Merge tag 'v5.17-rc4' into for-linus
[linux-block.git] / drivers / nvdimm / pmem.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Persistent Memory Driver
4  *
5  * Copyright (c) 2014-2015, Intel Corporation.
6  * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
7  * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
8  */
9
10 #include <linux/blkdev.h>
11 #include <linux/pagemap.h>
12 #include <linux/hdreg.h>
13 #include <linux/init.h>
14 #include <linux/platform_device.h>
15 #include <linux/set_memory.h>
16 #include <linux/module.h>
17 #include <linux/moduleparam.h>
18 #include <linux/badblocks.h>
19 #include <linux/memremap.h>
20 #include <linux/vmalloc.h>
21 #include <linux/blk-mq.h>
22 #include <linux/pfn_t.h>
23 #include <linux/slab.h>
24 #include <linux/uio.h>
25 #include <linux/dax.h>
26 #include <linux/nd.h>
27 #include <linux/mm.h>
28 #include <asm/cacheflush.h>
29 #include "pmem.h"
30 #include "btt.h"
31 #include "pfn.h"
32 #include "nd.h"
33
34 static struct device *to_dev(struct pmem_device *pmem)
35 {
36         /*
37          * nvdimm bus services need a 'dev' parameter, and we record the device
38          * at init in bb.dev.
39          */
40         return pmem->bb.dev;
41 }
42
43 static struct nd_region *to_region(struct pmem_device *pmem)
44 {
45         return to_nd_region(to_dev(pmem)->parent);
46 }
47
48 static void hwpoison_clear(struct pmem_device *pmem,
49                 phys_addr_t phys, unsigned int len)
50 {
51         unsigned long pfn_start, pfn_end, pfn;
52
53         /* only pmem in the linear map supports HWPoison */
54         if (is_vmalloc_addr(pmem->virt_addr))
55                 return;
56
57         pfn_start = PHYS_PFN(phys);
58         pfn_end = pfn_start + PHYS_PFN(len);
59         for (pfn = pfn_start; pfn < pfn_end; pfn++) {
60                 struct page *page = pfn_to_page(pfn);
61
62                 /*
63                  * Note, no need to hold a get_dev_pagemap() reference
64                  * here since we're in the driver I/O path and
65                  * outstanding I/O requests pin the dev_pagemap.
66                  */
67                 if (test_and_clear_pmem_poison(page))
68                         clear_mce_nospec(pfn);
69         }
70 }
71
72 static blk_status_t pmem_clear_poison(struct pmem_device *pmem,
73                 phys_addr_t offset, unsigned int len)
74 {
75         struct device *dev = to_dev(pmem);
76         sector_t sector;
77         long cleared;
78         blk_status_t rc = BLK_STS_OK;
79
80         sector = (offset - pmem->data_offset) / 512;
81
82         cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
83         if (cleared < len)
84                 rc = BLK_STS_IOERR;
85         if (cleared > 0 && cleared / 512) {
86                 hwpoison_clear(pmem, pmem->phys_addr + offset, cleared);
87                 cleared /= 512;
88                 dev_dbg(dev, "%#llx clear %ld sector%s\n",
89                                 (unsigned long long) sector, cleared,
90                                 cleared > 1 ? "s" : "");
91                 badblocks_clear(&pmem->bb, sector, cleared);
92                 if (pmem->bb_state)
93                         sysfs_notify_dirent(pmem->bb_state);
94         }
95
96         arch_invalidate_pmem(pmem->virt_addr + offset, len);
97
98         return rc;
99 }
100
101 static void write_pmem(void *pmem_addr, struct page *page,
102                 unsigned int off, unsigned int len)
103 {
104         unsigned int chunk;
105         void *mem;
106
107         while (len) {
108                 mem = kmap_atomic(page);
109                 chunk = min_t(unsigned int, len, PAGE_SIZE - off);
110                 memcpy_flushcache(pmem_addr, mem + off, chunk);
111                 kunmap_atomic(mem);
112                 len -= chunk;
113                 off = 0;
114                 page++;
115                 pmem_addr += chunk;
116         }
117 }
118
119 static blk_status_t read_pmem(struct page *page, unsigned int off,
120                 void *pmem_addr, unsigned int len)
121 {
122         unsigned int chunk;
123         unsigned long rem;
124         void *mem;
125
126         while (len) {
127                 mem = kmap_atomic(page);
128                 chunk = min_t(unsigned int, len, PAGE_SIZE - off);
129                 rem = copy_mc_to_kernel(mem + off, pmem_addr, chunk);
130                 kunmap_atomic(mem);
131                 if (rem)
132                         return BLK_STS_IOERR;
133                 len -= chunk;
