Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[linux-2.6-block.git] / drivers / net / wireless / ipw2x00 / ipw2200.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   802.11 status code portion of this file from ethereal-0.10.6:
6     Copyright 2000, Axis Communications AB
7     Ethereal - Network traffic analyzer
8     By Gerald Combs <gerald@ethereal.com>
9     Copyright 1998 Gerald Combs
10
11   This program is free software; you can redistribute it and/or modify it
12   under the terms of version 2 of the GNU General Public License as
13   published by the Free Software Foundation.
14
15   This program is distributed in the hope that it will be useful, but WITHOUT
16   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18   more details.
19
20   You should have received a copy of the GNU General Public License along with
21   this program; if not, write to the Free Software Foundation, Inc., 59
22   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
23
24   The full GNU General Public License is included in this distribution in the
25   file called LICENSE.
26
27   Contact Information:
28   Intel Linux Wireless <ilw@linux.intel.com>
29   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31 ******************************************************************************/
32
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include <net/cfg80211-wext.h>
36 #include "ipw2200.h"
37 #include "ipw.h"
38
39
40 #ifndef KBUILD_EXTMOD
41 #define VK "k"
42 #else
43 #define VK
44 #endif
45
46 #ifdef CONFIG_IPW2200_DEBUG
47 #define VD "d"
48 #else
49 #define VD
50 #endif
51
52 #ifdef CONFIG_IPW2200_MONITOR
53 #define VM "m"
54 #else
55 #define VM
56 #endif
57
58 #ifdef CONFIG_IPW2200_PROMISCUOUS
59 #define VP "p"
60 #else
61 #define VP
62 #endif
63
64 #ifdef CONFIG_IPW2200_RADIOTAP
65 #define VR "r"
66 #else
67 #define VR
68 #endif
69
70 #ifdef CONFIG_IPW2200_QOS
71 #define VQ "q"
72 #else
73 #define VQ
74 #endif
75
76 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
77 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
78 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
79 #define DRV_VERSION     IPW2200_VERSION
80
81 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
82
83 MODULE_DESCRIPTION(DRV_DESCRIPTION);
84 MODULE_VERSION(DRV_VERSION);
85 MODULE_AUTHOR(DRV_COPYRIGHT);
86 MODULE_LICENSE("GPL");
87 MODULE_FIRMWARE("ipw2200-ibss.fw");
88 #ifdef CONFIG_IPW2200_MONITOR
89 MODULE_FIRMWARE("ipw2200-sniffer.fw");
90 #endif
91 MODULE_FIRMWARE("ipw2200-bss.fw");
92
93 static int cmdlog = 0;
94 static int debug = 0;
95 static int default_channel = 0;
96 static int network_mode = 0;
97
98 static u32 ipw_debug_level;
99 static int associate;
100 static int auto_create = 1;
101 static int led_support = 1;
102 static int disable = 0;
103 static int bt_coexist = 0;
104 static int hwcrypto = 0;
105 static int roaming = 1;
106 static const char ipw_modes[] = {
107         'a', 'b', 'g', '?'
108 };
109 static int antenna = CFG_SYS_ANTENNA_BOTH;
110
111 #ifdef CONFIG_IPW2200_PROMISCUOUS
112 static int rtap_iface = 0;     /* def: 0 -- do not create rtap interface */
113 #endif
114
115 static struct ieee80211_rate ipw2200_rates[] = {
116         { .bitrate = 10 },
117         { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
118         { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
119         { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
120         { .bitrate = 60 },
121         { .bitrate = 90 },
122         { .bitrate = 120 },
123         { .bitrate = 180 },
124         { .bitrate = 240 },
125         { .bitrate = 360 },
126         { .bitrate = 480 },
127         { .bitrate = 540 }
128 };
129
130 #define ipw2200_a_rates         (ipw2200_rates + 4)
131 #define ipw2200_num_a_rates     8
132 #define ipw2200_bg_rates        (ipw2200_rates + 0)
133 #define ipw2200_num_bg_rates    12
134
135 /* Ugly macro to convert literal channel numbers into their mhz equivalents
136  * There are certianly some conditions that will break this (like feeding it '30')
137  * but they shouldn't arise since nothing talks on channel 30. */
138 #define ieee80211chan2mhz(x) \
139         (((x) <= 14) ? \
140         (((x) == 14) ? 2484 : ((x) * 5) + 2407) : \
141         ((x) + 1000) * 5)
142
143 #ifdef CONFIG_IPW2200_QOS
144 static int qos_enable = 0;
145 static int qos_burst_enable = 0;
146 static int qos_no_ack_mask = 0;
147 static int burst_duration_CCK = 0;
148 static int burst_duration_OFDM = 0;
149
150 static struct libipw_qos_parameters def_qos_parameters_OFDM = {
151         {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
152          QOS_TX3_CW_MIN_OFDM},
153         {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
154          QOS_TX3_CW_MAX_OFDM},
155         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
156         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
157         {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
158          QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
159 };
160
161 static struct libipw_qos_parameters def_qos_parameters_CCK = {
162         {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
163          QOS_TX3_CW_MIN_CCK},
164         {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
165          QOS_TX3_CW_MAX_CCK},
166         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
167         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
168         {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
169          QOS_TX3_TXOP_LIMIT_CCK}
170 };
171
172 static struct libipw_qos_parameters def_parameters_OFDM = {
173         {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
174          DEF_TX3_CW_MIN_OFDM},
175         {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
176          DEF_TX3_CW_MAX_OFDM},
177         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
178         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
179         {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
180          DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
181 };
182
183 static struct libipw_qos_parameters def_parameters_CCK = {
184         {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
185          DEF_TX3_CW_MIN_CCK},
186         {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
187          DEF_TX3_CW_MAX_CCK},
188         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
189         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
190         {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
191          DEF_TX3_TXOP_LIMIT_CCK}
192 };
193
194 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
195
196 static int from_priority_to_tx_queue[] = {
197         IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
198         IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
199 };
200
201 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
202
203 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
204                                        *qos_param);
205 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
206                                      *qos_param);
207 #endif                          /* CONFIG_IPW2200_QOS */
208
209 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
210 static void ipw_remove_current_network(struct ipw_priv *priv);
211 static void ipw_rx(struct ipw_priv *priv);
212 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
213                                 struct clx2_tx_queue *txq, int qindex);
214 static int ipw_queue_reset(struct ipw_priv *priv);
215
216 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
217                              int len, int sync);
218
219 static void ipw_tx_queue_free(struct ipw_priv *);
220
221 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
222 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
223 static void ipw_rx_queue_replenish(void *);
224 static int ipw_up(struct ipw_priv *);
225 static void ipw_bg_up(struct work_struct *work);
226 static void ipw_down(struct ipw_priv *);
227 static void ipw_bg_down(struct work_struct *work);
228 static int ipw_config(struct ipw_priv *);
229 static int init_supported_rates(struct ipw_priv *priv,
230                                 struct ipw_supported_rates *prates);
231 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
232 static void ipw_send_wep_keys(struct ipw_priv *, int);
233
234 static int snprint_line(char *buf, size_t count,
235                         const u8 * data, u32 len, u32 ofs)
236 {
237         int out, i, j, l;
238         char c;
239
240         out = snprintf(buf, count, "%08X", ofs);
241
242         for (l = 0, i = 0; i < 2; i++) {
243                 out += snprintf(buf + out, count - out, " ");
244                 for (j = 0; j < 8 && l < len; j++, l++)
245                         out += snprintf(buf + out, count - out, "%02X ",
246                                         data[(i * 8 + j)]);
247                 for (; j < 8; j++)
248                         out += snprintf(buf + out, count - out, "   ");
249         }
250
251         out += snprintf(buf + out, count - out, " ");
252         for (l = 0, i = 0; i < 2; i++) {
253                 out += snprintf(buf + out, count - out, " ");
254                 for (j = 0; j < 8 && l < len; j++, l++) {
255                         c = data[(i * 8 + j)];
256                         if (!isascii(c) || !isprint(c))
257                                 c = '.';
258
259                         out += snprintf(buf + out, count - out, "%c", c);
260                 }
261
262                 for (; j < 8; j++)
263                         out += snprintf(buf + out, count - out, " ");
264         }
265
266         return out;
267 }
268
269 static void printk_buf(int level, const u8 * data, u32 len)
270 {
271         char line[81];
272         u32 ofs = 0;
273         if (!(ipw_debug_level & level))
274                 return;
275
276         while (len) {
277                 snprint_line(line, sizeof(line), &data[ofs],
278                              min(len, 16U), ofs);
279                 printk(KERN_DEBUG "%s\n", line);
280                 ofs += 16;
281                 len -= min(len, 16U);
282         }
283 }
284
285 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
286 {
287         size_t out = size;
288         u32 ofs = 0;
289         int total = 0;
290
291         while (size && len) {
292                 out = snprint_line(output, size, &data[ofs],
293                                    min_t(size_t, len, 16U), ofs);
294
295                 ofs += 16;
296                 output += out;
297                 size -= out;
298                 len -= min_t(size_t, len, 16U);
299                 total += out;
300         }
301         return total;
302 }
303
304 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
305 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
306 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
307
308 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
309 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
310 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
311
312 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
313 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
314 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
315 {
316         IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
317                      __LINE__, (u32) (b), (u32) (c));
318         _ipw_write_reg8(a, b, c);
319 }
320
321 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
322 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
323 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
324 {
325         IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
326                      __LINE__, (u32) (b), (u32) (c));
327         _ipw_write_reg16(a, b, c);
328 }
329
330 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
331 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
332 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
333 {
334         IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
335                      __LINE__, (u32) (b), (u32) (c));
336         _ipw_write_reg32(a, b, c);
337 }
338
339 /* 8-bit direct write (low 4K) */
340 static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs,
341                 u8 val)
342 {
343         writeb(val, ipw->hw_base + ofs);
344 }
345
346 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
347 #define ipw_write8(ipw, ofs, val) do { \
348         IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \
349                         __LINE__, (u32)(ofs), (u32)(val)); \
350         _ipw_write8(ipw, ofs, val); \
351 } while (0)
352
353 /* 16-bit direct write (low 4K) */
354 static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs,
355                 u16 val)
356 {
357         writew(val, ipw->hw_base + ofs);
358 }
359
360 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
361 #define ipw_write16(ipw, ofs, val) do { \
362         IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \
363                         __LINE__, (u32)(ofs), (u32)(val)); \
364         _ipw_write16(ipw, ofs, val); \
365 } while (0)
366
367 /* 32-bit direct write (low 4K) */
368 static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs,
369                 u32 val)
370 {
371         writel(val, ipw->hw_base + ofs);
372 }
373
374 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
375 #define ipw_write32(ipw, ofs, val) do { \
376         IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \
377                         __LINE__, (u32)(ofs), (u32)(val)); \
378         _ipw_write32(ipw, ofs, val); \
379 } while (0)
380
381 /* 8-bit direct read (low 4K) */
382 static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs)
383 {
384         return readb(ipw->hw_base + ofs);
385 }
386
387 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
388 #define ipw_read8(ipw, ofs) ({ \
389         IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \
390                         (u32)(ofs)); \
391         _ipw_read8(ipw, ofs); \
392 })
393
394 /* 16-bit direct read (low 4K) */
395 static inline u16 _ipw_read16(struct ipw_priv *ipw, unsigned long ofs)
396 {
397         return readw(ipw->hw_base + ofs);
398 }
399
400 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
401 #define ipw_read16(ipw, ofs) ({ \
402         IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \
403                         (u32)(ofs)); \
404         _ipw_read16(ipw, ofs); \
405 })
406
407 /* 32-bit direct read (low 4K) */
408 static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs)
409 {
410         return readl(ipw->hw_base + ofs);
411 }
412
413 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
414 #define ipw_read32(ipw, ofs) ({ \
415         IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \
416                         (u32)(ofs)); \
417         _ipw_read32(ipw, ofs); \
418 })
419
420 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
421 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
422 #define ipw_read_indirect(a, b, c, d) ({ \
423         IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \
424                         __LINE__, (u32)(b), (u32)(d)); \
425         _ipw_read_indirect(a, b, c, d); \
426 })
427
428 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
429 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
430                                 int num);
431 #define ipw_write_indirect(a, b, c, d) do { \
432         IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \
433                         __LINE__, (u32)(b), (u32)(d)); \
434         _ipw_write_indirect(a, b, c, d); \
435 } while (0)
436
437 /* 32-bit indirect write (above 4K) */
438 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
439 {
440         IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
441         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
442         _ipw_write32(priv, IPW_INDIRECT_DATA, value);
443 }
444
445 /* 8-bit indirect write (above 4K) */
446 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
447 {
448         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
449         u32 dif_len = reg - aligned_addr;
450
451         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
452         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
453         _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
454 }
455
456 /* 16-bit indirect write (above 4K) */
457 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
458 {
459         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
460         u32 dif_len = (reg - aligned_addr) & (~0x1ul);
461
462         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
463         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
464         _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
465 }
466
467 /* 8-bit indirect read (above 4K) */
468 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
469 {
470         u32 word;
471         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
472         IPW_DEBUG_IO(" reg = 0x%8X :\n", reg);
473         word = _ipw_read32(priv, IPW_INDIRECT_DATA);
474         return (word >> ((reg & 0x3) * 8)) & 0xff;
475 }
476
477 /* 32-bit indirect read (above 4K) */
478 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
479 {
480         u32 value;
481
482         IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
483
484         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
485         value = _ipw_read32(priv, IPW_INDIRECT_DATA);
486         IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x\n", reg, value);
487         return value;
488 }
489
490 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
491 /*    for area above 1st 4K of SRAM/reg space */
492 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
493                                int num)
494 {
495         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
496         u32 dif_len = addr - aligned_addr;
497         u32 i;
498
499         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
500
501         if (num <= 0) {
502                 return;
503         }
504
505         /* Read the first dword (or portion) byte by byte */
506         if (unlikely(dif_len)) {
507                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
508                 /* Start reading at aligned_addr + dif_len */
509                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
510                         *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
511                 aligned_addr += 4;
512         }
513
514         /* Read all of the middle dwords as dwords, with auto-increment */
515         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
516         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
517                 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
518
519         /* Read the last dword (or portion) byte by byte */
520         if (unlikely(num)) {
521                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
522                 for (i = 0; num > 0; i++, num--)
523                         *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
524         }
525 }
526
527 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
528 /*    for area above 1st 4K of SRAM/reg space */
529 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
530                                 int num)
531 {
532         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
533         u32 dif_len = addr - aligned_addr;
534         u32 i;
535
536         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
537
538         if (num <= 0) {
539                 return;
540         }
541
542         /* Write the first dword (or portion) byte by byte */
543         if (unlikely(dif_len)) {
544                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
545                 /* Start writing at aligned_addr + dif_len */
546                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
547                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
548                 aligned_addr += 4;
549         }
550
551         /* Write all of the middle dwords as dwords, with auto-increment */
552         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
553         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
554                 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
555
556         /* Write the last dword (or portion) byte by byte */
557         if (unlikely(num)) {
558                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
559                 for (i = 0; num > 0; i++, num--, buf++)
560                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
561         }
562 }
563
564 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
565 /*    for 1st 4K of SRAM/regs space */
566 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
567                              int num)
568 {
569         memcpy_toio((priv->hw_base + addr), buf, num);
570 }
571
572 /* Set bit(s) in low 4K of SRAM/regs */
573 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
574 {
575         ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
576 }
577
578 /* Clear bit(s) in low 4K of SRAM/regs */
579 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
580 {
581         ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
582 }
583
584 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
585 {
586         if (priv->status & STATUS_INT_ENABLED)
587                 return;
588         priv->status |= STATUS_INT_ENABLED;
589         ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
590 }
591
592 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
593 {
594         if (!(priv->status & STATUS_INT_ENABLED))
595                 return;
596         priv->status &= ~STATUS_INT_ENABLED;
597         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
598 }
599
600 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
601 {
602         unsigned long flags;
603
604         spin_lock_irqsave(&priv->irq_lock, flags);
605         __ipw_enable_interrupts(priv);
606         spin_unlock_irqrestore(&priv->irq_lock, flags);
607 }
608
609 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
610 {
611         unsigned long flags;
612
613         spin_lock_irqsave(&priv->irq_lock, flags);
614         __ipw_disable_interrupts(priv);
615         spin_unlock_irqrestore(&priv->irq_lock, flags);
616 }
617
618 static char *ipw_error_desc(u32 val)
619 {
620         switch (val) {
621         case IPW_FW_ERROR_OK:
622                 return "ERROR_OK";
623         case IPW_FW_ERROR_FAIL:
624                 return "ERROR_FAIL";
625         case IPW_FW_ERROR_MEMORY_UNDERFLOW:
626                 return "MEMORY_UNDERFLOW";
627         case IPW_FW_ERROR_MEMORY_OVERFLOW:
628                 return "MEMORY_OVERFLOW";
629         case IPW_FW_ERROR_BAD_PARAM:
630                 return "BAD_PARAM";
631         case IPW_FW_ERROR_BAD_CHECKSUM:
632                 return "BAD_CHECKSUM";
633         case IPW_FW_ERROR_NMI_INTERRUPT:
634                 return "NMI_INTERRUPT";
635         case IPW_FW_ERROR_BAD_DATABASE:
636                 return "BAD_DATABASE";
637         case IPW_FW_ERROR_ALLOC_FAIL:
638                 return "ALLOC_FAIL";
639         case IPW_FW_ERROR_DMA_UNDERRUN:
640                 return "DMA_UNDERRUN";
641         case IPW_FW_ERROR_DMA_STATUS:
642                 return "DMA_STATUS";
643         case IPW_FW_ERROR_DINO_ERROR:
644                 return "DINO_ERROR";
645         case IPW_FW_ERROR_EEPROM_ERROR:
646                 return "EEPROM_ERROR";
647         case IPW_FW_ERROR_SYSASSERT:
648                 return "SYSASSERT";
649         case IPW_FW_ERROR_FATAL_ERROR:
650                 return "FATAL_ERROR";
651         default:
652                 return "UNKNOWN_ERROR";
653         }
654 }
655
656 static void ipw_dump_error_log(struct ipw_priv *priv,
657                                struct ipw_fw_error *error)
658 {
659         u32 i;
660
661         if (!error) {
662                 IPW_ERROR("Error allocating and capturing error log.  "
663                           "Nothing to dump.\n");
664                 return;
665         }
666
667         IPW_ERROR("Start IPW Error Log Dump:\n");
668         IPW_ERROR("Status: 0x%08X, Config: %08X\n",
669                   error->status, error->config);
670
671         for (i = 0; i < error->elem_len; i++)
672                 IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
673                           ipw_error_desc(error->elem[i].desc),
674                           error->elem[i].time,
675                           error->elem[i].blink1,
676                           error->elem[i].blink2,
677                           error->elem[i].link1,
678                           error->elem[i].link2, error->elem[i].data);
679         for (i = 0; i < error->log_len; i++)
680                 IPW_ERROR("%i\t0x%08x\t%i\n",
681                           error->log[i].time,
682                           error->log[i].data, error->log[i].event);
683 }
684
685 static inline int ipw_is_init(struct ipw_priv *priv)
686 {
687         return (priv->status & STATUS_INIT) ? 1 : 0;
688 }
689
690 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
691 {
692         u32 addr, field_info, field_len, field_count, total_len;
693
694         IPW_DEBUG_ORD("ordinal = %i\n", ord);
695
696         if (!priv || !val || !len) {
697                 IPW_DEBUG_ORD("Invalid argument\n");
698                 return -EINVAL;
699         }
700
701         /* verify device ordinal tables have been initialized */
702         if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
703                 IPW_DEBUG_ORD("Access ordinals before initialization\n");
704                 return -EINVAL;
705         }
706
707         switch (IPW_ORD_TABLE_ID_MASK & ord) {
708         case IPW_ORD_TABLE_0_MASK:
709                 /*
710                  * TABLE 0: Direct access to a table of 32 bit values
711                  *
712                  * This is a very simple table with the data directly
713                  * read from the table
714                  */
715
716                 /* remove the table id from the ordinal */
717                 ord &= IPW_ORD_TABLE_VALUE_MASK;
718
719                 /* boundary check */
720                 if (ord > priv->table0_len) {
721                         IPW_DEBUG_ORD("ordinal value (%i) longer then "
722                                       "max (%i)\n", ord, priv->table0_len);
723                         return -EINVAL;
724                 }
725
726                 /* verify we have enough room to store the value */
727                 if (*len < sizeof(u32)) {
728                         IPW_DEBUG_ORD("ordinal buffer length too small, "
729                                       "need %zd\n", sizeof(u32));
730                         return -EINVAL;
731                 }
732
733                 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
734                               ord, priv->table0_addr + (ord << 2));
735
736                 *len = sizeof(u32);
737                 ord <<= 2;
738                 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
739                 break;
740
741         case IPW_ORD_TABLE_1_MASK:
742                 /*
743                  * TABLE 1: Indirect access to a table of 32 bit values
744                  *
745                  * This is a fairly large table of u32 values each
746                  * representing starting addr for the data (which is
747                  * also a u32)
748                  */
749
750                 /* remove the table id from the ordinal */
751                 ord &= IPW_ORD_TABLE_VALUE_MASK;
752
753                 /* boundary check */
754                 if (ord > priv->table1_len) {
755                         IPW_DEBUG_ORD("ordinal value too long\n");
756                         return -EINVAL;
757                 }
758
759                 /* verify we have enough room to store the value */
760                 if (*len < sizeof(u32)) {
761                         IPW_DEBUG_ORD("ordinal buffer length too small, "
762                                       "need %zd\n", sizeof(u32));
763                         return -EINVAL;
764                 }
765
766                 *((u32 *) val) =
767                     ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
768                 *len = sizeof(u32);
769                 break;
770
771         case IPW_ORD_TABLE_2_MASK:
772                 /*
773                  * TABLE 2: Indirect access to a table of variable sized values
774                  *
775                  * This table consist of six values, each containing
776                  *     - dword containing the starting offset of the data
777                  *     - dword containing the lengh in the first 16bits
778                  *       and the count in the second 16bits
779                  */
780
781                 /* remove the table id from the ordinal */
782                 ord &= IPW_ORD_TABLE_VALUE_MASK;
783
784                 /* boundary check */
785                 if (ord > priv->table2_len) {
786                         IPW_DEBUG_ORD("ordinal value too long\n");
787                         return -EINVAL;
788                 }
789
790                 /* get the address of statistic */
791                 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
792
793                 /* get the second DW of statistics ;
794                  * two 16-bit words - first is length, second is count */
795                 field_info =
796                     ipw_read_reg32(priv,
797                                    priv->table2_addr + (ord << 3) +
798                                    sizeof(u32));
799
