd) {
1556         case NVME_IOCTL_ADMIN_CMD:
1557                 ret = nvme_user_cmd(ctrl, NULL, argp);
1558                 break;
1559         case NVME_IOCTL_ADMIN64_CMD:
1560                 ret = nvme_user_cmd64(ctrl, NULL, argp);
1561                 break;
1562         default:
1563                 ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
1564                 break;
1565         }
1566         nvme_put_ctrl(ctrl);
1567         return ret;
1568 }
1569
1570 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1571                 unsigned int cmd, unsigned long arg)
1572 {
1573         struct nvme_ns_head *head = NULL;
1574         void __user *argp = (void __user *)arg;
1575         struct nvme_ns *ns;
1576         int srcu_idx, ret;
1577
1578         ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1579         if (unlikely(!ns))
1580                 return -EWOULDBLOCK;
1581
1582         /*
1583          * Handle ioctls that apply to the controller instead of the namespace
1584          * seperately and drop the ns SRCU reference early.  This avoids a
1585          * deadlock when deleting namespaces using the passthrough interface.
1586          */
1587         if (is_ctrl_ioctl(cmd))
1588                 return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx);
1589
1590         switch (cmd) {
1591         case NVME_IOCTL_ID:
1592                 force_successful_syscall_return();
1593                 ret = ns->head->ns_id;
1594                 break;
1595         case NVME_IOCTL_IO_CMD:
1596                 ret = nvme_user_cmd(ns->ctrl, ns, argp);
1597                 break;
1598         case NVME_IOCTL_SUBMIT_IO:
1599                 ret = nvme_submit_io(ns, argp);
1600                 break;
1601         case NVME_IOCTL_IO64_CMD:
1602                 ret = nvme_user_cmd64(ns->ctrl, ns, argp);
1603                 break;
1604         default:
1605                 if (ns->ndev)
1606                         ret = nvme_nvm_ioctl(ns, cmd, arg);
1607                 else
1608                         ret = -ENOTTY;
1609         }
1610
1611         nvme_put_ns_from_disk(head, srcu_idx);
1612         return ret;
1613 }
1614
1615 #ifdef CONFIG_COMPAT
1616 struct nvme_user_io32 {
1617         __u8    opcode;
1618         __u8    flags;
1619         __u16   control;
1620         __u16   nblocks;
1621         __u16   rsvd;
1622         __u64   metadata;
1623         __u64   addr;
1624         __u64   slba;
1625         __u32   dsmgmt;
1626         __u32   reftag;
1627         __u16   apptag;
1628         __u16   appmask;
1629 } __attribute__((__packed__));
1630
1631 #define NVME_IOCTL_SUBMIT_IO32  _IOW('N', 0x42, struct nvme_user_io32)
1632
1633 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1634                 unsigned int cmd, unsigned long arg)
1635 {
1636         /*
1637          * Corresponds to the difference of NVME_IOCTL_SUBMIT_IO
1638          * between 32 bit programs and 64 bit kernel.
1639          * The cause is that the results of sizeof(struct nvme_user_io),
1640          * which is used to define NVME_IOCTL_SUBMIT_IO,
1641          * are not same between 32 bit compiler and 64 bit compiler.
1642          * NVME_IOCTL_SUBMIT_IO32 is for 64 bit kernel handling
1643          * NVME_IOCTL_SUBMIT_IO issued from 32 bit programs.
1644          * Other IOCTL numbers are same between 32 bit and 64 bit.
1645          * So there is nothing to do regarding to other IOCTL numbers.
1646          */
1647         if (cmd == NVME_IOCTL_SUBMIT_IO32)
1648                 return nvme_ioctl(bdev, mode, NVME_IOCTL_SUBMIT_IO, arg);
1649
1650         return nvme_ioctl(bdev, mode, cmd, arg);
1651 }
1652 #else
1653 #define nvme_compat_ioctl       NULL
1654 #endif /* CONFIG_COMPAT */
1655
1656 static int nvme_open(struct block_device *bdev, fmode_t mode)
1657 {
1658         struct nvme_ns *ns = bdev->bd_disk->private_data;
1659
1660 #ifdef CONFIG_NVME_MULTIPATH
1661         /* should never be called due to GENHD_FL_HIDDEN */
1662         if (WARN_ON_ONCE(ns->head->disk))
1663                 goto fail;
1664 #endif
1665         if (!kref_get_unless_zero(&ns->kref))
1666                 goto fail;
1667         if (!try_module_get(ns->ctrl->ops->module))
1668                 goto fail_put_ns;
1669
1670         return 0;
1671
1672 fail_put_ns:
1673         nvme_put_ns(ns);
1674 fail:
1675         return -ENXIO;
1676 }
1677
1678 static void nvme_release(struct gendisk *disk, fmode_t mode)
1679 {
1680         struct nvme_ns *ns = disk->private_data;
1681
1682         module_put(ns->ctrl->ops->module);
1683         nvme_put_ns(ns);
1684 }
1685
1686 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1687 {
1688         /* some standard values */
1689         geo->heads = 1 << 6;
1690         geo->sectors = 1 << 5;
1691         geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1692         return 0;
1693 }
1694
1695 #ifdef CONFIG_BLK_DEV_INTEGRITY
1696 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1697                                 u32 max_integrity_segments)
1698 {
1699         struct blk_integrity integrity;
1700
1701         memset(&integrity, 0, sizeof(integrity));
1702         switch (pi_type) {
1703         case NVME_NS_DPS_PI_TYPE3:
1704                 integrity.profile = &t10_pi_type3_crc;
1705                 integrity.tag_size = sizeof(u16) + sizeof(u32);
1706                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1707                 break;
1708         case NVME_NS_DPS_PI_TYPE1:
1709         case NVME_NS_DPS_PI_TYPE2:
1710                 integrity.profile = &t10_pi_type1_crc;
1711                 integrity.tag_size = sizeof(u16);
1712                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1713                 break;
1714         default:
1715                 integrity.profile = NULL;
1716                 break;
1717         }
1718         integrity.tuple_size = ms;
1719         blk_integrity_register(disk, &integrity);
1720         blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1721 }
1722 #else
1723 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1724                                 u32 max_integrity_segments)
1725 {
1726 }
1727 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1728
1729 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1730 {
1731         struct nvme_ctrl *ctrl = ns->ctrl;
1732         struct request_queue *queue = disk->queue;
1733         u32 size = queue_logical_block_size(queue);
1734
1735         if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1736                 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1737                 return;
1738         }
1739
1740         if (ctrl->nr_streams && ns->sws && ns->sgs)
1741                 size *= ns->sws * ns->sgs;
1742
1743         BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1744                         NVME_DSM_MAX_RANGES);
1745
1746         queue->limits.discard_alignment = 0;
1747         queue->limits.discard_granularity = size;
1748
1749         /* If discard is already enabled, don't reset queue limits */
1750         if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1751                 return;
1752
1753         blk_queue_max_discard_sectors(queue, UINT_MAX);
1754         blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1755
1756         if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1757                 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1758 }
1759
1760 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns)
1761 {
1762         u64 max_blocks;
1763
1764         if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) ||
1765             (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
1766                 return;
1767         /*
1768          * Even though NVMe spec explicitly states that MDTS is not
1769          * applicable to the write-zeroes:- "The restriction does not apply to
1770          * commands that do not transfer data between the host and the
1771          * controller (e.g., Write Uncorrectable ro Write Zeroes command).".
1772          * In order to be more cautious use controller's max_hw_sectors value
1773          * to configure the maximum sectors for the write-zeroes which is
1774          * configured based on the controller's MDTS field in the
1775          * nvme_init_identify() if available.
1776          */
1777         if (ns->ctrl->max_hw_sectors == UINT_MAX)
1778                 max_blocks = (u64)USHRT_MAX + 1;
1779         else
1780                 max_blocks = ns->ctrl->max_hw_sectors + 1;
1781
1782         blk_queue_max_write_zeroes_sectors(disk->queue,
1783                                            nvme_lba_to_sect(ns, max_blocks));
1784 }
1785
1786 static int nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1787                 struct nvme_id_ns *id, struct nvme_ns_ids *ids)
1788 {
1789         memset(ids, 0, sizeof(*ids));
1790
1791         if (ctrl->vs >= NVME_VS(1, 1, 0))
1792                 memcpy(ids->eui64, id->eui64, sizeof(id->eui64));
1793         if (ctrl->vs >= NVME_VS(1, 2, 0))
1794                 memcpy(ids->nguid, id->nguid, sizeof(id->nguid));
1795         if (ctrl->vs >= NVME_VS(1, 3, 0))
1796                 return nvme_identify_ns_descs(ctrl, nsid, ids);
1797         return 0;
1798 }
1799
1800 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1801 {
1802         return !uuid_is_null(&ids->uuid) ||
1803                 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1804                 memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1805 }
1806
1807 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1808 {
1809         return uuid_equal(&a->uuid, &b->uuid) &&
1810                 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1811                 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0;
1812 }
1813
1814 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1815                                  u32 *phys_bs, u32 *io_opt)
1816 {
1817         struct streams_directive_params s;
1818         int ret;
1819
1820         if (!ctrl->nr_streams)
1821                 return 0;
1822
1823         ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
1824         if (ret)
1825                 return ret;
1826
1827         ns->sws = le32_to_cpu(s.sws);
1828         ns->sgs = le16_to_cpu(s.sgs);
1829
1830         if (ns->sws) {
1831                 *phys_bs = ns->sws * (1 << ns->lba_shift);
1832                 if (ns->sgs)
1833                         *io_opt = *phys_bs * ns->sgs;
1834         }
1835
1836         return 0;
1837 }
1838
1839 static void nvme_update_disk_info(struct gendisk *disk,
1840                 struct nvme_ns *ns, struct nvme_id_ns *id)
1841 {
1842         sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1843         unsigned short bs = 1 << ns->lba_shift;
1844         u32 atomic_bs, phys_bs, io_opt = 0;
1845
1846         if (ns->lba_shift > PAGE_SHIFT) {
1847                 /* unsupported block size, set capacity to 0 later */
1848                 bs = (1 << 9);
1849         }
1850         blk_mq_freeze_queue(disk->queue);
1851         blk_integrity_unregister(disk);
1852
1853         atomic_bs = phys_bs = bs;
1854         nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt);
1855         if (id->nabo == 0) {
1856                 /*
1857                  * Bit 1 indicates whether NAWUPF is defined for this namespace
1858                  * and whether it should be used instead of AWUPF. If NAWUPF ==
1859                  * 0 then AWUPF must be used instead.
1860                  */
1861                 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1862                         atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1863                 else
1864                         atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1865         }
1866
1867         if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1868                 /* NPWG = Namespace Preferred Write Granularity */
1869                 phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1870                 /* NOWS = Namespace Optimal Write Size */
1871                 io_opt = bs * (1 + le16_to_cpu(id->nows));
1872         }
1873
1874         blk_queue_logical_block_size(disk->queue, bs);
1875         /*
1876          * Linux filesystems assume writing a single physical block is
1877          * an atomic operation. Hence limit the physical block size to the
1878          * value of the Atomic Write Unit Power Fail parameter.