134                 off = 0;
135                 page++;
136                 pmem_addr += chunk;
137         }
138         return BLK_STS_OK;
139 }
140
141 static blk_status_t pmem_do_read(struct pmem_device *pmem,
142                         struct page *page, unsigned int page_off,
143                         sector_t sector, unsigned int len)
144 {
145         blk_status_t rc;
146         phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
147         void *pmem_addr = pmem->virt_addr + pmem_off;
148
149         if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
150                 return BLK_STS_IOERR;
151
152         rc = read_pmem(page, page_off, pmem_addr, len);
153         flush_dcache_page(page);
154         return rc;
155 }
156
157 static blk_status_t pmem_do_write(struct pmem_device *pmem,
158                         struct page *page, unsigned int page_off,
159                         sector_t sector, unsigned int len)
160 {
161         blk_status_t rc = BLK_STS_OK;
162         bool bad_pmem = false;
163         phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
164         void *pmem_addr = pmem->virt_addr + pmem_off;
165
166         if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
167                 bad_pmem = true;
168
169         /*
170          * Note that we write the data both before and after
171          * clearing poison.  The write before clear poison
172          * handles situations where the latest written data is
173          * preserved and the clear poison operation simply marks
174          * the address range as valid without changing the data.
175          * In this case application software can assume that an
176          * interrupted write will either return the new good
177          * data or an error.
178          *
179          * However, if pmem_clear_poison() leaves the data in an
180          * indeterminate state we need to perform the write
181          * after clear poison.
182          */
183         flush_dcache_page(page);
184         write_pmem(pmem_addr, page, page_off, len);
185         if (unlikely(bad_pmem)) {
186                 rc = pmem_clear_poison(pmem, pmem_off, len);
187                 write_pmem(pmem_addr, page, page_off, len);
188         }
189
190         return rc;
191 }
192
193 static void pmem_submit_bio(struct bio *bio)
194 {
195         int ret = 0;
196         blk_status_t rc = 0;
197         bool do_acct;
198         unsigned long start;
199         struct bio_vec bvec;
200         struct bvec_iter iter;
201         struct pmem_device *pmem = bio->bi_bdev->bd_disk->private_data;
202         struct nd_region *nd_region = to_region(pmem);
203
204         if (bio->bi_opf & REQ_PREFLUSH)
205                 ret = nvdimm_flush(nd_region, bio);
206
207         do_acct = blk_queue_io_stat(bio->bi_bdev->bd_disk->queue);
208         if (do_acct)
209                 start = bio_start_io_acct(bio);
210         bio_for_each_segment(bvec, bio, iter) {
211                 if (op_is_write(bio_op(bio)))
212                         rc = pmem_do_write(pmem, bvec.bv_page, bvec.bv_offset,
213                                 iter.bi_sector, bvec.bv_len);
214                 else
215                         rc = pmem_do_read(pmem, bvec.bv_page, bvec.bv_offset,
216                                 iter.bi_sector, bvec.bv_len);
217                 if (rc) {
218                         bio->bi_status = rc;
219                         break;
220                 }
221         }
222         if (do_acct)
223                 bio_end_io_acct(bio, start);
224
225         if (bio->bi_opf & REQ_FUA)
226                 ret = nvdimm_flush(nd_region, bio);
227
228         if (ret)
229                 bio->bi_status = errno_to_blk_status(ret);
230
231         bio_endio(bio);
232 }
233
234 static int pmem_rw_page(struct block_device *bdev, sector_t sector,
235                        struct page *page, unsigned int op)
236 {
237         struct pmem_device *pmem = bdev->bd_disk->private_data;
238         blk_status_t rc;
239
240         if (op_is_write(op))
241                 rc = pmem_do_write(pmem, page, 0, sector, thp_size(page));
242         else
243                 rc = pmem_do_read(pmem, page, 0, sector, thp_size(page));
244         /*
245          * The ->rw_page interface is subtle and tricky.  The core
246          * retries on any error, so we can only invoke page_endio() in
247          * the successful completion case.  Otherwise, we'll see crashes
248          * caused by double completion.