800                 /* get each entry length */
801                 field_len = *((u16 *) & field_info);
802
803                 /* get number of entries */
804                 field_count = *(((u16 *) & field_info) + 1);
805
806                 /* abort if not enough memory */
807                 total_len = field_len * field_count;
808                 if (total_len > *len) {
809                         *len = total_len;
810                         return -EINVAL;
811                 }
812
813                 *len = total_len;
814                 if (!total_len)
815                         return 0;
816
817                 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
818                               "field_info = 0x%08x\n",
819                               addr, total_len, field_info);
820                 ipw_read_indirect(priv, addr, val, total_len);
821                 break;
822
823         default:
824                 IPW_DEBUG_ORD("Invalid ordinal!\n");
825                 return -EINVAL;
826
827         }
828
829         return 0;
830 }
831
832 static void ipw_init_ordinals(struct ipw_priv *priv)
833 {
834         priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
835         priv->table0_len = ipw_read32(priv, priv->table0_addr);
836
837         IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
838                       priv->table0_addr, priv->table0_len);
839
840         priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
841         priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
842
843         IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
844                       priv->table1_addr, priv->table1_len);
845
846         priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
847         priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
848         priv->table2_len &= 0x0000ffff; /* use first two bytes */
849
850         IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
851                       priv->table2_addr, priv->table2_len);
852
853 }
854
855 static u32 ipw_register_toggle(u32 reg)
856 {
857         reg &= ~IPW_START_STANDBY;
858         if (reg & IPW_GATE_ODMA)
859                 reg &= ~IPW_GATE_ODMA;
860         if (reg & IPW_GATE_IDMA)
861                 reg &= ~IPW_GATE_IDMA;
862         if (reg & IPW_GATE_ADMA)
863                 reg &= ~IPW_GATE_ADMA;
864         return reg;
865 }
866
867 /*
868  * LED behavior:
869  * - On radio ON, turn on any LEDs that require to be on during start
870  * - On initialization, start unassociated blink
871  * - On association, disable unassociated blink
872  * - On disassociation, start unassociated blink
873  * - On radio OFF, turn off any LEDs started during radio on
874  *
875  */
876 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
877 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
878 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
879
880 static void ipw_led_link_on(struct ipw_priv *priv)
881 {
882         unsigned long flags;
883         u32 led;
884
885         /* If configured to not use LEDs, or nic_type is 1,
886          * then we don't toggle a LINK led */
887         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
888                 return;
889
890         spin_lock_irqsave(&priv->lock, flags);
891
892         if (!(priv->status & STATUS_RF_KILL_MASK) &&
893             !(priv->status & STATUS_LED_LINK_ON)) {
894                 IPW_DEBUG_LED("Link LED On\n");
895                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
896                 led |= priv->led_association_on;
897
898                 led = ipw_register_toggle(led);
899
900                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
901                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
902
903                 priv->status |= STATUS_LED_LINK_ON;
904
905                 /* If we aren't associated, schedule turning the LED off */
906                 if (!(priv->status & STATUS_ASSOCIATED))
907                         schedule_delayed_work(&priv->led_link_off,
908                                               LD_TIME_LINK_ON);
909         }
910
911         spin_unlock_irqrestore(&priv->lock, flags);
912 }
913
914 static void ipw_bg_led_link_on(struct work_struct *work)
915 {
916         struct ipw_priv *priv =
917                 container_of(work, struct ipw_priv, led_link_on.work);
918         mutex_lock(&priv->mutex);
919         ipw_led_link_on(priv);
920         mutex_unlock(&priv->mutex);
921 }
922
923 static void ipw_led_link_off(struct ipw_priv *priv)
924 {
925         unsigned long flags;
926         u32 led;
927
928         /* If configured not to use LEDs, or nic type is 1,
929          * then we don't goggle the LINK led. */
930         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
931                 return;
932
933         spin_lock_irqsave(&priv->lock, flags);
934
935         if (priv->status & STATUS_LED_LINK_ON) {
936                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
937                 led &= priv->led_association_off;
938                 led = ipw_register_toggle(led);
939
940                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
941                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
942
943                 IPW_DEBUG_LED("Link LED Off\n");
944
945                 priv->status &= ~STATUS_LED_LINK_ON;
946
947                 /* If we aren't associated and the radio is on, schedule
948                  * turning the LED on (blink while unassociated) */
949                 if (!(priv->status & STATUS_RF_KILL_MASK) &&
950                     !(priv->status & STATUS_ASSOCIATED))
951                         schedule_delayed_work(&priv->led_link_on,
952                                               LD_TIME_LINK_OFF);
953
954         }
955
956         spin_unlock_irqrestore(&priv->lock, flags);
957 }
958
959 static void ipw_bg_led_link_off(struct work_struct *work)
960 {
961         struct ipw_priv *priv =
962                 container_of(work, struct ipw_priv, led_link_off.work);
963         mutex_lock(&priv->mutex);
964         ipw_led_link_off(priv);
965         mutex_unlock(&priv->mutex);
966 }
967
968 static void __ipw_led_activity_on(struct ipw_priv *priv)
969 {
970         u32 led;
971
972         if (priv->config & CFG_NO_LED)
973                 return;
974
975         if (priv->status & STATUS_RF_KILL_MASK)
976                 return;
977
978         if (!(priv->status & STATUS_LED_ACT_ON)) {
979                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
980                 led |= priv->led_activity_on;
981
982                 led = ipw_register_toggle(led);
983
984                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
985                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
986
987                 IPW_DEBUG_LED("Activity LED On\n");
988
989                 priv->status |= STATUS_LED_ACT_ON;
990
991                 cancel_delayed_work(&priv->led_act_off);
992                 schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
993         } else {
994                 /* Reschedule LED off for full time period */
995                 cancel_delayed_work(&priv->led_act_off);
996                 schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
997         }
998 }
999
1000 #if 0
1001 void ipw_led_activity_on(struct ipw_priv *priv)
1002 {
1003         unsigned long flags;
1004         spin_lock_irqsave(&priv->lock, flags);
1005         __ipw_led_activity_on(priv);
1006         spin_unlock_irqrestore(&priv->lock, flags);
1007 }
1008 #endif  /*  0  */
1009
1010 static void ipw_led_activity_off(struct ipw_priv *priv)
1011 {
1012         unsigned long flags;
1013         u32 led;
1014
1015         if (priv->config & CFG_NO_LED)
1016                 return;
1017
1018         spin_lock_irqsave(&priv->lock, flags);
1019
1020         if (priv->status & STATUS_LED_ACT_ON) {
1021                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1022                 led &= priv->led_activity_off;
1023
1024                 led = ipw_register_toggle(led);
1025
1026                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1027                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1028
1029                 IPW_DEBUG_LED("Activity LED Off\n");
1030
1031                 priv->status &= ~STATUS_LED_ACT_ON;
1032         }
1033
1034         spin_unlock_irqrestore(&priv->lock, flags);
1035 }
1036
1037 static void ipw_bg_led_activity_off(struct work_struct *work)
1038 {
1039         struct ipw_priv *priv =
1040                 container_of(work, struct ipw_priv, led_act_off.work);
1041         mutex_lock(&priv->mutex);
1042         ipw_led_activity_off(priv);
1043         mutex_unlock(&priv->mutex);
1044 }
1045
1046 static void ipw_led_band_on(struct ipw_priv *priv)
1047 {
1048         unsigned long flags;
1049         u32 led;
1050
1051         /* Only nic type 1 supports mode LEDs */
1052         if (priv->config & CFG_NO_LED ||
1053             priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1054                 return;
1055
1056         spin_lock_irqsave(&priv->lock, flags);
1057
1058         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1059         if (priv->assoc_network->mode == IEEE_A) {
1060                 led |= priv->led_ofdm_on;
1061                 led &= priv->led_association_off;
1062                 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1063         } else if (priv->assoc_network->mode == IEEE_G) {
1064                 led |= priv->led_ofdm_on;
1065                 led |= priv->led_association_on;
1066                 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1067         } else {
1068                 led &= priv->led_ofdm_off;
1069                 led |= priv->led_association_on;
1070                 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1071         }
1072
1073         led = ipw_register_toggle(led);
1074
1075         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1076         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1077
1078         spin_unlock_irqrestore(&priv->lock, flags);
1079 }
1080
1081 static void ipw_led_band_off(struct ipw_priv *priv)
1082 {
1083         unsigned long flags;
1084         u32 led;
1085
1086         /* Only nic type 1 supports mode LEDs */
1087         if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1088                 return;
1089
1090         spin_lock_irqsave(&priv->lock, flags);
1091
1092         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1093         led &= priv->led_ofdm_off;
1094         led &= priv->led_association_off;
1095
1096         led = ipw_register_toggle(led);
1097
1098         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1099         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1100
1101         spin_unlock_irqrestore(&priv->lock, flags);
1102 }
1103
1104 static void ipw_led_radio_on(struct ipw_priv *priv)
1105 {
1106         ipw_led_link_on(priv);
1107 }
1108
1109 static void ipw_led_radio_off(struct ipw_priv *priv)
1110 {
1111         ipw_led_activity_off(priv);
1112         ipw_led_link_off(priv);
1113 }
1114
1115 static void ipw_led_link_up(struct ipw_priv *priv)
1116 {
1117         /* Set the Link Led on for all nic types */
1118         ipw_led_link_on(priv);
1119 }
1120
1121 static void ipw_led_link_down(struct ipw_priv *priv)
1122 {
1123         ipw_led_activity_off(priv);
1124         ipw_led_link_off(priv);
1125
1126         if (priv->status & STATUS_RF_KILL_MASK)
1127                 ipw_led_radio_off(priv);
1128 }
1129
1130 static void ipw_led_init(struct ipw_priv *priv)
1131 {
1132         priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1133
1134         /* Set the default PINs for the link and activity leds */
1135         priv->led_activity_on = IPW_ACTIVITY_LED;
1136         priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1137
1138         priv->led_association_on = IPW_ASSOCIATED_LED;
1139         priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1140
1141         /* Set the default PINs for the OFDM leds */
1142         priv->led_ofdm_on = IPW_OFDM_LED;
1143         priv->led_ofdm_off = ~(IPW_OFDM_LED);
1144
1145         switch (priv->nic_type) {
1146         case EEPROM_NIC_TYPE_1:
1147                 /* In this NIC type, the LEDs are reversed.... */
1148                 priv->led_activity_on = IPW_ASSOCIATED_LED;
1149                 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1150                 priv->led_association_on = IPW_ACTIVITY_LED;
1151                 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1152
1153                 if (!(priv->config & CFG_NO_LED))
1154                         ipw_led_band_on(priv);
1155
1156                 /* And we don't blink link LEDs for this nic, so
1157                  * just return here */
1158                 return;
1159
1160         case EEPROM_NIC_TYPE_3:
1161         case EEPROM_NIC_TYPE_2:
1162         case EEPROM_NIC_TYPE_4:
1163         case EEPROM_NIC_TYPE_0:
1164                 break;
1165
1166         default:
1167                 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1168                                priv->nic_type);
1169                 priv->nic_type = EEPROM_NIC_TYPE_0;
1170                 break;
1171         }
1172
1173         if (!(priv->config & CFG_NO_LED)) {
1174                 if (priv->status & STATUS_ASSOCIATED)
1175                         ipw_led_link_on(priv);
1176                 else
1177                         ipw_led_link_off(priv);
1178         }
1179 }
1180
1181 static void ipw_led_shutdown(struct ipw_priv *priv)
1182 {
1183         ipw_led_activity_off(priv);
1184         ipw_led_link_off(priv);
1185         ipw_led_band_off(priv);
1186         cancel_delayed_work(&priv->led_link_on);
1187         cancel_delayed_work(&priv->led_link_off);
1188         cancel_delayed_work(&priv->led_act_off);
1189 }
1190
1191 /*
1192  * The following adds a new attribute to the sysfs representation
1193  * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1194  * used for controlling the debug level.
1195  *
1196  * See the level definitions in ipw for details.
1197  */
1198 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1199 {
1200         return sprintf(buf, "0x%08X\n", ipw_debug_level);
1201 }
1202
1203 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1204                                  size_t count)
1205 {
1206         char *p = (char *)buf;
1207         u32 val;
1208
1209         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1210                 p++;
1211                 if (p[0] == 'x' || p[0] == 'X')
1212                         p++;
1213                 val = simple_strtoul(p, &p, 16);
1214         } else
1215                 val = simple_strtoul(p, &p, 10);
1216         if (p == buf)
1217                 printk(KERN_INFO DRV_NAME
1218                        ": %s is not in hex or decimal form.\n", buf);
1219         else
1220                 ipw_debug_level = val;
1221
1222         return strnlen(buf, count);
1223 }
1224
1225 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1226                    show_debug_level, store_debug_level);
1227
1228 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1229 {
1230         /* length = 1st dword in log */
1231         return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1232 }
1233
1234 static void ipw_capture_event_log(struct ipw_priv *priv,
1235                                   u32 log_len, struct ipw_event *log)
1236 {
1237         u32 base;
1238
1239         if (log_len) {
1240                 base = ipw_read32(priv, IPW_EVENT_LOG);
1241                 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1242                                   (u8 *) log, sizeof(*log) * log_len);
1243         }
1244 }
1245
1246 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1247 {
1248         struct ipw_fw_error *error;
1249         u32 log_len = ipw_get_event_log_len(priv);
1250         u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1251         u32 elem_len = ipw_read_reg32(priv, base);
1252
1253         error = kmalloc(sizeof(*error) +
1254                         sizeof(*error->elem) * elem_len +
1255                         sizeof(*error->log) * log_len, GFP_ATOMIC);
1256         if (!error) {
1257                 IPW_ERROR("Memory allocation for firmware error log "
1258                           "failed.\n");
1259                 return NULL;
1260         }
1261         error->jiffies = jiffies;
1262         error->status = priv->status;
1263         error->config = priv->config;
1264         error->elem_len = elem_len;
1265         error->log_len = log_len;
1266         error->elem = (struct ipw_error_elem *)error->payload;
1267         error->log = (struct ipw_event *)(error->elem + elem_len);
1268
1269         ipw_capture_event_log(priv, log_len, error->log);
1270
1271         if (elem_len)
1272                 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1273                                   sizeof(*error->elem) * elem_len);
1274
1275         return error;
1276 }
1277
1278 static ssize_t show_event_log(struct device *d,
1279                               struct device_attribute *attr, char *buf)
1280 {
1281         struct ipw_priv *priv = dev_get_drvdata(d);
1282         u32 log_len = ipw_get_event_log_len(priv);
1283         u32 log_size;
1284         struct ipw_event *log;
1285         u32 len = 0, i;
1286
1287         /* not using min() because of its strict type checking */
1288         log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1289                         sizeof(*log) * log_len : PAGE_SIZE;
1290         log = kzalloc(log_size, GFP_KERNEL);
1291         if (!log) {
1292                 IPW_ERROR("Unable to allocate memory for log\n");
1293                 return 0;
1294         }
1295         log_len = log_size / sizeof(*log);
1296         ipw_capture_event_log(priv, log_len, log);
1297
1298         len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1299         for (i = 0; i < log_len; i++)
1300                 len += snprintf(buf + len, PAGE_SIZE - len,
1301                                 "\n%08X%08X%08X",
1302                                 log[i].time, log[i].event, log[i].data);
1303         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1304         kfree(log);
1305         return len;
1306 }
1307
1308 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1309
1310 static ssize_t show_error(struct device *d,
1311                           struct device_attribute *attr, char *buf)
1312 {
1313         struct ipw_priv *priv = dev_get_drvdata(d);
1314         u32 len = 0, i;
1315         if (!priv->error)
1316                 return 0;
1317         len += snprintf(buf + len, PAGE_SIZE - len,
1318                         "%08lX%08X%08X%08X",
1319                         priv->error->jiffies,
1320                         priv->error->status,
1321                         priv->error->config, priv->error->elem_len);
1322         for (i = 0; i < priv->error->elem_len; i++)
1323                 len += snprintf(buf + len, PAGE_SIZE - len,
1324                                 "\n%08X%08X%08X%08X%08X%08X%08X",
1325                                 priv->error->elem[i].time,
1326                                 priv->error->elem[i].desc,
1327                                 priv->error->elem[i].blink1,
1328                                 priv->error->elem[i].blink2,
1329                                 priv->error->elem[i].link1,
1330                                 priv->error->elem[i].link2,
1331                                 priv->error->elem[i].data);
1332
1333         len += snprintf(buf + len, PAGE_SIZE - len,
1334                         "\n%08X", priv->error->log_len);
1335         for (i = 0; i < priv->error->log_len; i++)
1336                 len += snprintf(buf + len, PAGE_SIZE - len,
1337                                 "\n%08X%08X%08X",
1338                                 priv->error->log[i].time,
1339                                 priv->error->log[i].event,
1340                                 priv->error->log[i].data);
1341         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1342         return len;
1343 }
1344
1345 static ssize_t clear_error(struct device *d,
1346                            struct device_attribute *attr,
1347                            const char *buf, size_t count)
1348 {
1349         struct ipw_priv *priv = dev_get_drvdata(d);
1350
1351         kfree(priv->error);
1352         priv->error = NULL;
1353         return count;
1354 }
1355
1356 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1357
1358 static ssize_t show_cmd_log(struct device *d,
1359                             struct device_attribute *attr, char *buf)
1360 {
1361         struct ipw_priv *priv = dev_get_drvdata(d);
1362         u32 len = 0, i;
1363         if (!priv->cmdlog)
1364                 return 0;
1365         for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1366              (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1367              i = (i + 1) % priv->cmdlog_len) {
1368                 len +=
1369                     snprintf(buf + len, PAGE_SIZE - len,
1370                              "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1371                              priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1372                              priv->cmdlog[i].cmd.len);
1373                 len +=
1374                     snprintk_buf(buf + len, PAGE_SIZE - len,
1375                                  (u8 *) priv->cmdlog[i].cmd.param,
1376                                  priv->cmdlog[i].cmd.len);
1377                 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1378         }
1379         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1380         return len;
1381 }
1382
1383 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1384
1385 #ifdef CONFIG_IPW2200_PROMISCUOUS
1386 static void ipw_prom_free(struct ipw_priv *priv);
1387 static int ipw_prom_alloc(struct ipw_priv *priv);
1388 static ssize_t store_rtap_iface(struct device *d,
1389                          struct device_attribute *attr,
1390                          const char *buf, size_t count)
1391 {
1392         struct ipw_priv *priv = dev_get_drvdata(d);
1393         int rc = 0;
1394
1395         if (count < 1)
1396                 return -EINVAL;
1397
1398         switch (buf[0]) {
1399         case '0':
1400                 if (!rtap_iface)
1401                         return count;
1402
1403                 if (netif_running(priv->prom_net_dev)) {
1404                         IPW_WARNING("Interface is up.  Cannot unregister.\n");
1405                         return count;
1406                 }
1407
1408                 ipw_prom_free(priv);
1409                 rtap_iface = 0;
1410                 break;
1411
1412         case '1':
1413                 if (rtap_iface)
1414                         return count;
1415
1416                 rc = ipw_prom_alloc(priv);
1417                 if (!rc)
1418                         rtap_iface = 1;
1419                 break;
1420
1421         default:
1422                 return -EINVAL;
1423         }
1424
1425         if (rc) {
1426                 IPW_ERROR("Failed to register promiscuous network "
1427                           "device (error %d).\n", rc);
1428         }
1429
1430         return count;
1431 }
1432
1433 static ssize_t show_rtap_iface(struct device *d,
1434                         struct device_attribute *attr,
1435                         char *buf)
1436 {
1437         struct ipw_priv *priv = dev_get_drvdata(d);
1438         if (rtap_iface)
1439                 return sprintf(buf, "%s", priv->prom_net_dev->name);
1440         else {
1441                 buf[0] = '-';
1442                 buf[1] = '1';
1443                 buf[2] = '\0';
1444                 return 3;
1445         }
1446 }
1447
1448 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1449                    store_rtap_iface);
1450
1451 static ssize_t store_rtap_filter(struct device *d,
1452                          struct device_attribute *attr,
1453                          const char *buf, size_t count)
1454 {
1455         struct ipw_priv *priv = dev_get_drvdata(d);
1456
1457         if (!priv->prom_priv) {
1458                 IPW_ERROR("Attempting to set filter without "
1459                           "rtap_iface enabled.\n");
1460                 return -EPERM;
1461         }
1462
1463         priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1464
1465         IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1466                        BIT_ARG16(priv->prom_priv->filter));
1467
1468         return count;
1469 }
1470
1471 static ssize_t show_rtap_filter(struct device *d,
1472                         struct device_attribute *attr,
1473                         char *buf)
1474 {
1475         struct ipw_priv *priv = dev_get_drvdata(d);
1476         return sprintf(buf, "0x%04X",
1477                        priv->prom_priv ? priv->prom_priv->filter : 0);
1478 }
1479
1480 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1481                    store_rtap_filter);
1482 #endif
1483
1484 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1485                              char *buf)
1486 {
1487         struct ipw_priv *priv = dev_get_drvdata(d);
1488         return sprintf(buf, "%d\n", priv->ieee->scan_age);
1489 }
1490
1491 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1492                               const char *buf, size_t count)
1493 {
1494         struct ipw_priv *priv = dev_get_drvdata(d);
1495         struct net_device *dev = priv->net_dev;
1496         char buffer[] = "00000000";
1497         unsigned long len =
1498             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1499         unsigned long val;
1500         char *p = buffer;
1501
1502         IPW_DEBUG_INFO("enter\n");
1503
1504         strncpy(buffer, buf, len);
1505         buffer[len] = 0;
1506
1507         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1508                 p++;
1509                 if (p[0] == 'x' || p[0] == 'X')
1510                         p++;
1511                 val = simple_strtoul(p, &p, 16);
1512         } else
1513                 val = simple_strtoul(p, &p, 10);
1514         if (p == buffer) {
1515                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1516         } else {
1517                 priv->ieee->scan_age = val;
1518                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1519         }
1520
1521         IPW_DEBUG_INFO("exit\n");
1522         return len;
1523 }
1524
1525 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1526
1527 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1528                         char *buf)
1529 {
1530         struct ipw_priv *priv = dev_get_drvdata(d);
1531         return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1532 }
1533
1534 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1535                          const char *buf, size_t count)
1536 {
1537         struct ipw_priv *priv = dev_get_drvdata(d);
1538
1539         IPW_DEBUG_INFO("enter\n");
1540
1541         if (count == 0)
1542                 return 0;
1543
1544         if (*buf == 0) {
1545                 IPW_DEBUG_LED("Disabling LED control.\n");
1546                 priv->config |= CFG_NO_LED;
1547                 ipw_led_shutdown(priv);
1548         } else {
1549                 IPW_DEBUG_LED("Enabling LED control.\n");
1550                 priv->config &= ~CFG_NO_LED;
1551                 ipw_led_init(priv);
1552         }
1553
1554         IPW_DEBUG_INFO("exit\n");
1555         return count;
1556 }
1557
1558 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1559
1560 static ssize_t show_status(struct device *d,
1561                            struct device_attribute *attr, char *buf)
1562 {
1563         struct ipw_priv *p = dev_get_drvdata(d);
1564         return sprintf(buf, "0x%08x\n", (int)p->status);
1565 }
1566
1567 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1568
1569 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1570                         char *buf)
1571 {
1572         struct ipw_priv *p = dev_get_drvdata(d);
1573         return sprintf(buf, "0x%08x\n", (int)p->config);
1574 }
1575
1576 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1577
1578 static ssize_t show_nic_type(struct device *d,
1579                              struct device_attribute *attr, char *buf)
1580 {
1581         struct ipw_priv *priv = dev_get_drvdata(d);
1582         return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1583 }
1584
1585 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1586
1587 static ssize_t show_ucode_version(struct device *d,
1588                                   struct device_attribute *attr, char *buf)
1589 {
1590         u32 len = sizeof(u32), tmp = 0;
1591         struct ipw_priv *p = dev_get_drvdata(d);
1592
1593         if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1594                 return 0;
1595
1596         return sprintf(buf, "0x%08x\n", tmp);
1597 }
1598
1599 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1600
1601 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1602                         char *buf)
1603 {
1604         u32 len = sizeof(u32), tmp = 0;
1605         struct ipw_priv *p = dev_get_drvdata(d);
1606
1607         if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1608                 return 0;
1609
1610         return sprintf(buf, "0x%08x\n", tmp);
1611 }
1612
1613 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1614
1615 /*
1616  * Add a device attribute to view/control the delay between eeprom
1617  * operations.
