block: don't deal with discard limit in blkdev_issue_discard()
[linux-2.6-block.git] / drivers / nvdimm / region_devs.c
1 /*
2  * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  */
13 #include <linux/scatterlist.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/hash.h>
18 #include <linux/sort.h>
19 #include <linux/io.h>
20 #include <linux/nd.h>
21 #include "nd-core.h"
22 #include "nd.h"
23
24 /*
25  * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
26  * irrelevant.
27  */
28 #include <linux/io-64-nonatomic-hi-lo.h>
29
30 static DEFINE_IDA(region_ida);
31 static DEFINE_PER_CPU(int, flush_idx);
32
33 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm,
34                 struct nd_region_data *ndrd)
35 {
36         int i, j;
37
38         dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm),
39                         nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es");
40         for (i = 0; i < (1 << ndrd->hints_shift); i++) {
41                 struct resource *res = &nvdimm->flush_wpq[i];
42                 unsigned long pfn = PHYS_PFN(res->start);
43                 void __iomem *flush_page;
44
45                 /* check if flush hints share a page */
46                 for (j = 0; j < i; j++) {
47                         struct resource *res_j = &nvdimm->flush_wpq[j];
48                         unsigned long pfn_j = PHYS_PFN(res_j->start);
49
50                         if (pfn == pfn_j)
51                                 break;
52                 }
53
54                 if (j < i)
55                         flush_page = (void __iomem *) ((unsigned long)
56                                         ndrd_get_flush_wpq(ndrd, dimm, j)
57                                         & PAGE_MASK);
58                 else
59                         flush_page = devm_nvdimm_ioremap(dev,
60                                         PFN_PHYS(pfn), PAGE_SIZE);
61                 if (!flush_page)
62                         return -ENXIO;
63                 ndrd_set_flush_wpq(ndrd, dimm, i, flush_page
64                                 + (res->start & ~PAGE_MASK));
65         }
66
67         return 0;
68 }
69
70 int nd_region_activate(struct nd_region *nd_region)
71 {
72         int i, j, num_flush = 0;
73         struct nd_region_data *ndrd;
74         struct device *dev = &nd_region->dev;
75         size_t flush_data_size = sizeof(void *);
76
77         nvdimm_bus_lock(&nd_region->dev);
78         for (i = 0; i < nd_region->ndr_mappings; i++) {
79                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
80                 struct nvdimm *nvdimm = nd_mapping->nvdimm;
81
82                 /* at least one null hint slot per-dimm for the "no-hint" case */
83                 flush_data_size += sizeof(void *);
84                 num_flush = min_not_zero(num_flush, nvdimm->num_flush);
85                 if (!nvdimm->num_flush)
86                         continue;
87                 flush_data_size += nvdimm->num_flush * sizeof(void *);
88         }
89         nvdimm_bus_unlock(&nd_region->dev);
90
91         ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL);
92         if (!ndrd)
93                 return -ENOMEM;
94         dev_set_drvdata(dev, ndrd);
95
96         if (!num_flush)
97                 return 0;
98
99         ndrd->hints_shift = ilog2(num_flush);
100         for (i = 0; i < nd_region->ndr_mappings; i++) {
101                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
102                 struct nvdimm *nvdimm = nd_mapping->nvdimm;
103                 int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd);
104
105                 if (rc)
106                         return rc;
107         }
108
109         /*
110          * Clear out entries that are duplicates. This should prevent the
111          * extra flushings.
112          */
113         for (i = 0; i < nd_region->ndr_mappings - 1; i++) {
114                 /* ignore if NULL already */
115                 if (!ndrd_get_flush_wpq(ndrd, i, 0))
116                         continue;
117
118                 for (j = i + 1; j < nd_region->ndr_mappings; j++)
119                         if (ndrd_get_flush_wpq(ndrd, i, 0) ==
120                             ndrd_get_flush_wpq(ndrd, j, 0))
121                                 ndrd_set_flush_wpq(ndrd, j, 0, NULL);
122         }
123
124         return 0;
125 }
126
127 static void nd_region_release(struct device *dev)
128 {
129         struct nd_region *nd_region = to_nd_region(dev);
130         u16 i;
131
132         for (i = 0; i < nd_region->ndr_mappings; i++) {
133                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
134                 struct nvdimm *nvdimm = nd_mapping->nvdimm;
135
136                 put_device(&nvdimm->dev);
137         }
138         free_percpu(nd_region->lane);
139         ida_simple_remove(&region_ida, nd_region->id);
140         if (is_nd_blk(dev))
141                 kfree(to_nd_blk_region(dev));
142         else
143                 kfree(nd_region);
144 }
145
146 static struct device_type nd_blk_device_type = {
147         .name = "nd_blk",
148         .release = nd_region_release,
149 };
150
151 static struct device_type nd_pmem_device_type = {
152         .name = "nd_pmem",
153         .release = nd_region_release,
154 };
155
156 static struct device_type nd_volatile_device_type = {
157         .name = "nd_volatile",
158         .release = nd_region_release,
159 };
160
161 bool is_nd_pmem(struct device *dev)
162 {
163         return dev ? dev->type == &nd_pmem_device_type : false;
164 }
165
166 bool is_nd_blk(struct device *dev)
