Merge branch 'core-objtool-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-block.git] / drivers / nvme / host / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/delay.h>
10 #include <linux/errno.h>
11 #include <linux/hdreg.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/backing-dev.h>
15 #include <linux/list_sort.h>
16 #include <linux/slab.h>
17 #include <linux/types.h>
18 #include <linux/pr.h>
19 #include <linux/ptrace.h>
20 #include <linux/nvme_ioctl.h>
21 #include <linux/t10-pi.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24
25 #include "nvme.h"
26 #include "fabrics.h"
27
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
30
31 #define NVME_MINORS             (1U << MINORBITS)
32
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
37
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
42
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54                  "max power saving latency for new devices; use PM QOS to change per device");
55
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59
60 static bool streams;
61 module_param(streams, bool, 0644);
62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
63
64 /*
65  * nvme_wq - hosts nvme related works that are not reset or delete
66  * nvme_reset_wq - hosts nvme reset works
67  * nvme_delete_wq - hosts nvme delete works
68  *
69  * nvme_wq will host works such as scan, aen handling, fw activation,
70  * keep-alive, periodic reconnects etc. nvme_reset_wq
71  * runs reset works which also flush works hosted on nvme_wq for
72  * serialization purposes. nvme_delete_wq host controller deletion
73  * works which flush reset works for serialization.
74  */
75 struct workqueue_struct *nvme_wq;
76 EXPORT_SYMBOL_GPL(nvme_wq);
77
78 struct workqueue_struct *nvme_reset_wq;
79 EXPORT_SYMBOL_GPL(nvme_reset_wq);
80
81 struct workqueue_struct *nvme_delete_wq;
82 EXPORT_SYMBOL_GPL(nvme_delete_wq);
83
84 static LIST_HEAD(nvme_subsystems);
85 static DEFINE_MUTEX(nvme_subsystems_lock);
86
87 static DEFINE_IDA(nvme_instance_ida);
88 static dev_t nvme_chr_devt;
89 static struct class *nvme_class;
90 static struct class *nvme_subsys_class;
91
92 static int nvme_revalidate_disk(struct gendisk *disk);
93 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
94 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
95                                            unsigned nsid);
96
97 static void nvme_set_queue_dying(struct nvme_ns *ns)
98 {
99         /*
100          * Revalidating a dead namespace sets capacity to 0. This will end
101          * buffered writers dirtying pages that can't be synced.
102          */
103         if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
104                 return;
105         blk_set_queue_dying(ns->queue);
106         /* Forcibly unquiesce queues to avoid blocking dispatch */
107         blk_mq_unquiesce_queue(ns->queue);
108         /*
109          * Revalidate after unblocking dispatchers that may be holding bd_butex
110          */
111         revalidate_disk(ns->disk);
112 }
113
114 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
115 {
116         /*
117          * Only new queue scan work when admin and IO queues are both alive
118          */
119         if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
120                 queue_work(nvme_wq, &ctrl->scan_work);
121 }
122
123 /*
124  * Use this function to proceed with scheduling reset_work for a controller
125  * that had previously been set to the resetting state. This is intended for
126  * code paths that can't be interrupted by other reset attempts. A hot removal
127  * may prevent this from succeeding.
128  */
129 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
130 {
131         if (ctrl->state != NVME_CTRL_RESETTING)
132                 return -EBUSY;
133         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
134                 return -EBUSY;
135         return 0;
136 }
137 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
138
139 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
140 {
141         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
142                 return -EBUSY;
143         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
144                 return -EBUSY;
145         return 0;
146 }
147 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
148
149 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
150 {
151         int ret;
152
153         ret = nvme_reset_ctrl(ctrl);
154         if (!ret) {
155                 flush_work(&ctrl->reset_work);
156                 if (ctrl->state != NVME_CTRL_LIVE)
157                         ret = -ENETRESET;
158         }
159
160         return ret;
161 }
162 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
163
164 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
165 {
166         dev_info(ctrl->device,
167                  "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
168
169         flush_work(&ctrl->reset_work);
170         nvme_stop_ctrl(ctrl);
171         nvme_remove_namespaces(ctrl);
172         ctrl->ops->delete_ctrl(ctrl);
173         nvme_uninit_ctrl(ctrl);
174 }
175
176 static void nvme_delete_ctrl_work(struct work_struct *work)
177 {
178         struct nvme_ctrl *ctrl =
179                 container_of(work, struct nvme_ctrl, delete_work);
180
181         nvme_do_delete_ctrl(ctrl);
182 }
183
184 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
185 {
186         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
187                 return -EBUSY;
188         if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
189                 return -EBUSY;
190         return 0;
191 }
192 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
193
194 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
195 {
196         /*
197          * Keep a reference until nvme_do_delete_ctrl() complete,
198          * since ->delete_ctrl can free the controller.
199          */
200         nvme_get_ctrl(ctrl);
201         if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
202                 nvme_do_delete_ctrl(ctrl);
203         nvme_put_ctrl(ctrl);
204 }
205
206 static inline bool nvme_ns_has_pi(struct nvme_ns *ns)
207 {
208         return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple);
209 }
210
211 static blk_status_t nvme_error_status(u16 status)
212 {
213         switch (status & 0x7ff) {
214         case NVME_SC_SUCCESS:
215                 return BLK_STS_OK;
216         case NVME_SC_CAP_EXCEEDED:
217                 return BLK_STS_NOSPC;
218         case NVME_SC_LBA_RANGE:
219         case NVME_SC_CMD_INTERRUPTED:
220         case NVME_SC_NS_NOT_READY:
221                 return BLK_STS_TARGET;
222         case NVME_SC_BAD_ATTRIBUTES:
223         case NVME_SC_ONCS_NOT_SUPPORTED:
224         case NVME_SC_INVALID_OPCODE:
225         case NVME_SC_INVALID_FIELD:
226         case NVME_SC_INVALID_NS:
227                 return BLK_STS_NOTSUPP;
228         case NVME_SC_WRITE_FAULT:
229         case NVME_SC_READ_ERROR:
230         case NVME_SC_UNWRITTEN_BLOCK:
231         case NVME_SC_ACCESS_DENIED:
232         case NVME_SC_READ_ONLY:
233         case NVME_SC_COMPARE_FAILED:
234                 return BLK_STS_MEDIUM;
235         case NVME_SC_GUARD_CHECK:
236         case NVME_SC_APPTAG_CHECK:
237         case NVME_SC_REFTAG_CHECK:
238         case NVME_SC_INVALID_PI:
239                 return BLK_STS_PROTECTION;
240         case NVME_SC_RESERVATION_CONFLICT:
241                 return BLK_STS_NEXUS;
242         case NVME_SC_HOST_PATH_ERROR:
243                 return BLK_STS_TRANSPORT;
244         default:
245                 return BLK_STS_IOERR;
246         }
247 }
248
249 static inline bool nvme_req_needs_retry(struct request *req)
250 {
251         if (blk_noretry_request(req))
252                 return false;
253         if (nvme_req(req)->status & NVME_SC_DNR)
254                 return false;
255         if (nvme_req(req)->retries >= nvme_max_retries)
256                 return false;
257         return true;
258 }
259
260 static void nvme_retry_req(struct request *req)
261 {
262         struct nvme_ns *ns = req->q->queuedata;
263         unsigned long delay = 0;
264         u16 crd;
265
266         /* The mask and shift result must be <= 3 */
267         crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
268         if (ns && crd)
269                 delay = ns->ctrl->crdt[crd - 1] * 100;
270
271         nvme_req(req)->retries++;
272         blk_mq_requeue_request(req, false);
273         blk_mq_delay_kick_requeue_list(req->q, delay);
274 }
275
276 void nvme_complete_rq(struct request *req)
277 {
278         blk_status_t status = nvme_error_status(nvme_req(req)->status);
279
280         trace_nvme_complete_rq(req);
281
282         nvme_cleanup_cmd(req);
283
284         if (nvme_req(req)->ctrl->kas)
285                 nvme_req(req)->ctrl->comp_seen = true;
286
287         if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) {
288                 if ((req->cmd_flags & REQ_NVME_MPATH) && nvme_failover_req(req))
289                         return;
290
291                 if (!blk_queue_dying(req->q)) {
292                         nvme_retry_req(req);
293                         return;
294                 }
295         }
296
297         nvme_trace_bio_complete(req, status);
298         blk_mq_end_request(req, status);
299 }
300 EXPORT_SYMBOL_GPL(nvme_complete_rq);
301
302 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
303 {
304         dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
305                                 "Cancelling I/O %d", req->tag);
306
307         /* don't abort one completed request */
308         if (blk_mq_request_completed(req))
309                 return true;
310
311         nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
312         blk_mq_complete_request(req);
313         return true;
314 }
315 EXPORT_SYMBOL_GPL(nvme_cancel_request);
316
317 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
318                 enum nvme_ctrl_state new_state)
319 {
320         enum nvme_ctrl_state old_state;
321         unsigned long flags;
322         bool changed = false;
323
324         spin_lock_irqsave(&ctrl->lock, flags);
325
326         old_state = ctrl->state;
327         switch (new_state) {
328         case NVME_CTRL_LIVE:
329                 switch (old_state) {
330                 case NVME_CTRL_NEW:
331                 case NVME_CTRL_RESETTING:
332                 case NVME_CTRL_CONNECTING:
333                         changed = true;
334                         /* FALLTHRU */
335                 default:
336                         break;
337                 }
338                 break;
339         case NVME_CTRL_RESETTING:
340                 switch (old_state) {
341                 case NVME_CTRL_NEW:
342                 case NVME_CTRL_LIVE:
343                         changed = true;
344                         /* FALLTHRU */
345                 default:
346                         break;
347                 }
348                 break;
349         case NVME_CTRL_CONNECTING:
350                 switch (old_state) {
351                 case NVME_CTRL_NEW:
352                 case NVME_CTRL_RESETTING:
353                         changed = true;
354                         /* FALLTHRU */
355                 default:
356                         break;
357                 }
358                 break;
359         case NVME_CTRL_DELETING:
360                 switch (old_state) {
361                 case NVME_CTRL_LIVE:
362                 case NVME_CTRL_RESETTING:
363                 case NVME_CTRL_CONNECTING:
364                         changed = true;
365                         /* FALLTHRU */
366                 default:
367                         break;
368                 }
369                 break;
370         case NVME_CTRL_DEAD:
371                 switch (old_state) {
372                 case NVME_CTRL_DELETING:
373                         changed = true;
374                         /* FALLTHRU */
375                 default:
376                         break;
377                 }
378                 break;
379         default:
380                 break;
381         }
382
383         if (changed) {
384                 ctrl->state = new_state;
385                 wake_up_all(&ctrl->state_wq);
386         }
387
388         spin_unlock_irqrestore(&ctrl->lock, flags);
389         if (changed && ctrl->state == NVME_CTRL_LIVE)
390                 nvme_kick_requeue_lists(ctrl);
391         return changed;
392 }
393 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
394
395 /*
396  * Returns true for sink states that can't ever transition back to live.
397  */
398 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
399 {
400         switch (ctrl->state) {
401         case NVME_CTRL_NEW:
402         case NVME_CTRL_LIVE:
403         case NVME_CTRL_RESETTING:
404         case NVME_CTRL_CONNECTING:
405                 return false;
406         case NVME_CTRL_DELETING:
407         case NVME_CTRL_DEAD:
408                 return true;
409         default:
410                 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
411                 return true;
412         }
413 }
414
415 /*
416  * Waits for the controller state to be resetting, or returns false if it is
417  * not possible to ever transition to that state.
418  */
419 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
420 {
421         wait_event(ctrl->state_wq,
422                    nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
423                    nvme_state_terminal(ctrl));
424         return ctrl->state == NVME_CTRL_RESETTING;
425 }
426 EXPORT_SYMBOL_GPL(nvme_wait_reset);
427
428 static void nvme_free_ns_head(struct kref *ref)
429 {
430         struct nvme_ns_head *head =
431                 container_of(ref, struct nvme_ns_head, ref);
432
433         nvme_mpath_remove_disk(head);
434         ida_simple_remove(&head->subsys->ns_ida, head->instance);
435         list_del_init(&head->entry);
436         cleanup_srcu_struct(&head->srcu);
437         nvme_put_subsystem(head->subsys);
438         kfree(head);
439 }
440
441 static void nvme_put_ns_head(struct nvme_ns_head *head)
442 {
443         kref_put(&head->ref, nvme_free_ns_head);
444 }
445
446 static void nvme_free_ns(struct kref *kref)
447 {
448         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
449
450         if (ns->ndev)
451                 nvme_nvm_unregister(ns);
452
453         put_disk(ns->disk);
454         nvme_put_ns_head(ns->head);
455         nvme_put_ctrl(ns->ctrl);
456         kfree(ns);
457 }
458
459 static void nvme_put_ns(struct nvme_ns *ns)
460 {
461         kref_put(&ns->kref, nvme_free_ns);
462 }
463
464 static inline void nvme_clear_nvme_request(struct request *req)
465 {
466         if (!(req->rq_flags & RQF_DONTPREP)) {
467                 nvme_req(req)->retries = 0;
468                 nvme_req(req)->flags = 0;
469                 req->rq_flags |= RQF_DONTPREP;
470         }
471 }
472
473 struct request *nvme_alloc_request(struct request_queue *q,
474                 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
475 {
476         unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
477         struct request *req;
478
479         if (qid == NVME_QID_ANY) {
480                 req = blk_mq_alloc_request(q, op, flags);
481         } else {
482                 req = blk_mq_alloc_request_hctx(q, op, flags,
483                                 qid ? qid - 1 : 0);
484         }
485         if (IS_ERR(req))
486                 return req;
487
488         req->cmd_flags |= REQ_FAILFAST_DRIVER;
489         nvme_clear_nvme_request(req);
490         nvme_req(req)->cmd = cmd;
491
492         return req;
493 }
494 EXPORT_SYMBOL_GPL(nvme_alloc_request);
495
496 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
497 {
498         struct nvme_command c;
499
500         memset(&c, 0, sizeof(c));
501
502         c.directive.opcode = nvme_admin_directive_send;
503         c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
504         c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
505         c.directive.dtype = NVME_DIR_IDENTIFY;
506         c.directive.tdtype = NVME_DIR_STREAMS;
507         c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
508
509         return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
510 }
511
512 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
513 {
514         return nvme_toggle_streams(ctrl, false);
515 }
516
517 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
518 {
519         return nvme_toggle_streams(ctrl, true);
520 }
521
522 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
523                                   struct streams_directive_params *s, u32 nsid)
524 {
525         struct nvme_command c;
526
527         memset(&c, 0, sizeof(c));
528         memset(s, 0, sizeof(*s));
529
530         c.directive.opcode = nvme_admin_directive_recv;
531         c.directive.nsid = cpu_to_le32(nsid);
532         c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1);
533         c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
534         c.directive.dtype = NVME_DIR_STREAMS;
535
536         return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
537 }
538
539 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
540 {
541         struct streams_directive_params s;
542         int ret;
543
544         if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
545                 return 0;
546         if (!streams)
547                 return 0;
548
549         ret = nvme_enable_streams(ctrl);
550         if (ret)
551                 return ret;
552
553         ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
554         if (ret)
555                 return ret;
556
557         ctrl->nssa = le16_to_cpu(s.nssa);
558         if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
559                 dev_info(ctrl->device, "too few streams (%u) available\n",
560                                         ctrl->nssa);
561                 nvme_disable_streams(ctrl);
562                 return 0;
563         }
564
565         ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
566         dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
567         return 0;
568 }
569
570 /*
571  * Check if 'req' has a write hint associated with it. If it does, assign
572  * a valid namespace stream to the write.
573  */
574 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
575                                      struct request *req, u16 *control,
576                                      u32 *dsmgmt)
577 {
578         enum rw_hint streamid = req->write_hint;
579
580         if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
581                 streamid = 0;
582         else {
583                 streamid--;
584                 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
585                         return;
586
587                 *control |= NVME_RW_DTYPE_STREAMS;
588                 *dsmgmt |= streamid << 16;
589         }
590
591         if (streamid < ARRAY_SIZE(req->q->write_hints))
592                 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
593 }
594
595 static inline void nvme_setup_flush(struct nvme_ns *ns,
596                 struct nvme_command *cmnd)
597 {
598         cmnd->common.opcode = nvme_cmd_flush;
599         cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
600 }
601
602 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
603                 struct nvme_command *cmnd)
604 {
605         unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
606         struct nvme_dsm_range *range;
607         struct bio *bio;
608
609         /*
610          * Some devices do not consider the DSM 'Number of Ranges' field when
611          * determining how much data to DMA. Always allocate memory for maximum
612          * number of segments to prevent device reading beyond end of buffer.