1618  */
1619 static ssize_t show_eeprom_delay(struct device *d,
1620                                  struct device_attribute *attr, char *buf)
1621 {
1622         struct ipw_priv *p = dev_get_drvdata(d);
1623         int n = p->eeprom_delay;
1624         return sprintf(buf, "%i\n", n);
1625 }
1626 static ssize_t store_eeprom_delay(struct device *d,
1627                                   struct device_attribute *attr,
1628                                   const char *buf, size_t count)
1629 {
1630         struct ipw_priv *p = dev_get_drvdata(d);
1631         sscanf(buf, "%i", &p->eeprom_delay);
1632         return strnlen(buf, count);
1633 }
1634
1635 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1636                    show_eeprom_delay, store_eeprom_delay);
1637
1638 static ssize_t show_command_event_reg(struct device *d,
1639                                       struct device_attribute *attr, char *buf)
1640 {
1641         u32 reg = 0;
1642         struct ipw_priv *p = dev_get_drvdata(d);
1643
1644         reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1645         return sprintf(buf, "0x%08x\n", reg);
1646 }
1647 static ssize_t store_command_event_reg(struct device *d,
1648                                        struct device_attribute *attr,
1649                                        const char *buf, size_t count)
1650 {
1651         u32 reg;
1652         struct ipw_priv *p = dev_get_drvdata(d);
1653
1654         sscanf(buf, "%x", &reg);
1655         ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1656         return strnlen(buf, count);
1657 }
1658
1659 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1660                    show_command_event_reg, store_command_event_reg);
1661
1662 static ssize_t show_mem_gpio_reg(struct device *d,
1663                                  struct device_attribute *attr, char *buf)
1664 {
1665         u32 reg = 0;
1666         struct ipw_priv *p = dev_get_drvdata(d);
1667
1668         reg = ipw_read_reg32(p, 0x301100);
1669         return sprintf(buf, "0x%08x\n", reg);
1670 }
1671 static ssize_t store_mem_gpio_reg(struct device *d,
1672                                   struct device_attribute *attr,
1673                                   const char *buf, size_t count)
1674 {
1675         u32 reg;
1676         struct ipw_priv *p = dev_get_drvdata(d);
1677
1678         sscanf(buf, "%x", &reg);
1679         ipw_write_reg32(p, 0x301100, reg);
1680         return strnlen(buf, count);
1681 }
1682
1683 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1684                    show_mem_gpio_reg, store_mem_gpio_reg);
1685
1686 static ssize_t show_indirect_dword(struct device *d,
1687                                    struct device_attribute *attr, char *buf)
1688 {
1689         u32 reg = 0;
1690         struct ipw_priv *priv = dev_get_drvdata(d);
1691
1692         if (priv->status & STATUS_INDIRECT_DWORD)
1693                 reg = ipw_read_reg32(priv, priv->indirect_dword);
1694         else
1695                 reg = 0;
1696
1697         return sprintf(buf, "0x%08x\n", reg);
1698 }
1699 static ssize_t store_indirect_dword(struct device *d,
1700                                     struct device_attribute *attr,
1701                                     const char *buf, size_t count)
1702 {
1703         struct ipw_priv *priv = dev_get_drvdata(d);
1704
1705         sscanf(buf, "%x", &priv->indirect_dword);
1706         priv->status |= STATUS_INDIRECT_DWORD;
1707         return strnlen(buf, count);
1708 }
1709
1710 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1711                    show_indirect_dword, store_indirect_dword);
1712
1713 static ssize_t show_indirect_byte(struct device *d,
1714                                   struct device_attribute *attr, char *buf)
1715 {
1716         u8 reg = 0;
1717         struct ipw_priv *priv = dev_get_drvdata(d);
1718
1719         if (priv->status & STATUS_INDIRECT_BYTE)
1720                 reg = ipw_read_reg8(priv, priv->indirect_byte);
1721         else
1722                 reg = 0;
1723
1724         return sprintf(buf, "0x%02x\n", reg);
1725 }
1726 static ssize_t store_indirect_byte(struct device *d,
1727                                    struct device_attribute *attr,
1728                                    const char *buf, size_t count)
1729 {
1730         struct ipw_priv *priv = dev_get_drvdata(d);
1731
1732         sscanf(buf, "%x", &priv->indirect_byte);
1733         priv->status |= STATUS_INDIRECT_BYTE;
1734         return strnlen(buf, count);
1735 }
1736
1737 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1738                    show_indirect_byte, store_indirect_byte);
1739
1740 static ssize_t show_direct_dword(struct device *d,
1741                                  struct device_attribute *attr, char *buf)
1742 {
1743         u32 reg = 0;
1744         struct ipw_priv *priv = dev_get_drvdata(d);
1745
1746         if (priv->status & STATUS_DIRECT_DWORD)
1747                 reg = ipw_read32(priv, priv->direct_dword);
1748         else
1749                 reg = 0;
1750
1751         return sprintf(buf, "0x%08x\n", reg);
1752 }
1753 static ssize_t store_direct_dword(struct device *d,
1754                                   struct device_attribute *attr,
1755                                   const char *buf, size_t count)
1756 {
1757         struct ipw_priv *priv = dev_get_drvdata(d);
1758
1759         sscanf(buf, "%x", &priv->direct_dword);
1760         priv->status |= STATUS_DIRECT_DWORD;
1761         return strnlen(buf, count);
1762 }
1763
1764 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1765                    show_direct_dword, store_direct_dword);
1766
1767 static int rf_kill_active(struct ipw_priv *priv)
1768 {
1769         if (0 == (ipw_read32(priv, 0x30) & 0x10000)) {
1770                 priv->status |= STATUS_RF_KILL_HW;
1771                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1772         } else {
1773                 priv->status &= ~STATUS_RF_KILL_HW;
1774                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1775         }
1776
1777         return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1778 }
1779
1780 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1781                             char *buf)
1782 {
1783         /* 0 - RF kill not enabled
1784            1 - SW based RF kill active (sysfs)
1785            2 - HW based RF kill active
1786            3 - Both HW and SW baed RF kill active */
1787         struct ipw_priv *priv = dev_get_drvdata(d);
1788         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1789             (rf_kill_active(priv) ? 0x2 : 0x0);
1790         return sprintf(buf, "%i\n", val);
1791 }
1792
1793 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1794 {
1795         if ((disable_radio ? 1 : 0) ==
1796             ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1797                 return 0;
1798
1799         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
1800                           disable_radio ? "OFF" : "ON");
1801
1802         if (disable_radio) {
1803                 priv->status |= STATUS_RF_KILL_SW;
1804
1805                 cancel_delayed_work(&priv->request_scan);
1806                 cancel_delayed_work(&priv->request_direct_scan);
1807                 cancel_delayed_work(&priv->request_passive_scan);
1808                 cancel_delayed_work(&priv->scan_event);
1809                 schedule_work(&priv->down);
1810         } else {
1811                 priv->status &= ~STATUS_RF_KILL_SW;
1812                 if (rf_kill_active(priv)) {
1813                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1814                                           "disabled by HW switch\n");
1815                         /* Make sure the RF_KILL check timer is running */
1816                         cancel_delayed_work(&priv->rf_kill);
1817                         schedule_delayed_work(&priv->rf_kill,
1818                                               round_jiffies_relative(2 * HZ));
1819                 } else
1820                         schedule_work(&priv->up);
1821         }
1822
1823         return 1;
1824 }
1825
1826 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1827                              const char *buf, size_t count)
1828 {
1829         struct ipw_priv *priv = dev_get_drvdata(d);
1830
1831         ipw_radio_kill_sw(priv, buf[0] == '1');
1832
1833         return count;
1834 }
1835
1836 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1837
1838 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1839                                char *buf)
1840 {
1841         struct ipw_priv *priv = dev_get_drvdata(d);
1842         int pos = 0, len = 0;
1843         if (priv->config & CFG_SPEED_SCAN) {
1844                 while (priv->speed_scan[pos] != 0)
1845                         len += sprintf(&buf[len], "%d ",
1846                                        priv->speed_scan[pos++]);
1847                 return len + sprintf(&buf[len], "\n");
1848         }
1849
1850         return sprintf(buf, "0\n");
1851 }
1852
1853 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1854                                 const char *buf, size_t count)
1855 {
1856         struct ipw_priv *priv = dev_get_drvdata(d);
1857         int channel, pos = 0;
1858         const char *p = buf;
1859
1860         /* list of space separated channels to scan, optionally ending with 0 */
1861         while ((channel = simple_strtol(p, NULL, 0))) {
1862                 if (pos == MAX_SPEED_SCAN - 1) {
1863                         priv->speed_scan[pos] = 0;
1864                         break;
1865                 }
1866
1867                 if (libipw_is_valid_channel(priv->ieee, channel))
1868                         priv->speed_scan[pos++] = channel;
1869                 else
1870                         IPW_WARNING("Skipping invalid channel request: %d\n",
1871                                     channel);
1872                 p = strchr(p, ' ');
1873                 if (!p)
1874                         break;
1875                 while (*p == ' ' || *p == '\t')
1876                         p++;
1877         }
1878
1879         if (pos == 0)
1880                 priv->config &= ~CFG_SPEED_SCAN;
1881         else {
1882                 priv->speed_scan_pos = 0;
1883                 priv->config |= CFG_SPEED_SCAN;
1884         }
1885
1886         return count;
1887 }
1888
1889 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1890                    store_speed_scan);
1891
1892 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1893                               char *buf)
1894 {
1895         struct ipw_priv *priv = dev_get_drvdata(d);
1896         return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1897 }
1898
1899 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1900                                const char *buf, size_t count)
1901 {
1902         struct ipw_priv *priv = dev_get_drvdata(d);
1903         if (buf[0] == '1')
1904                 priv->config |= CFG_NET_STATS;
1905         else
1906                 priv->config &= ~CFG_NET_STATS;
1907
1908         return count;
1909 }
1910
1911 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1912                    show_net_stats, store_net_stats);
1913
1914 static ssize_t show_channels(struct device *d,
1915                              struct device_attribute *attr,
1916                              char *buf)
1917 {
1918         struct ipw_priv *priv = dev_get_drvdata(d);
1919         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1920         int len = 0, i;
1921
1922         len = sprintf(&buf[len],
1923                       "Displaying %d channels in 2.4Ghz band "
1924                       "(802.11bg):\n", geo->bg_channels);
1925
1926         for (i = 0; i < geo->bg_channels; i++) {
1927                 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1928                                geo->bg[i].channel,
1929                                geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT ?
1930                                " (radar spectrum)" : "",
1931                                ((geo->bg[i].flags & LIBIPW_CH_NO_IBSS) ||
1932                                 (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT))
1933                                ? "" : ", IBSS",
1934                                geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1935                                "passive only" : "active/passive",
1936                                geo->bg[i].flags & LIBIPW_CH_B_ONLY ?
1937                                "B" : "B/G");
1938         }
1939
1940         len += sprintf(&buf[len],
1941                        "Displaying %d channels in 5.2Ghz band "
1942                        "(802.11a):\n", geo->a_channels);
1943         for (i = 0; i < geo->a_channels; i++) {
1944                 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1945                                geo->a[i].channel,
1946                                geo->a[i].flags & LIBIPW_CH_RADAR_DETECT ?
1947                                " (radar spectrum)" : "",
1948                                ((geo->a[i].flags & LIBIPW_CH_NO_IBSS) ||
1949                                 (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT))
1950                                ? "" : ", IBSS",
1951                                geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1952                                "passive only" : "active/passive");
1953         }
1954
1955         return len;
1956 }
1957
1958 static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL);
1959
1960 static void notify_wx_assoc_event(struct ipw_priv *priv)
1961 {
1962         union iwreq_data wrqu;
1963         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1964         if (priv->status & STATUS_ASSOCIATED)
1965                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1966         else
1967                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1968         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1969 }
1970
1971 static void ipw_irq_tasklet(struct ipw_priv *priv)
1972 {
1973         u32 inta, inta_mask, handled = 0;
1974         unsigned long flags;
1975         int rc = 0;
1976
1977         spin_lock_irqsave(&priv->irq_lock, flags);
1978
1979         inta = ipw_read32(priv, IPW_INTA_RW);
1980         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1981
1982         if (inta == 0xFFFFFFFF) {
1983                 /* Hardware disappeared */
1984                 IPW_WARNING("TASKLET INTA == 0xFFFFFFFF\n");
1985                 /* Only handle the cached INTA values */
1986                 inta = 0;
1987         }
1988         inta &= (IPW_INTA_MASK_ALL & inta_mask);
1989
1990         /* Add any cached INTA values that need to be handled */
1991         inta |= priv->isr_inta;
1992
1993         spin_unlock_irqrestore(&priv->irq_lock, flags);
1994
1995         spin_lock_irqsave(&priv->lock, flags);
1996
1997         /* handle all the justifications for the interrupt */
1998         if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1999                 ipw_rx(priv);
2000                 handled |= IPW_INTA_BIT_RX_TRANSFER;
2001         }
2002
2003         if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
2004                 IPW_DEBUG_HC("Command completed.\n");
2005                 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
2006                 priv->status &= ~STATUS_HCMD_ACTIVE;
2007                 wake_up_interruptible(&priv->wait_command_queue);
2008                 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
2009         }
2010
2011         if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
2012                 IPW_DEBUG_TX("TX_QUEUE_1\n");
2013                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
2014                 handled |= IPW_INTA_BIT_TX_QUEUE_1;
2015         }
2016
2017         if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
2018                 IPW_DEBUG_TX("TX_QUEUE_2\n");
2019                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
2020                 handled |= IPW_INTA_BIT_TX_QUEUE_2;
2021         }
2022
2023         if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
2024                 IPW_DEBUG_TX("TX_QUEUE_3\n");
2025                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
2026                 handled |= IPW_INTA_BIT_TX_QUEUE_3;
2027         }
2028
2029         if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
2030                 IPW_DEBUG_TX("TX_QUEUE_4\n");
2031                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
2032                 handled |= IPW_INTA_BIT_TX_QUEUE_4;
2033         }
2034
2035         if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
2036                 IPW_WARNING("STATUS_CHANGE\n");
2037                 handled |= IPW_INTA_BIT_STATUS_CHANGE;
2038         }
2039
2040         if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
2041                 IPW_WARNING("TX_PERIOD_EXPIRED\n");
2042                 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
2043         }
2044
2045         if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
2046                 IPW_WARNING("HOST_CMD_DONE\n");
2047                 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
2048         }
2049
2050         if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
2051                 IPW_WARNING("FW_INITIALIZATION_DONE\n");
2052                 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
2053         }
2054
2055         if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2056                 IPW_WARNING("PHY_OFF_DONE\n");
2057                 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2058         }
2059
2060         if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2061                 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2062                 priv->status |= STATUS_RF_KILL_HW;
2063                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2064                 wake_up_interruptible(&priv->wait_command_queue);
2065                 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2066                 cancel_delayed_work(&priv->request_scan);
2067                 cancel_delayed_work(&priv->request_direct_scan);
2068                 cancel_delayed_work(&priv->request_passive_scan);
2069                 cancel_delayed_work(&priv->scan_event);
2070                 schedule_work(&priv->link_down);
2071                 schedule_delayed_work(&priv->rf_kill, 2 * HZ);
2072                 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2073         }
2074
2075         if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2076                 IPW_WARNING("Firmware error detected.  Restarting.\n");
2077                 if (priv->error) {
2078                         IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2079                         if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2080                                 struct ipw_fw_error *error =
2081                                     ipw_alloc_error_log(priv);
2082                                 ipw_dump_error_log(priv, error);
2083                                 kfree(error);
2084                         }
2085                 } else {
2086                         priv->error = ipw_alloc_error_log(priv);
2087                         if (priv->error)
2088                                 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2089                         else
2090                                 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2091                                              "log.\n");
2092                         if (ipw_debug_level & IPW_DL_FW_ERRORS)
2093                                 ipw_dump_error_log(priv, priv->error);
2094                 }
2095
2096                 /* XXX: If hardware encryption is for WPA/WPA2,
2097                  * we have to notify the supplicant. */
2098                 if (priv->ieee->sec.encrypt) {
2099                         priv->status &= ~STATUS_ASSOCIATED;
2100                         notify_wx_assoc_event(priv);
2101                 }
2102
2103                 /* Keep the restart process from trying to send host
2104                  * commands by clearing the INIT status bit */
2105                 priv->status &= ~STATUS_INIT;
2106
2107                 /* Cancel currently queued command. */
2108                 priv->status &= ~STATUS_HCMD_ACTIVE;
2109                 wake_up_interruptible(&priv->wait_command_queue);
2110
2111                 schedule_work(&priv->adapter_restart);
2112                 handled |= IPW_INTA_BIT_FATAL_ERROR;
2113         }
2114
2115         if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2116                 IPW_ERROR("Parity error\n");
2117                 handled |= IPW_INTA_BIT_PARITY_ERROR;
2118         }
2119
2120         if (handled != inta) {
2121                 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2122         }
2123
2124         spin_unlock_irqrestore(&priv->lock, flags);
2125
2126         /* enable all interrupts */
2127         ipw_enable_interrupts(priv);
2128 }
2129
2130 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2131 static char *get_cmd_string(u8 cmd)
2132 {
2133         switch (cmd) {
2134                 IPW_CMD(HOST_COMPLETE);
2135                 IPW_CMD(POWER_DOWN);
2136                 IPW_CMD(SYSTEM_CONFIG);
2137                 IPW_CMD(MULTICAST_ADDRESS);
2138                 IPW_CMD(SSID);
2139                 IPW_CMD(ADAPTER_ADDRESS);
2140                 IPW_CMD(PORT_TYPE);
2141                 IPW_CMD(RTS_THRESHOLD);
2142                 IPW_CMD(FRAG_THRESHOLD);
2143                 IPW_CMD(POWER_MODE);
2144                 IPW_CMD(WEP_KEY);
2145                 IPW_CMD(TGI_TX_KEY);
2146                 IPW_CMD(SCAN_REQUEST);
2147                 IPW_CMD(SCAN_REQUEST_EXT);
2148                 IPW_CMD(ASSOCIATE);
2149                 IPW_CMD(SUPPORTED_RATES);
2150                 IPW_CMD(SCAN_ABORT);
2151                 IPW_CMD(TX_FLUSH);
2152                 IPW_CMD(QOS_PARAMETERS);
2153                 IPW_CMD(DINO_CONFIG);
2154                 IPW_CMD(RSN_CAPABILITIES);
2155                 IPW_CMD(RX_KEY);
2156                 IPW_CMD(CARD_DISABLE);
2157                 IPW_CMD(SEED_NUMBER);
2158                 IPW_CMD(TX_POWER);
2159                 IPW_CMD(COUNTRY_INFO);
2160                 IPW_CMD(AIRONET_INFO);
2161                 IPW_CMD(AP_TX_POWER);
2162                 IPW_CMD(CCKM_INFO);
2163                 IPW_CMD(CCX_VER_INFO);
2164                 IPW_CMD(SET_CALIBRATION);
2165                 IPW_CMD(SENSITIVITY_CALIB);
2166                 IPW_CMD(RETRY_LIMIT);
2167                 IPW_CMD(IPW_PRE_POWER_DOWN);
2168                 IPW_CMD(VAP_BEACON_TEMPLATE);
2169                 IPW_CMD(VAP_DTIM_PERIOD);
2170                 IPW_CMD(EXT_SUPPORTED_RATES);
2171                 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2172                 IPW_CMD(VAP_QUIET_INTERVALS);
2173                 IPW_CMD(VAP_CHANNEL_SWITCH);
2174                 IPW_CMD(VAP_MANDATORY_CHANNELS);
2175                 IPW_CMD(VAP_CELL_PWR_LIMIT);
2176                 IPW_CMD(VAP_CF_PARAM_SET);
2177                 IPW_CMD(VAP_SET_BEACONING_STATE);
2178                 IPW_CMD(MEASUREMENT);
2179                 IPW_CMD(POWER_CAPABILITY);
2180                 IPW_CMD(SUPPORTED_CHANNELS);
2181                 IPW_CMD(TPC_REPORT);
2182                 IPW_CMD(WME_INFO);
2183                 IPW_CMD(PRODUCTION_COMMAND);
2184         default:
2185                 return "UNKNOWN";
2186         }
2187 }
2188
2189 #define HOST_COMPLETE_TIMEOUT HZ
2190
2191 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2192 {
2193         int rc = 0;
2194         unsigned long flags;
2195         unsigned long now, end;
2196
2197         spin_lock_irqsave(&priv->lock, flags);
2198         if (priv->status & STATUS_HCMD_ACTIVE) {
2199                 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2200                           get_cmd_string(cmd->cmd));
2201                 spin_unlock_irqrestore(&priv->lock, flags);
2202                 return -EAGAIN;
2203         }
2204
2205         priv->status |= STATUS_HCMD_ACTIVE;
2206
2207         if (priv->cmdlog) {
2208                 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2209                 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2210                 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2211                 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2212                        cmd->len);
2213                 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2214         }
2215
2216         IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2217                      get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2218                      priv->status);
2219
2220 #ifndef DEBUG_CMD_WEP_KEY
2221         if (cmd->cmd == IPW_CMD_WEP_KEY)
2222                 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2223         else
2224 #endif
2225                 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2226
2227         rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2228         if (rc) {
2229                 priv->status &= ~STATUS_HCMD_ACTIVE;
2230                 IPW_ERROR("Failed to send %s: Reason %d\n",
2231                           get_cmd_string(cmd->cmd), rc);
2232                 spin_unlock_irqrestore(&priv->lock, flags);
2233                 goto exit;
2234         }
2235         spin_unlock_irqrestore(&priv->lock, flags);
2236
2237         now = jiffies;
2238         end = now + HOST_COMPLETE_TIMEOUT;
2239 again:
2240         rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2241                                               !(priv->
2242                                                 status & STATUS_HCMD_ACTIVE),
2243                                               end - now);
2244         if (rc < 0) {
2245                 now = jiffies;
2246                 if (time_before(now, end))
2247                         goto again;
2248                 rc = 0;
2249         }
2250
2251         if (rc == 0) {
2252                 spin_lock_irqsave(&priv->lock, flags);
2253                 if (priv->status & STATUS_HCMD_ACTIVE) {
2254                         IPW_ERROR("Failed to send %s: Command timed out.\n",
2255                                   get_cmd_string(cmd->cmd));
2256                         priv->status &= ~STATUS_HCMD_ACTIVE;
2257                         spin_unlock_irqrestore(&priv->lock, flags);
2258                         rc = -EIO;
2259                         goto exit;
2260                 }
2261                 spin_unlock_irqrestore(&priv->lock, flags);
2262         } else
2263                 rc = 0;
2264
2265         if (priv->status & STATUS_RF_KILL_HW) {
2266                 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2267                           get_cmd_string(cmd->cmd));
2268                 rc = -EIO;
2269                 goto exit;
2270         }
2271
2272       exit:
2273         if (priv->cmdlog) {
2274                 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2275                 priv->cmdlog_pos %= priv->cmdlog_len;
2276         }
2277         return rc;
2278 }
2279
2280 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2281 {
2282         struct host_cmd cmd = {
2283                 .cmd = command,
2284         };
2285
2286         return __ipw_send_cmd(priv, &cmd);
2287 }
2288
2289 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2290                             void *data)
2291 {
2292         struct host_cmd cmd = {
2293                 .cmd = command,
2294                 .len = len,
2295                 .param = data,
2296         };
2297
2298         return __ipw_send_cmd(priv, &cmd);
2299 }
2300
2301 static int ipw_send_host_complete(struct ipw_priv *priv)
2302 {
2303         if (!priv) {
2304                 IPW_ERROR("Invalid args\n");
2305                 return -1;
2306         }
2307
2308         return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2309 }
2310
2311 static int ipw_send_system_config(struct ipw_priv *priv)
2312 {
2313         return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2314                                 sizeof(priv->sys_config),
2315                                 &priv->sys_config);
2316 }
2317
2318 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2319 {
2320         if (!priv || !ssid) {
2321                 IPW_ERROR("Invalid args\n");
2322                 return -1;
2323         }
2324
2325         return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2326                                 ssid);
2327 }
2328
2329 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2330 {
2331         if (!priv || !mac) {
2332                 IPW_ERROR("Invalid args\n");
2333                 return -1;
2334         }
2335
2336         IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2337                        priv->net_dev->name, mac);
2338
2339         return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2340 }
2341
2342 static void ipw_adapter_restart(void *adapter)
2343 {
2344         struct ipw_priv *priv = adapter;
2345
2346         if (priv->status & STATUS_RF_KILL_MASK)
2347                 return;
2348
2349         ipw_down(priv);
2350
2351         if (priv->assoc_network &&
2352             (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2353                 ipw_remove_current_network(priv);
2354
2355         if (ipw_up(priv)) {
2356                 IPW_ERROR("Failed to up device\n");
2357                 return;
2358         }
2359 }
2360
2361 static void ipw_bg_adapter_restart(struct work_struct *work)
2362 {
2363         struct ipw_priv *priv =
2364                 container_of(work, struct ipw_priv, adapter_restart);
2365         mutex_lock(&priv->mutex);
2366         ipw_adapter_restart(priv);
2367         mutex_unlock(&priv->mutex);
2368 }
2369
2370 static void ipw_abort_scan(struct ipw_priv *priv);
2371
2372 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2373
2374 static void ipw_scan_check(void *data)
2375 {
2376         struct ipw_priv *priv = data;
2377
2378         if (priv->status & STATUS_SCAN_ABORTING) {
2379                 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2380                                "adapter after (%dms).\n",
2381                                jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2382                 schedule_work(&priv->adapter_restart);
2383         } else if (priv->status & STATUS_SCANNING) {
2384                 IPW_DEBUG_SCAN("Scan completion watchdog aborting scan "
2385                                "after (%dms).\n",
2386                                jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2387                 ipw_abort_scan(priv);
2388                 schedule_delayed_work(&priv->scan_check, HZ);
2389         }
2390 }
2391
2392 static void ipw_bg_scan_check(struct work_struct *work)
2393 {
2394         struct ipw_priv *priv =
2395                 container_of(work, struct ipw_priv, scan_check.work);
2396         mutex_lock(&priv->mutex);
2397         ipw_scan_check(priv);
2398         mutex_unlock(&priv->mutex);
2399 }
2400
2401 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2402                                      struct ipw_scan_request_ext *request)
2403 {
2404         return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2405                                 sizeof(*request), request);
2406 }
2407
2408 static int ipw_send_scan_abort(struct ipw_priv *priv)
2409 {
2410         if (!priv) {
2411                 IPW_ERROR("Invalid args\n");
2412                 return -1;
2413         }
2414
2415         return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2416 }
2417
2418 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2419 {
2420         struct ipw_sensitivity_calib calib = {
2421                 .beacon_rssi_raw = cpu_to_le16(sens),
2422         };
2423
2424         return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2425                                 &calib);
2426 }
2427
2428 static int ipw_send_associate(struct ipw_priv *priv,
2429                               struct ipw_associate *associate)
2430 {
2431         if (!priv || !associate) {
2432                 IPW_ERROR("Invalid args\n");
2433                 return -1;
2434         }
2435
2436         return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2437                                 associate);
2438 }
2439
2440 static int ipw_send_supported_rates(struct ipw_priv *priv,
2441                                     struct ipw_supported_rates *rates)
2442 {
2443         if (!priv || !rates) {
2444                 IPW_ERROR("Invalid args\n");
2445                 return -1;
2446         }
2447
2448         return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2449                                 rates);
2450 }
2451
2452 static int ipw_set_random_seed(struct ipw_priv *priv)
2453 {
2454         u32 val;
2455
2456         if (!priv) {
2457                 IPW_ERROR("Invalid args\n");
2458                 return -1;
2459         }
2460
2461         get_random_bytes(&val, sizeof(val));
2462
2463         return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2464 }
2465
2466 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2467 {
2468         __le32 v = cpu_to_le32(phy_off);
2469         if (!priv) {
2470                 IPW_ERROR("Invalid args\n");
2471                 return -1;
2472         }
2473
2474         return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2475 }
2476
2477 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2478 {
2479         if (!priv || !power) {
2480                 IPW_ERROR("Invalid args\n");
2481                 return -1;
2482         }
2483
2484         return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2485 }
2486
2487 static int ipw_set_tx_power(struct ipw_priv *priv)
2488 {
2489         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
2490         struct ipw_tx_power tx_power;
2491         s8 max_power;
2492         int i;
2493
2494         memset(&tx_power, 0, sizeof(tx_power));
2495
2496         /* configure device for 'G' band */
2497         tx_power.ieee_mode = IPW_G_MODE;
2498         tx_power.num_channels = geo->bg_channels;
2499         for (i = 0; i < geo->bg_channels; i++) {
2500                 max_power = geo->bg[i].max_power;
2501                 tx_power.channels_tx_power[i].channel_number =
2502                     geo->bg[i].channel;
2503                 tx_power.channels_tx_power[i].tx_power = max_power ?
2504                     min(max_power, priv->tx_power) : priv->tx_power;
2505         }
2506         if (ipw_send_tx_power(priv, &tx_power))
2507                 return -EIO;
2508
2509         /* configure device to also handle 'B' band */
2510         tx_power.ieee_mode = IPW_B_MODE;
2511         if (ipw_send_tx_power(priv, &tx_power))
2512                 return -EIO;
2513
2514         /* configure device to also handle 'A' band */
2515         if (priv->ieee->abg_true) {
2516                 tx_power.ieee_mode = IPW_A_MODE;
2517                 tx_power.num_channels = geo->a_channels;
2518                 for (i = 0; i < tx_power.num_channels; i++) {
2519                         max_power = geo->a[i].max_power;
2520                         tx_power.channels_tx_power[i].channel_number =
2521                             geo->a[i].channel;
2522                         tx_power.channels_tx_power[i].tx_power = max_power ?