167 {
168         return dev ? dev->type == &nd_blk_device_type : false;
169 }
170
171 bool is_nd_volatile(struct device *dev)
172 {
173         return dev ? dev->type == &nd_volatile_device_type : false;
174 }
175
176 struct nd_region *to_nd_region(struct device *dev)
177 {
178         struct nd_region *nd_region = container_of(dev, struct nd_region, dev);
179
180         WARN_ON(dev->type->release != nd_region_release);
181         return nd_region;
182 }
183 EXPORT_SYMBOL_GPL(to_nd_region);
184
185 struct device *nd_region_dev(struct nd_region *nd_region)
186 {
187         if (!nd_region)
188                 return NULL;
189         return &nd_region->dev;
190 }
191 EXPORT_SYMBOL_GPL(nd_region_dev);
192
193 struct nd_blk_region *to_nd_blk_region(struct device *dev)
194 {
195         struct nd_region *nd_region = to_nd_region(dev);
196
197         WARN_ON(!is_nd_blk(dev));
198         return container_of(nd_region, struct nd_blk_region, nd_region);
199 }
200 EXPORT_SYMBOL_GPL(to_nd_blk_region);
201
202 void *nd_region_provider_data(struct nd_region *nd_region)
203 {
204         return nd_region->provider_data;
205 }
206 EXPORT_SYMBOL_GPL(nd_region_provider_data);
207
208 void *nd_blk_region_provider_data(struct nd_blk_region *ndbr)
209 {
210         return ndbr->blk_provider_data;
211 }
212 EXPORT_SYMBOL_GPL(nd_blk_region_provider_data);
213
214 void nd_blk_region_set_provider_data(struct nd_blk_region *ndbr, void *data)
215 {
216         ndbr->blk_provider_data = data;
217 }
218 EXPORT_SYMBOL_GPL(nd_blk_region_set_provider_data);
219
220 /**
221  * nd_region_to_nstype() - region to an integer namespace type
222  * @nd_region: region-device to interrogate
223  *
224  * This is the 'nstype' attribute of a region as well, an input to the
225  * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
226  * namespace devices with namespace drivers.
227  */
228 int nd_region_to_nstype(struct nd_region *nd_region)
229 {
230         if (is_memory(&nd_region->dev)) {
231                 u16 i, alias;
232
233                 for (i = 0, alias = 0; i < nd_region->ndr_mappings; i++) {
234                         struct nd_mapping *nd_mapping = &nd_region->mapping[i];
235                         struct nvdimm *nvdimm = nd_mapping->nvdimm;
236
237                         if (test_bit(NDD_ALIASING, &nvdimm->flags))
238                                 alias++;
239                 }
240                 if (alias)
241                         return ND_DEVICE_NAMESPACE_PMEM;
242                 else
243                         return ND_DEVICE_NAMESPACE_IO;
244         } else if (is_nd_blk(&nd_region->dev)) {
245                 return ND_DEVICE_NAMESPACE_BLK;
246         }
247
248         return 0;
249 }
250 EXPORT_SYMBOL(nd_region_to_nstype);
251
252 static ssize_t size_show(struct device *dev,
253                 struct device_attribute *attr, char *buf)
254 {
255         struct nd_region *nd_region = to_nd_region(dev);
256         unsigned long long size = 0;
257
258         if (is_memory(dev)) {
259                 size = nd_region->ndr_size;
260         } else if (nd_region->ndr_mappings == 1) {
261                 struct nd_mapping *nd_mapping = &nd_region->mapping[0];
262
263                 size = nd_mapping->size;
264         }
265
266         return sprintf(buf, "%llu\n", size);
267 }
268 static DEVICE_ATTR_RO(size);
269
270 static ssize_t deep_flush_show(struct device *dev,
271                 struct device_attribute *attr, char *buf)
272 {
273         struct nd_region *nd_region = to_nd_region(dev);
274
275         /*
276          * NOTE: in the nvdimm_has_flush() error case this attribute is
277          * not visible.
278          */
279         return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region));
280 }
281
282 static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr,
283                 const char *buf, size_t len)
284 {
285         bool flush;
286         int rc = strtobool(buf, &flush);
287         struct nd_region *nd_region = to_nd_region(dev);
288
289         if (rc)
290                 return rc;
291         if (!flush)
292                 return -EINVAL;
293         nvdimm_flush(nd_region);
294
295         return len;
296 }
297 static DEVICE_ATTR_RW(deep_flush);
298
299 static ssize_t mappings_show(struct device *dev,
300                 struct device_attribute *attr, char *buf)
301 {
302         struct nd_region *nd_region = to_nd_region(dev);
303
304         return sprintf(buf, "%d\n", nd_region->ndr_mappings);
305 }
306 static DEVICE_ATTR_RO(mappings);
307
308 static ssize_t nstype_show(struct device *dev,
309                 struct device_attribute *attr, char *buf)
310 {
311         struct nd_region *nd_region = to_nd_region(dev);
312
313         return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
314 }
315 static DEVICE_ATTR_RO(nstype);
316
317 static ssize_t set_cookie_show(struct device *dev,
318                 struct device_attribute *attr, char *buf)
319 {
320         struct nd_region *nd_region = to_nd_region(dev);
321         struct nd_interleave_set *nd_set = nd_region->nd_set;
322         ssize_t rc = 0;
323
324         if (is_memory(dev) && nd_set)
325                 /* pass, should be precluded by region_visible */;
326         else
327                 return -ENXIO;
328
329         /*
330          * The cookie to show depends on which specification of the
331          * labels we are using. If there are not labels then default to
332          * the v1.1 namespace label cookie definition. To read all this
333          * data we need to wait for probing to settle.