613          */
614         static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
615
616         range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
617         if (!range) {
618                 /*
619                  * If we fail allocation our range, fallback to the controller
620                  * discard page. If that's also busy, it's safe to return
621                  * busy, as we know we can make progress once that's freed.
622                  */
623                 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
624                         return BLK_STS_RESOURCE;
625
626                 range = page_address(ns->ctrl->discard_page);
627         }
628
629         __rq_for_each_bio(bio, req) {
630                 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
631                 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
632
633                 if (n < segments) {
634                         range[n].cattr = cpu_to_le32(0);
635                         range[n].nlb = cpu_to_le32(nlb);
636                         range[n].slba = cpu_to_le64(slba);
637                 }
638                 n++;
639         }
640
641         if (WARN_ON_ONCE(n != segments)) {
642                 if (virt_to_page(range) == ns->ctrl->discard_page)
643                         clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
644                 else
645                         kfree(range);
646                 return BLK_STS_IOERR;
647         }
648
649         cmnd->dsm.opcode = nvme_cmd_dsm;
650         cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
651         cmnd->dsm.nr = cpu_to_le32(segments - 1);
652         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
653
654         req->special_vec.bv_page = virt_to_page(range);
655         req->special_vec.bv_offset = offset_in_page(range);
656         req->special_vec.bv_len = alloc_size;
657         req->rq_flags |= RQF_SPECIAL_PAYLOAD;
658
659         return BLK_STS_OK;
660 }
661
662 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
663                 struct request *req, struct nvme_command *cmnd)
664 {
665         if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
666                 return nvme_setup_discard(ns, req, cmnd);
667
668         cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
669         cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
670         cmnd->write_zeroes.slba =
671                 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
672         cmnd->write_zeroes.length =
673                 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
674         cmnd->write_zeroes.control = 0;
675         return BLK_STS_OK;
676 }
677
678 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
679                 struct request *req, struct nvme_command *cmnd)
680 {
681         struct nvme_ctrl *ctrl = ns->ctrl;
682         u16 control = 0;
683         u32 dsmgmt = 0;
684
685         if (req->cmd_flags & REQ_FUA)
686                 control |= NVME_RW_FUA;
687         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
688                 control |= NVME_RW_LR;
689
690         if (req->cmd_flags & REQ_RAHEAD)
691                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
692
693         cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
694         cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
695         cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
696         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
697
698         if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
699                 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
700
701         if (ns->ms) {
702                 /*
703                  * If formated with metadata, the block layer always provides a
704                  * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
705                  * we enable the PRACT bit for protection information or set the
706                  * namespace capacity to zero to prevent any I/O.
707                  */
708                 if (!blk_integrity_rq(req)) {
709                         if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
710                                 return BLK_STS_NOTSUPP;
711                         control |= NVME_RW_PRINFO_PRACT;
712                 }
713
714                 switch (ns->pi_type) {
715                 case NVME_NS_DPS_PI_TYPE3:
716                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
717                         break;
718                 case NVME_NS_DPS_PI_TYPE1:
719                 case NVME_NS_DPS_PI_TYPE2:
720                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
721                                         NVME_RW_PRINFO_PRCHK_REF;
722                         cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
723                         break;
724                 }
725         }
726
727         cmnd->rw.control = cpu_to_le16(control);
728         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
729         return 0;
730 }
731
732 void nvme_cleanup_cmd(struct request *req)
733 {
734         if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
735                 struct nvme_ns *ns = req->rq_disk->private_data;
736                 struct page *page = req->special_vec.bv_page;
737
738                 if (page == ns->ctrl->discard_page)
739                         clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
740                 else
741                         kfree(page_address(page) + req->special_vec.bv_offset);
742         }
743 }
744 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
745
746 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
747                 struct nvme_command *cmd)
748 {
749         blk_status_t ret = BLK_STS_OK;
750
751         nvme_clear_nvme_request(req);
752
753         memset(cmd, 0, sizeof(*cmd));
754         switch (req_op(req)) {
755         case REQ_OP_DRV_IN:
756         case REQ_OP_DRV_OUT:
757                 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
758                 break;
759         case REQ_OP_FLUSH:
760                 nvme_setup_flush(ns, cmd);
761                 break;
762         case REQ_OP_WRITE_ZEROES:
763                 ret = nvme_setup_write_zeroes(ns, req, cmd);
764                 break;
765         case REQ_OP_DISCARD:
766                 ret = nvme_setup_discard(ns, req, cmd);
767                 break;
768         case REQ_OP_READ:
769         case REQ_OP_WRITE:
770                 ret = nvme_setup_rw(ns, req, cmd);
771                 break;
772         default:
773                 WARN_ON_ONCE(1);
774                 return BLK_STS_IOERR;
775         }
776
777         cmd->common.command_id = req->tag;
778         trace_nvme_setup_cmd(req, cmd);
779         return ret;
780 }
781 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
782
783 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
784 {
785         struct completion *waiting = rq->end_io_data;
786
787         rq->end_io_data = NULL;
788         complete(waiting);
789 }
790
791 static void nvme_execute_rq_polled(struct request_queue *q,
792                 struct gendisk *bd_disk, struct request *rq, int at_head)
793 {
794         DECLARE_COMPLETION_ONSTACK(wait);
795
796         WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
797
798         rq->cmd_flags |= REQ_HIPRI;
799         rq->end_io_data = &wait;
800         blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq);
801
802         while (!completion_done(&wait)) {
803                 blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
804                 cond_resched();
805         }
806 }
807
808 /*
809  * Returns 0 on success.  If the result is negative, it's a Linux error code;
810  * if the result is positive, it's an NVM Express status code
811  */
812 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
813                 union nvme_result *result, void *buffer, unsigned bufflen,
814                 unsigned timeout, int qid, int at_head,
815                 blk_mq_req_flags_t flags, bool poll)
816 {
817         struct request *req;
818         int ret;
819
820         req = nvme_alloc_request(q, cmd, flags, qid);
821         if (IS_ERR(req))
822                 return PTR_ERR(req);
823
824         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
825
826         if (buffer && bufflen) {
827                 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
828                 if (ret)
829                         goto out;
830         }
831
832         if (poll)
833                 nvme_execute_rq_polled(req->q, NULL, req, at_head);
834         else
835                 blk_execute_rq(req->q, NULL, req, at_head);
836         if (result)
837                 *result = nvme_req(req)->result;
838         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
839                 ret = -EINTR;
840         else
841                 ret = nvme_req(req)->status;
842  out:
843         blk_mq_free_request(req);
844         return ret;
845 }
846 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
847
848 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
849                 void *buffer, unsigned bufflen)
850 {
851         return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
852                         NVME_QID_ANY, 0, 0, false);
853 }
854 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
855
856 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
857                 unsigned len, u32 seed, bool write)
858 {
859         struct bio_integrity_payload *bip;
860         int ret = -ENOMEM;
861         void *buf;
862
863         buf = kmalloc(len, GFP_KERNEL);
864         if (!buf)
865                 goto out;
866
867         ret = -EFAULT;
868         if (write && copy_from_user(buf, ubuf, len))
869                 goto out_free_meta;
870
871         bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
872         if (IS_ERR(bip)) {
873                 ret = PTR_ERR(bip);
874                 goto out_free_meta;
875         }
876
877         bip->bip_iter.bi_size = len;
878         bip->bip_iter.bi_sector = seed;
879         ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
880                         offset_in_page(buf));
881         if (ret == len)
882                 return buf;
883         ret = -ENOMEM;
884 out_free_meta:
885         kfree(buf);
886 out:
887         return ERR_PTR(ret);
888 }
889
890 static int nvme_submit_user_cmd(struct request_queue *q,
891                 struct nvme_command *cmd, void __user *ubuffer,
892                 unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
893                 u32 meta_seed, u64 *result, unsigned timeout)
894 {
895         bool write = nvme_is_write(cmd);
896         struct nvme_ns *ns = q->queuedata;
897         struct gendisk *disk = ns ? ns->disk : NULL;
898         struct request *req;
899         struct bio *bio = NULL;
900         void *meta = NULL;
901         int ret;
902
903         req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
904         if (IS_ERR(req))
905                 return PTR_ERR(req);
906
907         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
908         nvme_req(req)->flags |= NVME_REQ_USERCMD;
909
910         if (ubuffer && bufflen) {
911                 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
912                                 GFP_KERNEL);
913                 if (ret)
914                         goto out;
915                 bio = req->bio;
916                 bio->bi_disk = disk;
917                 if (disk && meta_buffer && meta_len) {
918                         meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
919                                         meta_seed, write);
920                         if (IS_ERR(meta)) {
921                                 ret = PTR_ERR(meta);
922                                 goto out_unmap;
923                         }
924                         req->cmd_flags |= REQ_INTEGRITY;
925                 }
926         }
927
928         blk_execute_rq(req->q, disk, req, 0);
929         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
930                 ret = -EINTR;
931         else
932                 ret = nvme_req(req)->status;
933         if (result)
934                 *result = le64_to_cpu(nvme_req(req)->result.u64);
935         if (meta && !ret && !write) {
936                 if (copy_to_user(meta_buffer, meta, meta_len))
937                         ret = -EFAULT;
938         }
939         kfree(meta);
940  out_unmap:
941         if (bio)
942                 blk_rq_unmap_user(bio);
943  out:
944         blk_mq_free_request(req);
945         return ret;
946 }
947
948 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
949 {
950         struct nvme_ctrl *ctrl = rq->end_io_data;
951         unsigned long flags;
952         bool startka = false;
953
954         blk_mq_free_request(rq);
955
956         if (status) {
957                 dev_err(ctrl->device,
958                         "failed nvme_keep_alive_end_io error=%d\n",
959                                 status);
960                 return;
961         }
962
963         ctrl->comp_seen = false;
964         spin_lock_irqsave(&ctrl->lock, flags);
965         if (ctrl->state == NVME_CTRL_LIVE ||
966             ctrl->state == NVME_CTRL_CONNECTING)
967                 startka = true;
968         spin_unlock_irqrestore(&ctrl->lock, flags);
969         if (startka)
970                 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
971 }
972
973 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
974 {
975         struct request *rq;
976
977         rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
978                         NVME_QID_ANY);
979         if (IS_ERR(rq))
980                 return PTR_ERR(rq);
981
982         rq->timeout = ctrl->kato * HZ;
983         rq->end_io_data = ctrl;
984
985         blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
986
987         return 0;
988 }
989
990 static void nvme_keep_alive_work(struct work_struct *work)
991 {
992         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
993                         struct nvme_ctrl, ka_work);
994         bool comp_seen = ctrl->comp_seen;
995
996         if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
997                 dev_dbg(ctrl->device,
998                         "reschedule traffic based keep-alive timer\n");
999                 ctrl->comp_seen = false;
1000                 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1001                 return;
1002         }
1003
1004         if (nvme_keep_alive(ctrl)) {
1005                 /* allocation failure, reset the controller */
1006                 dev_err(ctrl->device, "keep-alive failed\n");
1007                 nvme_reset_ctrl(ctrl);
1008                 return;
1009         }
1010 }
1011
1012 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1013 {
1014         if (unlikely(ctrl->kato == 0))
1015                 return;
1016
1017         queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1018 }
1019
1020 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1021 {
1022         if (unlikely(ctrl->kato == 0))
1023                 return;
1024
1025         cancel_delayed_work_sync(&ctrl->ka_work);
1026 }
1027 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1028
1029 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1030 {
1031         struct nvme_command c = { };
1032         int error;
1033
1034         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1035         c.identify.opcode = nvme_admin_identify;
1036         c.identify.cns = NVME_ID_CNS_CTRL;
1037
1038         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1039         if (!*id)
1040                 return -ENOMEM;
1041
1042         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1043                         sizeof(struct nvme_id_ctrl));
1044         if (error)
1045                 kfree(*id);
1046         return error;
1047 }
1048
1049 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1050                 struct nvme_ns_id_desc *cur)
1051 {
1052         const char *warn_str = "ctrl returned bogus length:";
1053         void *data = cur;
1054
1055         switch (cur->nidt) {
1056         case NVME_NIDT_EUI64:
1057                 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1058                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1059                                  warn_str, cur->nidl);
1060                         return -1;
1061                 }
1062                 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1063                 return NVME_NIDT_EUI64_LEN;
1064         case NVME_NIDT_NGUID:
1065                 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1066                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1067                                  warn_str, cur->nidl);
1068                         return -1;
1069                 }
1070                 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1071                 return NVME_NIDT_NGUID_LEN;
1072         case NVME_NIDT_UUID:
1073                 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1074                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1075                                  warn_str, cur->nidl);
1076                         return -1;
1077                 }
1078                 uuid_copy(&ids->uuid, data + sizeof(*cur));
1079                 return NVME_NIDT_UUID_LEN;
1080         default:
1081                 /* Skip unknown types */
1082                 return cur->nidl;
1083         }
1084 }
1085
1086 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1087                 struct nvme_ns_ids *ids)
1088 {
1089         struct nvme_command c = { };
1090         int status;
1091         void *data;
1092         int pos;
1093         int len;
1094
1095         c.identify.opcode = nvme_admin_identify;
1096         c.identify.nsid = cpu_to_le32(nsid);
1097         c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1098
1099         data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1100         if (!data)
1101                 return -ENOMEM;
1102
1103         status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1104                                       NVME_IDENTIFY_DATA_SIZE);
1105         if (status) {
1106                 dev_warn(ctrl->device,
1107                         "Identify Descriptors failed (%d)\n", status);
1108                  /*
1109                   * Don't treat an error as fatal, as we potentially already
1110                   * have a NGUID or EUI-64.
1111                   */
1112                 if (status > 0)
1113                         status = 0;
1114                 goto free_data;
1115         }
1116
1117         for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1118                 struct nvme_ns_id_desc *cur = data + pos;
1119
1120                 if (cur->nidl == 0)
1121                         break;
1122
1123                 len = nvme_process_ns_desc(ctrl, ids, cur);
1124                 if (len < 0)
1125                         goto free_data;
1126
1127                 len += sizeof(*cur);
1128         }
1129 free_data:
1130         kfree(data);
1131         return status;
1132 }
1133
1134 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
1135 {
1136         struct nvme_command c = { };
1137
1138         c.identify.opcode = nvme_admin_identify;
1139         c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
1140         c.identify.nsid = cpu_to_le32(nsid);
1141         return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list,
1142                                     NVME_IDENTIFY_DATA_SIZE);
1143 }
1144
1145 static int nvme_identify_ns(struct nvme_ctrl *ctrl,
1146                 unsigned nsid, struct nvme_id_ns **id)
1147 {
1148         struct nvme_command c = { };
1149         int error;
1150
1151         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1152         c.identify.opcode = nvme_admin_identify;
1153         c.identify.nsid = cpu_to_le32(nsid);
1154         c.identify.cns = NVME_ID_CNS_NS;
1155
1156         *id = kmalloc(sizeof(**id), GFP_KERNEL);
1157         if (!*id)
1158                 return -ENOMEM;
1159
1160         error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1161         if (error) {
1162                 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1163                 kfree(*id);
1164         }
1165
1166         return error;
1167 }
1168
1169 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1170                 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1171 {
1172         union nvme_result res = { 0 };
1173         struct nvme_command c;
1174         int ret;
1175
1176         memset(&c, 0, sizeof(c));
1177         c.features.opcode = op;
1178         c.features.fid = cpu_to_le32(fid);
1179         c.features.dword11 = cpu_to_le32(dword11);
1180
1181         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1182                         buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1183         if (ret >= 0 && result)
1184                 *result = le32_to_cpu(res.u32);
1185         return ret;
1186 }
1187
1188 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1189                       unsigned int dword11, void *buffer, size_t buflen,
1190                       u32 *result)
1191 {
1192         return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1193                              buflen, result);
1194 }
1195 EXPORT_SYMBOL_GPL(nvme_set_features);
1196
1197 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1198                       unsigned int dword11, void *buffer, size_t buflen,
1199                       u32 *result)
1200 {
1201         return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1202                              buflen, result);
1203 }
1204 EXPORT_SYMBOL_GPL(nvme_get_features);
1205
1206 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1207 {
1208         u32 q_count = (*count - 1) | ((*count - 1) << 16);
1209         u32 result;
1210         int status, nr_io_queues;
1211
1212         status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1213                         &result);
1214         if (status < 0)
1215                 return status;
1216
1217         /*
1218          * Degraded controllers might return an error when setting the queue
1219          * count.  We still want to be able to bring them online and offer
1220          * access to the admin queue, as that might be only way to fix them up.