2523                             min(max_power, priv->tx_power) : priv->tx_power;
2524                 }
2525                 if (ipw_send_tx_power(priv, &tx_power))
2526                         return -EIO;
2527         }
2528         return 0;
2529 }
2530
2531 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2532 {
2533         struct ipw_rts_threshold rts_threshold = {
2534                 .rts_threshold = cpu_to_le16(rts),
2535         };
2536
2537         if (!priv) {
2538                 IPW_ERROR("Invalid args\n");
2539                 return -1;
2540         }
2541
2542         return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2543                                 sizeof(rts_threshold), &rts_threshold);
2544 }
2545
2546 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2547 {
2548         struct ipw_frag_threshold frag_threshold = {
2549                 .frag_threshold = cpu_to_le16(frag),
2550         };
2551
2552         if (!priv) {
2553                 IPW_ERROR("Invalid args\n");
2554                 return -1;
2555         }
2556
2557         return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2558                                 sizeof(frag_threshold), &frag_threshold);
2559 }
2560
2561 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2562 {
2563         __le32 param;
2564
2565         if (!priv) {
2566                 IPW_ERROR("Invalid args\n");
2567                 return -1;
2568         }
2569
2570         /* If on battery, set to 3, if AC set to CAM, else user
2571          * level */
2572         switch (mode) {
2573         case IPW_POWER_BATTERY:
2574                 param = cpu_to_le32(IPW_POWER_INDEX_3);
2575                 break;
2576         case IPW_POWER_AC:
2577                 param = cpu_to_le32(IPW_POWER_MODE_CAM);
2578                 break;
2579         default:
2580                 param = cpu_to_le32(mode);
2581                 break;
2582         }
2583
2584         return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2585                                 &param);
2586 }
2587
2588 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2589 {
2590         struct ipw_retry_limit retry_limit = {
2591                 .short_retry_limit = slimit,
2592                 .long_retry_limit = llimit
2593         };
2594
2595         if (!priv) {
2596                 IPW_ERROR("Invalid args\n");
2597                 return -1;
2598         }
2599
2600         return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2601                                 &retry_limit);
2602 }
2603
2604 /*
2605  * The IPW device contains a Microwire compatible EEPROM that stores
2606  * various data like the MAC address.  Usually the firmware has exclusive
2607  * access to the eeprom, but during device initialization (before the
2608  * device driver has sent the HostComplete command to the firmware) the
2609  * device driver has read access to the EEPROM by way of indirect addressing
2610  * through a couple of memory mapped registers.
2611  *
2612  * The following is a simplified implementation for pulling data out of the
2613  * the eeprom, along with some helper functions to find information in
2614  * the per device private data's copy of the eeprom.
2615  *
2616  * NOTE: To better understand how these functions work (i.e what is a chip
2617  *       select and why do have to keep driving the eeprom clock?), read
2618  *       just about any data sheet for a Microwire compatible EEPROM.
2619  */
2620
2621 /* write a 32 bit value into the indirect accessor register */
2622 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2623 {
2624         ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2625
2626         /* the eeprom requires some time to complete the operation */
2627         udelay(p->eeprom_delay);
2628 }
2629
2630 /* perform a chip select operation */
2631 static void eeprom_cs(struct ipw_priv *priv)
2632 {
2633         eeprom_write_reg(priv, 0);
2634         eeprom_write_reg(priv, EEPROM_BIT_CS);
2635         eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2636         eeprom_write_reg(priv, EEPROM_BIT_CS);
2637 }
2638
2639 /* perform a chip select operation */
2640 static void eeprom_disable_cs(struct ipw_priv *priv)
2641 {
2642         eeprom_write_reg(priv, EEPROM_BIT_CS);
2643         eeprom_write_reg(priv, 0);
2644         eeprom_write_reg(priv, EEPROM_BIT_SK);
2645 }
2646
2647 /* push a single bit down to the eeprom */
2648 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2649 {
2650         int d = (bit ? EEPROM_BIT_DI : 0);
2651         eeprom_write_reg(p, EEPROM_BIT_CS | d);
2652         eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2653 }
2654
2655 /* push an opcode followed by an address down to the eeprom */
2656 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2657 {
2658         int i;
2659
2660         eeprom_cs(priv);
2661         eeprom_write_bit(priv, 1);
2662         eeprom_write_bit(priv, op & 2);
2663         eeprom_write_bit(priv, op & 1);
2664         for (i = 7; i >= 0; i--) {
2665                 eeprom_write_bit(priv, addr & (1 << i));
2666         }
2667 }
2668
2669 /* pull 16 bits off the eeprom, one bit at a time */
2670 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2671 {
2672         int i;
2673         u16 r = 0;
2674
2675         /* Send READ Opcode */
2676         eeprom_op(priv, EEPROM_CMD_READ, addr);
2677
2678         /* Send dummy bit */
2679         eeprom_write_reg(priv, EEPROM_BIT_CS);
2680
2681         /* Read the byte off the eeprom one bit at a time */
2682         for (i = 0; i < 16; i++) {
2683                 u32 data = 0;
2684                 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2685                 eeprom_write_reg(priv, EEPROM_BIT_CS);
2686                 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2687                 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2688         }
2689
2690         /* Send another dummy bit */
2691         eeprom_write_reg(priv, 0);
2692         eeprom_disable_cs(priv);
2693
2694         return r;
2695 }
2696
2697 /* helper function for pulling the mac address out of the private */
2698 /* data's copy of the eeprom data                                 */
2699 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2700 {
2701         memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2702 }
2703
2704 static void ipw_read_eeprom(struct ipw_priv *priv)
2705 {
2706         int i;
2707         __le16 *eeprom = (__le16 *) priv->eeprom;
2708
2709         IPW_DEBUG_TRACE(">>\n");
2710
2711         /* read entire contents of eeprom into private buffer */
2712         for (i = 0; i < 128; i++)
2713                 eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2714
2715         IPW_DEBUG_TRACE("<<\n");
2716 }
2717
2718 /*
2719  * Either the device driver (i.e. the host) or the firmware can
2720  * load eeprom data into the designated region in SRAM.  If neither
2721  * happens then the FW will shutdown with a fatal error.
2722  *
2723  * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2724  * bit needs region of shared SRAM needs to be non-zero.
2725  */
2726 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2727 {
2728         int i;
2729
2730         IPW_DEBUG_TRACE(">>\n");
2731
2732         /*
2733            If the data looks correct, then copy it to our private
2734            copy.  Otherwise let the firmware know to perform the operation
2735            on its own.
2736          */
2737         if (priv->eeprom[EEPROM_VERSION] != 0) {
2738                 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2739
2740                 /* write the eeprom data to sram */
2741                 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2742                         ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2743
2744                 /* Do not load eeprom data on fatal error or suspend */
2745                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2746         } else {
2747                 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2748
2749                 /* Load eeprom data on fatal error or suspend */
2750                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2751         }
2752
2753         IPW_DEBUG_TRACE("<<\n");
2754 }
2755
2756 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2757 {
2758         count >>= 2;
2759         if (!count)
2760                 return;
2761         _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2762         while (count--)
2763                 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2764 }
2765
2766 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2767 {
2768         ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2769                         CB_NUMBER_OF_ELEMENTS_SMALL *
2770                         sizeof(struct command_block));
2771 }
2772
2773 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2774 {                               /* start dma engine but no transfers yet */
2775
2776         IPW_DEBUG_FW(">> :\n");
2777
2778         /* Start the dma */
2779         ipw_fw_dma_reset_command_blocks(priv);
2780
2781         /* Write CB base address */
2782         ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2783
2784         IPW_DEBUG_FW("<< :\n");
2785         return 0;
2786 }
2787
2788 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2789 {
2790         u32 control = 0;
2791
2792         IPW_DEBUG_FW(">> :\n");
2793
2794         /* set the Stop and Abort bit */
2795         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2796         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2797         priv->sram_desc.last_cb_index = 0;
2798
2799         IPW_DEBUG_FW("<<\n");
2800 }
2801
2802 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2803                                           struct command_block *cb)
2804 {
2805         u32 address =
2806             IPW_SHARED_SRAM_DMA_CONTROL +
2807             (sizeof(struct command_block) * index);
2808         IPW_DEBUG_FW(">> :\n");
2809
2810         ipw_write_indirect(priv, address, (u8 *) cb,
2811                            (int)sizeof(struct command_block));
2812
2813         IPW_DEBUG_FW("<< :\n");
2814         return 0;
2815
2816 }
2817
2818 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2819 {
2820         u32 control = 0;
2821         u32 index = 0;
2822
2823         IPW_DEBUG_FW(">> :\n");
2824
2825         for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2826                 ipw_fw_dma_write_command_block(priv, index,
2827                                                &priv->sram_desc.cb_list[index]);
2828
2829         /* Enable the DMA in the CSR register */
2830         ipw_clear_bit(priv, IPW_RESET_REG,
2831                       IPW_RESET_REG_MASTER_DISABLED |
2832                       IPW_RESET_REG_STOP_MASTER);
2833
2834         /* Set the Start bit. */
2835         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2836         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2837
2838         IPW_DEBUG_FW("<< :\n");
2839         return 0;
2840 }
2841
2842 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2843 {
2844         u32 address;
2845         u32 register_value = 0;
2846         u32 cb_fields_address = 0;
2847
2848         IPW_DEBUG_FW(">> :\n");
2849         address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2850         IPW_DEBUG_FW_INFO("Current CB is 0x%x\n", address);
2851
2852         /* Read the DMA Controlor register */
2853         register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2854         IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x\n", register_value);
2855
2856         /* Print the CB values */
2857         cb_fields_address = address;
2858         register_value = ipw_read_reg32(priv, cb_fields_address);
2859         IPW_DEBUG_FW_INFO("Current CB Control Field is 0x%x\n", register_value);
2860
2861         cb_fields_address += sizeof(u32);
2862         register_value = ipw_read_reg32(priv, cb_fields_address);
2863         IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x\n", register_value);
2864
2865         cb_fields_address += sizeof(u32);
2866         register_value = ipw_read_reg32(priv, cb_fields_address);
2867         IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x\n",
2868                           register_value);
2869
2870         cb_fields_address += sizeof(u32);
2871         register_value = ipw_read_reg32(priv, cb_fields_address);
2872         IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x\n", register_value);
2873
2874         IPW_DEBUG_FW(">> :\n");
2875 }
2876
2877 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2878 {
2879         u32 current_cb_address = 0;
2880         u32 current_cb_index = 0;
2881
2882         IPW_DEBUG_FW("<< :\n");
2883         current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2884
2885         current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2886             sizeof(struct command_block);
2887
2888         IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X\n",
2889                           current_cb_index, current_cb_address);
2890
2891         IPW_DEBUG_FW(">> :\n");
2892         return current_cb_index;
2893
2894 }
2895
2896 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2897                                         u32 src_address,
2898                                         u32 dest_address,
2899                                         u32 length,
2900                                         int interrupt_enabled, int is_last)
2901 {
2902
2903         u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2904             CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2905             CB_DEST_SIZE_LONG;
2906         struct command_block *cb;
2907         u32 last_cb_element = 0;
2908
2909         IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2910                           src_address, dest_address, length);
2911
2912         if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2913                 return -1;
2914
2915         last_cb_element = priv->sram_desc.last_cb_index;
2916         cb = &priv->sram_desc.cb_list[last_cb_element];
2917         priv->sram_desc.last_cb_index++;
2918
2919         /* Calculate the new CB control word */
2920         if (interrupt_enabled)
2921                 control |= CB_INT_ENABLED;
2922
2923         if (is_last)
2924                 control |= CB_LAST_VALID;
2925
2926         control |= length;
2927
2928         /* Calculate the CB Element's checksum value */
2929         cb->status = control ^ src_address ^ dest_address;
2930
2931         /* Copy the Source and Destination addresses */
2932         cb->dest_addr = dest_address;
2933         cb->source_addr = src_address;
2934
2935         /* Copy the Control Word last */
2936         cb->control = control;
2937
2938         return 0;
2939 }
2940
2941 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv, dma_addr_t *src_address,
2942                                  int nr, u32 dest_address, u32 len)
2943 {
2944         int ret, i;
2945         u32 size;
2946
2947         IPW_DEBUG_FW(">>\n");
2948         IPW_DEBUG_FW_INFO("nr=%d dest_address=0x%x len=0x%x\n",
2949                           nr, dest_address, len);
2950
2951         for (i = 0; i < nr; i++) {
2952                 size = min_t(u32, len - i * CB_MAX_LENGTH, CB_MAX_LENGTH);
2953                 ret = ipw_fw_dma_add_command_block(priv, src_address[i],
2954                                                    dest_address +
2955                                                    i * CB_MAX_LENGTH, size,
2956                                                    0, 0);
2957                 if (ret) {
2958                         IPW_DEBUG_FW_INFO(": Failed\n");
2959                         return -1;
2960                 } else
2961                         IPW_DEBUG_FW_INFO(": Added new cb\n");
2962         }
2963
2964         IPW_DEBUG_FW("<<\n");
2965         return 0;
2966 }
2967
2968 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2969 {
2970         u32 current_index = 0, previous_index;
2971         u32 watchdog = 0;
2972
2973         IPW_DEBUG_FW(">> :\n");
2974
2975         current_index = ipw_fw_dma_command_block_index(priv);
2976         IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2977                           (int)priv->sram_desc.last_cb_index);
2978
2979         while (current_index < priv->sram_desc.last_cb_index) {
2980                 udelay(50);
2981                 previous_index = current_index;
2982                 current_index = ipw_fw_dma_command_block_index(priv);
2983
2984                 if (previous_index < current_index) {
2985                         watchdog = 0;
2986                         continue;
2987                 }
2988                 if (++watchdog > 400) {
2989                         IPW_DEBUG_FW_INFO("Timeout\n");
2990                         ipw_fw_dma_dump_command_block(priv);
2991                         ipw_fw_dma_abort(priv);
2992                         return -1;
2993                 }
2994         }
2995
2996         ipw_fw_dma_abort(priv);
2997
2998         /*Disable the DMA in the CSR register */
2999         ipw_set_bit(priv, IPW_RESET_REG,
3000                     IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
3001
3002         IPW_DEBUG_FW("<< dmaWaitSync\n");
3003         return 0;
3004 }
3005
3006 static void ipw_remove_current_network(struct ipw_priv *priv)
3007 {
3008         struct list_head *element, *safe;
3009         struct libipw_network *network = NULL;
3010         unsigned long flags;
3011
3012         spin_lock_irqsave(&priv->ieee->lock, flags);
3013         list_for_each_safe(element, safe, &priv->ieee->network_list) {
3014                 network = list_entry(element, struct libipw_network, list);
3015                 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
3016                         list_del(element);
3017                         list_add_tail(&network->list,
3018                                       &priv->ieee->network_free_list);
3019                 }
3020         }
3021         spin_unlock_irqrestore(&priv->ieee->lock, flags);
3022 }
3023
3024 /**
3025  * Check that card is still alive.
3026  * Reads debug register from domain0.
3027  * If card is present, pre-defined value should
3028  * be found there.
3029  *
3030  * @param priv
3031  * @return 1 if card is present, 0 otherwise
3032  */
3033 static inline int ipw_alive(struct ipw_priv *priv)
3034 {
3035         return ipw_read32(priv, 0x90) == 0xd55555d5;
3036 }
3037
3038 /* timeout in msec, attempted in 10-msec quanta */
3039 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
3040                                int timeout)
3041 {
3042         int i = 0;
3043
3044         do {
3045                 if ((ipw_read32(priv, addr) & mask) == mask)
3046                         return i;
3047                 mdelay(10);
3048                 i += 10;
3049         } while (i < timeout);
3050
3051         return -ETIME;
3052 }
3053
3054 /* These functions load the firmware and micro code for the operation of
3055  * the ipw hardware.  It assumes the buffer has all the bits for the
3056  * image and the caller is handling the memory allocation and clean up.
3057  */
3058
3059 static int ipw_stop_master(struct ipw_priv *priv)
3060 {
3061         int rc;
3062
3063         IPW_DEBUG_TRACE(">>\n");
3064         /* stop master. typical delay - 0 */
3065         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3066
3067         /* timeout is in msec, polled in 10-msec quanta */
3068         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3069                           IPW_RESET_REG_MASTER_DISABLED, 100);
3070         if (rc < 0) {
3071                 IPW_ERROR("wait for stop master failed after 100ms\n");
3072                 return -1;
3073         }
3074
3075         IPW_DEBUG_INFO("stop master %dms\n", rc);
3076
3077         return rc;
3078 }
3079
3080 static void ipw_arc_release(struct ipw_priv *priv)
3081 {
3082         IPW_DEBUG_TRACE(">>\n");
3083         mdelay(5);
3084
3085         ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3086
3087         /* no one knows timing, for safety add some delay */
3088         mdelay(5);
3089 }
3090
3091 struct fw_chunk {
3092         __le32 address;
3093         __le32 length;
3094 };
3095
3096 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3097 {
3098         int rc = 0, i, addr;
3099         u8 cr = 0;
3100         __le16 *image;
3101
3102         image = (__le16 *) data;
3103
3104         IPW_DEBUG_TRACE(">>\n");
3105
3106         rc = ipw_stop_master(priv);
3107
3108         if (rc < 0)
3109                 return rc;
3110
3111         for (addr = IPW_SHARED_LOWER_BOUND;
3112              addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3113                 ipw_write32(priv, addr, 0);
3114         }
3115
3116         /* no ucode (yet) */
3117         memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3118         /* destroy DMA queues */
3119         /* reset sequence */
3120
3121         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3122         ipw_arc_release(priv);
3123         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3124         mdelay(1);
3125
3126         /* reset PHY */
3127         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3128         mdelay(1);
3129
3130         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3131         mdelay(1);
3132
3133         /* enable ucode store */
3134         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3135         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3136         mdelay(1);
3137
3138         /* write ucode */
3139         /**
3140          * @bug
3141          * Do NOT set indirect address register once and then
3142          * store data to indirect data register in the loop.
3143          * It seems very reasonable, but in this case DINO do not
3144          * accept ucode. It is essential to set address each time.
3145          */
3146         /* load new ipw uCode */
3147         for (i = 0; i < len / 2; i++)
3148                 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3149                                 le16_to_cpu(image[i]));
3150
3151         /* enable DINO */
3152         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3153         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3154
3155         /* this is where the igx / win driver deveates from the VAP driver. */
3156
3157         /* wait for alive response */
3158         for (i = 0; i < 100; i++) {
3159                 /* poll for incoming data */
3160                 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3161                 if (cr & DINO_RXFIFO_DATA)
3162                         break;
3163                 mdelay(1);
3164         }
3165
3166         if (cr & DINO_RXFIFO_DATA) {
3167                 /* alive_command_responce size is NOT multiple of 4 */
3168                 __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3169
3170                 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3171                         response_buffer[i] =
3172                             cpu_to_le32(ipw_read_reg32(priv,
3173                                                        IPW_BASEBAND_RX_FIFO_READ));
3174                 memcpy(&priv->dino_alive, response_buffer,
3175                        sizeof(priv->dino_alive));
3176                 if (priv->dino_alive.alive_command == 1
3177                     && priv->dino_alive.ucode_valid == 1) {
3178                         rc = 0;
3179                         IPW_DEBUG_INFO
3180                             ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3181                              "of %02d/%02d/%02d %02d:%02d\n",
3182                              priv->dino_alive.software_revision,
3183                              priv->dino_alive.software_revision,
3184                              priv->dino_alive.device_identifier,
3185                              priv->dino_alive.device_identifier,
3186                              priv->dino_alive.time_stamp[0],
3187                              priv->dino_alive.time_stamp[1],
3188                              priv->dino_alive.time_stamp[2],
3189                              priv->dino_alive.time_stamp[3],
3190                              priv->dino_alive.time_stamp[4]);
3191                 } else {
3192                         IPW_DEBUG_INFO("Microcode is not alive\n");
3193                         rc = -EINVAL;
3194                 }
3195         } else {
3196                 IPW_DEBUG_INFO("No alive response from DINO\n");
3197                 rc = -ETIME;
3198         }
3199
3200         /* disable DINO, otherwise for some reason
3201            firmware have problem getting alive resp. */
3202         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3203
3204         return rc;
3205 }
3206
3207 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3208 {
3209         int ret = -1;
3210         int offset = 0;
3211         struct fw_chunk *chunk;
3212         int total_nr = 0;
3213         int i;
3214         struct pci_pool *pool;
3215         void **virts;
3216         dma_addr_t *phys;
3217
3218         IPW_DEBUG_TRACE("<< :\n");
3219
3220         virts = kmalloc(sizeof(void *) * CB_NUMBER_OF_ELEMENTS_SMALL,
3221                         GFP_KERNEL);
3222         if (!virts)
3223                 return -ENOMEM;
3224
3225         phys = kmalloc(sizeof(dma_addr_t) * CB_NUMBER_OF_ELEMENTS_SMALL,
3226                         GFP_KERNEL);
3227         if (!phys) {
3228                 kfree(virts);
3229                 return -ENOMEM;
3230         }
3231         pool = pci_pool_create("ipw2200", priv->pci_dev, CB_MAX_LENGTH, 0, 0);
3232         if (!pool) {
3233                 IPW_ERROR("pci_pool_create failed\n");
3234                 kfree(phys);
3235                 kfree(virts);
3236                 return -ENOMEM;
3237         }
3238
3239         /* Start the Dma */
3240         ret = ipw_fw_dma_enable(priv);
3241
3242         /* the DMA is already ready this would be a bug. */
3243         BUG_ON(priv->sram_desc.last_cb_index > 0);
3244
3245         do {
3246                 u32 chunk_len;
3247                 u8 *start;
3248                 int size;
3249                 int nr = 0;
3250
3251                 chunk = (struct fw_chunk *)(data + offset);
3252                 offset += sizeof(struct fw_chunk);
3253                 chunk_len = le32_to_cpu(chunk->length);
3254                 start = data + offset;
3255
3256                 nr = (chunk_len + CB_MAX_LENGTH - 1) / CB_MAX_LENGTH;
3257                 for (i = 0; i < nr; i++) {
3258                         virts[total_nr] = pci_pool_alloc(pool, GFP_KERNEL,
3259                                                          &phys[total_nr]);
3260                         if (!virts[total_nr]) {
3261                                 ret = -ENOMEM;
3262                                 goto out;
3263                         }
3264                         size = min_t(u32, chunk_len - i * CB_MAX_LENGTH,
3265                                      CB_MAX_LENGTH);
3266                         memcpy(virts[total_nr], start, size);
3267                         start += size;
3268                         total_nr++;
3269                         /* We don't support fw chunk larger than 64*8K */
3270                         BUG_ON(total_nr > CB_NUMBER_OF_ELEMENTS_SMALL);
3271                 }
3272
3273                 /* build DMA packet and queue up for sending */
3274                 /* dma to chunk->address, the chunk->length bytes from data +
3275                  * offeset*/
3276                 /* Dma loading */
3277                 ret = ipw_fw_dma_add_buffer(priv, &phys[total_nr - nr],
3278                                             nr, le32_to_cpu(chunk->address),
3279                                             chunk_len);
3280                 if (ret) {
3281                         IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3282                         goto out;
3283                 }
3284
3285                 offset += chunk_len;
3286         } while (offset < len);
3287
3288         /* Run the DMA and wait for the answer */
3289         ret = ipw_fw_dma_kick(priv);
3290         if (ret) {
3291                 IPW_ERROR("dmaKick Failed\n");
3292                 goto out;
3293         }
3294
3295         ret = ipw_fw_dma_wait(priv);
3296         if (ret) {
3297                 IPW_ERROR("dmaWaitSync Failed\n");
3298                 goto out;
3299         }
3300  out:
3301         for (i = 0; i < total_nr; i++)
3302                 pci_pool_free(pool, virts[i], phys[i]);
3303
3304         pci_pool_destroy(pool);
3305         kfree(phys);
3306         kfree(virts);
3307
3308         return ret;
3309 }
3310
3311 /* stop nic */
3312 static int ipw_stop_nic(struct ipw_priv *priv)
3313 {
3314         int rc = 0;
3315
3316         /* stop */
3317         ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3318
3319         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3320                           IPW_RESET_REG_MASTER_DISABLED, 500);
3321         if (rc < 0) {
3322                 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3323                 return rc;
3324         }
3325
3326         ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3327
3328         return rc;
3329 }
3330
3331 static void ipw_start_nic(struct ipw_priv *priv)
3332 {
3333         IPW_DEBUG_TRACE(">>\n");
3334
3335         /* prvHwStartNic  release ARC */
3336         ipw_clear_bit(priv, IPW_RESET_REG,
3337                       IPW_RESET_REG_MASTER_DISABLED |
3338                       IPW_RESET_REG_STOP_MASTER |
3339                       CBD_RESET_REG_PRINCETON_RESET);
3340
3341         /* enable power management */
3342         ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3343                     IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3344
3345         IPW_DEBUG_TRACE("<<\n");
3346 }
3347
3348 static int ipw_init_nic(struct ipw_priv *priv)
3349 {
3350         int rc;
3351
3352         IPW_DEBUG_TRACE(">>\n");
3353         /* reset */
3354         /*prvHwInitNic */
3355         /* set "initialization complete" bit to move adapter to D0 state */
3356         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3357
3358         /* low-level PLL activation */
3359         ipw_write32(priv, IPW_READ_INT_REGISTER,
3360                     IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3361
3362         /* wait for clock stabilization */
3363         rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3364                           IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3365         if (rc < 0)
3366                 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3367
3368         /* assert SW reset */
3369         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3370
3371         udelay(10);
3372
3373         /* set "initialization complete" bit to move adapter to D0 state */
3374         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3375
3376         IPW_DEBUG_TRACE(">>\n");
3377         return 0;
3378 }
3379
3380 /* Call this function from process context, it will sleep in request_firmware.
