NVMe: Remove device management handles on remove
[linux-2.6-block.git] / drivers / nvme / host / core.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <scsi/sg.h>
30 #include <asm/unaligned.h>
31
32 #include "nvme.h"
33
34 #define NVME_MINORS             (1U << MINORBITS)
35
36 static int nvme_major;
37 module_param(nvme_major, int, 0);
38
39 static int nvme_char_major;
40 module_param(nvme_char_major, int, 0);
41
42 static LIST_HEAD(nvme_ctrl_list);
43 DEFINE_SPINLOCK(dev_list_lock);
44
45 static struct class *nvme_class;
46
47 static void nvme_free_ns(struct kref *kref)
48 {
49         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
50
51         if (ns->type == NVME_NS_LIGHTNVM)
52                 nvme_nvm_unregister(ns->queue, ns->disk->disk_name);
53
54         spin_lock(&dev_list_lock);
55         ns->disk->private_data = NULL;
56         spin_unlock(&dev_list_lock);
57
58         nvme_put_ctrl(ns->ctrl);
59         put_disk(ns->disk);
60         kfree(ns);
61 }
62
63 static void nvme_put_ns(struct nvme_ns *ns)
64 {
65         kref_put(&ns->kref, nvme_free_ns);
66 }
67
68 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
69 {
70         struct nvme_ns *ns;
71
72         spin_lock(&dev_list_lock);
73         ns = disk->private_data;
74         if (ns && !kref_get_unless_zero(&ns->kref))
75                 ns = NULL;
76         spin_unlock(&dev_list_lock);
77
78         return ns;
79 }
80
81 struct request *nvme_alloc_request(struct request_queue *q,
82                 struct nvme_command *cmd, unsigned int flags)
83 {
84         bool write = cmd->common.opcode & 1;
85         struct request *req;
86
87         req = blk_mq_alloc_request(q, write, flags);
88         if (IS_ERR(req))
89                 return req;
90
91         req->cmd_type = REQ_TYPE_DRV_PRIV;
92         req->cmd_flags |= REQ_FAILFAST_DRIVER;
93         req->__data_len = 0;
94         req->__sector = (sector_t) -1;
95         req->bio = req->biotail = NULL;
96
97         req->cmd = (unsigned char *)cmd;
98         req->cmd_len = sizeof(struct nvme_command);
99         req->special = (void *)0;
100
101         return req;
102 }
103
104 /*
105  * Returns 0 on success.  If the result is negative, it's a Linux error code;
106  * if the result is positive, it's an NVM Express status code
107  */
108 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
109                 void *buffer, unsigned bufflen, u32 *result, unsigned timeout)
110 {
111         struct request *req;
112         int ret;
113
114         req = nvme_alloc_request(q, cmd, 0);
115         if (IS_ERR(req))
116                 return PTR_ERR(req);
117
118         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
119
120         if (buffer && bufflen) {
121                 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
122                 if (ret)
123                         goto out;
124         }
125
126         blk_execute_rq(req->q, NULL, req, 0);
127         if (result)
128                 *result = (u32)(uintptr_t)req->special;
129         ret = req->errors;
130  out:
131         blk_mq_free_request(req);
132         return ret;
133 }
134
135 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
136                 void *buffer, unsigned bufflen)
137 {
138         return __nvme_submit_sync_cmd(q, cmd, buffer, bufflen, NULL, 0);
139 }
140
141 int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
142                 void __user *ubuffer, unsigned bufflen,
143                 void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
144                 u32 *result, unsigned timeout)
145 {
146         bool write = cmd->common.opcode & 1;
147         struct nvme_ns *ns = q->queuedata;
148         struct gendisk *disk = ns ? ns->disk : NULL;
149         struct request *req;
150         struct bio *bio = NULL;
151         void *meta = NULL;
152         int ret;
153
154         req = nvme_alloc_request(q, cmd, 0);
155         if (IS_ERR(req))
156                 return PTR_ERR(req);
157
158         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
159
160         if (ubuffer && bufflen) {
161                 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
162                                 GFP_KERNEL);
163                 if (ret)
164                         goto out;
165                 bio = req->bio;
166
167                 if (!disk)
168                         goto submit;
169                 bio->bi_bdev = bdget_disk(disk, 0);
170                 if (!bio->bi_bdev) {
171                         ret = -ENODEV;
172                         goto out_unmap;
173                 }
174
175                 if (meta_buffer) {
176                         struct bio_integrity_payload *bip;
177
178                         meta = kmalloc(meta_len, GFP_KERNEL);
179                         if (!meta) {
180                                 ret = -ENOMEM;
181                                 goto out_unmap;
182                         }
183
184                         if (write) {
185                                 if (copy_from_user(meta, meta_buffer,
186                                                 meta_len)) {
187                                         ret = -EFAULT;
188                                         goto out_free_meta;
189                                 }
190                         }
191
192                         bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
193                         if (IS_ERR(bip)) {
194                                 ret = PTR_ERR(bip);
195                                 goto out_free_meta;
196                         }
197
198                         bip->bip_iter.bi_size = meta_len;
199                         bip->bip_iter.bi_sector = meta_seed;
200
201                         ret = bio_integrity_add_page(bio, virt_to_page(meta),
202                                         meta_len, offset_in_page(meta));
203                         if (ret != meta_len) {
204                                 ret = -ENOMEM;
205                                 goto out_free_meta;
206                         }
207                 }
208         }
209  submit:
210         blk_execute_rq(req->q, disk, req, 0);