334          */
335         device_lock(dev);
336         nvdimm_bus_lock(dev);
337         wait_nvdimm_bus_probe_idle(dev);
338         if (nd_region->ndr_mappings) {
339                 struct nd_mapping *nd_mapping = &nd_region->mapping[0];
340                 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
341
342                 if (ndd) {
343                         struct nd_namespace_index *nsindex;
344
345                         nsindex = to_namespace_index(ndd, ndd->ns_current);
346                         rc = sprintf(buf, "%#llx\n",
347                                         nd_region_interleave_set_cookie(nd_region,
348                                                 nsindex));
349                 }
350         }
351         nvdimm_bus_unlock(dev);
352         device_unlock(dev);
353
354         if (rc)
355                 return rc;
356         return sprintf(buf, "%#llx\n", nd_set->cookie1);
357 }
358 static DEVICE_ATTR_RO(set_cookie);
359
360 resource_size_t nd_region_available_dpa(struct nd_region *nd_region)
361 {
362         resource_size_t blk_max_overlap = 0, available, overlap;
363         int i;
364
365         WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
366
367  retry:
368         available = 0;
369         overlap = blk_max_overlap;
370         for (i = 0; i < nd_region->ndr_mappings; i++) {
371                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
372                 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
373
374                 /* if a dimm is disabled the available capacity is zero */
375                 if (!ndd)
376                         return 0;
377
378                 if (is_memory(&nd_region->dev)) {
379                         available += nd_pmem_available_dpa(nd_region,
380                                         nd_mapping, &overlap);
381                         if (overlap > blk_max_overlap) {
382                                 blk_max_overlap = overlap;
383                                 goto retry;
384                         }
385                 } else if (is_nd_blk(&nd_region->dev))
386                         available += nd_blk_available_dpa(nd_region);
387         }
388
389         return available;
390 }
391
392 static ssize_t available_size_show(struct device *dev,
393                 struct device_attribute *attr, char *buf)
394 {
395         struct nd_region *nd_region = to_nd_region(dev);
396         unsigned long long available = 0;
397
398         /*
399          * Flush in-flight updates and grab a snapshot of the available
400          * size.  Of course, this value is potentially invalidated the
401          * memory nvdimm_bus_lock() is dropped, but that's userspace's
402          * problem to not race itself.
403          */
404         nvdimm_bus_lock(dev);
405         wait_nvdimm_bus_probe_idle(dev);
406         available = nd_region_available_dpa(nd_region);
407         nvdimm_bus_unlock(dev);
408
409         return sprintf(buf, "%llu\n", available);
410 }
411 static DEVICE_ATTR_RO(available_size);
412
413 static ssize_t init_namespaces_show(struct device *dev,
414                 struct device_attribute *attr, char *buf)
415 {
416         struct nd_region_data *ndrd = dev_get_drvdata(dev);
417         ssize_t rc;
418
419         nvdimm_bus_lock(dev);
420         if (ndrd)
421                 rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count);
422         else
423                 rc = -ENXIO;
424         nvdimm_bus_unlock(dev);
425
426         return rc;
427 }
428 static DEVICE_ATTR_RO(init_namespaces);
429
430 static ssize_t namespace_seed_show(struct device *dev,
431                 struct device_attribute *attr, char *buf)
432 {
433         struct nd_region *nd_region = to_nd_region(dev);
434         ssize_t rc;
435
436         nvdimm_bus_lock(dev);
437         if (nd_region->ns_seed)
438                 rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed));
439         else
440                 rc = sprintf(buf, "\n");
441         nvdimm_bus_unlock(dev);
442         return rc;
443 }
444 static DEVICE_ATTR_RO(namespace_seed);
445
446 static ssize_t btt_seed_show(struct device *dev,
447                 struct device_attribute *attr, char *buf)
448 {
449         struct nd_region *nd_region = to_nd_region(dev);
450         ssize_t rc;
451
452         nvdimm_bus_lock(dev);
453         if (nd_region->btt_seed)
454                 rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed));
455         else
456                 rc = sprintf(buf, "\n");
457         nvdimm_bus_unlock(dev);
458
459         return rc;
460 }
461 static DEVICE_ATTR_RO(btt_seed);
462
463 static ssize_t pfn_seed_show(struct device *dev,
464                 struct device_attribute *attr, char *buf)
465 {
466         struct nd_region *nd_region = to_nd_region(dev);
467         ssize_t rc;
468
469         nvdimm_bus_lock(dev);
470         if (nd_region->pfn_seed)
471                 rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed));
472         else
473                 rc = sprintf(buf, "\n");
474         nvdimm_bus_unlock(dev);
475
476         return rc;
477 }
478 static DEVICE_ATTR_RO(pfn_seed);
479
480 static ssize_t dax_seed_show(struct device *dev,
481                 struct device_attribute *attr, char *buf)
482 {
483         struct nd_region *nd_region = to_nd_region(dev);
484         ssize_t rc;
485
486         nvdimm_bus_lock(dev);
