nvme: support ranged discard requests
[linux-block.git] / drivers / nvme / host / core.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <scsi/sg.h>
30 #include <asm/unaligned.h>
31
32 #include "nvme.h"
33 #include "fabrics.h"
34
35 #define NVME_MINORS             (1U << MINORBITS)
36
37 unsigned char admin_timeout = 60;
38 module_param(admin_timeout, byte, 0644);
39 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
40 EXPORT_SYMBOL_GPL(admin_timeout);
41
42 unsigned char nvme_io_timeout = 30;
43 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
44 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
45 EXPORT_SYMBOL_GPL(nvme_io_timeout);
46
47 unsigned char shutdown_timeout = 5;
48 module_param(shutdown_timeout, byte, 0644);
49 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
50
51 unsigned int nvme_max_retries = 5;
52 module_param_named(max_retries, nvme_max_retries, uint, 0644);
53 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
54 EXPORT_SYMBOL_GPL(nvme_max_retries);
55
56 static int nvme_char_major;
57 module_param(nvme_char_major, int, 0);
58
59 static LIST_HEAD(nvme_ctrl_list);
60 static DEFINE_SPINLOCK(dev_list_lock);
61
62 static struct class *nvme_class;
63
64 void nvme_cancel_request(struct request *req, void *data, bool reserved)
65 {
66         int status;
67
68         if (!blk_mq_request_started(req))
69                 return;
70
71         dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
72                                 "Cancelling I/O %d", req->tag);
73
74         status = NVME_SC_ABORT_REQ;
75         if (blk_queue_dying(req->q))
76                 status |= NVME_SC_DNR;
77         blk_mq_complete_request(req, status);
78 }
79 EXPORT_SYMBOL_GPL(nvme_cancel_request);
80
81 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
82                 enum nvme_ctrl_state new_state)
83 {
84         enum nvme_ctrl_state old_state;
85         bool changed = false;
86
87         spin_lock_irq(&ctrl->lock);
88
89         old_state = ctrl->state;
90         switch (new_state) {
91         case NVME_CTRL_LIVE:
92                 switch (old_state) {
93                 case NVME_CTRL_NEW:
94                 case NVME_CTRL_RESETTING:
95                 case NVME_CTRL_RECONNECTING:
96                         changed = true;
97                         /* FALLTHRU */
98                 default:
99                         break;
100                 }
101                 break;
102         case NVME_CTRL_RESETTING:
103                 switch (old_state) {
104                 case NVME_CTRL_NEW:
105                 case NVME_CTRL_LIVE:
106                 case NVME_CTRL_RECONNECTING:
107                         changed = true;
108                         /* FALLTHRU */
109                 default:
110                         break;
111                 }
112                 break;
113         case NVME_CTRL_RECONNECTING:
114                 switch (old_state) {
115                 case NVME_CTRL_LIVE:
116                         changed = true;
117                         /* FALLTHRU */
118                 default:
119                         break;
120                 }
121                 break;
122         case NVME_CTRL_DELETING:
123                 switch (old_state) {
124                 case NVME_CTRL_LIVE:
125                 case NVME_CTRL_RESETTING:
126                 case NVME_CTRL_RECONNECTING:
127                         changed = true;
128                         /* FALLTHRU */
129                 default:
130                         break;
131                 }
132                 break;
133         case NVME_CTRL_DEAD:
134                 switch (old_state) {
135                 case NVME_CTRL_DELETING:
136                         changed = true;
137                         /* FALLTHRU */
138                 default:
139                         break;
140                 }
141                 break;
142         default:
143                 break;
144         }
145
146         if (changed)
147                 ctrl->state = new_state;
148
149         spin_unlock_irq(&ctrl->lock);
150
151         return changed;
152 }
153 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
154
155 static void nvme_free_ns(struct kref *kref)
156 {
157         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
158
159         if (ns->ndev)
160                 nvme_nvm_unregister(ns);
161
162         if (ns->disk) {
163                 spin_lock(&dev_list_lock);
164                 ns->disk->private_data = NULL;
165                 spin_unlock(&dev_list_lock);
166         }
167
168         put_disk(ns->disk);
169         ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
170         nvme_put_ctrl(ns->ctrl);
171         kfree(ns);
172 }
173
174 static void nvme_put_ns(struct nvme_ns *ns)
175 {
176         kref_put(&ns->kref, nvme_free_ns);
177 }
178
179 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
180 {
181         struct nvme_ns *ns;
182
183         spin_lock(&dev_list_lock);
184         ns = disk->private_data;
185         if (ns) {
186                 if (!kref_get_unless_zero(&ns->kref))
187                         goto fail;
188                 if (!try_module_get(ns->ctrl->ops->module))
189                         goto fail_put_ns;
190         }
191         spin_unlock(&dev_list_lock);
192
193         return ns;
194
195 fail_put_ns:
196         kref_put(&ns->kref, nvme_free_ns);
197 fail:
198         spin_unlock(&dev_list_lock);
199         return NULL;
200 }
201
202 void nvme_requeue_req(struct request *req)
203 {
204         blk_mq_requeue_request(req, !blk_mq_queue_stopped(req->q));
205 }
206 EXPORT_SYMBOL_GPL(nvme_requeue_req);
207
208 struct request *nvme_alloc_request(struct request_queue *q,
209                 struct nvme_command *cmd, unsigned int flags, int qid)
210 {
211         unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
212         struct request *req;
213
214         if (qid == NVME_QID_ANY) {
215                 req = blk_mq_alloc_request(q, op, flags);
216         } else {
217                 req = blk_mq_alloc_request_hctx(q, op, flags,
218                                 qid ? qid - 1 : 0);
219         }
220         if (IS_ERR(req))
221                 return req;
222
223         req->cmd_flags |= REQ_FAILFAST_DRIVER;
224         nvme_req(req)->cmd = cmd;
225
226         return req;
227 }
228 EXPORT_SYMBOL_GPL(nvme_alloc_request);
229
230 static inline void nvme_setup_flush(struct nvme_ns *ns,
231                 struct nvme_command *cmnd)
232 {
233         memset(cmnd, 0, sizeof(*cmnd));
234         cmnd->common.opcode = nvme_cmd_flush;
235         cmnd->common.nsid = cpu_to_le32(ns->ns_id);
236 }
237
238 static inline int nvme_setup_discard(struct nvme_ns *ns, struct request *req,
239                 struct nvme_command *cmnd)
240 {
241         unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
242         struct nvme_dsm_range *range;
243         struct bio *bio;
244
245         range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC);
246         if (!range)
247                 return BLK_MQ_RQ_QUEUE_BUSY;
248
249         __rq_for_each_bio(bio, req) {
250                 u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
251                 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
252
253                 range[n].cattr = cpu_to_le32(0);
254                 range[n].nlb = cpu_to_le32(nlb);
255                 range[n].slba = cpu_to_le64(slba);
256                 n++;
257         }
258
259         if (WARN_ON_ONCE(n != segments)) {
260                 kfree(range);
261                 return BLK_MQ_RQ_QUEUE_ERROR;
262         }
263
264         memset(cmnd, 0, sizeof(*cmnd));
265         cmnd->dsm.opcode = nvme_cmd_dsm;
266         cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
267         cmnd->dsm.nr = segments - 1;
268         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
269
270         req->special_vec.bv_page = virt_to_page(range);
271         req->special_vec.bv_offset = offset_in_page(range);
272         req->special_vec.bv_len = sizeof(*range) * segments;
273         req->rq_flags |= RQF_SPECIAL_PAYLOAD;
274
275         return BLK_MQ_RQ_QUEUE_OK;
276 }
277
278 static inline void nvme_setup_rw(struct nvme_ns *ns, struct request *req,
279                 struct nvme_command *cmnd)
280 {
281         u16 control = 0;
282         u32 dsmgmt = 0;
283
284         if (req->cmd_flags & REQ_FUA)
285                 control |= NVME_RW_FUA;
286         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
287                 control |= NVME_RW_LR;
288
289         if (req->cmd_flags & REQ_RAHEAD)
290                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
291
292         memset(cmnd, 0, sizeof(*cmnd));
293         cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
294         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
295         cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
296         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
297
298         if (ns->ms) {
299                 switch (ns->pi_type) {
300                 case NVME_NS_DPS_PI_TYPE3:
301                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
302                         break;
303                 case NVME_NS_DPS_PI_TYPE1:
304                 case NVME_NS_DPS_PI_TYPE2:
305                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
306                                         NVME_RW_PRINFO_PRCHK_REF;
307                         cmnd->rw.reftag = cpu_to_le32(