211         ret = req->errors;
212         if (result)
213                 *result = (u32)(uintptr_t)req->special;
214         if (meta && !ret && !write) {
215                 if (copy_to_user(meta_buffer, meta, meta_len))
216                         ret = -EFAULT;
217         }
218  out_free_meta:
219         kfree(meta);
220  out_unmap:
221         if (bio) {
222                 if (disk && bio->bi_bdev)
223                         bdput(bio->bi_bdev);
224                 blk_rq_unmap_user(bio);
225         }
226  out:
227         blk_mq_free_request(req);
228         return ret;
229 }
230
231 int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
232                 void __user *ubuffer, unsigned bufflen, u32 *result,
233                 unsigned timeout)
234 {
235         return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
236                         result, timeout);
237 }
238
239 int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
240 {
241         struct nvme_command c = { };
242         int error;
243
244         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
245         c.identify.opcode = nvme_admin_identify;
246         c.identify.cns = cpu_to_le32(1);
247
248         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
249         if (!*id)
250                 return -ENOMEM;
251
252         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
253                         sizeof(struct nvme_id_ctrl));
254         if (error)
255                 kfree(*id);
256         return error;
257 }
258
259 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
260 {
261         struct nvme_command c = { };
262
263         c.identify.opcode = nvme_admin_identify;
264         c.identify.cns = cpu_to_le32(2);
265         c.identify.nsid = cpu_to_le32(nsid);
266         return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
267 }
268
269 int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
270                 struct nvme_id_ns **id)
271 {
272         struct nvme_command c = { };
273         int error;
274
275         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
276         c.identify.opcode = nvme_admin_identify,
277         c.identify.nsid = cpu_to_le32(nsid),
278
279         *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
280         if (!*id)
281                 return -ENOMEM;
282
283         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
284                         sizeof(struct nvme_id_ns));
285         if (error)
286                 kfree(*id);
287         return error;
288 }
289
290 int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
291                                         dma_addr_t dma_addr, u32 *result)
292 {
293         struct nvme_command c;
294
295         memset(&c, 0, sizeof(c));
296         c.features.opcode = nvme_admin_get_features;
297         c.features.nsid = cpu_to_le32(nsid);
298         c.features.prp1 = cpu_to_le64(dma_addr);
299         c.features.fid = cpu_to_le32(fid);
300
301         return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0, result, 0);
302 }
303
304 int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
305                                         dma_addr_t dma_addr, u32 *result)
306 {
307         struct nvme_command c;
308
309         memset(&c, 0, sizeof(c));
310         c.features.opcode = nvme_admin_set_features;
311         c.features.prp1 = cpu_to_le64(dma_addr);
312         c.features.fid = cpu_to_le32(fid);
313         c.features.dword11 = cpu_to_le32(dword11);
314
315         return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0, result, 0);
316 }
317
318 int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
319 {
320         struct nvme_command c = { };
321         int error;
322
323         c.common.opcode = nvme_admin_get_log_page,
324         c.common.nsid = cpu_to_le32(0xFFFFFFFF),
325         c.common.cdw10[0] = cpu_to_le32(
326                         (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
327                          NVME_LOG_SMART),
328
329         *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
330         if (!*log)
331                 return -ENOMEM;
332
333         error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
334                         sizeof(struct nvme_smart_log));
335         if (error)
336                 kfree(*log);
337         return error;
338 }
339
340 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
341 {
342         u32 q_count = (*count - 1) | ((*count - 1) << 16);
343         u32 result;
344         int status, nr_io_queues;
345
346         status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, 0,
347                         &result);
348         if (status)
349                 return status;
350
351         nr_io_queues = min(result & 0xffff, result >> 16) + 1;
352         *count = min(*count, nr_io_queues);
353         return 0;
354 }
355
356 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
357 {
358         struct nvme_user_io io;
359         struct nvme_command c;
360         unsigned length, meta_len;
361         void __user *metadata;
362
363         if (copy_from_user(&io, uio, sizeof(io)))
364                 return -EFAULT;
365
366         switch (io.opcode) {
367         case nvme_cmd_write:
368         case nvme_cmd_read:
369         case nvme_cmd_compare:
370                 break;
371         default:
372                 return -EINVAL;
373         }
374
375         length = (io.nblocks + 1) << ns->lba_shift;
376         meta_len = (io.nblocks + 1) * ns->ms;
377         metadata = (void __user *)(uintptr_t)io.metadata;
378
379         if (ns->ext) {
380                 length += meta_len;
381                 meta_len = 0;
382         } else if (meta_len) {
383                 if ((io.metadata & 3) || !io.metadata)
384                         return -EINVAL;
385         }
386
387         memset(&c, 0, sizeof(c));
388         c.rw.opcode = io.opcode;
389         c.rw.flags = io.flags;
390         c.rw.nsid = cpu_to_le32(ns->ns_id);
391         c.rw.slba = cpu_to_le64(io.slba);
392         c.rw.length = cpu_to_le16(io.nblocks);
393         c.rw.control = cpu_to_le16(io.control);