487         if (nd_region->dax_seed)
488                 rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed));
489         else
490                 rc = sprintf(buf, "\n");
491         nvdimm_bus_unlock(dev);
492
493         return rc;
494 }
495 static DEVICE_ATTR_RO(dax_seed);
496
497 static ssize_t read_only_show(struct device *dev,
498                 struct device_attribute *attr, char *buf)
499 {
500         struct nd_region *nd_region = to_nd_region(dev);
501
502         return sprintf(buf, "%d\n", nd_region->ro);
503 }
504
505 static ssize_t read_only_store(struct device *dev,
506                 struct device_attribute *attr, const char *buf, size_t len)
507 {
508         bool ro;
509         int rc = strtobool(buf, &ro);
510         struct nd_region *nd_region = to_nd_region(dev);
511
512         if (rc)
513                 return rc;
514
515         nd_region->ro = ro;
516         return len;
517 }
518 static DEVICE_ATTR_RW(read_only);
519
520 static ssize_t region_badblocks_show(struct device *dev,
521                 struct device_attribute *attr, char *buf)
522 {
523         struct nd_region *nd_region = to_nd_region(dev);
524
525         return badblocks_show(&nd_region->bb, buf, 0);
526 }
527
528 static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL);
529
530 static ssize_t resource_show(struct device *dev,
531                 struct device_attribute *attr, char *buf)
532 {
533         struct nd_region *nd_region = to_nd_region(dev);
534
535         return sprintf(buf, "%#llx\n", nd_region->ndr_start);
536 }
537 static DEVICE_ATTR_RO(resource);
538
539 static ssize_t persistence_domain_show(struct device *dev,
540                 struct device_attribute *attr, char *buf)
541 {
542         struct nd_region *nd_region = to_nd_region(dev);
543
544         if (test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags))
545                 return sprintf(buf, "cpu_cache\n");
546         else if (test_bit(ND_REGION_PERSIST_MEMCTRL, &nd_region->flags))
547                 return sprintf(buf, "memory_controller\n");
548         else
549                 return sprintf(buf, "\n");
550 }
551 static DEVICE_ATTR_RO(persistence_domain);
552
553 static struct attribute *nd_region_attributes[] = {
554         &dev_attr_size.attr,
555         &dev_attr_nstype.attr,
556         &dev_attr_mappings.attr,
557         &dev_attr_btt_seed.attr,
558         &dev_attr_pfn_seed.attr,
559         &dev_attr_dax_seed.attr,
560         &dev_attr_deep_flush.attr,
561         &dev_attr_read_only.attr,
562         &dev_attr_set_cookie.attr,
563         &dev_attr_available_size.attr,
564         &dev_attr_namespace_seed.attr,
565         &dev_attr_init_namespaces.attr,
566         &dev_attr_badblocks.attr,
567         &dev_attr_resource.attr,
568         &dev_attr_persistence_domain.attr,
569         NULL,
570 };
571
572 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n)
573 {
574         struct device *dev = container_of(kobj, typeof(*dev), kobj);
575         struct nd_region *nd_region = to_nd_region(dev);
576         struct nd_interleave_set *nd_set = nd_region->nd_set;
577         int type = nd_region_to_nstype(nd_region);
578
579         if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr)
580                 return 0;
581
582         if (!is_memory(dev) && a == &dev_attr_dax_seed.attr)
583                 return 0;
584
585         if (!is_nd_pmem(dev) && a == &dev_attr_badblocks.attr)
586                 return 0;
587
588         if (a == &dev_attr_resource.attr) {
589                 if (is_nd_pmem(dev))
590                         return 0400;
591                 else
592                         return 0;
593         }
594
595         if (a == &dev_attr_deep_flush.attr) {
596                 int has_flush = nvdimm_has_flush(nd_region);
597
598                 if (has_flush == 1)
599                         return a->mode;
600                 else if (has_flush == 0)
601                         return 0444;
602                 else
603                         return 0;
604         }
605
606         if (a == &dev_attr_persistence_domain.attr) {
607                 if ((nd_region->flags & (BIT(ND_REGION_PERSIST_CACHE)
608                                         | BIT(ND_REGION_PERSIST_MEMCTRL))) == 0)
609                         return 0;
610                 return a->mode;
611         }
612
613         if (a != &dev_attr_set_cookie.attr
614                         && a != &dev_attr_available_size.attr)
615                 return a->mode;
616
617         if ((type == ND_DEVICE_NAMESPACE_PMEM
618                                 || type == ND_DEVICE_NAMESPACE_BLK)
619                         && a == &dev_attr_available_size.attr)
620                 return a->mode;
621         else if (is_memory(dev) && nd_set)
622                 return a->mode;
623
624         return 0;
625 }
626
627 struct attribute_group nd_region_attribute_group = {
628         .attrs = nd_region_attributes,
629         .is_visible = region_visible,
630 };
631 EXPORT_SYMBOL_GPL(nd_region_attribute_group);
632
633 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region,
634                 struct nd_namespace_index *nsindex)
635 {
636         struct nd_interleave_set *nd_set = nd_region->nd_set;
637
638         if (!nd_set)
639                 return 0;
640
641         if (nsindex && __le16_to_cpu(nsindex->major) == 1