1879          */
1880         blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1881         blk_queue_io_min(disk->queue, phys_bs);
1882         blk_queue_io_opt(disk->queue, io_opt);
1883
1884         /*
1885          * The block layer can't support LBA sizes larger than the page size
1886          * yet, so catch this early and don't allow block I/O.
1887          */
1888         if (ns->lba_shift > PAGE_SHIFT)
1889                 capacity = 0;
1890
1891         /*
1892          * Register a metadata profile for PI, or the plain non-integrity NVMe
1893          * metadata masquerading as Type 0 if supported, otherwise reject block
1894          * I/O to namespaces with metadata except when the namespace supports
1895          * PI, as it can strip/insert in that case.
1896          */
1897         if (ns->ms) {
1898                 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1899                     (ns->features & NVME_NS_METADATA_SUPPORTED))
1900                         nvme_init_integrity(disk, ns->ms, ns->pi_type,
1901                                             ns->ctrl->max_integrity_segments);
1902                 else if (!nvme_ns_has_pi(ns))
1903                         capacity = 0;
1904         }
1905
1906         set_capacity_revalidate_and_notify(disk, capacity, false);
1907
1908         nvme_config_discard(disk, ns);
1909         nvme_config_write_zeroes(disk, ns);
1910
1911         if (id->nsattr & NVME_NS_ATTR_RO)
1912                 set_disk_ro(disk, true);
1913         else
1914                 set_disk_ro(disk, false);
1915
1916         blk_mq_unfreeze_queue(disk->queue);
1917 }
1918
1919 static int __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1920 {
1921         struct nvme_ns *ns = disk->private_data;
1922         struct nvme_ctrl *ctrl = ns->ctrl;
1923         u32 iob;
1924
1925         /*
1926          * If identify namespace failed, use default 512 byte block size so
1927          * block layer can use before failing read/write for 0 capacity.
1928          */
1929         ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1930         if (ns->lba_shift == 0)
1931                 ns->lba_shift = 9;
1932
1933         if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1934             is_power_of_2(ctrl->max_hw_sectors))
1935                 iob = ctrl->max_hw_sectors;
1936         else
1937                 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
1938
1939         ns->features = 0;
1940         ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1941         /* the PI implementation requires metadata equal t10 pi tuple size */
1942         if (ns->ms == sizeof(struct t10_pi_tuple))
1943                 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1944         else
1945                 ns->pi_type = 0;
1946
1947         if (ns->ms) {
1948                 /*
1949                  * For PCIe only the separate metadata pointer is supported,
1950                  * as the block layer supplies metadata in a separate bio_vec
1951                  * chain. For Fabrics, only metadata as part of extended data
1952                  * LBA is supported on the wire per the Fabrics specification,
1953                  * but the HBA/HCA will do the remapping from the separate
1954                  * metadata buffers for us.
1955                  */
1956                 if (id->flbas & NVME_NS_FLBAS_META_EXT) {
1957                         ns->features |= NVME_NS_EXT_LBAS;
1958                         if ((ctrl->ops->flags & NVME_F_FABRICS) &&
1959                             (ctrl->ops->flags & NVME_F_METADATA_SUPPORTED) &&
1960                             ctrl->max_integrity_segments)
1961                                 ns->features |= NVME_NS_METADATA_SUPPORTED;
1962                 } else {
1963                         if (WARN_ON_ONCE(ctrl->ops->flags & NVME_F_FABRICS))
1964                                 return -EINVAL;
1965                         if (ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)
1966                                 ns->features |= NVME_NS_METADATA_SUPPORTED;
1967                 }
1968         }
1969
1970         if (iob)
1971                 blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(iob));
1972         nvme_update_disk_info(disk, ns, id);
1973 #ifdef CONFIG_NVME_MULTIPATH
1974         if (ns->head->disk) {
1975                 nvme_update_disk_info(ns->head->disk, ns, id);
1976                 blk_queue_stack_limits(ns->head->disk->queue, ns->queue);
1977                 revalidate_disk(ns->head->disk);
1978         }
1979 #endif
1980         return 0;
1981 }
1982
1983 static int nvme_revalidate_disk(struct gendisk *disk)
1984 {
1985         struct nvme_ns *ns = disk->private_data;
1986         struct nvme_ctrl *ctrl = ns->ctrl;
1987         struct nvme_id_ns *id;
1988         struct nvme_ns_ids ids;
1989         int ret = 0;
1990
1991         if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1992                 set_capacity(disk, 0);
1993                 return -ENODEV;
1994         }
1995
1996         ret = nvme_identify_ns(ctrl, ns->head->ns_id, &id);
1997         if (ret)
1998                 goto out;
1999
2000         if (id->ncap == 0) {
2001                 ret = -ENODEV;
2002                 goto free_id;
2003         }
2004
2005         ret = nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids);
2006         if (ret)
2007                 goto free_id;
2008
2009         if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) {
2010                 dev_err(ctrl->device,
2011                         "identifiers changed for nsid %d\n", ns->head->ns_id);
2012                 ret = -ENODEV;
2013                 goto free_id;
2014         }
2015
2016         ret = __nvme_revalidate_disk(disk, id);
2017 free_id:
2018         kfree(id);
2019 out:
2020         /*
2021          * Only fail the function if we got a fatal error back from the
2022          * device, otherwise ignore the error and just move on.
2023          */
2024         if (ret == -ENOMEM || (ret > 0 && !(ret & NVME_SC_DNR)))
2025                 ret = 0;
2026         else if (ret > 0)
2027                 ret = blk_status_to_errno(nvme_error_status(ret));
2028         return ret;
2029 }
2030
2031 static char nvme_pr_type(enum pr_type type)
2032 {
2033         switch (type) {
2034         case PR_WRITE_EXCLUSIVE:
2035                 return 1;
2036         case PR_EXCLUSIVE_ACCESS:
2037                 return 2;
2038         case PR_WRITE_EXCLUSIVE_REG_ONLY:
2039                 return 3;
2040         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
2041                 return 4;
2042         case PR_WRITE_EXCLUSIVE_ALL_REGS:
2043                 return 5;
2044         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
2045                 return 6;
2046         default:
2047                 return 0;
2048         }
2049 };
2050
2051 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
2052                                 u64 key, u64 sa_key, u8 op)
2053 {
2054         struct nvme_ns_head *head = NULL;
2055         struct nvme_ns *ns;
2056         struct nvme_command c;
2057         int srcu_idx, ret;
2058         u8 data[16] = { 0, };
2059
2060         ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
2061         if (unlikely(!ns))
2062                 return -EWOULDBLOCK;
2063
2064         put_unaligned_le64(key, &data[0]);
2065         put_unaligned_le64(sa_key, &data[8]);
2066
2067         memset(&c, 0, sizeof(c));
2068         c.common.opcode = op;
2069         c.common.nsid = cpu_to_le32(ns->head->ns_id);
2070         c.common.cdw10 = cpu_to_le32(cdw10);
2071
2072         ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
2073         nvme_put_ns_from_disk(head, srcu_idx);
2074         return ret;
2075 }
2076
2077 static int nvme_pr_register(struct block_device *bdev, u64 old,
2078                 u64 new, unsigned flags)
2079 {
2080         u32 cdw10;
2081
2082         if (flags & ~PR_FL_IGNORE_KEY)
2083                 return -EOPNOTSUPP;
2084
2085         cdw10 = old ? 2 : 0;
2086         cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2087         cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2088         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2089 }
2090
2091 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2092                 enum pr_type type, unsigned flags)
2093 {
2094         u32 cdw10;
2095
2096         if (flags & ~PR_FL_IGNORE_KEY)
2097                 return -EOPNOTSUPP;
2098
2099         cdw10 = nvme_pr_type(type) << 8;
2100         cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2101         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2102 }
2103
2104 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2105                 enum pr_type type, bool abort)
2106 {
2107         u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2108         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2109 }
2110
2111 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2112 {
2113         u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2114         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2115 }
2116
2117 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2118 {
2119         u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2120         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2121 }
2122
2123 static const struct pr_ops nvme_pr_ops = {
2124         .pr_register    = nvme_pr_register,
2125         .pr_reserve     = nvme_pr_reserve,
2126         .pr_release     = nvme_pr_release,
2127         .pr_preempt     = nvme_pr_preempt,
2128         .pr_clear       = nvme_pr_clear,
2129 };
2130
2131 #ifdef CONFIG_BLK_SED_OPAL
2132 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2133                 bool send)
2134 {
2135         struct nvme_ctrl *ctrl = data;
2136         struct nvme_command cmd;
2137
2138         memset(&cmd, 0, sizeof(cmd));
2139         if (send)
2140                 cmd.common.opcode = nvme_admin_security_send;
2141         else
2142                 cmd.common.opcode = nvme_admin_security_recv;
2143         cmd.common.nsid = 0;
2144         cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2145         cmd.common.cdw11 = cpu_to_le32(len);
2146
2147         return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2148                                       ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false);
2149 }
2150 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2151 #endif /* CONFIG_BLK_SED_OPAL */
2152
2153 static const struct block_device_operations nvme_fops = {
2154         .owner          = THIS_MODULE,
2155         .ioctl          = nvme_ioctl,
2156         .compat_ioctl   = nvme_compat_ioctl,
2157         .open           = nvme_open,
2158         .release        = nvme_release,
2159         .getgeo         = nvme_getgeo,
2160         .revalidate_disk= nvme_revalidate_disk,
2161         .pr_ops         = &nvme_pr_ops,
2162 };
2163
2164 #ifdef CONFIG_NVME_MULTIPATH
2165 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
2166 {
2167         struct nvme_ns_head *head = bdev->bd_disk->private_data;
2168
2169         if (!kref_get_unless_zero(&head->ref))
2170                 return -ENXIO;
2171         return 0;
2172 }
2173
2174 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
2175 {
2176         nvme_put_ns_head(disk->private_data);
2177 }
2178
2179 const struct block_device_operations nvme_ns_head_ops = {
2180         .owner          = THIS_MODULE,
2181         .submit_bio     = nvme_ns_head_submit_bio,
2182         .open           = nvme_ns_head_open,
2183         .release        = nvme_ns_head_release,
2184         .ioctl          = nvme_ioctl,
2185         .compat_ioctl   = nvme_compat_ioctl,
2186         .getgeo         = nvme_getgeo,
2187         .pr_ops         = &nvme_pr_ops,
2188 };
2189 #endif /* CONFIG_NVME_MULTIPATH */
2190
2191 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2192 {
2193         unsigned long timeout =
2194                 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2195         u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2196         int ret;
2197
2198         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2199                 if (csts == ~0)
2200                         return -ENODEV;
2201                 if ((csts & NVME_CSTS_RDY) == bit)
2202                         break;
2203
2204                 usleep_range(1000, 2000);
2205                 if (fatal_signal_pending(current))
2206                         return -EINTR;
2207                 if (time_after(jiffies, timeout)) {
2208                         dev_err(ctrl->device,
2209                                 "Device not ready; aborting %s, CSTS=0x%x\n",
2210                                 enabled ? "initialisation" : "reset", csts);
2211                         return -ENODEV;
2212                 }
2213         }
2214
2215         return ret;
2216 }
2217
2218 /*
2219  * If the device has been passed off to us in an enabled state, just clear
2220  * the enabled bit.  The spec says we should set the 'shutdown notification
2221  * bits', but doing so may cause the device to complete commands to the
2222  * admin queue ... and we don't know what memory that might be pointing at!