394         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
395         c.rw.reftag = cpu_to_le32(io.reftag);
396         c.rw.apptag = cpu_to_le16(io.apptag);
397         c.rw.appmask = cpu_to_le16(io.appmask);
398
399         return __nvme_submit_user_cmd(ns->queue, &c,
400                         (void __user *)(uintptr_t)io.addr, length,
401                         metadata, meta_len, io.slba, NULL, 0);
402 }
403
404 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
405                         struct nvme_passthru_cmd __user *ucmd)
406 {
407         struct nvme_passthru_cmd cmd;
408         struct nvme_command c;
409         unsigned timeout = 0;
410         int status;
411
412         if (!capable(CAP_SYS_ADMIN))
413                 return -EACCES;
414         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
415                 return -EFAULT;
416
417         memset(&c, 0, sizeof(c));
418         c.common.opcode = cmd.opcode;
419         c.common.flags = cmd.flags;
420         c.common.nsid = cpu_to_le32(cmd.nsid);
421         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
422         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
423         c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
424         c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
425         c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
426         c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
427         c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
428         c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
429
430         if (cmd.timeout_ms)
431                 timeout = msecs_to_jiffies(cmd.timeout_ms);
432
433         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
434                         (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
435                         &cmd.result, timeout);
436         if (status >= 0) {
437                 if (put_user(cmd.result, &ucmd->result))
438                         return -EFAULT;
439         }
440
441         return status;
442 }
443
444 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
445                 unsigned int cmd, unsigned long arg)
446 {
447         struct nvme_ns *ns = bdev->bd_disk->private_data;
448
449         switch (cmd) {
450         case NVME_IOCTL_ID:
451                 force_successful_syscall_return();
452                 return ns->ns_id;
453         case NVME_IOCTL_ADMIN_CMD:
454                 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
455         case NVME_IOCTL_IO_CMD:
456                 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
457         case NVME_IOCTL_SUBMIT_IO:
458                 return nvme_submit_io(ns, (void __user *)arg);
459         case SG_GET_VERSION_NUM:
460                 return nvme_sg_get_version_num((void __user *)arg);
461         case SG_IO:
462                 return nvme_sg_io(ns, (void __user *)arg);
463         default:
464                 return -ENOTTY;
465         }
466 }
467
468 #ifdef CONFIG_COMPAT
469 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
470                         unsigned int cmd, unsigned long arg)
471 {
472         switch (cmd) {
473         case SG_IO:
474                 return -ENOIOCTLCMD;
475         }
476         return nvme_ioctl(bdev, mode, cmd, arg);
477 }
478 #else
479 #define nvme_compat_ioctl       NULL
480 #endif
481
482 static int nvme_open(struct block_device *bdev, fmode_t mode)
483 {
484         return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
485 }
486
487 static void nvme_release(struct gendisk *disk, fmode_t mode)
488 {
489         nvme_put_ns(disk->private_data);
490 }
491
492 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
493 {
494         /* some standard values */
495         geo->heads = 1 << 6;
496         geo->sectors = 1 << 5;
497         geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
498         return 0;
499 }
500
501 #ifdef CONFIG_BLK_DEV_INTEGRITY
502 static void nvme_init_integrity(struct nvme_ns *ns)
503 {
504         struct blk_integrity integrity;
505
506         switch (ns->pi_type) {
507         case NVME_NS_DPS_PI_TYPE3:
508                 integrity.profile = &t10_pi_type3_crc;
509                 break;
510         case NVME_NS_DPS_PI_TYPE1:
511         case NVME_NS_DPS_PI_TYPE2:
512                 integrity.profile = &t10_pi_type1_crc;
513                 break;
514         default:
515                 integrity.profile = NULL;
516                 break;
517         }
518         integrity.tuple_size = ns->ms;
519         blk_integrity_register(ns->disk, &integrity);
520         blk_queue_max_integrity_segments(ns->queue, 1);
521 }
522 #else
523 static void nvme_init_integrity(struct nvme_ns *ns)
524 {
525 }
526 #endif /* CONFIG_BLK_DEV_INTEGRITY */
527
528 static void nvme_config_discard(struct nvme_ns *ns)
529 {
530         u32 logical_block_size = queue_logical_block_size(ns->queue);
531         ns->queue->limits.discard_zeroes_data = 0;
532         ns->queue->limits.discard_alignment = logical_block_size;
533         ns->queue->limits.discard_granularity = logical_block_size;
534         blk_queue_max_discard_sectors(ns->queue, 0xffffffff);
535         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
536 }
537
538 static int nvme_revalidate_disk(struct gendisk *disk)
539 {
540         struct nvme_ns *ns = disk->private_data;
541         struct nvme_id_ns *id;
542         u8 lbaf, pi_type;
543         u16 old_ms;
544         unsigned short bs;
545
546         if (nvme_identify_ns(ns->ctrl, ns->ns_id, &id)) {
547                 dev_warn(ns->ctrl->dev, "%s: Identify failure nvme%dn%d\n",
548                                 __func__, ns->ctrl->instance, ns->ns_id);
549                 return -ENODEV;
550         }
551         if (id->ncap == 0) {
552                 kfree(id);
553                 return -ENODEV;
554         }
555
556         if (nvme_nvm_ns_supported(ns, id) && ns->type != NVME_NS_LIGHTNVM) {
557                 if (nvme_nvm_register(ns->queue, disk->disk_name)) {
558                         dev_warn(ns->ctrl->dev,
559                                 "%s: LightNVM init failure\n", __func__);
560                         kfree(id);