642                         && __le16_to_cpu(nsindex->minor) == 1)
643                 return nd_set->cookie1;
644         return nd_set->cookie2;
645 }
646
647 u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region)
648 {
649         struct nd_interleave_set *nd_set = nd_region->nd_set;
650
651         if (nd_set)
652                 return nd_set->altcookie;
653         return 0;
654 }
655
656 void nd_mapping_free_labels(struct nd_mapping *nd_mapping)
657 {
658         struct nd_label_ent *label_ent, *e;
659
660         lockdep_assert_held(&nd_mapping->lock);
661         list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) {
662                 list_del(&label_ent->list);
663                 kfree(label_ent);
664         }
665 }
666
667 /*
668  * Upon successful probe/remove, take/release a reference on the
669  * associated interleave set (if present), and plant new btt + namespace
670  * seeds.  Also, on the removal of a BLK region, notify the provider to
671  * disable the region.
672  */
673 static void nd_region_notify_driver_action(struct nvdimm_bus *nvdimm_bus,
674                 struct device *dev, bool probe)
675 {
676         struct nd_region *nd_region;
677
678         if (!probe && is_nd_region(dev)) {
679                 int i;
680
681                 nd_region = to_nd_region(dev);
682                 for (i = 0; i < nd_region->ndr_mappings; i++) {
683                         struct nd_mapping *nd_mapping = &nd_region->mapping[i];
684                         struct nvdimm_drvdata *ndd = nd_mapping->ndd;
685                         struct nvdimm *nvdimm = nd_mapping->nvdimm;
686
687                         mutex_lock(&nd_mapping->lock);
688                         nd_mapping_free_labels(nd_mapping);
689                         mutex_unlock(&nd_mapping->lock);
690
691                         put_ndd(ndd);
692                         nd_mapping->ndd = NULL;
693                         if (ndd)
694                                 atomic_dec(&nvdimm->busy);
695                 }
696         }
697         if (dev->parent && is_nd_region(dev->parent) && probe) {
698                 nd_region = to_nd_region(dev->parent);
699                 nvdimm_bus_lock(dev);
700                 if (nd_region->ns_seed == dev)
701                         nd_region_create_ns_seed(nd_region);
702                 nvdimm_bus_unlock(dev);
703         }
704         if (is_nd_btt(dev) && probe) {
705                 struct nd_btt *nd_btt = to_nd_btt(dev);
706
707                 nd_region = to_nd_region(dev->parent);
708                 nvdimm_bus_lock(dev);
709                 if (nd_region->btt_seed == dev)
710                         nd_region_create_btt_seed(nd_region);
711                 if (nd_region->ns_seed == &nd_btt->ndns->dev)
712                         nd_region_create_ns_seed(nd_region);
713                 nvdimm_bus_unlock(dev);
714         }
715         if (is_nd_pfn(dev) && probe) {
716                 struct nd_pfn *nd_pfn = to_nd_pfn(dev);
717
718                 nd_region = to_nd_region(dev->parent);
719                 nvdimm_bus_lock(dev);
720                 if (nd_region->pfn_seed == dev)
721                         nd_region_create_pfn_seed(nd_region);
722                 if (nd_region->ns_seed == &nd_pfn->ndns->dev)
723                         nd_region_create_ns_seed(nd_region);
724                 nvdimm_bus_unlock(dev);
725         }
726         if (is_nd_dax(dev) && probe) {
727                 struct nd_dax *nd_dax = to_nd_dax(dev);
728
729                 nd_region = to_nd_region(dev->parent);
730                 nvdimm_bus_lock(dev);
731                 if (nd_region->dax_seed == dev)
732                         nd_region_create_dax_seed(nd_region);
733                 if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev)
734                         nd_region_create_ns_seed(nd_region);
735                 nvdimm_bus_unlock(dev);
736         }
737 }
738
739 void nd_region_probe_success(struct nvdimm_bus *nvdimm_bus, struct device *dev)
740 {
741         nd_region_notify_driver_action(nvdimm_bus, dev, true);
742 }
743
744 void nd_region_disable(struct nvdimm_bus *nvdimm_bus, struct device *dev)
745 {
746         nd_region_notify_driver_action(nvdimm_bus, dev, false);
747 }
748
749 static ssize_t mappingN(struct device *dev, char *buf, int n)
750 {
751         struct nd_region *nd_region = to_nd_region(dev);
752         struct nd_mapping *nd_mapping;
753         struct nvdimm *nvdimm;
754
755         if (n >= nd_region->ndr_mappings)
756                 return -ENXIO;
757         nd_mapping = &nd_region->mapping[n];
758         nvdimm = nd_mapping->nvdimm;
759
760         return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev),
761                         nd_mapping->start, nd_mapping->size,
762                         nd_mapping->position);
763 }
764
765 #define REGION_MAPPING(idx) \
766 static ssize_t mapping##idx##_show(struct device *dev,          \
767                 struct device_attribute *attr, char *buf)       \
768 {                                                               \
769         return mappingN(dev, buf, idx);                         \
770 }                                                               \
771 static DEVICE_ATTR_RO(mapping##idx)
772
773 /*
774  * 32 should be enough for a while, even in the presence of socket
775  * interleave a 32-way interleave set is a degenerate case.