308                                         nvme_block_nr(ns, blk_rq_pos(req)));
309                         break;
310                 }
311                 if (!blk_integrity_rq(req))
312                         control |= NVME_RW_PRINFO_PRACT;
313         }
314
315         cmnd->rw.control = cpu_to_le16(control);
316         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
317 }
318
319 int nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
320                 struct nvme_command *cmd)
321 {
322         int ret = BLK_MQ_RQ_QUEUE_OK;
323
324         switch (req_op(req)) {
325         case REQ_OP_DRV_IN:
326         case REQ_OP_DRV_OUT:
327                 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
328                 break;
329         case REQ_OP_FLUSH:
330                 nvme_setup_flush(ns, cmd);
331                 break;
332         case REQ_OP_DISCARD:
333                 ret = nvme_setup_discard(ns, req, cmd);
334                 break;
335         case REQ_OP_READ:
336         case REQ_OP_WRITE:
337                 nvme_setup_rw(ns, req, cmd);
338                 break;
339         default:
340                 WARN_ON_ONCE(1);
341                 return BLK_MQ_RQ_QUEUE_ERROR;
342         }
343
344         cmd->common.command_id = req->tag;
345         return ret;
346 }
347 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
348
349 /*
350  * Returns 0 on success.  If the result is negative, it's a Linux error code;
351  * if the result is positive, it's an NVM Express status code
352  */
353 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
354                 union nvme_result *result, void *buffer, unsigned bufflen,
355                 unsigned timeout, int qid, int at_head, int flags)
356 {
357         struct request *req;
358         int ret;
359
360         req = nvme_alloc_request(q, cmd, flags, qid);
361         if (IS_ERR(req))
362                 return PTR_ERR(req);
363
364         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
365
366         if (buffer && bufflen) {
367                 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
368                 if (ret)
369                         goto out;
370         }
371
372         blk_execute_rq(req->q, NULL, req, at_head);
373         if (result)
374                 *result = nvme_req(req)->result;
375         ret = req->errors;
376  out:
377         blk_mq_free_request(req);
378         return ret;
379 }
380 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
381
382 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
383                 void *buffer, unsigned bufflen)
384 {
385         return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
386                         NVME_QID_ANY, 0, 0);
387 }
388 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
389
390 int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
391                 void __user *ubuffer, unsigned bufflen,
392                 void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
393                 u32 *result, unsigned timeout)
394 {
395         bool write = nvme_is_write(cmd);
396         struct nvme_ns *ns = q->queuedata;
397         struct gendisk *disk = ns ? ns->disk : NULL;
398         struct request *req;
399         struct bio *bio = NULL;
400         void *meta = NULL;
401         int ret;
402
403         req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
404         if (IS_ERR(req))
405                 return PTR_ERR(req);
406
407         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
408
409         if (ubuffer && bufflen) {
410                 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
411                                 GFP_KERNEL);
412                 if (ret)
413                         goto out;
414                 bio = req->bio;
415
416                 if (!disk)
417                         goto submit;
418                 bio->bi_bdev = bdget_disk(disk, 0);
419                 if (!bio->bi_bdev) {
420                         ret = -ENODEV;
421                         goto out_unmap;
422                 }
423
424                 if (meta_buffer && meta_len) {
425                         struct bio_integrity_payload *bip;
426
427                         meta = kmalloc(meta_len, GFP_KERNEL);
428                         if (!meta) {
429                                 ret = -ENOMEM;
430                                 goto out_unmap;
431                         }
432
433                         if (write) {
434                                 if (copy_from_user(meta, meta_buffer,
435                                                 meta_len)) {
436                                         ret = -EFAULT;
437                                         goto out_free_meta;
438                                 }
439                         }
440
441                         bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
442                         if (IS_ERR(bip)) {
443                                 ret = PTR_ERR(bip);
444                                 goto out_free_meta;
445                         }
446
447                         bip->bip_iter.bi_size = meta_len;
448                         bip->bip_iter.bi_sector = meta_seed;
449
450                         ret = bio_integrity_add_page(bio, virt_to_page(meta),
451                                         meta_len, offset_in_page(meta));
452                         if (ret != meta_len) {
453                                 ret = -ENOMEM;
454                                 goto out_free_meta;
455                         }
456                 }
457         }
458  submit:
459         blk_execute_rq(req->q, disk, req, 0);
460         ret = req->errors;
461         if (result)
462                 *result = le32_to_cpu(nvme_req(req)->result.u32);
463         if (meta && !ret && !write) {
464                 if (copy_to_user(meta_buffer, meta, meta_len))
465                         ret = -EFAULT;
466         }
467  out_free_meta:
468         kfree(meta);
469  out_unmap:
470         if (bio) {
471                 if (disk && bio->bi_bdev)
472                         bdput(bio->bi_bdev);
473                 blk_rq_unmap_user(bio);
474         }
475  out:
476         blk_mq_free_request(req);
477         return ret;
478 }
479
480 int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
481                 void __user *ubuffer, unsigned bufflen, u32 *result,
482                 unsigned timeout)
483 {
484         return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
485                         result, timeout);
486 }
487
488 static void nvme_keep_alive_end_io(struct request *rq, int error)
489 {
490         struct nvme_ctrl *ctrl = rq->end_io_data;
491
492         blk_mq_free_request(rq);
493
494         if (error) {
495                 dev_err(ctrl->device,
496                         "failed nvme_keep_alive_end_io error=%d\n", error);
497                 return;
498         }
499
500         schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
501 }
502
503 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
504 {
505         struct nvme_command c;
506         struct request *rq;
507
508         memset(&c, 0, sizeof(c));
509         c.common.opcode = nvme_admin_keep_alive;
510
511         rq = nvme_alloc_request(ctrl->admin_q, &c, BLK_MQ_REQ_RESERVED,
512                         NVME_QID_ANY);
513         if (IS_ERR(rq))
514                 return PTR_ERR(rq);
515
516         rq->timeout = ctrl->kato * HZ;
517         rq->end_io_data = ctrl;
518
519         blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
520
521         return 0;
522 }
523
524 static void nvme_keep_alive_work(struct work_struct *work)
525 {
526         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
527                         struct nvme_ctrl, ka_work);
528
529         if (nvme_keep_alive(ctrl)) {
530                 /* allocation failure, reset the controller */
531                 dev_err(ctrl->device, "keep-alive failed\n");
532                 ctrl->ops->reset_ctrl(ctrl);
533                 return;
534         }
535 }
536
537 void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
538 {
539         if (unlikely(ctrl->kato == 0))
540                 return;
541
542         INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
543         schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
544 }
545 EXPORT_SYMBOL_GPL(nvme_start_keep_alive);
546
547 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
548 {
549         if (unlikely(ctrl->kato == 0))
550                 return;
551
552         cancel_delayed_work_sync(&ctrl->ka_work);
553 }
554 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
555
556 int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
557 {
558         struct nvme_command c = { };
559         int error;
560
561         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
562         c.identify.opcode = nvme_admin_identify;
563         c.identify.cns = cpu_to_le32(NVME_ID_CNS_CTRL);
564
565         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
566         if (!*id)
567                 return -ENOMEM;
568
569         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
570                         sizeof(struct nvme_id_ctrl));
571         if (error)
572                 kfree(*id);
573         return error;
574 }
575
576 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
577 {
578         struct nvme_command c = { };
579
580         c.identify.opcode = nvme_admin_identify;
581         c.identify.cns = cpu_to_le32(NVME_ID_CNS_NS_ACTIVE_LIST);