2223  */
2224 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2225 {
2226         int ret;
2227
2228         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2229         ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2230
2231         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2232         if (ret)
2233                 return ret;
2234
2235         if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2236                 msleep(NVME_QUIRK_DELAY_AMOUNT);
2237
2238         return nvme_wait_ready(ctrl, ctrl->cap, false);
2239 }
2240 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2241
2242 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2243 {
2244         /*
2245          * Default to a 4K page size, with the intention to update this
2246          * path in the future to accomodate architectures with differing
2247          * kernel and IO page sizes.
2248          */
2249         unsigned dev_page_min, page_shift = 12;
2250         int ret;
2251
2252         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2253         if (ret) {
2254                 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2255                 return ret;
2256         }
2257         dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2258
2259         if (page_shift < dev_page_min) {
2260                 dev_err(ctrl->device,
2261                         "Minimum device page size %u too large for host (%u)\n",
2262                         1 << dev_page_min, 1 << page_shift);
2263                 return -ENODEV;
2264         }
2265
2266         ctrl->page_size = 1 << page_shift;
2267
2268         ctrl->ctrl_config = NVME_CC_CSS_NVM;
2269         ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
2270         ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2271         ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2272         ctrl->ctrl_config |= NVME_CC_ENABLE;
2273
2274         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2275         if (ret)
2276                 return ret;
2277         return nvme_wait_ready(ctrl, ctrl->cap, true);
2278 }
2279 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2280
2281 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2282 {
2283         unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2284         u32 csts;
2285         int ret;
2286
2287         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2288         ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2289
2290         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2291         if (ret)
2292                 return ret;
2293
2294         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2295                 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2296                         break;
2297
2298                 msleep(100);
2299                 if (fatal_signal_pending(current))
2300                         return -EINTR;
2301                 if (time_after(jiffies, timeout)) {
2302                         dev_err(ctrl->device,
2303                                 "Device shutdown incomplete; abort shutdown\n");
2304                         return -ENODEV;
2305                 }
2306         }
2307
2308         return ret;
2309 }
2310 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2311
2312 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
2313                 struct request_queue *q)
2314 {
2315         bool vwc = false;
2316
2317         if (ctrl->max_hw_sectors) {
2318                 u32 max_segments =
2319                         (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
2320
2321                 max_segments = min_not_zero(max_segments, ctrl->max_segments);
2322                 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
2323                 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
2324         }
2325         blk_queue_virt_boundary(q, ctrl->page_size - 1);
2326         blk_queue_dma_alignment(q, 7);
2327         if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
2328                 vwc = true;
2329         blk_queue_write_cache(q, vwc, vwc);
2330 }
2331
2332 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2333 {
2334         __le64 ts;
2335         int ret;
2336
2337         if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2338                 return 0;
2339
2340         ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2341         ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2342                         NULL);
2343         if (ret)
2344                 dev_warn_once(ctrl->device,
2345                         "could not set timestamp (%d)\n", ret);
2346         return ret;
2347 }
2348
2349 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2350 {
2351         struct nvme_feat_host_behavior *host;
2352         int ret;
2353
2354         /* Don't bother enabling the feature if retry delay is not reported */
2355         if (!ctrl->crdt[0])
2356                 return 0;
2357
2358         host = kzalloc(sizeof(*host), GFP_KERNEL);
2359         if (!host)
2360                 return 0;
2361
2362         host->acre = NVME_ENABLE_ACRE;
2363         ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2364                                 host, sizeof(*host), NULL);
2365         kfree(host);
2366         return ret;
2367 }
2368
2369 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2370 {
2371         /*
2372          * APST (Autonomous Power State Transition) lets us program a
2373          * table of power state transitions that the controller will
2374          * perform automatically.  We configure it with a simple
2375          * heuristic: we are willing to spend at most 2% of the time
2376          * transitioning between power states.  Therefore, when running
2377          * in any given state, we will enter the next lower-power
2378          * non-operational state after waiting 50 * (enlat + exlat)
2379          * microseconds, as long as that state's exit latency is under
2380          * the requested maximum latency.
2381          *
2382          * We will not autonomously enter any non-operational state for
2383          * which the total latency exceeds ps_max_latency_us.  Users
2384          * can set ps_max_latency_us to zero to turn off APST.
2385          */
2386
2387         unsigned apste;
2388         struct nvme_feat_auto_pst *table;
2389         u64 max_lat_us = 0;
2390         int max_ps = -1;
2391         int ret;
2392
2393         /*
2394          * If APST isn't supported or if we haven't been initialized yet,
2395          * then don't do anything.
2396          */
2397         if (!ctrl->apsta)
2398                 return 0;
2399
2400         if (ctrl->npss > 31) {
2401                 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2402                 return 0;
2403         }
2404
2405         table = kzalloc(sizeof(*table), GFP_KERNEL);
2406         if (!table)
2407                 return 0;
2408
2409         if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2410                 /* Turn off APST. */
2411                 apste = 0;
2412                 dev_dbg(ctrl->device, "APST disabled\n");
2413         } else {
2414                 __le64 target = cpu_to_le64(0);
2415                 int state;
2416
2417                 /*
2418                  * Walk through all states from lowest- to highest-power.
2419                  * According to the spec, lower-numbered states use more
2420                  * power.  NPSS, despite the name, is the index of the
2421                  * lowest-power state, not the number of states.
2422                  */
2423                 for (state = (int)ctrl->npss; state >= 0; state--) {
2424                         u64 total_latency_us, exit_latency_us, transition_ms;
2425
2426                         if (target)
2427                                 table->entries[state] = target;
2428
2429                         /*
2430                          * Don't allow transitions to the deepest state
2431                          * if it's quirked off.
2432                          */
2433                         if (state == ctrl->npss &&
2434                             (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2435                                 continue;
2436
2437                         /*
2438                          * Is this state a useful non-operational state for
2439                          * higher-power states to autonomously transition to?
2440                          */
2441                         if (!(ctrl->psd[state].flags &
2442                               NVME_PS_FLAGS_NON_OP_STATE))
2443                                 continue;
2444
2445                         exit_latency_us =
2446                                 (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2447                         if (exit_latency_us > ctrl->ps_max_latency_us)
2448                                 continue;
2449
2450                         total_latency_us =
2451                                 exit_latency_us +
2452                                 le32_to_cpu(ctrl->psd[state].entry_lat);
2453
2454                         /*
2455                          * This state is good.  Use it as the APST idle
2456                          * target for higher power states.
2457                          */
2458                         transition_ms = total_latency_us + 19;
2459                         do_div(transition_ms, 20);
2460                         if (transition_ms > (1 << 24) - 1)
2461                                 transition_ms = (1 << 24) - 1;
2462
2463                         target = cpu_to_le64((state << 3) |
2464                                              (transition_ms << 8));
2465
2466                         if (max_ps == -1)
2467                                 max_ps = state;
2468
2469                         if (total_latency_us > max_lat_us)
2470                                 max_lat_us = total_latency_us;
2471                 }
2472
2473                 apste = 1;
2474
2475                 if (max_ps == -1) {
2476                         dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2477                 } else {
2478                         dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2479                                 max_ps, max_lat_us, (int)sizeof(*table), table);
2480                 }
2481         }
2482
2483         ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2484                                 table, sizeof(*table), NULL);
2485         if (ret)
2486                 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2487
2488         kfree(table);
2489         return ret;
2490 }
2491
2492 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2493 {
2494         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2495         u64 latency;
2496
2497         switch (val) {
2498         case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2499         case PM_QOS_LATENCY_ANY:
2500                 latency = U64_MAX;
2501                 break;
2502
2503         default:
2504                 latency = val;
2505         }
2506
2507         if (ctrl->ps_max_latency_us != latency) {
2508                 ctrl->ps_max_latency_us = latency;
2509                 nvme_configure_apst(ctrl);
2510         }
2511 }
2512
2513 struct nvme_core_quirk_entry {
2514         /*
2515          * NVMe model and firmware strings are padded with spaces.  For
2516          * simplicity, strings in the quirk table are padded with NULLs
2517          * instead.
2518          */
2519         u16 vid;
2520         const char *mn;
2521         const char *fr;
2522         unsigned long quirks;
2523 };
2524
2525 static const struct nvme_core_quirk_entry core_quirks[] = {
2526         {
2527                 /*
2528                  * This Toshiba device seems to die using any APST states.  See:
2529                  * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2530                  */
2531                 .vid = 0x1179,
2532                 .mn = "THNSF5256GPUK TOSHIBA",
2533                 .quirks = NVME_QUIRK_NO_APST,
2534         },
2535         {
2536                 /*
2537                  * This LiteON CL1-3D*-Q11 firmware version has a race
2538                  * condition associated with actions related to suspend to idle
2539                  * LiteON has resolved the problem in future firmware
2540                  */
2541                 .vid = 0x14a4,
2542                 .fr = "22301111",
2543                 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2544         }
2545 };
2546
2547 /* match is null-terminated but idstr is space-padded. */
2548 static bool string_matches(const char *idstr, const char *match, size_t len)
2549 {
2550         size_t matchlen;
2551
2552         if (!match)
2553                 return true;
2554
2555         matchlen = strlen(match);
2556         WARN_ON_ONCE(matchlen > len);
2557
2558         if (memcmp(idstr, match, matchlen))
2559                 return false;
2560
2561         for (; matchlen < len; matchlen++)
2562                 if (idstr[matchlen] != ' ')
2563                         return false;
2564
2565         return true;
2566 }
2567
2568 static bool quirk_matches(const struct nvme_id_ctrl *id,
2569                           const struct nvme_core_quirk_entry *q)
2570 {
2571         return q->vid == le16_to_cpu(id->vid) &&
2572                 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2573                 string_matches(id->fr, q->fr, sizeof(id->fr));
2574 }
2575
2576 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2577                 struct nvme_id_ctrl *id)
2578 {
2579         size_t nqnlen;
2580         int off;
2581
2582         if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2583                 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2584                 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2585                         strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2586                         return;
2587                 }
2588
2589                 if (ctrl->vs >= NVME_VS(1, 2, 1))
2590                         dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2591         }
2592
2593         /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2594         off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2595                         "nqn.2014.08.org.nvmexpress:%04x%04x",
2596                         le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2597         memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2598         off += sizeof(id->sn);
2599         memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2600         off += sizeof(id->mn);
2601         memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2602 }
2603
2604 static void nvme_release_subsystem(struct device *dev)
2605 {
2606         struct nvme_subsystem *subsys =
2607                 container_of(dev, struct nvme_subsystem, dev);
2608
2609         if (subsys->instance >= 0)
2610                 ida_simple_remove(&nvme_instance_ida, subsys->instance);
2611         kfree(subsys);
2612 }
2613
2614 static void nvme_destroy_subsystem(struct kref *ref)
2615 {
2616         struct nvme_subsystem *subsys =
2617                         container_of(ref, struct nvme_subsystem, ref);
2618
2619         mutex_lock(&nvme_subsystems_lock);
2620         list_del(&subsys->entry);
2621         mutex_unlock(&nvme_subsystems_lock);
2622
2623         ida_destroy(&subsys->ns_ida);
2624         device_del(&subsys->dev);
2625         put_device(&subsys->dev);
2626 }
2627
2628 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2629 {
2630         kref_put(&subsys->ref, nvme_destroy_subsystem);
2631 }
2632
2633 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2634 {
2635         struct nvme_subsystem *subsys;
2636
2637         lockdep_assert_held(&nvme_subsystems_lock);
2638
2639         /*
2640          * Fail matches for discovery subsystems. This results
2641          * in each discovery controller bound to a unique subsystem.