561                         return -ENODEV;
562                 }
563                 ns->type = NVME_NS_LIGHTNVM;
564         }
565
566         old_ms = ns->ms;
567         lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
568         ns->lba_shift = id->lbaf[lbaf].ds;
569         ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
570         ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
571
572         /*
573          * If identify namespace failed, use default 512 byte block size so
574          * block layer can use before failing read/write for 0 capacity.
575          */
576         if (ns->lba_shift == 0)
577                 ns->lba_shift = 9;
578         bs = 1 << ns->lba_shift;
579
580         /* XXX: PI implementation requires metadata equal t10 pi tuple size */
581         pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
582                                         id->dps & NVME_NS_DPS_PI_MASK : 0;
583
584         blk_mq_freeze_queue(disk->queue);
585         if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
586                                 ns->ms != old_ms ||
587                                 bs != queue_logical_block_size(disk->queue) ||
588                                 (ns->ms && ns->ext)))
589                 blk_integrity_unregister(disk);
590
591         ns->pi_type = pi_type;
592         blk_queue_logical_block_size(ns->queue, bs);
593
594         if (ns->ms && !ns->ext)
595                 nvme_init_integrity(ns);
596
597         if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
598                 set_capacity(disk, 0);
599         else
600                 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
601
602         if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
603                 nvme_config_discard(ns);
604         blk_mq_unfreeze_queue(disk->queue);
605
606         kfree(id);
607         return 0;
608 }
609
610 static char nvme_pr_type(enum pr_type type)
611 {
612         switch (type) {
613         case PR_WRITE_EXCLUSIVE:
614                 return 1;
615         case PR_EXCLUSIVE_ACCESS:
616                 return 2;
617         case PR_WRITE_EXCLUSIVE_REG_ONLY:
618                 return 3;
619         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
620                 return 4;
621         case PR_WRITE_EXCLUSIVE_ALL_REGS:
622                 return 5;
623         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
624                 return 6;
625         default:
626                 return 0;
627         }
628 };
629
630 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
631                                 u64 key, u64 sa_key, u8 op)
632 {
633         struct nvme_ns *ns = bdev->bd_disk->private_data;
634         struct nvme_command c;
635         u8 data[16] = { 0, };
636
637         put_unaligned_le64(key, &data[0]);
638         put_unaligned_le64(sa_key, &data[8]);
639
640         memset(&c, 0, sizeof(c));
641         c.common.opcode = op;
642         c.common.nsid = cpu_to_le32(ns->ns_id);
643         c.common.cdw10[0] = cpu_to_le32(cdw10);
644
645         return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
646 }
647
648 static int nvme_pr_register(struct block_device *bdev, u64 old,
649                 u64 new, unsigned flags)
650 {
651         u32 cdw10;
652
653         if (flags & ~PR_FL_IGNORE_KEY)
654                 return -EOPNOTSUPP;
655
656         cdw10 = old ? 2 : 0;
657         cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
658         cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
659         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
660 }
661
662 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
663                 enum pr_type type, unsigned flags)
664 {
665         u32 cdw10;
666
667         if (flags & ~PR_FL_IGNORE_KEY)
668                 return -EOPNOTSUPP;
669
670         cdw10 = nvme_pr_type(type) << 8;
671         cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
672         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
673 }
674
675 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
676                 enum pr_type type, bool abort)
677 {
678         u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
679         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
680 }
681
682 static int nvme_pr_clear(struct block_device *bdev, u64 key)
683 {
684         u32 cdw10 = 1 | (key ? 1 << 3 : 0);
685         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
686 }
687
688 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
689 {
690         u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
691         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
692 }
693
694 static const struct pr_ops nvme_pr_ops = {
695         .pr_register    = nvme_pr_register,
696         .pr_reserve     = nvme_pr_reserve,
697         .pr_release     = nvme_pr_release,
698         .pr_preempt     = nvme_pr_preempt,
699         .pr_clear       = nvme_pr_clear,
700 };
701
702 static const struct block_device_operations nvme_fops = {
703         .owner          = THIS_MODULE,
704         .ioctl          = nvme_ioctl,
705         .compat_ioctl   = nvme_compat_ioctl,
706         .open           = nvme_open,
707         .release        = nvme_release,
708         .getgeo         = nvme_getgeo,
709         .revalidate_disk= nvme_revalidate_disk,
710         .pr_ops         = &nvme_pr_ops,
711 };
712
713 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
714 {
715         unsigned long timeout =
716                 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
717         u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
718         int ret;
719
720         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
721                 if ((csts & NVME_CSTS_RDY) == bit)
722                         break;
723
724                 msleep(100);
725                 if (fatal_signal_pending(current))
726                         return -EINTR;
727                 if (time_after(jiffies, timeout)) {
728                         dev_err(ctrl->dev,
729                                 "Device not ready; aborting %s\n", enabled ?