582         c.identify.nsid = cpu_to_le32(nsid);
583         return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
584 }
585
586 int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
587                 struct nvme_id_ns **id)
588 {
589         struct nvme_command c = { };
590         int error;
591
592         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
593         c.identify.opcode = nvme_admin_identify,
594         c.identify.nsid = cpu_to_le32(nsid),
595
596         *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
597         if (!*id)
598                 return -ENOMEM;
599
600         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
601                         sizeof(struct nvme_id_ns));
602         if (error)
603                 kfree(*id);
604         return error;
605 }
606
607 int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
608                       void *buffer, size_t buflen, u32 *result)
609 {
610         struct nvme_command c;
611         union nvme_result res;
612         int ret;
613
614         memset(&c, 0, sizeof(c));
615         c.features.opcode = nvme_admin_get_features;
616         c.features.nsid = cpu_to_le32(nsid);
617         c.features.fid = cpu_to_le32(fid);
618
619         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, buffer, buflen, 0,
620                         NVME_QID_ANY, 0, 0);
621         if (ret >= 0 && result)
622                 *result = le32_to_cpu(res.u32);
623         return ret;
624 }
625
626 int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
627                       void *buffer, size_t buflen, u32 *result)
628 {
629         struct nvme_command c;
630         union nvme_result res;
631         int ret;
632
633         memset(&c, 0, sizeof(c));
634         c.features.opcode = nvme_admin_set_features;
635         c.features.fid = cpu_to_le32(fid);
636         c.features.dword11 = cpu_to_le32(dword11);
637
638         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
639                         buffer, buflen, 0, NVME_QID_ANY, 0, 0);
640         if (ret >= 0 && result)
641                 *result = le32_to_cpu(res.u32);
642         return ret;
643 }
644
645 int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
646 {
647         struct nvme_command c = { };
648         int error;
649
650         c.common.opcode = nvme_admin_get_log_page,
651         c.common.nsid = cpu_to_le32(0xFFFFFFFF),
652         c.common.cdw10[0] = cpu_to_le32(
653                         (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
654                          NVME_LOG_SMART),
655
656         *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
657         if (!*log)
658                 return -ENOMEM;
659
660         error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
661                         sizeof(struct nvme_smart_log));
662         if (error)
663                 kfree(*log);
664         return error;
665 }
666
667 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
668 {
669         u32 q_count = (*count - 1) | ((*count - 1) << 16);
670         u32 result;
671         int status, nr_io_queues;
672
673         status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
674                         &result);
675         if (status < 0)
676                 return status;
677
678         /*
679          * Degraded controllers might return an error when setting the queue
680          * count.  We still want to be able to bring them online and offer
681          * access to the admin queue, as that might be only way to fix them up.
682          */
683         if (status > 0) {
684                 dev_err(ctrl->dev, "Could not set queue count (%d)\n", status);
685                 *count = 0;
686         } else {
687                 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
688                 *count = min(*count, nr_io_queues);
689         }
690
691         return 0;
692 }
693 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
694
695 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
696 {
697         struct nvme_user_io io;
698         struct nvme_command c;
699         unsigned length, meta_len;
700         void __user *metadata;
701
702         if (copy_from_user(&io, uio, sizeof(io)))
703                 return -EFAULT;
704         if (io.flags)
705                 return -EINVAL;
706
707         switch (io.opcode) {
708         case nvme_cmd_write:
709         case nvme_cmd_read:
710         case nvme_cmd_compare:
711                 break;
712         default:
713                 return -EINVAL;
714         }
715
716         length = (io.nblocks + 1) << ns->lba_shift;
717         meta_len = (io.nblocks + 1) * ns->ms;
718         metadata = (void __user *)(uintptr_t)io.metadata;
719
720         if (ns->ext) {
721                 length += meta_len;
722                 meta_len = 0;
723         } else if (meta_len) {
724                 if ((io.metadata & 3) || !io.metadata)
725                         return -EINVAL;
726         }
727
728         memset(&c, 0, sizeof(c));
729         c.rw.opcode = io.opcode;
730         c.rw.flags = io.flags;
731         c.rw.nsid = cpu_to_le32(ns->ns_id);
732         c.rw.slba = cpu_to_le64(io.slba);
733         c.rw.length = cpu_to_le16(io.nblocks);
734         c.rw.control = cpu_to_le16(io.control);
735         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
736         c.rw.reftag = cpu_to_le32(io.reftag);
737         c.rw.apptag = cpu_to_le16(io.apptag);
738         c.rw.appmask = cpu_to_le16(io.appmask);
739
740         return __nvme_submit_user_cmd(ns->queue, &c,
741                         (void __user *)(uintptr_t)io.addr, length,
742                         metadata, meta_len, io.slba, NULL, 0);
743 }
744
745 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
746                         struct nvme_passthru_cmd __user *ucmd)
747 {
748         struct nvme_passthru_cmd cmd;
749         struct nvme_command c;
750         unsigned timeout = 0;
751         int status;
752
753         if (!capable(CAP_SYS_ADMIN))
754                 return -EACCES;
755         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
756                 return -EFAULT;
757         if (cmd.flags)
758                 return -EINVAL;
759
760         memset(&c, 0, sizeof(c));
761         c.common.opcode = cmd.opcode;
762         c.common.flags = cmd.flags;
763         c.common.nsid = cpu_to_le32(cmd.nsid);
764         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
765         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
766         c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
767         c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
768         c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
769         c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
770         c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
771         c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
772
773         if (cmd.timeout_ms)
774                 timeout = msecs_to_jiffies(cmd.timeout_ms);
775
776         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
777                         (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
778                         &cmd.result, timeout);
779         if (status >= 0) {
780                 if (put_user(cmd.result, &ucmd->result))
781                         return -EFAULT;
782         }
783
784         return status;
785 }
786
787 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
788                 unsigned int cmd, unsigned long arg)
789 {
790         struct nvme_ns *ns = bdev->bd_disk->private_data;
791
792         switch (cmd) {
793         case NVME_IOCTL_ID:
794                 force_successful_syscall_return();
795                 return ns->ns_id;
796         case NVME_IOCTL_ADMIN_CMD:
797                 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
798         case NVME_IOCTL_IO_CMD:
799                 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
800         case NVME_IOCTL_SUBMIT_IO:
801                 return nvme_submit_io(ns, (void __user *)arg);
802 #ifdef CONFIG_BLK_DEV_NVME_SCSI
803         case SG_GET_VERSION_NUM:
804                 return nvme_sg_get_version_num((void __user *)arg);
805         case SG_IO:
806                 return nvme_sg_io(ns, (void __user *)arg);
807 #endif
808         default:
809                 return -ENOTTY;
810         }
811 }
812
813 #ifdef CONFIG_COMPAT
814 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
815                         unsigned int cmd, unsigned long arg)
816 {
817         switch (cmd) {
818         case SG_IO:
819                 return -ENOIOCTLCMD;
820         }
821         return nvme_ioctl(bdev, mode, cmd, arg);
822 }
823 #else
824 #define nvme_compat_ioctl       NULL
825 #endif
826
827 static int nvme_open(struct block_device *bdev, fmode_t mode)
828 {
829         return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
830 }
831
832 static void nvme_release(struct gendisk *disk, fmode_t mode)
833 {
834         struct nvme_ns *ns = disk->private_data;
835
836         module_put(ns->ctrl->ops->module);
837         nvme_put_ns(ns);
838 }
839
840 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
841 {
842         /* some standard values */
843         geo->heads = 1 << 6;
844         geo->sectors = 1 << 5;
845         geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
846         return 0;
847 }
848
849 #ifdef CONFIG_BLK_DEV_INTEGRITY
850 static void nvme_init_integrity(struct nvme_ns *ns)
851 {