3381  * Probe is an ok place to call this from.
3382  */
3383 static int ipw_reset_nic(struct ipw_priv *priv)
3384 {
3385         int rc = 0;
3386         unsigned long flags;
3387
3388         IPW_DEBUG_TRACE(">>\n");
3389
3390         rc = ipw_init_nic(priv);
3391
3392         spin_lock_irqsave(&priv->lock, flags);
3393         /* Clear the 'host command active' bit... */
3394         priv->status &= ~STATUS_HCMD_ACTIVE;
3395         wake_up_interruptible(&priv->wait_command_queue);
3396         priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3397         wake_up_interruptible(&priv->wait_state);
3398         spin_unlock_irqrestore(&priv->lock, flags);
3399
3400         IPW_DEBUG_TRACE("<<\n");
3401         return rc;
3402 }
3403
3404
3405 struct ipw_fw {
3406         __le32 ver;
3407         __le32 boot_size;
3408         __le32 ucode_size;
3409         __le32 fw_size;
3410         u8 data[0];
3411 };
3412
3413 static int ipw_get_fw(struct ipw_priv *priv,
3414                       const struct firmware **raw, const char *name)
3415 {
3416         struct ipw_fw *fw;
3417         int rc;
3418
3419         /* ask firmware_class module to get the boot firmware off disk */
3420         rc = request_firmware(raw, name, &priv->pci_dev->dev);
3421         if (rc < 0) {
3422                 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3423                 return rc;
3424         }
3425
3426         if ((*raw)->size < sizeof(*fw)) {
3427                 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3428                 return -EINVAL;
3429         }
3430
3431         fw = (void *)(*raw)->data;
3432
3433         if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3434             le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3435                 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3436                           name, (*raw)->size);
3437                 return -EINVAL;
3438         }
3439
3440         IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3441                        name,
3442                        le32_to_cpu(fw->ver) >> 16,
3443                        le32_to_cpu(fw->ver) & 0xff,
3444                        (*raw)->size - sizeof(*fw));
3445         return 0;
3446 }
3447
3448 #define IPW_RX_BUF_SIZE (3000)
3449
3450 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3451                                       struct ipw_rx_queue *rxq)
3452 {
3453         unsigned long flags;
3454         int i;
3455
3456         spin_lock_irqsave(&rxq->lock, flags);
3457
3458         INIT_LIST_HEAD(&rxq->rx_free);
3459         INIT_LIST_HEAD(&rxq->rx_used);
3460
3461         /* Fill the rx_used queue with _all_ of the Rx buffers */
3462         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3463                 /* In the reset function, these buffers may have been allocated
3464                  * to an SKB, so we need to unmap and free potential storage */
3465                 if (rxq->pool[i].skb != NULL) {
3466                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3467                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3468                         dev_kfree_skb(rxq->pool[i].skb);
3469                         rxq->pool[i].skb = NULL;
3470                 }
3471                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3472         }
3473
3474         /* Set us so that we have processed and used all buffers, but have
3475          * not restocked the Rx queue with fresh buffers */
3476         rxq->read = rxq->write = 0;
3477         rxq->free_count = 0;
3478         spin_unlock_irqrestore(&rxq->lock, flags);
3479 }
3480
3481 #ifdef CONFIG_PM
3482 static int fw_loaded = 0;
3483 static const struct firmware *raw = NULL;
3484
3485 static void free_firmware(void)
3486 {
3487         if (fw_loaded) {
3488                 release_firmware(raw);
3489                 raw = NULL;
3490                 fw_loaded = 0;
3491         }
3492 }
3493 #else
3494 #define free_firmware() do {} while (0)
3495 #endif
3496
3497 static int ipw_load(struct ipw_priv *priv)
3498 {
3499 #ifndef CONFIG_PM
3500         const struct firmware *raw = NULL;
3501 #endif
3502         struct ipw_fw *fw;
3503         u8 *boot_img, *ucode_img, *fw_img;
3504         u8 *name = NULL;
3505         int rc = 0, retries = 3;
3506
3507         switch (priv->ieee->iw_mode) {
3508         case IW_MODE_ADHOC:
3509                 name = "ipw2200-ibss.fw";
3510                 break;
3511 #ifdef CONFIG_IPW2200_MONITOR
3512         case IW_MODE_MONITOR:
3513                 name = "ipw2200-sniffer.fw";
3514                 break;
3515 #endif
3516         case IW_MODE_INFRA:
3517                 name = "ipw2200-bss.fw";
3518                 break;
3519         }
3520
3521         if (!name) {
3522                 rc = -EINVAL;
3523                 goto error;
3524         }
3525
3526 #ifdef CONFIG_PM
3527         if (!fw_loaded) {
3528 #endif
3529                 rc = ipw_get_fw(priv, &raw, name);
3530                 if (rc < 0)
3531                         goto error;
3532 #ifdef CONFIG_PM
3533         }
3534 #endif
3535
3536         fw = (void *)raw->data;
3537         boot_img = &fw->data[0];
3538         ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3539         fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3540                            le32_to_cpu(fw->ucode_size)];
3541
3542         if (rc < 0)
3543                 goto error;
3544
3545         if (!priv->rxq)
3546                 priv->rxq = ipw_rx_queue_alloc(priv);
3547         else
3548                 ipw_rx_queue_reset(priv, priv->rxq);
3549         if (!priv->rxq) {
3550                 IPW_ERROR("Unable to initialize Rx queue\n");
3551                 goto error;
3552         }
3553
3554       retry:
3555         /* Ensure interrupts are disabled */
3556         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3557         priv->status &= ~STATUS_INT_ENABLED;
3558
3559         /* ack pending interrupts */
3560         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3561
3562         ipw_stop_nic(priv);
3563
3564         rc = ipw_reset_nic(priv);
3565         if (rc < 0) {
3566                 IPW_ERROR("Unable to reset NIC\n");
3567                 goto error;
3568         }
3569
3570         ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3571                         IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3572
3573         /* DMA the initial boot firmware into the device */
3574         rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3575         if (rc < 0) {
3576                 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3577                 goto error;
3578         }
3579
3580         /* kick start the device */
3581         ipw_start_nic(priv);
3582
3583         /* wait for the device to finish its initial startup sequence */
3584         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3585                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3586         if (rc < 0) {
3587                 IPW_ERROR("device failed to boot initial fw image\n");
3588                 goto error;
3589         }
3590         IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3591
3592         /* ack fw init done interrupt */
3593         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3594
3595         /* DMA the ucode into the device */
3596         rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3597         if (rc < 0) {
3598                 IPW_ERROR("Unable to load ucode: %d\n", rc);
3599                 goto error;
3600         }
3601
3602         /* stop nic */
3603         ipw_stop_nic(priv);
3604
3605         /* DMA bss firmware into the device */
3606         rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3607         if (rc < 0) {
3608                 IPW_ERROR("Unable to load firmware: %d\n", rc);
3609                 goto error;
3610         }
3611 #ifdef CONFIG_PM
3612         fw_loaded = 1;
3613 #endif
3614
3615         ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3616
3617         rc = ipw_queue_reset(priv);
3618         if (rc < 0) {
3619                 IPW_ERROR("Unable to initialize queues\n");
3620                 goto error;
3621         }
3622
3623         /* Ensure interrupts are disabled */
3624         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3625         /* ack pending interrupts */
3626         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3627
3628         /* kick start the device */
3629         ipw_start_nic(priv);
3630
3631         if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3632                 if (retries > 0) {
3633                         IPW_WARNING("Parity error.  Retrying init.\n");
3634                         retries--;
3635                         goto retry;
3636                 }
3637
3638                 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3639                 rc = -EIO;
3640                 goto error;
3641         }
3642
3643         /* wait for the device */
3644         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3645                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3646         if (rc < 0) {
3647                 IPW_ERROR("device failed to start within 500ms\n");
3648                 goto error;
3649         }
3650         IPW_DEBUG_INFO("device response after %dms\n", rc);
3651
3652         /* ack fw init done interrupt */
3653         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3654
3655         /* read eeprom data */
3656         priv->eeprom_delay = 1;
3657         ipw_read_eeprom(priv);
3658         /* initialize the eeprom region of sram */
3659         ipw_eeprom_init_sram(priv);
3660
3661         /* enable interrupts */
3662         ipw_enable_interrupts(priv);
3663
3664         /* Ensure our queue has valid packets */
3665         ipw_rx_queue_replenish(priv);
3666
3667         ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3668
3669         /* ack pending interrupts */
3670         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3671
3672 #ifndef CONFIG_PM
3673         release_firmware(raw);
3674 #endif
3675         return 0;
3676
3677       error:
3678         if (priv->rxq) {
3679                 ipw_rx_queue_free(priv, priv->rxq);
3680                 priv->rxq = NULL;
3681         }
3682         ipw_tx_queue_free(priv);
3683         release_firmware(raw);
3684 #ifdef CONFIG_PM
3685         fw_loaded = 0;
3686         raw = NULL;
3687 #endif
3688
3689         return rc;
3690 }
3691
3692 /**
3693  * DMA services
3694  *
3695  * Theory of operation
3696  *
3697  * A queue is a circular buffers with 'Read' and 'Write' pointers.
3698  * 2 empty entries always kept in the buffer to protect from overflow.
3699  *
3700  * For Tx queue, there are low mark and high mark limits. If, after queuing
3701  * the packet for Tx, free space become < low mark, Tx queue stopped. When
3702  * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3703  * Tx queue resumed.
3704  *
3705  * The IPW operates with six queues, one receive queue in the device's
3706  * sram, one transmit queue for sending commands to the device firmware,
3707  * and four transmit queues for data.
3708  *
3709  * The four transmit queues allow for performing quality of service (qos)
3710  * transmissions as per the 802.11 protocol.  Currently Linux does not
3711  * provide a mechanism to the user for utilizing prioritized queues, so
3712  * we only utilize the first data transmit queue (queue1).
3713  */
3714
3715 /**
3716  * Driver allocates buffers of this size for Rx
3717  */
3718
3719 /**
3720  * ipw_rx_queue_space - Return number of free slots available in queue.
3721  */
3722 static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3723 {
3724         int s = q->read - q->write;
3725         if (s <= 0)
3726                 s += RX_QUEUE_SIZE;
3727         /* keep some buffer to not confuse full and empty queue */
3728         s -= 2;
3729         if (s < 0)
3730                 s = 0;
3731         return s;
3732 }
3733
3734 static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3735 {
3736         int s = q->last_used - q->first_empty;
3737         if (s <= 0)
3738                 s += q->n_bd;
3739         s -= 2;                 /* keep some reserve to not confuse empty and full situations */
3740         if (s < 0)
3741                 s = 0;
3742         return s;
3743 }
3744
3745 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3746 {
3747         return (++index == n_bd) ? 0 : index;
3748 }
3749
3750 /**
3751  * Initialize common DMA queue structure
3752  *
3753  * @param q                queue to init
3754  * @param count            Number of BD's to allocate. Should be power of 2
3755  * @param read_register    Address for 'read' register
3756  *                         (not offset within BAR, full address)
3757  * @param write_register   Address for 'write' register
3758  *                         (not offset within BAR, full address)
3759  * @param base_register    Address for 'base' register
3760  *                         (not offset within BAR, full address)
3761  * @param size             Address for 'size' register
3762  *                         (not offset within BAR, full address)
3763  */
3764 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3765                            int count, u32 read, u32 write, u32 base, u32 size)
3766 {
3767         q->n_bd = count;
3768
3769         q->low_mark = q->n_bd / 4;
3770         if (q->low_mark < 4)
3771                 q->low_mark = 4;
3772
3773         q->high_mark = q->n_bd / 8;
3774         if (q->high_mark < 2)
3775                 q->high_mark = 2;
3776
3777         q->first_empty = q->last_used = 0;
3778         q->reg_r = read;
3779         q->reg_w = write;
3780
3781         ipw_write32(priv, base, q->dma_addr);
3782         ipw_write32(priv, size, count);
3783         ipw_write32(priv, read, 0);
3784         ipw_write32(priv, write, 0);
3785
3786         _ipw_read32(priv, 0x90);
3787 }
3788
3789 static int ipw_queue_tx_init(struct ipw_priv *priv,
3790                              struct clx2_tx_queue *q,
3791                              int count, u32 read, u32 write, u32 base, u32 size)
3792 {
3793         struct pci_dev *dev = priv->pci_dev;
3794
3795         q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3796         if (!q->txb) {
3797                 IPW_ERROR("vmalloc for auxiliary BD structures failed\n");
3798                 return -ENOMEM;
3799         }
3800
3801         q->bd =
3802             pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3803         if (!q->bd) {
3804                 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3805                           sizeof(q->bd[0]) * count);
3806                 kfree(q->txb);
3807                 q->txb = NULL;
3808                 return -ENOMEM;
3809         }
3810
3811         ipw_queue_init(priv, &q->q, count, read, write, base, size);
3812         return 0;
3813 }
3814
3815 /**
3816  * Free one TFD, those at index [txq->q.last_used].
3817  * Do NOT advance any indexes
3818  *
3819  * @param dev
3820  * @param txq
3821  */
3822 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3823                                   struct clx2_tx_queue *txq)
3824 {
3825         struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3826         struct pci_dev *dev = priv->pci_dev;
3827         int i;
3828
3829         /* classify bd */
3830         if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3831                 /* nothing to cleanup after for host commands */
3832                 return;
3833
3834         /* sanity check */
3835         if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3836                 IPW_ERROR("Too many chunks: %i\n",
3837                           le32_to_cpu(bd->u.data.num_chunks));
3838                 /** @todo issue fatal error, it is quite serious situation */
3839                 return;
3840         }
3841
3842         /* unmap chunks if any */
3843         for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3844                 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3845                                  le16_to_cpu(bd->u.data.chunk_len[i]),
3846                                  PCI_DMA_TODEVICE);
3847                 if (txq->txb[txq->q.last_used]) {
3848                         libipw_txb_free(txq->txb[txq->q.last_used]);
3849                         txq->txb[txq->q.last_used] = NULL;
3850                 }
3851         }
3852 }
3853
3854 /**
3855  * Deallocate DMA queue.
3856  *
3857  * Empty queue by removing and destroying all BD's.
3858  * Free all buffers.
3859  *
3860  * @param dev
3861  * @param q
3862  */
3863 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3864 {
3865         struct clx2_queue *q = &txq->q;
3866         struct pci_dev *dev = priv->pci_dev;
3867
3868         if (q->n_bd == 0)
3869                 return;
3870
3871         /* first, empty all BD's */
3872         for (; q->first_empty != q->last_used;
3873              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3874                 ipw_queue_tx_free_tfd(priv, txq);
3875         }
3876
3877         /* free buffers belonging to queue itself */
3878         pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3879                             q->dma_addr);
3880         kfree(txq->txb);
3881
3882         /* 0 fill whole structure */
3883         memset(txq, 0, sizeof(*txq));
3884 }
3885
3886 /**
3887  * Destroy all DMA queues and structures
3888  *
3889  * @param priv
3890  */
3891 static void ipw_tx_queue_free(struct ipw_priv *priv)
3892 {
3893         /* Tx CMD queue */
3894         ipw_queue_tx_free(priv, &priv->txq_cmd);
3895
3896         /* Tx queues */
3897         ipw_queue_tx_free(priv, &priv->txq[0]);
3898         ipw_queue_tx_free(priv, &priv->txq[1]);
3899         ipw_queue_tx_free(priv, &priv->txq[2]);
3900         ipw_queue_tx_free(priv, &priv->txq[3]);
3901 }
3902
3903 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3904 {
3905         /* First 3 bytes are manufacturer */
3906         bssid[0] = priv->mac_addr[0];
3907         bssid[1] = priv->mac_addr[1];
3908         bssid[2] = priv->mac_addr[2];
3909
3910         /* Last bytes are random */
3911         get_random_bytes(&bssid[3], ETH_ALEN - 3);
3912
3913         bssid[0] &= 0xfe;       /* clear multicast bit */
3914         bssid[0] |= 0x02;       /* set local assignment bit (IEEE802) */
3915 }
3916
3917 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3918 {
3919         struct ipw_station_entry entry;
3920         int i;
3921
3922         for (i = 0; i < priv->num_stations; i++) {
3923                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3924                         /* Another node is active in network */
3925                         priv->missed_adhoc_beacons = 0;
3926                         if (!(priv->config & CFG_STATIC_CHANNEL))
3927                                 /* when other nodes drop out, we drop out */
3928                                 priv->config &= ~CFG_ADHOC_PERSIST;
3929
3930                         return i;
3931                 }
3932         }
3933
3934         if (i == MAX_STATIONS)
3935                 return IPW_INVALID_STATION;
3936
3937         IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid);
3938
3939         entry.reserved = 0;
3940         entry.support_mode = 0;
3941         memcpy(entry.mac_addr, bssid, ETH_ALEN);
3942         memcpy(priv->stations[i], bssid, ETH_ALEN);
3943         ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3944                          &entry, sizeof(entry));
3945         priv->num_stations++;
3946
3947         return i;
3948 }
3949
3950 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3951 {
3952         int i;
3953
3954         for (i = 0; i < priv->num_stations; i++)
3955                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3956                         return i;
3957
3958         return IPW_INVALID_STATION;
3959 }
3960
3961 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3962 {
3963         int err;
3964
3965         if (priv->status & STATUS_ASSOCIATING) {
3966                 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3967                 schedule_work(&priv->disassociate);
3968                 return;
3969         }
3970
3971         if (!(priv->status & STATUS_ASSOCIATED)) {
3972                 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3973                 return;
3974         }
3975
3976         IPW_DEBUG_ASSOC("Disassocation attempt from %pM "
3977                         "on channel %d.\n",
3978                         priv->assoc_request.bssid,
3979                         priv->assoc_request.channel);
3980
3981         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3982         priv->status |= STATUS_DISASSOCIATING;
3983
3984         if (quiet)
3985                 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3986         else
3987                 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3988
3989         err = ipw_send_associate(priv, &priv->assoc_request);
3990         if (err) {
3991                 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3992                              "failed.\n");
3993                 return;
3994         }
3995
3996 }
3997
3998 static int ipw_disassociate(void *data)
3999 {
4000         struct ipw_priv *priv = data;
4001         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
4002                 return 0;
4003         ipw_send_disassociate(data, 0);
4004         netif_carrier_off(priv->net_dev);
4005         return 1;
4006 }
4007
4008 static void ipw_bg_disassociate(struct work_struct *work)
4009 {
4010         struct ipw_priv *priv =
4011                 container_of(work, struct ipw_priv, disassociate);
4012         mutex_lock(&priv->mutex);
4013         ipw_disassociate(priv);
4014         mutex_unlock(&priv->mutex);
4015 }
4016
4017 static void ipw_system_config(struct work_struct *work)
4018 {
4019         struct ipw_priv *priv =
4020                 container_of(work, struct ipw_priv, system_config);
4021
4022 #ifdef CONFIG_IPW2200_PROMISCUOUS
4023         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
4024                 priv->sys_config.accept_all_data_frames = 1;
4025                 priv->sys_config.accept_non_directed_frames = 1;
4026                 priv->sys_config.accept_all_mgmt_bcpr = 1;
4027                 priv->sys_config.accept_all_mgmt_frames = 1;
4028         }
4029 #endif
4030
4031         ipw_send_system_config(priv);
4032 }
4033
4034 struct ipw_status_code {
4035         u16 status;
4036         const char *reason;
4037 };
4038
4039 static const struct ipw_status_code ipw_status_codes[] = {
4040         {0x00, "Successful"},
4041         {0x01, "Unspecified failure"},
4042         {0x0A, "Cannot support all requested capabilities in the "
4043          "Capability information field"},
4044         {0x0B, "Reassociation denied due to inability to confirm that "
4045          "association exists"},
4046         {0x0C, "Association denied due to reason outside the scope of this "
4047          "standard"},
4048         {0x0D,
4049          "Responding station does not support the specified authentication "
4050          "algorithm"},
4051         {0x0E,
4052          "Received an Authentication frame with authentication sequence "
4053          "transaction sequence number out of expected sequence"},
4054         {0x0F, "Authentication rejected because of challenge failure"},
4055         {0x10, "Authentication rejected due to timeout waiting for next "
4056          "frame in sequence"},
4057         {0x11, "Association denied because AP is unable to handle additional "
4058          "associated stations"},
4059         {0x12,
4060          "Association denied due to requesting station not supporting all "
4061          "of the datarates in the BSSBasicServiceSet Parameter"},
4062         {0x13,
4063          "Association denied due to requesting station not supporting "
4064          "short preamble operation"},
4065         {0x14,
4066          "Association denied due to requesting station not supporting "
4067          "PBCC encoding"},
4068         {0x15,
4069          "Association denied due to requesting station not supporting "
4070          "channel agility"},
4071         {0x19,
4072          "Association denied due to requesting station not supporting "
4073          "short slot operation"},
4074         {0x1A,
4075          "Association denied due to requesting station not supporting "
4076          "DSSS-OFDM operation"},
4077         {0x28, "Invalid Information Element"},
4078         {0x29, "Group Cipher is not valid"},
4079         {0x2A, "Pairwise Cipher is not valid"},
4080         {0x2B, "AKMP is not valid"},
4081         {0x2C, "Unsupported RSN IE version"},
4082         {0x2D, "Invalid RSN IE Capabilities"},
4083         {0x2E, "Cipher suite is rejected per security policy"},
4084 };
4085
4086 static const char *ipw_get_status_code(u16 status)
4087 {
4088         int i;
4089         for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
4090                 if (ipw_status_codes[i].status == (status & 0xff))
4091                         return ipw_status_codes[i].reason;
4092         return "Unknown status value.";
4093 }
4094
4095 static void inline average_init(struct average *avg)
4096 {
4097         memset(avg, 0, sizeof(*avg));
4098 }
4099
4100 #define DEPTH_RSSI 8
4101 #define DEPTH_NOISE 16
4102 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
4103 {
4104         return ((depth-1)*prev_avg +  val)/depth;
4105 }
4106
4107 static void average_add(struct average *avg, s16 val)
4108 {
4109         avg->sum -= avg->entries[avg->pos];
4110         avg->sum += val;
4111         avg->entries[avg->pos++] = val;
4112         if (unlikely(avg->pos == AVG_ENTRIES)) {
4113                 avg->init = 1;
4114                 avg->pos = 0;
4115         }
4116 }
4117
4118 static s16 average_value(struct average *avg)
4119 {
4120         if (!unlikely(avg->init)) {
4121                 if (avg->pos)
4122                         return avg->sum / avg->pos;
4123                 return 0;
4124         }
4125
4126         return avg->sum / AVG_ENTRIES;
4127 }
4128
4129 static void ipw_reset_stats(struct ipw_priv *priv)
4130 {
4131         u32 len = sizeof(u32);
4132
4133         priv->quality = 0;
4134
4135         average_init(&priv->average_missed_beacons);
4136         priv->exp_avg_rssi = -60;
4137         priv->exp_avg_noise = -85 + 0x100;
4138
4139         priv->last_rate = 0;
4140         priv->last_missed_beacons = 0;
4141         priv->last_rx_packets = 0;
4142         priv->last_tx_packets = 0;
4143         priv->last_tx_failures = 0;
4144
4145         /* Firmware managed, reset only when NIC is restarted, so we have to
4146          * normalize on the current value */
4147         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4148                         &priv->last_rx_err, &len);
4149         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4150                         &priv->last_tx_failures, &len);
4151
4152         /* Driver managed, reset with each association */
4153         priv->missed_adhoc_beacons = 0;
4154         priv->missed_beacons = 0;
4155         priv->tx_packets = 0;
4156         priv->rx_packets = 0;
4157
4158 }
4159
4160 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4161 {
4162         u32 i = 0x80000000;
4163         u32 mask = priv->rates_mask;
4164         /* If currently associated in B mode, restrict the maximum
4165          * rate match to B rates */
4166         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4167                 mask &= LIBIPW_CCK_RATES_MASK;
4168
4169         /* TODO: Verify that the rate is supported by the current rates
4170          * list. */
4171
4172         while (i && !(mask & i))
4173                 i >>= 1;
4174         switch (i) {
4175         case LIBIPW_CCK_RATE_1MB_MASK:
4176                 return 1000000;
4177         case LIBIPW_CCK_RATE_2MB_MASK:
4178                 return 2000000;
4179         case LIBIPW_CCK_RATE_5MB_MASK:
4180                 return 5500000;
4181         case LIBIPW_OFDM_RATE_6MB_MASK:
4182                 return 6000000;
4183         case LIBIPW_OFDM_RATE_9MB_MASK:
4184                 return 9000000;
4185         case LIBIPW_CCK_RATE_11MB_MASK:
4186                 return 11000000;
4187         case LIBIPW_OFDM_RATE_12MB_MASK:
4188                 return 12000000;
4189         case LIBIPW_OFDM_RATE_18MB_MASK:
4190                 return 18000000;
4191         case LIBIPW_OFDM_RATE_24MB_MASK:
4192                 return 24000000;
4193         case LIBIPW_OFDM_RATE_36MB_MASK:
4194                 return 36000000;
4195         case LIBIPW_OFDM_RATE_48MB_MASK:
4196                 return 48000000;
4197         case LIBIPW_OFDM_RATE_54MB_MASK:
4198                 return 54000000;
4199         }
4200
4201         if (priv->ieee->mode == IEEE_B)
4202                 return 11000000;
4203         else
4204                 return 54000000;
4205 }
4206
4207 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4208 {
4209         u32 rate, len = sizeof(rate);
4210         int err;
4211
4212         if (!(priv->status & STATUS_ASSOCIATED))
4213                 return 0;
4214
4215         if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4216                 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4217                                       &len);
4218                 if (err) {
4219                         IPW_DEBUG_INFO("failed querying ordinals.\n");
4220                         return 0;
4221                 }
4222         } else
4223                 return ipw_get_max_rate(priv);
4224
4225         switch (rate) {
4226         case IPW_TX_RATE_1MB:
4227                 return 1000000;
4228         case IPW_TX_RATE_2MB:
4229                 return 2000000;
4230         case IPW_TX_RATE_5MB:
4231                 return 5500000;
4232         case IPW_TX_RATE_6MB:
4233                 return 6000000;
4234         case IPW_TX_RATE_9MB:
4235                 return 9000000;
4236         case IPW_TX_RATE_11MB:
4237                 return 11000000;
4238         case IPW_TX_RATE_12MB:
4239                 return 12000000;
4240         case IPW_TX_RATE_18MB:
4241                 return 18000000;
4242         case IPW_TX_RATE_24MB:
4243                 return 24000000;
4244         case IPW_TX_RATE_36MB:
4245                 return 36000000;
4246         case IPW_TX_RATE_48MB:
4247                 return 48000000;
4248         case IPW_TX_RATE_54MB:
4249                 return 54000000;
4250         }
4251
4252         return 0;
4253 }
4254
4255 #define IPW_STATS_INTERVAL (2 * HZ)
4256 static void ipw_gather_stats(struct ipw_priv *priv)
4257 {
4258         u32 rx_err, rx_err_delta, rx_packets_delta;
4259         u32 tx_failures, tx_failures_delta, tx_packets_delta;
4260         u32 missed_beacons_percent, missed_beacons_delta;
4261         u32 quality = 0;
4262         u32 len = sizeof(u32);
4263         s16 rssi;
4264         u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4265             rate_quality;
4266         u32 max_rate;
4267
4268         if (!(priv->status & STATUS_ASSOCIATED)) {
4269                 priv->quality = 0;
4270                 return;
4271         }
4272
4273         /* Update the statistics */
4274         ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4275                         &priv->missed_beacons, &len);
4276         missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4277         priv->last_missed_beacons = priv->missed_beacons;
4278         if (priv->assoc_request.beacon_interval) {
4279                 missed_beacons_percent = missed_beacons_delta *
4280                     (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4281                     (IPW_STATS_INTERVAL * 10);
4282         } else {
4283                 missed_beacons_percent = 0;
4284         }
4285         average_add(&priv->average_missed_beacons, missed_beacons_percent);
4286
4287         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4288         rx_err_delta = rx_err - priv->last_rx_err;
4289         priv->last_rx_err = rx_err;
4290
4291         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4292         tx_failures_delta = tx_failures - priv->last_tx_failures;
4293         priv->last_tx_failures = tx_failures;
4294
4295         rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4296         priv->last_rx_packets = priv->rx_packets;
4297
4298         tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4299         priv->last_tx_packets = priv->tx_packets;
4300
4301         /* Calculate quality based on the following:
4302          *
4303          * Missed beacon: 100% = 0, 0% = 70% missed
4304          * Rate: 60% = 1Mbs, 100% = Max
4305          * Rx and Tx errors represent a straight % of total Rx/Tx
4306          * RSSI: 100% = > -50,  0% = < -80
4307          * Rx errors: 100% = 0, 0% = 50% missed
4308          *
4309          * The lowest computed quality is used.