776  */
777 REGION_MAPPING(0);
778 REGION_MAPPING(1);
779 REGION_MAPPING(2);
780 REGION_MAPPING(3);
781 REGION_MAPPING(4);
782 REGION_MAPPING(5);
783 REGION_MAPPING(6);
784 REGION_MAPPING(7);
785 REGION_MAPPING(8);
786 REGION_MAPPING(9);
787 REGION_MAPPING(10);
788 REGION_MAPPING(11);
789 REGION_MAPPING(12);
790 REGION_MAPPING(13);
791 REGION_MAPPING(14);
792 REGION_MAPPING(15);
793 REGION_MAPPING(16);
794 REGION_MAPPING(17);
795 REGION_MAPPING(18);
796 REGION_MAPPING(19);
797 REGION_MAPPING(20);
798 REGION_MAPPING(21);
799 REGION_MAPPING(22);
800 REGION_MAPPING(23);
801 REGION_MAPPING(24);
802 REGION_MAPPING(25);
803 REGION_MAPPING(26);
804 REGION_MAPPING(27);
805 REGION_MAPPING(28);
806 REGION_MAPPING(29);
807 REGION_MAPPING(30);
808 REGION_MAPPING(31);
809
810 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n)
811 {
812         struct device *dev = container_of(kobj, struct device, kobj);
813         struct nd_region *nd_region = to_nd_region(dev);
814
815         if (n < nd_region->ndr_mappings)
816                 return a->mode;
817         return 0;
818 }
819
820 static struct attribute *mapping_attributes[] = {
821         &dev_attr_mapping0.attr,
822         &dev_attr_mapping1.attr,
823         &dev_attr_mapping2.attr,
824         &dev_attr_mapping3.attr,
825         &dev_attr_mapping4.attr,
826         &dev_attr_mapping5.attr,
827         &dev_attr_mapping6.attr,
828         &dev_attr_mapping7.attr,
829         &dev_attr_mapping8.attr,
830         &dev_attr_mapping9.attr,
831         &dev_attr_mapping10.attr,
832         &dev_attr_mapping11.attr,
833         &dev_attr_mapping12.attr,
834         &dev_attr_mapping13.attr,
835         &dev_attr_mapping14.attr,
836         &dev_attr_mapping15.attr,
837         &dev_attr_mapping16.attr,
838         &dev_attr_mapping17.attr,
839         &dev_attr_mapping18.attr,
840         &dev_attr_mapping19.attr,
841         &dev_attr_mapping20.attr,
842         &dev_attr_mapping21.attr,
843         &dev_attr_mapping22.attr,
844         &dev_attr_mapping23.attr,
845         &dev_attr_mapping24.attr,
846         &dev_attr_mapping25.attr,
847         &dev_attr_mapping26.attr,
848         &dev_attr_mapping27.attr,
849         &dev_attr_mapping28.attr,
850         &dev_attr_mapping29.attr,
851         &dev_attr_mapping30.attr,
852         &dev_attr_mapping31.attr,
853         NULL,
854 };
855
856 struct attribute_group nd_mapping_attribute_group = {
857         .is_visible = mapping_visible,
858         .attrs = mapping_attributes,
859 };
860 EXPORT_SYMBOL_GPL(nd_mapping_attribute_group);
861
862 int nd_blk_region_init(struct nd_region *nd_region)
863 {
864         struct device *dev = &nd_region->dev;
865         struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
866
867         if (!is_nd_blk(dev))
868                 return 0;
869
870         if (nd_region->ndr_mappings < 1) {
871                 dev_dbg(dev, "invalid BLK region\n");
872                 return -ENXIO;
873         }
874
875         return to_nd_blk_region(dev)->enable(nvdimm_bus, dev);
876 }
877
878 /**
879  * nd_region_acquire_lane - allocate and lock a lane
880  * @nd_region: region id and number of lanes possible
881  *
882  * A lane correlates to a BLK-data-window and/or a log slot in the BTT.