249          */
250         if (rc == 0)
251                 page_endio(page, op_is_write(op), 0);
252
253         return blk_status_to_errno(rc);
254 }
255
256 /* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
257 __weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff,
258                 long nr_pages, void **kaddr, pfn_t *pfn)
259 {
260         resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset;
261
262         if (unlikely(is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) / 512,
263                                         PFN_PHYS(nr_pages))))
264                 return -EIO;
265
266         if (kaddr)
267                 *kaddr = pmem->virt_addr + offset;
268         if (pfn)
269                 *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
270
271         /*
272          * If badblocks are present, limit known good range to the
273          * requested range.
274          */
275         if (unlikely(pmem->bb.count))
276                 return nr_pages;
277         return PHYS_PFN(pmem->size - pmem->pfn_pad - offset);
278 }
279
280 static const struct block_device_operations pmem_fops = {
281         .owner =                THIS_MODULE,
282         .submit_bio =           pmem_submit_bio,
283         .rw_page =              pmem_rw_page,
284 };
285
286 static int pmem_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
287                                     size_t nr_pages)
288 {
289         struct pmem_device *pmem = dax_get_private(dax_dev);
290
291         return blk_status_to_errno(pmem_do_write(pmem, ZERO_PAGE(0), 0,
292                                    PFN_PHYS(pgoff) >> SECTOR_SHIFT,
293                                    PAGE_SIZE));
294 }
295
296 static long pmem_dax_direct_access(struct dax_device *dax_dev,
297                 pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn)
298 {
299         struct pmem_device *pmem = dax_get_private(dax_dev);
300
301         return __pmem_direct_access(pmem, pgoff, nr_pages, kaddr, pfn);
302 }
303
304 static const struct dax_operations pmem_dax_ops = {
305         .direct_access = pmem_dax_direct_access,
306         .zero_page_range = pmem_dax_zero_page_range,
307 };
308
309 static ssize_t write_cache_show(struct device *dev,
310                 struct device_attribute *attr, char *buf)
311 {
312         struct pmem_device *pmem = dev_to_disk(dev)->private_data;
313
314         return sprintf(buf, "%d\n", !!dax_write_cache_enabled(pmem->dax_dev));
315 }
316
317 static ssize_t write_cache_store(struct device *dev,
318                 struct device_attribute *attr, const char *buf, size_t len)
319 {
320         struct pmem_device *pmem = dev_to_disk(dev)->private_data;
321         bool write_cache;
322         int rc;
323
324         rc = strtobool(buf, &write_cache);
325         if (rc)
326                 return rc;
327         dax_write_cache(pmem->dax_dev, write_cache);
328         return len;
329 }
330 static DEVICE_ATTR_RW(write_cache);
331
332 static umode_t dax_visible(struct kobject *kobj, struct attribute *a, int n)
333 {
334 #ifndef CONFIG_ARCH_HAS_PMEM_API
335         if (a == &dev_attr_write_cache.attr)
336                 return 0;
337 #endif
338         return a->mode;
339 }
340
341 static struct attribute *dax_attributes[] = {
342         &dev_attr_write_cache.attr,
343         NULL,
344 };
345
346 static const struct attribute_group dax_attribute_group = {
347         .name           = "dax",
348         .attrs          = dax_attributes,
349         .is_visible     = dax_visible,
350 };
351
352 static const struct attribute_group *pmem_attribute_groups[] = {
353         &dax_attribute_group,
354         NULL,
