0ba81b87aad5507e2e402d9e7419b117e38f4061
[linux-block.git] / drivers / net / wireless / realtek / rtw88 / main.c
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4
5 #include <linux/devcoredump.h>
6
7 #include "main.h"
8 #include "regd.h"
9 #include "fw.h"
10 #include "ps.h"
11 #include "sec.h"
12 #include "mac.h"
13 #include "coex.h"
14 #include "phy.h"
15 #include "reg.h"
16 #include "efuse.h"
17 #include "tx.h"
18 #include "debug.h"
19 #include "bf.h"
20 #include "sar.h"
21 #include "sdio.h"
22
23 bool rtw_disable_lps_deep_mode;
24 EXPORT_SYMBOL(rtw_disable_lps_deep_mode);
25 bool rtw_bf_support = true;
26 unsigned int rtw_debug_mask;
27 EXPORT_SYMBOL(rtw_debug_mask);
28 /* EDCCA is enabled during normal behavior. For debugging purpose in
29  * a noisy environment, it can be disabled via edcca debugfs. Because
30  * all rtw88 devices will probably be affected if environment is noisy,
31  * rtw_edcca_enabled is just declared by driver instead of by device.
32  * So, turning it off will take effect for all rtw88 devices before
33  * there is a tough reason to maintain rtw_edcca_enabled by device.
34  */
35 bool rtw_edcca_enabled = true;
36
37 module_param_named(disable_lps_deep, rtw_disable_lps_deep_mode, bool, 0644);
38 module_param_named(support_bf, rtw_bf_support, bool, 0644);
39 module_param_named(debug_mask, rtw_debug_mask, uint, 0644);
40
41 MODULE_PARM_DESC(disable_lps_deep, "Set Y to disable Deep PS");
42 MODULE_PARM_DESC(support_bf, "Set Y to enable beamformee support");
43 MODULE_PARM_DESC(debug_mask, "Debugging mask");
44
45 static struct ieee80211_channel rtw_channeltable_2g[] = {
46         {.center_freq = 2412, .hw_value = 1,},
47         {.center_freq = 2417, .hw_value = 2,},
48         {.center_freq = 2422, .hw_value = 3,},
49         {.center_freq = 2427, .hw_value = 4,},
50         {.center_freq = 2432, .hw_value = 5,},
51         {.center_freq = 2437, .hw_value = 6,},
52         {.center_freq = 2442, .hw_value = 7,},
53         {.center_freq = 2447, .hw_value = 8,},
54         {.center_freq = 2452, .hw_value = 9,},
55         {.center_freq = 2457, .hw_value = 10,},
56         {.center_freq = 2462, .hw_value = 11,},
57         {.center_freq = 2467, .hw_value = 12,},
58         {.center_freq = 2472, .hw_value = 13,},
59         {.center_freq = 2484, .hw_value = 14,},
60 };
61
62 static struct ieee80211_channel rtw_channeltable_5g[] = {
63         {.center_freq = 5180, .hw_value = 36,},
64         {.center_freq = 5200, .hw_value = 40,},
65         {.center_freq = 5220, .hw_value = 44,},
66         {.center_freq = 5240, .hw_value = 48,},
67         {.center_freq = 5260, .hw_value = 52,},
68         {.center_freq = 5280, .hw_value = 56,},
69         {.center_freq = 5300, .hw_value = 60,},
70         {.center_freq = 5320, .hw_value = 64,},
71         {.center_freq = 5500, .hw_value = 100,},
72         {.center_freq = 5520, .hw_value = 104,},
73         {.center_freq = 5540, .hw_value = 108,},
74         {.center_freq = 5560, .hw_value = 112,},
75         {.center_freq = 5580, .hw_value = 116,},
76         {.center_freq = 5600, .hw_value = 120,},
77         {.center_freq = 5620, .hw_value = 124,},
78         {.center_freq = 5640, .hw_value = 128,},
79         {.center_freq = 5660, .hw_value = 132,},
80         {.center_freq = 5680, .hw_value = 136,},
81         {.center_freq = 5700, .hw_value = 140,},
82         {.center_freq = 5720, .hw_value = 144,},
83         {.center_freq = 5745, .hw_value = 149,},
84         {.center_freq = 5765, .hw_value = 153,},
85         {.center_freq = 5785, .hw_value = 157,},
86         {.center_freq = 5805, .hw_value = 161,},
87         {.center_freq = 5825, .hw_value = 165,
88          .flags = IEEE80211_CHAN_NO_HT40MINUS},
89 };
90
91 static struct ieee80211_rate rtw_ratetable[] = {
92         {.bitrate = 10, .hw_value = 0x00,},
93         {.bitrate = 20, .hw_value = 0x01,},
94         {.bitrate = 55, .hw_value = 0x02,},
95         {.bitrate = 110, .hw_value = 0x03,},
96         {.bitrate = 60, .hw_value = 0x04,},
97         {.bitrate = 90, .hw_value = 0x05,},
98         {.bitrate = 120, .hw_value = 0x06,},
99         {.bitrate = 180, .hw_value = 0x07,},
100         {.bitrate = 240, .hw_value = 0x08,},
101         {.bitrate = 360, .hw_value = 0x09,},
102         {.bitrate = 480, .hw_value = 0x0a,},
103         {.bitrate = 540, .hw_value = 0x0b,},
104 };
105
106 static const struct ieee80211_iface_limit rtw_iface_limits[] = {
107         {
108                 .max = 1,
109                 .types = BIT(NL80211_IFTYPE_STATION),
110         },
111         {
112                 .max = 1,
113                 .types = BIT(NL80211_IFTYPE_AP),
114         }
115 };
116
117 static const struct ieee80211_iface_combination rtw_iface_combs[] = {
118         {
119                 .limits = rtw_iface_limits,
120                 .n_limits = ARRAY_SIZE(rtw_iface_limits),
121                 .max_interfaces = 2,
122                 .num_different_channels = 1,
123         }
124 };
125
126 u16 rtw_desc_to_bitrate(u8 desc_rate)
127 {
128         struct ieee80211_rate rate;
129
130         if (WARN(desc_rate >= ARRAY_SIZE(rtw_ratetable), "invalid desc rate\n"))
131                 return 0;
132
133         rate = rtw_ratetable[desc_rate];
134
135         return rate.bitrate;
136 }
137
138 static struct ieee80211_supported_band rtw_band_2ghz = {
139         .band = NL80211_BAND_2GHZ,
140
141         .channels = rtw_channeltable_2g,
142         .n_channels = ARRAY_SIZE(rtw_channeltable_2g),
143
144         .bitrates = rtw_ratetable,
145         .n_bitrates = ARRAY_SIZE(rtw_ratetable),
146
147         .ht_cap = {0},
148         .vht_cap = {0},
149 };
150
151 static struct ieee80211_supported_band rtw_band_5ghz = {
152         .band = NL80211_BAND_5GHZ,
153
154         .channels = rtw_channeltable_5g,
155         .n_channels = ARRAY_SIZE(rtw_channeltable_5g),
156
157         /* 5G has no CCK rates */
158         .bitrates = rtw_ratetable + 4,
159         .n_bitrates = ARRAY_SIZE(rtw_ratetable) - 4,
160
161         .ht_cap = {0},
162         .vht_cap = {0},
163 };
164
165 struct rtw_watch_dog_iter_data {
166         struct rtw_dev *rtwdev;
167         struct rtw_vif *rtwvif;
168 };
169
170 static void rtw_dynamic_csi_rate(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif)
171 {
172         struct rtw_bf_info *bf_info = &rtwdev->bf_info;
173         u8 fix_rate_enable = 0;
174         u8 new_csi_rate_idx;
175
176         if (rtwvif->bfee.role != RTW_BFEE_SU &&
177             rtwvif->bfee.role != RTW_BFEE_MU)
178                 return;
179
180         rtw_chip_cfg_csi_rate(rtwdev, rtwdev->dm_info.min_rssi,
181                               bf_info->cur_csi_rpt_rate,
182                               fix_rate_enable, &new_csi_rate_idx);
183
184         if (new_csi_rate_idx != bf_info->cur_csi_rpt_rate)
185                 bf_info->cur_csi_rpt_rate = new_csi_rate_idx;
186 }
187
188 static void rtw_vif_watch_dog_iter(void *data, u8 *mac,
189                                    struct ieee80211_vif *vif)
190 {
191         struct rtw_watch_dog_iter_data *iter_data = data;
192         struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
193
194         if (vif->type == NL80211_IFTYPE_STATION)
195                 if (vif->cfg.assoc)
196                         iter_data->rtwvif = rtwvif;
197
198         rtw_dynamic_csi_rate(iter_data->rtwdev, rtwvif);
199
200         rtwvif->stats.tx_unicast = 0;
201         rtwvif->stats.rx_unicast = 0;
202         rtwvif->stats.tx_cnt = 0;
203         rtwvif->stats.rx_cnt = 0;
204 }
205
206 /* process TX/RX statistics periodically for hardware,
207  * the information helps hardware to enhance performance
208  */
209 static void rtw_watch_dog_work(struct work_struct *work)
210 {
211         struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
212                                               watch_dog_work.work);
213         struct rtw_traffic_stats *stats = &rtwdev->stats;
214         struct rtw_watch_dog_iter_data data = {};
215         bool busy_traffic = test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
216         bool ps_active;
217
218         mutex_lock(&rtwdev->mutex);
219
220         if (!test_bit(RTW_FLAG_RUNNING, rtwdev->flags))
221                 goto unlock;
222
223         ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
224                                      RTW_WATCH_DOG_DELAY_TIME);
225
226         if (rtwdev->stats.tx_cnt > 100 || rtwdev->stats.rx_cnt > 100)
227                 set_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
228         else
229                 clear_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
230
231         rtw_coex_wl_status_check(rtwdev);
232         rtw_coex_query_bt_hid_list(rtwdev);
233
234         if (busy_traffic != test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags))
235                 rtw_coex_wl_status_change_notify(rtwdev, 0);
236
237         if (stats->tx_cnt > RTW_LPS_THRESHOLD ||
238             stats->rx_cnt > RTW_LPS_THRESHOLD)
239                 ps_active = true;
240         else
241                 ps_active = false;
242
243         ewma_tp_add(&stats->tx_ewma_tp,
244                     (u32)(stats->tx_unicast >> RTW_TP_SHIFT));
245         ewma_tp_add(&stats->rx_ewma_tp,
246                     (u32)(stats->rx_unicast >> RTW_TP_SHIFT));
247         stats->tx_throughput = ewma_tp_read(&stats->tx_ewma_tp);
248         stats->rx_throughput = ewma_tp_read(&stats->rx_ewma_tp);
249
250         /* reset tx/rx statictics */
251         stats->tx_unicast = 0;
252         stats->rx_unicast = 0;
253         stats->tx_cnt = 0;
254         stats->rx_cnt = 0;
255
256         if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
257                 goto unlock;
258
259         /* make sure BB/RF is working for dynamic mech */
260         rtw_leave_lps(rtwdev);
261
262         rtw_phy_dynamic_mechanism(rtwdev);
263
264         data.rtwdev = rtwdev;
265         /* rtw_iterate_vifs internally uses an atomic iterator which is needed
266          * to avoid taking local->iflist_mtx mutex
267          */
268         rtw_iterate_vifs(rtwdev, rtw_vif_watch_dog_iter, &data);
269
270         /* fw supports only one station associated to enter lps, if there are
271          * more than two stations associated to the AP, then we can not enter
272          * lps, because fw does not handle the overlapped beacon interval
273          *
274          * mac80211 should iterate vifs and determine if driver can enter
275          * ps by passing IEEE80211_CONF_PS to us, all we need to do is to
276          * get that vif and check if device is having traffic more than the
277          * threshold.