2642          * This avoids issues with validating controller values
2643          * that can only be true when there is a single unique subsystem.
2644          * There may be multiple and completely independent entities
2645          * that provide discovery controllers.
2646          */
2647         if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2648                 return NULL;
2649
2650         list_for_each_entry(subsys, &nvme_subsystems, entry) {
2651                 if (strcmp(subsys->subnqn, subsysnqn))
2652                         continue;
2653                 if (!kref_get_unless_zero(&subsys->ref))
2654                         continue;
2655                 return subsys;
2656         }
2657
2658         return NULL;
2659 }
2660
2661 #define SUBSYS_ATTR_RO(_name, _mode, _show)                     \
2662         struct device_attribute subsys_attr_##_name = \
2663                 __ATTR(_name, _mode, _show, NULL)
2664
2665 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2666                                     struct device_attribute *attr,
2667                                     char *buf)
2668 {
2669         struct nvme_subsystem *subsys =
2670                 container_of(dev, struct nvme_subsystem, dev);
2671
2672         return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2673 }
2674 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2675
2676 #define nvme_subsys_show_str_function(field)                            \
2677 static ssize_t subsys_##field##_show(struct device *dev,                \
2678                             struct device_attribute *attr, char *buf)   \
2679 {                                                                       \
2680         struct nvme_subsystem *subsys =                                 \
2681                 container_of(dev, struct nvme_subsystem, dev);          \
2682         return sprintf(buf, "%.*s\n",                                   \
2683                        (int)sizeof(subsys->field), subsys->field);      \
2684 }                                                                       \
2685 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2686
2687 nvme_subsys_show_str_function(model);
2688 nvme_subsys_show_str_function(serial);
2689 nvme_subsys_show_str_function(firmware_rev);
2690
2691 static struct attribute *nvme_subsys_attrs[] = {
2692         &subsys_attr_model.attr,
2693         &subsys_attr_serial.attr,
2694         &subsys_attr_firmware_rev.attr,
2695         &subsys_attr_subsysnqn.attr,
2696 #ifdef CONFIG_NVME_MULTIPATH
2697         &subsys_attr_iopolicy.attr,
2698 #endif
2699         NULL,
2700 };
2701
2702 static struct attribute_group nvme_subsys_attrs_group = {
2703         .attrs = nvme_subsys_attrs,
2704 };
2705
2706 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2707         &nvme_subsys_attrs_group,
2708         NULL,
2709 };
2710
2711 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2712                 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2713 {
2714         struct nvme_ctrl *tmp;
2715
2716         lockdep_assert_held(&nvme_subsystems_lock);
2717
2718         list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2719                 if (nvme_state_terminal(tmp))
2720                         continue;
2721
2722                 if (tmp->cntlid == ctrl->cntlid) {
2723                         dev_err(ctrl->device,
2724                                 "Duplicate cntlid %u with %s, rejecting\n",
2725                                 ctrl->cntlid, dev_name(tmp->device));
2726                         return false;
2727                 }
2728
2729                 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2730                     (ctrl->opts && ctrl->opts->discovery_nqn))
2731                         continue;
2732
2733                 dev_err(ctrl->device,
2734                         "Subsystem does not support multiple controllers\n");
2735                 return false;
2736         }
2737
2738         return true;
2739 }
2740
2741 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2742 {
2743         struct nvme_subsystem *subsys, *found;
2744         int ret;
2745
2746         subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2747         if (!subsys)
2748                 return -ENOMEM;
2749
2750         subsys->instance = -1;
2751         mutex_init(&subsys->lock);
2752         kref_init(&subsys->ref);
2753         INIT_LIST_HEAD(&subsys->ctrls);
2754         INIT_LIST_HEAD(&subsys->nsheads);
2755         nvme_init_subnqn(subsys, ctrl, id);
2756         memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2757         memcpy(subsys->model, id->mn, sizeof(subsys->model));
2758         memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2759         subsys->vendor_id = le16_to_cpu(id->vid);
2760         subsys->cmic = id->cmic;
2761         subsys->awupf = le16_to_cpu(id->awupf);
2762 #ifdef CONFIG_NVME_MULTIPATH
2763         subsys->iopolicy = NVME_IOPOLICY_NUMA;
2764 #endif
2765
2766         subsys->dev.class = nvme_subsys_class;
2767         subsys->dev.release = nvme_release_subsystem;
2768         subsys->dev.groups = nvme_subsys_attrs_groups;
2769         dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2770         device_initialize(&subsys->dev);
2771
2772         mutex_lock(&nvme_subsystems_lock);
2773         found = __nvme_find_get_subsystem(subsys->subnqn);
2774         if (found) {
2775                 put_device(&subsys->dev);
2776                 subsys = found;
2777
2778                 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2779                         ret = -EINVAL;
2780                         goto out_put_subsystem;
2781                 }
2782         } else {
2783                 ret = device_add(&subsys->dev);
2784                 if (ret) {
2785                         dev_err(ctrl->device,
2786                                 "failed to register subsystem device.\n");
2787                         put_device(&subsys->dev);
2788                         goto out_unlock;
2789                 }
2790                 ida_init(&subsys->ns_ida);
2791                 list_add_tail(&subsys->entry, &nvme_subsystems);
2792         }
2793
2794         ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2795                                 dev_name(ctrl->device));
2796         if (ret) {
2797                 dev_err(ctrl->device,
2798                         "failed to create sysfs link from subsystem.\n");
2799                 goto out_put_subsystem;
2800         }
2801
2802         if (!found)
2803                 subsys->instance = ctrl->instance;
2804         ctrl->subsys = subsys;
2805         list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2806         mutex_unlock(&nvme_subsystems_lock);
2807         return 0;
2808
2809 out_put_subsystem:
2810         nvme_put_subsystem(subsys);
2811 out_unlock:
2812         mutex_unlock(&nvme_subsystems_lock);
2813         return ret;
2814 }
2815
2816 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp,
2817                 void *log, size_t size, u64 offset)
2818 {
2819         struct nvme_command c = { };
2820         u32 dwlen = nvme_bytes_to_numd(size);
2821
2822         c.get_log_page.opcode = nvme_admin_get_log_page;
2823         c.get_log_page.nsid = cpu_to_le32(nsid);
2824         c.get_log_page.lid = log_page;
2825         c.get_log_page.lsp = lsp;
2826         c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2827         c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2828         c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2829         c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2830
2831         return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2832 }
2833
2834 static int nvme_get_effects_log(struct nvme_ctrl *ctrl)
2835 {
2836         int ret;
2837
2838         if (!ctrl->effects)
2839                 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2840
2841         if (!ctrl->effects)
2842                 return 0;
2843
2844         ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0,
2845                         ctrl->effects, sizeof(*ctrl->effects), 0);
2846         if (ret) {
2847                 kfree(ctrl->effects);
2848                 ctrl->effects = NULL;
2849         }
2850         return ret;
2851 }
2852
2853 /*
2854  * Initialize the cached copies of the Identify data and various controller
2855  * register in our nvme_ctrl structure.  This should be called as soon as
2856  * the admin queue is fully up and running.
2857  */
2858 int nvme_init_identify(struct nvme_ctrl *ctrl)
2859 {
2860         struct nvme_id_ctrl *id;
2861         int ret, page_shift;
2862         u32 max_hw_sectors;
2863         bool prev_apst_enabled;
2864
2865         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2866         if (ret) {
2867                 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2868                 return ret;
2869         }
2870         page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2871         ctrl->sqsize = min_t(int, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
2872
2873         if (ctrl->vs >= NVME_VS(1, 1, 0))
2874                 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
2875
2876         ret = nvme_identify_ctrl(ctrl, &id);
2877         if (ret) {
2878                 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2879                 return -EIO;
2880         }
2881
2882         if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2883                 ret = nvme_get_effects_log(ctrl);
2884                 if (ret < 0)
2885                         goto out_free;
2886         }
2887
2888         if (!(ctrl->ops->flags & NVME_F_FABRICS))
2889                 ctrl->cntlid = le16_to_cpu(id->cntlid);
2890
2891         if (!ctrl->identified) {
2892                 int i;
2893
2894                 ret = nvme_init_subsystem(ctrl, id);
2895                 if (ret)
2896                         goto out_free;
2897
2898                 /*
2899                  * Check for quirks.  Quirk can depend on firmware version,
2900                  * so, in principle, the set of quirks present can change
2901                  * across a reset.  As a possible future enhancement, we
2902                  * could re-scan for quirks every time we reinitialize
2903                  * the device, but we'd have to make sure that the driver
2904                  * behaves intelligently if the quirks change.