730                                                 "initialisation" : "reset");
731                         return -ENODEV;
732                 }
733         }
734
735         return ret;
736 }
737
738 /*
739  * If the device has been passed off to us in an enabled state, just clear
740  * the enabled bit.  The spec says we should set the 'shutdown notification
741  * bits', but doing so may cause the device to complete commands to the
742  * admin queue ... and we don't know what memory that might be pointing at!
743  */
744 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
745 {
746         int ret;
747
748         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
749         ctrl->ctrl_config &= ~NVME_CC_ENABLE;
750
751         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
752         if (ret)
753                 return ret;
754         return nvme_wait_ready(ctrl, cap, false);
755 }
756
757 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
758 {
759         /*
760          * Default to a 4K page size, with the intention to update this
761          * path in the future to accomodate architectures with differing
762          * kernel and IO page sizes.
763          */
764         unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
765         int ret;
766
767         if (page_shift < dev_page_min) {
768                 dev_err(ctrl->dev,
769                         "Minimum device page size %u too large for host (%u)\n",
770                         1 << dev_page_min, 1 << page_shift);
771                 return -ENODEV;
772         }
773
774         ctrl->page_size = 1 << page_shift;
775
776         ctrl->ctrl_config = NVME_CC_CSS_NVM;
777         ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
778         ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
779         ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
780         ctrl->ctrl_config |= NVME_CC_ENABLE;
781
782         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
783         if (ret)
784                 return ret;
785         return nvme_wait_ready(ctrl, cap, true);
786 }
787
788 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
789 {
790         unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies;
791         u32 csts;
792         int ret;
793
794         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
795         ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
796
797         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
798         if (ret)
799                 return ret;
800
801         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
802                 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
803                         break;
804
805                 msleep(100);
806                 if (fatal_signal_pending(current))
807                         return -EINTR;
808                 if (time_after(jiffies, timeout)) {
809                         dev_err(ctrl->dev,
810                                 "Device shutdown incomplete; abort shutdown\n");
811                         return -ENODEV;
812                 }
813         }
814
815         return ret;
816 }
817
818 /*
819  * Initialize the cached copies of the Identify data and various controller
820  * register in our nvme_ctrl structure.  This should be called as soon as
821  * the admin queue is fully up and running.