278          */
279         if (rtwdev->ps_enabled && data.rtwvif && !ps_active &&
280             !rtwdev->beacon_loss && !rtwdev->ap_active)
281                 rtw_enter_lps(rtwdev, data.rtwvif->port);
282
283         rtwdev->watch_dog_cnt++;
284
285 unlock:
286         mutex_unlock(&rtwdev->mutex);
287 }
288
289 static void rtw_c2h_work(struct work_struct *work)
290 {
291         struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, c2h_work);
292         struct sk_buff *skb, *tmp;
293
294         skb_queue_walk_safe(&rtwdev->c2h_queue, skb, tmp) {
295                 skb_unlink(skb, &rtwdev->c2h_queue);
296                 rtw_fw_c2h_cmd_handle(rtwdev, skb);
297                 dev_kfree_skb_any(skb);
298         }
299 }
300
301 static void rtw_ips_work(struct work_struct *work)
302 {
303         struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ips_work);
304
305         mutex_lock(&rtwdev->mutex);
306         if (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE)
307                 rtw_enter_ips(rtwdev);
308         mutex_unlock(&rtwdev->mutex);
309 }
310
311 static u8 rtw_acquire_macid(struct rtw_dev *rtwdev)
312 {
313         unsigned long mac_id;
314
315         mac_id = find_first_zero_bit(rtwdev->mac_id_map, RTW_MAX_MAC_ID_NUM);
316         if (mac_id < RTW_MAX_MAC_ID_NUM)
317                 set_bit(mac_id, rtwdev->mac_id_map);
318
319         return mac_id;
320 }
321
322 int rtw_sta_add(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
323                 struct ieee80211_vif *vif)
324 {
325         struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
326         int i;
327
328         si->mac_id = rtw_acquire_macid(rtwdev);
329         if (si->mac_id >= RTW_MAX_MAC_ID_NUM)
330                 return -ENOSPC;
331
332         si->sta = sta;
333         si->vif = vif;
334         si->init_ra_lv = 1;
335         ewma_rssi_init(&si->avg_rssi);
336         for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
337                 rtw_txq_init(rtwdev, sta->txq[i]);
338
339         rtw_update_sta_info(rtwdev, si, true);
340         rtw_fw_media_status_report(rtwdev, si->mac_id, true);
341
342         rtwdev->sta_cnt++;
343         rtwdev->beacon_loss = false;
344         rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %pM joined with macid %d\n",
345                 sta->addr, si->mac_id);
346
347         return 0;
348 }
349
350 void rtw_sta_remove(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
351                     bool fw_exist)
352 {
353         struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
354         int i;
355
356         rtw_release_macid(rtwdev, si->mac_id);
357         if (fw_exist)
358                 rtw_fw_media_status_report(rtwdev, si->mac_id, false);
359
360         for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
361                 rtw_txq_cleanup(rtwdev, sta->txq[i]);
362
363         kfree(si->mask);
364
365         rtwdev->sta_cnt--;
366         rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %pM with macid %d left\n",
367                 sta->addr, si->mac_id);
368 }
369
370 struct rtw_fwcd_hdr {
371         u32 item;
372         u32 size;
373         u32 padding1;
374         u32 padding2;
375 } __packed;
376
377 static int rtw_fwcd_prep(struct rtw_dev *rtwdev)
378 {
379         const struct rtw_chip_info *chip = rtwdev->chip;
380         struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
381         const struct rtw_fwcd_segs *segs = chip->fwcd_segs;
382         u32 prep_size = chip->fw_rxff_size + sizeof(struct rtw_fwcd_hdr);
383         u8 i;
384
385         if (segs) {
386                 prep_size += segs->num * sizeof(struct rtw_fwcd_hdr);
387
388                 for (i = 0; i < segs->num; i++)
389                         prep_size += segs->segs[i];
390         }
391
392         desc->data = vmalloc(prep_size);
393         if (!desc->data)
394                 return -ENOMEM;
395
396         desc->size = prep_size;
397         desc->next = desc->data;
398
399         return 0;
400 }
401
402 static u8 *rtw_fwcd_next(struct rtw_dev *rtwdev, u32 item, u32 size)
403 {
404         struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
405         struct rtw_fwcd_hdr *hdr;
406         u8 *next;
407
408         if (!desc->data) {
409                 rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared successfully\n");
410                 return NULL;
411         }
412
413         next = desc->next + sizeof(struct rtw_fwcd_hdr);
414         if (next - desc->data + size > desc->size) {
415                 rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared enough\n");
416                 return NULL;
417         }
418
419         hdr = (struct rtw_fwcd_hdr *)(desc->next);
420         hdr->item = item;
421         hdr->size = size;
422         hdr->padding1 = 0x01234567;
423         hdr->padding2 = 0x89abcdef;
424         desc->next = next + size;
425
426         return next;
427 }
428
429 static void rtw_fwcd_dump(struct rtw_dev *rtwdev)
430 {
431         struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
432
433         rtw_dbg(rtwdev, RTW_DBG_FW, "dump fwcd\n");
434
435         /* Data will be freed after lifetime of device coredump. After calling
436          * dev_coredump, data is supposed to be handled by the device coredump
437          * framework. Note that a new dump will be discarded if a previous one
438          * hasn't been released yet.
439          */
440         dev_coredumpv(rtwdev->dev, desc->data, desc->size, GFP_KERNEL);
441 }
442
443 static void rtw_fwcd_free(struct rtw_dev *rtwdev, bool free_self)
444 {
445         struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
446
447         if (free_self) {
448                 rtw_dbg(rtwdev, RTW_DBG_FW, "free fwcd by self\n");
449                 vfree(desc->data);
450         }
451
452         desc->data = NULL;
453         desc->next = NULL;
454 }
455
456 static int rtw_fw_dump_crash_log(struct rtw_dev *rtwdev)
457 {
458         u32 size = rtwdev->chip->fw_rxff_size;
459         u32 *buf;
460         u8 seq;
461
462         buf = (u32 *)rtw_fwcd_next(rtwdev, RTW_FWCD_TLV, size);
463         if (!buf)
464                 return -ENOMEM;
465
466         if (rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0, size, buf)) {
467                 rtw_dbg(rtwdev, RTW_DBG_FW, "dump fw fifo fail\n");
468                 return -EINVAL;
469         }
470
471         if (GET_FW_DUMP_LEN(buf) == 0) {
472                 rtw_dbg(rtwdev, RTW_DBG_FW, "fw crash dump's length is 0\n");
473                 return -EINVAL;
474         }
475
476         seq = GET_FW_DUMP_SEQ(buf);
477         if (seq > 0) {
478                 rtw_dbg(rtwdev, RTW_DBG_FW,
479                         "fw crash dump's seq is wrong: %d\n", seq);
480                 return -EINVAL;
481         }
482
483         return 0;
484 }
485
486 int rtw_dump_fw(struct rtw_dev *rtwdev, const u32 ocp_src, u32 size,
487                 u32 fwcd_item)
488 {
489         u32 rxff = rtwdev->chip->fw_rxff_size;
490         u32 dump_size, done_size = 0;
491         u8 *buf;
492         int ret;
493
494         buf = rtw_fwcd_next(rtwdev, fwcd_item, size);
495         if (!buf)
496                 return -ENOMEM;
497
498         while (size) {
499                 dump_size = size > rxff ? rxff : size;
500
501                 ret = rtw_ddma_to_fw_fifo(rtwdev, ocp_src + done_size,
502                                           dump_size);
503                 if (ret) {
504                         rtw_err(rtwdev,
505                                 "ddma fw 0x%x [+0x%x] to fw fifo fail\n",
506                                 ocp_src, done_size);
507                         return ret;
508                 }
509
510                 ret = rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0,
511                                        dump_size, (u32 *)(buf + done_size));
512                 if (ret) {
513                         rtw_err(rtwdev,
514                                 "dump fw 0x%x [+0x%x] from fw fifo fail\n",
515                                 ocp_src, done_size);
516                         return ret;
517                 }
518
519                 size -= dump_size;
520                 done_size += dump_size;
521         }
522
523         return 0;
524 }
525 EXPORT_SYMBOL(rtw_dump_fw);
526
527 int rtw_dump_reg(struct rtw_dev *rtwdev, const u32 addr, const u32 size)
528 {
529         u8 *buf;
530         u32 i;
531
532         if (addr & 0x3) {
533                 WARN(1, "should be 4-byte aligned, addr = 0x%08x\n", addr);
534                 return -EINVAL;
535         }
536
537         buf = rtw_fwcd_next(rtwdev, RTW_FWCD_REG, size);
538         if (!buf)
539                 return -ENOMEM;
540
541         for (i = 0; i < size; i += 4)
542                 *(u32 *)(buf + i) = rtw_read32(rtwdev, addr + i);
543
544         return 0;
545 }
546 EXPORT_SYMBOL(rtw_dump_reg);
547
548 void rtw_vif_assoc_changed(struct rtw_vif *rtwvif,
549                            struct ieee80211_bss_conf *conf)
550 {
551         struct ieee80211_vif *vif = NULL;
552
553         if (conf)
554                 vif = container_of(conf, struct ieee80211_vif, bss_conf);
555
556         if (conf && vif->cfg.assoc) {
557                 rtwvif->aid = vif->cfg.aid;
558                 rtwvif->net_type = RTW_NET_MGD_LINKED;
559         } else {
560                 rtwvif->aid = 0;
561                 rtwvif->net_type = RTW_NET_NO_LINK;
562         }
563 }
564
565 static void rtw_reset_key_iter(struct ieee80211_hw *hw,
566                                struct ieee80211_vif *vif,
567                                struct ieee80211_sta *sta,
568                                struct ieee80211_key_conf *key,
569                                void *data)
570 {
571         struct rtw_dev *rtwdev = (struct rtw_dev *)data;
572         struct rtw_sec_desc *sec = &rtwdev->sec;
573
574         rtw_sec_clear_cam(rtwdev, sec, key->hw_key_idx);
575 }
576
577 static void rtw_reset_sta_iter(void *data, struct ieee80211_sta *sta)
578 {
579         struct rtw_dev *rtwdev = (struct rtw_dev *)data;
580
581         if (rtwdev->sta_cnt == 0) {
582                 rtw_warn(rtwdev, "sta count before reset should not be 0\n");
583                 return;
584         }
585         rtw_sta_remove(rtwdev, sta, false);
586 }
587
588 static void rtw_reset_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
589 {
590         struct rtw_dev *rtwdev = (struct rtw_dev *)data;
591         struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
592
593         rtw_bf_disassoc(rtwdev, vif, NULL);
594         rtw_vif_assoc_changed(rtwvif, NULL);
595         rtw_txq_cleanup(rtwdev, vif->txq);
596 }
597
598 void rtw_fw_recovery(struct rtw_dev *rtwdev)
599 {
600         if (!test_bit(RTW_FLAG_RESTARTING, rtwdev->flags))
601                 ieee80211_queue_work(rtwdev->hw, &rtwdev->fw_recovery_work);
602 }
603
604 static void __fw_recovery_work(struct rtw_dev *rtwdev)
605 {
606         int ret = 0;
607
608         set_bit(RTW_FLAG_RESTARTING, rtwdev->flags);
609         clear_bit(RTW_FLAG_RESTART_TRIGGERING, rtwdev->flags);
610
611         ret = rtw_fwcd_prep(rtwdev);
612         if (ret)
613                 goto free;
614         ret = rtw_fw_dump_crash_log(rtwdev);
615         if (ret)
616                 goto free;
617         ret = rtw_chip_dump_fw_crash(rtwdev);
618         if (ret)
619                 goto free;
620
621         rtw_fwcd_dump(rtwdev);
622 free:
623         rtw_fwcd_free(rtwdev, !!ret);
624         rtw_write8(rtwdev, REG_MCU_TST_CFG, 0);
625
626         WARN(1, "firmware crash, start reset and recover\n");
627
628         rcu_read_lock();