2905                  */
2906                 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2907                         if (quirk_matches(id, &core_quirks[i]))
2908                                 ctrl->quirks |= core_quirks[i].quirks;
2909                 }
2910         }
2911
2912         if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2913                 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2914                 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2915         }
2916
2917         ctrl->crdt[0] = le16_to_cpu(id->crdt1);
2918         ctrl->crdt[1] = le16_to_cpu(id->crdt2);
2919         ctrl->crdt[2] = le16_to_cpu(id->crdt3);
2920
2921         ctrl->oacs = le16_to_cpu(id->oacs);
2922         ctrl->oncs = le16_to_cpu(id->oncs);
2923         ctrl->mtfa = le16_to_cpu(id->mtfa);
2924         ctrl->oaes = le32_to_cpu(id->oaes);
2925         ctrl->wctemp = le16_to_cpu(id->wctemp);
2926         ctrl->cctemp = le16_to_cpu(id->cctemp);
2927
2928         atomic_set(&ctrl->abort_limit, id->acl + 1);
2929         ctrl->vwc = id->vwc;
2930         if (id->mdts)
2931                 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
2932         else
2933                 max_hw_sectors = UINT_MAX;
2934         ctrl->max_hw_sectors =
2935                 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2936
2937         nvme_set_queue_limits(ctrl, ctrl->admin_q);
2938         ctrl->sgls = le32_to_cpu(id->sgls);
2939         ctrl->kas = le16_to_cpu(id->kas);
2940         ctrl->max_namespaces = le32_to_cpu(id->mnan);
2941         ctrl->ctratt = le32_to_cpu(id->ctratt);
2942
2943         if (id->rtd3e) {
2944                 /* us -> s */
2945                 u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000;
2946
2947                 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2948                                                  shutdown_timeout, 60);
2949
2950                 if (ctrl->shutdown_timeout != shutdown_timeout)
2951                         dev_info(ctrl->device,
2952                                  "Shutdown timeout set to %u seconds\n",
2953                                  ctrl->shutdown_timeout);
2954         } else
2955                 ctrl->shutdown_timeout = shutdown_timeout;
2956
2957         ctrl->npss = id->npss;
2958         ctrl->apsta = id->apsta;
2959         prev_apst_enabled = ctrl->apst_enabled;
2960         if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2961                 if (force_apst && id->apsta) {
2962                         dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2963                         ctrl->apst_enabled = true;
2964                 } else {
2965                         ctrl->apst_enabled = false;
2966                 }
2967         } else {
2968                 ctrl->apst_enabled = id->apsta;
2969         }
2970         memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2971
2972         if (ctrl->ops->flags & NVME_F_FABRICS) {
2973                 ctrl->icdoff = le16_to_cpu(id->icdoff);
2974                 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2975                 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2976                 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2977
2978                 /*
2979                  * In fabrics we need to verify the cntlid matches the
2980                  * admin connect
2981                  */
2982                 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2983                         dev_err(ctrl->device,
2984                                 "Mismatching cntlid: Connect %u vs Identify "
2985                                 "%u, rejecting\n",
2986                                 ctrl->cntlid, le16_to_cpu(id->cntlid));
2987                         ret = -EINVAL;
2988                         goto out_free;
2989                 }
2990
2991                 if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
2992                         dev_err(ctrl->device,
2993                                 "keep-alive support is mandatory for fabrics\n");
2994                         ret = -EINVAL;
2995                         goto out_free;
2996                 }
2997         } else {
2998                 ctrl->hmpre = le32_to_cpu(id->hmpre);
2999                 ctrl->hmmin = le32_to_cpu(id->hmmin);
3000                 ctrl->hmminds = le32_to_cpu(id->hmminds);
3001                 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3002         }
3003
3004         ret = nvme_mpath_init(ctrl, id);
3005         kfree(id);
3006
3007         if (ret < 0)
3008                 return ret;
3009
3010         if (ctrl->apst_enabled && !prev_apst_enabled)
3011                 dev_pm_qos_expose_latency_tolerance(ctrl->device);
3012         else if (!ctrl->apst_enabled && prev_apst_enabled)
3013                 dev_pm_qos_hide_latency_tolerance(ctrl->device);
3014
3015         ret = nvme_configure_apst(ctrl);
3016         if (ret < 0)
3017                 return ret;
3018         
3019         ret = nvme_configure_timestamp(ctrl);
3020         if (ret < 0)
3021                 return ret;
3022
3023         ret = nvme_configure_directives(ctrl);
3024         if (ret < 0)
3025                 return ret;
3026
3027         ret = nvme_configure_acre(ctrl);
3028         if (ret < 0)
3029                 return ret;
3030
3031         if (!ctrl->identified)
3032                 nvme_hwmon_init(ctrl);
3033
3034         ctrl->identified = true;
3035
3036         return 0;
3037
3038 out_free:
3039         kfree(id);
3040         return ret;
3041 }
3042 EXPORT_SYMBOL_GPL(nvme_init_identify);
3043
3044 static int nvme_dev_open(struct inode *inode, struct file *file)
3045 {
3046         struct nvme_ctrl *ctrl =
3047                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3048
3049         switch (ctrl->state) {
3050         case NVME_CTRL_LIVE:
3051                 break;
3052         default:
3053                 return -EWOULDBLOCK;
3054         }
3055
3056         file->private_data = ctrl;
3057         return 0;
3058 }
3059
3060 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
3061 {
3062         struct nvme_ns *ns;
3063         int ret;
3064
3065         down_read(&ctrl->namespaces_rwsem);
3066         if (list_empty(&ctrl->namespaces)) {
3067                 ret = -ENOTTY;
3068                 goto out_unlock;
3069         }
3070
3071         ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
3072         if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
3073                 dev_warn(ctrl->device,
3074                         "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
3075                 ret = -EINVAL;
3076                 goto out_unlock;
3077         }
3078
3079         dev_warn(ctrl->device,
3080                 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
3081         kref_get(&ns->kref);
3082         up_read(&ctrl->namespaces_rwsem);
3083
3084         ret = nvme_user_cmd(ctrl, ns, argp);
3085         nvme_put_ns(ns);
3086         return ret;
3087
3088 out_unlock:
3089         up_read(&ctrl->namespaces_rwsem);
3090         return ret;
3091 }
3092
3093 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
3094                 unsigned long arg)
3095 {
3096         struct nvme_ctrl *ctrl = file->private_data;
3097         void __user *argp = (void __user *)arg;
3098
3099         switch (cmd) {
3100         case NVME_IOCTL_ADMIN_CMD:
3101                 return nvme_user_cmd(ctrl, NULL, argp);
3102         case NVME_IOCTL_ADMIN64_CMD:
3103                 return nvme_user_cmd64(ctrl, NULL, argp);
3104         case NVME_IOCTL_IO_CMD:
3105                 return nvme_dev_user_cmd(ctrl, argp);
3106         case NVME_IOCTL_RESET:
3107                 dev_warn(ctrl->device, "resetting controller\n");
3108                 return nvme_reset_ctrl_sync(ctrl);
3109         case NVME_IOCTL_SUBSYS_RESET:
3110                 return nvme_reset_subsystem(ctrl);
3111         case NVME_IOCTL_RESCAN:
3112                 nvme_queue_scan(ctrl);
3113                 return 0;
3114         default:
3115                 return -ENOTTY;
3116         }
3117 }
3118
3119 static const struct file_operations nvme_dev_fops = {
3120         .owner          = THIS_MODULE,
3121         .open           = nvme_dev_open,
3122         .unlocked_ioctl = nvme_dev_ioctl,
3123         .compat_ioctl   = compat_ptr_ioctl,
3124 };
3125
3126 static ssize_t nvme_sysfs_reset(struct device *dev,
3127                                 struct device_attribute *attr, const char *buf,
3128                                 size_t count)
3129 {
3130         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3131         int ret;
3132
3133         ret = nvme_reset_ctrl_sync(ctrl);
3134         if (ret < 0)
3135                 return ret;
3136         return count;
3137 }
3138 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3139
3140 static ssize_t nvme_sysfs_rescan(struct device *dev,
3141                                 struct device_attribute *attr, const char *buf,
3142                                 size_t count)
3143 {
3144         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3145
3146         nvme_queue_scan(ctrl);
3147         return count;
3148 }
3149 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3150
3151 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3152 {
3153         struct gendisk *disk = dev_to_disk(dev);
3154
3155         if (disk->fops == &nvme_fops)
3156                 return nvme_get_ns_from_dev(dev)->head;
3157         else
3158                 return disk->private_data;
3159 }
3160
3161 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3162                 char *buf)
3163 {
3164         struct nvme_ns_head *head = dev_to_ns_head(dev);
3165         struct nvme_ns_ids *ids = &head->ids;
3166         struct nvme_subsystem *subsys = head->subsys;
3167         int serial_len = sizeof(subsys->serial);
3168         int model_len = sizeof(subsys->model);
3169
3170         if (!uuid_is_null(&ids->uuid))
3171                 return sprintf(buf, "uuid.%pU\n", &ids->uuid);
3172
3173         if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3174                 return sprintf(buf, "eui.%16phN\n", ids->nguid);
3175
3176         if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3177                 return sprintf(buf, "eui.%8phN\n", ids->eui64);
3178
3179         while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3180                                   subsys->serial[serial_len - 1] == '\0'))
3181                 serial_len--;
3182         while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3183                                  subsys->model[model_len - 1] == '\0'))
3184                 model_len--;
3185
3186         return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3187                 serial_len, subsys->serial, model_len, subsys->model,
3188                 head->ns_id);
3189 }
3190 static DEVICE_ATTR_RO(wwid);
3191
3192 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3193                 char *buf)
3194 {
3195         return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3196 }
3197 static DEVICE_ATTR_RO(nguid);
3198
3199 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3200                 char *buf)
3201 {
3202         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3203
3204         /* For backward compatibility expose the NGUID to userspace if
3205          * we have no UUID set
3206          */
3207         if (uuid_is_null(&ids->uuid)) {
3208                 printk_ratelimited(KERN_WARNING
3209                                    "No UUID available providing old NGUID\n");
3210                 return sprintf(buf, "%pU\n", ids->nguid);
3211         }
3212         return sprintf(buf, "%pU\n", &ids->uuid);
3213 }
3214 static DEVICE_ATTR_RO(uuid);
3215
3216 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3217                 char *buf)
3218 {
3219         return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3220 }
3221 static DEVICE_ATTR_RO(eui);
3222
3223 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3224                 char *buf)
3225 {
3226         return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3227 }
3228 static DEVICE_ATTR_RO(nsid);
3229
3230 static struct attribute *nvme_ns_id_attrs[] = {
3231         &dev_attr_wwid.attr,
3232         &dev_attr_uuid.attr,
3233         &dev_attr_nguid.attr,
3234         &dev_attr_eui.attr,
3235         &dev_attr_nsid.attr,
3236 #ifdef CONFIG_NVME_MULTIPATH
3237         &dev_attr_ana_grpid.attr,
3238         &dev_attr_ana_state.attr,
3239 #endif
3240         NULL,
3241 };
3242
3243 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3244                 struct attribute *a, int n)
3245 {
3246         struct device *dev = container_of(kobj, struct device, kobj);
3247         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3248
3249         if (a == &dev_attr_uuid.attr) {
3250                 if (uuid_is_null(&ids->uuid) &&
3251                     !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3252                         return 0;
3253         }
3254         if (a == &dev_attr_nguid.attr) {
3255                 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3256                         return 0;
3257         }
3258         if (a == &dev_attr_eui.attr) {
3259                 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3260                         return 0;
3261         }
3262 #ifdef CONFIG_NVME_MULTIPATH
3263         if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3264                 if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */
3265                         return 0;
3266                 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3267                         return 0;
3268         }
3269 #endif
3270         return a->mode;
3271 }
3272
3273 static const struct attribute_group nvme_ns_id_attr_group = {
3274         .attrs          = nvme_ns_id_attrs,
3275         .is_visible     = nvme_ns_id_attrs_are_visible,
3276 };
3277
3278 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3279         &nvme_ns_id_attr_group,