852         struct blk_integrity integrity;
853
854         memset(&integrity, 0, sizeof(integrity));
855         switch (ns->pi_type) {
856         case NVME_NS_DPS_PI_TYPE3:
857                 integrity.profile = &t10_pi_type3_crc;
858                 integrity.tag_size = sizeof(u16) + sizeof(u32);
859                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
860                 break;
861         case NVME_NS_DPS_PI_TYPE1:
862         case NVME_NS_DPS_PI_TYPE2:
863                 integrity.profile = &t10_pi_type1_crc;
864                 integrity.tag_size = sizeof(u16);
865                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
866                 break;
867         default:
868                 integrity.profile = NULL;
869                 break;
870         }
871         integrity.tuple_size = ns->ms;
872         blk_integrity_register(ns->disk, &integrity);
873         blk_queue_max_integrity_segments(ns->queue, 1);
874 }
875 #else
876 static void nvme_init_integrity(struct nvme_ns *ns)
877 {
878 }
879 #endif /* CONFIG_BLK_DEV_INTEGRITY */
880
881 static void nvme_config_discard(struct nvme_ns *ns)
882 {
883         struct nvme_ctrl *ctrl = ns->ctrl;
884         u32 logical_block_size = queue_logical_block_size(ns->queue);
885
886         BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
887                         NVME_DSM_MAX_RANGES);
888
889         if (ctrl->quirks & NVME_QUIRK_DISCARD_ZEROES)
890                 ns->queue->limits.discard_zeroes_data = 1;
891         else
892                 ns->queue->limits.discard_zeroes_data = 0;
893
894         ns->queue->limits.discard_alignment = logical_block_size;
895         ns->queue->limits.discard_granularity = logical_block_size;
896         blk_queue_max_discard_sectors(ns->queue, UINT_MAX);
897         blk_queue_max_discard_segments(ns->queue, NVME_DSM_MAX_RANGES);
898         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
899 }
900
901 static int nvme_revalidate_ns(struct nvme_ns *ns, struct nvme_id_ns **id)
902 {
903         if (nvme_identify_ns(ns->ctrl, ns->ns_id, id)) {
904                 dev_warn(ns->ctrl->dev, "%s: Identify failure\n", __func__);
905                 return -ENODEV;
906         }
907
908         if ((*id)->ncap == 0) {
909                 kfree(*id);
910                 return -ENODEV;
911         }
912
913         if (ns->ctrl->vs >= NVME_VS(1, 1, 0))
914                 memcpy(ns->eui, (*id)->eui64, sizeof(ns->eui));
915         if (ns->ctrl->vs >= NVME_VS(1, 2, 0))
916                 memcpy(ns->uuid, (*id)->nguid, sizeof(ns->uuid));
917
918         return 0;
919 }
920
921 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
922 {
923         struct nvme_ns *ns = disk->private_data;
924         u8 lbaf, pi_type;
925         u16 old_ms;
926         unsigned short bs;
927
928         old_ms = ns->ms;
929         lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
930         ns->lba_shift = id->lbaf[lbaf].ds;
931         ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
932         ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
933
934         /*
935          * If identify namespace failed, use default 512 byte block size so
936          * block layer can use before failing read/write for 0 capacity.
937          */
938         if (ns->lba_shift == 0)
939                 ns->lba_shift = 9;
940         bs = 1 << ns->lba_shift;
941         /* XXX: PI implementation requires metadata equal t10 pi tuple size */
942         pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
943                                         id->dps & NVME_NS_DPS_PI_MASK : 0;
944
945         blk_mq_freeze_queue(disk->queue);
946         if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
947                                 ns->ms != old_ms ||
948                                 bs != queue_logical_block_size(disk->queue) ||
949                                 (ns->ms && ns->ext)))
950                 blk_integrity_unregister(disk);
951
952         ns->pi_type = pi_type;
953         blk_queue_logical_block_size(ns->queue, bs);
954
955         if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
956                 nvme_init_integrity(ns);
957         if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
958                 set_capacity(disk, 0);
959         else
960                 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
961
962         if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
963                 nvme_config_discard(ns);
964         blk_mq_unfreeze_queue(disk->queue);
965 }
966
967 static int nvme_revalidate_disk(struct gendisk *disk)
968 {
969         struct nvme_ns *ns = disk->private_data;
970         struct nvme_id_ns *id = NULL;
971         int ret;
972
973         if (test_bit(NVME_NS_DEAD, &ns->flags)) {
974                 set_capacity(disk, 0);
975                 return -ENODEV;
976         }
977
978         ret = nvme_revalidate_ns(ns, &id);
979         if (ret)
980                 return ret;
981
982         __nvme_revalidate_disk(disk, id);
983         kfree(id);
984
985         return 0;
986 }
987
988 static char nvme_pr_type(enum pr_type type)
989 {
990         switch (type) {
991         case PR_WRITE_EXCLUSIVE:
992                 return 1;
993         case PR_EXCLUSIVE_ACCESS:
994                 return 2;
995         case PR_WRITE_EXCLUSIVE_REG_ONLY:
996                 return 3;
997         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
998                 return 4;
999         case PR_WRITE_EXCLUSIVE_ALL_REGS:
1000                 return 5;
1001         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1002                 return 6;
1003         default:
1004                 return 0;
1005         }
1006 };
1007
1008 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1009                                 u64 key, u64 sa_key, u8 op)
1010 {
1011         struct nvme_ns *ns = bdev->bd_disk->private_data;
1012         struct nvme_command c;
1013         u8 data[16] = { 0, };
1014
1015         put_unaligned_le64(key, &data[0]);
1016         put_unaligned_le64(sa_key, &data[8]);
1017
1018         memset(&c, 0, sizeof(c));
1019         c.common.opcode = op;
1020         c.common.nsid = cpu_to_le32(ns->ns_id);
1021         c.common.cdw10[0] = cpu_to_le32(cdw10);
1022
1023         return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1024 }
1025
1026 static int nvme_pr_register(struct block_device *bdev, u64 old,
1027                 u64 new, unsigned flags)
1028 {
1029         u32 cdw10;
1030
1031         if (flags & ~PR_FL_IGNORE_KEY)
1032                 return -EOPNOTSUPP;
1033
1034         cdw10 = old ? 2 : 0;
1035         cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1036         cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1037         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1038 }
1039
1040 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1041                 enum pr_type type, unsigned flags)
1042 {
1043         u32 cdw10;
1044
1045         if (flags & ~PR_FL_IGNORE_KEY)
1046                 return -EOPNOTSUPP;
1047
1048         cdw10 = nvme_pr_type(type) << 8;
1049         cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1050         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1051 }
1052
1053 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1054                 enum pr_type type, bool abort)
1055 {
1056         u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
1057         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1058 }
1059
1060 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1061 {
1062         u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1063         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1064 }
1065
1066 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1067 {
1068         u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
1069         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1070 }
1071
1072 static const struct pr_ops nvme_pr_ops = {
1073         .pr_register    = nvme_pr_register,
1074         .pr_reserve     = nvme_pr_reserve,
1075         .pr_release     = nvme_pr_release,
1076         .pr_preempt     = nvme_pr_preempt,
1077         .pr_clear       = nvme_pr_clear,
1078 };
1079
1080 static const struct block_device_operations nvme_fops = {
1081         .owner          = THIS_MODULE,
1082         .ioctl          = nvme_ioctl,
1083         .compat_ioctl   = nvme_compat_ioctl,
1084         .open           = nvme_open,
1085         .release        = nvme_release,
1086         .getgeo         = nvme_getgeo,
1087         .revalidate_disk= nvme_revalidate_disk,
1088         .pr_ops         = &nvme_pr_ops,
1089 };
1090
1091 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
1092 {
1093         unsigned long timeout =
1094                 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1095         u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
1096         int ret;
1097
1098         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1099                 if (csts == ~0)
1100                         return -ENODEV;
1101                 if ((csts & NVME_CSTS_RDY) == bit)
1102                         break;
1103
1104                 msleep(100);
1105                 if (fatal_signal_pending(current))
1106                         return -EINTR;
1107                 if (time_after(jiffies, timeout)) {
1108                         dev_err(ctrl->device,
1109                                 "Device not ready; aborting %s\n", enabled ?