629         rtw_iterate_keys_rcu(rtwdev, NULL, rtw_reset_key_iter, rtwdev);
630         rcu_read_unlock();
631         rtw_iterate_stas_atomic(rtwdev, rtw_reset_sta_iter, rtwdev);
632         rtw_iterate_vifs_atomic(rtwdev, rtw_reset_vif_iter, rtwdev);
633         bitmap_zero(rtwdev->hw_port, RTW_PORT_NUM);
634         rtw_enter_ips(rtwdev);
635 }
636
637 static void rtw_fw_recovery_work(struct work_struct *work)
638 {
639         struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
640                                               fw_recovery_work);
641
642         mutex_lock(&rtwdev->mutex);
643         __fw_recovery_work(rtwdev);
644         mutex_unlock(&rtwdev->mutex);
645
646         ieee80211_restart_hw(rtwdev->hw);
647 }
648
649 struct rtw_txq_ba_iter_data {
650 };
651
652 static void rtw_txq_ba_iter(void *data, struct ieee80211_sta *sta)
653 {
654         struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
655         int ret;
656         u8 tid;
657
658         tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
659         while (tid != IEEE80211_NUM_TIDS) {
660                 clear_bit(tid, si->tid_ba);
661                 ret = ieee80211_start_tx_ba_session(sta, tid, 0);
662                 if (ret == -EINVAL) {
663                         struct ieee80211_txq *txq;
664                         struct rtw_txq *rtwtxq;
665
666                         txq = sta->txq[tid];
667                         rtwtxq = (struct rtw_txq *)txq->drv_priv;
668                         set_bit(RTW_TXQ_BLOCK_BA, &rtwtxq->flags);
669                 }
670
671                 tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
672         }
673 }
674
675 static void rtw_txq_ba_work(struct work_struct *work)
676 {
677         struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ba_work);
678         struct rtw_txq_ba_iter_data data;
679
680         rtw_iterate_stas_atomic(rtwdev, rtw_txq_ba_iter, &data);
681 }
682
683 void rtw_set_rx_freq_band(struct rtw_rx_pkt_stat *pkt_stat, u8 channel)
684 {
685         if (IS_CH_2G_BAND(channel))
686                 pkt_stat->band = NL80211_BAND_2GHZ;
687         else if (IS_CH_5G_BAND(channel))
688                 pkt_stat->band = NL80211_BAND_5GHZ;
689         else
690                 return;
691
692         pkt_stat->freq = ieee80211_channel_to_frequency(channel, pkt_stat->band);
693 }
694 EXPORT_SYMBOL(rtw_set_rx_freq_band);
695
696 void rtw_set_dtim_period(struct rtw_dev *rtwdev, int dtim_period)
697 {
698         rtw_write32_set(rtwdev, REG_TCR, BIT_TCR_UPDATE_TIMIE);
699         rtw_write8(rtwdev, REG_DTIM_COUNTER_ROOT, dtim_period - 1);
700 }
701
702 void rtw_update_channel(struct rtw_dev *rtwdev, u8 center_channel,
703                         u8 primary_channel, enum rtw_supported_band band,
704                         enum rtw_bandwidth bandwidth)
705 {
706         enum nl80211_band nl_band = rtw_hw_to_nl80211_band(band);
707         struct rtw_hal *hal = &rtwdev->hal;
708         u8 *cch_by_bw = hal->cch_by_bw;
709         u32 center_freq, primary_freq;
710         enum rtw_sar_bands sar_band;
711         u8 primary_channel_idx;
712
713         center_freq = ieee80211_channel_to_frequency(center_channel, nl_band);
714         primary_freq = ieee80211_channel_to_frequency(primary_channel, nl_band);
715
716         /* assign the center channel used while 20M bw is selected */
717         cch_by_bw[RTW_CHANNEL_WIDTH_20] = primary_channel;
718
719         /* assign the center channel used while current bw is selected */
720         cch_by_bw[bandwidth] = center_channel;
721
722         switch (bandwidth) {
723         case RTW_CHANNEL_WIDTH_20:
724         default:
725                 primary_channel_idx = RTW_SC_DONT_CARE;
726                 break;
727         case RTW_CHANNEL_WIDTH_40:
728                 if (primary_freq > center_freq)
729                         primary_channel_idx = RTW_SC_20_UPPER;
730                 else
731                         primary_channel_idx = RTW_SC_20_LOWER;
732                 break;
733         case RTW_CHANNEL_WIDTH_80:
734                 if (primary_freq > center_freq) {
735                         if (primary_freq - center_freq == 10)
736                                 primary_channel_idx = RTW_SC_20_UPPER;
737                         else
738                                 primary_channel_idx = RTW_SC_20_UPMOST;
739
740                         /* assign the center channel used
741                          * while 40M bw is selected
742                          */
743                         cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_channel + 4;
744                 } else {
745                         if (center_freq - primary_freq == 10)
746                                 primary_channel_idx = RTW_SC_20_LOWER;
747                         else
748                                 primary_channel_idx = RTW_SC_20_LOWEST;
749
750                         /* assign the center channel used
751                          * while 40M bw is selected
752                          */
753                         cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_channel - 4;
754                 }
755                 break;
756         }
757
758         switch (center_channel) {
759         case 1 ... 14:
760                 sar_band = RTW_SAR_BAND_0;
761                 break;
762         case 36 ... 64:
763                 sar_band = RTW_SAR_BAND_1;
764                 break;
765         case 100 ... 144:
766                 sar_band = RTW_SAR_BAND_3;
767                 break;
768         case 149 ... 177:
769                 sar_band = RTW_SAR_BAND_4;
770                 break;
771         default:
772                 WARN(1, "unknown ch(%u) to SAR band\n", center_channel);
773                 sar_band = RTW_SAR_BAND_0;
774                 break;
775         }
776
777         hal->current_primary_channel_index = primary_channel_idx;
778         hal->current_band_width = bandwidth;
779         hal->primary_channel = primary_channel;
780         hal->current_channel = center_channel;
781         hal->current_band_type = band;
782         hal->sar_band = sar_band;
783 }
784
785 void rtw_get_channel_params(struct cfg80211_chan_def *chandef,
786                             struct rtw_channel_params *chan_params)
787 {
788         struct ieee80211_channel *channel = chandef->chan;
789         enum nl80211_chan_width width = chandef->width;
790         u32 primary_freq, center_freq;
791         u8 center_chan;
792         u8 bandwidth = RTW_CHANNEL_WIDTH_20;
793
794         center_chan = channel->hw_value;
795         primary_freq = channel->center_freq;
796         center_freq = chandef->center_freq1;
797
798         switch (width) {
799         case NL80211_CHAN_WIDTH_20_NOHT:
800         case NL80211_CHAN_WIDTH_20:
801                 bandwidth = RTW_CHANNEL_WIDTH_20;
802                 break;
803         case NL80211_CHAN_WIDTH_40:
804                 bandwidth = RTW_CHANNEL_WIDTH_40;
805                 if (primary_freq > center_freq)
806                         center_chan -= 2;
807                 else
808                         center_chan += 2;
809                 break;
810         case NL80211_CHAN_WIDTH_80:
811                 bandwidth = RTW_CHANNEL_WIDTH_80;
812                 if (primary_freq > center_freq) {
813                         if (primary_freq - center_freq == 10)
814                                 center_chan -= 2;
815                         else
816                                 center_chan -= 6;
817                 } else {
818                         if (center_freq - primary_freq == 10)
819                                 center_chan += 2;
820                         else
821                                 center_chan += 6;
822                 }
823                 break;
824         default:
825                 center_chan = 0;
826                 break;
827         }
828
829         chan_params->center_chan = center_chan;
830         chan_params->bandwidth = bandwidth;
831         chan_params->primary_chan = channel->hw_value;
832 }
833
834 void rtw_set_channel(struct rtw_dev *rtwdev)
835 {
836         const struct rtw_chip_info *chip = rtwdev->chip;
837         struct ieee80211_hw *hw = rtwdev->hw;
838         struct rtw_hal *hal = &rtwdev->hal;
839         struct rtw_channel_params ch_param;
840         u8 center_chan, primary_chan, bandwidth, band;
841
842         rtw_get_channel_params(&hw->conf.chandef, &ch_param);
843         if (WARN(ch_param.center_chan == 0, "Invalid channel\n"))
844                 return;
845
846         center_chan = ch_param.center_chan;
847         primary_chan = ch_param.primary_chan;
848         bandwidth = ch_param.bandwidth;
849         band = ch_param.center_chan > 14 ? RTW_BAND_5G : RTW_BAND_2G;
850
851         rtw_update_channel(rtwdev, center_chan, primary_chan, band, bandwidth);
852
853         if (rtwdev->scan_info.op_chan)
854                 rtw_store_op_chan(rtwdev, true);
855
856         chip->ops->set_channel(rtwdev, center_chan, bandwidth,
857                                hal->current_primary_channel_index);
858
859         if (hal->current_band_type == RTW_BAND_5G) {
860                 rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_5G);
861         } else {
862                 if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
863                         rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G);
864                 else
865                         rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G_NOFORSCAN);
866         }
867
868         rtw_phy_set_tx_power_level(rtwdev, center_chan);
869
870         /* if the channel isn't set for scanning, we will do RF calibration
871          * in ieee80211_ops::mgd_prepare_tx(). Performing the calibration
872          * during scanning on each channel takes too long.
873          */
874         if (!test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
875                 rtwdev->need_rfk = true;
876 }
877
878 void rtw_chip_prepare_tx(struct rtw_dev *rtwdev)
879 {
880         const struct rtw_chip_info *chip = rtwdev->chip;
881
882         if (rtwdev->need_rfk) {
883                 rtwdev->need_rfk = false;
884                 chip->ops->phy_calibration(rtwdev);
885         }
886 }
887
888 static void rtw_vif_write_addr(struct rtw_dev *rtwdev, u32 start, u8 *addr)
889 {
890         int i;
891
892         for (i = 0; i < ETH_ALEN; i++)
893                 rtw_write8(rtwdev, start + i, addr[i]);
894 }
895
896 void rtw_vif_port_config(struct rtw_dev *rtwdev,
897                          struct rtw_vif *rtwvif,
898                          u32 config)
899 {
900         u32 addr, mask;
901
902         if (config & PORT_SET_MAC_ADDR) {
903                 addr = rtwvif->conf->mac_addr.addr;
904                 rtw_vif_write_addr(rtwdev, addr, rtwvif->mac_addr);
905         }
906         if (config & PORT_SET_BSSID) {
907                 addr = rtwvif->conf->bssid.addr;
908                 rtw_vif_write_addr(rtwdev, addr, rtwvif->bssid);
909         }
910         if (config & PORT_SET_NET_TYPE) {
911                 addr = rtwvif->conf->net_type.addr;
912                 mask = rtwvif->conf->net_type.mask;
913                 rtw_write32_mask(rtwdev, addr, mask, rtwvif->net_type);
914         }
915         if (config & PORT_SET_AID) {
916                 addr = rtwvif->conf->aid.addr;
917                 mask = rtwvif->conf->aid.mask;
918                 rtw_write32_mask(rtwdev, addr, mask, rtwvif->aid);
919         }
920         if (config & PORT_SET_BCN_CTRL) {
921                 addr = rtwvif->conf->bcn_ctrl.addr;
922                 mask = rtwvif->conf->bcn_ctrl.mask;
923                 rtw_write8_mask(rtwdev, addr, mask, rtwvif->bcn_ctrl);