1221          */
1222         if (status > 0) {
1223                 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1224                 *count = 0;
1225         } else {
1226                 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1227                 *count = min(*count, nr_io_queues);
1228         }
1229
1230         return 0;
1231 }
1232 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1233
1234 #define NVME_AEN_SUPPORTED \
1235         (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1236          NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1237
1238 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1239 {
1240         u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1241         int status;
1242
1243         if (!supported_aens)
1244                 return;
1245
1246         status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1247                         NULL, 0, &result);
1248         if (status)
1249                 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1250                          supported_aens);
1251
1252         queue_work(nvme_wq, &ctrl->async_event_work);
1253 }
1254
1255 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1256 {
1257         struct nvme_user_io io;
1258         struct nvme_command c;
1259         unsigned length, meta_len;
1260         void __user *metadata;
1261
1262         if (copy_from_user(&io, uio, sizeof(io)))
1263                 return -EFAULT;
1264         if (io.flags)
1265                 return -EINVAL;
1266
1267         switch (io.opcode) {
1268         case nvme_cmd_write:
1269         case nvme_cmd_read:
1270         case nvme_cmd_compare:
1271                 break;
1272         default:
1273                 return -EINVAL;
1274         }
1275
1276         length = (io.nblocks + 1) << ns->lba_shift;
1277         meta_len = (io.nblocks + 1) * ns->ms;
1278         metadata = (void __user *)(uintptr_t)io.metadata;
1279
1280         if (ns->ext) {
1281                 length += meta_len;
1282                 meta_len = 0;
1283         } else if (meta_len) {
1284                 if ((io.metadata & 3) || !io.metadata)
1285                         return -EINVAL;
1286         }
1287
1288         memset(&c, 0, sizeof(c));
1289         c.rw.opcode = io.opcode;
1290         c.rw.flags = io.flags;
1291         c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1292         c.rw.slba = cpu_to_le64(io.slba);
1293         c.rw.length = cpu_to_le16(io.nblocks);
1294         c.rw.control = cpu_to_le16(io.control);
1295         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1296         c.rw.reftag = cpu_to_le32(io.reftag);
1297         c.rw.apptag = cpu_to_le16(io.apptag);
1298         c.rw.appmask = cpu_to_le16(io.appmask);
1299
1300         return nvme_submit_user_cmd(ns->queue, &c,
1301                         (void __user *)(uintptr_t)io.addr, length,
1302                         metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1303 }
1304
1305 static u32 nvme_known_admin_effects(u8 opcode)
1306 {
1307         switch (opcode) {
1308         case nvme_admin_format_nvm:
1309                 return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
1310                                         NVME_CMD_EFFECTS_CSE_MASK;
1311         case nvme_admin_sanitize_nvm:
1312                 return NVME_CMD_EFFECTS_CSE_MASK;
1313         default:
1314                 break;
1315         }
1316         return 0;
1317 }
1318
1319 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1320                                                                 u8 opcode)
1321 {
1322         u32 effects = 0;
1323
1324         if (ns) {
1325                 if (ctrl->effects)
1326                         effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1327                 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1328                         dev_warn(ctrl->device,
1329                                  "IO command:%02x has unhandled effects:%08x\n",
1330                                  opcode, effects);
1331                 return 0;
1332         }
1333
1334         if (ctrl->effects)
1335                 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1336         effects |= nvme_known_admin_effects(opcode);
1337
1338         /*
1339          * For simplicity, IO to all namespaces is quiesced even if the command
1340          * effects say only one namespace is affected.
1341          */
1342         if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1343                 mutex_lock(&ctrl->scan_lock);
1344                 mutex_lock(&ctrl->subsys->lock);
1345                 nvme_mpath_start_freeze(ctrl->subsys);
1346                 nvme_mpath_wait_freeze(ctrl->subsys);
1347                 nvme_start_freeze(ctrl);
1348                 nvme_wait_freeze(ctrl);
1349         }
1350         return effects;
1351 }
1352
1353 static void nvme_update_formats(struct nvme_ctrl *ctrl)
1354 {
1355         struct nvme_ns *ns;
1356
1357         down_read(&ctrl->namespaces_rwsem);
1358         list_for_each_entry(ns, &ctrl->namespaces, list)
1359                 if (ns->disk && nvme_revalidate_disk(ns->disk))
1360                         nvme_set_queue_dying(ns);
1361         up_read(&ctrl->namespaces_rwsem);
1362 }
1363
1364 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1365 {
1366         /*
1367          * Revalidate LBA changes prior to unfreezing. This is necessary to
1368          * prevent memory corruption if a logical block size was changed by
1369          * this command.
1370          */
1371         if (effects & NVME_CMD_EFFECTS_LBCC)
1372                 nvme_update_formats(ctrl);
1373         if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1374                 nvme_unfreeze(ctrl);
1375                 nvme_mpath_unfreeze(ctrl->subsys);
1376                 mutex_unlock(&ctrl->subsys->lock);
1377                 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1378                 mutex_unlock(&ctrl->scan_lock);
1379         }
1380         if (effects & NVME_CMD_EFFECTS_CCC)
1381                 nvme_init_identify(ctrl);
1382         if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC))
1383                 nvme_queue_scan(ctrl);
1384 }
1385
1386 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1387                         struct nvme_passthru_cmd __user *ucmd)
1388 {
1389         struct nvme_passthru_cmd cmd;
1390         struct nvme_command c;
1391         unsigned timeout = 0;
1392         u32 effects;
1393         u64 result;
1394         int status;
1395
1396         if (!capable(CAP_SYS_ADMIN))
1397                 return -EACCES;
1398         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1399                 return -EFAULT;
1400         if (cmd.flags)
1401                 return -EINVAL;
1402
1403         memset(&c, 0, sizeof(c));
1404         c.common.opcode = cmd.opcode;
1405         c.common.flags = cmd.flags;
1406         c.common.nsid = cpu_to_le32(cmd.nsid);
1407         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1408         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1409         c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1410         c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1411         c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1412         c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1413         c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1414         c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1415
1416         if (cmd.timeout_ms)
1417                 timeout = msecs_to_jiffies(cmd.timeout_ms);
1418
1419         effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1420         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1421                         (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1422                         (void __user *)(uintptr_t)cmd.metadata,
1423                         cmd.metadata_len, 0, &result, timeout);
1424         nvme_passthru_end(ctrl, effects);
1425
1426         if (status >= 0) {
1427                 if (put_user(result, &ucmd->result))
1428                         return -EFAULT;
1429         }
1430
1431         return status;
1432 }
1433
1434 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1435                         struct nvme_passthru_cmd64 __user *ucmd)
1436 {
1437         struct nvme_passthru_cmd64 cmd;
1438         struct nvme_command c;
1439         unsigned timeout = 0;
1440         u32 effects;
1441         int status;
1442
1443         if (!capable(CAP_SYS_ADMIN))
1444                 return -EACCES;
1445         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1446                 return -EFAULT;
1447         if (cmd.flags)
1448                 return -EINVAL;
1449
1450         memset(&c, 0, sizeof(c));
1451         c.common.opcode = cmd.opcode;
1452         c.common.flags = cmd.flags;
1453         c.common.nsid = cpu_to_le32(cmd.nsid);
1454         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1455         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1456         c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1457         c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1458         c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1459         c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1460         c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1461         c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1462
1463         if (cmd.timeout_ms)
1464                 timeout = msecs_to_jiffies(cmd.timeout_ms);
1465
1466         effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1467         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1468                         (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1469                         (void __user *)(uintptr_t)cmd.metadata, cmd.metadata_len,
1470                         0, &cmd.result, timeout);
1471         nvme_passthru_end(ctrl, effects);
1472
1473         if (status >= 0) {
1474                 if (put_user(cmd.result, &ucmd->result))
1475                         return -EFAULT;
1476         }
1477
1478         return status;
1479 }
1480
1481 /*
1482  * Issue ioctl requests on the first available path.  Note that unlike normal
1483  * block layer requests we will not retry failed request on another controller.
1484  */
1485 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1486                 struct nvme_ns_head **head, int *srcu_idx)
1487 {
1488 #ifdef CONFIG_NVME_MULTIPATH
1489         if (disk->fops == &nvme_ns_head_ops) {
1490                 struct nvme_ns *ns;
1491
1492                 *head = disk->private_data;
1493                 *srcu_idx = srcu_read_lock(&(*head)->srcu);
1494                 ns = nvme_find_path(*head);
1495                 if (!ns)
1496                         srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1497                 return ns;
1498         }
1499 #endif
1500         *head = NULL;
1501         *srcu_idx = -1;
1502         return disk->private_data;
1503 }
1504
1505 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1506 {
1507         if (head)
1508                 srcu_read_unlock(&head->srcu, idx);
1509 }
1510
1511 static bool is_ctrl_ioctl(unsigned int cmd)
1512 {
1513         if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD)
1514                 return true;
1515         if (is_sed_ioctl(cmd))
1516                 return true;
1517         return false;
1518 }
1519
1520 static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd,
1521                                   void __user *argp,
1522                                   struct nvme_ns_head *head,
1523                                   int srcu_idx)
1524 {
1525         struct nvme_ctrl *ctrl = ns->ctrl;
1526         int ret;
1527
1528         nvme_get_ctrl(ns->ctrl);
1529         nvme_put_ns_from_disk(head, srcu_idx);
1530
1531         switch (cmd) {
1532         case NVME_IOCTL_ADMIN_CMD:
1533                 ret = nvme_user_cmd(ctrl, NULL, argp);
1534                 break;
1535         case NVME_IOCTL_ADMIN64_CMD:
1536                 ret = nvme_user_cmd64(ctrl, NULL, argp);
1537                 break;
1538         default:
1539                 ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
1540                 break;
1541         }
1542         nvme_put_ctrl(ctrl);
1543         return ret;
1544 }
1545
1546 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1547                 unsigned int cmd, unsigned long arg)
1548 {
1549         struct nvme_ns_head *head = NULL;
1550         void __user *argp = (void __user *)arg;
1551         struct nvme_ns *ns;
1552         int srcu_idx, ret;
1553
1554         ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1555         if (unlikely(!ns))
1556                 return -EWOULDBLOCK;
1557
1558         /*
1559          * Handle ioctls that apply to the controller instead of the namespace
1560          * seperately and drop the ns SRCU reference early.  This avoids a
1561          * deadlock when deleting namespaces using the passthrough interface.
1562          */
1563         if (is_ctrl_ioctl(cmd))
1564                 return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx);
1565
1566         switch (cmd) {
1567         case NVME_IOCTL_ID:
1568                 force_successful_syscall_return();
1569                 ret = ns->head->ns_id;
1570                 break;
1571         case NVME_IOCTL_IO_CMD:
1572                 ret = nvme_user_cmd(ns->ctrl, ns, argp);
1573                 break;
1574         case NVME_IOCTL_SUBMIT_IO:
1575                 ret = nvme_submit_io(ns, argp);
1576                 break;
1577         case NVME_IOCTL_IO64_CMD:
1578                 ret = nvme_user_cmd64(ns->ctrl, ns, argp);
1579                 break;
1580         default:
1581                 if (ns->ndev)
1582                         ret = nvme_nvm_ioctl(ns, cmd, arg);
1583                 else
1584                         ret = -ENOTTY;
1585         }
1586
1587         nvme_put_ns_from_disk(head, srcu_idx);
1588         return ret;
1589 }
1590
1591 #ifdef CONFIG_COMPAT
1592 struct nvme_user_io32 {
1593         __u8    opcode;
1594         __u8    flags;
1595         __u16   control;
1596         __u16   nblocks;
1597         __u16   rsvd;
1598         __u64   metadata;
1599         __u64   addr;
1600         __u64   slba;
1601         __u32   dsmgmt;
1602         __u32   reftag;
1603         __u16   apptag;
1604         __u16   appmask;
1605 } __attribute__((__packed__));
1606
1607 #define NVME_IOCTL_SUBMIT_IO32  _IOW('N', 0x42, struct nvme_user_io32)
1608
1609 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1610                 unsigned int cmd, unsigned long arg)
1611 {
1612         /*
1613          * Corresponds to the difference of NVME_IOCTL_SUBMIT_IO
1614          * between 32 bit programs and 64 bit kernel.
1615          * The cause is that the results of sizeof(struct nvme_user_io),
1616          * which is used to define NVME_IOCTL_SUBMIT_IO,
1617          * are not same between 32 bit compiler and 64 bit compiler.
1618          * NVME_IOCTL_SUBMIT_IO32 is for 64 bit kernel handling
1619          * NVME_IOCTL_SUBMIT_IO issued from 32 bit programs.
1620          * Other IOCTL numbers are same between 32 bit and 64 bit.
1621          * So there is nothing to do regarding to other IOCTL numbers.
1622          */
1623         if (cmd == NVME_IOCTL_SUBMIT_IO32)
1624                 return nvme_ioctl(bdev, mode, NVME_IOCTL_SUBMIT_IO, arg);
1625
1626         return nvme_ioctl(bdev, mode, cmd, arg);
1627 }
1628 #else
1629 #define nvme_compat_ioctl       NULL
1630 #endif /* CONFIG_COMPAT */
1631
1632 static int nvme_open(struct block_device *bdev, fmode_t mode)
1633 {
1634         struct nvme_ns *ns = bdev->bd_disk->private_data;
1635
1636 #ifdef CONFIG_NVME_MULTIPATH
1637         /* should never be called due to GENHD_FL_HIDDEN */
1638         if (WARN_ON_ONCE(ns->head->disk))
1639                 goto fail;
1640 #endif
1641         if (!kref_get_unless_zero(&ns->kref))
1642                 goto fail;
1643         if (!try_module_get(ns->ctrl->ops->module))
1644                 goto fail_put_ns;
1645
1646         return 0;
1647
1648 fail_put_ns:
1649         nvme_put_ns(ns);
1650 fail:
1651         return -ENXIO;
1652 }
1653
1654 static void nvme_release(struct gendisk *disk, fmode_t mode)
1655 {
1656         struct nvme_ns *ns = disk->private_data;
1657
1658         module_put(ns->ctrl->ops->module);
1659         nvme_put_ns(ns);
1660 }
1661
1662 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1663 {
1664         /* some standard values */
1665         geo->heads = 1 << 6;
1666         geo->sectors = 1 << 5;
1667         geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1668         return 0;
1669 }
1670
1671 #ifdef CONFIG_BLK_DEV_INTEGRITY
1672 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1673 {
1674         struct blk_integrity integrity;
1675
1676         memset(&integrity, 0, sizeof(integrity));
1677         switch (pi_type) {
1678         case NVME_NS_DPS_PI_TYPE3:
1679                 integrity.profile = &t10_pi_type3_crc;
1680                 integrity.tag_size = sizeof(u16) + sizeof(u32);
1681                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1682                 break;
1683         case NVME_NS_DPS_PI_TYPE1:
1684         case NVME_NS_DPS_PI_TYPE2:
1685                 integrity.profile = &t10_pi_type1_crc;
1686                 integrity.tag_size = sizeof(u16);
1687                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1688                 break;
1689         default:
1690                 integrity.profile = NULL;
1691                 break;
1692         }
1693         integrity.tuple_size = ms;
1694         blk_integrity_register(disk, &integrity);
1695         blk_queue_max_integrity_segments(disk->queue, 1);
1696 }
1697 #else
1698 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1699 {
1700 }
1701 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1702
1703 static void nvme_set_chunk_size(struct nvme_ns *ns)
1704 {
1705         u32 chunk_size = nvme_lba_to_sect(ns, ns->noiob);
1706         blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
1707 }
1708
1709 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1710 {
1711         struct nvme_ctrl *ctrl = ns->ctrl;
1712         struct request_queue *queue = disk->queue;
1713         u32 size = queue_logical_block_size(queue);
1714
1715         if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1716                 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1717                 return;
1718         }
1719
1720         if (ctrl->nr_streams && ns->sws && ns->sgs)
1721                 size *= ns->sws * ns->sgs;
1722
1723         BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1724                         NVME_DSM_MAX_RANGES);
1725
1726         queue->limits.discard_alignment = 0;
1727         queue->limits.discard_granularity = size;
1728
1729         /* If discard is already enabled, don't reset queue limits */
1730         if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1731                 return;
1732
1733         blk_queue_max_discard_sectors(queue, UINT_MAX);
1734         blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1735
1736         if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1737                 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1738 }
1739
1740 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns)
1741 {
1742         u64 max_blocks;
1743
1744         if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) ||
1745             (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
1746                 return;
1747         /*
1748          * Even though NVMe spec explicitly states that MDTS is not
1749          * applicable to the write-zeroes:- "The restriction does not apply to
1750          * commands that do not transfer data between the host and the
1751          * controller (e.g., Write Uncorrectable ro Write Zeroes command).".