822  */
823 int nvme_init_identify(struct nvme_ctrl *ctrl)
824 {
825         struct nvme_id_ctrl *id;
826         u64 cap;
827         int ret, page_shift;
828
829         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
830         if (ret) {
831                 dev_err(ctrl->dev, "Reading VS failed (%d)\n", ret);
832                 return ret;
833         }
834
835         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
836         if (ret) {
837                 dev_err(ctrl->dev, "Reading CAP failed (%d)\n", ret);
838                 return ret;
839         }
840         page_shift = NVME_CAP_MPSMIN(cap) + 12;
841
842         if (ctrl->vs >= NVME_VS(1, 1))
843                 ctrl->subsystem = NVME_CAP_NSSRC(cap);
844
845         ret = nvme_identify_ctrl(ctrl, &id);
846         if (ret) {
847                 dev_err(ctrl->dev, "Identify Controller failed (%d)\n", ret);
848                 return -EIO;
849         }
850
851         ctrl->oncs = le16_to_cpup(&id->oncs);
852         atomic_set(&ctrl->abort_limit, id->acl + 1);
853         ctrl->vwc = id->vwc;
854         memcpy(ctrl->serial, id->sn, sizeof(id->sn));
855         memcpy(ctrl->model, id->mn, sizeof(id->mn));
856         memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
857         if (id->mdts)
858                 ctrl->max_hw_sectors = 1 << (id->mdts + page_shift - 9);
859         else
860                 ctrl->max_hw_sectors = UINT_MAX;
861
862         if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && id->vs[3]) {
863                 unsigned int max_hw_sectors;
864
865                 ctrl->stripe_size = 1 << (id->vs[3] + page_shift);
866                 max_hw_sectors = ctrl->stripe_size >> (page_shift - 9);
867                 if (ctrl->max_hw_sectors) {
868                         ctrl->max_hw_sectors = min(max_hw_sectors,
869                                                         ctrl->max_hw_sectors);
870                 } else {
871                         ctrl->max_hw_sectors = max_hw_sectors;
872                 }
873         }
874
875         kfree(id);
876         return 0;
877 }
878
879 static int nvme_dev_open(struct inode *inode, struct file *file)
880 {
881         struct nvme_ctrl *ctrl;
882         int instance = iminor(inode);
883         int ret = -ENODEV;
884
885         spin_lock(&dev_list_lock);
886         list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
887                 if (ctrl->instance != instance)
888                         continue;
889
890                 if (!ctrl->admin_q) {
891                         ret = -EWOULDBLOCK;
892                         break;
893                 }
894                 if (!kref_get_unless_zero(&ctrl->kref))
895                         break;
896                 file->private_data = ctrl;
897                 ret = 0;
898                 break;
899         }
900         spin_unlock(&dev_list_lock);
901
902         return ret;
903 }
904
905 static int nvme_dev_release(struct inode *inode, struct file *file)
906 {
907         nvme_put_ctrl(file->private_data);
908         return 0;
909 }
910
911 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
912                 unsigned long arg)
913 {
914         struct nvme_ctrl *ctrl = file->private_data;
915         void __user *argp = (void __user *)arg;
916         struct nvme_ns *ns;
917
918         switch (cmd) {
919         case NVME_IOCTL_ADMIN_CMD:
920                 return nvme_user_cmd(ctrl, NULL, argp);
921         case NVME_IOCTL_IO_CMD:
922                 if (list_empty(&ctrl->namespaces))
923                         return -ENOTTY;
924                 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
925                 return nvme_user_cmd(ctrl, ns, argp);
926         case NVME_IOCTL_RESET:
927                 dev_warn(ctrl->dev, "resetting controller\n");
928                 return ctrl->ops->reset_ctrl(ctrl);
929         case NVME_IOCTL_SUBSYS_RESET:
930                 return nvme_reset_subsystem(ctrl);
931         default:
932                 return -ENOTTY;
933         }
934 }
935
936 static const struct file_operations nvme_dev_fops = {
937         .owner          = THIS_MODULE,
938         .open           = nvme_dev_open,
939         .release        = nvme_dev_release,
940         .unlocked_ioctl = nvme_dev_ioctl,
941         .compat_ioctl   = nvme_dev_ioctl,
942 };
943
944 static ssize_t nvme_sysfs_reset(struct device *dev,
945                                 struct device_attribute *attr, const char *buf,
946                                 size_t count)
947 {
948         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
949         int ret;
950
951         ret = ctrl->ops->reset_ctrl(ctrl);
952         if (ret < 0)
953                 return ret;
954         return count;
955 }
956 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
957
958 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
959 {
960         struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
961         struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
962
963         return nsa->ns_id - nsb->ns_id;
964 }
965
966 static struct nvme_ns *nvme_find_ns(struct nvme_ctrl *ctrl, unsigned nsid)
967 {
968         struct nvme_ns *ns;
969
970         list_for_each_entry(ns, &ctrl->namespaces, list) {
971                 if (ns->ns_id == nsid)
972                         return ns;
973                 if (ns->ns_id > nsid)
974                         break;
975         }
976         return NULL;
977 }
978
979 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
980 {
981         struct nvme_ns *ns;
982         struct gendisk *disk;
983         int node = dev_to_node(ctrl->dev);
984
985         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
986         if (!ns)
987                 return;
988
989         ns->queue = blk_mq_init_queue(ctrl->tagset);
990         if (IS_ERR(ns->queue))
991                 goto out_free_ns;
992         queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
993         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
994         ns->queue->queuedata = ns;
995         ns->ctrl = ctrl;
996
997         disk = alloc_disk_node(0, node);
998         if (!disk)
999                 goto out_free_queue;
1000
1001         kref_init(&ns->kref);
1002         ns->ns_id = nsid;
1003         ns->disk = disk;
1004         ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
1005         list_add_tail(&ns->list, &ctrl->namespaces);
1006
1007         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1008         if (ctrl->max_hw_sectors) {
1009                 blk_queue_max_hw_sectors(ns->queue, ctrl->max_hw_sectors);
1010                 blk_queue_max_segments(ns->queue,
1011                         (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1);
1012         }
1013         if (ctrl->stripe_size)
1014                 blk_queue_chunk_sectors(ns->queue, ctrl->stripe_size >> 9);
1015         if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1016                 blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
1017         blk_queue_virt_boundary(ns->queue, ctrl->page_size - 1);
1018
1019         disk->major = nvme_major;
1020         disk->first_minor = 0;
1021         disk->fops = &nvme_fops;
1022         disk->private_data = ns;
1023         disk->queue = ns->queue;
1024         disk->driverfs_dev = ctrl->device;
1025         disk->flags = GENHD_FL_EXT_DEVT;
1026         sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, nsid);
1027
1028         /*
1029          * Initialize capacity to 0 until we establish the namespace format and
1030          * setup integrity extentions if necessary. The revalidate_disk after
1031          * add_disk allows the driver to register with integrity if the format
1032          * requires it.