1110                                                 "initialisation" : "reset");
1111                         return -ENODEV;
1112                 }
1113         }
1114
1115         return ret;
1116 }
1117
1118 /*
1119  * If the device has been passed off to us in an enabled state, just clear
1120  * the enabled bit.  The spec says we should set the 'shutdown notification
1121  * bits', but doing so may cause the device to complete commands to the
1122  * admin queue ... and we don't know what memory that might be pointing at!
1123  */
1124 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1125 {
1126         int ret;
1127
1128         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1129         ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1130
1131         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1132         if (ret)
1133                 return ret;
1134
1135         if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1136                 msleep(NVME_QUIRK_DELAY_AMOUNT);
1137
1138         return nvme_wait_ready(ctrl, cap, false);
1139 }
1140 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1141
1142 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1143 {
1144         /*
1145          * Default to a 4K page size, with the intention to update this
1146          * path in the future to accomodate architectures with differing
1147          * kernel and IO page sizes.
1148          */
1149         unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1150         int ret;
1151
1152         if (page_shift < dev_page_min) {
1153                 dev_err(ctrl->device,
1154                         "Minimum device page size %u too large for host (%u)\n",
1155                         1 << dev_page_min, 1 << page_shift);
1156                 return -ENODEV;
1157         }
1158
1159         ctrl->page_size = 1 << page_shift;
1160
1161         ctrl->ctrl_config = NVME_CC_CSS_NVM;
1162         ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1163         ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1164         ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1165         ctrl->ctrl_config |= NVME_CC_ENABLE;
1166
1167         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1168         if (ret)
1169                 return ret;
1170         return nvme_wait_ready(ctrl, cap, true);
1171 }
1172 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1173
1174 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1175 {
1176         unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies;
1177         u32 csts;
1178         int ret;
1179
1180         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1181         ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1182
1183         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1184         if (ret)
1185                 return ret;
1186
1187         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1188                 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1189                         break;
1190
1191                 msleep(100);
1192                 if (fatal_signal_pending(current))
1193                         return -EINTR;
1194                 if (time_after(jiffies, timeout)) {
1195                         dev_err(ctrl->device,
1196                                 "Device shutdown incomplete; abort shutdown\n");
1197                         return -ENODEV;
1198                 }
1199         }
1200
1201         return ret;
1202 }
1203 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1204
1205 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1206                 struct request_queue *q)
1207 {
1208         bool vwc = false;
1209
1210         if (ctrl->max_hw_sectors) {
1211                 u32 max_segments =
1212                         (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1213
1214                 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1215                 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1216         }
1217         if (ctrl->quirks & NVME_QUIRK_STRIPE_SIZE)
1218                 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
1219         blk_queue_virt_boundary(q, ctrl->page_size - 1);
1220         if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1221                 vwc = true;
1222         blk_queue_write_cache(q, vwc, vwc);
1223 }
1224
1225 /*
1226  * Initialize the cached copies of the Identify data and various controller
1227  * register in our nvme_ctrl structure.  This should be called as soon as
1228  * the admin queue is fully up and running.
1229  */
1230 int nvme_init_identify(struct nvme_ctrl *ctrl)
1231 {
1232         struct nvme_id_ctrl *id;
1233         u64 cap;
1234         int ret, page_shift;
1235         u32 max_hw_sectors;
1236
1237         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
1238         if (ret) {
1239                 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
1240                 return ret;
1241         }
1242
1243         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
1244         if (ret) {
1245                 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
1246                 return ret;
1247         }
1248         page_shift = NVME_CAP_MPSMIN(cap) + 12;
1249
1250         if (ctrl->vs >= NVME_VS(1, 1, 0))
1251                 ctrl->subsystem = NVME_CAP_NSSRC(cap);
1252
1253         ret = nvme_identify_ctrl(ctrl, &id);
1254         if (ret) {
1255                 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
1256                 return -EIO;
1257         }
1258
1259         ctrl->vid = le16_to_cpu(id->vid);
1260         ctrl->oncs = le16_to_cpup(&id->oncs);
1261         atomic_set(&ctrl->abort_limit, id->acl + 1);
1262         ctrl->vwc = id->vwc;
1263         ctrl->cntlid = le16_to_cpup(&id->cntlid);
1264         memcpy(ctrl->serial, id->sn, sizeof(id->sn));
1265         memcpy(ctrl->model, id->mn, sizeof(id->mn));
1266         memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
1267         if (id->mdts)
1268                 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
1269         else
1270                 max_hw_sectors = UINT_MAX;
1271         ctrl->max_hw_sectors =
1272                 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
1273
1274         nvme_set_queue_limits(ctrl, ctrl->admin_q);
1275         ctrl->sgls = le32_to_cpu(id->sgls);
1276         ctrl->kas = le16_to_cpu(id->kas);
1277
1278         if (ctrl->ops->is_fabrics) {
1279                 ctrl->icdoff = le16_to_cpu(id->icdoff);
1280                 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
1281                 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
1282                 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
1283
1284                 /*
1285                  * In fabrics we need to verify the cntlid matches the
1286                  * admin connect
1287                  */
1288                 if (ctrl->cntlid != le16_to_cpu(id->cntlid))
1289                         ret = -EINVAL;
1290
1291                 if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
1292                         dev_err(ctrl->dev,
1293                                 "keep-alive support is mandatory for fabrics\n");
1294                         ret = -EINVAL;
1295                 }
1296         } else {
1297                 ctrl->cntlid = le16_to_cpu(id->cntlid);
1298         }
1299
1300         kfree(id);
1301         return ret;
1302 }
1303 EXPORT_SYMBOL_GPL(nvme_init_identify);
1304
1305 static int nvme_dev_open(struct inode *inode, struct file *file)
1306 {
1307         struct nvme_ctrl *ctrl;
1308         int instance = iminor(inode);
1309         int ret = -ENODEV;
1310
1311         spin_lock(&dev_list_lock);
1312         list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
1313                 if (ctrl->instance != instance)
1314                         continue;
1315
1316                 if (!ctrl->admin_q) {
1317                         ret = -EWOULDBLOCK;
1318                         break;
1319                 }
1320                 if (!kref_get_unless_zero(&ctrl->kref))
1321                         break;
1322                 file->private_data = ctrl;
1323                 ret = 0;
1324                 break;
1325         }
1326         spin_unlock(&dev_list_lock);
1327
1328         return ret;
1329 }
1330
1331 static int nvme_dev_release(struct inode *inode, struct file *file)
1332 {
1333         nvme_put_ctrl(file->private_data);
1334         return 0;
1335 }
1336
1337 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
1338 {
1339         struct nvme_ns *ns;
1340         int ret;
1341
1342         mutex_lock(&ctrl->namespaces_mutex);
1343         if (list_empty(&ctrl->namespaces)) {
1344                 ret = -ENOTTY;
1345                 goto out_unlock;
1346         }
1347
1348         ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
1349         if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
1350                 dev_warn(ctrl->device,
1351                         "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
1352                 ret = -EINVAL;
1353                 goto out_unlock;
1354         }
1355
1356         dev_warn(ctrl->device,
1357                 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
1358         kref_get(&ns->kref);
1359         mutex_unlock(&ctrl->namespaces_mutex);
1360
1361         ret = nvme_user_cmd(ctrl, ns, argp);
1362         nvme_put_ns(ns);
1363         return ret;
1364
1365 out_unlock:
1366         mutex_unlock(&ctrl->namespaces_mutex);