924         }
925 }
926
927 static u8 hw_bw_cap_to_bitamp(u8 bw_cap)
928 {
929         u8 bw = 0;
930
931         switch (bw_cap) {
932         case EFUSE_HW_CAP_IGNORE:
933         case EFUSE_HW_CAP_SUPP_BW80:
934                 bw |= BIT(RTW_CHANNEL_WIDTH_80);
935                 fallthrough;
936         case EFUSE_HW_CAP_SUPP_BW40:
937                 bw |= BIT(RTW_CHANNEL_WIDTH_40);
938                 fallthrough;
939         default:
940                 bw |= BIT(RTW_CHANNEL_WIDTH_20);
941                 break;
942         }
943
944         return bw;
945 }
946
947 static void rtw_hw_config_rf_ant_num(struct rtw_dev *rtwdev, u8 hw_ant_num)
948 {
949         const struct rtw_chip_info *chip = rtwdev->chip;
950         struct rtw_hal *hal = &rtwdev->hal;
951
952         if (hw_ant_num == EFUSE_HW_CAP_IGNORE ||
953             hw_ant_num >= hal->rf_path_num)
954                 return;
955
956         switch (hw_ant_num) {
957         case 1:
958                 hal->rf_type = RF_1T1R;
959                 hal->rf_path_num = 1;
960                 if (!chip->fix_rf_phy_num)
961                         hal->rf_phy_num = hal->rf_path_num;
962                 hal->antenna_tx = BB_PATH_A;
963                 hal->antenna_rx = BB_PATH_A;
964                 break;
965         default:
966                 WARN(1, "invalid hw configuration from efuse\n");
967                 break;
968         }
969 }
970
971 static u64 get_vht_ra_mask(struct ieee80211_sta *sta)
972 {
973         u64 ra_mask = 0;
974         u16 mcs_map = le16_to_cpu(sta->deflink.vht_cap.vht_mcs.rx_mcs_map);
975         u8 vht_mcs_cap;
976         int i, nss;
977
978         /* 4SS, every two bits for MCS7/8/9 */
979         for (i = 0, nss = 12; i < 4; i++, mcs_map >>= 2, nss += 10) {
980                 vht_mcs_cap = mcs_map & 0x3;
981                 switch (vht_mcs_cap) {
982                 case 2: /* MCS9 */
983                         ra_mask |= 0x3ffULL << nss;
984                         break;
985                 case 1: /* MCS8 */
986                         ra_mask |= 0x1ffULL << nss;
987                         break;
988                 case 0: /* MCS7 */
989                         ra_mask |= 0x0ffULL << nss;
990                         break;
991                 default:
992                         break;
993                 }
994         }
995
996         return ra_mask;
997 }
998
999 static u8 get_rate_id(u8 wireless_set, enum rtw_bandwidth bw_mode, u8 tx_num)
1000 {
1001         u8 rate_id = 0;
1002
1003         switch (wireless_set) {
1004         case WIRELESS_CCK:
1005                 rate_id = RTW_RATEID_B_20M;
1006                 break;
1007         case WIRELESS_OFDM:
1008                 rate_id = RTW_RATEID_G;
1009                 break;
1010         case WIRELESS_CCK | WIRELESS_OFDM:
1011                 rate_id = RTW_RATEID_BG;
1012                 break;
1013         case WIRELESS_OFDM | WIRELESS_HT:
1014                 if (tx_num == 1)
1015                         rate_id = RTW_RATEID_GN_N1SS;
1016                 else if (tx_num == 2)
1017                         rate_id = RTW_RATEID_GN_N2SS;
1018                 else if (tx_num == 3)
1019                         rate_id = RTW_RATEID_ARFR5_N_3SS;
1020                 break;
1021         case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_HT:
1022                 if (bw_mode == RTW_CHANNEL_WIDTH_40) {
1023                         if (tx_num == 1)
1024                                 rate_id = RTW_RATEID_BGN_40M_1SS;
1025                         else if (tx_num == 2)
1026                                 rate_id = RTW_RATEID_BGN_40M_2SS;
1027                         else if (tx_num == 3)
1028                                 rate_id = RTW_RATEID_ARFR5_N_3SS;
1029                         else if (tx_num == 4)
1030                                 rate_id = RTW_RATEID_ARFR7_N_4SS;
1031                 } else {
1032                         if (tx_num == 1)
1033                                 rate_id = RTW_RATEID_BGN_20M_1SS;
1034                         else if (tx_num == 2)
1035                                 rate_id = RTW_RATEID_BGN_20M_2SS;
1036                         else if (tx_num == 3)
1037                                 rate_id = RTW_RATEID_ARFR5_N_3SS;
1038                         else if (tx_num == 4)
1039                                 rate_id = RTW_RATEID_ARFR7_N_4SS;
1040                 }
1041                 break;
1042         case WIRELESS_OFDM | WIRELESS_VHT:
1043                 if (tx_num == 1)
1044                         rate_id = RTW_RATEID_ARFR1_AC_1SS;
1045                 else if (tx_num == 2)
1046                         rate_id = RTW_RATEID_ARFR0_AC_2SS;
1047                 else if (tx_num == 3)
1048                         rate_id = RTW_RATEID_ARFR4_AC_3SS;
1049                 else if (tx_num == 4)
1050                         rate_id = RTW_RATEID_ARFR6_AC_4SS;
1051                 break;
1052         case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_VHT:
1053                 if (bw_mode >= RTW_CHANNEL_WIDTH_80) {
1054                         if (tx_num == 1)
1055                                 rate_id = RTW_RATEID_ARFR1_AC_1SS;
1056                         else if (tx_num == 2)
1057                                 rate_id = RTW_RATEID_ARFR0_AC_2SS;
1058                         else if (tx_num == 3)
1059                                 rate_id = RTW_RATEID_ARFR4_AC_3SS;
1060                         else if (tx_num == 4)
1061                                 rate_id = RTW_RATEID_ARFR6_AC_4SS;
1062                 } else {
1063                         if (tx_num == 1)
1064                                 rate_id = RTW_RATEID_ARFR2_AC_2G_1SS;
1065                         else if (tx_num == 2)
1066                                 rate_id = RTW_RATEID_ARFR3_AC_2G_2SS;
1067                         else if (tx_num == 3)
1068                                 rate_id = RTW_RATEID_ARFR4_AC_3SS;
1069                         else if (tx_num == 4)
1070                                 rate_id = RTW_RATEID_ARFR6_AC_4SS;
1071                 }
1072                 break;
1073         default:
1074                 break;
1075         }
1076
1077         return rate_id;
1078 }
1079
1080 #define RA_MASK_CCK_RATES       0x0000f
1081 #define RA_MASK_OFDM_RATES      0x00ff0
1082 #define RA_MASK_HT_RATES_1SS    (0xff000ULL << 0)
1083 #define RA_MASK_HT_RATES_2SS    (0xff000ULL << 8)
1084 #define RA_MASK_HT_RATES_3SS    (0xff000ULL << 16)
1085 #define RA_MASK_HT_RATES        (RA_MASK_HT_RATES_1SS | \
1086                                  RA_MASK_HT_RATES_2SS | \
1087                                  RA_MASK_HT_RATES_3SS)
1088 #define RA_MASK_VHT_RATES_1SS   (0x3ff000ULL << 0)
1089 #define RA_MASK_VHT_RATES_2SS   (0x3ff000ULL << 10)
1090 #define RA_MASK_VHT_RATES_3SS   (0x3ff000ULL << 20)
1091 #define RA_MASK_VHT_RATES       (RA_MASK_VHT_RATES_1SS | \
1092                                  RA_MASK_VHT_RATES_2SS | \
1093                                  RA_MASK_VHT_RATES_3SS)
1094 #define RA_MASK_CCK_IN_BG       0x00005
1095 #define RA_MASK_CCK_IN_HT       0x00005
1096 #define RA_MASK_CCK_IN_VHT      0x00005
1097 #define RA_MASK_OFDM_IN_VHT     0x00010
1098 #define RA_MASK_OFDM_IN_HT_2G   0x00010
1099 #define RA_MASK_OFDM_IN_HT_5G   0x00030
1100
1101 static u64 rtw_rate_mask_rssi(struct rtw_sta_info *si, u8 wireless_set)
1102 {
1103         u8 rssi_level = si->rssi_level;
1104
1105         if (wireless_set == WIRELESS_CCK)
1106                 return 0xffffffffffffffffULL;
1107
1108         if (rssi_level == 0)
1109                 return 0xffffffffffffffffULL;
1110         else if (rssi_level == 1)
1111                 return 0xfffffffffffffff0ULL;
1112         else if (rssi_level == 2)
1113                 return 0xffffffffffffefe0ULL;
1114         else if (rssi_level == 3)
1115                 return 0xffffffffffffcfc0ULL;
1116         else if (rssi_level == 4)
1117                 return 0xffffffffffff8f80ULL;
1118         else
1119                 return 0xffffffffffff0f00ULL;
1120 }
1121
1122 static u64 rtw_rate_mask_recover(u64 ra_mask, u64 ra_mask_bak)
1123 {
1124         if ((ra_mask & ~(RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES)) == 0)
1125                 ra_mask |= (ra_mask_bak & ~(RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES));
1126
1127         if (ra_mask == 0)
1128                 ra_mask |= (ra_mask_bak & (RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES));
1129
1130         return ra_mask;
1131 }
1132
1133 static u64 rtw_rate_mask_cfg(struct rtw_dev *rtwdev, struct rtw_sta_info *si,
1134                              u64 ra_mask, bool is_vht_enable)
1135 {
1136         struct rtw_hal *hal = &rtwdev->hal;
1137         const struct cfg80211_bitrate_mask *mask = si->mask;
1138         u64 cfg_mask = GENMASK_ULL(63, 0);
1139         u8 band;
1140
1141         if (!si->use_cfg_mask)
1142                 return ra_mask;
1143
1144         band = hal->current_band_type;
1145         if (band == RTW_BAND_2G) {
1146                 band = NL80211_BAND_2GHZ;
1147                 cfg_mask = mask->control[band].legacy;
1148         } else if (band == RTW_BAND_5G) {
1149                 band = NL80211_BAND_5GHZ;
1150                 cfg_mask = u64_encode_bits(mask->control[band].legacy,
1151                                            RA_MASK_OFDM_RATES);
1152         }
1153
1154         if (!is_vht_enable) {
1155                 if (ra_mask & RA_MASK_HT_RATES_1SS)
1156                         cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[0],
1157                                                     RA_MASK_HT_RATES_1SS);
1158                 if (ra_mask & RA_MASK_HT_RATES_2SS)
1159                         cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[1],
1160                                                     RA_MASK_HT_RATES_2SS);
1161         } else {
1162                 if (ra_mask & RA_MASK_VHT_RATES_1SS)
1163                         cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[0],
1164                                                     RA_MASK_VHT_RATES_1SS);
1165                 if (ra_mask & RA_MASK_VHT_RATES_2SS)
1166                         cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[1],
1167                                                     RA_MASK_VHT_RATES_2SS);
1168         }
1169
1170         ra_mask &= cfg_mask;
1171
1172         return ra_mask;
1173 }
1174
1175 void rtw_update_sta_info(struct rtw_dev *rtwdev, struct rtw_sta_info *si,
1176                          bool reset_ra_mask)
1177 {
1178         struct rtw_dm_info *dm_info = &rtwdev->dm_info;
1179         struct ieee80211_sta *sta = si->sta;
1180         struct rtw_efuse *efuse = &rtwdev->efuse;
1181         struct rtw_hal *hal = &rtwdev->hal;
1182         u8 wireless_set;
1183         u8 bw_mode;
1184         u8 rate_id;
1185         u8 rf_type = RF_1T1R;
1186         u8 stbc_en = 0;
1187         u8 ldpc_en = 0;
1188         u8 tx_num = 1;
1189         u64 ra_mask = 0;
1190         u64 ra_mask_bak = 0;
1191         bool is_vht_enable = false;
1192         bool is_support_sgi = false;
1193
1194         if (sta->deflink.vht_cap.vht_supported) {
1195                 is_vht_enable = true;
1196                 ra_mask |= get_vht_ra_mask(sta);
1197                 if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_RXSTBC_MASK)
1198                         stbc_en = VHT_STBC_EN;
1199                 if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_RXLDPC)
1200                         ldpc_en = VHT_LDPC_EN;
1201         } else if (sta->deflink.ht_cap.ht_supported) {
1202                 ra_mask |= (sta->deflink.ht_cap.mcs.rx_mask[1] << 20) |