1752          * In order to be more cautious use controller's max_hw_sectors value
1753          * to configure the maximum sectors for the write-zeroes which is
1754          * configured based on the controller's MDTS field in the
1755          * nvme_init_identify() if available.
1756          */
1757         if (ns->ctrl->max_hw_sectors == UINT_MAX)
1758                 max_blocks = (u64)USHRT_MAX + 1;
1759         else
1760                 max_blocks = ns->ctrl->max_hw_sectors + 1;
1761
1762         blk_queue_max_write_zeroes_sectors(disk->queue,
1763                                            nvme_lba_to_sect(ns, max_blocks));
1764 }
1765
1766 static int nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1767                 struct nvme_id_ns *id, struct nvme_ns_ids *ids)
1768 {
1769         memset(ids, 0, sizeof(*ids));
1770
1771         if (ctrl->vs >= NVME_VS(1, 1, 0))
1772                 memcpy(ids->eui64, id->eui64, sizeof(id->eui64));
1773         if (ctrl->vs >= NVME_VS(1, 2, 0))
1774                 memcpy(ids->nguid, id->nguid, sizeof(id->nguid));
1775         if (ctrl->vs >= NVME_VS(1, 3, 0))
1776                 return nvme_identify_ns_descs(ctrl, nsid, ids);
1777         return 0;
1778 }
1779
1780 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1781 {
1782         return !uuid_is_null(&ids->uuid) ||
1783                 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1784                 memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1785 }
1786
1787 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1788 {
1789         return uuid_equal(&a->uuid, &b->uuid) &&
1790                 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1791                 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0;
1792 }
1793
1794 static void nvme_update_disk_info(struct gendisk *disk,
1795                 struct nvme_ns *ns, struct nvme_id_ns *id)
1796 {
1797         sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1798         unsigned short bs = 1 << ns->lba_shift;
1799         u32 atomic_bs, phys_bs, io_opt;
1800
1801         if (ns->lba_shift > PAGE_SHIFT) {
1802                 /* unsupported block size, set capacity to 0 later */
1803                 bs = (1 << 9);
1804         }
1805         blk_mq_freeze_queue(disk->queue);
1806         blk_integrity_unregister(disk);
1807
1808         if (id->nabo == 0) {
1809                 /*
1810                  * Bit 1 indicates whether NAWUPF is defined for this namespace
1811                  * and whether it should be used instead of AWUPF. If NAWUPF ==
1812                  * 0 then AWUPF must be used instead.
1813                  */
1814                 if (id->nsfeat & (1 << 1) && id->nawupf)
1815                         atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1816                 else
1817                         atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1818         } else {
1819                 atomic_bs = bs;
1820         }
1821         phys_bs = bs;
1822         io_opt = bs;
1823         if (id->nsfeat & (1 << 4)) {
1824                 /* NPWG = Namespace Preferred Write Granularity */
1825                 phys_bs *= 1 + le16_to_cpu(id->npwg);
1826                 /* NOWS = Namespace Optimal Write Size */
1827                 io_opt *= 1 + le16_to_cpu(id->nows);
1828         }
1829
1830         blk_queue_logical_block_size(disk->queue, bs);
1831         /*
1832          * Linux filesystems assume writing a single physical block is
1833          * an atomic operation. Hence limit the physical block size to the
1834          * value of the Atomic Write Unit Power Fail parameter.
1835          */
1836         blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1837         blk_queue_io_min(disk->queue, phys_bs);
1838         blk_queue_io_opt(disk->queue, io_opt);
1839
1840         if (ns->ms && !ns->ext &&
1841             (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1842                 nvme_init_integrity(disk, ns->ms, ns->pi_type);
1843         if ((ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk)) ||
1844             ns->lba_shift > PAGE_SHIFT)
1845                 capacity = 0;
1846
1847         set_capacity_revalidate_and_notify(disk, capacity, false);
1848
1849         nvme_config_discard(disk, ns);
1850         nvme_config_write_zeroes(disk, ns);
1851
1852         if (id->nsattr & (1 << 0))
1853                 set_disk_ro(disk, true);
1854         else
1855                 set_disk_ro(disk, false);
1856
1857         blk_mq_unfreeze_queue(disk->queue);
1858 }
1859
1860 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1861 {
1862         struct nvme_ns *ns = disk->private_data;
1863
1864         /*
1865          * If identify namespace failed, use default 512 byte block size so
1866          * block layer can use before failing read/write for 0 capacity.
1867          */
1868         ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1869         if (ns->lba_shift == 0)
1870                 ns->lba_shift = 9;
1871         ns->noiob = le16_to_cpu(id->noiob);
1872         ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1873         ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1874         /* the PI implementation requires metadata equal t10 pi tuple size */
1875         if (ns->ms == sizeof(struct t10_pi_tuple))
1876                 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1877         else
1878                 ns->pi_type = 0;
1879
1880         if (ns->noiob)
1881                 nvme_set_chunk_size(ns);
1882         nvme_update_disk_info(disk, ns, id);
1883 #ifdef CONFIG_NVME_MULTIPATH
1884         if (ns->head->disk) {
1885                 nvme_update_disk_info(ns->head->disk, ns, id);
1886                 blk_queue_stack_limits(ns->head->disk->queue, ns->queue);
1887                 revalidate_disk(ns->head->disk);
1888         }
1889 #endif
1890 }
1891
1892 static int nvme_revalidate_disk(struct gendisk *disk)
1893 {
1894         struct nvme_ns *ns = disk->private_data;
1895         struct nvme_ctrl *ctrl = ns->ctrl;
1896         struct nvme_id_ns *id;
1897         struct nvme_ns_ids ids;
1898         int ret = 0;
1899
1900         if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1901                 set_capacity(disk, 0);
1902                 return -ENODEV;
1903         }
1904
1905         ret = nvme_identify_ns(ctrl, ns->head->ns_id, &id);
1906         if (ret)
1907                 goto out;
1908
1909         if (id->ncap == 0) {
1910                 ret = -ENODEV;
1911                 goto free_id;
1912         }
1913
1914         __nvme_revalidate_disk(disk, id);
1915         ret = nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids);
1916         if (ret)
1917                 goto free_id;
1918
1919         if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) {
1920                 dev_err(ctrl->device,
1921                         "identifiers changed for nsid %d\n", ns->head->ns_id);
1922                 ret = -ENODEV;
1923         }
1924
1925 free_id:
1926         kfree(id);
1927 out:
1928         /*
1929          * Only fail the function if we got a fatal error back from the
1930          * device, otherwise ignore the error and just move on.
1931          */
1932         if (ret == -ENOMEM || (ret > 0 && !(ret & NVME_SC_DNR)))
1933                 ret = 0;
1934         else if (ret > 0)
1935                 ret = blk_status_to_errno(nvme_error_status(ret));
1936         return ret;
1937 }
1938
1939 static char nvme_pr_type(enum pr_type type)
1940 {
1941         switch (type) {
1942         case PR_WRITE_EXCLUSIVE:
1943                 return 1;
1944         case PR_EXCLUSIVE_ACCESS:
1945                 return 2;
1946         case PR_WRITE_EXCLUSIVE_REG_ONLY:
1947                 return 3;
1948         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1949                 return 4;
1950         case PR_WRITE_EXCLUSIVE_ALL_REGS:
1951                 return 5;
1952         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1953                 return 6;
1954         default:
1955                 return 0;
1956         }
1957 };
1958
1959 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1960                                 u64 key, u64 sa_key, u8 op)
1961 {
1962         struct nvme_ns_head *head = NULL;
1963         struct nvme_ns *ns;
1964         struct nvme_command c;
1965         int srcu_idx, ret;
1966         u8 data[16] = { 0, };
1967
1968         ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1969         if (unlikely(!ns))
1970                 return -EWOULDBLOCK;
1971
1972         put_unaligned_le64(key, &data[0]);
1973         put_unaligned_le64(sa_key, &data[8]);
1974
1975         memset(&c, 0, sizeof(c));
1976         c.common.opcode = op;
1977         c.common.nsid = cpu_to_le32(ns->head->ns_id);
1978         c.common.cdw10 = cpu_to_le32(cdw10);
1979
1980         ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1981         nvme_put_ns_from_disk(head, srcu_idx);
1982         return ret;
1983 }
1984
1985 static int nvme_pr_register(struct block_device *bdev, u64 old,
1986                 u64 new, unsigned flags)
1987 {
1988         u32 cdw10;
1989
1990         if (flags & ~PR_FL_IGNORE_KEY)
1991                 return -EOPNOTSUPP;
1992
1993         cdw10 = old ? 2 : 0;
1994         cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1995         cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1996         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1997 }
1998
1999 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2000                 enum pr_type type, unsigned flags)
2001 {
2002         u32 cdw10;
2003
2004         if (flags & ~PR_FL_IGNORE_KEY)
2005                 return -EOPNOTSUPP;
2006
2007         cdw10 = nvme_pr_type(type) << 8;
2008         cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2009         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2010 }
2011
2012 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2013                 enum pr_type type, bool abort)
2014 {
2015         u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2016         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2017 }
2018
2019 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2020 {
2021         u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2022         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2023 }
2024
2025 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2026 {
2027         u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2028         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2029 }
2030
2031 static const struct pr_ops nvme_pr_ops = {
2032         .pr_register    = nvme_pr_register,
2033         .pr_reserve     = nvme_pr_reserve,
2034         .pr_release     = nvme_pr_release,
2035         .pr_preempt     = nvme_pr_preempt,
2036         .pr_clear       = nvme_pr_clear,
2037 };
2038
2039 #ifdef CONFIG_BLK_SED_OPAL
2040 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2041                 bool send)
2042 {
2043         struct nvme_ctrl *ctrl = data;
2044         struct nvme_command cmd;
2045
2046         memset(&cmd, 0, sizeof(cmd));
2047         if (send)
2048                 cmd.common.opcode = nvme_admin_security_send;
2049         else
2050                 cmd.common.opcode = nvme_admin_security_recv;
2051         cmd.common.nsid = 0;
2052         cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2053         cmd.common.cdw11 = cpu_to_le32(len);
2054
2055         return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2056                                       ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false);
2057 }
2058 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2059 #endif /* CONFIG_BLK_SED_OPAL */
2060
2061 static const struct block_device_operations nvme_fops = {
2062         .owner          = THIS_MODULE,
2063         .ioctl          = nvme_ioctl,
2064         .compat_ioctl   = nvme_compat_ioctl,
2065         .open           = nvme_open,
2066         .release        = nvme_release,
2067         .getgeo         = nvme_getgeo,
2068         .revalidate_disk= nvme_revalidate_disk,
2069         .pr_ops         = &nvme_pr_ops,
2070 };
2071
2072 #ifdef CONFIG_NVME_MULTIPATH
2073 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
2074 {
2075         struct nvme_ns_head *head = bdev->bd_disk->private_data;
2076
2077         if (!kref_get_unless_zero(&head->ref))
2078                 return -ENXIO;
2079         return 0;
2080 }
2081
2082 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
2083 {
2084         nvme_put_ns_head(disk->private_data);
2085 }
2086
2087 const struct block_device_operations nvme_ns_head_ops = {
2088         .owner          = THIS_MODULE,
2089         .open           = nvme_ns_head_open,
2090         .release        = nvme_ns_head_release,
2091         .ioctl          = nvme_ioctl,
2092         .compat_ioctl   = nvme_compat_ioctl,
2093         .getgeo         = nvme_getgeo,
2094         .pr_ops         = &nvme_pr_ops,
2095 };
2096 #endif /* CONFIG_NVME_MULTIPATH */
2097
2098 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2099 {
2100         unsigned long timeout =
2101                 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2102         u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2103         int ret;
2104
2105         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2106                 if (csts == ~0)
2107                         return -ENODEV;
2108                 if ((csts & NVME_CSTS_RDY) == bit)
2109                         break;
2110
2111                 usleep_range(1000, 2000);
2112                 if (fatal_signal_pending(current))
2113                         return -EINTR;
2114                 if (time_after(jiffies, timeout)) {
2115                         dev_err(ctrl->device,
2116                                 "Device not ready; aborting %s, CSTS=0x%x\n",
2117                                 enabled ? "initialisation" : "reset", csts);
2118                         return -ENODEV;
2119                 }
2120         }
2121
2122         return ret;
2123 }
2124
2125 /*
2126  * If the device has been passed off to us in an enabled state, just clear
2127  * the enabled bit.  The spec says we should set the 'shutdown notification
2128  * bits', but doing so may cause the device to complete commands to the
2129  * admin queue ... and we don't know what memory that might be pointing at!
2130  */
2131 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2132 {
2133         int ret;
2134
2135         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2136         ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2137
2138         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2139         if (ret)
2140                 return ret;
2141
2142         if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2143                 msleep(NVME_QUIRK_DELAY_AMOUNT);
2144
2145         return nvme_wait_ready(ctrl, ctrl->cap, false);
2146 }
2147 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2148
2149 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2150 {
2151         /*
2152          * Default to a 4K page size, with the intention to update this
2153          * path in the future to accomodate architectures with differing
2154          * kernel and IO page sizes.
2155          */
2156         unsigned dev_page_min, page_shift = 12;
2157         int ret;
2158
2159         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2160         if (ret) {
2161                 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2162                 return ret;
2163         }
2164         dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2165
2166         if (page_shift < dev_page_min) {
2167                 dev_err(ctrl->device,
2168                         "Minimum device page size %u too large for host (%u)\n",
2169                         1 << dev_page_min, 1 << page_shift);
2170                 return -ENODEV;
2171         }
2172
2173         ctrl->page_size = 1 << page_shift;
2174
2175         ctrl->ctrl_config = NVME_CC_CSS_NVM;
2176         ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
2177         ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2178         ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2179         ctrl->ctrl_config |= NVME_CC_ENABLE;
2180
2181         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2182         if (ret)
2183                 return ret;
2184         return nvme_wait_ready(ctrl, ctrl->cap, true);
2185 }
2186 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2187
2188 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2189 {
2190         unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2191         u32 csts;
2192         int ret;
2193
2194         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2195         ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2196
2197         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2198         if (ret)
2199                 return ret;
2200
2201         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2202                 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2203                         break;
2204
2205                 msleep(100);
2206                 if (fatal_signal_pending(current))
2207                         return -EINTR;
2208                 if (time_after(jiffies, timeout)) {
2209                         dev_err(ctrl->device,
2210                                 "Device shutdown incomplete; abort shutdown\n");
2211                         return -ENODEV;
2212                 }
2213         }
2214
2215         return ret;
2216 }
2217 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2218
2219 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
2220                 struct request_queue *q)
2221 {
2222         bool vwc = false;
2223
2224         if (ctrl->max_hw_sectors) {
2225                 u32 max_segments =
2226                         (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
2227
2228                 max_segments = min_not_zero(max_segments, ctrl->max_segments);
2229                 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
2230                 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
2231         }
2232         if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2233             is_power_of_2(ctrl->max_hw_sectors))
2234                 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
2235         blk_queue_virt_boundary(q, ctrl->page_size - 1);
2236         if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
2237                 vwc = true;
2238         blk_queue_write_cache(q, vwc, vwc);
2239 }
2240
2241 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2242 {
2243         __le64 ts;
2244         int ret;
2245
2246         if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2247                 return 0;
2248
2249         ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2250         ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2251                         NULL);
2252         if (ret)
2253                 dev_warn_once(ctrl->device,
2254                         "could not set timestamp (%d)\n", ret);
2255         return ret;
2256 }
2257
2258 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2259 {
2260         struct nvme_feat_host_behavior *host;
2261         int ret;
2262
2263         /* Don't bother enabling the feature if retry delay is not reported */
2264         if (!ctrl->crdt[0])
2265                 return 0;
2266
2267         host = kzalloc(sizeof(*host), GFP_KERNEL);
2268         if (!host)
2269                 return 0;
2270
2271         host->acre = NVME_ENABLE_ACRE;
2272         ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2273                                 host, sizeof(*host), NULL);
2274         kfree(host);
2275         return ret;
2276 }
2277
2278 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2279 {
2280         /*
2281          * APST (Autonomous Power State Transition) lets us program a
2282          * table of power state transitions that the controller will
2283          * perform automatically.  We configure it with a simple
2284          * heuristic: we are willing to spend at most 2% of the time
2285          * transitioning between power states.  Therefore, when running
2286          * in any given state, we will enter the next lower-power
2287          * non-operational state after waiting 50 * (enlat + exlat)
2288          * microseconds, as long as that state's exit latency is under
2289          * the requested maximum latency.