1033          */
1034         set_capacity(disk, 0);
1035         if (nvme_revalidate_disk(ns->disk))
1036                 goto out_free_disk;
1037
1038         kref_get(&ctrl->kref);
1039         if (ns->type != NVME_NS_LIGHTNVM) {
1040                 add_disk(ns->disk);
1041                 if (ns->ms) {
1042                         struct block_device *bd = bdget_disk(ns->disk, 0);
1043                         if (!bd)
1044                                 return;
1045                         if (blkdev_get(bd, FMODE_READ, NULL)) {
1046                                 bdput(bd);
1047                                 return;
1048                         }
1049                         blkdev_reread_part(bd);
1050                         blkdev_put(bd, FMODE_READ);
1051                 }
1052         }
1053
1054         return;
1055  out_free_disk:
1056         kfree(disk);
1057         list_del(&ns->list);
1058  out_free_queue:
1059         blk_cleanup_queue(ns->queue);
1060  out_free_ns:
1061         kfree(ns);
1062 }
1063
1064 static void nvme_ns_remove(struct nvme_ns *ns)
1065 {
1066         bool kill = nvme_io_incapable(ns->ctrl) &&
1067                         !blk_queue_dying(ns->queue);
1068
1069         if (kill)
1070                 blk_set_queue_dying(ns->queue);
1071         if (ns->disk->flags & GENHD_FL_UP) {
1072                 if (blk_get_integrity(ns->disk))
1073                         blk_integrity_unregister(ns->disk);
1074                 del_gendisk(ns->disk);
1075         }
1076         if (kill || !blk_queue_dying(ns->queue)) {
1077                 blk_mq_abort_requeue_list(ns->queue);
1078                 blk_cleanup_queue(ns->queue);
1079         }
1080         list_del_init(&ns->list);
1081         nvme_put_ns(ns);
1082 }
1083
1084 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1085 {
1086         struct nvme_ns *ns;
1087
1088         ns = nvme_find_ns(ctrl, nsid);
1089         if (ns) {
1090                 if (revalidate_disk(ns->disk))
1091                         nvme_ns_remove(ns);
1092         } else
1093                 nvme_alloc_ns(ctrl, nsid);
1094 }
1095
1096 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
1097 {
1098         struct nvme_ns *ns;
1099         __le32 *ns_list;
1100         unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
1101         int ret = 0;
1102
1103         ns_list = kzalloc(0x1000, GFP_KERNEL);
1104         if (!ns_list)
1105                 return -ENOMEM;
1106
1107         for (i = 0; i < num_lists; i++) {
1108                 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
1109                 if (ret)
1110                         goto out;
1111
1112                 for (j = 0; j < min(nn, 1024U); j++) {
1113                         nsid = le32_to_cpu(ns_list[j]);
1114                         if (!nsid)
1115                                 goto out;
1116
1117                         nvme_validate_ns(ctrl, nsid);
1118
1119                         while (++prev < nsid) {
1120                                 ns = nvme_find_ns(ctrl, prev);
1121                                 if (ns)
1122                                         nvme_ns_remove(ns);
1123                         }
1124                 }
1125                 nn -= j;
1126         }
1127  out:
1128         kfree(ns_list);
1129         return ret;
1130 }
1131
1132 static void __nvme_scan_namespaces(struct nvme_ctrl *ctrl, unsigned nn)
1133 {
1134         struct nvme_ns *ns, *next;
1135         unsigned i;
1136
1137         for (i = 1; i <= nn; i++)
1138                 nvme_validate_ns(ctrl, i);
1139
1140         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
1141                 if (ns->ns_id > nn)
1142                         nvme_ns_remove(ns);
1143         }
1144 }
1145
1146 void nvme_scan_namespaces(struct nvme_ctrl *ctrl)
1147 {
1148         struct nvme_id_ctrl *id;
1149         unsigned nn;
1150
1151         if (nvme_identify_ctrl(ctrl, &id))
1152                 return;
1153
1154         nn = le32_to_cpu(id->nn);
1155         if (ctrl->vs >= NVME_VS(1, 1) &&
1156             !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
1157                 if (!nvme_scan_ns_list(ctrl, nn))
1158                         goto done;
1159         }
1160         __nvme_scan_namespaces(ctrl, le32_to_cpup(&id->nn));
1161  done:
1162         list_sort(NULL, &ctrl->namespaces, ns_cmp);
1163         kfree(id);
1164 }
1165
1166 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
1167 {
1168         struct nvme_ns *ns, *next;
1169
1170         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