1203                            (sta->deflink.ht_cap.mcs.rx_mask[0] << 12);
1204                 if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_RX_STBC)
1205                         stbc_en = HT_STBC_EN;
1206                 if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING)
1207                         ldpc_en = HT_LDPC_EN;
1208         }
1209
1210         if (efuse->hw_cap.nss == 1 || rtwdev->hal.txrx_1ss)
1211                 ra_mask &= RA_MASK_VHT_RATES_1SS | RA_MASK_HT_RATES_1SS;
1212
1213         if (hal->current_band_type == RTW_BAND_5G) {
1214                 ra_mask |= (u64)sta->deflink.supp_rates[NL80211_BAND_5GHZ] << 4;
1215                 ra_mask_bak = ra_mask;
1216                 if (sta->deflink.vht_cap.vht_supported) {
1217                         ra_mask &= RA_MASK_VHT_RATES | RA_MASK_OFDM_IN_VHT;
1218                         wireless_set = WIRELESS_OFDM | WIRELESS_VHT;
1219                 } else if (sta->deflink.ht_cap.ht_supported) {
1220                         ra_mask &= RA_MASK_HT_RATES | RA_MASK_OFDM_IN_HT_5G;
1221                         wireless_set = WIRELESS_OFDM | WIRELESS_HT;
1222                 } else {
1223                         wireless_set = WIRELESS_OFDM;
1224                 }
1225                 dm_info->rrsr_val_init = RRSR_INIT_5G;
1226         } else if (hal->current_band_type == RTW_BAND_2G) {
1227                 ra_mask |= sta->deflink.supp_rates[NL80211_BAND_2GHZ];
1228                 ra_mask_bak = ra_mask;
1229                 if (sta->deflink.vht_cap.vht_supported) {
1230                         ra_mask &= RA_MASK_VHT_RATES | RA_MASK_CCK_IN_VHT |
1231                                    RA_MASK_OFDM_IN_VHT;
1232                         wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
1233                                        WIRELESS_HT | WIRELESS_VHT;
1234                 } else if (sta->deflink.ht_cap.ht_supported) {
1235                         ra_mask &= RA_MASK_HT_RATES | RA_MASK_CCK_IN_HT |
1236                                    RA_MASK_OFDM_IN_HT_2G;
1237                         wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
1238                                        WIRELESS_HT;
1239                 } else if (sta->deflink.supp_rates[0] <= 0xf) {
1240                         wireless_set = WIRELESS_CCK;
1241                 } else {
1242                         ra_mask &= RA_MASK_OFDM_RATES | RA_MASK_CCK_IN_BG;
1243                         wireless_set = WIRELESS_CCK | WIRELESS_OFDM;
1244                 }
1245                 dm_info->rrsr_val_init = RRSR_INIT_2G;
1246         } else {
1247                 rtw_err(rtwdev, "Unknown band type\n");
1248                 ra_mask_bak = ra_mask;
1249                 wireless_set = 0;
1250         }
1251
1252         switch (sta->deflink.bandwidth) {
1253         case IEEE80211_STA_RX_BW_80:
1254                 bw_mode = RTW_CHANNEL_WIDTH_80;
1255                 is_support_sgi = sta->deflink.vht_cap.vht_supported &&
1256                                  (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_SHORT_GI_80);
1257                 break;
1258         case IEEE80211_STA_RX_BW_40:
1259                 bw_mode = RTW_CHANNEL_WIDTH_40;
1260                 is_support_sgi = sta->deflink.ht_cap.ht_supported &&
1261                                  (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40);
1262                 break;
1263         default:
1264                 bw_mode = RTW_CHANNEL_WIDTH_20;
1265                 is_support_sgi = sta->deflink.ht_cap.ht_supported &&
1266                                  (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20);
1267                 break;
1268         }
1269
1270         if (sta->deflink.vht_cap.vht_supported && ra_mask & 0xffc00000) {
1271                 tx_num = 2;
1272                 rf_type = RF_2T2R;
1273         } else if (sta->deflink.ht_cap.ht_supported && ra_mask & 0xfff00000) {
1274                 tx_num = 2;
1275                 rf_type = RF_2T2R;
1276         }
1277
1278         rate_id = get_rate_id(wireless_set, bw_mode, tx_num);
1279
1280         ra_mask &= rtw_rate_mask_rssi(si, wireless_set);
1281         ra_mask = rtw_rate_mask_recover(ra_mask, ra_mask_bak);
1282         ra_mask = rtw_rate_mask_cfg(rtwdev, si, ra_mask, is_vht_enable);
1283
1284         si->bw_mode = bw_mode;
1285         si->stbc_en = stbc_en;
1286         si->ldpc_en = ldpc_en;
1287         si->rf_type = rf_type;
1288         si->wireless_set = wireless_set;
1289         si->sgi_enable = is_support_sgi;
1290         si->vht_enable = is_vht_enable;
1291         si->ra_mask = ra_mask;
1292         si->rate_id = rate_id;
1293
1294         rtw_fw_send_ra_info(rtwdev, si, reset_ra_mask);
1295 }
1296
1297 static int rtw_wait_firmware_completion(struct rtw_dev *rtwdev)
1298 {
1299         const struct rtw_chip_info *chip = rtwdev->chip;
1300         struct rtw_fw_state *fw;
1301
1302         fw = &rtwdev->fw;
1303         wait_for_completion(&fw->completion);
1304         if (!fw->firmware)
1305                 return -EINVAL;
1306
1307         if (chip->wow_fw_name) {
1308                 fw = &rtwdev->wow_fw;
1309                 wait_for_completion(&fw->completion);
1310                 if (!fw->firmware)
1311                         return -EINVAL;
1312         }
1313
1314         return 0;
1315 }
1316
1317 static enum rtw_lps_deep_mode rtw_update_lps_deep_mode(struct rtw_dev *rtwdev,
1318                                                        struct rtw_fw_state *fw)
1319 {
1320         const struct rtw_chip_info *chip = rtwdev->chip;
1321
1322         if (rtw_disable_lps_deep_mode || !chip->lps_deep_mode_supported ||
1323             !fw->feature)
1324                 return LPS_DEEP_MODE_NONE;
1325
1326         if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_PG)) &&
1327             rtw_fw_feature_check(fw, FW_FEATURE_PG))
1328                 return LPS_DEEP_MODE_PG;
1329
1330         if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_LCLK)) &&
1331             rtw_fw_feature_check(fw, FW_FEATURE_LCLK))
1332                 return LPS_DEEP_MODE_LCLK;
1333
1334         return LPS_DEEP_MODE_NONE;
1335 }
1336
1337 static int rtw_power_on(struct rtw_dev *rtwdev)
1338 {
1339         const struct rtw_chip_info *chip = rtwdev->chip;
1340         struct rtw_fw_state *fw = &rtwdev->fw;
1341         bool wifi_only;
1342         int ret;
1343
1344         ret = rtw_hci_setup(rtwdev);
1345         if (ret) {
1346                 rtw_err(rtwdev, "failed to setup hci\n");
1347                 goto err;
1348         }
1349
1350         /* power on MAC before firmware downloaded */
1351         ret = rtw_mac_power_on(rtwdev);
1352         if (ret) {
1353                 rtw_err(rtwdev, "failed to power on mac\n");
1354                 goto err;
1355         }
1356
1357         ret = rtw_wait_firmware_completion(rtwdev);
1358         if (ret) {
1359                 rtw_err(rtwdev, "failed to wait firmware completion\n");
1360                 goto err_off;
1361         }
1362
1363         ret = rtw_download_firmware(rtwdev, fw);
1364         if (ret) {
1365                 rtw_err(rtwdev, "failed to download firmware\n");
1366                 goto err_off;
1367         }
1368
1369         /* config mac after firmware downloaded */
1370         ret = rtw_mac_init(rtwdev);
1371         if (ret) {
1372                 rtw_err(rtwdev, "failed to configure mac\n");
1373                 goto err_off;
1374         }
1375
1376         chip->ops->phy_set_param(rtwdev);
1377
1378         ret = rtw_hci_start(rtwdev);
1379         if (ret) {
1380                 rtw_err(rtwdev, "failed to start hci\n");
1381                 goto err_off;
1382         }
1383
1384         /* send H2C after HCI has started */
1385         rtw_fw_send_general_info(rtwdev);
1386         rtw_fw_send_phydm_info(rtwdev);
1387
1388         wifi_only = !rtwdev->efuse.btcoex;
1389         rtw_coex_power_on_setting(rtwdev);
1390         rtw_coex_init_hw_config(rtwdev, wifi_only);
1391
1392         return 0;
1393
1394 err_off:
1395         rtw_mac_power_off(rtwdev);
1396
1397 err:
1398         return ret;
1399 }
1400
1401 void rtw_core_fw_scan_notify(struct rtw_dev *rtwdev, bool start)
1402 {
1403         if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_NOTIFY_SCAN))
1404                 return;
1405
1406         if (start) {
1407                 rtw_fw_scan_notify(rtwdev, true);
1408         } else {
1409                 reinit_completion(&rtwdev->fw_scan_density);
1410                 rtw_fw_scan_notify(rtwdev, false);
1411                 if (!wait_for_completion_timeout(&rtwdev->fw_scan_density,
1412                                                  SCAN_NOTIFY_TIMEOUT))
1413                         rtw_warn(rtwdev, "firmware failed to report density after scan\n");
1414         }
1415 }
1416
1417 void rtw_core_scan_start(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif,
1418                          const u8 *mac_addr, bool hw_scan)
1419 {
1420         u32 config = 0;
1421         int ret = 0;
1422
1423         rtw_leave_lps(rtwdev);
1424
1425         if (hw_scan && (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE)) {
1426                 ret = rtw_leave_ips(rtwdev);
1427                 if (ret) {
1428                         rtw_err(rtwdev, "failed to leave idle state\n");
1429                         return;
1430                 }
1431         }
1432
1433         ether_addr_copy(rtwvif->mac_addr, mac_addr);
1434         config |= PORT_SET_MAC_ADDR;
1435         rtw_vif_port_config(rtwdev, rtwvif, config);
1436
1437         rtw_coex_scan_notify(rtwdev, COEX_SCAN_START);
1438         rtw_core_fw_scan_notify(rtwdev, true);
1439
1440         set_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags);
1441         set_bit(RTW_FLAG_SCANNING, rtwdev->flags);
1442 }
1443
1444 void rtw_core_scan_complete(struct rtw_dev *rtwdev, struct ieee80211_vif *vif,
1445                             bool hw_scan)
1446 {
1447         struct rtw_vif *rtwvif = vif ? (struct rtw_vif *)vif->drv_priv : NULL;
1448         u32 config = 0;
1449
1450         if (!rtwvif)
1451                 return;
1452
1453         clear_bit(RTW_FLAG_SCANNING, rtwdev->flags);
1454         clear_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags);
1455
1456         rtw_core_fw_scan_notify(rtwdev, false);
1457
1458         ether_addr_copy(rtwvif->mac_addr, vif->addr);
1459         config |= PORT_SET_MAC_ADDR;
1460         rtw_vif_port_config(rtwdev, rtwvif, config);
1461
1462         rtw_coex_scan_notify(rtwdev, COEX_SCAN_FINISH);
1463
1464         if (hw_scan && (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE))
1465                 ieee80211_queue_work(rtwdev->hw, &rtwdev->ips_work);
1466 }
1467
1468 int rtw_core_start(struct rtw_dev *rtwdev)
1469 {
1470         int ret;
1471
1472         ret = rtw_power_on(rtwdev);
1473         if (ret)
1474                 return ret;
1475
1476         rtw_sec_enable_sec_engine(rtwdev);
1477
1478         rtwdev->lps_conf.deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->fw);
1479         rtwdev->lps_conf.wow_deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->wow_fw);
1480
1481         /* rcr reset after powered on */
1482         rtw_write32(rtwdev, REG_RCR, rtwdev->hal.rcr);
1483
1484         ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
1485                                      RTW_WATCH_DOG_DELAY_TIME);
1486
1487         set_bit(RTW_FLAG_RUNNING, rtwdev->flags);
1488
1489         return 0;
1490 }
1491
1492 static void rtw_power_off(struct rtw_dev *rtwdev)
1493 {
1494         rtw_hci_stop(rtwdev);
1495         rtw_coex_power_off_setting(rtwdev);
1496         rtw_mac_power_off(rtwdev);
1497 }
1498