4310          *
4311          */
4312 #define BEACON_THRESHOLD 5
4313         beacon_quality = 100 - missed_beacons_percent;
4314         if (beacon_quality < BEACON_THRESHOLD)
4315                 beacon_quality = 0;
4316         else
4317                 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4318                     (100 - BEACON_THRESHOLD);
4319         IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4320                         beacon_quality, missed_beacons_percent);
4321
4322         priv->last_rate = ipw_get_current_rate(priv);
4323         max_rate = ipw_get_max_rate(priv);
4324         rate_quality = priv->last_rate * 40 / max_rate + 60;
4325         IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4326                         rate_quality, priv->last_rate / 1000000);
4327
4328         if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4329                 rx_quality = 100 - (rx_err_delta * 100) /
4330                     (rx_packets_delta + rx_err_delta);
4331         else
4332                 rx_quality = 100;
4333         IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
4334                         rx_quality, rx_err_delta, rx_packets_delta);
4335
4336         if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4337                 tx_quality = 100 - (tx_failures_delta * 100) /
4338                     (tx_packets_delta + tx_failures_delta);
4339         else
4340                 tx_quality = 100;
4341         IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
4342                         tx_quality, tx_failures_delta, tx_packets_delta);
4343
4344         rssi = priv->exp_avg_rssi;
4345         signal_quality =
4346             (100 *
4347              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4348              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4349              (priv->ieee->perfect_rssi - rssi) *
4350              (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4351               62 * (priv->ieee->perfect_rssi - rssi))) /
4352             ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4353              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4354         if (signal_quality > 100)
4355                 signal_quality = 100;
4356         else if (signal_quality < 1)
4357                 signal_quality = 0;
4358
4359         IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4360                         signal_quality, rssi);
4361
4362         quality = min(rx_quality, signal_quality);
4363         quality = min(tx_quality, quality);
4364         quality = min(rate_quality, quality);
4365         quality = min(beacon_quality, quality);
4366         if (quality == beacon_quality)
4367                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4368                                 quality);
4369         if (quality == rate_quality)
4370                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4371                                 quality);
4372         if (quality == tx_quality)
4373                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4374                                 quality);
4375         if (quality == rx_quality)
4376                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4377                                 quality);
4378         if (quality == signal_quality)
4379                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4380                                 quality);
4381
4382         priv->quality = quality;
4383
4384         schedule_delayed_work(&priv->gather_stats, IPW_STATS_INTERVAL);
4385 }
4386
4387 static void ipw_bg_gather_stats(struct work_struct *work)
4388 {
4389         struct ipw_priv *priv =
4390                 container_of(work, struct ipw_priv, gather_stats.work);
4391         mutex_lock(&priv->mutex);
4392         ipw_gather_stats(priv);
4393         mutex_unlock(&priv->mutex);
4394 }
4395
4396 /* Missed beacon behavior:
4397  * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4398  * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4399  * Above disassociate threshold, give up and stop scanning.
4400  * Roaming is disabled if disassociate_threshold <= roaming_threshold  */
4401 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4402                                             int missed_count)
4403 {
4404         priv->notif_missed_beacons = missed_count;
4405
4406         if (missed_count > priv->disassociate_threshold &&
4407             priv->status & STATUS_ASSOCIATED) {
4408                 /* If associated and we've hit the missed
4409                  * beacon threshold, disassociate, turn
4410                  * off roaming, and abort any active scans */
4411                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4412                           IPW_DL_STATE | IPW_DL_ASSOC,
4413                           "Missed beacon: %d - disassociate\n", missed_count);
4414                 priv->status &= ~STATUS_ROAMING;
4415                 if (priv->status & STATUS_SCANNING) {
4416                         IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4417                                   IPW_DL_STATE,
4418                                   "Aborting scan with missed beacon.\n");
4419                         schedule_work(&priv->abort_scan);
4420                 }
4421
4422                 schedule_work(&priv->disassociate);
4423                 return;
4424         }
4425
4426         if (priv->status & STATUS_ROAMING) {
4427                 /* If we are currently roaming, then just
4428                  * print a debug statement... */
4429                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4430                           "Missed beacon: %d - roam in progress\n",
4431                           missed_count);
4432                 return;
4433         }
4434
4435         if (roaming &&
4436             (missed_count > priv->roaming_threshold &&
4437              missed_count <= priv->disassociate_threshold)) {
4438                 /* If we are not already roaming, set the ROAM
4439                  * bit in the status and kick off a scan.
4440                  * This can happen several times before we reach
4441                  * disassociate_threshold. */
4442                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4443                           "Missed beacon: %d - initiate "
4444                           "roaming\n", missed_count);
4445                 if (!(priv->status & STATUS_ROAMING)) {
4446                         priv->status |= STATUS_ROAMING;
4447                         if (!(priv->status & STATUS_SCANNING))
4448                                 schedule_delayed_work(&priv->request_scan, 0);
4449                 }
4450                 return;
4451         }
4452
4453         if (priv->status & STATUS_SCANNING &&
4454             missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) {
4455                 /* Stop scan to keep fw from getting
4456                  * stuck (only if we aren't roaming --
4457                  * otherwise we'll never scan more than 2 or 3
4458                  * channels..) */
4459                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4460                           "Aborting scan with missed beacon.\n");
4461                 schedule_work(&priv->abort_scan);
4462         }
4463
4464         IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4465 }
4466
4467 static void ipw_scan_event(struct work_struct *work)
4468 {
4469         union iwreq_data wrqu;
4470
4471         struct ipw_priv *priv =
4472                 container_of(work, struct ipw_priv, scan_event.work);
4473
4474         wrqu.data.length = 0;
4475         wrqu.data.flags = 0;
4476         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4477 }
4478
4479 static void handle_scan_event(struct ipw_priv *priv)
4480 {
4481         /* Only userspace-requested scan completion events go out immediately */
4482         if (!priv->user_requested_scan) {
4483                 if (!delayed_work_pending(&priv->scan_event))
4484                         schedule_delayed_work(&priv->scan_event,
4485                                               round_jiffies_relative(msecs_to_jiffies(4000)));
4486         } else {
4487                 union iwreq_data wrqu;
4488
4489                 priv->user_requested_scan = 0;
4490                 cancel_delayed_work(&priv->scan_event);
4491
4492                 wrqu.data.length = 0;
4493                 wrqu.data.flags = 0;
4494                 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4495         }
4496 }
4497
4498 /**
4499  * Handle host notification packet.
4500  * Called from interrupt routine
4501  */
4502 static void ipw_rx_notification(struct ipw_priv *priv,
4503                                        struct ipw_rx_notification *notif)
4504 {
4505         DECLARE_SSID_BUF(ssid);
4506         u16 size = le16_to_cpu(notif->size);
4507
4508         IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4509
4510         switch (notif->subtype) {
4511         case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4512                         struct notif_association *assoc = &notif->u.assoc;
4513
4514                         switch (assoc->state) {
4515                         case CMAS_ASSOCIATED:{
4516                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4517                                                   IPW_DL_ASSOC,
4518                                                   "associated: '%s' %pM\n",
4519                                                   print_ssid(ssid, priv->essid,
4520                                                              priv->essid_len),
4521                                                   priv->bssid);
4522
4523                                         switch (priv->ieee->iw_mode) {
4524                                         case IW_MODE_INFRA:
4525                                                 memcpy(priv->ieee->bssid,
4526                                                        priv->bssid, ETH_ALEN);
4527                                                 break;
4528
4529                                         case IW_MODE_ADHOC:
4530                                                 memcpy(priv->ieee->bssid,
4531                                                        priv->bssid, ETH_ALEN);
4532
4533                                                 /* clear out the station table */
4534                                                 priv->num_stations = 0;
4535
4536                                                 IPW_DEBUG_ASSOC
4537                                                     ("queueing adhoc check\n");
4538                                                 schedule_delayed_work(
4539                                                         &priv->adhoc_check,
4540                                                         le16_to_cpu(priv->
4541                                                         assoc_request.
4542                                                         beacon_interval));
4543                                                 break;
4544                                         }
4545
4546                                         priv->status &= ~STATUS_ASSOCIATING;
4547                                         priv->status |= STATUS_ASSOCIATED;
4548                                         schedule_work(&priv->system_config);
4549
4550 #ifdef CONFIG_IPW2200_QOS
4551 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4552                          le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4553                                         if ((priv->status & STATUS_AUTH) &&
4554                                             (IPW_GET_PACKET_STYPE(&notif->u.raw)
4555                                              == IEEE80211_STYPE_ASSOC_RESP)) {
4556                                                 if ((sizeof
4557                                                      (struct
4558                                                       libipw_assoc_response)
4559                                                      <= size)
4560                                                     && (size <= 2314)) {
4561                                                         struct
4562                                                         libipw_rx_stats
4563                                                             stats = {
4564                                                                 .len = size - 1,
4565                                                         };
4566
4567                                                         IPW_DEBUG_QOS
4568                                                             ("QoS Associate "
4569                                                              "size %d\n", size);
4570                                                         libipw_rx_mgt(priv->
4571                                                                          ieee,
4572                                                                          (struct
4573                                                                           libipw_hdr_4addr
4574                                                                           *)
4575                                                                          &notif->u.raw, &stats);
4576                                                 }
4577                                         }
4578 #endif
4579
4580                                         schedule_work(&priv->link_up);
4581
4582                                         break;
4583                                 }
4584
4585                         case CMAS_AUTHENTICATED:{
4586                                         if (priv->
4587                                             status & (STATUS_ASSOCIATED |
4588                                                       STATUS_AUTH)) {
4589                                                 struct notif_authenticate *auth
4590                                                     = &notif->u.auth;
4591                                                 IPW_DEBUG(IPW_DL_NOTIF |
4592                                                           IPW_DL_STATE |
4593                                                           IPW_DL_ASSOC,
4594                                                           "deauthenticated: '%s' "
4595                                                           "%pM"
4596                                                           ": (0x%04X) - %s\n",
4597                                                           print_ssid(ssid,
4598                                                                      priv->
4599                                                                      essid,
4600                                                                      priv->
4601                                                                      essid_len),
4602                                                           priv->bssid,
4603                                                           le16_to_cpu(auth->status),
4604                                                           ipw_get_status_code
4605                                                           (le16_to_cpu
4606                                                            (auth->status)));
4607
4608                                                 priv->status &=
4609                                                     ~(STATUS_ASSOCIATING |
4610                                                       STATUS_AUTH |
4611                                                       STATUS_ASSOCIATED);
4612
4613                                                 schedule_work(&priv->link_down);
4614                                                 break;
4615                                         }
4616
4617                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4618                                                   IPW_DL_ASSOC,
4619                                                   "authenticated: '%s' %pM\n",
4620                                                   print_ssid(ssid, priv->essid,
4621                                                              priv->essid_len),
4622                                                   priv->bssid);
4623                                         break;
4624                                 }
4625
4626                         case CMAS_INIT:{
4627                                         if (priv->status & STATUS_AUTH) {
4628                                                 struct
4629                                                     libipw_assoc_response
4630                                                 *resp;
4631                                                 resp =
4632                                                     (struct
4633                                                      libipw_assoc_response
4634                                                      *)&notif->u.raw;
4635                                                 IPW_DEBUG(IPW_DL_NOTIF |
4636                                                           IPW_DL_STATE |
4637                                                           IPW_DL_ASSOC,
4638                                                           "association failed (0x%04X): %s\n",
4639                                                           le16_to_cpu(resp->status),
4640                                                           ipw_get_status_code
4641                                                           (le16_to_cpu
4642                                                            (resp->status)));
4643                                         }
4644
4645                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4646                                                   IPW_DL_ASSOC,
4647                                                   "disassociated: '%s' %pM\n",
4648                                                   print_ssid(ssid, priv->essid,
4649                                                              priv->essid_len),
4650                                                   priv->bssid);
4651
4652                                         priv->status &=
4653                                             ~(STATUS_DISASSOCIATING |
4654                                               STATUS_ASSOCIATING |
4655                                               STATUS_ASSOCIATED | STATUS_AUTH);
4656                                         if (priv->assoc_network
4657                                             && (priv->assoc_network->
4658                                                 capability &
4659                                                 WLAN_CAPABILITY_IBSS))
4660                                                 ipw_remove_current_network
4661                                                     (priv);
4662
4663                                         schedule_work(&priv->link_down);
4664
4665                                         break;
4666                                 }
4667
4668                         case CMAS_RX_ASSOC_RESP:
4669                                 break;
4670
4671                         default:
4672                                 IPW_ERROR("assoc: unknown (%d)\n",
4673                                           assoc->state);
4674                                 break;
4675                         }
4676
4677                         break;
4678                 }
4679
4680         case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4681                         struct notif_authenticate *auth = &notif->u.auth;
4682                         switch (auth->state) {
4683                         case CMAS_AUTHENTICATED:
4684                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4685                                           "authenticated: '%s' %pM\n",
4686                                           print_ssid(ssid, priv->essid,
4687                                                      priv->essid_len),
4688                                           priv->bssid);
4689                                 priv->status |= STATUS_AUTH;
4690                                 break;
4691
4692                         case CMAS_INIT:
4693                                 if (priv->status & STATUS_AUTH) {
4694                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4695                                                   IPW_DL_ASSOC,
4696                                                   "authentication failed (0x%04X): %s\n",
4697                                                   le16_to_cpu(auth->status),
4698                                                   ipw_get_status_code(le16_to_cpu
4699                                                                       (auth->
4700                                                                        status)));
4701                                 }
4702                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4703                                           IPW_DL_ASSOC,
4704                                           "deauthenticated: '%s' %pM\n",
4705                                           print_ssid(ssid, priv->essid,
4706                                                      priv->essid_len),
4707                                           priv->bssid);
4708
4709                                 priv->status &= ~(STATUS_ASSOCIATING |
4710                                                   STATUS_AUTH |
4711                                                   STATUS_ASSOCIATED);
4712
4713                                 schedule_work(&priv->link_down);
4714                                 break;
4715
4716                         case CMAS_TX_AUTH_SEQ_1:
4717                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4718                                           IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4719                                 break;
4720                         case CMAS_RX_AUTH_SEQ_2:
4721                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4722                                           IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4723                                 break;
4724                         case CMAS_AUTH_SEQ_1_PASS:
4725                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4726                                           IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4727                                 break;
4728                         case CMAS_AUTH_SEQ_1_FAIL:
4729                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4730                                           IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4731                                 break;
4732                         case CMAS_TX_AUTH_SEQ_3:
4733                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4734                                           IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4735                                 break;
4736                         case CMAS_RX_AUTH_SEQ_4:
4737                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4738                                           IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4739                                 break;
4740                         case CMAS_AUTH_SEQ_2_PASS:
4741                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4742                                           IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4743                                 break;
4744                         case CMAS_AUTH_SEQ_2_FAIL:
4745                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4746                                           IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4747                                 break;
4748                         case CMAS_TX_ASSOC:
4749                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4750                                           IPW_DL_ASSOC, "TX_ASSOC\n");
4751                                 break;
4752                         case CMAS_RX_ASSOC_RESP:
4753                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4754                                           IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4755
4756                                 break;
4757                         case CMAS_ASSOCIATED:
4758                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4759                                           IPW_DL_ASSOC, "ASSOCIATED\n");
4760                                 break;
4761                         default:
4762                                 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4763                                                 auth->state);
4764                                 break;
4765                         }
4766                         break;
4767                 }
4768
4769         case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4770                         struct notif_channel_result *x =
4771                             &notif->u.channel_result;
4772
4773                         if (size == sizeof(*x)) {
4774                                 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4775                                                x->channel_num);
4776                         } else {
4777                                 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4778                                                "(should be %zd)\n",
4779                                                size, sizeof(*x));
4780                         }
4781                         break;
4782                 }
4783
4784         case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4785                         struct notif_scan_complete *x = &notif->u.scan_complete;
4786                         if (size == sizeof(*x)) {
4787                                 IPW_DEBUG_SCAN
4788                                     ("Scan completed: type %d, %d channels, "
4789                                      "%d status\n", x->scan_type,
4790                                      x->num_channels, x->status);
4791                         } else {
4792                                 IPW_ERROR("Scan completed of wrong size %d "
4793                                           "(should be %zd)\n",
4794                                           size, sizeof(*x));
4795                         }
4796
4797                         priv->status &=
4798                             ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4799
4800                         wake_up_interruptible(&priv->wait_state);
4801                         cancel_delayed_work(&priv->scan_check);
4802
4803                         if (priv->status & STATUS_EXIT_PENDING)
4804                                 break;
4805
4806                         priv->ieee->scans++;
4807
4808 #ifdef CONFIG_IPW2200_MONITOR
4809                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4810                                 priv->status |= STATUS_SCAN_FORCED;
4811                                 schedule_delayed_work(&priv->request_scan, 0);
4812                                 break;
4813                         }
4814                         priv->status &= ~STATUS_SCAN_FORCED;
4815 #endif                          /* CONFIG_IPW2200_MONITOR */
4816
4817                         /* Do queued direct scans first */
4818                         if (priv->status & STATUS_DIRECT_SCAN_PENDING)
4819                                 schedule_delayed_work(&priv->request_direct_scan, 0);
4820
4821                         if (!(priv->status & (STATUS_ASSOCIATED |
4822                                               STATUS_ASSOCIATING |
4823                                               STATUS_ROAMING |
4824                                               STATUS_DISASSOCIATING)))
4825                                 schedule_work(&priv->associate);
4826                         else if (priv->status & STATUS_ROAMING) {
4827                                 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4828                                         /* If a scan completed and we are in roam mode, then
4829                                          * the scan that completed was the one requested as a
4830                                          * result of entering roam... so, schedule the
4831                                          * roam work */
4832                                         schedule_work(&priv->roam);
4833                                 else
4834                                         /* Don't schedule if we aborted the scan */
4835                                         priv->status &= ~STATUS_ROAMING;
4836                         } else if (priv->status & STATUS_SCAN_PENDING)
4837                                 schedule_delayed_work(&priv->request_scan, 0);
4838                         else if (priv->config & CFG_BACKGROUND_SCAN
4839                                  && priv->status & STATUS_ASSOCIATED)
4840                                 schedule_delayed_work(&priv->request_scan,
4841                                                       round_jiffies_relative(HZ));
4842
4843                         /* Send an empty event to user space.
4844                          * We don't send the received data on the event because
4845                          * it would require us to do complex transcoding, and
4846                          * we want to minimise the work done in the irq handler
4847                          * Use a request to extract the data.
4848                          * Also, we generate this even for any scan, regardless
4849                          * on how the scan was initiated. User space can just
4850                          * sync on periodic scan to get fresh data...
4851                          * Jean II */
4852                         if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4853                                 handle_scan_event(priv);
4854                         break;
4855                 }
4856
4857         case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4858                         struct notif_frag_length *x = &notif->u.frag_len;
4859
4860                         if (size == sizeof(*x))
4861                                 IPW_ERROR("Frag length: %d\n",
4862                                           le16_to_cpu(x->frag_length));
4863                         else
4864                                 IPW_ERROR("Frag length of wrong size %d "
4865                                           "(should be %zd)\n",
4866                                           size, sizeof(*x));
4867                         break;
4868                 }
4869
4870         case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4871                         struct notif_link_deterioration *x =
4872                             &notif->u.link_deterioration;
4873
4874                         if (size == sizeof(*x)) {
4875                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4876                                         "link deterioration: type %d, cnt %d\n",
4877                                         x->silence_notification_type,
4878                                         x->silence_count);
4879                                 memcpy(&priv->last_link_deterioration, x,
4880                                        sizeof(*x));
4881                         } else {
4882                                 IPW_ERROR("Link Deterioration of wrong size %d "
4883                                           "(should be %zd)\n",
4884                                           size, sizeof(*x));
4885                         }
4886                         break;
4887                 }
4888
4889         case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4890                         IPW_ERROR("Dino config\n");
4891                         if (priv->hcmd
4892                             && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4893                                 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4894
4895                         break;
4896                 }
4897
4898         case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4899                         struct notif_beacon_state *x = &notif->u.beacon_state;
4900                         if (size != sizeof(*x)) {
4901                                 IPW_ERROR
4902                                     ("Beacon state of wrong size %d (should "
4903                                      "be %zd)\n", size, sizeof(*x));
4904                                 break;
4905                         }
4906
4907                         if (le32_to_cpu(x->state) ==
4908                             HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4909                                 ipw_handle_missed_beacon(priv,
4910                                                          le32_to_cpu(x->
4911                                                                      number));
4912
4913                         break;
4914                 }
4915
4916         case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4917                         struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4918                         if (size == sizeof(*x)) {
4919                                 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4920                                           "0x%02x station %d\n",
4921                                           x->key_state, x->security_type,
4922                                           x->station_index);
4923                                 break;
4924                         }
4925
4926                         IPW_ERROR
4927                             ("TGi Tx Key of wrong size %d (should be %zd)\n",
4928                              size, sizeof(*x));
4929                         break;
4930                 }
4931
4932         case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4933                         struct notif_calibration *x = &notif->u.calibration;
4934
4935                         if (size == sizeof(*x)) {
4936                                 memcpy(&priv->calib, x, sizeof(*x));
4937                                 IPW_DEBUG_INFO("TODO: Calibration\n");
4938                                 break;
4939                         }
4940
4941                         IPW_ERROR
4942                             ("Calibration of wrong size %d (should be %zd)\n",
4943                              size, sizeof(*x));
4944                         break;
4945                 }
4946
4947         case HOST_NOTIFICATION_NOISE_STATS:{
4948                         if (size == sizeof(u32)) {
4949                                 priv->exp_avg_noise =
4950                                     exponential_average(priv->exp_avg_noise,
4951                                     (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4952                                     DEPTH_NOISE);
4953                                 break;
4954                         }
4955
4956                         IPW_ERROR
4957                             ("Noise stat is wrong size %d (should be %zd)\n",
4958                              size, sizeof(u32));
4959                         break;
4960                 }
4961
4962         default:
4963                 IPW_DEBUG_NOTIF("Unknown notification: "
4964                                 "subtype=%d,flags=0x%2x,size=%d\n",
4965                                 notif->subtype, notif->flags, size);
4966         }
4967 }
4968
4969 /**
4970  * Destroys all DMA structures and initialise them again
4971  *
4972  * @param priv
4973  * @return error code
4974  */
4975 static int ipw_queue_reset(struct ipw_priv *priv)
4976 {
4977         int rc = 0;
4978         /** @todo customize queue sizes */
4979         int nTx = 64, nTxCmd = 8;
4980         ipw_tx_queue_free(priv);
4981         /* Tx CMD queue */
4982         rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4983                                IPW_TX_CMD_QUEUE_READ_INDEX,
4984                                IPW_TX_CMD_QUEUE_WRITE_INDEX,
4985                                IPW_TX_CMD_QUEUE_BD_BASE,
4986                                IPW_TX_CMD_QUEUE_BD_SIZE);
4987         if (rc) {
4988                 IPW_ERROR("Tx Cmd queue init failed\n");
4989                 goto error;
4990         }
4991         /* Tx queue(s) */
4992         rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4993                                IPW_TX_QUEUE_0_READ_INDEX,
4994                                IPW_TX_QUEUE_0_WRITE_INDEX,
4995                                IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4996         if (rc) {
4997                 IPW_ERROR("Tx 0 queue init failed\n");
4998                 goto error;
4999         }
5000         rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
5001                                IPW_TX_QUEUE_1_READ_INDEX,
5002                                IPW_TX_QUEUE_1_WRITE_INDEX,
5003                                IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
5004         if (rc) {
5005                 IPW_ERROR("Tx 1 queue init failed\n");
5006                 goto error;
5007         }
5008         rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
5009                                IPW_TX_QUEUE_2_READ_INDEX,
5010                                IPW_TX_QUEUE_2_WRITE_INDEX,
5011                                IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
5012         if (rc) {
5013                 IPW_ERROR("Tx 2 queue init failed\n");
5014                 goto error;
5015         }
5016         rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
5017                                IPW_TX_QUEUE_3_READ_INDEX,
5018                                IPW_TX_QUEUE_3_WRITE_INDEX,
5019                                IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
5020         if (rc) {
5021                 IPW_ERROR("Tx 3 queue init failed\n");
5022                 goto error;
5023         }
5024         /* statistics */
5025         priv->rx_bufs_min = 0;
5026         priv->rx_pend_max = 0;
5027         return rc;
5028
5029       error:
5030         ipw_tx_queue_free(priv);
5031         return rc;
5032 }
5033
5034 /**
5035  * Reclaim Tx queue entries no more used by NIC.