1367         return ret;
1368 }
1369
1370 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
1371                 unsigned long arg)
1372 {
1373         struct nvme_ctrl *ctrl = file->private_data;
1374         void __user *argp = (void __user *)arg;
1375
1376         switch (cmd) {
1377         case NVME_IOCTL_ADMIN_CMD:
1378                 return nvme_user_cmd(ctrl, NULL, argp);
1379         case NVME_IOCTL_IO_CMD:
1380                 return nvme_dev_user_cmd(ctrl, argp);
1381         case NVME_IOCTL_RESET:
1382                 dev_warn(ctrl->device, "resetting controller\n");
1383                 return ctrl->ops->reset_ctrl(ctrl);
1384         case NVME_IOCTL_SUBSYS_RESET:
1385                 return nvme_reset_subsystem(ctrl);
1386         case NVME_IOCTL_RESCAN:
1387                 nvme_queue_scan(ctrl);
1388                 return 0;
1389         default:
1390                 return -ENOTTY;
1391         }
1392 }
1393
1394 static const struct file_operations nvme_dev_fops = {
1395         .owner          = THIS_MODULE,
1396         .open           = nvme_dev_open,
1397         .release        = nvme_dev_release,
1398         .unlocked_ioctl = nvme_dev_ioctl,
1399         .compat_ioctl   = nvme_dev_ioctl,
1400 };
1401
1402 static ssize_t nvme_sysfs_reset(struct device *dev,
1403                                 struct device_attribute *attr, const char *buf,
1404                                 size_t count)
1405 {
1406         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1407         int ret;
1408
1409         ret = ctrl->ops->reset_ctrl(ctrl);
1410         if (ret < 0)
1411                 return ret;
1412         return count;
1413 }
1414 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
1415
1416 static ssize_t nvme_sysfs_rescan(struct device *dev,
1417                                 struct device_attribute *attr, const char *buf,
1418                                 size_t count)
1419 {
1420         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1421
1422         nvme_queue_scan(ctrl);
1423         return count;
1424 }
1425 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
1426
1427 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
1428                                                                 char *buf)
1429 {
1430         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1431         struct nvme_ctrl *ctrl = ns->ctrl;
1432         int serial_len = sizeof(ctrl->serial);
1433         int model_len = sizeof(ctrl->model);
1434
1435         if (memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1436                 return sprintf(buf, "eui.%16phN\n", ns->uuid);
1437
1438         if (memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1439                 return sprintf(buf, "eui.%8phN\n", ns->eui);
1440
1441         while (ctrl->serial[serial_len - 1] == ' ')
1442                 serial_len--;
1443         while (ctrl->model[model_len - 1] == ' ')
1444                 model_len--;
1445
1446         return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid,
1447                 serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id);
1448 }
1449 static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);
1450
1451 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
1452                                                                 char *buf)
1453 {
1454         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1455         return sprintf(buf, "%pU\n", ns->uuid);
1456 }
1457 static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);
1458
1459 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
1460                                                                 char *buf)
1461 {
1462         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1463         return sprintf(buf, "%8phd\n", ns->eui);
1464 }
1465 static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);
1466
1467 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
1468                                                                 char *buf)
1469 {
1470         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1471         return sprintf(buf, "%d\n", ns->ns_id);
1472 }
1473 static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);
1474
1475 static struct attribute *nvme_ns_attrs[] = {
1476         &dev_attr_wwid.attr,
1477         &dev_attr_uuid.attr,
1478         &dev_attr_eui.attr,
1479         &dev_attr_nsid.attr,
1480         NULL,
1481 };
1482
1483 static umode_t nvme_ns_attrs_are_visible(struct kobject *kobj,
1484                 struct attribute *a, int n)
1485 {
1486         struct device *dev = container_of(kobj, struct device, kobj);
1487         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1488
1489         if (a == &dev_attr_uuid.attr) {
1490                 if (!memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1491                         return 0;
1492         }
1493         if (a == &dev_attr_eui.attr) {
1494                 if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1495                         return 0;
1496         }
1497         return a->mode;
1498 }
1499
1500 static const struct attribute_group nvme_ns_attr_group = {
1501         .attrs          = nvme_ns_attrs,
1502         .is_visible     = nvme_ns_attrs_are_visible,
1503 };
1504
1505 #define nvme_show_str_function(field)                                           \
1506 static ssize_t  field##_show(struct device *dev,                                \
1507                             struct device_attribute *attr, char *buf)           \
1508 {                                                                               \
1509         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
1510         return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field);   \
1511 }                                                                               \
1512 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1513
1514 #define nvme_show_int_function(field)                                           \
1515 static ssize_t  field##_show(struct device *dev,                                \
1516                             struct device_attribute *attr, char *buf)           \
1517 {                                                                               \
1518         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
1519         return sprintf(buf, "%d\n", ctrl->field);       \
1520 }                                                                               \
1521 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1522
1523 nvme_show_str_function(model);
1524 nvme_show_str_function(serial);
1525 nvme_show_str_function(firmware_rev);
1526 nvme_show_int_function(cntlid);
1527
1528 static ssize_t nvme_sysfs_delete(struct device *dev,
1529                                 struct device_attribute *attr, const char *buf,
1530                                 size_t count)
1531 {
1532         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1533
1534         if (device_remove_file_self(dev, attr))
1535                 ctrl->ops->delete_ctrl(ctrl);
1536         return count;
1537 }
1538 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
1539
1540 static ssize_t nvme_sysfs_show_transport(struct device *dev,
1541                                          struct device_attribute *attr,
1542                                          char *buf)
1543 {
1544         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1545
1546         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
1547 }
1548 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
1549
1550 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
1551                                          struct device_attribute *attr,
1552                                          char *buf)
1553 {
1554         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1555
1556         return snprintf(buf, PAGE_SIZE, "%s\n",
1557                         ctrl->ops->get_subsysnqn(ctrl));
1558 }
1559 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
1560
1561 static ssize_t nvme_sysfs_show_address(struct device *dev,
1562                                          struct device_attribute *attr,
1563                                          char *buf)
1564 {
1565         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1566
1567         return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
1568 }
1569 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
1570
1571 static struct attribute *nvme_dev_attrs[] = {
1572         &dev_attr_reset_controller.attr,
1573         &dev_attr_rescan_controller.attr,
1574         &dev_attr_model.attr,
1575         &dev_attr_serial.attr,
1576         &dev_attr_firmware_rev.attr,
1577         &dev_attr_cntlid.attr,
1578         &dev_attr_delete_controller.attr,
1579         &dev_attr_transport.attr,
1580         &dev_attr_subsysnqn.attr,
1581         &dev_attr_address.attr,
1582         NULL
1583 };
1584
1585 #define CHECK_ATTR(ctrl, a, name)               \
1586         if ((a) == &dev_attr_##name.attr &&     \
1587             !(ctrl)->ops->get_##name)           \
1588                 return 0
1589
1590 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
1591                 struct attribute *a, int n)
1592 {
1593         struct device *dev = container_of(kobj, struct device, kobj);
1594         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1595
1596         if (a == &dev_attr_delete_controller.attr) {
1597                 if (!ctrl->ops->delete_ctrl)
1598                         return 0;
1599         }
1600