883  * We optimize for the common case where there are 256 lanes, one
884  * per-cpu.  For larger systems we need to lock to share lanes.  For now
885  * this implementation assumes the cost of maintaining an allocator for
886  * free lanes is on the order of the lock hold time, so it implements a
887  * static lane = cpu % num_lanes mapping.
888  *
889  * In the case of a BTT instance on top of a BLK namespace a lane may be
890  * acquired recursively.  We lock on the first instance.
891  *
892  * In the case of a BTT instance on top of PMEM, we only acquire a lane
893  * for the BTT metadata updates.
894  */
895 unsigned int nd_region_acquire_lane(struct nd_region *nd_region)
896 {
897         unsigned int cpu, lane;
898
899         cpu = get_cpu();
900         if (nd_region->num_lanes < nr_cpu_ids) {
901                 struct nd_percpu_lane *ndl_lock, *ndl_count;
902
903                 lane = cpu % nd_region->num_lanes;
904                 ndl_count = per_cpu_ptr(nd_region->lane, cpu);
905                 ndl_lock = per_cpu_ptr(nd_region->lane, lane);
906                 if (ndl_count->count++ == 0)
907                         spin_lock(&ndl_lock->lock);
908         } else
909                 lane = cpu;
910
911         return lane;
912 }
913 EXPORT_SYMBOL(nd_region_acquire_lane);
914
915 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane)
916 {
917         if (nd_region->num_lanes < nr_cpu_ids) {
918                 unsigned int cpu = get_cpu();
919                 struct nd_percpu_lane *ndl_lock, *ndl_count;
920
921                 ndl_count = per_cpu_ptr(nd_region->lane, cpu);
922                 ndl_lock = per_cpu_ptr(nd_region->lane, lane);
923                 if (--ndl_count->count == 0)
924                         spin_unlock(&ndl_lock->lock);
925                 put_cpu();
926         }
927         put_cpu();
928 }
929 EXPORT_SYMBOL(nd_region_release_lane);
930
931 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus,
932                 struct nd_region_desc *ndr_desc, struct device_type *dev_type,
933                 const char *caller)
934 {
935         struct nd_region *nd_region;
936         struct device *dev;
937         void *region_buf;
938         unsigned int i;
939         int ro = 0;
940
941         for (i = 0; i < ndr_desc->num_mappings; i++) {
942                 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
943                 struct nvdimm *nvdimm = mapping->nvdimm;
944
945                 if ((mapping->start | mapping->size) % SZ_4K) {
946                         dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not 4K aligned\n",
947                                         caller, dev_name(&nvdimm->dev), i);
948
949                         return NULL;
950                 }
951
952                 if (test_bit(NDD_UNARMED, &nvdimm->flags))
953                         ro = 1;
954         }
955
956         if (dev_type == &nd_blk_device_type) {
957                 struct nd_blk_region_desc *ndbr_desc;
958                 struct nd_blk_region *ndbr;
959
960                 ndbr_desc = to_blk_region_desc(ndr_desc);
961                 ndbr = kzalloc(sizeof(*ndbr) + sizeof(struct nd_mapping)
962                                 * ndr_desc->num_mappings,
963                                 GFP_KERNEL);
964                 if (ndbr) {
965                         nd_region = &ndbr->nd_region;
966                         ndbr->enable = ndbr_desc->enable;
967                         ndbr->do_io = ndbr_desc->do_io;
968                 }
969                 region_buf = ndbr;
970         } else {
971                 nd_region = kzalloc(sizeof(struct nd_region)
972                                 + sizeof(struct nd_mapping)
973                                 * ndr_desc->num_mappings,
974                                 GFP_KERNEL);
975                 region_buf = nd_region;
976         }
977
978         if (!region_buf)
979                 return NULL;
980         nd_region->id = ida_simple_get(&region_ida, 0, 0, GFP_KERNEL);
981         if (nd_region->id < 0)
982                 goto err_id;
983
984         nd_region->lane = alloc_percpu(struct nd_percpu_lane);
985         if (!nd_region->lane)
986                 goto err_percpu;
987
988         for (i = 0; i < nr_cpu_ids; i++) {
989                 struct nd_percpu_lane *ndl;
990
991                 ndl = per_cpu_ptr(nd_region->lane, i);
992                 spin_lock_init(&ndl->lock);
993                 ndl->count = 0;
994         }
995
996         for (i = 0; i < ndr_desc->num_mappings; i++) {
997                 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
998                 struct nvdimm *nvdimm = mapping->nvdimm;
999
1000                 nd_region->mapping[i].nvdimm = nvdimm;
1001                 nd_region->mapping[i].start = mapping->start;
1002                 nd_region->mapping[i].size = mapping->size;
1003                 nd_region->mapping[i].position = mapping->position;
1004                 INIT_LIST_HEAD(&nd_region->mapping[i].labels);
1005                 mutex_init(&nd_region->mapping[i].lock);
1006
1007                 get_device(&nvdimm->dev);
1008         }
1009         nd_region->ndr_mappings = ndr_desc->num_mappings;