5036  *
5037  * When FW advances 'R' index, all entries between old and
5038  * new 'R' index need to be reclaimed. As result, some free space
5039  * forms. If there is enough free space (> low mark), wake Tx queue.
5040  *
5041  * @note Need to protect against garbage in 'R' index
5042  * @param priv
5043  * @param txq
5044  * @param qindex
5045  * @return Number of used entries remains in the queue
5046  */
5047 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
5048                                 struct clx2_tx_queue *txq, int qindex)
5049 {
5050         u32 hw_tail;
5051         int used;
5052         struct clx2_queue *q = &txq->q;
5053
5054         hw_tail = ipw_read32(priv, q->reg_r);
5055         if (hw_tail >= q->n_bd) {
5056                 IPW_ERROR
5057                     ("Read index for DMA queue (%d) is out of range [0-%d)\n",
5058                      hw_tail, q->n_bd);
5059                 goto done;
5060         }
5061         for (; q->last_used != hw_tail;
5062              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
5063                 ipw_queue_tx_free_tfd(priv, txq);
5064                 priv->tx_packets++;
5065         }
5066       done:
5067         if ((ipw_tx_queue_space(q) > q->low_mark) &&
5068             (qindex >= 0))
5069                 netif_wake_queue(priv->net_dev);
5070         used = q->first_empty - q->last_used;
5071         if (used < 0)
5072                 used += q->n_bd;
5073
5074         return used;
5075 }
5076
5077 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
5078                              int len, int sync)
5079 {
5080         struct clx2_tx_queue *txq = &priv->txq_cmd;
5081         struct clx2_queue *q = &txq->q;
5082         struct tfd_frame *tfd;
5083
5084         if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
5085                 IPW_ERROR("No space for Tx\n");
5086                 return -EBUSY;
5087         }
5088
5089         tfd = &txq->bd[q->first_empty];
5090         txq->txb[q->first_empty] = NULL;
5091
5092         memset(tfd, 0, sizeof(*tfd));
5093         tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
5094         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5095         priv->hcmd_seq++;
5096         tfd->u.cmd.index = hcmd;
5097         tfd->u.cmd.length = len;
5098         memcpy(tfd->u.cmd.payload, buf, len);
5099         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5100         ipw_write32(priv, q->reg_w, q->first_empty);
5101         _ipw_read32(priv, 0x90);
5102
5103         return 0;
5104 }
5105
5106 /*
5107  * Rx theory of operation
5108  *
5109  * The host allocates 32 DMA target addresses and passes the host address
5110  * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5111  * 0 to 31
5112  *
5113  * Rx Queue Indexes
5114  * The host/firmware share two index registers for managing the Rx buffers.
5115  *
5116  * The READ index maps to the first position that the firmware may be writing
5117  * to -- the driver can read up to (but not including) this position and get
5118  * good data.
5119  * The READ index is managed by the firmware once the card is enabled.
5120  *
5121  * The WRITE index maps to the last position the driver has read from -- the
5122  * position preceding WRITE is the last slot the firmware can place a packet.
5123  *
5124  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5125  * WRITE = READ.
5126  *
5127  * During initialization the host sets up the READ queue position to the first
5128  * INDEX position, and WRITE to the last (READ - 1 wrapped)
5129  *
5130  * When the firmware places a packet in a buffer it will advance the READ index
5131  * and fire the RX interrupt.  The driver can then query the READ index and
5132  * process as many packets as possible, moving the WRITE index forward as it
5133  * resets the Rx queue buffers with new memory.
5134  *
5135  * The management in the driver is as follows:
5136  * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
5137  *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5138  *   to replensish the ipw->rxq->rx_free.
5139  * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5140  *   ipw->rxq is replenished and the READ INDEX is updated (updating the
5141  *   'processed' and 'read' driver indexes as well)
5142  * + A received packet is processed and handed to the kernel network stack,
5143  *   detached from the ipw->rxq.  The driver 'processed' index is updated.
5144  * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5145  *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5146  *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
5147  *   were enough free buffers and RX_STALLED is set it is cleared.
5148  *
5149  *
5150  * Driver sequence:
5151  *
5152  * ipw_rx_queue_alloc()       Allocates rx_free
5153  * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
5154  *                            ipw_rx_queue_restock
5155  * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
5156  *                            queue, updates firmware pointers, and updates
5157  *                            the WRITE index.  If insufficient rx_free buffers
5158  *                            are available, schedules ipw_rx_queue_replenish
5159  *
5160  * -- enable interrupts --
5161  * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
5162  *                            READ INDEX, detaching the SKB from the pool.
5163  *                            Moves the packet buffer from queue to rx_used.
5164  *                            Calls ipw_rx_queue_restock to refill any empty
5165  *                            slots.
5166  * ...
5167  *
5168  */
5169
5170 /*
5171  * If there are slots in the RX queue that  need to be restocked,
5172  * and we have free pre-allocated buffers, fill the ranks as much
5173  * as we can pulling from rx_free.
5174  *
5175  * This moves the 'write' index forward to catch up with 'processed', and
5176  * also updates the memory address in the firmware to reference the new
5177  * target buffer.
5178  */
5179 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5180 {
5181         struct ipw_rx_queue *rxq = priv->rxq;
5182         struct list_head *element;
5183         struct ipw_rx_mem_buffer *rxb;
5184         unsigned long flags;
5185         int write;
5186
5187         spin_lock_irqsave(&rxq->lock, flags);
5188         write = rxq->write;
5189         while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5190                 element = rxq->rx_free.next;
5191                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5192                 list_del(element);
5193
5194                 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5195                             rxb->dma_addr);
5196                 rxq->queue[rxq->write] = rxb;
5197                 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5198                 rxq->free_count--;
5199         }
5200         spin_unlock_irqrestore(&rxq->lock, flags);
5201
5202         /* If the pre-allocated buffer pool is dropping low, schedule to
5203          * refill it */
5204         if (rxq->free_count <= RX_LOW_WATERMARK)
5205                 schedule_work(&priv->rx_replenish);
5206
5207         /* If we've added more space for the firmware to place data, tell it */
5208         if (write != rxq->write)
5209                 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5210 }
5211
5212 /*
5213  * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5214  * Also restock the Rx queue via ipw_rx_queue_restock.
5215  *
5216  * This is called as a scheduled work item (except for during intialization)
5217  */
5218 static void ipw_rx_queue_replenish(void *data)
5219 {
5220         struct ipw_priv *priv = data;
5221         struct ipw_rx_queue *rxq = priv->rxq;
5222         struct list_head *element;
5223         struct ipw_rx_mem_buffer *rxb;
5224         unsigned long flags;
5225
5226         spin_lock_irqsave(&rxq->lock, flags);
5227         while (!list_empty(&rxq->rx_used)) {
5228                 element = rxq->rx_used.next;
5229                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5230                 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5231                 if (!rxb->skb) {
5232                         printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5233                                priv->net_dev->name);
5234                         /* We don't reschedule replenish work here -- we will
5235                          * call the restock method and if it still needs
5236                          * more buffers it will schedule replenish */
5237                         break;
5238                 }
5239                 list_del(element);
5240
5241                 rxb->dma_addr =
5242                     pci_map_single(priv->pci_dev, rxb->skb->data,
5243                                    IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5244
5245                 list_add_tail(&rxb->list, &rxq->rx_free);
5246                 rxq->free_count++;
5247         }
5248         spin_unlock_irqrestore(&rxq->lock, flags);
5249
5250         ipw_rx_queue_restock(priv);
5251 }
5252
5253 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5254 {
5255         struct ipw_priv *priv =
5256                 container_of(work, struct ipw_priv, rx_replenish);
5257         mutex_lock(&priv->mutex);
5258         ipw_rx_queue_replenish(priv);
5259         mutex_unlock(&priv->mutex);
5260 }
5261
5262 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5263  * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5264  * This free routine walks the list of POOL entries and if SKB is set to
5265  * non NULL it is unmapped and freed
5266  */
5267 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5268 {
5269         int i;
5270
5271         if (!rxq)
5272                 return;
5273
5274         for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5275                 if (rxq->pool[i].skb != NULL) {
5276                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5277                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5278                         dev_kfree_skb(rxq->pool[i].skb);
5279                 }
5280         }
5281
5282         kfree(rxq);
5283 }
5284
5285 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5286 {
5287         struct ipw_rx_queue *rxq;
5288         int i;
5289
5290         rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5291         if (unlikely(!rxq)) {
5292                 IPW_ERROR("memory allocation failed\n");
5293                 return NULL;
5294         }
5295         spin_lock_init(&rxq->lock);
5296         INIT_LIST_HEAD(&rxq->rx_free);
5297         INIT_LIST_HEAD(&rxq->rx_used);
5298
5299         /* Fill the rx_used queue with _all_ of the Rx buffers */
5300         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5301                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5302
5303         /* Set us so that we have processed and used all buffers, but have
5304          * not restocked the Rx queue with fresh buffers */
5305         rxq->read = rxq->write = 0;
5306         rxq->free_count = 0;
5307
5308         return rxq;
5309 }
5310
5311 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5312 {
5313         rate &= ~LIBIPW_BASIC_RATE_MASK;
5314         if (ieee_mode == IEEE_A) {
5315                 switch (rate) {
5316                 case LIBIPW_OFDM_RATE_6MB:
5317                         return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ?
5318                             1 : 0;
5319                 case LIBIPW_OFDM_RATE_9MB:
5320                         return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ?
5321                             1 : 0;
5322                 case LIBIPW_OFDM_RATE_12MB:
5323                         return priv->
5324                             rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5325                 case LIBIPW_OFDM_RATE_18MB:
5326                         return priv->
5327                             rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5328                 case LIBIPW_OFDM_RATE_24MB:
5329                         return priv->
5330                             rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5331                 case LIBIPW_OFDM_RATE_36MB:
5332                         return priv->
5333                             rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5334                 case LIBIPW_OFDM_RATE_48MB:
5335                         return priv->
5336                             rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5337                 case LIBIPW_OFDM_RATE_54MB:
5338                         return priv->
5339                             rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5340                 default:
5341                         return 0;
5342                 }
5343         }
5344
5345         /* B and G mixed */
5346         switch (rate) {
5347         case LIBIPW_CCK_RATE_1MB:
5348                 return priv->rates_mask & LIBIPW_CCK_RATE_1MB_MASK ? 1 : 0;
5349         case LIBIPW_CCK_RATE_2MB:
5350                 return priv->rates_mask & LIBIPW_CCK_RATE_2MB_MASK ? 1 : 0;
5351         case LIBIPW_CCK_RATE_5MB:
5352                 return priv->rates_mask & LIBIPW_CCK_RATE_5MB_MASK ? 1 : 0;
5353         case LIBIPW_CCK_RATE_11MB:
5354                 return priv->rates_mask & LIBIPW_CCK_RATE_11MB_MASK ? 1 : 0;
5355         }
5356
5357         /* If we are limited to B modulations, bail at this point */
5358         if (ieee_mode == IEEE_B)
5359                 return 0;
5360
5361         /* G */
5362         switch (rate) {
5363         case LIBIPW_OFDM_RATE_6MB:
5364                 return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ? 1 : 0;
5365         case LIBIPW_OFDM_RATE_9MB:
5366                 return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ? 1 : 0;
5367         case LIBIPW_OFDM_RATE_12MB:
5368                 return priv->rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5369         case LIBIPW_OFDM_RATE_18MB:
5370                 return priv->rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5371         case LIBIPW_OFDM_RATE_24MB:
5372                 return priv->rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5373         case LIBIPW_OFDM_RATE_36MB:
5374                 return priv->rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5375         case LIBIPW_OFDM_RATE_48MB:
5376                 return priv->rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5377         case LIBIPW_OFDM_RATE_54MB:
5378                 return priv->rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5379         }
5380
5381         return 0;
5382 }
5383
5384 static int ipw_compatible_rates(struct ipw_priv *priv,
5385                                 const struct libipw_network *network,
5386                                 struct ipw_supported_rates *rates)
5387 {
5388         int num_rates, i;
5389
5390         memset(rates, 0, sizeof(*rates));
5391         num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5392         rates->num_rates = 0;
5393         for (i = 0; i < num_rates; i++) {
5394                 if (!ipw_is_rate_in_mask(priv, network->mode,
5395                                          network->rates[i])) {
5396
5397                         if (network->rates[i] & LIBIPW_BASIC_RATE_MASK) {
5398                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5399                                                "rate %02X\n",
5400                                                network->rates[i]);
5401                                 rates->supported_rates[rates->num_rates++] =
5402                                     network->rates[i];
5403                                 continue;
5404                         }
5405
5406                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5407                                        network->rates[i], priv->rates_mask);
5408                         continue;
5409                 }
5410
5411                 rates->supported_rates[rates->num_rates++] = network->rates[i];
5412         }
5413
5414         num_rates = min(network->rates_ex_len,
5415                         (u8) (IPW_MAX_RATES - num_rates));
5416         for (i = 0; i < num_rates; i++) {
5417                 if (!ipw_is_rate_in_mask(priv, network->mode,
5418                                          network->rates_ex[i])) {
5419                         if (network->rates_ex[i] & LIBIPW_BASIC_RATE_MASK) {
5420                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5421                                                "rate %02X\n",
5422                                                network->rates_ex[i]);
5423                                 rates->supported_rates[rates->num_rates++] =
5424                                     network->rates[i];
5425                                 continue;
5426                         }
5427
5428                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5429                                        network->rates_ex[i], priv->rates_mask);
5430                         continue;
5431                 }
5432
5433                 rates->supported_rates[rates->num_rates++] =
5434                     network->rates_ex[i];
5435         }
5436
5437         return 1;
5438 }
5439
5440 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5441                                   const struct ipw_supported_rates *src)
5442 {
5443         u8 i;
5444         for (i = 0; i < src->num_rates; i++)
5445                 dest->supported_rates[i] = src->supported_rates[i];
5446         dest->num_rates = src->num_rates;
5447 }
5448
5449 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5450  * mask should ever be used -- right now all callers to add the scan rates are
5451  * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5452 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5453                                    u8 modulation, u32 rate_mask)
5454 {
5455         u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5456             LIBIPW_BASIC_RATE_MASK : 0;
5457
5458         if (rate_mask & LIBIPW_CCK_RATE_1MB_MASK)
5459                 rates->supported_rates[rates->num_rates++] =
5460                     LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_1MB;
5461
5462         if (rate_mask & LIBIPW_CCK_RATE_2MB_MASK)
5463                 rates->supported_rates[rates->num_rates++] =
5464                     LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_2MB;
5465
5466         if (rate_mask & LIBIPW_CCK_RATE_5MB_MASK)
5467                 rates->supported_rates[rates->num_rates++] = basic_mask |
5468                     LIBIPW_CCK_RATE_5MB;
5469
5470         if (rate_mask & LIBIPW_CCK_RATE_11MB_MASK)
5471                 rates->supported_rates[rates->num_rates++] = basic_mask |
5472                     LIBIPW_CCK_RATE_11MB;
5473 }
5474
5475 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5476                                     u8 modulation, u32 rate_mask)
5477 {
5478         u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5479             LIBIPW_BASIC_RATE_MASK : 0;
5480
5481         if (rate_mask & LIBIPW_OFDM_RATE_6MB_MASK)
5482                 rates->supported_rates[rates->num_rates++] = basic_mask |
5483                     LIBIPW_OFDM_RATE_6MB;
5484
5485         if (rate_mask & LIBIPW_OFDM_RATE_9MB_MASK)
5486                 rates->supported_rates[rates->num_rates++] =
5487                     LIBIPW_OFDM_RATE_9MB;
5488
5489         if (rate_mask & LIBIPW_OFDM_RATE_12MB_MASK)
5490                 rates->supported_rates[rates->num_rates++] = basic_mask |
5491                     LIBIPW_OFDM_RATE_12MB;
5492
5493         if (rate_mask & LIBIPW_OFDM_RATE_18MB_MASK)
5494                 rates->supported_rates[rates->num_rates++] =
5495                     LIBIPW_OFDM_RATE_18MB;
5496
5497         if (rate_mask & LIBIPW_OFDM_RATE_24MB_MASK)
5498                 rates->supported_rates[rates->num_rates++] = basic_mask |
5499                     LIBIPW_OFDM_RATE_24MB;
5500
5501         if (rate_mask & LIBIPW_OFDM_RATE_36MB_MASK)
5502                 rates->supported_rates[rates->num_rates++] =
5503                     LIBIPW_OFDM_RATE_36MB;
5504
5505         if (rate_mask & LIBIPW_OFDM_RATE_48MB_MASK)
5506                 rates->supported_rates[rates->num_rates++] =
5507                     LIBIPW_OFDM_RATE_48MB;
5508
5509         if (rate_mask & LIBIPW_OFDM_RATE_54MB_MASK)
5510                 rates->supported_rates[rates->num_rates++] =
5511                     LIBIPW_OFDM_RATE_54MB;
5512 }
5513
5514 struct ipw_network_match {
5515         struct libipw_network *network;
5516         struct ipw_supported_rates rates;
5517 };
5518
5519 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5520                                   struct ipw_network_match *match,
5521                                   struct libipw_network *network,
5522                                   int roaming)
5523 {
5524         struct ipw_supported_rates rates;
5525         DECLARE_SSID_BUF(ssid);
5526
5527         /* Verify that this network's capability is compatible with the
5528          * current mode (AdHoc or Infrastructure) */
5529         if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5530              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5531                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded due to "
5532                                 "capability mismatch.\n",
5533                                 print_ssid(ssid, network->ssid,
5534                                            network->ssid_len),
5535                                 network->bssid);
5536                 return 0;
5537         }
5538
5539         if (unlikely(roaming)) {
5540                 /* If we are roaming, then ensure check if this is a valid
5541                  * network to try and roam to */
5542                 if ((network->ssid_len != match->network->ssid_len) ||
5543                     memcmp(network->ssid, match->network->ssid,
5544                            network->ssid_len)) {
5545                         IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5546                                         "because of non-network ESSID.\n",
5547                                         print_ssid(ssid, network->ssid,
5548                                                    network->ssid_len),
5549                                         network->bssid);
5550                         return 0;
5551                 }
5552         } else {
5553                 /* If an ESSID has been configured then compare the broadcast
5554                  * ESSID to ours */
5555                 if ((priv->config & CFG_STATIC_ESSID) &&
5556                     ((network->ssid_len != priv->essid_len) ||
5557                      memcmp(network->ssid, priv->essid,
5558                             min(network->ssid_len, priv->essid_len)))) {
5559                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5560
5561                         strncpy(escaped,
5562                                 print_ssid(ssid, network->ssid,
5563                                            network->ssid_len),
5564                                 sizeof(escaped));
5565                         IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5566                                         "because of ESSID mismatch: '%s'.\n",
5567                                         escaped, network->bssid,
5568                                         print_ssid(ssid, priv->essid,
5569                                                    priv->essid_len));
5570                         return 0;
5571                 }
5572         }
5573
5574         /* If the old network rate is better than this one, don't bother
5575          * testing everything else. */
5576
5577         if (network->time_stamp[0] < match->network->time_stamp[0]) {
5578                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5579                                 "current network.\n",
5580                                 print_ssid(ssid, match->network->ssid,
5581                                            match->network->ssid_len));
5582                 return 0;
5583         } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5584                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5585                                 "current network.\n",
5586                                 print_ssid(ssid, match->network->ssid,
5587                                            match->network->ssid_len));
5588                 return 0;
5589         }
5590
5591         /* Now go through and see if the requested network is valid... */
5592         if (priv->ieee->scan_age != 0 &&
5593             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5594                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5595                                 "because of age: %ums.\n",
5596                                 print_ssid(ssid, network->ssid,
5597                                            network->ssid_len),
5598                                 network->bssid,
5599                                 jiffies_to_msecs(jiffies -
5600                                                  network->last_scanned));
5601                 return 0;
5602         }
5603
5604         if ((priv->config & CFG_STATIC_CHANNEL) &&
5605             (network->channel != priv->channel)) {
5606                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5607                                 "because of channel mismatch: %d != %d.\n",
5608                                 print_ssid(ssid, network->ssid,
5609                                            network->ssid_len),
5610                                 network->bssid,
5611                                 network->channel, priv->channel);
5612                 return 0;
5613         }
5614
5615         /* Verify privacy compatibility */
5616         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5617             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5618                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5619                                 "because of privacy mismatch: %s != %s.\n",
5620                                 print_ssid(ssid, network->ssid,
5621                                            network->ssid_len),
5622                                 network->bssid,
5623                                 priv->
5624                                 capability & CAP_PRIVACY_ON ? "on" : "off",
5625                                 network->
5626                                 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5627                                 "off");
5628                 return 0;
5629         }
5630
5631         if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5632                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5633                                 "because of the same BSSID match: %pM"
5634                                 ".\n", print_ssid(ssid, network->ssid,
5635                                                   network->ssid_len),
5636                                 network->bssid,
5637                                 priv->bssid);
5638                 return 0;
5639         }
5640
5641         /* Filter out any incompatible freq / mode combinations */
5642         if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5643                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5644                                 "because of invalid frequency/mode "
5645                                 "combination.\n",
5646                                 print_ssid(ssid, network->ssid,
5647                                            network->ssid_len),
5648                                 network->bssid);
5649                 return 0;
5650         }
5651
5652         /* Ensure that the rates supported by the driver are compatible with
5653          * this AP, including verification of basic rates (mandatory) */
5654         if (!ipw_compatible_rates(priv, network, &rates)) {
5655                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5656                                 "because configured rate mask excludes "
5657                                 "AP mandatory rate.\n",
5658                                 print_ssid(ssid, network->ssid,
5659                                            network->ssid_len),
5660                                 network->bssid);
5661                 return 0;
5662         }
5663
5664         if (rates.num_rates == 0) {
5665                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5666                                 "because of no compatible rates.\n",
5667                                 print_ssid(ssid, network->ssid,
5668                                            network->ssid_len),
5669                                 network->bssid);
5670                 return 0;
5671         }
5672
5673         /* TODO: Perform any further minimal comparititive tests.  We do not
5674          * want to put too much policy logic here; intelligent scan selection
5675          * should occur within a generic IEEE 802.11 user space tool.  */
5676
5677         /* Set up 'new' AP to this network */
5678         ipw_copy_rates(&match->rates, &rates);
5679         match->network = network;
5680         IPW_DEBUG_MERGE("Network '%s (%pM)' is a viable match.\n",
5681                         print_ssid(ssid, network->ssid, network->ssid_len),
5682                         network->bssid);
5683
5684         return 1;
5685 }
5686
5687 static void ipw_merge_adhoc_network(struct work_struct *work)
5688 {
5689         DECLARE_SSID_BUF(ssid);
5690         struct ipw_priv *priv =
5691                 container_of(work, struct ipw_priv, merge_networks);
5692         struct libipw_network *network = NULL;
5693         struct ipw_network_match match = {
5694                 .network = priv->assoc_network
5695         };
5696
5697         if ((priv->status & STATUS_ASSOCIATED) &&
5698             (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5699                 /* First pass through ROAM process -- look for a better
5700                  * network */
5701                 unsigned long flags;
5702
5703                 spin_lock_irqsave(&priv->ieee->lock, flags);
5704                 list_for_each_entry(network, &priv->ieee->network_list, list) {
5705                         if (network != priv->assoc_network)
5706                                 ipw_find_adhoc_network(priv, &match, network,
5707                                                        1);
5708                 }
5709                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5710
5711                 if (match.network == priv->assoc_network) {
5712                         IPW_DEBUG_MERGE("No better ADHOC in this network to "
5713                                         "merge to.\n");
5714                         return;
5715                 }
5716
5717                 mutex_lock(&priv->mutex);
5718                 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5719                         IPW_DEBUG_MERGE("remove network %s\n",
5720                                         print_ssid(ssid, priv->essid,
5721                                                    priv->essid_len));
5722                         ipw_remove_current_network(priv);
5723                 }
5724
5725                 ipw_disassociate(priv);
5726                 priv->assoc_network = match.network;
5727                 mutex_unlock(&priv->mutex);
5728                 return;
5729         }
5730 }
5731
5732 static int ipw_best_network(struct ipw_priv *priv,
5733                             struct ipw_network_match *match,
5734                             struct libipw_network *network, int roaming)
5735 {
5736         struct ipw_supported_rates rates;
5737         DECLARE_SSID_BUF(ssid);
5738
5739         /* Verify that this network's capability is compatible with the