2290          *
2291          * We will not autonomously enter any non-operational state for
2292          * which the total latency exceeds ps_max_latency_us.  Users
2293          * can set ps_max_latency_us to zero to turn off APST.
2294          */
2295
2296         unsigned apste;
2297         struct nvme_feat_auto_pst *table;
2298         u64 max_lat_us = 0;
2299         int max_ps = -1;
2300         int ret;
2301
2302         /*
2303          * If APST isn't supported or if we haven't been initialized yet,
2304          * then don't do anything.
2305          */
2306         if (!ctrl->apsta)
2307                 return 0;
2308
2309         if (ctrl->npss > 31) {
2310                 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2311                 return 0;
2312         }
2313
2314         table = kzalloc(sizeof(*table), GFP_KERNEL);
2315         if (!table)
2316                 return 0;
2317
2318         if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2319                 /* Turn off APST. */
2320                 apste = 0;
2321                 dev_dbg(ctrl->device, "APST disabled\n");
2322         } else {
2323                 __le64 target = cpu_to_le64(0);
2324                 int state;
2325
2326                 /*
2327                  * Walk through all states from lowest- to highest-power.
2328                  * According to the spec, lower-numbered states use more
2329                  * power.  NPSS, despite the name, is the index of the
2330                  * lowest-power state, not the number of states.
2331                  */
2332                 for (state = (int)ctrl->npss; state >= 0; state--) {
2333                         u64 total_latency_us, exit_latency_us, transition_ms;
2334
2335                         if (target)
2336                                 table->entries[state] = target;
2337
2338                         /*
2339                          * Don't allow transitions to the deepest state
2340                          * if it's quirked off.
2341                          */
2342                         if (state == ctrl->npss &&
2343                             (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2344                                 continue;
2345
2346                         /*
2347                          * Is this state a useful non-operational state for
2348                          * higher-power states to autonomously transition to?
2349                          */
2350                         if (!(ctrl->psd[state].flags &
2351                               NVME_PS_FLAGS_NON_OP_STATE))
2352                                 continue;
2353
2354                         exit_latency_us =
2355                                 (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2356                         if (exit_latency_us > ctrl->ps_max_latency_us)
2357                                 continue;
2358
2359                         total_latency_us =
2360                                 exit_latency_us +
2361                                 le32_to_cpu(ctrl->psd[state].entry_lat);
2362
2363                         /*
2364                          * This state is good.  Use it as the APST idle
2365                          * target for higher power states.
2366                          */
2367                         transition_ms = total_latency_us + 19;
2368                         do_div(transition_ms, 20);
2369                         if (transition_ms > (1 << 24) - 1)
2370                                 transition_ms = (1 << 24) - 1;
2371
2372                         target = cpu_to_le64((state << 3) |
2373                                              (transition_ms << 8));
2374
2375                         if (max_ps == -1)
2376                                 max_ps = state;
2377
2378                         if (total_latency_us > max_lat_us)
2379                                 max_lat_us = total_latency_us;
2380                 }
2381
2382                 apste = 1;
2383
2384                 if (max_ps == -1) {
2385                         dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2386                 } else {
2387                         dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2388                                 max_ps, max_lat_us, (int)sizeof(*table), table);
2389                 }
2390         }
2391
2392         ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2393                                 table, sizeof(*table), NULL);
2394         if (ret)
2395                 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2396
2397         kfree(table);
2398         return ret;
2399 }
2400
2401 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2402 {
2403         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2404         u64 latency;
2405
2406         switch (val) {
2407         case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2408         case PM_QOS_LATENCY_ANY:
2409                 latency = U64_MAX;
2410                 break;
2411
2412         default:
2413                 latency = val;
2414         }
2415
2416         if (ctrl->ps_max_latency_us != latency) {
2417                 ctrl->ps_max_latency_us = latency;
2418                 nvme_configure_apst(ctrl);
2419         }
2420 }
2421
2422 struct nvme_core_quirk_entry {
2423         /*
2424          * NVMe model and firmware strings are padded with spaces.  For
2425          * simplicity, strings in the quirk table are padded with NULLs
2426          * instead.
2427          */
2428         u16 vid;
2429         const char *mn;
2430         const char *fr;
2431         unsigned long quirks;
2432 };
2433
2434 static const struct nvme_core_quirk_entry core_quirks[] = {
2435         {
2436                 /*
2437                  * This Toshiba device seems to die using any APST states.  See:
2438                  * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2439                  */
2440                 .vid = 0x1179,
2441                 .mn = "THNSF5256GPUK TOSHIBA",
2442                 .quirks = NVME_QUIRK_NO_APST,
2443         },
2444         {
2445                 /*
2446                  * This LiteON CL1-3D*-Q11 firmware version has a race
2447                  * condition associated with actions related to suspend to idle
2448                  * LiteON has resolved the problem in future firmware
2449                  */
2450                 .vid = 0x14a4,
2451                 .fr = "22301111",
2452                 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2453         }
2454 };
2455
2456 /* match is null-terminated but idstr is space-padded. */
2457 static bool string_matches(const char *idstr, const char *match, size_t len)
2458 {
2459         size_t matchlen;
2460
2461         if (!match)
2462                 return true;
2463
2464         matchlen = strlen(match);
2465         WARN_ON_ONCE(matchlen > len);
2466
2467         if (memcmp(idstr, match, matchlen))
2468                 return false;
2469
2470         for (; matchlen < len; matchlen++)
2471                 if (idstr[matchlen] != ' ')
2472                         return false;
2473
2474         return true;
2475 }
2476
2477 static bool quirk_matches(const struct nvme_id_ctrl *id,
2478                           const struct nvme_core_quirk_entry *q)
2479 {
2480         return q->vid == le16_to_cpu(id->vid) &&
2481                 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2482                 string_matches(id->fr, q->fr, sizeof(id->fr));
2483 }
2484
2485 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2486                 struct nvme_id_ctrl *id)
2487 {
2488         size_t nqnlen;
2489         int off;
2490
2491         if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2492                 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2493                 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2494                         strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2495                         return;
2496                 }
2497
2498                 if (ctrl->vs >= NVME_VS(1, 2, 1))
2499                         dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2500         }
2501
2502         /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2503         off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2504                         "nqn.2014.08.org.nvmexpress:%04x%04x",
2505                         le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2506         memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2507         off += sizeof(id->sn);
2508         memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2509         off += sizeof(id->mn);
2510         memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2511 }
2512
2513 static void nvme_release_subsystem(struct device *dev)
2514 {
2515         struct nvme_subsystem *subsys =
2516                 container_of(dev, struct nvme_subsystem, dev);
2517
2518         if (subsys->instance >= 0)
2519                 ida_simple_remove(&nvme_instance_ida, subsys->instance);
2520         kfree(subsys);
2521 }
2522
2523 static void nvme_destroy_subsystem(struct kref *ref)
2524 {
2525         struct nvme_subsystem *subsys =
2526                         container_of(ref, struct nvme_subsystem, ref);
2527
2528         mutex_lock(&nvme_subsystems_lock);
2529         list_del(&subsys->entry);
2530         mutex_unlock(&nvme_subsystems_lock);
2531
2532         ida_destroy(&subsys->ns_ida);
2533         device_del(&subsys->dev);
2534         put_device(&subsys->dev);
2535 }
2536
2537 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2538 {
2539         kref_put(&subsys->ref, nvme_destroy_subsystem);
2540 }
2541
2542 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2543 {
2544         struct nvme_subsystem *subsys;
2545
2546         lockdep_assert_held(&nvme_subsystems_lock);
2547
2548         /*
2549          * Fail matches for discovery subsystems. This results
2550          * in each discovery controller bound to a unique subsystem.
2551          * This avoids issues with validating controller values
2552          * that can only be true when there is a single unique subsystem.
2553          * There may be multiple and completely independent entities
2554          * that provide discovery controllers.
2555          */
2556         if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2557                 return NULL;
2558
2559         list_for_each_entry(subsys, &nvme_subsystems, entry) {
2560                 if (strcmp(subsys->subnqn, subsysnqn))
2561                         continue;
2562                 if (!kref_get_unless_zero(&subsys->ref))
2563                         continue;
2564                 return subsys;
2565         }
2566
2567         return NULL;
2568 }
2569
2570 #define SUBSYS_ATTR_RO(_name, _mode, _show)                     \
2571         struct device_attribute subsys_attr_##_name = \
2572                 __ATTR(_name, _mode, _show, NULL)
2573
2574 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2575                                     struct device_attribute *attr,
2576                                     char *buf)
2577 {
2578         struct nvme_subsystem *subsys =
2579                 container_of(dev, struct nvme_subsystem, dev);
2580
2581         return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2582 }
2583 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2584
2585 #define nvme_subsys_show_str_function(field)                            \
2586 static ssize_t subsys_##field##_show(struct device *dev,                \
2587                             struct device_attribute *attr, char *buf)   \
2588 {                                                                       \
2589         struct nvme_subsystem *subsys =                                 \
2590                 container_of(dev, struct nvme_subsystem, dev);          \
2591         return sprintf(buf, "%.*s\n",                                   \
2592                        (int)sizeof(subsys->field), subsys->field);      \
2593 }                                                                       \
2594 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2595
2596 nvme_subsys_show_str_function(model);
2597 nvme_subsys_show_str_function(serial);
2598 nvme_subsys_show_str_function(firmware_rev);
2599
2600 static struct attribute *nvme_subsys_attrs[] = {
2601         &subsys_attr_model.attr,
2602         &subsys_attr_serial.attr,
2603         &subsys_attr_firmware_rev.attr,
2604         &subsys_attr_subsysnqn.attr,
2605 #ifdef CONFIG_NVME_MULTIPATH
2606         &subsys_attr_iopolicy.attr,
2607 #endif
2608         NULL,
2609 };
2610
2611 static struct attribute_group nvme_subsys_attrs_group = {
2612         .attrs = nvme_subsys_attrs,
2613 };
2614
2615 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2616         &nvme_subsys_attrs_group,
2617         NULL,
2618 };
2619
2620 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2621                 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2622 {
2623         struct nvme_ctrl *tmp;
2624
2625         lockdep_assert_held(&nvme_subsystems_lock);
2626
2627         list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2628                 if (nvme_state_terminal(tmp))
2629                         continue;
2630
2631                 if (tmp->cntlid == ctrl->cntlid) {
2632                         dev_err(ctrl->device,
2633                                 "Duplicate cntlid %u with %s, rejecting\n",
2634                                 ctrl->cntlid, dev_name(tmp->device));
2635                         return false;
2636                 }
2637
2638                 if ((id->cmic & (1 << 1)) ||
2639                     (ctrl->opts && ctrl->opts->discovery_nqn))
2640                         continue;
2641
2642                 dev_err(ctrl->device,
2643                         "Subsystem does not support multiple controllers\n");
2644                 return false;
2645         }
2646
2647         return true;
2648 }
2649
2650 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2651 {
2652         struct nvme_subsystem *subsys, *found;
2653         int ret;
2654
2655         subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2656         if (!subsys)
2657                 return -ENOMEM;
2658
2659         subsys->instance = -1;
2660         mutex_init(&subsys->lock);
2661         kref_init(&subsys->ref);
2662         INIT_LIST_HEAD(&subsys->ctrls);
2663         INIT_LIST_HEAD(&subsys->nsheads);
2664         nvme_init_subnqn(subsys, ctrl, id);
2665         memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2666         memcpy(subsys->model, id->mn, sizeof(subsys->model));
2667         memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2668         subsys->vendor_id = le16_to_cpu(id->vid);
2669         subsys->cmic = id->cmic;
2670         subsys->awupf = le16_to_cpu(id->awupf);
2671 #ifdef CONFIG_NVME_MULTIPATH
2672         subsys->iopolicy = NVME_IOPOLICY_NUMA;
2673 #endif
2674
2675         subsys->dev.class = nvme_subsys_class;
2676         subsys->dev.release = nvme_release_subsystem;
2677         subsys->dev.groups = nvme_subsys_attrs_groups;
2678         dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2679         device_initialize(&subsys->dev);
2680
2681         mutex_lock(&nvme_subsystems_lock);
2682         found = __nvme_find_get_subsystem(subsys->subnqn);
2683         if (found) {
2684                 put_device(&subsys->dev);
2685                 subsys = found;
2686
2687                 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2688                         ret = -EINVAL;
2689                         goto out_put_subsystem;
2690                 }
2691         } else {
2692                 ret = device_add(&subsys->dev);
2693                 if (ret) {
2694                         dev_err(ctrl->device,
2695                                 "failed to register subsystem device.\n");
2696                         put_device(&subsys->dev);
2697                         goto out_unlock;
2698                 }
2699                 ida_init(&subsys->ns_ida);
2700                 list_add_tail(&subsys->entry, &nvme_subsystems);
2701         }
2702
2703         ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2704                                 dev_name(ctrl->device));
2705         if (ret) {
2706                 dev_err(ctrl->device,
2707                         "failed to create sysfs link from subsystem.\n");
2708                 goto out_put_subsystem;
2709         }
2710
2711         if (!found)
2712                 subsys->instance = ctrl->instance;
2713         ctrl->subsys = subsys;
2714         list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2715         mutex_unlock(&nvme_subsystems_lock);
2716         return 0;
2717
2718 out_put_subsystem:
2719         nvme_put_subsystem(subsys);
2720 out_unlock:
2721         mutex_unlock(&nvme_subsystems_lock);
2722         return ret;
2723 }
2724
2725 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp,
2726                 void *log, size_t size, u64 offset)
2727 {
2728         struct nvme_command c = { };
2729         unsigned long dwlen = size / 4 - 1;
2730
2731         c.get_log_page.opcode = nvme_admin_get_log_page;
2732         c.get_log_page.nsid = cpu_to_le32(nsid);
2733         c.get_log_page.lid = log_page;
2734         c.get_log_page.lsp = lsp;
2735         c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2736         c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2737         c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2738         c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2739
2740         return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2741 }
2742
2743 static int nvme_get_effects_log(struct nvme_ctrl *ctrl)
2744 {
2745         int ret;
2746
2747         if (!ctrl->effects)
2748                 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2749
2750         if (!ctrl->effects)
2751                 return 0;
2752
2753         ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0,
2754                         ctrl->effects, sizeof(*ctrl->effects), 0);
2755         if (ret) {
2756                 kfree(ctrl->effects);
2757                 ctrl->effects = NULL;
2758         }
2759         return ret;
2760 }
2761
2762 /*
2763  * Initialize the cached copies of the Identify data and various controller
2764  * register in our nvme_ctrl structure.  This should be called as soon as
2765  * the admin queue is fully up and running.