355 };
356
357 static void pmem_release_disk(void *__pmem)
358 {
359         struct pmem_device *pmem = __pmem;
360
361         dax_remove_host(pmem->disk);
362         kill_dax(pmem->dax_dev);
363         put_dax(pmem->dax_dev);
364         del_gendisk(pmem->disk);
365
366         blk_cleanup_disk(pmem->disk);
367 }
368
369 static int pmem_attach_disk(struct device *dev,
370                 struct nd_namespace_common *ndns)
371 {
372         struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
373         struct nd_region *nd_region = to_nd_region(dev->parent);
374         int nid = dev_to_node(dev), fua;
375         struct resource *res = &nsio->res;
376         struct range bb_range;
377         struct nd_pfn *nd_pfn = NULL;
378         struct dax_device *dax_dev;
379         struct nd_pfn_sb *pfn_sb;
380         struct pmem_device *pmem;
381         struct request_queue *q;
382         struct gendisk *disk;
383         void *addr;
384         int rc;
385
386         pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
387         if (!pmem)
388                 return -ENOMEM;
389
390         rc = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
391         if (rc)
392                 return rc;
393
394         /* while nsio_rw_bytes is active, parse a pfn info block if present */
395         if (is_nd_pfn(dev)) {
396                 nd_pfn = to_nd_pfn(dev);
397                 rc = nvdimm_setup_pfn(nd_pfn, &pmem->pgmap);
398                 if (rc)
399                         return rc;
400         }
401
402         /* we're attaching a block device, disable raw namespace access */
403         devm_namespace_disable(dev, ndns);
404
405         dev_set_drvdata(dev, pmem);
406         pmem->phys_addr = res->start;
407         pmem->size = resource_size(res);
408         fua = nvdimm_has_flush(nd_region);
409         if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) {
410                 dev_warn(dev, "unable to guarantee persistence of writes\n");
411                 fua = 0;
412         }
413
414         if (!devm_request_mem_region(dev, res->start, resource_size(res),
415                                 dev_name(&ndns->dev))) {
416                 dev_warn(dev, "could not reserve region %pR\n", res);
417                 return -EBUSY;
418         }
419
420         disk = blk_alloc_disk(nid);
421         if (!disk)
422                 return -ENOMEM;
423         q = disk->queue;
424
425         pmem->disk = disk;
426         pmem->pgmap.owner = pmem;
427         pmem->pfn_flags = PFN_DEV;
428         if (is_nd_pfn(dev)) {
429                 pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
430                 addr = devm_memremap_pages(dev, &pmem->pgmap);
431                 pfn_sb = nd_pfn->pfn_sb;
432                 pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
433                 pmem->pfn_pad = resource_size(res) -
434                         range_len(&pmem->pgmap.range);
435                 pmem->pfn_flags |= PFN_MAP;
436                 bb_range = pmem->pgmap.range;
437                 bb_range.start += pmem->data_offset;
438         } else if (pmem_should_map_pages(dev)) {
439                 pmem->pgmap.range.start = res->start;
440                 pmem->pgmap.range.end = res->end;
441                 pmem->pgmap.nr_range = 1;
442                 pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
443                 addr = devm_memremap_pages(dev, &pmem->pgmap);
444                 pmem->pfn_flags |= PFN_MAP;
445                 bb_range = pmem->pgmap.range;
446         } else {
447                 addr = devm_memremap(dev, pmem->phys_addr,