1171                 nvme_ns_remove(ns);
1172 }
1173
1174 static DEFINE_IDA(nvme_instance_ida);
1175
1176 static int nvme_set_instance(struct nvme_ctrl *ctrl)
1177 {
1178         int instance, error;
1179
1180         do {
1181                 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
1182                         return -ENODEV;
1183
1184                 spin_lock(&dev_list_lock);
1185                 error = ida_get_new(&nvme_instance_ida, &instance);
1186                 spin_unlock(&dev_list_lock);
1187         } while (error == -EAGAIN);
1188
1189         if (error)
1190                 return -ENODEV;
1191
1192         ctrl->instance = instance;
1193         return 0;
1194 }
1195
1196 static void nvme_release_instance(struct nvme_ctrl *ctrl)
1197 {
1198         spin_lock(&dev_list_lock);
1199         ida_remove(&nvme_instance_ida, ctrl->instance);
1200         spin_unlock(&dev_list_lock);
1201 }
1202
1203 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
1204  {
1205         device_remove_file(ctrl->device, &dev_attr_reset_controller);
1206         device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
1207
1208         spin_lock(&dev_list_lock);
1209         list_del(&ctrl->node);
1210         spin_unlock(&dev_list_lock);
1211 }
1212
1213 static void nvme_free_ctrl(struct kref *kref)
1214 {
1215         struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
1216
1217         put_device(ctrl->device);
1218         nvme_release_instance(ctrl);
1219
1220         ctrl->ops->free_ctrl(ctrl);
1221 }
1222
1223 void nvme_put_ctrl(struct nvme_ctrl *ctrl)
1224 {
1225         kref_put(&ctrl->kref, nvme_free_ctrl);
1226 }
1227
1228 /*
1229  * Initialize a NVMe controller structures.  This needs to be called during
1230  * earliest initialization so that we have the initialized structured around
1231  * during probing.
1232  */
1233 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
1234                 const struct nvme_ctrl_ops *ops, unsigned long quirks)
1235 {
1236         int ret;
1237
1238         INIT_LIST_HEAD(&ctrl->namespaces);
1239         kref_init(&ctrl->kref);
1240         ctrl->dev = dev;
1241         ctrl->ops = ops;
1242         ctrl->quirks = quirks;
1243
1244         ret = nvme_set_instance(ctrl);
1245         if (ret)
1246                 goto out;
1247
1248         ctrl->device = device_create(nvme_class, ctrl->dev,
1249                                 MKDEV(nvme_char_major, ctrl->instance),
1250                                 dev, "nvme%d", ctrl->instance);
1251         if (IS_ERR(ctrl->device)) {
1252                 ret = PTR_ERR(ctrl->device);
1253                 goto out_release_instance;
1254         }
1255         get_device(ctrl->device);
1256         dev_set_drvdata(ctrl->device, ctrl);
1257
1258         ret = device_create_file(ctrl->device, &dev_attr_reset_controller);
1259         if (ret)
1260                 goto out_put_device;
1261
1262         spin_lock(&dev_list_lock);
1263         list_add_tail(&ctrl->node, &nvme_ctrl_list);
1264         spin_unlock(&dev_list_lock);
1265
1266         return 0;
1267
1268 out_put_device:
1269         put_device(ctrl->device);
1270         device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
1271 out_release_instance:
1272         nvme_release_instance(ctrl);
1273 out:
1274         return ret;
1275 }
1276
1277 int __init nvme_core_init(void)
1278 {
1279         int result;
1280
1281         result = register_blkdev(nvme_major, "nvme");
1282         if (result < 0)
1283                 return result;
1284         else if (result > 0)
1285                 nvme_major = result;
1286
1287         result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
1288                                                         &nvme_dev_fops);
1289         if (result < 0)
1290                 goto unregister_blkdev;
1291         else if (result > 0)
1292                 nvme_char_major = result;
1293
1294         nvme_class = class_create(THIS_MODULE, "nvme");
1295         if (IS_ERR(nvme_class)) {
1296                 result = PTR_ERR(nvme_class);
1297                 goto unregister_chrdev;
1298         }
1299
1300         return 0;
1301
1302  unregister_chrdev:
1303         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
1304  unregister_blkdev:
1305         unregister_blkdev(nvme_major, "nvme");
1306         return result;
1307 }
1308
1309 void nvme_core_exit(void)
1310 {
1311         unregister_blkdev(nvme_major, "nvme");
1312         class_destroy(nvme_class);
1313         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
1314 }