2766  */
2767 int nvme_init_identify(struct nvme_ctrl *ctrl)
2768 {
2769         struct nvme_id_ctrl *id;
2770         int ret, page_shift;
2771         u32 max_hw_sectors;
2772         bool prev_apst_enabled;
2773
2774         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2775         if (ret) {
2776                 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2777                 return ret;
2778         }
2779         page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2780         ctrl->sqsize = min_t(int, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
2781
2782         if (ctrl->vs >= NVME_VS(1, 1, 0))
2783                 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
2784
2785         ret = nvme_identify_ctrl(ctrl, &id);
2786         if (ret) {
2787                 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2788                 return -EIO;
2789         }
2790
2791         if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2792                 ret = nvme_get_effects_log(ctrl);
2793                 if (ret < 0)
2794                         goto out_free;
2795         }
2796
2797         if (!(ctrl->ops->flags & NVME_F_FABRICS))
2798                 ctrl->cntlid = le16_to_cpu(id->cntlid);
2799
2800         if (!ctrl->identified) {
2801                 int i;
2802
2803                 ret = nvme_init_subsystem(ctrl, id);
2804                 if (ret)
2805                         goto out_free;
2806
2807                 /*
2808                  * Check for quirks.  Quirk can depend on firmware version,
2809                  * so, in principle, the set of quirks present can change
2810                  * across a reset.  As a possible future enhancement, we
2811                  * could re-scan for quirks every time we reinitialize
2812                  * the device, but we'd have to make sure that the driver
2813                  * behaves intelligently if the quirks change.
2814                  */
2815                 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2816                         if (quirk_matches(id, &core_quirks[i]))
2817                                 ctrl->quirks |= core_quirks[i].quirks;
2818                 }
2819         }
2820
2821         if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2822                 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2823                 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2824         }
2825
2826         ctrl->crdt[0] = le16_to_cpu(id->crdt1);
2827         ctrl->crdt[1] = le16_to_cpu(id->crdt2);
2828         ctrl->crdt[2] = le16_to_cpu(id->crdt3);
2829
2830         ctrl->oacs = le16_to_cpu(id->oacs);
2831         ctrl->oncs = le16_to_cpu(id->oncs);
2832         ctrl->mtfa = le16_to_cpu(id->mtfa);
2833         ctrl->oaes = le32_to_cpu(id->oaes);
2834         ctrl->wctemp = le16_to_cpu(id->wctemp);
2835         ctrl->cctemp = le16_to_cpu(id->cctemp);
2836
2837         atomic_set(&ctrl->abort_limit, id->acl + 1);
2838         ctrl->vwc = id->vwc;
2839         if (id->mdts)
2840                 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
2841         else
2842                 max_hw_sectors = UINT_MAX;
2843         ctrl->max_hw_sectors =
2844                 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2845
2846         nvme_set_queue_limits(ctrl, ctrl->admin_q);
2847         ctrl->sgls = le32_to_cpu(id->sgls);
2848         ctrl->kas = le16_to_cpu(id->kas);
2849         ctrl->max_namespaces = le32_to_cpu(id->mnan);
2850         ctrl->ctratt = le32_to_cpu(id->ctratt);
2851
2852         if (id->rtd3e) {
2853                 /* us -> s */
2854                 u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000;
2855
2856                 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2857                                                  shutdown_timeout, 60);
2858
2859                 if (ctrl->shutdown_timeout != shutdown_timeout)
2860                         dev_info(ctrl->device,
2861                                  "Shutdown timeout set to %u seconds\n",
2862                                  ctrl->shutdown_timeout);
2863         } else
2864                 ctrl->shutdown_timeout = shutdown_timeout;
2865
2866         ctrl->npss = id->npss;
2867         ctrl->apsta = id->apsta;
2868         prev_apst_enabled = ctrl->apst_enabled;
2869         if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2870                 if (force_apst && id->apsta) {
2871                         dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2872                         ctrl->apst_enabled = true;
2873                 } else {
2874                         ctrl->apst_enabled = false;
2875                 }
2876         } else {
2877                 ctrl->apst_enabled = id->apsta;
2878         }
2879         memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2880
2881         if (ctrl->ops->flags & NVME_F_FABRICS) {
2882                 ctrl->icdoff = le16_to_cpu(id->icdoff);
2883                 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2884                 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2885                 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2886
2887                 /*
2888                  * In fabrics we need to verify the cntlid matches the
2889                  * admin connect
2890                  */
2891                 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2892                         dev_err(ctrl->device,
2893                                 "Mismatching cntlid: Connect %u vs Identify "
2894                                 "%u, rejecting\n",
2895                                 ctrl->cntlid, le16_to_cpu(id->cntlid));
2896                         ret = -EINVAL;
2897                         goto out_free;
2898                 }
2899
2900                 if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
2901                         dev_err(ctrl->device,
2902                                 "keep-alive support is mandatory for fabrics\n");
2903                         ret = -EINVAL;
2904                         goto out_free;
2905                 }
2906         } else {
2907                 ctrl->hmpre = le32_to_cpu(id->hmpre);
2908                 ctrl->hmmin = le32_to_cpu(id->hmmin);
2909                 ctrl->hmminds = le32_to_cpu(id->hmminds);
2910                 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2911         }
2912
2913         ret = nvme_mpath_init(ctrl, id);
2914         kfree(id);
2915
2916         if (ret < 0)
2917                 return ret;
2918
2919         if (ctrl->apst_enabled && !prev_apst_enabled)
2920                 dev_pm_qos_expose_latency_tolerance(ctrl->device);
2921         else if (!ctrl->apst_enabled && prev_apst_enabled)
2922                 dev_pm_qos_hide_latency_tolerance(ctrl->device);
2923
2924         ret = nvme_configure_apst(ctrl);
2925         if (ret < 0)
2926                 return ret;
2927         
2928         ret = nvme_configure_timestamp(ctrl);
2929         if (ret < 0)
2930                 return ret;
2931
2932         ret = nvme_configure_directives(ctrl);
2933         if (ret < 0)
2934                 return ret;
2935
2936         ret = nvme_configure_acre(ctrl);
2937         if (ret < 0)
2938                 return ret;
2939
2940         if (!ctrl->identified)
2941                 nvme_hwmon_init(ctrl);
2942
2943         ctrl->identified = true;
2944
2945         return 0;
2946
2947 out_free:
2948         kfree(id);
2949         return ret;
2950 }
2951 EXPORT_SYMBOL_GPL(nvme_init_identify);
2952
2953 static int nvme_dev_open(struct inode *inode, struct file *file)
2954 {
2955         struct nvme_ctrl *ctrl =
2956                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
2957
2958         switch (ctrl->state) {
2959         case NVME_CTRL_LIVE:
2960                 break;
2961         default:
2962                 return -EWOULDBLOCK;
2963         }
2964
2965         file->private_data = ctrl;
2966         return 0;
2967 }
2968
2969 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
2970 {
2971         struct nvme_ns *ns;
2972         int ret;
2973
2974         down_read(&ctrl->namespaces_rwsem);
2975         if (list_empty(&ctrl->namespaces)) {
2976                 ret = -ENOTTY;
2977                 goto out_unlock;
2978         }
2979
2980         ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
2981         if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
2982                 dev_warn(ctrl->device,
2983                         "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
2984                 ret = -EINVAL;
2985                 goto out_unlock;
2986         }
2987
2988         dev_warn(ctrl->device,
2989                 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
2990         kref_get(&ns->kref);
2991         up_read(&ctrl->namespaces_rwsem);
2992
2993         ret = nvme_user_cmd(ctrl, ns, argp);
2994         nvme_put_ns(ns);
2995         return ret;
2996
2997 out_unlock:
2998         up_read(&ctrl->namespaces_rwsem);
2999         return ret;
3000 }
3001
3002 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
3003                 unsigned long arg)
3004 {
3005         struct nvme_ctrl *ctrl = file->private_data;
3006         void __user *argp = (void __user *)arg;
3007
3008         switch (cmd) {
3009         case NVME_IOCTL_ADMIN_CMD:
3010                 return nvme_user_cmd(ctrl, NULL, argp);
3011         case NVME_IOCTL_ADMIN64_CMD:
3012                 return nvme_user_cmd64(ctrl, NULL, argp);
3013         case NVME_IOCTL_IO_CMD:
3014                 return nvme_dev_user_cmd(ctrl, argp);
3015         case NVME_IOCTL_RESET:
3016                 dev_warn(ctrl->device, "resetting controller\n");
3017                 return nvme_reset_ctrl_sync(ctrl);
3018         case NVME_IOCTL_SUBSYS_RESET:
3019                 return nvme_reset_subsystem(ctrl);
3020         case NVME_IOCTL_RESCAN:
3021                 nvme_queue_scan(ctrl);
3022                 return 0;
3023         default:
3024                 return -ENOTTY;
3025         }
3026 }
3027
3028 static const struct file_operations nvme_dev_fops = {
3029         .owner          = THIS_MODULE,
3030         .open           = nvme_dev_open,
3031         .unlocked_ioctl = nvme_dev_ioctl,
3032         .compat_ioctl   = compat_ptr_ioctl,
3033 };
3034
3035 static ssize_t nvme_sysfs_reset(struct device *dev,
3036                                 struct device_attribute *attr, const char *buf,
3037                                 size_t count)
3038 {
3039         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3040         int ret;
3041
3042         ret = nvme_reset_ctrl_sync(ctrl);
3043         if (ret < 0)
3044                 return ret;
3045         return count;
3046 }
3047 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3048
3049 static ssize_t nvme_sysfs_rescan(struct device *dev,
3050                                 struct device_attribute *attr, const char *buf,
3051                                 size_t count)
3052 {
3053         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3054
3055         nvme_queue_scan(ctrl);
3056         return count;
3057 }
3058 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3059
3060 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3061 {
3062         struct gendisk *disk = dev_to_disk(dev);
3063
3064         if (disk->fops == &nvme_fops)
3065                 return nvme_get_ns_from_dev(dev)->head;
3066         else
3067                 return disk->private_data;
3068 }
3069
3070 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3071                 char *buf)
3072 {
3073         struct nvme_ns_head *head = dev_to_ns_head(dev);
3074         struct nvme_ns_ids *ids = &head->ids;
3075         struct nvme_subsystem *subsys = head->subsys;
3076         int serial_len = sizeof(subsys->serial);
3077         int model_len = sizeof(subsys->model);
3078
3079         if (!uuid_is_null(&ids->uuid))
3080                 return sprintf(buf, "uuid.%pU\n", &ids->uuid);
3081
3082         if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3083                 return sprintf(buf, "eui.%16phN\n", ids->nguid);
3084
3085         if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3086                 return sprintf(buf, "eui.%8phN\n", ids->eui64);
3087
3088         while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3089                                   subsys->serial[serial_len - 1] == '\0'))
3090                 serial_len--;
3091         while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3092                                  subsys->model[model_len - 1] == '\0'))
3093                 model_len--;
3094
3095         return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3096                 serial_len, subsys->serial, model_len, subsys->model,
3097                 head->ns_id);
3098 }
3099 static DEVICE_ATTR_RO(wwid);
3100
3101 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3102                 char *buf)
3103 {
3104         return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3105 }
3106 static DEVICE_ATTR_RO(nguid);
3107
3108 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3109                 char *buf)
3110 {
3111         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3112
3113         /* For backward compatibility expose the NGUID to userspace if
3114          * we have no UUID set
3115          */
3116         if (uuid_is_null(&ids->uuid)) {
3117                 printk_ratelimited(KERN_WARNING
3118                                    "No UUID available providing old NGUID\n");
3119                 return sprintf(buf, "%pU\n", ids->nguid);
3120         }
3121         return sprintf(buf, "%pU\n", &ids->uuid);
3122 }
3123 static DEVICE_ATTR_RO(uuid);
3124
3125 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3126                 char *buf)
3127 {
3128         return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3129 }
3130 static DEVICE_ATTR_RO(eui);
3131
3132 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3133                 char *buf)
3134 {
3135         return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3136 }
3137 static DEVICE_ATTR_RO(nsid);
3138
3139 static struct attribute *nvme_ns_id_attrs[] = {
3140         &dev_attr_wwid.attr,
3141         &dev_attr_uuid.attr,
3142         &dev_attr_nguid.attr,
3143         &dev_attr_eui.attr,
3144         &dev_attr_nsid.attr,
3145 #ifdef CONFIG_NVME_MULTIPATH
3146         &dev_attr_ana_grpid.attr,
3147         &dev_attr_ana_state.attr,
3148 #endif
3149         NULL,
3150 };
3151
3152 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3153                 struct attribute *a, int n)
3154 {
3155         struct device *dev = container_of(kobj, struct device, kobj);
3156         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3157
3158         if (a == &dev_attr_uuid.attr) {
3159                 if (uuid_is_null(&ids->uuid) &&
3160                     !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3161                         return 0;
3162         }
3163         if (a == &dev_attr_nguid.attr) {
3164                 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3165                         return 0;
3166         }
3167         if (a == &dev_attr_eui.attr) {
3168                 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3169                         return 0;
3170         }
3171 #ifdef CONFIG_NVME_MULTIPATH
3172         if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3173                 if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */
3174                         return 0;
3175                 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3176                         return 0;
3177         }
3178 #endif
3179         return a->mode;
3180 }
3181
3182 static const struct attribute_group nvme_ns_id_attr_group = {
3183         .attrs          = nvme_ns_id_attrs,
3184         .is_visible     = nvme_ns_id_attrs_are_visible,
3185 };
3186
3187 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3188         &nvme_ns_id_attr_group,
3189 #ifdef CONFIG_NVM
3190         &nvme_nvm_attr_group,
3191 #endif
3192         NULL,
3193 };
3194
3195 #define nvme_show_str_function(field)                                           \
3196 static ssize_t  field##_show(struct device *dev,                                \
3197                             struct device_attribute *attr, char *buf)           \
3198 {                                                                               \
3199         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3200         return sprintf(buf, "%.*s\n",                                           \
3201                 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field);         \
3202 }                                                                               \
3203 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3204
3205 nvme_show_str_function(model);
3206 nvme_show_str_function(serial);
3207 nvme_show_str_function(firmware_rev);
3208
3209 #define nvme_show_int_function(field)                                           \
3210 static ssize_t  field##_show(struct device *dev,                                \
3211                             struct device_attribute *attr, char *buf)           \
3212 {                                                                               \
3213         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3214         return sprintf(buf, "%d\n", ctrl->field);       \
3215 }                                                                               \
3216 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3217
3218 nvme_show_int_function(cntlid);
3219 nvme_show_int_function(numa_node);
3220 nvme_show_int_function(queue_count);
3221 nvme_show_int_function(sqsize);
3222
3223 static ssize_t nvme_sysfs_delete(struct device *dev,
3224                                 struct device_attribute *attr, const char *buf,
3225                                 size_t count)
3226 {
3227         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3228
3229         /* Can't delete non-created controllers */
3230         if (!ctrl->created)
3231                 return -EBUSY;
3232
3233         if (device_remove_file_self(dev, attr))
3234                 nvme_delete_ctrl_sync(ctrl);
3235         return count;
3236 }
3237 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3238
3239 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3240                                          struct device_attribute *attr,
3241                                          char *buf)
3242 {
3243         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3244
3245         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
3246 }
3247 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3248
3249 static ssize_t nvme_sysfs_show_state(struct device *dev,
3250                                      struct device_attribute *attr,
3251                                      char *buf)
3252 {
3253         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3254         static const char *const state_name[] = {
3255                 [NVME_CTRL_NEW]         = "new",
3256                 [NVME_CTRL_LIVE]        = "live",
3257                 [NVME_CTRL_RESETTING]   = "resetting",
3258                 [NVME_CTRL_CONNECTING]  = "connecting",
3259                 [NVME_CTRL_DELETING]    = "deleting",