1601         CHECK_ATTR(ctrl, a, subsysnqn);
1602         CHECK_ATTR(ctrl, a, address);
1603
1604         return a->mode;
1605 }
1606
1607 static struct attribute_group nvme_dev_attrs_group = {
1608         .attrs          = nvme_dev_attrs,
1609         .is_visible     = nvme_dev_attrs_are_visible,
1610 };
1611
1612 static const struct attribute_group *nvme_dev_attr_groups[] = {
1613         &nvme_dev_attrs_group,
1614         NULL,
1615 };
1616
1617 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
1618 {
1619         struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
1620         struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
1621
1622         return nsa->ns_id - nsb->ns_id;
1623 }
1624
1625 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1626 {
1627         struct nvme_ns *ns, *ret = NULL;
1628
1629         mutex_lock(&ctrl->namespaces_mutex);
1630         list_for_each_entry(ns, &ctrl->namespaces, list) {
1631                 if (ns->ns_id == nsid) {
1632                         kref_get(&ns->kref);
1633                         ret = ns;
1634                         break;
1635                 }
1636                 if (ns->ns_id > nsid)
1637                         break;
1638         }
1639         mutex_unlock(&ctrl->namespaces_mutex);
1640         return ret;
1641 }
1642
1643 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1644 {
1645         struct nvme_ns *ns;
1646         struct gendisk *disk;
1647         struct nvme_id_ns *id;
1648         char disk_name[DISK_NAME_LEN];
1649         int node = dev_to_node(ctrl->dev);
1650
1651         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
1652         if (!ns)
1653                 return;
1654
1655         ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
1656         if (ns->instance < 0)
1657                 goto out_free_ns;
1658
1659         ns->queue = blk_mq_init_queue(ctrl->tagset);
1660         if (IS_ERR(ns->queue))
1661                 goto out_release_instance;
1662         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1663         ns->queue->queuedata = ns;
1664         ns->ctrl = ctrl;
1665
1666         kref_init(&ns->kref);
1667         ns->ns_id = nsid;
1668         ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
1669
1670         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1671         nvme_set_queue_limits(ctrl, ns->queue);
1672
1673         sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
1674
1675         if (nvme_revalidate_ns(ns, &id))
1676                 goto out_free_queue;
1677
1678         if (nvme_nvm_ns_supported(ns, id) &&
1679                                 nvme_nvm_register(ns, disk_name, node)) {
1680                 dev_warn(ctrl->dev, "%s: LightNVM init failure\n", __func__);
1681                 goto out_free_id;
1682         }
1683
1684         disk = alloc_disk_node(0, node);
1685         if (!disk)
1686                 goto out_free_id;
1687
1688         disk->fops = &nvme_fops;
1689         disk->private_data = ns;
1690         disk->queue = ns->queue;
1691         disk->flags = GENHD_FL_EXT_DEVT;
1692         memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
1693         ns->disk = disk;
1694
1695         __nvme_revalidate_disk(disk, id);
1696
1697         mutex_lock(&ctrl->namespaces_mutex);
1698         list_add_tail(&ns->list, &ctrl->namespaces);
1699         mutex_unlock(&ctrl->namespaces_mutex);
1700
1701         kref_get(&ctrl->kref);
1702
1703         kfree(id);
1704
1705         device_add_disk(ctrl->device, ns->disk);
1706         if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
1707                                         &nvme_ns_attr_group))
1708                 pr_warn("%s: failed to create sysfs group for identification\n",
1709                         ns->disk->disk_name);
1710         if (ns->ndev && nvme_nvm_register_sysfs(ns))
1711                 pr_warn("%s: failed to register lightnvm sysfs group for identification\n",
1712                         ns->disk->disk_name);
1713         return;
1714  out_free_id:
1715         kfree(id);
1716  out_free_queue:
1717         blk_cleanup_queue(ns->queue);
1718  out_release_instance:
1719         ida_simple_remove(&ctrl->ns_ida, ns->instance);
1720  out_free_ns:
1721         kfree(ns);
1722 }
1723
1724 static void nvme_ns_remove(struct nvme_ns *ns)
1725 {
1726         if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
1727                 return;
1728
1729         if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
1730                 if (blk_get_integrity(ns->disk))
1731                         blk_integrity_unregister(ns->disk);
1732                 sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
1733                                         &nvme_ns_attr_group);
1734                 if (ns->ndev)
1735                         nvme_nvm_unregister_sysfs(ns);
1736                 del_gendisk(ns->disk);
1737                 blk_mq_abort_requeue_list(ns->queue);
1738                 blk_cleanup_queue(ns->queue);
1739         }
1740
1741         mutex_lock(&ns->ctrl->namespaces_mutex);
1742         list_del_init(&ns->list);
1743         mutex_unlock(&ns->ctrl->namespaces_mutex);
1744
1745         nvme_put_ns(ns);
1746 }
1747
1748 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1749 {
1750         struct nvme_ns *ns;
1751
1752         ns = nvme_find_get_ns(ctrl, nsid);
1753         if (ns) {
1754                 if (ns->disk && revalidate_disk(ns->disk))
1755                         nvme_ns_remove(ns);
1756                 nvme_put_ns(ns);
1757         } else
1758                 nvme_alloc_ns(ctrl, nsid);
1759 }
1760
1761 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
1762                                         unsigned nsid)
1763 {
1764         struct nvme_ns *ns, *next;
1765
1766         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
1767                 if (ns->ns_id > nsid)
1768                         nvme_ns_remove(ns);
1769         }
1770 }
1771
1772 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
1773 {
1774         struct nvme_ns *ns;
1775         __le32 *ns_list;
1776         unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
1777         int ret = 0;
1778
1779         ns_list = kzalloc(0x1000, GFP_KERNEL);
1780         if (!ns_list)
1781                 return -ENOMEM;
1782
1783         for (i = 0; i < num_lists; i++) {
1784                 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
1785                 if (ret)
1786                         goto free;
1787
1788                 for (j = 0; j < min(nn, 1024U); j++) {
1789                         nsid = le32_to_cpu(ns_list[j]);
1790                         if (!nsid)
1791                                 goto out;
1792
1793                         nvme_validate_ns(ctrl, nsid);
1794
1795                         while (++prev < nsid) {
1796                                 ns = nvme_find_get_ns(ctrl, prev);
1797                                 if (ns) {
1798                                         nvme_ns_remove(ns);
1799                                         nvme_put_ns(ns);
1800                                 }
1801                         }
1802                 }
1803                 nn -= j;
1804         }
1805  out:
1806         nvme_remove_invalid_namespaces(ctrl, prev);
1807  free:
1808         kfree(ns_list);
1809         return ret;
1810 }
1811
1812 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
1813 {
1814         unsigned i;
1815
1816         for (i = 1; i <= nn; i++)
1817                 nvme_validate_ns(ctrl, i);
1818
1819         nvme_remove_invalid_namespaces(ctrl, nn);
1820 }
1821
1822 static void nvme_scan_work(struct work_struct *work)
1823 {
1824         struct nvme_ctrl *ctrl =
1825                 container_of(work, struct nvme_ctrl, scan_work);
1826         struct nvme_id_ctrl *id;
1827         unsigned nn;
1828
1829         if (ctrl->state != NVME_CTRL_LIVE)
1830                 return;
1831
1832         if (nvme_identify_ctrl(ctrl, &id))
1833                 return;
1834
1835         nn = le32_to_cpu(id->nn);
1836         if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1837             !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
1838                 if (!nvme_scan_ns_list(ctrl, nn))
1839                         goto done;
1840         }
1841         nvme_scan_ns_sequential(ctrl, nn);
1842  done:
1843         mutex_lock(&ctrl->namespaces_mutex);
1844         list_sort(NULL, &ctrl->namespaces, ns_cmp);
1845         mutex_unlock(&ctrl->namespaces_mutex);
1846         kfree(id);
1847 }
1848
1849 void nvme_queue_scan(struct nvme_ctrl *ctrl)
1850 {
1851         /*
1852          * Do not queue new scan work when a controller is reset during
1853          * removal.
1854          */
1855         if (ctrl->state == NVME_CTRL_LIVE)
1856                 schedule_work(&ctrl->scan_work);
1857 }
1858 EXPORT_SYMBOL_GPL(nvme_queue_scan);
1859
1860 /*
1861  * This function iterates the namespace list unlocked to allow recovery from
1862  * controller failure. It is up to the caller to ensure the namespace list is
1863  * not modified by scan work while this function is executing.
1864  */
1865 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
1866 {
1867         struct nvme_ns *ns, *next;
1868
1869         /*
1870          * The dead states indicates the controller was not gracefully
1871          * disconnected. In that case, we won't be able to flush any data while
1872          * removing the namespaces' disks; fail all the queues now to avoid
1873          * potentially having to clean up the failed sync later.