3280 #ifdef CONFIG_NVM
3281         &nvme_nvm_attr_group,
3282 #endif
3283         NULL,
3284 };
3285
3286 #define nvme_show_str_function(field)                                           \
3287 static ssize_t  field##_show(struct device *dev,                                \
3288                             struct device_attribute *attr, char *buf)           \
3289 {                                                                               \
3290         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3291         return sprintf(buf, "%.*s\n",                                           \
3292                 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field);         \
3293 }                                                                               \
3294 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3295
3296 nvme_show_str_function(model);
3297 nvme_show_str_function(serial);
3298 nvme_show_str_function(firmware_rev);
3299
3300 #define nvme_show_int_function(field)                                           \
3301 static ssize_t  field##_show(struct device *dev,                                \
3302                             struct device_attribute *attr, char *buf)           \
3303 {                                                                               \
3304         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3305         return sprintf(buf, "%d\n", ctrl->field);       \
3306 }                                                                               \
3307 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3308
3309 nvme_show_int_function(cntlid);
3310 nvme_show_int_function(numa_node);
3311 nvme_show_int_function(queue_count);
3312 nvme_show_int_function(sqsize);
3313
3314 static ssize_t nvme_sysfs_delete(struct device *dev,
3315                                 struct device_attribute *attr, const char *buf,
3316                                 size_t count)
3317 {
3318         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3319
3320         /* Can't delete non-created controllers */
3321         if (!ctrl->created)
3322                 return -EBUSY;
3323
3324         if (device_remove_file_self(dev, attr))
3325                 nvme_delete_ctrl_sync(ctrl);
3326         return count;
3327 }
3328 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3329
3330 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3331                                          struct device_attribute *attr,
3332                                          char *buf)
3333 {
3334         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3335
3336         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
3337 }
3338 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3339
3340 static ssize_t nvme_sysfs_show_state(struct device *dev,
3341                                      struct device_attribute *attr,
3342                                      char *buf)
3343 {
3344         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3345         static const char *const state_name[] = {
3346                 [NVME_CTRL_NEW]         = "new",
3347                 [NVME_CTRL_LIVE]        = "live",
3348                 [NVME_CTRL_RESETTING]   = "resetting",
3349                 [NVME_CTRL_CONNECTING]  = "connecting",
3350                 [NVME_CTRL_DELETING]    = "deleting",
3351                 [NVME_CTRL_DEAD]        = "dead",
3352         };
3353
3354         if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3355             state_name[ctrl->state])
3356                 return sprintf(buf, "%s\n", state_name[ctrl->state]);
3357
3358         return sprintf(buf, "unknown state\n");
3359 }
3360
3361 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3362
3363 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3364                                          struct device_attribute *attr,
3365                                          char *buf)
3366 {
3367         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3368
3369         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
3370 }
3371 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3372
3373 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3374                                         struct device_attribute *attr,
3375                                         char *buf)
3376 {
3377         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3378
3379         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->opts->host->nqn);
3380 }
3381 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3382
3383 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3384                                         struct device_attribute *attr,
3385                                         char *buf)
3386 {
3387         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3388
3389         return snprintf(buf, PAGE_SIZE, "%pU\n", &ctrl->opts->host->id);
3390 }
3391 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3392
3393 static ssize_t nvme_sysfs_show_address(struct device *dev,
3394                                          struct device_attribute *attr,
3395                                          char *buf)
3396 {
3397         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3398
3399         return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3400 }
3401 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3402
3403 static struct attribute *nvme_dev_attrs[] = {
3404         &dev_attr_reset_controller.attr,
3405         &dev_attr_rescan_controller.attr,
3406         &dev_attr_model.attr,
3407         &dev_attr_serial.attr,
3408         &dev_attr_firmware_rev.attr,
3409         &dev_attr_cntlid.attr,
3410         &dev_attr_delete_controller.attr,
3411         &dev_attr_transport.attr,
3412         &dev_attr_subsysnqn.attr,
3413         &dev_attr_address.attr,
3414         &dev_attr_state.attr,
3415         &dev_attr_numa_node.attr,
3416         &dev_attr_queue_count.attr,
3417         &dev_attr_sqsize.attr,
3418         &dev_attr_hostnqn.attr,
3419         &dev_attr_hostid.attr,
3420         NULL
3421 };
3422
3423 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3424                 struct attribute *a, int n)
3425 {
3426         struct device *dev = container_of(kobj, struct device, kobj);
3427         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3428
3429         if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3430                 return 0;
3431         if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3432                 return 0;
3433         if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3434                 return 0;
3435         if (a == &dev_attr_hostid.attr && !ctrl->opts)
3436                 return 0;
3437
3438         return a->mode;
3439 }
3440
3441 static struct attribute_group nvme_dev_attrs_group = {
3442         .attrs          = nvme_dev_attrs,
3443         .is_visible     = nvme_dev_attrs_are_visible,
3444 };
3445
3446 static const struct attribute_group *nvme_dev_attr_groups[] = {
3447         &nvme_dev_attrs_group,
3448         NULL,
3449 };
3450
3451 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3452                 unsigned nsid)
3453 {
3454         struct nvme_ns_head *h;
3455
3456         lockdep_assert_held(&subsys->lock);
3457
3458         list_for_each_entry(h, &subsys->nsheads, entry) {
3459                 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
3460                         return h;
3461         }
3462
3463         return NULL;
3464 }
3465
3466 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3467                 struct nvme_ns_head *new)
3468 {
3469         struct nvme_ns_head *h;
3470
3471         lockdep_assert_held(&subsys->lock);
3472
3473         list_for_each_entry(h, &subsys->nsheads, entry) {
3474                 if (nvme_ns_ids_valid(&new->ids) &&
3475                     nvme_ns_ids_equal(&new->ids, &h->ids))
3476                         return -EINVAL;
3477         }
3478
3479         return 0;
3480 }
3481
3482 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3483                 unsigned nsid, struct nvme_ns_ids *ids)
3484 {
3485         struct nvme_ns_head *head;
3486         size_t size = sizeof(*head);
3487         int ret = -ENOMEM;
3488
3489 #ifdef CONFIG_NVME_MULTIPATH
3490         size += num_possible_nodes() * sizeof(struct nvme_ns *);
3491 #endif
3492
3493         head = kzalloc(size, GFP_KERNEL);
3494         if (!head)
3495                 goto out;
3496         ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3497         if (ret < 0)
3498                 goto out_free_head;
3499         head->instance = ret;
3500         INIT_LIST_HEAD(&head->list);
3501         ret = init_srcu_struct(&head->srcu);
3502         if (ret)
3503                 goto out_ida_remove;
3504         head->subsys = ctrl->subsys;
3505         head->ns_id = nsid;
3506         head->ids = *ids;
3507         kref_init(&head->ref);
3508
3509         ret = __nvme_check_ids(ctrl->subsys, head);
3510         if (ret) {
3511                 dev_err(ctrl->device,
3512                         "duplicate IDs for nsid %d\n", nsid);
3513                 goto out_cleanup_srcu;
3514         }
3515
3516         ret = nvme_mpath_alloc_disk(ctrl, head);
3517         if (ret)
3518                 goto out_cleanup_srcu;
3519
3520         list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3521
3522         kref_get(&ctrl->subsys->ref);
3523
3524         return head;
3525 out_cleanup_srcu:
3526         cleanup_srcu_struct(&head->srcu);
3527 out_ida_remove:
3528         ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3529 out_free_head:
3530         kfree(head);
3531 out:
3532         if (ret > 0)
3533                 ret = blk_status_to_errno(nvme_error_status(ret));
3534         return ERR_PTR(ret);
3535 }
3536
3537 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3538                 struct nvme_id_ns *id)
3539 {
3540         struct nvme_ctrl *ctrl = ns->ctrl;
3541         bool is_shared = id->nmic & NVME_NS_NMIC_SHARED;
3542         struct nvme_ns_head *head = NULL;
3543         struct nvme_ns_ids ids;
3544         int ret = 0;
3545
3546         ret = nvme_report_ns_ids(ctrl, nsid, id, &ids);
3547         if (ret) {
3548                 if (ret < 0)
3549                         return ret;
3550                 return blk_status_to_errno(nvme_error_status(ret));
3551         }
3552
3553         mutex_lock(&ctrl->subsys->lock);
3554         head = nvme_find_ns_head(ctrl->subsys, nsid);
3555         if (!head) {
3556                 head = nvme_alloc_ns_head(ctrl, nsid, &ids);
3557                 if (IS_ERR(head)) {
3558                         ret = PTR_ERR(head);
3559                         goto out_unlock;
3560                 }
3561                 head->shared = is_shared;
3562         } else {
3563                 ret = -EINVAL;
3564                 if (!is_shared || !head->shared) {
3565                         dev_err(ctrl->device,
3566                                 "Duplicate unshared namespace %d\n", nsid);
3567                         goto out_put_ns_head;
3568                 }
3569                 if (!nvme_ns_ids_equal(&head->ids, &ids)) {
3570                         dev_err(ctrl->device,
3571                                 "IDs don't match for shared namespace %d\n",
3572                                         nsid);
3573                         goto out_put_ns_head;
3574                 }
3575         }
3576
3577         list_add_tail(&ns->siblings, &head->list);
3578         ns->head = head;
3579         mutex_unlock(&ctrl->subsys->lock);
3580         return 0;
3581
3582 out_put_ns_head:
3583         nvme_put_ns_head(head);
3584 out_unlock:
3585         mutex_unlock(&ctrl->subsys->lock);
3586         return ret;
3587 }
3588
3589 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3590 {
3591         struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3592         struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3593
3594         return nsa->head->ns_id - nsb->head->ns_id;
3595 }
3596
3597 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3598 {
3599         struct nvme_ns *ns, *ret = NULL;
3600
3601         down_read(&ctrl->namespaces_rwsem);
3602         list_for_each_entry(ns, &ctrl->namespaces, list) {
3603                 if (ns->head->ns_id == nsid) {
3604                         if (!kref_get_unless_zero(&ns->kref))
3605                                 continue;
3606                         ret = ns;
3607                         break;
3608                 }
3609                 if (ns->head->ns_id > nsid)
3610                         break;
3611         }
3612         up_read(&ctrl->namespaces_rwsem);
3613         return ret;
3614 }
3615
3616 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3617 {
3618         struct nvme_ns *ns;
3619         struct gendisk *disk;
3620         struct nvme_id_ns *id;
3621         char disk_name[DISK_NAME_LEN];
3622         int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret;
3623
3624         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3625         if (!ns)
3626                 return;
3627
3628         ns->queue = blk_mq_init_queue(ctrl->tagset);
3629         if (IS_ERR(ns->queue))
3630                 goto out_free_ns;
3631
3632         if (ctrl->opts && ctrl->opts->data_digest)
3633                 ns->queue->backing_dev_info->capabilities
3634                         |= BDI_CAP_STABLE_WRITES;
3635
3636         blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3637         if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3638                 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3639
3640         ns->queue->queuedata = ns;
3641         ns->ctrl = ctrl;
3642
3643         kref_init(&ns->kref);
3644         ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
3645
3646         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
3647         nvme_set_queue_limits(ctrl, ns->queue);
3648
3649         ret = nvme_identify_ns(ctrl, nsid, &id);
3650         if (ret)
3651                 goto out_free_queue;
3652