3260                 [NVME_CTRL_DEAD]        = "dead",
3261         };
3262
3263         if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3264             state_name[ctrl->state])
3265                 return sprintf(buf, "%s\n", state_name[ctrl->state]);
3266
3267         return sprintf(buf, "unknown state\n");
3268 }
3269
3270 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3271
3272 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3273                                          struct device_attribute *attr,
3274                                          char *buf)
3275 {
3276         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3277
3278         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
3279 }
3280 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3281
3282 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3283                                         struct device_attribute *attr,
3284                                         char *buf)
3285 {
3286         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3287
3288         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->opts->host->nqn);
3289 }
3290 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3291
3292 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3293                                         struct device_attribute *attr,
3294                                         char *buf)
3295 {
3296         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3297
3298         return snprintf(buf, PAGE_SIZE, "%pU\n", &ctrl->opts->host->id);
3299 }
3300 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3301
3302 static ssize_t nvme_sysfs_show_address(struct device *dev,
3303                                          struct device_attribute *attr,
3304                                          char *buf)
3305 {
3306         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3307
3308         return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3309 }
3310 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3311
3312 static struct attribute *nvme_dev_attrs[] = {
3313         &dev_attr_reset_controller.attr,
3314         &dev_attr_rescan_controller.attr,
3315         &dev_attr_model.attr,
3316         &dev_attr_serial.attr,
3317         &dev_attr_firmware_rev.attr,
3318         &dev_attr_cntlid.attr,
3319         &dev_attr_delete_controller.attr,
3320         &dev_attr_transport.attr,
3321         &dev_attr_subsysnqn.attr,
3322         &dev_attr_address.attr,
3323         &dev_attr_state.attr,
3324         &dev_attr_numa_node.attr,
3325         &dev_attr_queue_count.attr,
3326         &dev_attr_sqsize.attr,
3327         &dev_attr_hostnqn.attr,
3328         &dev_attr_hostid.attr,
3329         NULL
3330 };
3331
3332 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3333                 struct attribute *a, int n)
3334 {
3335         struct device *dev = container_of(kobj, struct device, kobj);
3336         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3337
3338         if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3339                 return 0;
3340         if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3341                 return 0;
3342         if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3343                 return 0;
3344         if (a == &dev_attr_hostid.attr && !ctrl->opts)
3345                 return 0;
3346
3347         return a->mode;
3348 }
3349
3350 static struct attribute_group nvme_dev_attrs_group = {
3351         .attrs          = nvme_dev_attrs,
3352         .is_visible     = nvme_dev_attrs_are_visible,
3353 };
3354
3355 static const struct attribute_group *nvme_dev_attr_groups[] = {
3356         &nvme_dev_attrs_group,
3357         NULL,
3358 };
3359
3360 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3361                 unsigned nsid)
3362 {
3363         struct nvme_ns_head *h;
3364
3365         lockdep_assert_held(&subsys->lock);
3366
3367         list_for_each_entry(h, &subsys->nsheads, entry) {
3368                 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
3369                         return h;
3370         }
3371
3372         return NULL;
3373 }
3374
3375 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3376                 struct nvme_ns_head *new)
3377 {
3378         struct nvme_ns_head *h;
3379
3380         lockdep_assert_held(&subsys->lock);
3381
3382         list_for_each_entry(h, &subsys->nsheads, entry) {
3383                 if (nvme_ns_ids_valid(&new->ids) &&
3384                     !list_empty(&h->list) &&
3385                     nvme_ns_ids_equal(&new->ids, &h->ids))
3386                         return -EINVAL;
3387         }
3388
3389         return 0;
3390 }
3391
3392 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3393                 unsigned nsid, struct nvme_id_ns *id,
3394                 struct nvme_ns_ids *ids)
3395 {
3396         struct nvme_ns_head *head;
3397         size_t size = sizeof(*head);
3398         int ret = -ENOMEM;
3399
3400 #ifdef CONFIG_NVME_MULTIPATH
3401         size += num_possible_nodes() * sizeof(struct nvme_ns *);
3402 #endif
3403
3404         head = kzalloc(size, GFP_KERNEL);
3405         if (!head)
3406                 goto out;
3407         ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3408         if (ret < 0)
3409                 goto out_free_head;
3410         head->instance = ret;
3411         INIT_LIST_HEAD(&head->list);
3412         ret = init_srcu_struct(&head->srcu);
3413         if (ret)
3414                 goto out_ida_remove;
3415         head->subsys = ctrl->subsys;
3416         head->ns_id = nsid;
3417         head->ids = *ids;
3418         kref_init(&head->ref);
3419
3420         ret = __nvme_check_ids(ctrl->subsys, head);
3421         if (ret) {
3422                 dev_err(ctrl->device,
3423                         "duplicate IDs for nsid %d\n", nsid);
3424                 goto out_cleanup_srcu;
3425         }
3426
3427         ret = nvme_mpath_alloc_disk(ctrl, head);
3428         if (ret)
3429                 goto out_cleanup_srcu;
3430
3431         list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3432
3433         kref_get(&ctrl->subsys->ref);
3434
3435         return head;
3436 out_cleanup_srcu:
3437         cleanup_srcu_struct(&head->srcu);
3438 out_ida_remove:
3439         ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3440 out_free_head:
3441         kfree(head);
3442 out:
3443         if (ret > 0)
3444                 ret = blk_status_to_errno(nvme_error_status(ret));
3445         return ERR_PTR(ret);
3446 }
3447
3448 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3449                 struct nvme_id_ns *id)
3450 {
3451         struct nvme_ctrl *ctrl = ns->ctrl;
3452         bool is_shared = id->nmic & (1 << 0);
3453         struct nvme_ns_head *head = NULL;
3454         struct nvme_ns_ids ids;
3455         int ret = 0;
3456
3457         ret = nvme_report_ns_ids(ctrl, nsid, id, &ids);
3458         if (ret)
3459                 goto out;
3460
3461         mutex_lock(&ctrl->subsys->lock);
3462         if (is_shared)
3463                 head = nvme_find_ns_head(ctrl->subsys, nsid);
3464         if (!head) {
3465                 head = nvme_alloc_ns_head(ctrl, nsid, id, &ids);
3466                 if (IS_ERR(head)) {
3467                         ret = PTR_ERR(head);
3468                         goto out_unlock;
3469                 }
3470         } else {
3471                 if (!nvme_ns_ids_equal(&head->ids, &ids)) {
3472                         dev_err(ctrl->device,
3473                                 "IDs don't match for shared namespace %d\n",
3474                                         nsid);
3475                         ret = -EINVAL;
3476                         goto out_unlock;
3477                 }
3478         }
3479
3480         list_add_tail(&ns->siblings, &head->list);
3481         ns->head = head;
3482
3483 out_unlock:
3484         mutex_unlock(&ctrl->subsys->lock);
3485 out:
3486         if (ret > 0)
3487                 ret = blk_status_to_errno(nvme_error_status(ret));
3488         return ret;
3489 }
3490
3491 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3492 {
3493         struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3494         struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3495
3496         return nsa->head->ns_id - nsb->head->ns_id;
3497 }
3498
3499 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3500 {
3501         struct nvme_ns *ns, *ret = NULL;
3502
3503         down_read(&ctrl->namespaces_rwsem);
3504         list_for_each_entry(ns, &ctrl->namespaces, list) {
3505                 if (ns->head->ns_id == nsid) {
3506                         if (!kref_get_unless_zero(&ns->kref))
3507                                 continue;
3508                         ret = ns;
3509                         break;
3510                 }
3511                 if (ns->head->ns_id > nsid)
3512                         break;
3513         }
3514         up_read(&ctrl->namespaces_rwsem);
3515         return ret;
3516 }
3517
3518 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
3519 {
3520         struct streams_directive_params s;
3521         int ret;
3522
3523         if (!ctrl->nr_streams)
3524                 return 0;
3525
3526         ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
3527         if (ret)
3528                 return ret;
3529
3530         ns->sws = le32_to_cpu(s.sws);
3531         ns->sgs = le16_to_cpu(s.sgs);
3532
3533         if (ns->sws) {
3534                 unsigned int bs = 1 << ns->lba_shift;
3535
3536                 blk_queue_io_min(ns->queue, bs * ns->sws);
3537                 if (ns->sgs)
3538                         blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
3539         }
3540
3541         return 0;
3542 }
3543
3544 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3545 {
3546         struct nvme_ns *ns;
3547         struct gendisk *disk;
3548         struct nvme_id_ns *id;
3549         char disk_name[DISK_NAME_LEN];
3550         int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret;
3551
3552         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3553         if (!ns)
3554                 return;
3555
3556         ns->queue = blk_mq_init_queue(ctrl->tagset);
3557         if (IS_ERR(ns->queue))
3558                 goto out_free_ns;
3559
3560         if (ctrl->opts && ctrl->opts->data_digest)
3561                 ns->queue->backing_dev_info->capabilities
3562                         |= BDI_CAP_STABLE_WRITES;
3563
3564         blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3565         if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3566                 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3567
3568         ns->queue->queuedata = ns;
3569         ns->ctrl = ctrl;
3570
3571         kref_init(&ns->kref);
3572         ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
3573
3574         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
3575         nvme_set_queue_limits(ctrl, ns->queue);
3576
3577         ret = nvme_identify_ns(ctrl, nsid, &id);
3578         if (ret)
3579                 goto out_free_queue;
3580
3581         if (id->ncap == 0)      /* no namespace (legacy quirk) */
3582                 goto out_free_id;
3583
3584         ret = nvme_init_ns_head(ns, nsid, id);
3585         if (ret)
3586                 goto out_free_id;
3587         nvme_setup_streams_ns(ctrl, ns);
3588         nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3589
3590         disk = alloc_disk_node(0, node);
3591         if (!disk)
3592                 goto out_unlink_ns;
3593
3594         disk->fops = &nvme_fops;
3595         disk->private_data = ns;
3596         disk->queue = ns->queue;
3597         disk->flags = flags;
3598         memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3599         ns->disk = disk;
3600
3601         __nvme_revalidate_disk(disk, id);
3602
3603         if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3604                 ret = nvme_nvm_register(ns, disk_name, node);
3605                 if (ret) {
3606                         dev_warn(ctrl->device, "LightNVM init failure\n");
3607                         goto out_put_disk;
3608                 }
3609         }
3610
3611         down_write(&ctrl->namespaces_rwsem);
3612         list_add_tail(&ns->list, &ctrl->namespaces);
3613         up_write(&ctrl->namespaces_rwsem);
3614
3615         nvme_get_ctrl(ctrl);
3616
3617         device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3618
3619         nvme_mpath_add_disk(ns, id);
3620         nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3621         kfree(id);
3622
3623         return;
3624  out_put_disk:
3625         put_disk(ns->disk);
3626  out_unlink_ns:
3627         mutex_lock(&ctrl->subsys->lock);
3628         list_del_rcu(&ns->siblings);
3629         mutex_unlock(&ctrl->subsys->lock);
3630         nvme_put_ns_head(ns->head);
3631  out_free_id:
3632         kfree(id);
3633  out_free_queue:
3634         blk_cleanup_queue(ns->queue);
3635  out_free_ns:
3636         kfree(ns);
3637 }
3638
3639 static void nvme_ns_remove(struct nvme_ns *ns)
3640 {
3641         if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3642                 return;
3643
3644         nvme_fault_inject_fini(&ns->fault_inject);
3645
3646         mutex_lock(&ns->ctrl->subsys->lock);
3647         list_del_rcu(&ns->siblings);
3648         mutex_unlock(&ns->ctrl->subsys->lock);
3649         synchronize_rcu(); /* guarantee not available in head->list */
3650         nvme_mpath_clear_current_path(ns);
3651         synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3652
3653         if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
3654                 del_gendisk(ns->disk);
3655                 blk_cleanup_queue(ns->queue);
3656                 if (blk_get_integrity(ns->disk))
3657                         blk_integrity_unregister(ns->disk);
3658         }
3659
3660         down_write(&ns->ctrl->namespaces_rwsem);
3661         list_del_init(&ns->list);
3662         up_write(&ns->ctrl->namespaces_rwsem);
3663
3664         nvme_mpath_check_last_path(ns);
3665         nvme_put_ns(ns);
3666 }
3667
3668 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3669 {
3670         struct nvme_ns *ns;
3671
3672         ns = nvme_find_get_ns(ctrl, nsid);
3673         if (ns) {
3674                 if (ns->disk && revalidate_disk(ns->disk))
3675                         nvme_ns_remove(ns);
3676                 nvme_put_ns(ns);
3677         } else
3678                 nvme_alloc_ns(ctrl, nsid);
3679 }
3680
3681 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3682                                         unsigned nsid)
3683 {
3684         struct nvme_ns *ns, *next;
3685         LIST_HEAD(rm_list);
3686
3687         down_write(&ctrl->namespaces_rwsem);
3688         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3689                 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
3690                         list_move_tail(&ns->list, &rm_list);
3691         }
3692         up_write(&ctrl->namespaces_rwsem);
3693
3694         list_for_each_entry_safe(ns, next, &rm_list, list)
3695                 nvme_ns_remove(ns);
3696
3697 }
3698
3699 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
3700 {
3701         struct nvme_ns *ns;
3702         __le32 *ns_list;
3703         unsigned i, j, nsid, prev = 0;
3704         unsigned num_lists = DIV_ROUND_UP_ULL((u64)nn, 1024);
3705         int ret = 0;
3706
3707         ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3708         if (!ns_list)
3709                 return -ENOMEM;
3710
3711         for (i = 0; i < num_lists; i++) {
3712                 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
3713                 if (ret)
3714                         goto free;
3715
3716                 for (j = 0; j < min(nn, 1024U); j++) {
3717                         nsid = le32_to_cpu(ns_list[j]);
3718                         if (!nsid)
3719                                 goto out;
3720
3721                         nvme_validate_ns(ctrl, nsid);
3722
3723                         while (++prev < nsid) {
3724                                 ns = nvme_find_get_ns(ctrl, prev);
3725                                 if (ns) {
3726                                         nvme_ns_remove(ns);
3727                                         nvme_put_ns(ns);
3728                                 }
3729                         }
3730                 }
3731                 nn -= j;
3732         }
3733  out:
3734         nvme_remove_invalid_namespaces(ctrl, prev);
3735  free:
3736         kfree(ns_list);
3737         return ret;
3738 }
3739
3740 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
3741 {
3742         unsigned i;
3743
3744         for (i = 1; i <= nn; i++)
3745                 nvme_validate_ns(ctrl, i);
3746
3747         nvme_remove_invalid_namespaces(ctrl, nn);
3748 }
3749
3750 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
3751 {
3752         size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3753         __le32 *log;
3754         int error;
3755
3756         log = kzalloc(log_size, GFP_KERNEL);
3757         if (!log)
3758                 return;
3759
3760         /*
3761          * We need to read the log to clear the AEN, but we don't want to rely
3762          * on it for the changed namespace information as userspace could have
3763          * raced with us in reading the log page, which could cause us to miss
3764          * updates.
3765          */
3766         error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, log,
3767                         log_size, 0);
3768         if (error)
3769                 dev_warn(ctrl->device,
3770                         "reading changed ns log failed: %d\n", error);
3771
3772         kfree(log);
3773 }
3774
3775 static void nvme_scan_work(struct work_struct *work)
3776 {
3777         struct nvme_ctrl *ctrl =
3778                 container_of(work, struct nvme_ctrl, scan_work);
3779         struct nvme_id_ctrl *id;
3780         unsigned nn;
3781
3782         /* No tagset on a live ctrl means IO queues could not created */
3783         if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
3784                 return;
3785
3786         if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
3787                 dev_info(ctrl->device, "rescanning namespaces.\n");
3788                 nvme_clear_changed_ns_log(ctrl);
3789         }
3790
3791         if (nvme_identify_ctrl(ctrl, &id))
3792                 return;
3793
3794         mutex_lock(&ctrl->scan_lock);
3795         nn = le32_to_cpu(id->nn);
3796         if (ctrl->vs >= NVME_VS(1, 1, 0) &&
3797             !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
3798                 if (!nvme_scan_ns_list(ctrl, nn))
3799                         goto out_free_id;
3800         }
3801         nvme_scan_ns_sequential(ctrl, nn);
3802 out_free_id:
3803         mutex_unlock(&ctrl->scan_lock);
3804         kfree(id);
3805         down_write(&ctrl->namespaces_rwsem);
3806         list_sort(NULL, &ctrl->namespaces, ns_cmp);
3807         up_write(&ctrl->namespaces_rwsem);
3808 }
3809
3810 /*
3811  * This function iterates the namespace list unlocked to allow recovery from
3812  * controller failure. It is up to the caller to ensure the namespace list is
3813  * not modified by scan work while this function is executing.