1499 void rtw_core_stop(struct rtw_dev *rtwdev)
1500 {
1501         struct rtw_coex *coex = &rtwdev->coex;
1502
1503         clear_bit(RTW_FLAG_RUNNING, rtwdev->flags);
1504         clear_bit(RTW_FLAG_FW_RUNNING, rtwdev->flags);
1505
1506         mutex_unlock(&rtwdev->mutex);
1507
1508         cancel_work_sync(&rtwdev->c2h_work);
1509         cancel_work_sync(&rtwdev->update_beacon_work);
1510         cancel_delayed_work_sync(&rtwdev->watch_dog_work);
1511         cancel_delayed_work_sync(&coex->bt_relink_work);
1512         cancel_delayed_work_sync(&coex->bt_reenable_work);
1513         cancel_delayed_work_sync(&coex->defreeze_work);
1514         cancel_delayed_work_sync(&coex->wl_remain_work);
1515         cancel_delayed_work_sync(&coex->bt_remain_work);
1516         cancel_delayed_work_sync(&coex->wl_connecting_work);
1517         cancel_delayed_work_sync(&coex->bt_multi_link_remain_work);
1518         cancel_delayed_work_sync(&coex->wl_ccklock_work);
1519
1520         mutex_lock(&rtwdev->mutex);
1521
1522         rtw_power_off(rtwdev);
1523 }
1524
1525 static void rtw_init_ht_cap(struct rtw_dev *rtwdev,
1526                             struct ieee80211_sta_ht_cap *ht_cap)
1527 {
1528         const struct rtw_chip_info *chip = rtwdev->chip;
1529         struct rtw_efuse *efuse = &rtwdev->efuse;
1530
1531         ht_cap->ht_supported = true;
1532         ht_cap->cap = 0;
1533         ht_cap->cap |= IEEE80211_HT_CAP_SGI_20 |
1534                         IEEE80211_HT_CAP_MAX_AMSDU |
1535                         (1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);
1536
1537         if (rtw_chip_has_rx_ldpc(rtwdev))
1538                 ht_cap->cap |= IEEE80211_HT_CAP_LDPC_CODING;
1539         if (rtw_chip_has_tx_stbc(rtwdev))
1540                 ht_cap->cap |= IEEE80211_HT_CAP_TX_STBC;
1541
1542         if (efuse->hw_cap.bw & BIT(RTW_CHANNEL_WIDTH_40))
1543                 ht_cap->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
1544                                 IEEE80211_HT_CAP_DSSSCCK40 |
1545                                 IEEE80211_HT_CAP_SGI_40;
1546         ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
1547         ht_cap->ampdu_density = chip->ampdu_density;
1548         ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
1549         if (efuse->hw_cap.nss > 1) {
1550                 ht_cap->mcs.rx_mask[0] = 0xFF;
1551                 ht_cap->mcs.rx_mask[1] = 0xFF;
1552                 ht_cap->mcs.rx_mask[4] = 0x01;
1553                 ht_cap->mcs.rx_highest = cpu_to_le16(300);
1554         } else {
1555                 ht_cap->mcs.rx_mask[0] = 0xFF;
1556                 ht_cap->mcs.rx_mask[1] = 0x00;
1557                 ht_cap->mcs.rx_mask[4] = 0x01;
1558                 ht_cap->mcs.rx_highest = cpu_to_le16(150);
1559         }
1560 }
1561
1562 static void rtw_init_vht_cap(struct rtw_dev *rtwdev,
1563                              struct ieee80211_sta_vht_cap *vht_cap)
1564 {
1565         struct rtw_efuse *efuse = &rtwdev->efuse;
1566         u16 mcs_map;
1567         __le16 highest;
1568
1569         if (efuse->hw_cap.ptcl != EFUSE_HW_CAP_IGNORE &&
1570             efuse->hw_cap.ptcl != EFUSE_HW_CAP_PTCL_VHT)
1571                 return;
1572
1573         vht_cap->vht_supported = true;
1574         vht_cap->cap = IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 |
1575                        IEEE80211_VHT_CAP_SHORT_GI_80 |
1576                        IEEE80211_VHT_CAP_RXSTBC_1 |
1577                        IEEE80211_VHT_CAP_HTC_VHT |
1578                        IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK |
1579                        0;
1580         if (rtwdev->hal.rf_path_num > 1)
1581                 vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
1582         vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE |
1583                         IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE;
1584         vht_cap->cap |= (rtwdev->hal.bfee_sts_cap <<
1585                         IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT);
1586
1587         if (rtw_chip_has_rx_ldpc(rtwdev))
1588                 vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
1589
1590         mcs_map = IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
1591                   IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
1592                   IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
1593                   IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
1594                   IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
1595                   IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
1596                   IEEE80211_VHT_MCS_NOT_SUPPORTED << 14;
1597         if (efuse->hw_cap.nss > 1) {
1598                 highest = cpu_to_le16(780);
1599                 mcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << 2;
1600         } else {
1601                 highest = cpu_to_le16(390);
1602                 mcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << 2;
1603         }
1604
1605         vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map);
1606         vht_cap->vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map);
1607         vht_cap->vht_mcs.rx_highest = highest;
1608         vht_cap->vht_mcs.tx_highest = highest;
1609 }
1610
1611 static u16 rtw_get_max_scan_ie_len(struct rtw_dev *rtwdev)
1612 {
1613         u16 len;
1614
1615         len = rtwdev->chip->max_scan_ie_len;
1616
1617         if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_SCAN_OFFLOAD) &&
1618             rtwdev->chip->id == RTW_CHIP_TYPE_8822C)
1619                 len = IEEE80211_MAX_DATA_LEN;
1620         else if (rtw_fw_feature_ext_check(&rtwdev->fw, FW_FEATURE_EXT_OLD_PAGE_NUM))
1621                 len -= RTW_OLD_PROBE_PG_CNT * TX_PAGE_SIZE;
1622
1623         return len;
1624 }
1625
1626 static void rtw_set_supported_band(struct ieee80211_hw *hw,
1627                                    const struct rtw_chip_info *chip)
1628 {
1629         struct rtw_dev *rtwdev = hw->priv;
1630         struct ieee80211_supported_band *sband;
1631
1632         if (chip->band & RTW_BAND_2G) {
1633                 sband = kmemdup(&rtw_band_2ghz, sizeof(*sband), GFP_KERNEL);
1634                 if (!sband)
1635                         goto err_out;
1636                 if (chip->ht_supported)
1637                         rtw_init_ht_cap(rtwdev, &sband->ht_cap);
1638                 hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
1639         }
1640
1641         if (chip->band & RTW_BAND_5G) {
1642                 sband = kmemdup(&rtw_band_5ghz, sizeof(*sband), GFP_KERNEL);
1643                 if (!sband)
1644                         goto err_out;
1645                 if (chip->ht_supported)
1646                         rtw_init_ht_cap(rtwdev, &sband->ht_cap);
1647                 if (chip->vht_supported)
1648                         rtw_init_vht_cap(rtwdev, &sband->vht_cap);
1649                 hw->wiphy->bands[NL80211_BAND_5GHZ] = sband;
1650         }
1651
1652         return;
1653
1654 err_out:
1655         rtw_err(rtwdev, "failed to set supported band\n");
1656 }
1657
1658 static void rtw_unset_supported_band(struct ieee80211_hw *hw,
1659                                      const struct rtw_chip_info *chip)
1660 {
1661         kfree(hw->wiphy->bands[NL80211_BAND_2GHZ]);
1662         kfree(hw->wiphy->bands[NL80211_BAND_5GHZ]);
1663 }
1664
1665 static void rtw_vif_smps_iter(void *data, u8 *mac,
1666                               struct ieee80211_vif *vif)
1667 {
1668         struct rtw_dev *rtwdev = (struct rtw_dev *)data;
1669
1670         if (vif->type != NL80211_IFTYPE_STATION || !vif->cfg.assoc)
1671                 return;
1672
1673         if (rtwdev->hal.txrx_1ss)
1674                 ieee80211_request_smps(vif, 0, IEEE80211_SMPS_STATIC);
1675         else
1676                 ieee80211_request_smps(vif, 0, IEEE80211_SMPS_OFF);
1677 }
1678
1679 void rtw_set_txrx_1ss(struct rtw_dev *rtwdev, bool txrx_1ss)
1680 {
1681         const struct rtw_chip_info *chip = rtwdev->chip;
1682         struct rtw_hal *hal = &rtwdev->hal;
1683
1684         if (!chip->ops->config_txrx_mode || rtwdev->hal.txrx_1ss == txrx_1ss)
1685                 return;
1686
1687         rtwdev->hal.txrx_1ss = txrx_1ss;
1688         if (txrx_1ss)
1689                 chip->ops->config_txrx_mode(rtwdev, BB_PATH_A, BB_PATH_A, false);
1690         else
1691                 chip->ops->config_txrx_mode(rtwdev, hal->antenna_tx,
1692                                             hal->antenna_rx, false);
1693         rtw_iterate_vifs_atomic(rtwdev, rtw_vif_smps_iter, rtwdev);
1694 }
1695
1696 static void __update_firmware_feature(struct rtw_dev *rtwdev,
1697                                       struct rtw_fw_state *fw)
1698 {
1699         u32 feature;
1700         const struct rtw_fw_hdr *fw_hdr =
1701                                 (const struct rtw_fw_hdr *)fw->firmware->data;
1702
1703         feature = le32_to_cpu(fw_hdr->feature);
1704         fw->feature = feature & FW_FEATURE_SIG ? feature : 0;
1705
1706         if (rtwdev->chip->id == RTW_CHIP_TYPE_8822C &&
1707             RTW_FW_SUIT_VER_CODE(rtwdev->fw) < RTW_FW_VER_CODE(9, 9, 13))
1708                 fw->feature_ext |= FW_FEATURE_EXT_OLD_PAGE_NUM;
1709 }
1710
1711 static void __update_firmware_info(struct rtw_dev *rtwdev,
1712                                    struct rtw_fw_state *fw)
1713 {
1714         const struct rtw_fw_hdr *fw_hdr =
1715                                 (const struct rtw_fw_hdr *)fw->firmware->data;
1716
1717         fw->h2c_version = le16_to_cpu(fw_hdr->h2c_fmt_ver);
1718         fw->version = le16_to_cpu(fw_hdr->version);
1719         fw->sub_version = fw_hdr->subversion;
1720         fw->sub_index = fw_hdr->subindex;
1721
1722         __update_firmware_feature(rtwdev, fw);
1723 }
1724
1725 static void __update_firmware_info_legacy(struct rtw_dev *rtwdev,
1726                                           struct rtw_fw_state *fw)
1727 {
1728         struct rtw_fw_hdr_legacy *legacy =
1729                                 (struct rtw_fw_hdr_legacy *)fw->firmware->data;
1730
1731         fw->h2c_version = 0;
1732         fw->version = le16_to_cpu(legacy->version);
1733         fw->sub_version = legacy->subversion1;
1734         fw->sub_index = legacy->subversion2;
1735 }
1736
1737 static void update_firmware_info(struct rtw_dev *rtwdev,
1738                                  struct rtw_fw_state *fw)
1739 {
1740         if (rtw_chip_wcpu_11n(rtwdev))
1741                 __update_firmware_info_legacy(rtwdev, fw);
1742         else
1743                 __update_firmware_info(rtwdev, fw);
1744 }
1745
1746 static void rtw_load_firmware_cb(const struct firmware *firmware, void *context)
1747 {
1748         struct rtw_fw_state *fw = context;
1749         struct rtw_dev *rtwdev = fw->rtwdev;
1750
1751         if (!firmware || !firmware->data) {
1752                 rtw_err(rtwdev, "failed to request firmware\n");
1753                 complete_all(&fw->completion);
1754                 return;
1755         }
1756
1757         fw->firmware = firmware;
1758         update_firmware_info(rtwdev, fw);
1759         complete_all(&fw->completion);
1760
1761         rtw_info(rtwdev, "%sFirmware version %u.%u.%u, H2C version %u\n",
1762                  fw->type == RTW_WOWLAN_FW ? "WOW " : "",
1763                  fw->version, fw->sub_version, fw->sub_index, fw->h2c_version);
1764 }
1765
1766 static int rtw_load_firmware(struct rtw_dev *rtwdev, enum rtw_fw_type type)
1767 {
1768         const char *fw_name;
1769         struct rtw_fw_state *fw;
1770         int ret;
1771
1772         switch (type) {
1773         case RTW_WOWLAN_FW:
1774                 fw = &rtwdev->wow_fw;
1775                 fw_name = rtwdev->chip->wow_fw_name;
1776                 break;
1777
1778         case RTW_NORMAL_FW:
1779                 fw = &rtwdev->fw;
1780                 fw_name = rtwdev->chip->fw_name;
1781                 break;
1782
1783         default:
1784                 rtw_warn(rtwdev, "unsupported firmware type\n");
1785                 return -ENOENT;
1786         }
1787
1788         fw->type = type;
1789         fw->rtwdev = rtwdev;
1790         init_completion(&fw->completion);
1791
1792         ret = request_firmware_nowait(THIS_MODULE, true, fw_name, rtwdev->dev,
1793                                       GFP_KERNEL, fw, rtw_load_firmware_cb);
1794         if (ret) {
1795                 rtw_err(rtwdev, "failed to async firmware request\n");
1796                 return ret;
1797         }
1798
1799         return 0;
1800 }
1801
1802 static int rtw_chip_parameter_setup(struct rtw_dev *rtwdev)
1803 {
1804         const struct rtw_chip_info *chip = rtwdev->chip;
1805         struct rtw_hal *hal = &rtwdev->hal;
1806         struct rtw_efuse *efuse = &rtwdev->efuse;
1807
1808         switch (rtw_hci_type(rtwdev)) {
1809         case RTW_HCI_TYPE_PCIE:
1810                 rtwdev->hci.rpwm_addr = 0x03d9;
1811                 rtwdev->hci.cpwm_addr = 0x03da;
1812                 break;
1813         case RTW_HCI_TYPE_SDIO:
1814                 rtwdev->hci.rpwm_addr = REG_SDIO_HRPWM1;
1815                 rtwdev->hci.cpwm_addr = REG_SDIO_HCPWM1_V2;
1816                 break;
1817         case RTW_HCI_TYPE_USB:
1818                 rtwdev->hci.rpwm_addr = 0xfe58;
1819                 rtwdev->hci.cpwm_addr = 0xfe57;
1820                 break;
1821         default:
1822                 rtw_err(rtwdev, "unsupported hci type\n");
1823                 return -EINVAL;
1824         }
1825
1826         hal->chip_version = rtw_read32(rtwdev, REG_SYS_CFG1);
1827         hal->cut_version = BIT_GET_CHIP_VER(hal->chip_version);
1828         hal->mp_chip = (hal->chip_version & BIT_RTL_ID) ? 0 : 1;
1829         if (hal->chip_version & BIT_RF_TYPE_ID) {
1830                 hal->rf_type = RF_2T2R;
1831                 hal->rf_path_num = 2;
1832                 hal->antenna_tx = BB_PATH_AB;
1833                 hal->antenna_rx = BB_PATH_AB;
1834         } else {
1835                 hal->rf_type = RF_1T1R;
1836                 hal->rf_path_num = 1;
1837                 hal->antenna_tx = BB_PATH_A;
1838                 hal->antenna_rx = BB_PATH_A;
1839         }
1840         hal->rf_phy_num = chip->fix_rf_phy_num ? chip->fix_rf_phy_num :
1841                           hal->rf_path_num;
1842
1843         efuse->physical_size = chip->phy_efuse_size;
1844         efuse->logical_size = chip->log_efuse_size;
1845         efuse->protect_size = chip->ptct_efuse_size;
1846
1847         /* default use ack */
1848         rtwdev->hal.rcr |= BIT_VHT_DACK;
1849
1850         hal->bfee_sts_cap = 3;
1851
1852         return 0;
1853 }
1854
1855 static int rtw_chip_efuse_enable(struct rtw_dev *rtwdev)
1856 {
1857         struct rtw_fw_state *fw = &rtwdev->fw;
1858         int ret;
1859
1860         ret = rtw_hci_setup(rtwdev);
1861         if (ret) {
1862                 rtw_err(rtwdev, "failed to setup hci\n");
1863                 goto err;
1864         }
1865
1866         ret = rtw_mac_power_on(rtwdev);
1867         if (ret) {
1868                 rtw_err(rtwdev, "failed to power on mac\n");
1869                 goto err;
1870         }
1871
1872         rtw_write8(rtwdev, REG_C2HEVT, C2H_HW_FEATURE_DUMP);
1873
1874         wait_for_completion(&fw->completion);
1875         if (!fw->firmware) {
1876                 ret = -EINVAL;
1877                 rtw_err(rtwdev, "failed to load firmware\n");
1878                 goto err;
1879         }
1880
1881         ret = rtw_download_firmware(rtwdev, fw);
1882         if (ret) {
1883                 rtw_err(rtwdev, "failed to download firmware\n");
1884                 goto err_off;
1885         }
1886
1887         return 0;
1888
1889 err_off:
1890         rtw_mac_power_off(rtwdev);
1891
1892 err:
1893         return ret;
1894 }
1895
1896 static int rtw_dump_hw_feature(struct rtw_dev *rtwdev)
1897 {
1898         struct rtw_efuse *efuse = &rtwdev->efuse;
1899         u8 hw_feature[HW_FEATURE_LEN];
1900         u8 id;
1901         u8 bw;
1902         int i;
1903
1904         id = rtw_read8(rtwdev, REG_C2HEVT);
1905         if (id != C2H_HW_FEATURE_REPORT) {
1906                 rtw_err(rtwdev, "failed to read hw feature report\n");
1907                 return -EBUSY;
1908         }
1909
1910         for (i = 0; i < HW_FEATURE_LEN; i++)
1911                 hw_feature[i] = rtw_read8(rtwdev, REG_C2HEVT + 2 + i);
1912
1913         rtw_write8(rtwdev, REG_C2HEVT, 0);
1914
1915         bw = GET_EFUSE_HW_CAP_BW(hw_feature);
1916         efuse->hw_cap.bw = hw_bw_cap_to_bitamp(bw);
1917         efuse->hw_cap.hci = GET_EFUSE_HW_CAP_HCI(hw_feature);
1918         efuse->hw_cap.nss = GET_EFUSE_HW_CAP_NSS(hw_feature);
1919         efuse->hw_cap.ptcl = GET_EFUSE_HW_CAP_PTCL(hw_feature);
1920         efuse->hw_cap.ant_num = GET_EFUSE_HW_CAP_ANT_NUM(hw_feature);
1921
1922         rtw_hw_config_rf_ant_num(rtwdev, efuse->hw_cap.ant_num);
1923
1924         if (efuse->hw_cap.nss == EFUSE_HW_CAP_IGNORE ||
1925             efuse->hw_cap.nss > rtwdev->hal.rf_path_num)
1926                 efuse->hw_cap.nss = rtwdev->hal.rf_path_num;
1927
1928         rtw_dbg(rtwdev, RTW_DBG_EFUSE,
1929                 "hw cap: hci=0x%02x, bw=0x%02x, ptcl=0x%02x, ant_num=%d, nss=%d\n",
1930                 efuse->hw_cap.hci, efuse->hw_cap.bw, efuse->hw_cap.ptcl,
1931                 efuse->hw_cap.ant_num, efuse->hw_cap.nss);
1932
1933         return 0;
1934 }
1935
1936 static void rtw_chip_efuse_disable(struct rtw_dev *rtwdev)
1937 {
1938         rtw_hci_stop(rtwdev);
1939         rtw_mac_power_off(rtwdev);
1940 }
1941
1942 static int rtw_chip_efuse_info_setup(struct rtw_dev *rtwdev)
1943 {
1944         struct rtw_efuse *efuse = &rtwdev->efuse;
1945         int ret;
1946
1947         mutex_lock(&rtwdev->mutex);
1948
1949         /* power on mac to read efuse */
1950         ret = rtw_chip_efuse_enable(rtwdev);
1951         if (ret)
1952                 goto out_unlock;
1953
1954         ret = rtw_parse_efuse_map(rtwdev);
1955         if (ret)
1956                 goto out_disable;
1957
1958         ret = rtw_dump_hw_feature(rtwdev);
1959         if (ret)
1960                 goto out_disable;
1961
1962         ret = rtw_check_supported_rfe(rtwdev);
1963         if (ret)
1964                 goto out_disable;
1965
1966         if (efuse->crystal_cap == 0xff)
1967                 efuse->crystal_cap = 0;
1968         if (efuse->pa_type_2g == 0xff)
1969                 efuse->pa_type_2g = 0;
1970         if (efuse->pa_type_5g == 0xff)
1971                 efuse->pa_type_5g = 0;
1972         if (efuse->lna_type_2g == 0xff)
1973                 efuse->lna_type_2g = 0;
1974         if (efuse->lna_type_5g == 0xff)
1975                 efuse->lna_type_5g = 0;
1976         if (efuse->channel_plan == 0xff)
1977                 efuse->channel_plan = 0x7f;
1978         if (efuse->rf_board_option == 0xff)
1979                 efuse->rf_board_option = 0;
1980         if (efuse->bt_setting & BIT(0))
1981                 efuse->share_ant = true;
1982         if (efuse->regd == 0xff)
1983                 efuse->regd = 0;
1984         if (efuse->tx_bb_swing_setting_2g == 0xff)
1985                 efuse->tx_bb_swing_setting_2g = 0;
1986         if (efuse->tx_bb_swing_setting_5g == 0xff)
1987                 efuse->tx_bb_swing_setting_5g = 0;
1988
1989         efuse->btcoex = (efuse->rf_board_option & 0xe0) == 0x20;
1990         efuse->ext_pa_2g = efuse->pa_type_2g & BIT(4) ? 1 : 0;
1991         efuse->ext_lna_2g = efuse->lna_type_2g & BIT(3) ? 1 : 0;
1992         efuse->ext_pa_5g = efuse->pa_type_5g & BIT(0) ? 1 : 0;
1993         efuse->ext_lna_2g = efuse->lna_type_5g & BIT(3) ? 1 : 0;
1994
1995 out_disable:
1996         rtw_chip_efuse_disable(rtwdev);
1997
1998 out_unlock:
1999         mutex_unlock(&rtwdev->mutex);
2000         return ret;
2001 }
2002
2003 static int rtw_chip_board_info_setup(struct rtw_dev *rtwdev)
2004 {
2005         struct rtw_hal *hal = &rtwdev->hal;
2006         const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev);
2007
2008         if (!rfe_def)
2009                 return -ENODEV;
2010
2011         rtw_phy_setup_phy_cond(rtwdev, 0);
2012
2013         rtw_phy_init_tx_power(rtwdev);
2014         if (rfe_def->agc_btg_tbl)
2015                 rtw_load_table(rtwdev, rfe_def->agc_btg_tbl);
2016         rtw_load_table(rtwdev, rfe_def->phy_pg_tbl);
2017         rtw_load_table(rtwdev, rfe_def->txpwr_lmt_tbl);
2018         rtw_phy_tx_power_by_rate_config(hal);
2019         rtw_phy_tx_power_limit_config(hal);
2020
2021         return 0;
2022 }
2023
2024 int rtw_chip_info_setup(struct rtw_dev *rtwdev)
2025 {
2026         int ret;
2027
2028         ret = rtw_chip_parameter_setup(rtwdev);
2029         if (ret) {
2030                 rtw_err(rtwdev, "failed to setup chip parameters\n");
2031                 goto err_out;
2032         }
2033
2034         ret = rtw_chip_efuse_info_setup(rtwdev);
2035         if (ret) {
2036                 rtw_err(rtwdev, "failed to setup chip efuse info\n");
2037                 goto err_out;
2038         }
2039
2040         ret = rtw_chip_board_info_setup(rtwdev);
2041         if (ret) {
2042                 rtw_err(rtwdev, "failed to setup chip board info\n");
2043                 goto err_out;
2044         }
2045
2046         return 0;
2047
2048 err_out:
2049         return ret;
2050 }
2051 EXPORT_SYMBOL(rtw_chip_info_setup);
2052
2053 static void rtw_stats_init(struct rtw_dev *rtwdev)
2054 {
2055         struct rtw_traffic_stats *stats = &rtwdev->stats;
2056         struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2057         int i;
2058
2059         ewma_tp_init(&stats->tx_ewma_tp);
2060         ewma_tp_init(&stats->rx_ewma_tp);
2061
2062         for (i = 0; i < RTW_EVM_NUM; i++)
2063                 ewma_evm_init(&dm_info->ewma_evm[i]);
2064         for (i = 0; i < RTW_SNR_NUM; i++)
2065                 ewma_snr_init(&dm_info->ewma_snr[i]);
2066 }
2067
2068 int rtw_core_init(struct rtw_dev *rtwdev)
2069 {
2070         const struct rtw_chip_info *chip = rtwdev->chip;
2071         struct rtw_coex *coex = &rtwdev->coex;
2072         int ret;
2073
2074         INIT_LIST_HEAD(&rtwdev->rsvd_page_list);
2075         INIT_LIST_HEAD(&rtwdev->txqs);
2076
2077         timer_setup(&rtwdev->tx_report.purge_timer,
2078                     rtw_tx_report_purge_timer, 0);
2079         rtwdev->tx_wq = alloc_workqueue("rtw_tx_wq", WQ_UNBOUND | WQ_HIGHPRI, 0);
2080         if (!rtwdev->tx_wq) {
2081                 rtw_warn(rtwdev, "alloc_workqueue rtw_tx_wq failed\n");
2082                 return -ENOMEM;
2083         }
2084
2085         INIT_DELAYED_WORK(&rtwdev->watch_dog_work, rtw_watch_dog_work);
2086         INIT_DELAYED_WORK(&coex->bt_relink_work, rtw_coex_bt_relink_work);
2087         INIT_DELAYED_WORK(&coex->bt_reenable_work, rtw_coex_bt_reenable_work);
2088         INIT_DELAYED_WORK(&coex->defreeze_work, rtw_coex_defreeze_work);
2089         INIT_DELAYED_WORK(&coex->wl_remain_work, rtw_coex_wl_remain_work);
2090         INIT_DELAYED_WORK(&coex->bt_remain_work, rtw_coex_bt_remain_work);
2091         INIT_DELAYED_WORK(&coex->wl_connecting_work, rtw_coex_wl_connecting_work);
2092         INIT_DELAYED_WORK(&coex->bt_multi_link_remain_work,
2093                           rtw_coex_bt_multi_link_remain_work);
2094         INIT_DELAYED_WORK(&coex->wl_ccklock_work, rtw_coex_wl_ccklock_work);
2095         INIT_WORK(&rtwdev->tx_work, rtw_tx_work);