3653         if (id->ncap == 0)      /* no namespace (legacy quirk) */
3654                 goto out_free_id;
3655
3656         ret = nvme_init_ns_head(ns, nsid, id);
3657         if (ret)
3658                 goto out_free_id;
3659         nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3660
3661         disk = alloc_disk_node(0, node);
3662         if (!disk)
3663                 goto out_unlink_ns;
3664
3665         disk->fops = &nvme_fops;
3666         disk->private_data = ns;
3667         disk->queue = ns->queue;
3668         disk->flags = flags;
3669         memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3670         ns->disk = disk;
3671
3672         if (__nvme_revalidate_disk(disk, id))
3673                 goto out_put_disk;
3674
3675         if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3676                 ret = nvme_nvm_register(ns, disk_name, node);
3677                 if (ret) {
3678                         dev_warn(ctrl->device, "LightNVM init failure\n");
3679                         goto out_put_disk;
3680                 }
3681         }
3682
3683         down_write(&ctrl->namespaces_rwsem);
3684         list_add_tail(&ns->list, &ctrl->namespaces);
3685         up_write(&ctrl->namespaces_rwsem);
3686
3687         nvme_get_ctrl(ctrl);
3688
3689         device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3690
3691         nvme_mpath_add_disk(ns, id);
3692         nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3693         kfree(id);
3694
3695         return;
3696  out_put_disk:
3697         /* prevent double queue cleanup */
3698         ns->disk->queue = NULL;
3699         put_disk(ns->disk);
3700  out_unlink_ns:
3701         mutex_lock(&ctrl->subsys->lock);
3702         list_del_rcu(&ns->siblings);
3703         if (list_empty(&ns->head->list))
3704                 list_del_init(&ns->head->entry);
3705         mutex_unlock(&ctrl->subsys->lock);
3706         nvme_put_ns_head(ns->head);
3707  out_free_id:
3708         kfree(id);
3709  out_free_queue:
3710         blk_cleanup_queue(ns->queue);
3711  out_free_ns:
3712         kfree(ns);
3713 }
3714
3715 static void nvme_ns_remove(struct nvme_ns *ns)
3716 {
3717         if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3718                 return;
3719
3720         nvme_fault_inject_fini(&ns->fault_inject);
3721
3722         mutex_lock(&ns->ctrl->subsys->lock);
3723         list_del_rcu(&ns->siblings);
3724         if (list_empty(&ns->head->list))
3725                 list_del_init(&ns->head->entry);
3726         mutex_unlock(&ns->ctrl->subsys->lock);
3727
3728         synchronize_rcu(); /* guarantee not available in head->list */
3729         nvme_mpath_clear_current_path(ns);
3730         synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3731
3732         if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
3733                 del_gendisk(ns->disk);
3734                 blk_cleanup_queue(ns->queue);
3735                 if (blk_get_integrity(ns->disk))
3736                         blk_integrity_unregister(ns->disk);
3737         }
3738
3739         down_write(&ns->ctrl->namespaces_rwsem);
3740         list_del_init(&ns->list);
3741         up_write(&ns->ctrl->namespaces_rwsem);
3742
3743         nvme_mpath_check_last_path(ns);
3744         nvme_put_ns(ns);
3745 }
3746
3747 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3748 {
3749         struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3750
3751         if (ns) {
3752                 nvme_ns_remove(ns);
3753                 nvme_put_ns(ns);
3754         }
3755 }
3756
3757 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3758 {
3759         struct nvme_ns *ns;
3760
3761         ns = nvme_find_get_ns(ctrl, nsid);
3762         if (ns) {
3763                 if (ns->disk && revalidate_disk(ns->disk))
3764                         nvme_ns_remove(ns);
3765                 nvme_put_ns(ns);
3766         } else
3767                 nvme_alloc_ns(ctrl, nsid);
3768 }
3769
3770 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3771                                         unsigned nsid)
3772 {
3773         struct nvme_ns *ns, *next;
3774         LIST_HEAD(rm_list);
3775
3776         down_write(&ctrl->namespaces_rwsem);
3777         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3778                 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
3779                         list_move_tail(&ns->list, &rm_list);
3780         }
3781         up_write(&ctrl->namespaces_rwsem);
3782
3783         list_for_each_entry_safe(ns, next, &rm_list, list)
3784                 nvme_ns_remove(ns);
3785
3786 }
3787
3788 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
3789 {
3790         const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
3791         __le32 *ns_list;
3792         u32 prev = 0;
3793         int ret = 0, i;
3794
3795         if (nvme_ctrl_limited_cns(ctrl))
3796                 return -EOPNOTSUPP;
3797
3798         ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3799         if (!ns_list)
3800                 return -ENOMEM;
3801
3802         for (;;) {
3803                 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
3804                 if (ret)
3805                         goto free;
3806
3807                 for (i = 0; i < nr_entries; i++) {
3808                         u32 nsid = le32_to_cpu(ns_list[i]);
3809
3810                         if (!nsid)      /* end of the list? */
3811                                 goto out;
3812                         nvme_validate_ns(ctrl, nsid);
3813                         while (++prev < nsid)
3814                                 nvme_ns_remove_by_nsid(ctrl, prev);
3815                 }
3816         }
3817  out:
3818         nvme_remove_invalid_namespaces(ctrl, prev);
3819  free:
3820         kfree(ns_list);
3821         return ret;
3822 }
3823
3824 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
3825 {
3826         struct nvme_id_ctrl *id;
3827         u32 nn, i;
3828
3829         if (nvme_identify_ctrl(ctrl, &id))
3830                 return;
3831         nn = le32_to_cpu(id->nn);
3832         kfree(id);
3833
3834         for (i = 1; i <= nn; i++)
3835                 nvme_validate_ns(ctrl, i);
3836
3837         nvme_remove_invalid_namespaces(ctrl, nn);
3838 }
3839
3840 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
3841 {
3842         size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3843         __le32 *log;
3844         int error;
3845
3846         log = kzalloc(log_size, GFP_KERNEL);
3847         if (!log)
3848                 return;
3849
3850         /*
3851          * We need to read the log to clear the AEN, but we don't want to rely
3852          * on it for the changed namespace information as userspace could have
3853          * raced with us in reading the log page, which could cause us to miss
3854          * updates.
3855          */
3856         error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, log,
3857                         log_size, 0);
3858         if (error)
3859                 dev_warn(ctrl->device,
3860                         "reading changed ns log failed: %d\n", error);
3861
3862         kfree(log);
3863 }
3864
3865 static void nvme_scan_work(struct work_struct *work)
3866 {
3867         struct nvme_ctrl *ctrl =
3868                 container_of(work, struct nvme_ctrl, scan_work);
3869
3870         /* No tagset on a live ctrl means IO queues could not created */
3871         if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
3872                 return;
3873
3874         if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
3875                 dev_info(ctrl->device, "rescanning namespaces.\n");
3876                 nvme_clear_changed_ns_log(ctrl);
3877         }
3878
3879         mutex_lock(&ctrl->scan_lock);
3880         if (nvme_scan_ns_list(ctrl) != 0)
3881                 nvme_scan_ns_sequential(ctrl);
3882         mutex_unlock(&ctrl->scan_lock);
3883
3884         down_write(&ctrl->namespaces_rwsem);
3885         list_sort(NULL, &ctrl->namespaces, ns_cmp);
3886         up_write(&ctrl->namespaces_rwsem);
3887 }
3888
3889 /*
3890  * This function iterates the namespace list unlocked to allow recovery from
3891  * controller failure. It is up to the caller to ensure the namespace list is
3892  * not modified by scan work while this function is executing.
3893  */
3894 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3895 {
3896         struct nvme_ns *ns, *next;
3897         LIST_HEAD(ns_list);
3898
3899         /*
3900          * make sure to requeue I/O to all namespaces as these
3901          * might result from the scan itself and must complete
3902          * for the scan_work to make progress
3903          */
3904         nvme_mpath_clear_ctrl_paths(ctrl);
3905
3906         /* prevent racing with ns scanning */
3907         flush_work(&ctrl->scan_work);
3908
3909         /*
3910          * The dead states indicates the controller was not gracefully
3911          * disconnected. In that case, we won't be able to flush any data while
3912          * removing the namespaces' disks; fail all the queues now to avoid
3913          * potentially having to clean up the failed sync later.
3914          */
3915         if (ctrl->state == NVME_CTRL_DEAD)
3916                 nvme_kill_queues(ctrl);
3917
3918         down_write(&ctrl->namespaces_rwsem);
3919         list_splice_init(&ctrl->namespaces, &ns_list);
3920         up_write(&ctrl->namespaces_rwsem);
3921
3922         list_for_each_entry_safe(ns, next, &ns_list, list)
3923                 nvme_ns_remove(ns);
3924 }
3925 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3926
3927 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
3928 {
3929         struct nvme_ctrl *ctrl =
3930                 container_of(dev, struct nvme_ctrl, ctrl_device);
3931         struct nvmf_ctrl_options *opts = ctrl->opts;
3932         int ret;
3933
3934         ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
3935         if (ret)
3936                 return ret;
3937
3938         if (opts) {
3939                 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
3940                 if (ret)
3941                         return ret;
3942
3943                 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
3944                                 opts->trsvcid ?: "none");
3945                 if (ret)
3946                         return ret;
3947
3948                 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
3949                                 opts->host_traddr ?: "none");
3950         }
3951         return ret;
3952 }
3953
3954 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
3955 {
3956         char *envp[2] = { NULL, NULL };
3957         u32 aen_result = ctrl->aen_result;
3958
3959         ctrl->aen_result = 0;
3960         if (!aen_result)
3961                 return;
3962
3963         envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
3964         if (!envp[0])
3965                 return;
3966         kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
3967         kfree(envp[0]);
3968 }
3969
3970 static void nvme_async_event_work(struct work_struct *work)
3971 {
3972         struct nvme_ctrl *ctrl =
3973                 container_of(work, struct nvme_ctrl, async_event_work);
3974
3975         nvme_aen_uevent(ctrl);
3976         ctrl->ops->submit_async_event(ctrl);
3977 }
3978
3979 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
3980 {
3981
3982         u32 csts;
3983
3984         if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
3985                 return false;
3986
3987         if (csts == ~0)
3988                 return false;
3989
3990         return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
3991 }
3992
3993 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
3994 {
3995         struct nvme_fw_slot_info_log *log;
3996
3997         log = kmalloc(sizeof(*log), GFP_KERNEL);
3998         if (!log)
3999                 return;
4000
4001         if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, log,
4002                         sizeof(*log), 0))
4003                 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4004         kfree(log);
4005 }
4006
4007 static void nvme_fw_act_work(struct work_struct *work)
4008 {
4009         struct nvme_ctrl *ctrl = container_of(work,
4010                                 struct nvme_ctrl, fw_act_work);
4011         unsigned long fw_act_timeout;
4012
4013         if (ctrl->mtfa)
4014                 fw_act_timeout = jiffies +
4015                                 msecs_to_jiffies(ctrl->mtfa * 100);
4016         else
4017                 fw_act_timeout = jiffies +
4018                                 msecs_to_jiffies(admin_timeout * 1000);
4019
4020         nvme_stop_queues(ctrl);
4021         while (nvme_ctrl_pp_status(ctrl)) {
4022                 if (time_after(jiffies, fw_act_timeout)) {
4023                         dev_warn(ctrl->device,
4024                                 "Fw activation timeout, reset controller\n");
4025                         nvme_try_sched_reset(ctrl);
4026                         return;
4027                 }
4028                 msleep(100);
4029         }
4030
4031         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4032                 return;
4033
4034         nvme_start_queues(ctrl);
4035         /* read FW slot information to clear the AER */
4036         nvme_get_fw_slot_info(ctrl);
4037 }
4038
4039 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4040 {
4041         u32 aer_notice_type = (result & 0xff00) >> 8;
4042
4043         trace_nvme_async_event(ctrl, aer_notice_type);
4044
4045         switch (aer_notice_type) {
4046         case NVME_AER_NOTICE_NS_CHANGED:
4047                 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4048                 nvme_queue_scan(ctrl);
4049                 break;
4050         case NVME_AER_NOTICE_FW_ACT_STARTING:
4051                 /*
4052                  * We are (ab)using the RESETTING state to prevent subsequent
4053                  * recovery actions from interfering with the controller's
4054                  * firmware activation.