3814  */
3815 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3816 {
3817         struct nvme_ns *ns, *next;
3818         LIST_HEAD(ns_list);
3819
3820         /*
3821          * make sure to requeue I/O to all namespaces as these
3822          * might result from the scan itself and must complete
3823          * for the scan_work to make progress
3824          */
3825         nvme_mpath_clear_ctrl_paths(ctrl);
3826
3827         /* prevent racing with ns scanning */
3828         flush_work(&ctrl->scan_work);
3829
3830         /*
3831          * The dead states indicates the controller was not gracefully
3832          * disconnected. In that case, we won't be able to flush any data while
3833          * removing the namespaces' disks; fail all the queues now to avoid
3834          * potentially having to clean up the failed sync later.
3835          */
3836         if (ctrl->state == NVME_CTRL_DEAD)
3837                 nvme_kill_queues(ctrl);
3838
3839         down_write(&ctrl->namespaces_rwsem);
3840         list_splice_init(&ctrl->namespaces, &ns_list);
3841         up_write(&ctrl->namespaces_rwsem);
3842
3843         list_for_each_entry_safe(ns, next, &ns_list, list)
3844                 nvme_ns_remove(ns);
3845 }
3846 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3847
3848 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
3849 {
3850         struct nvme_ctrl *ctrl =
3851                 container_of(dev, struct nvme_ctrl, ctrl_device);
3852         struct nvmf_ctrl_options *opts = ctrl->opts;
3853         int ret;
3854
3855         ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
3856         if (ret)
3857                 return ret;
3858
3859         if (opts) {
3860                 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
3861                 if (ret)
3862                         return ret;
3863
3864                 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
3865                                 opts->trsvcid ?: "none");
3866                 if (ret)
3867                         return ret;
3868
3869                 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
3870                                 opts->host_traddr ?: "none");
3871         }
3872         return ret;
3873 }
3874
3875 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
3876 {
3877         char *envp[2] = { NULL, NULL };
3878         u32 aen_result = ctrl->aen_result;
3879
3880         ctrl->aen_result = 0;
3881         if (!aen_result)
3882                 return;
3883
3884         envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
3885         if (!envp[0])
3886                 return;
3887         kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
3888         kfree(envp[0]);
3889 }
3890
3891 static void nvme_async_event_work(struct work_struct *work)
3892 {
3893         struct nvme_ctrl *ctrl =
3894                 container_of(work, struct nvme_ctrl, async_event_work);
3895
3896         nvme_aen_uevent(ctrl);
3897         ctrl->ops->submit_async_event(ctrl);
3898 }
3899
3900 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
3901 {
3902
3903         u32 csts;
3904
3905         if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
3906                 return false;
3907
3908         if (csts == ~0)
3909                 return false;
3910
3911         return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
3912 }
3913
3914 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
3915 {
3916         struct nvme_fw_slot_info_log *log;
3917
3918         log = kmalloc(sizeof(*log), GFP_KERNEL);
3919         if (!log)
3920                 return;
3921
3922         if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, log,
3923                         sizeof(*log), 0))
3924                 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
3925         kfree(log);
3926 }
3927
3928 static void nvme_fw_act_work(struct work_struct *work)
3929 {
3930         struct nvme_ctrl *ctrl = container_of(work,
3931                                 struct nvme_ctrl, fw_act_work);
3932         unsigned long fw_act_timeout;
3933
3934         if (ctrl->mtfa)
3935                 fw_act_timeout = jiffies +
3936                                 msecs_to_jiffies(ctrl->mtfa * 100);
3937         else
3938                 fw_act_timeout = jiffies +
3939                                 msecs_to_jiffies(admin_timeout * 1000);
3940
3941         nvme_stop_queues(ctrl);
3942         while (nvme_ctrl_pp_status(ctrl)) {
3943                 if (time_after(jiffies, fw_act_timeout)) {
3944                         dev_warn(ctrl->device,
3945                                 "Fw activation timeout, reset controller\n");
3946                         nvme_try_sched_reset(ctrl);
3947                         return;
3948                 }
3949                 msleep(100);
3950         }
3951
3952         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
3953                 return;
3954
3955         nvme_start_queues(ctrl);
3956         /* read FW slot information to clear the AER */
3957         nvme_get_fw_slot_info(ctrl);
3958 }
3959
3960 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
3961 {
3962         u32 aer_notice_type = (result & 0xff00) >> 8;
3963
3964         trace_nvme_async_event(ctrl, aer_notice_type);
3965
3966         switch (aer_notice_type) {
3967         case NVME_AER_NOTICE_NS_CHANGED:
3968                 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
3969                 nvme_queue_scan(ctrl);
3970                 break;
3971         case NVME_AER_NOTICE_FW_ACT_STARTING:
3972                 /*
3973                  * We are (ab)using the RESETTING state to prevent subsequent
3974                  * recovery actions from interfering with the controller's
3975                  * firmware activation.
3976                  */
3977                 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
3978                         queue_work(nvme_wq, &ctrl->fw_act_work);
3979                 break;
3980 #ifdef CONFIG_NVME_MULTIPATH
3981         case NVME_AER_NOTICE_ANA:
3982                 if (!ctrl->ana_log_buf)
3983                         break;
3984                 queue_work(nvme_wq, &ctrl->ana_work);
3985                 break;
3986 #endif
3987         case NVME_AER_NOTICE_DISC_CHANGED:
3988                 ctrl->aen_result = result;
3989                 break;
3990         default:
3991                 dev_warn(ctrl->device, "async event result %08x\n", result);
3992         }
3993 }
3994
3995 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
3996                 volatile union nvme_result *res)
3997 {
3998         u32 result = le32_to_cpu(res->u32);
3999         u32 aer_type = result & 0x07;
4000
4001         if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4002                 return;
4003
4004         switch (aer_type) {
4005         case NVME_AER_NOTICE:
4006                 nvme_handle_aen_notice(ctrl, result);
4007                 break;
4008         case NVME_AER_ERROR:
4009         case NVME_AER_SMART:
4010         case NVME_AER_CSS:
4011         case NVME_AER_VS:
4012                 trace_nvme_async_event(ctrl, aer_type);
4013                 ctrl->aen_result = result;
4014                 break;
4015         default:
4016                 break;
4017         }
4018         queue_work(nvme_wq, &ctrl->async_event_work);
4019 }
4020 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4021
4022 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4023 {
4024         nvme_mpath_stop(ctrl);
4025         nvme_stop_keep_alive(ctrl);
4026         flush_work(&ctrl->async_event_work);
4027         cancel_work_sync(&ctrl->fw_act_work);
4028 }
4029 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4030
4031 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4032 {
4033         if (ctrl->kato)
4034                 nvme_start_keep_alive(ctrl);
4035
4036         nvme_enable_aen(ctrl);
4037
4038         if (ctrl->queue_count > 1) {
4039                 nvme_queue_scan(ctrl);
4040                 nvme_start_queues(ctrl);
4041         }
4042         ctrl->created = true;
4043 }
4044 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4045
4046 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4047 {
4048         nvme_fault_inject_fini(&ctrl->fault_inject);
4049         dev_pm_qos_hide_latency_tolerance(ctrl->device);
4050         cdev_device_del(&ctrl->cdev, ctrl->device);
4051         nvme_put_ctrl(ctrl);
4052 }
4053 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4054
4055 static void nvme_free_ctrl(struct device *dev)
4056 {
4057         struct nvme_ctrl *ctrl =
4058                 container_of(dev, struct nvme_ctrl, ctrl_device);
4059         struct nvme_subsystem *subsys = ctrl->subsys;
4060
4061         if (subsys && ctrl->instance != subsys->instance)
4062                 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4063
4064         kfree(ctrl->effects);
4065         nvme_mpath_uninit(ctrl);
4066         __free_page(ctrl->discard_page);
4067
4068         if (subsys) {
4069                 mutex_lock(&nvme_subsystems_lock);
4070                 list_del(&ctrl->subsys_entry);
4071                 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4072                 mutex_unlock(&nvme_subsystems_lock);
4073         }
4074
4075         ctrl->ops->free_ctrl(ctrl);
4076
4077         if (subsys)
4078                 nvme_put_subsystem(subsys);
4079 }
4080
4081 /*
4082  * Initialize a NVMe controller structures.  This needs to be called during
4083  * earliest initialization so that we have the initialized structured around
4084  * during probing.
4085  */
4086 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4087                 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4088 {
4089         int ret;
4090
4091         ctrl->state = NVME_CTRL_NEW;
4092         spin_lock_init(&ctrl->lock);
4093         mutex_init(&ctrl->scan_lock);
4094         INIT_LIST_HEAD(&ctrl->namespaces);
4095         init_rwsem(&ctrl->namespaces_rwsem);
4096         ctrl->dev = dev;
4097         ctrl->ops = ops;
4098         ctrl->quirks = quirks;
4099         INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4100         INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4101         INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4102         INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4103         init_waitqueue_head(&ctrl->state_wq);
4104
4105         INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4106         memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4107         ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4108
4109         BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4110                         PAGE_SIZE);
4111         ctrl->discard_page = alloc_page(GFP_KERNEL);
4112         if (!ctrl->discard_page) {
4113                 ret = -ENOMEM;
4114                 goto out;
4115         }
4116
4117         ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4118         if (ret < 0)
4119                 goto out;
4120         ctrl->instance = ret;
4121
4122         device_initialize(&ctrl->ctrl_device);
4123         ctrl->device = &ctrl->ctrl_device;
4124         ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
4125         ctrl->device->class = nvme_class;
4126         ctrl->device->parent = ctrl->dev;
4127         ctrl->device->groups = nvme_dev_attr_groups;
4128         ctrl->device->release = nvme_free_ctrl;
4129         dev_set_drvdata(ctrl->device, ctrl);
4130         ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4131         if (ret)
4132                 goto out_release_instance;
4133
4134         nvme_get_ctrl(ctrl);
4135         cdev_init(&ctrl->cdev, &nvme_dev_fops);
4136         ctrl->cdev.owner = ops->module;
4137         ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4138         if (ret)
4139                 goto out_free_name;
4140
4141         /*
4142          * Initialize latency tolerance controls.  The sysfs files won't
4143          * be visible to userspace unless the device actually supports APST.
4144          */
4145         ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4146         dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4147                 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4148
4149         nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4150
4151         return 0;
4152 out_free_name:
4153         nvme_put_ctrl(ctrl);
4154         kfree_const(ctrl->device->kobj.name);
4155 out_release_instance:
4156         ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4157 out:
4158         if (ctrl->discard_page)
4159                 __free_page(ctrl->discard_page);
4160         return ret;
4161 }
4162 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4163
4164 /**
4165  * nvme_kill_queues(): Ends all namespace queues
4166  * @ctrl: the dead controller that needs to end
4167  *
4168  * Call this function when the driver determines it is unable to get the
4169  * controller in a state capable of servicing IO.
4170  */
4171 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4172 {
4173         struct nvme_ns *ns;
4174
4175         down_read(&ctrl->namespaces_rwsem);
4176
4177         /* Forcibly unquiesce queues to avoid blocking dispatch */
4178         if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4179                 blk_mq_unquiesce_queue(ctrl->admin_q);
4180
4181         list_for_each_entry(ns, &ctrl->namespaces, list)
4182                 nvme_set_queue_dying(ns);
4183
4184         up_read(&ctrl->namespaces_rwsem);
4185 }
4186 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4187
4188 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4189 {
4190         struct nvme_ns *ns;
4191
4192         down_read(&ctrl->namespaces_rwsem);
4193         list_for_each_entry(ns, &ctrl->namespaces, list)
4194                 blk_mq_unfreeze_queue(ns->queue);
4195         up_read(&ctrl->namespaces_rwsem);
4196 }
4197 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4198
4199 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4200 {
4201         struct nvme_ns *ns;
4202
4203         down_read(&ctrl->namespaces_rwsem);
4204         list_for_each_entry(ns, &ctrl->namespaces, list) {
4205                 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4206                 if (timeout <= 0)
4207                         break;
4208         }
4209         up_read(&ctrl->namespaces_rwsem);
4210 }
4211 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4212
4213 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4214 {
4215         struct nvme_ns *ns;
4216
4217         down_read(&ctrl->namespaces_rwsem);
4218         list_for_each_entry(ns, &ctrl->namespaces, list)
4219                 blk_mq_freeze_queue_wait(ns->queue);
4220         up_read(&ctrl->namespaces_rwsem);
4221 }
4222 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4223
4224 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4225 {
4226         struct nvme_ns *ns;
4227
4228         down_read(&ctrl->namespaces_rwsem);
4229         list_for_each_entry(ns, &ctrl->namespaces, list)
4230                 blk_freeze_queue_start(ns->queue);
4231         up_read(&ctrl->namespaces_rwsem);
4232 }
4233 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4234
4235 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4236 {
4237         struct nvme_ns *ns;
4238
4239         down_read(&ctrl->namespaces_rwsem);
4240         list_for_each_entry(ns, &ctrl->namespaces, list)
4241                 blk_mq_quiesce_queue(ns->queue);
4242         up_read(&ctrl->namespaces_rwsem);
4243 }
4244 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4245
4246 void nvme_start_queues(struct nvme_ctrl *ctrl)
4247 {
4248         struct nvme_ns *ns;
4249
4250         down_read(&ctrl->namespaces_rwsem);
4251         list_for_each_entry(ns, &ctrl->namespaces, list)
4252                 blk_mq_unquiesce_queue(ns->queue);
4253         up_read(&ctrl->namespaces_rwsem);
4254 }
4255 EXPORT_SYMBOL_GPL(nvme_start_queues);
4256
4257
4258 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4259 {
4260         struct nvme_ns *ns;
4261
4262         down_read(&ctrl->namespaces_rwsem);
4263         list_for_each_entry(ns, &ctrl->namespaces, list)
4264                 blk_sync_queue(ns->queue);
4265         up_read(&ctrl->namespaces_rwsem);
4266
4267         if (ctrl->admin_q)
4268                 blk_sync_queue(ctrl->admin_q);
4269 }
4270 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4271
4272 /*
4273  * Check we didn't inadvertently grow the command structure sizes:
4274  */
4275 static inline void _nvme_check_size(void)
4276 {
4277         BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4278         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4279         BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4280         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4281         BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4282         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4283         BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4284         BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4285         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4286         BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4287         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4288         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4289         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4290         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4291         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4292         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4293         BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4294 }
4295
4296
4297 static int __init nvme_core_init(void)
4298 {
4299         int result = -ENOMEM;
4300
4301         _nvme_check_size();
4302
4303         nvme_wq = alloc_workqueue("nvme-wq",
4304                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4305         if (!nvme_wq)
4306                 goto out;
4307
4308         nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4309                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4310         if (!nvme_reset_wq)
4311                 goto destroy_wq;
4312
4313         nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4314                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4315         if (!nvme_delete_wq)
4316                 goto destroy_reset_wq;
4317
4318         result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
4319         if (result < 0)
4320                 goto destroy_delete_wq;
4321
4322         nvme_class = class_create(THIS_MODULE, "nvme");
4323         if (IS_ERR(nvme_class)) {
4324                 result = PTR_ERR(nvme_class);
4325                 goto unregister_chrdev;
4326         }
4327         nvme_class->dev_uevent = nvme_class_uevent;
4328
4329         nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4330         if (IS_ERR(nvme_subsys_class)) {
4331                 result = PTR_ERR(nvme_subsys_class);
4332                 goto destroy_class;
4333         }
4334         return 0;
4335
4336 destroy_class:
4337         class_destroy(nvme_class);
4338 unregister_chrdev:
4339         unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4340 destroy_delete_wq:
4341         destroy_workqueue(nvme_delete_wq);
4342 destroy_reset_wq:
4343         destroy_workqueue(nvme_reset_wq);
4344 destroy_wq:
4345         destroy_workqueue(nvme_wq);
4346 out:
4347         return result;
4348 }
4349
4350 static void __exit nvme_core_exit(void)
4351 {
4352         class_destroy(nvme_subsys_class);
4353         class_destroy(nvme_class);
4354         unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4355         destroy_workqueue(nvme_delete_wq);
4356         destroy_workqueue(nvme_reset_wq);
4357         destroy_workqueue(nvme_wq);
4358         ida_destroy(&nvme_instance_ida);
4359 }
4360
4361 MODULE_LICENSE("GPL");
4362 MODULE_VERSION("1.0");
4363 module_init(nvme_core_init);
4364 module_exit(nvme_core_exit);