2096         INIT_WORK(&rtwdev->c2h_work, rtw_c2h_work);
2097         INIT_WORK(&rtwdev->ips_work, rtw_ips_work);
2098         INIT_WORK(&rtwdev->fw_recovery_work, rtw_fw_recovery_work);
2099         INIT_WORK(&rtwdev->update_beacon_work, rtw_fw_update_beacon_work);
2100         INIT_WORK(&rtwdev->ba_work, rtw_txq_ba_work);
2101         skb_queue_head_init(&rtwdev->c2h_queue);
2102         skb_queue_head_init(&rtwdev->coex.queue);
2103         skb_queue_head_init(&rtwdev->tx_report.queue);
2104
2105         spin_lock_init(&rtwdev->txq_lock);
2106         spin_lock_init(&rtwdev->tx_report.q_lock);
2107
2108         mutex_init(&rtwdev->mutex);
2109         mutex_init(&rtwdev->hal.tx_power_mutex);
2110
2111         init_waitqueue_head(&rtwdev->coex.wait);
2112         init_completion(&rtwdev->lps_leave_check);
2113         init_completion(&rtwdev->fw_scan_density);
2114
2115         rtwdev->sec.total_cam_num = 32;
2116         rtwdev->hal.current_channel = 1;
2117         rtwdev->dm_info.fix_rate = U8_MAX;
2118         set_bit(RTW_BC_MC_MACID, rtwdev->mac_id_map);
2119
2120         rtw_stats_init(rtwdev);
2121
2122         /* default rx filter setting */
2123         rtwdev->hal.rcr = BIT_APP_FCS | BIT_APP_MIC | BIT_APP_ICV |
2124                           BIT_PKTCTL_DLEN | BIT_HTC_LOC_CTRL | BIT_APP_PHYSTS |
2125                           BIT_AB | BIT_AM | BIT_APM;
2126
2127         ret = rtw_load_firmware(rtwdev, RTW_NORMAL_FW);
2128         if (ret) {
2129                 rtw_warn(rtwdev, "no firmware loaded\n");
2130                 goto out;
2131         }
2132
2133         if (chip->wow_fw_name) {
2134                 ret = rtw_load_firmware(rtwdev, RTW_WOWLAN_FW);
2135                 if (ret) {
2136                         rtw_warn(rtwdev, "no wow firmware loaded\n");
2137                         wait_for_completion(&rtwdev->fw.completion);
2138                         if (rtwdev->fw.firmware)
2139                                 release_firmware(rtwdev->fw.firmware);
2140                         goto out;
2141                 }
2142         }
2143
2144         return 0;
2145
2146 out:
2147         destroy_workqueue(rtwdev->tx_wq);
2148         return ret;
2149 }
2150 EXPORT_SYMBOL(rtw_core_init);
2151
2152 void rtw_core_deinit(struct rtw_dev *rtwdev)
2153 {
2154         struct rtw_fw_state *fw = &rtwdev->fw;
2155         struct rtw_fw_state *wow_fw = &rtwdev->wow_fw;
2156         struct rtw_rsvd_page *rsvd_pkt, *tmp;
2157         unsigned long flags;
2158
2159         rtw_wait_firmware_completion(rtwdev);
2160
2161         if (fw->firmware)
2162                 release_firmware(fw->firmware);
2163
2164         if (wow_fw->firmware)
2165                 release_firmware(wow_fw->firmware);
2166
2167         destroy_workqueue(rtwdev->tx_wq);
2168         spin_lock_irqsave(&rtwdev->tx_report.q_lock, flags);
2169         skb_queue_purge(&rtwdev->tx_report.queue);
2170         skb_queue_purge(&rtwdev->coex.queue);
2171         spin_unlock_irqrestore(&rtwdev->tx_report.q_lock, flags);
2172
2173         list_for_each_entry_safe(rsvd_pkt, tmp, &rtwdev->rsvd_page_list,
2174                                  build_list) {
2175                 list_del(&rsvd_pkt->build_list);
2176                 kfree(rsvd_pkt);
2177         }
2178
2179         mutex_destroy(&rtwdev->mutex);
2180         mutex_destroy(&rtwdev->hal.tx_power_mutex);
2181 }
2182 EXPORT_SYMBOL(rtw_core_deinit);
2183
2184 int rtw_register_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
2185 {
2186         struct rtw_hal *hal = &rtwdev->hal;
2187         int max_tx_headroom = 0;
2188         int ret;
2189
2190         max_tx_headroom = rtwdev->chip->tx_pkt_desc_sz;
2191
2192         if (rtw_hci_type(rtwdev) == RTW_HCI_TYPE_SDIO)
2193                 max_tx_headroom += RTW_SDIO_DATA_PTR_ALIGN;
2194
2195         hw->extra_tx_headroom = max_tx_headroom;
2196         hw->queues = IEEE80211_NUM_ACS;
2197         hw->txq_data_size = sizeof(struct rtw_txq);
2198         hw->sta_data_size = sizeof(struct rtw_sta_info);
2199         hw->vif_data_size = sizeof(struct rtw_vif);
2200
2201         ieee80211_hw_set(hw, SIGNAL_DBM);
2202         ieee80211_hw_set(hw, RX_INCLUDES_FCS);
2203         ieee80211_hw_set(hw, AMPDU_AGGREGATION);
2204         ieee80211_hw_set(hw, MFP_CAPABLE);
2205         ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
2206         ieee80211_hw_set(hw, SUPPORTS_PS);
2207         ieee80211_hw_set(hw, SUPPORTS_DYNAMIC_PS);
2208         ieee80211_hw_set(hw, SUPPORT_FAST_XMIT);
2209         ieee80211_hw_set(hw, SUPPORTS_AMSDU_IN_AMPDU);
2210         ieee80211_hw_set(hw, HAS_RATE_CONTROL);
2211         ieee80211_hw_set(hw, TX_AMSDU);
2212         ieee80211_hw_set(hw, SINGLE_SCAN_ON_ALL_BANDS);
2213
2214         hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
2215                                      BIT(NL80211_IFTYPE_AP) |
2216                                      BIT(NL80211_IFTYPE_ADHOC) |
2217                                      BIT(NL80211_IFTYPE_MESH_POINT);
2218         hw->wiphy->available_antennas_tx = hal->antenna_tx;
2219         hw->wiphy->available_antennas_rx = hal->antenna_rx;
2220
2221         hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS |
2222                             WIPHY_FLAG_TDLS_EXTERNAL_SETUP;
2223
2224         hw->wiphy->features |= NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR;
2225         hw->wiphy->max_scan_ssids = RTW_SCAN_MAX_SSIDS;
2226         hw->wiphy->max_scan_ie_len = rtw_get_max_scan_ie_len(rtwdev);
2227
2228         if (rtwdev->chip->id == RTW_CHIP_TYPE_8822C) {
2229                 hw->wiphy->iface_combinations = rtw_iface_combs;
2230                 hw->wiphy->n_iface_combinations = ARRAY_SIZE(rtw_iface_combs);
2231         }
2232
2233         wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CAN_REPLACE_PTK0);
2234         wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_SCAN_RANDOM_SN);
2235         wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_SET_SCAN_DWELL);
2236
2237 #ifdef CONFIG_PM
2238         hw->wiphy->wowlan = rtwdev->chip->wowlan_stub;
2239         hw->wiphy->max_sched_scan_ssids = rtwdev->chip->max_sched_scan_ssids;
2240 #endif
2241         rtw_set_supported_band(hw, rtwdev->chip);
2242         SET_IEEE80211_PERM_ADDR(hw, rtwdev->efuse.addr);
2243
2244         hw->wiphy->sar_capa = &rtw_sar_capa;
2245
2246         ret = rtw_regd_init(rtwdev);
2247         if (ret) {
2248                 rtw_err(rtwdev, "failed to init regd\n");
2249                 return ret;
2250         }
2251
2252         ret = ieee80211_register_hw(hw);
2253         if (ret) {
2254                 rtw_err(rtwdev, "failed to register hw\n");
2255                 return ret;
2256         }
2257
2258         ret = rtw_regd_hint(rtwdev);
2259         if (ret) {
2260                 rtw_err(rtwdev, "failed to hint regd\n");
2261                 return ret;
2262         }
2263
2264         rtw_debugfs_init(rtwdev);
2265
2266         rtwdev->bf_info.bfer_mu_cnt = 0;
2267         rtwdev->bf_info.bfer_su_cnt = 0;
2268
2269         return 0;
2270 }
2271 EXPORT_SYMBOL(rtw_register_hw);
2272
2273 void rtw_unregister_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
2274 {
2275         const struct rtw_chip_info *chip = rtwdev->chip;
2276
2277         ieee80211_unregister_hw(hw);
2278         rtw_unset_supported_band(hw, chip);
2279 }
2280 EXPORT_SYMBOL(rtw_unregister_hw);
2281
2282 static
2283 void rtw_swap_reg_nbytes(struct rtw_dev *rtwdev, const struct rtw_hw_reg *reg1,
2284                          const struct rtw_hw_reg *reg2, u8 nbytes)
2285 {
2286         u8 i;
2287
2288         for (i = 0; i < nbytes; i++) {
2289                 u8 v1 = rtw_read8(rtwdev, reg1->addr + i);
2290                 u8 v2 = rtw_read8(rtwdev, reg2->addr + i);
2291
2292                 rtw_write8(rtwdev, reg1->addr + i, v2);
2293                 rtw_write8(rtwdev, reg2->addr + i, v1);
2294         }
2295 }
2296
2297 static
2298 void rtw_swap_reg_mask(struct rtw_dev *rtwdev, const struct rtw_hw_reg *reg1,
2299                        const struct rtw_hw_reg *reg2)
2300 {
2301         u32 v1, v2;
2302
2303         v1 = rtw_read32_mask(rtwdev, reg1->addr, reg1->mask);
2304         v2 = rtw_read32_mask(rtwdev, reg2->addr, reg2->mask);
2305         rtw_write32_mask(rtwdev, reg2->addr, reg2->mask, v1);
2306         rtw_write32_mask(rtwdev, reg1->addr, reg1->mask, v2);
2307 }
2308
2309 struct rtw_iter_port_switch_data {
2310         struct rtw_dev *rtwdev;
2311         struct rtw_vif *rtwvif_ap;
2312 };
2313
2314 static void rtw_port_switch_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
2315 {
2316         struct rtw_iter_port_switch_data *iter_data = data;
2317         struct rtw_dev *rtwdev = iter_data->rtwdev;
2318         struct rtw_vif *rtwvif_target = (struct rtw_vif *)vif->drv_priv;
2319         struct rtw_vif *rtwvif_ap = iter_data->rtwvif_ap;
2320         const struct rtw_hw_reg *reg1, *reg2;
2321
2322         if (rtwvif_target->port != RTW_PORT_0)
2323                 return;
2324
2325         rtw_dbg(rtwdev, RTW_DBG_STATE, "AP port switch from %d -> %d\n",
2326                 rtwvif_ap->port, rtwvif_target->port);
2327
2328         reg1 = &rtwvif_ap->conf->net_type;
2329         reg2 = &rtwvif_target->conf->net_type;
2330         rtw_swap_reg_mask(rtwdev, reg1, reg2);
2331
2332         reg1 = &rtwvif_ap->conf->mac_addr;
2333         reg2 = &rtwvif_target->conf->mac_addr;
2334         rtw_swap_reg_nbytes(rtwdev, reg1, reg2, ETH_ALEN);
2335
2336         reg1 = &rtwvif_ap->conf->bssid;
2337         reg2 = &rtwvif_target->conf->bssid;
2338         rtw_swap_reg_nbytes(rtwdev, reg1, reg2, ETH_ALEN);
2339
2340         reg1 = &rtwvif_ap->conf->bcn_ctrl;
2341         reg2 = &rtwvif_target->conf->bcn_ctrl;
2342         rtw_swap_reg_nbytes(rtwdev, reg1, reg2, 1);
2343
2344         swap(rtwvif_target->port, rtwvif_ap->port);
2345         swap(rtwvif_target->conf, rtwvif_ap->conf);
2346 }
2347
2348 void rtw_core_port_switch(struct rtw_dev *rtwdev, struct ieee80211_vif *vif)
2349 {
2350         struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
2351         struct rtw_iter_port_switch_data iter_data;
2352
2353         if (vif->type != NL80211_IFTYPE_AP || rtwvif->port == RTW_PORT_0)
2354                 return;
2355
2356         iter_data.rtwdev = rtwdev;
2357         iter_data.rtwvif_ap = rtwvif;
2358         rtw_iterate_vifs(rtwdev, rtw_port_switch_iter, &iter_data);
2359 }
2360
2361 static void rtw_check_sta_active_iter(void *data, u8 *mac,
2362                                       struct ieee80211_vif *vif)
2363 {
2364         struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
2365         bool *active = data;
2366
2367         if (*active)
2368                 return;
2369
2370         if (vif->type != NL80211_IFTYPE_STATION)
2371                 return;
2372
2373         if (vif->cfg.assoc || !is_zero_ether_addr(rtwvif->bssid))
2374                 *active = true;
2375 }
2376
2377 bool rtw_core_check_sta_active(struct rtw_dev *rtwdev)
2378 {
2379         bool sta_active = false;
2380
2381         rtw_iterate_vifs(rtwdev, rtw_check_sta_active_iter, &sta_active);
2382
2383         return rtwdev->ap_active || sta_active;
2384 }
2385
2386 void rtw_core_enable_beacon(struct rtw_dev *rtwdev, bool enable)
2387 {
2388         if (!rtwdev->ap_active)
2389                 return;
2390
2391         if (enable)
2392                 rtw_write32_set(rtwdev, REG_BCN_CTRL, BIT_EN_BCN_FUNCTION);
2393         else
2394                 rtw_write32_clr(rtwdev, REG_BCN_CTRL, BIT_EN_BCN_FUNCTION);
2395 }
2396
2397 MODULE_AUTHOR("Realtek Corporation");
2398 MODULE_DESCRIPTION("Realtek 802.11ac wireless core module");
2399 MODULE_LICENSE("Dual BSD/GPL");