448                                 pmem->size, ARCH_MEMREMAP_PMEM);
449                 bb_range.start =  res->start;
450                 bb_range.end = res->end;
451         }
452
453         if (IS_ERR(addr)) {
454                 rc = PTR_ERR(addr);
455                 goto out;
456         }
457         pmem->virt_addr = addr;
458
459         blk_queue_write_cache(q, true, fua);
460         blk_queue_physical_block_size(q, PAGE_SIZE);
461         blk_queue_logical_block_size(q, pmem_sector_size(ndns));
462         blk_queue_max_hw_sectors(q, UINT_MAX);
463         blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
464         if (pmem->pfn_flags & PFN_MAP)
465                 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
466
467         disk->fops              = &pmem_fops;
468         disk->private_data      = pmem;
469         nvdimm_namespace_disk_name(ndns, disk->disk_name);
470         set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
471                         / 512);
472         if (devm_init_badblocks(dev, &pmem->bb))
473                 return -ENOMEM;
474         nvdimm_badblocks_populate(nd_region, &pmem->bb, &bb_range);
475         disk->bb = &pmem->bb;
476
477         dax_dev = alloc_dax(pmem, &pmem_dax_ops);
478         if (IS_ERR(dax_dev)) {
479                 rc = PTR_ERR(dax_dev);
480                 goto out;
481         }
482         set_dax_nocache(dax_dev);
483         set_dax_nomc(dax_dev);
484         if (is_nvdimm_sync(nd_region))
485                 set_dax_synchronous(dax_dev);
486         rc = dax_add_host(dax_dev, disk);
487         if (rc)
488                 goto out_cleanup_dax;
489         dax_write_cache(dax_dev, nvdimm_has_cache(nd_region));
490         pmem->dax_dev = dax_dev;
491
492         rc = device_add_disk(dev, disk, pmem_attribute_groups);
493         if (rc)
494                 goto out_remove_host;
495         if (devm_add_action_or_reset(dev, pmem_release_disk, pmem))
496                 return -ENOMEM;
497
498         nvdimm_check_and_set_ro(disk);
499
500         pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd,
501                                           "badblocks");
502         if (!pmem->bb_state)
503                 dev_warn(dev, "'badblocks' notification disabled\n");
504         return 0;
505
506 out_remove_host:
507         dax_remove_host(pmem->disk);
508 out_cleanup_dax:
509         kill_dax(pmem->dax_dev);
510         put_dax(pmem->dax_dev);
511 out:
512         blk_cleanup_disk(pmem->disk);
513         return rc;
514 }
515
516 static int nd_pmem_probe(struct device *dev)
517 {
518         int ret;
519         struct nd_namespace_common *ndns;
520
521         ndns = nvdimm_namespace_common_probe(dev);
522         if (IS_ERR(ndns))
523                 return PTR_ERR(ndns);
524
525         if (is_nd_btt(dev))
526                 return nvdimm_namespace_attach_btt(ndns);
527
528         if (is_nd_pfn(dev))
529                 return pmem_attach_disk(dev, ndns);
530
531         ret = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
532         if (ret)
533                 return ret;
534
535         ret = nd_btt_probe(dev, ndns);
536         if (ret == 0)
537                 return -ENXIO;
538
539         /*
540          * We have two failure conditions here, there is no
541          * info reserver block or we found a valid info reserve block
542          * but failed to initialize the pfn superblock.
543          *
544          * For the first case consider namespace as a raw pmem namespace
545          * and attach a disk.
546          *
547          * For the latter, consider this a success and advance the namespace
548          * seed.