1874          */
1875         if (ctrl->state == NVME_CTRL_DEAD)
1876                 nvme_kill_queues(ctrl);
1877
1878         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
1879                 nvme_ns_remove(ns);
1880 }
1881 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
1882
1883 static void nvme_async_event_work(struct work_struct *work)
1884 {
1885         struct nvme_ctrl *ctrl =
1886                 container_of(work, struct nvme_ctrl, async_event_work);
1887
1888         spin_lock_irq(&ctrl->lock);
1889         while (ctrl->event_limit > 0) {
1890                 int aer_idx = --ctrl->event_limit;
1891
1892                 spin_unlock_irq(&ctrl->lock);
1893                 ctrl->ops->submit_async_event(ctrl, aer_idx);
1894                 spin_lock_irq(&ctrl->lock);
1895         }
1896         spin_unlock_irq(&ctrl->lock);
1897 }
1898
1899 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
1900                 union nvme_result *res)
1901 {
1902         u32 result = le32_to_cpu(res->u32);
1903         bool done = true;
1904
1905         switch (le16_to_cpu(status) >> 1) {
1906         case NVME_SC_SUCCESS:
1907                 done = false;
1908                 /*FALLTHRU*/
1909         case NVME_SC_ABORT_REQ:
1910                 ++ctrl->event_limit;
1911                 schedule_work(&ctrl->async_event_work);
1912                 break;
1913         default:
1914                 break;
1915         }
1916
1917         if (done)
1918                 return;
1919
1920         switch (result & 0xff07) {
1921         case NVME_AER_NOTICE_NS_CHANGED:
1922                 dev_info(ctrl->device, "rescanning\n");
1923                 nvme_queue_scan(ctrl);
1924                 break;
1925         default:
1926                 dev_warn(ctrl->device, "async event result %08x\n", result);
1927         }
1928 }
1929 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
1930
1931 void nvme_queue_async_events(struct nvme_ctrl *ctrl)
1932 {
1933         ctrl->event_limit = NVME_NR_AERS;
1934         schedule_work(&ctrl->async_event_work);
1935 }
1936 EXPORT_SYMBOL_GPL(nvme_queue_async_events);
1937
1938 static DEFINE_IDA(nvme_instance_ida);
1939
1940 static int nvme_set_instance(struct nvme_ctrl *ctrl)
1941 {
1942         int instance, error;
1943
1944         do {
1945                 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
1946                         return -ENODEV;
1947
1948                 spin_lock(&dev_list_lock);
1949                 error = ida_get_new(&nvme_instance_ida, &instance);
1950                 spin_unlock(&dev_list_lock);
1951         } while (error == -EAGAIN);
1952
1953         if (error)
1954                 return -ENODEV;
1955
1956         ctrl->instance = instance;
1957         return 0;
1958 }
1959
1960 static void nvme_release_instance(struct nvme_ctrl *ctrl)
1961 {
1962         spin_lock(&dev_list_lock);
1963         ida_remove(&nvme_instance_ida, ctrl->instance);
1964         spin_unlock(&dev_list_lock);
1965 }
1966
1967 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
1968 {
1969         flush_work(&ctrl->async_event_work);
1970         flush_work(&ctrl->scan_work);
1971         nvme_remove_namespaces(ctrl);
1972
1973         device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
1974
1975         spin_lock(&dev_list_lock);
1976         list_del(&ctrl->node);
1977         spin_unlock(&dev_list_lock);
1978 }
1979 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
1980
1981 static void nvme_free_ctrl(struct kref *kref)
1982 {
1983         struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
1984
1985         put_device(ctrl->device);
1986         nvme_release_instance(ctrl);
1987         ida_destroy(&ctrl->ns_ida);
1988
1989         ctrl->ops->free_ctrl(ctrl);
1990 }
1991
1992 void nvme_put_ctrl(struct nvme_ctrl *ctrl)
1993 {
1994         kref_put(&ctrl->kref, nvme_free_ctrl);
1995 }
1996 EXPORT_SYMBOL_GPL(nvme_put_ctrl);
1997
1998 /*
1999  * Initialize a NVMe controller structures.  This needs to be called during
2000  * earliest initialization so that we have the initialized structured around
2001  * during probing.
2002  */
2003 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
2004                 const struct nvme_ctrl_ops *ops, unsigned long quirks)
2005 {
2006         int ret;
2007
2008         ctrl->state = NVME_CTRL_NEW;
2009         spin_lock_init(&ctrl->lock);
2010         INIT_LIST_HEAD(&ctrl->namespaces);
2011         mutex_init(&ctrl->namespaces_mutex);
2012         kref_init(&ctrl->kref);
2013         ctrl->dev = dev;
2014         ctrl->ops = ops;
2015         ctrl->quirks = quirks;
2016         INIT_WORK(&ctrl->scan_work, nvme_scan_work);
2017         INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
2018
2019         ret = nvme_set_instance(ctrl);
2020         if (ret)
2021                 goto out;
2022
2023         ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
2024                                 MKDEV(nvme_char_major, ctrl->instance),
2025                                 ctrl, nvme_dev_attr_groups,
2026                                 "nvme%d", ctrl->instance);
2027         if (IS_ERR(ctrl->device)) {
2028                 ret = PTR_ERR(ctrl->device);
2029                 goto out_release_instance;
2030         }
2031         get_device(ctrl->device);
2032         ida_init(&ctrl->ns_ida);
2033
2034         spin_lock(&dev_list_lock);
2035         list_add_tail(&ctrl->node, &nvme_ctrl_list);
2036         spin_unlock(&dev_list_lock);
2037
2038         return 0;
2039 out_release_instance:
2040         nvme_release_instance(ctrl);
2041 out:
2042         return ret;
2043 }
2044 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
2045
2046 /**
2047  * nvme_kill_queues(): Ends all namespace queues
2048  * @ctrl: the dead controller that needs to end
2049  *
2050  * Call this function when the driver determines it is unable to get the
2051  * controller in a state capable of servicing IO.
2052  */
2053 void nvme_kill_queues(struct nvme_ctrl *ctrl)
2054 {
2055         struct nvme_ns *ns;
2056
2057         mutex_lock(&ctrl->namespaces_mutex);
2058         list_for_each_entry(ns, &ctrl->namespaces, list) {
2059                 /*
2060                  * Revalidating a dead namespace sets capacity to 0. This will
2061                  * end buffered writers dirtying pages that can't be synced.
2062                  */
2063                 if (ns->disk && !test_and_set_bit(NVME_NS_DEAD, &ns->flags))
2064                         revalidate_disk(ns->disk);
2065
2066                 blk_set_queue_dying(ns->queue);
2067                 blk_mq_abort_requeue_list(ns->queue);
2068                 blk_mq_start_stopped_hw_queues(ns->queue, true);
2069         }
2070         mutex_unlock(&ctrl->namespaces_mutex);
2071 }
2072 EXPORT_SYMBOL_GPL(nvme_kill_queues);
2073
2074 void nvme_stop_queues(struct nvme_ctrl *ctrl)
2075 {
2076         struct nvme_ns *ns;
2077
2078         mutex_lock(&ctrl->namespaces_mutex);
2079         list_for_each_entry(ns, &ctrl->namespaces, list)
2080                 blk_mq_quiesce_queue(ns->queue);
2081         mutex_unlock(&ctrl->namespaces_mutex);
2082 }
2083 EXPORT_SYMBOL_GPL(nvme_stop_queues);
2084
2085 void nvme_start_queues(struct nvme_ctrl *ctrl)
2086 {
2087         struct nvme_ns *ns;
2088
2089         mutex_lock(&ctrl->namespaces_mutex);
2090         list_for_each_entry(ns, &ctrl->namespaces, list) {
2091                 blk_mq_start_stopped_hw_queues(ns->queue, true);
2092                 blk_mq_kick_requeue_list(ns->queue);
2093         }
2094         mutex_unlock(&ctrl->namespaces_mutex);
2095 }
2096 EXPORT_SYMBOL_GPL(nvme_start_queues);
2097
2098 int __init nvme_core_init(void)
2099 {
2100         int result;
2101
2102         result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
2103                                                         &nvme_dev_fops);
2104         if (result < 0)
2105                 return result;
2106         else if (result > 0)
2107                 nvme_char_major = result;
2108
2109         nvme_class = class_create(THIS_MODULE, "nvme");
2110         if (IS_ERR(nvme_class)) {
2111                 result = PTR_ERR(nvme_class);
2112                 goto unregister_chrdev;
2113         }
2114
2115         return 0;
2116
2117  unregister_chrdev:
2118         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2119         return result;
2120 }
2121
2122 void nvme_core_exit(void)
2123 {
2124         class_destroy(nvme_class);
2125         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2126 }
2127
2128 MODULE_LICENSE("GPL");
2129 MODULE_VERSION("1.0");
2130 module_init(nvme_core_init);
2131 module_exit(nvme_core_exit);