4055                  */
4056                 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4057                         queue_work(nvme_wq, &ctrl->fw_act_work);
4058                 break;
4059 #ifdef CONFIG_NVME_MULTIPATH
4060         case NVME_AER_NOTICE_ANA:
4061                 if (!ctrl->ana_log_buf)
4062                         break;
4063                 queue_work(nvme_wq, &ctrl->ana_work);
4064                 break;
4065 #endif
4066         case NVME_AER_NOTICE_DISC_CHANGED:
4067                 ctrl->aen_result = result;
4068                 break;
4069         default:
4070                 dev_warn(ctrl->device, "async event result %08x\n", result);
4071         }
4072 }
4073
4074 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4075                 volatile union nvme_result *res)
4076 {
4077         u32 result = le32_to_cpu(res->u32);
4078         u32 aer_type = result & 0x07;
4079
4080         if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4081                 return;
4082
4083         switch (aer_type) {
4084         case NVME_AER_NOTICE:
4085                 nvme_handle_aen_notice(ctrl, result);
4086                 break;
4087         case NVME_AER_ERROR:
4088         case NVME_AER_SMART:
4089         case NVME_AER_CSS:
4090         case NVME_AER_VS:
4091                 trace_nvme_async_event(ctrl, aer_type);
4092                 ctrl->aen_result = result;
4093                 break;
4094         default:
4095                 break;
4096         }
4097         queue_work(nvme_wq, &ctrl->async_event_work);
4098 }
4099 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4100
4101 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4102 {
4103         nvme_mpath_stop(ctrl);
4104         nvme_stop_keep_alive(ctrl);
4105         flush_work(&ctrl->async_event_work);
4106         cancel_work_sync(&ctrl->fw_act_work);
4107 }
4108 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4109
4110 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4111 {
4112         if (ctrl->kato)
4113                 nvme_start_keep_alive(ctrl);
4114
4115         nvme_enable_aen(ctrl);
4116
4117         if (ctrl->queue_count > 1) {
4118                 nvme_queue_scan(ctrl);
4119                 nvme_start_queues(ctrl);
4120         }
4121         ctrl->created = true;
4122 }
4123 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4124
4125 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4126 {
4127         nvme_fault_inject_fini(&ctrl->fault_inject);
4128         dev_pm_qos_hide_latency_tolerance(ctrl->device);
4129         cdev_device_del(&ctrl->cdev, ctrl->device);
4130         nvme_put_ctrl(ctrl);
4131 }
4132 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4133
4134 static void nvme_free_ctrl(struct device *dev)
4135 {
4136         struct nvme_ctrl *ctrl =
4137                 container_of(dev, struct nvme_ctrl, ctrl_device);
4138         struct nvme_subsystem *subsys = ctrl->subsys;
4139
4140         if (subsys && ctrl->instance != subsys->instance)
4141                 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4142
4143         kfree(ctrl->effects);
4144         nvme_mpath_uninit(ctrl);
4145         __free_page(ctrl->discard_page);
4146
4147         if (subsys) {
4148                 mutex_lock(&nvme_subsystems_lock);
4149                 list_del(&ctrl->subsys_entry);
4150                 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4151                 mutex_unlock(&nvme_subsystems_lock);
4152         }
4153
4154         ctrl->ops->free_ctrl(ctrl);
4155
4156         if (subsys)
4157                 nvme_put_subsystem(subsys);
4158 }
4159
4160 /*
4161  * Initialize a NVMe controller structures.  This needs to be called during
4162  * earliest initialization so that we have the initialized structured around
4163  * during probing.
4164  */
4165 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4166                 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4167 {
4168         int ret;
4169
4170         ctrl->state = NVME_CTRL_NEW;
4171         spin_lock_init(&ctrl->lock);
4172         mutex_init(&ctrl->scan_lock);
4173         INIT_LIST_HEAD(&ctrl->namespaces);
4174         init_rwsem(&ctrl->namespaces_rwsem);
4175         ctrl->dev = dev;
4176         ctrl->ops = ops;
4177         ctrl->quirks = quirks;
4178         INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4179         INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4180         INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4181         INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4182         init_waitqueue_head(&ctrl->state_wq);
4183
4184         INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4185         memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4186         ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4187
4188         BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4189                         PAGE_SIZE);
4190         ctrl->discard_page = alloc_page(GFP_KERNEL);
4191         if (!ctrl->discard_page) {
4192                 ret = -ENOMEM;
4193                 goto out;
4194         }
4195
4196         ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4197         if (ret < 0)
4198                 goto out;
4199         ctrl->instance = ret;
4200
4201         device_initialize(&ctrl->ctrl_device);
4202         ctrl->device = &ctrl->ctrl_device;
4203         ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
4204         ctrl->device->class = nvme_class;
4205         ctrl->device->parent = ctrl->dev;
4206         ctrl->device->groups = nvme_dev_attr_groups;
4207         ctrl->device->release = nvme_free_ctrl;
4208         dev_set_drvdata(ctrl->device, ctrl);
4209         ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4210         if (ret)
4211                 goto out_release_instance;
4212
4213         nvme_get_ctrl(ctrl);
4214         cdev_init(&ctrl->cdev, &nvme_dev_fops);
4215         ctrl->cdev.owner = ops->module;
4216         ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4217         if (ret)
4218                 goto out_free_name;
4219
4220         /*
4221          * Initialize latency tolerance controls.  The sysfs files won't
4222          * be visible to userspace unless the device actually supports APST.
4223          */
4224         ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4225         dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4226                 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4227
4228         nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4229
4230         return 0;
4231 out_free_name:
4232         nvme_put_ctrl(ctrl);
4233         kfree_const(ctrl->device->kobj.name);
4234 out_release_instance:
4235         ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4236 out:
4237         if (ctrl->discard_page)
4238                 __free_page(ctrl->discard_page);
4239         return ret;
4240 }
4241 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4242
4243 /**
4244  * nvme_kill_queues(): Ends all namespace queues
4245  * @ctrl: the dead controller that needs to end
4246  *
4247  * Call this function when the driver determines it is unable to get the
4248  * controller in a state capable of servicing IO.
4249  */
4250 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4251 {
4252         struct nvme_ns *ns;
4253
4254         down_read(&ctrl->namespaces_rwsem);
4255
4256         /* Forcibly unquiesce queues to avoid blocking dispatch */
4257         if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4258                 blk_mq_unquiesce_queue(ctrl->admin_q);
4259
4260         list_for_each_entry(ns, &ctrl->namespaces, list)
4261                 nvme_set_queue_dying(ns);
4262
4263         up_read(&ctrl->namespaces_rwsem);
4264 }
4265 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4266
4267 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4268 {
4269         struct nvme_ns *ns;
4270
4271         down_read(&ctrl->namespaces_rwsem);
4272         list_for_each_entry(ns, &ctrl->namespaces, list)
4273                 blk_mq_unfreeze_queue(ns->queue);
4274         up_read(&ctrl->namespaces_rwsem);
4275 }
4276 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4277
4278 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4279 {
4280         struct nvme_ns *ns;
4281
4282         down_read(&ctrl->namespaces_rwsem);
4283         list_for_each_entry(ns, &ctrl->namespaces, list) {
4284                 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4285                 if (timeout <= 0)
4286                         break;
4287         }
4288         up_read(&ctrl->namespaces_rwsem);
4289 }
4290 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4291
4292 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4293 {
4294         struct nvme_ns *ns;
4295
4296         down_read(&ctrl->namespaces_rwsem);
4297         list_for_each_entry(ns, &ctrl->namespaces, list)
4298                 blk_mq_freeze_queue_wait(ns->queue);
4299         up_read(&ctrl->namespaces_rwsem);
4300 }
4301 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4302
4303 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4304 {
4305         struct nvme_ns *ns;
4306
4307         down_read(&ctrl->namespaces_rwsem);
4308         list_for_each_entry(ns, &ctrl->namespaces, list)
4309                 blk_freeze_queue_start(ns->queue);
4310         up_read(&ctrl->namespaces_rwsem);
4311 }
4312 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4313
4314 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4315 {
4316         struct nvme_ns *ns;
4317
4318         down_read(&ctrl->namespaces_rwsem);
4319         list_for_each_entry(ns, &ctrl->namespaces, list)
4320                 blk_mq_quiesce_queue(ns->queue);
4321         up_read(&ctrl->namespaces_rwsem);
4322 }
4323 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4324
4325 void nvme_start_queues(struct nvme_ctrl *ctrl)
4326 {
4327         struct nvme_ns *ns;
4328
4329         down_read(&ctrl->namespaces_rwsem);
4330         list_for_each_entry(ns, &ctrl->namespaces, list)
4331                 blk_mq_unquiesce_queue(ns->queue);
4332         up_read(&ctrl->namespaces_rwsem);
4333 }
4334 EXPORT_SYMBOL_GPL(nvme_start_queues);
4335
4336
4337 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4338 {
4339         struct nvme_ns *ns;
4340
4341         down_read(&ctrl->namespaces_rwsem);
4342         list_for_each_entry(ns, &ctrl->namespaces, list)
4343                 blk_sync_queue(ns->queue);
4344         up_read(&ctrl->namespaces_rwsem);
4345
4346         if (ctrl->admin_q)
4347                 blk_sync_queue(ctrl->admin_q);
4348 }
4349 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4350
4351 /*
4352  * Check we didn't inadvertently grow the command structure sizes:
4353  */
4354 static inline void _nvme_check_size(void)
4355 {
4356         BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4357         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4358         BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4359         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4360         BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4361         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4362         BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4363         BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4364         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4365         BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4366         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4367         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4368         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4369         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4370         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4371         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4372         BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4373 }
4374
4375
4376 static int __init nvme_core_init(void)
4377 {
4378         int result = -ENOMEM;
4379
4380         _nvme_check_size();
4381
4382         nvme_wq = alloc_workqueue("nvme-wq",
4383                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4384         if (!nvme_wq)
4385                 goto out;
4386
4387         nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4388                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4389         if (!nvme_reset_wq)
4390                 goto destroy_wq;
4391
4392         nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4393                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4394         if (!nvme_delete_wq)
4395                 goto destroy_reset_wq;
4396
4397         result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
4398         if (result < 0)
4399                 goto destroy_delete_wq;
4400
4401         nvme_class = class_create(THIS_MODULE, "nvme");
4402         if (IS_ERR(nvme_class)) {
4403                 result = PTR_ERR(nvme_class);
4404                 goto unregister_chrdev;
4405         }
4406         nvme_class->dev_uevent = nvme_class_uevent;
4407
4408         nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4409         if (IS_ERR(nvme_subsys_class)) {
4410                 result = PTR_ERR(nvme_subsys_class);
4411                 goto destroy_class;
4412         }
4413         return 0;
4414
4415 destroy_class:
4416         class_destroy(nvme_class);
4417 unregister_chrdev:
4418         unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4419 destroy_delete_wq:
4420         destroy_workqueue(nvme_delete_wq);
4421 destroy_reset_wq:
4422         destroy_workqueue(nvme_reset_wq);
4423 destroy_wq:
4424         destroy_workqueue(nvme_wq);
4425 out:
4426         return result;
4427 }
4428
4429 static void __exit nvme_core_exit(void)
4430 {
4431         class_destroy(nvme_subsys_class);
4432         class_destroy(nvme_class);
4433         unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4434         destroy_workqueue(nvme_delete_wq);
4435         destroy_workqueue(nvme_reset_wq);
4436         destroy_workqueue(nvme_wq);
4437         ida_destroy(&nvme_instance_ida);
4438 }
4439
4440 MODULE_LICENSE("GPL");
4441 MODULE_VERSION("1.0");
4442 module_init(nvme_core_init);
4443 module_exit(nvme_core_exit);