549          */
550         ret = nd_pfn_probe(dev, ndns);
551         if (ret == 0)
552                 return -ENXIO;
553         else if (ret == -EOPNOTSUPP)
554                 return ret;
555
556         ret = nd_dax_probe(dev, ndns);
557         if (ret == 0)
558                 return -ENXIO;
559         else if (ret == -EOPNOTSUPP)
560                 return ret;
561
562         /* probe complete, attach handles namespace enabling */
563         devm_namespace_disable(dev, ndns);
564
565         return pmem_attach_disk(dev, ndns);
566 }
567
568 static void nd_pmem_remove(struct device *dev)
569 {
570         struct pmem_device *pmem = dev_get_drvdata(dev);
571
572         if (is_nd_btt(dev))
573                 nvdimm_namespace_detach_btt(to_nd_btt(dev));
574         else {
575                 /*
576                  * Note, this assumes nd_device_lock() context to not
577                  * race nd_pmem_notify()
578                  */
579                 sysfs_put(pmem->bb_state);
580                 pmem->bb_state = NULL;
581         }
582         nvdimm_flush(to_nd_region(dev->parent), NULL);
583 }
584
585 static void nd_pmem_shutdown(struct device *dev)
586 {
587         nvdimm_flush(to_nd_region(dev->parent), NULL);
588 }
589
590 static void pmem_revalidate_poison(struct device *dev)
591 {
592         struct nd_region *nd_region;
593         resource_size_t offset = 0, end_trunc = 0;
594         struct nd_namespace_common *ndns;
595         struct nd_namespace_io *nsio;
596         struct badblocks *bb;
597         struct range range;
598         struct kernfs_node *bb_state;
599
600         if (is_nd_btt(dev)) {
601                 struct nd_btt *nd_btt = to_nd_btt(dev);
602
603                 ndns = nd_btt->ndns;
604                 nd_region = to_nd_region(ndns->dev.parent);
605                 nsio = to_nd_namespace_io(&ndns->dev);
606                 bb = &nsio->bb;
607                 bb_state = NULL;
608         } else {
609                 struct pmem_device *pmem = dev_get_drvdata(dev);
610
611                 nd_region = to_region(pmem);
612                 bb = &pmem->bb;
613                 bb_state = pmem->bb_state;
614
615                 if (is_nd_pfn(dev)) {
616                         struct nd_pfn *nd_pfn = to_nd_pfn(dev);
617                         struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
618
619                         ndns = nd_pfn->ndns;
620                         offset = pmem->data_offset +
621                                         __le32_to_cpu(pfn_sb->start_pad);
622                         end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
623                 } else {
624                         ndns = to_ndns(dev);
625                 }
626
627                 nsio = to_nd_namespace_io(&ndns->dev);
628         }
629
630         range.start = nsio->res.start + offset;
631         range.end = nsio->res.end - end_trunc;
632         nvdimm_badblocks_populate(nd_region, bb, &range);
633         if (bb_state)
634                 sysfs_notify_dirent(bb_state);
635 }
636
637 static void pmem_revalidate_region(struct device *dev)
638 {
639         struct pmem_device *pmem;
640
641         if (is_nd_btt(dev)) {
642                 struct nd_btt *nd_btt = to_nd_btt(dev);
643                 struct btt *btt = nd_btt->btt;
644
645                 nvdimm_check_and_set_ro(btt->btt_disk);
646                 return;
647         }
648
649         pmem = dev_get_drvdata(dev);
650         nvdimm_check_and_set_ro(pmem->disk);
651 }
652
653 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
654 {
655         switch (event) {
656         case NVDIMM_REVALIDATE_POISON:
657                 pmem_revalidate_poison(dev);
658                 break;
659         case NVDIMM_REVALIDATE_REGION:
660                 pmem_revalidate_region(dev);
661                 break;
662         default:
663                 dev_WARN_ONCE(dev, 1, "notify: unknown event: %d\n", event);
664                 break;
665         }
666 }
667
668 MODULE_ALIAS("pmem");
669 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
670 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
671 static struct nd_device_driver nd_pmem_driver = {
672         .probe = nd_pmem_probe,
673         .remove = nd_pmem_remove,
674         .notify = nd_pmem_notify,
675         .shutdown = nd_pmem_shutdown,
676         .drv = {
677                 .name = "nd_pmem",
678         },
679         .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
680 };
681
682 module_nd_driver(nd_pmem_driver);
683
684 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
685 MODULE_LICENSE("GPL v2");