1010         nd_region->provider_data = ndr_desc->provider_data;
1011         nd_region->nd_set = ndr_desc->nd_set;
1012         nd_region->num_lanes = ndr_desc->num_lanes;
1013         nd_region->flags = ndr_desc->flags;
1014         nd_region->ro = ro;
1015         nd_region->numa_node = ndr_desc->numa_node;
1016         ida_init(&nd_region->ns_ida);
1017         ida_init(&nd_region->btt_ida);
1018         ida_init(&nd_region->pfn_ida);
1019         ida_init(&nd_region->dax_ida);
1020         dev = &nd_region->dev;
1021         dev_set_name(dev, "region%d", nd_region->id);
1022         dev->parent = &nvdimm_bus->dev;
1023         dev->type = dev_type;
1024         dev->groups = ndr_desc->attr_groups;
1025         dev->of_node = ndr_desc->of_node;
1026         nd_region->ndr_size = resource_size(ndr_desc->res);
1027         nd_region->ndr_start = ndr_desc->res->start;
1028         nd_device_register(dev);
1029
1030         return nd_region;
1031
1032  err_percpu:
1033         ida_simple_remove(&region_ida, nd_region->id);
1034  err_id:
1035         kfree(region_buf);
1036         return NULL;
1037 }
1038
1039 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
1040                 struct nd_region_desc *ndr_desc)
1041 {
1042         ndr_desc->num_lanes = ND_MAX_LANES;
1043         return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type,
1044                         __func__);
1045 }
1046 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create);
1047
1048 struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus,
1049                 struct nd_region_desc *ndr_desc)
1050 {
1051         if (ndr_desc->num_mappings > 1)
1052                 return NULL;
1053         ndr_desc->num_lanes = min(ndr_desc->num_lanes, ND_MAX_LANES);
1054         return nd_region_create(nvdimm_bus, ndr_desc, &nd_blk_device_type,
1055                         __func__);
1056 }
1057 EXPORT_SYMBOL_GPL(nvdimm_blk_region_create);
1058
1059 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus,
1060                 struct nd_region_desc *ndr_desc)
1061 {
1062         ndr_desc->num_lanes = ND_MAX_LANES;
1063         return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type,
1064                         __func__);
1065 }
1066 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create);
1067
1068 /**
1069  * nvdimm_flush - flush any posted write queues between the cpu and pmem media
1070  * @nd_region: blk or interleaved pmem region
1071  */
1072 void nvdimm_flush(struct nd_region *nd_region)
1073 {
1074         struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
1075         int i, idx;
1076
1077         /*
1078          * Try to encourage some diversity in flush hint addresses
1079          * across cpus assuming a limited number of flush hints.
1080          */
1081         idx = this_cpu_read(flush_idx);
1082         idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8));
1083
1084         /*
1085          * The first wmb() is needed to 'sfence' all previous writes
1086          * such that they are architecturally visible for the platform
1087          * buffer flush.  Note that we've already arranged for pmem
1088          * writes to avoid the cache via memcpy_flushcache().  The final
1089          * wmb() ensures ordering for the NVDIMM flush write.
1090          */
1091         wmb();
1092         for (i = 0; i < nd_region->ndr_mappings; i++)
1093                 if (ndrd_get_flush_wpq(ndrd, i, 0))
1094                         writeq(1, ndrd_get_flush_wpq(ndrd, i, idx));
1095         wmb();
1096 }
1097 EXPORT_SYMBOL_GPL(nvdimm_flush);
1098
1099 /**
1100  * nvdimm_has_flush - determine write flushing requirements
1101  * @nd_region: blk or interleaved pmem region
1102  *
1103  * Returns 1 if writes require flushing
1104  * Returns 0 if writes do not require flushing
1105  * Returns -ENXIO if flushing capability can not be determined
1106  */
1107 int nvdimm_has_flush(struct nd_region *nd_region)
1108 {
1109         int i;
1110
1111         /* no nvdimm or pmem api == flushing capability unknown */
1112         if (nd_region->ndr_mappings == 0
1113                         || !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API))
1114                 return -ENXIO;
1115
1116         for (i = 0; i < nd_region->ndr_mappings; i++) {
1117                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
1118                 struct nvdimm *nvdimm = nd_mapping->nvdimm;
1119
1120                 /* flush hints present / available */
1121                 if (nvdimm->num_flush)
1122                         return 1;
1123         }
1124
1125         /*
1126          * The platform defines dimm devices without hints, assume
1127          * platform persistence mechanism like ADR
1128          */
1129         return 0;
1130 }
1131 EXPORT_SYMBOL_GPL(nvdimm_has_flush);
1132
1133 int nvdimm_has_cache(struct nd_region *nd_region)
1134 {
1135         return is_nd_pmem(&nd_region->dev) &&
1136                 !test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags);
1137 }
1138 EXPORT_SYMBOL_GPL(nvdimm_has_cache);
1139
1140 void __exit nd_region_devs_exit(void)
1141 {
1142         ida_destroy(&region_ida);
1143 }