5740          * current mode (AdHoc or Infrastructure) */
5741         if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5742              !(network->capability & WLAN_CAPABILITY_ESS)) ||
5743             (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5744              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5745                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded due to "
5746                                 "capability mismatch.\n",
5747                                 print_ssid(ssid, network->ssid,
5748                                            network->ssid_len),
5749                                 network->bssid);
5750                 return 0;
5751         }
5752
5753         if (unlikely(roaming)) {
5754                 /* If we are roaming, then ensure check if this is a valid
5755                  * network to try and roam to */
5756                 if ((network->ssid_len != match->network->ssid_len) ||
5757                     memcmp(network->ssid, match->network->ssid,
5758                            network->ssid_len)) {
5759                         IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5760                                         "because of non-network ESSID.\n",
5761                                         print_ssid(ssid, network->ssid,
5762                                                    network->ssid_len),
5763                                         network->bssid);
5764                         return 0;
5765                 }
5766         } else {
5767                 /* If an ESSID has been configured then compare the broadcast
5768                  * ESSID to ours */
5769                 if ((priv->config & CFG_STATIC_ESSID) &&
5770                     ((network->ssid_len != priv->essid_len) ||
5771                      memcmp(network->ssid, priv->essid,
5772                             min(network->ssid_len, priv->essid_len)))) {
5773                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5774                         strncpy(escaped,
5775                                 print_ssid(ssid, network->ssid,
5776                                            network->ssid_len),
5777                                 sizeof(escaped));
5778                         IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5779                                         "because of ESSID mismatch: '%s'.\n",
5780                                         escaped, network->bssid,
5781                                         print_ssid(ssid, priv->essid,
5782                                                    priv->essid_len));
5783                         return 0;
5784                 }
5785         }
5786
5787         /* If the old network rate is better than this one, don't bother
5788          * testing everything else. */
5789         if (match->network && match->network->stats.rssi > network->stats.rssi) {
5790                 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5791                 strncpy(escaped,
5792                         print_ssid(ssid, network->ssid, network->ssid_len),
5793                         sizeof(escaped));
5794                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded because "
5795                                 "'%s (%pM)' has a stronger signal.\n",
5796                                 escaped, network->bssid,
5797                                 print_ssid(ssid, match->network->ssid,
5798                                            match->network->ssid_len),
5799                                 match->network->bssid);
5800                 return 0;
5801         }
5802
5803         /* If this network has already had an association attempt within the
5804          * last 3 seconds, do not try and associate again... */
5805         if (network->last_associate &&
5806             time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5807                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5808                                 "because of storming (%ums since last "
5809                                 "assoc attempt).\n",
5810                                 print_ssid(ssid, network->ssid,
5811                                            network->ssid_len),
5812                                 network->bssid,
5813                                 jiffies_to_msecs(jiffies -
5814                                                  network->last_associate));
5815                 return 0;
5816         }
5817
5818         /* Now go through and see if the requested network is valid... */
5819         if (priv->ieee->scan_age != 0 &&
5820             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5821                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5822                                 "because of age: %ums.\n",
5823                                 print_ssid(ssid, network->ssid,
5824                                            network->ssid_len),
5825                                 network->bssid,
5826                                 jiffies_to_msecs(jiffies -
5827                                                  network->last_scanned));
5828                 return 0;
5829         }
5830
5831         if ((priv->config & CFG_STATIC_CHANNEL) &&
5832             (network->channel != priv->channel)) {
5833                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5834                                 "because of channel mismatch: %d != %d.\n",
5835                                 print_ssid(ssid, network->ssid,
5836                                            network->ssid_len),
5837                                 network->bssid,
5838                                 network->channel, priv->channel);
5839                 return 0;
5840         }
5841
5842         /* Verify privacy compatibility */
5843         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5844             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5845                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5846                                 "because of privacy mismatch: %s != %s.\n",
5847                                 print_ssid(ssid, network->ssid,
5848                                            network->ssid_len),
5849                                 network->bssid,
5850                                 priv->capability & CAP_PRIVACY_ON ? "on" :
5851                                 "off",
5852                                 network->capability &
5853                                 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5854                 return 0;
5855         }
5856
5857         if ((priv->config & CFG_STATIC_BSSID) &&
5858             memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5859                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5860                                 "because of BSSID mismatch: %pM.\n",
5861                                 print_ssid(ssid, network->ssid,
5862                                            network->ssid_len),
5863                                 network->bssid, priv->bssid);
5864                 return 0;
5865         }
5866
5867         /* Filter out any incompatible freq / mode combinations */
5868         if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5869                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5870                                 "because of invalid frequency/mode "
5871                                 "combination.\n",
5872                                 print_ssid(ssid, network->ssid,
5873                                            network->ssid_len),
5874                                 network->bssid);
5875                 return 0;
5876         }
5877
5878         /* Filter out invalid channel in current GEO */
5879         if (!libipw_is_valid_channel(priv->ieee, network->channel)) {
5880                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5881                                 "because of invalid channel in current GEO\n",
5882                                 print_ssid(ssid, network->ssid,
5883                                            network->ssid_len),
5884                                 network->bssid);
5885                 return 0;
5886         }
5887
5888         /* Ensure that the rates supported by the driver are compatible with
5889          * this AP, including verification of basic rates (mandatory) */
5890         if (!ipw_compatible_rates(priv, network, &rates)) {
5891                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5892                                 "because configured rate mask excludes "
5893                                 "AP mandatory rate.\n",
5894                                 print_ssid(ssid, network->ssid,
5895                                            network->ssid_len),
5896                                 network->bssid);
5897                 return 0;
5898         }
5899
5900         if (rates.num_rates == 0) {
5901                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5902                                 "because of no compatible rates.\n",
5903                                 print_ssid(ssid, network->ssid,
5904                                            network->ssid_len),
5905                                 network->bssid);
5906                 return 0;
5907         }
5908
5909         /* TODO: Perform any further minimal comparititive tests.  We do not
5910          * want to put too much policy logic here; intelligent scan selection
5911          * should occur within a generic IEEE 802.11 user space tool.  */
5912
5913         /* Set up 'new' AP to this network */
5914         ipw_copy_rates(&match->rates, &rates);
5915         match->network = network;
5916
5917         IPW_DEBUG_ASSOC("Network '%s (%pM)' is a viable match.\n",
5918                         print_ssid(ssid, network->ssid, network->ssid_len),
5919                         network->bssid);
5920
5921         return 1;
5922 }
5923
5924 static void ipw_adhoc_create(struct ipw_priv *priv,
5925                              struct libipw_network *network)
5926 {
5927         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
5928         int i;
5929
5930         /*
5931          * For the purposes of scanning, we can set our wireless mode
5932          * to trigger scans across combinations of bands, but when it
5933          * comes to creating a new ad-hoc network, we have tell the FW
5934          * exactly which band to use.
5935          *
5936          * We also have the possibility of an invalid channel for the
5937          * chossen band.  Attempting to create a new ad-hoc network
5938          * with an invalid channel for wireless mode will trigger a
5939          * FW fatal error.
5940          *
5941          */
5942         switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
5943         case LIBIPW_52GHZ_BAND:
5944                 network->mode = IEEE_A;
5945                 i = libipw_channel_to_index(priv->ieee, priv->channel);
5946                 BUG_ON(i == -1);
5947                 if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5948                         IPW_WARNING("Overriding invalid channel\n");
5949                         priv->channel = geo->a[0].channel;
5950                 }
5951                 break;
5952
5953         case LIBIPW_24GHZ_BAND:
5954                 if (priv->ieee->mode & IEEE_G)
5955                         network->mode = IEEE_G;
5956                 else
5957                         network->mode = IEEE_B;
5958                 i = libipw_channel_to_index(priv->ieee, priv->channel);
5959                 BUG_ON(i == -1);
5960                 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5961                         IPW_WARNING("Overriding invalid channel\n");
5962                         priv->channel = geo->bg[0].channel;
5963                 }
5964                 break;
5965
5966         default:
5967                 IPW_WARNING("Overriding invalid channel\n");
5968                 if (priv->ieee->mode & IEEE_A) {
5969                         network->mode = IEEE_A;
5970                         priv->channel = geo->a[0].channel;
5971                 } else if (priv->ieee->mode & IEEE_G) {
5972                         network->mode = IEEE_G;
5973                         priv->channel = geo->bg[0].channel;
5974                 } else {
5975                         network->mode = IEEE_B;
5976                         priv->channel = geo->bg[0].channel;
5977                 }
5978                 break;
5979         }
5980
5981         network->channel = priv->channel;
5982         priv->config |= CFG_ADHOC_PERSIST;
5983         ipw_create_bssid(priv, network->bssid);
5984         network->ssid_len = priv->essid_len;
5985         memcpy(network->ssid, priv->essid, priv->essid_len);
5986         memset(&network->stats, 0, sizeof(network->stats));
5987         network->capability = WLAN_CAPABILITY_IBSS;
5988         if (!(priv->config & CFG_PREAMBLE_LONG))
5989                 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5990         if (priv->capability & CAP_PRIVACY_ON)
5991                 network->capability |= WLAN_CAPABILITY_PRIVACY;
5992         network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5993         memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5994         network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5995         memcpy(network->rates_ex,
5996                &priv->rates.supported_rates[network->rates_len],
5997                network->rates_ex_len);
5998         network->last_scanned = 0;
5999         network->flags = 0;
6000         network->last_associate = 0;
6001         network->time_stamp[0] = 0;
6002         network->time_stamp[1] = 0;
6003         network->beacon_interval = 100; /* Default */
6004         network->listen_interval = 10;  /* Default */
6005         network->atim_window = 0;       /* Default */
6006         network->wpa_ie_len = 0;
6007         network->rsn_ie_len = 0;
6008 }
6009
6010 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
6011 {
6012         struct ipw_tgi_tx_key key;
6013
6014         if (!(priv->ieee->sec.flags & (1 << index)))
6015                 return;
6016
6017         key.key_id = index;
6018         memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
6019         key.security_type = type;
6020         key.station_index = 0;  /* always 0 for BSS */
6021         key.flags = 0;
6022         /* 0 for new key; previous value of counter (after fatal error) */
6023         key.tx_counter[0] = cpu_to_le32(0);
6024         key.tx_counter[1] = cpu_to_le32(0);
6025
6026         ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
6027 }
6028
6029 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
6030 {
6031         struct ipw_wep_key key;
6032         int i;
6033
6034         key.cmd_id = DINO_CMD_WEP_KEY;
6035         key.seq_num = 0;
6036
6037         /* Note: AES keys cannot be set for multiple times.
6038          * Only set it at the first time. */
6039         for (i = 0; i < 4; i++) {
6040                 key.key_index = i | type;
6041                 if (!(priv->ieee->sec.flags & (1 << i))) {
6042                         key.key_size = 0;
6043                         continue;
6044                 }
6045
6046                 key.key_size = priv->ieee->sec.key_sizes[i];
6047                 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
6048
6049                 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
6050         }
6051 }
6052
6053 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
6054 {
6055         if (priv->ieee->host_encrypt)
6056                 return;
6057
6058         switch (level) {
6059         case SEC_LEVEL_3:
6060                 priv->sys_config.disable_unicast_decryption = 0;
6061                 priv->ieee->host_decrypt = 0;
6062                 break;
6063         case SEC_LEVEL_2:
6064                 priv->sys_config.disable_unicast_decryption = 1;
6065                 priv->ieee->host_decrypt = 1;
6066                 break;
6067         case SEC_LEVEL_1:
6068                 priv->sys_config.disable_unicast_decryption = 0;
6069                 priv->ieee->host_decrypt = 0;
6070                 break;
6071         case SEC_LEVEL_0:
6072                 priv->sys_config.disable_unicast_decryption = 1;
6073                 break;
6074         default:
6075                 break;
6076         }
6077 }
6078
6079 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
6080 {
6081         if (priv->ieee->host_encrypt)
6082                 return;
6083
6084         switch (level) {
6085         case SEC_LEVEL_3:
6086                 priv->sys_config.disable_multicast_decryption = 0;
6087                 break;
6088         case SEC_LEVEL_2:
6089                 priv->sys_config.disable_multicast_decryption = 1;
6090                 break;
6091         case SEC_LEVEL_1:
6092                 priv->sys_config.disable_multicast_decryption = 0;
6093                 break;
6094         case SEC_LEVEL_0:
6095                 priv->sys_config.disable_multicast_decryption = 1;
6096                 break;
6097         default:
6098                 break;
6099         }
6100 }
6101
6102 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
6103 {
6104         switch (priv->ieee->sec.level) {
6105         case SEC_LEVEL_3:
6106                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6107                         ipw_send_tgi_tx_key(priv,
6108                                             DCT_FLAG_EXT_SECURITY_CCM,
6109                                             priv->ieee->sec.active_key);
6110
6111                 if (!priv->ieee->host_mc_decrypt)
6112                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
6113                 break;
6114         case SEC_LEVEL_2:
6115                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6116                         ipw_send_tgi_tx_key(priv,
6117                                             DCT_FLAG_EXT_SECURITY_TKIP,
6118                                             priv->ieee->sec.active_key);
6119                 break;
6120         case SEC_LEVEL_1:
6121                 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6122                 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6123                 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6124                 break;
6125         case SEC_LEVEL_0:
6126         default:
6127                 break;
6128         }
6129 }
6130
6131 static void ipw_adhoc_check(void *data)
6132 {
6133         struct ipw_priv *priv = data;
6134
6135         if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6136             !(priv->config & CFG_ADHOC_PERSIST)) {
6137                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6138                           IPW_DL_STATE | IPW_DL_ASSOC,
6139                           "Missed beacon: %d - disassociate\n",
6140                           priv->missed_adhoc_beacons);
6141                 ipw_remove_current_network(priv);
6142                 ipw_disassociate(priv);
6143                 return;
6144         }
6145
6146         schedule_delayed_work(&priv->adhoc_check,
6147                               le16_to_cpu(priv->assoc_request.beacon_interval));
6148 }
6149
6150 static void ipw_bg_adhoc_check(struct work_struct *work)
6151 {
6152         struct ipw_priv *priv =
6153                 container_of(work, struct ipw_priv, adhoc_check.work);
6154         mutex_lock(&priv->mutex);
6155         ipw_adhoc_check(priv);
6156         mutex_unlock(&priv->mutex);
6157 }
6158
6159 static void ipw_debug_config(struct ipw_priv *priv)
6160 {
6161         DECLARE_SSID_BUF(ssid);
6162         IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6163                        "[CFG 0x%08X]\n", priv->config);
6164         if (priv->config & CFG_STATIC_CHANNEL)
6165                 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6166         else
6167                 IPW_DEBUG_INFO("Channel unlocked.\n");
6168         if (priv->config & CFG_STATIC_ESSID)
6169                 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
6170                                print_ssid(ssid, priv->essid, priv->essid_len));
6171         else
6172                 IPW_DEBUG_INFO("ESSID unlocked.\n");
6173         if (priv->config & CFG_STATIC_BSSID)
6174                 IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid);
6175         else
6176                 IPW_DEBUG_INFO("BSSID unlocked.\n");
6177         if (priv->capability & CAP_PRIVACY_ON)
6178                 IPW_DEBUG_INFO("PRIVACY on\n");
6179         else
6180                 IPW_DEBUG_INFO("PRIVACY off\n");
6181         IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6182 }
6183
6184 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6185 {
6186         /* TODO: Verify that this works... */
6187         struct ipw_fixed_rate fr;
6188         u32 reg;
6189         u16 mask = 0;
6190         u16 new_tx_rates = priv->rates_mask;
6191
6192         /* Identify 'current FW band' and match it with the fixed
6193          * Tx rates */
6194
6195         switch (priv->ieee->freq_band) {
6196         case LIBIPW_52GHZ_BAND: /* A only */
6197                 /* IEEE_A */
6198                 if (priv->rates_mask & ~LIBIPW_OFDM_RATES_MASK) {
6199                         /* Invalid fixed rate mask */
6200                         IPW_DEBUG_WX
6201                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6202                         new_tx_rates = 0;
6203                         break;
6204                 }
6205
6206                 new_tx_rates >>= LIBIPW_OFDM_SHIFT_MASK_A;
6207                 break;
6208
6209         default:                /* 2.4Ghz or Mixed */
6210                 /* IEEE_B */
6211                 if (mode == IEEE_B) {
6212                         if (new_tx_rates & ~LIBIPW_CCK_RATES_MASK) {
6213                                 /* Invalid fixed rate mask */
6214                                 IPW_DEBUG_WX
6215                                     ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6216                                 new_tx_rates = 0;
6217                         }
6218                         break;
6219                 }
6220
6221                 /* IEEE_G */
6222                 if (new_tx_rates & ~(LIBIPW_CCK_RATES_MASK |
6223                                     LIBIPW_OFDM_RATES_MASK)) {
6224                         /* Invalid fixed rate mask */
6225                         IPW_DEBUG_WX
6226                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6227                         new_tx_rates = 0;
6228                         break;
6229                 }
6230
6231                 if (LIBIPW_OFDM_RATE_6MB_MASK & new_tx_rates) {
6232                         mask |= (LIBIPW_OFDM_RATE_6MB_MASK >> 1);
6233                         new_tx_rates &= ~LIBIPW_OFDM_RATE_6MB_MASK;
6234                 }
6235
6236                 if (LIBIPW_OFDM_RATE_9MB_MASK & new_tx_rates) {
6237                         mask |= (LIBIPW_OFDM_RATE_9MB_MASK >> 1);
6238                         new_tx_rates &= ~LIBIPW_OFDM_RATE_9MB_MASK;
6239                 }
6240
6241                 if (LIBIPW_OFDM_RATE_12MB_MASK & new_tx_rates) {
6242                         mask |= (LIBIPW_OFDM_RATE_12MB_MASK >> 1);
6243                         new_tx_rates &= ~LIBIPW_OFDM_RATE_12MB_MASK;
6244                 }
6245
6246                 new_tx_rates |= mask;
6247                 break;
6248         }
6249
6250         fr.tx_rates = cpu_to_le16(new_tx_rates);
6251
6252         reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6253         ipw_write_reg32(priv, reg, *(u32 *) & fr);
6254 }
6255
6256 static void ipw_abort_scan(struct ipw_priv *priv)
6257 {
6258         int err;
6259
6260         if (priv->status & STATUS_SCAN_ABORTING) {
6261                 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6262                 return;
6263         }
6264         priv->status |= STATUS_SCAN_ABORTING;
6265
6266         err = ipw_send_scan_abort(priv);
6267         if (err)
6268                 IPW_DEBUG_HC("Request to abort scan failed.\n");
6269 }
6270
6271 static void ipw_add_scan_channels(struct ipw_priv *priv,
6272                                   struct ipw_scan_request_ext *scan,
6273                                   int scan_type)
6274 {
6275         int channel_index = 0;
6276         const struct libipw_geo *geo;
6277         int i;
6278
6279         geo = libipw_get_geo(priv->ieee);
6280
6281         if (priv->ieee->freq_band & LIBIPW_52GHZ_BAND) {
6282                 int start = channel_index;
6283                 for (i = 0; i < geo->a_channels; i++) {
6284                         if ((priv->status & STATUS_ASSOCIATED) &&
6285                             geo->a[i].channel == priv->channel)
6286                                 continue;
6287                         channel_index++;
6288                         scan->channels_list[channel_index] = geo->a[i].channel;
6289                         ipw_set_scan_type(scan, channel_index,
6290                                           geo->a[i].
6291                                           flags & LIBIPW_CH_PASSIVE_ONLY ?
6292                                           IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6293                                           scan_type);
6294                 }
6295
6296                 if (start != channel_index) {
6297                         scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6298                             (channel_index - start);
6299                         channel_index++;
6300                 }
6301         }
6302
6303         if (priv->ieee->freq_band & LIBIPW_24GHZ_BAND) {
6304                 int start = channel_index;
6305                 if (priv->config & CFG_SPEED_SCAN) {
6306                         int index;
6307                         u8 channels[LIBIPW_24GHZ_CHANNELS] = {
6308                                 /* nop out the list */
6309                                 [0] = 0
6310                         };
6311
6312                         u8 channel;
6313                         while (channel_index < IPW_SCAN_CHANNELS - 1) {
6314                                 channel =
6315                                     priv->speed_scan[priv->speed_scan_pos];
6316                                 if (channel == 0) {
6317                                         priv->speed_scan_pos = 0;
6318                                         channel = priv->speed_scan[0];
6319                                 }
6320                                 if ((priv->status & STATUS_ASSOCIATED) &&
6321                                     channel == priv->channel) {
6322                                         priv->speed_scan_pos++;
6323                                         continue;
6324                                 }
6325
6326                                 /* If this channel has already been
6327                                  * added in scan, break from loop
6328                                  * and this will be the first channel
6329                                  * in the next scan.
6330                                  */
6331                                 if (channels[channel - 1] != 0)
6332                                         break;
6333
6334                                 channels[channel - 1] = 1;
6335                                 priv->speed_scan_pos++;
6336                                 channel_index++;
6337                                 scan->channels_list[channel_index] = channel;
6338                                 index =
6339                                     libipw_channel_to_index(priv->ieee, channel);
6340                                 ipw_set_scan_type(scan, channel_index,
6341                                                   geo->bg[index].
6342                                                   flags &
6343                                                   LIBIPW_CH_PASSIVE_ONLY ?
6344                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6345                                                   : scan_type);
6346                         }
6347                 } else {
6348                         for (i = 0; i < geo->bg_channels; i++) {
6349                                 if ((priv->status & STATUS_ASSOCIATED) &&
6350                                     geo->bg[i].channel == priv->channel)
6351                                         continue;
6352                                 channel_index++;
6353                                 scan->channels_list[channel_index] =
6354                                     geo->bg[i].channel;
6355                                 ipw_set_scan_type(scan, channel_index,
6356                                                   geo->bg[i].
6357                                                   flags &
6358                                                   LIBIPW_CH_PASSIVE_ONLY ?
6359                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6360                                                   : scan_type);
6361                         }
6362                 }
6363
6364                 if (start != channel_index) {
6365                         scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6366                             (channel_index - start);
6367                 }
6368         }
6369 }
6370
6371 static int ipw_passive_dwell_time(struct ipw_priv *priv)
6372 {
6373         /* staying on passive channels longer than the DTIM interval during a
6374          * scan, while associated, causes the firmware to cancel the scan
6375          * without notification. Hence, don't stay on passive channels longer
6376          * than the beacon interval.
6377          */
6378         if (priv->status & STATUS_ASSOCIATED
6379             && priv->assoc_network->beacon_interval > 10)
6380                 return priv->assoc_network->beacon_interval - 10;
6381         else
6382                 return 120;
6383 }
6384
6385 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6386 {
6387         struct ipw_scan_request_ext scan;
6388         int err = 0, scan_type;
6389
6390         if (!(priv->status & STATUS_INIT) ||
6391             (priv->status & STATUS_EXIT_PENDING))
6392                 return 0;
6393
6394         mutex_lock(&priv->mutex);
6395
6396         if (direct && (priv->direct_scan_ssid_len == 0)) {
6397                 IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6398                 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6399                 goto done;
6400         }
6401
6402         if (priv->status & STATUS_SCANNING) {
6403                 IPW_DEBUG_HC("Concurrent scan requested.  Queuing.\n");
6404                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6405                                         STATUS_SCAN_PENDING;
6406                 goto done;
6407         }
6408
6409         if (!(priv->status & STATUS_SCAN_FORCED) &&
6410             priv->status & STATUS_SCAN_ABORTING) {
6411                 IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
6412                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6413                                         STATUS_SCAN_PENDING;
6414                 goto done;
6415         }
6416
6417         if (priv->status & STATUS_RF_KILL_MASK) {
6418                 IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6419                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6420                                         STATUS_SCAN_PENDING;
6421                 goto done;
6422         }
6423
6424         memset(&scan, 0, sizeof(scan));
6425         scan.full_scan_index = cpu_to_le32(libipw_get_scans(priv->ieee));
6426
6427         if (type == IW_SCAN_TYPE_PASSIVE) {
6428                 IPW_DEBUG_WX("use passive scanning\n");
6429                 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6430                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6431                         cpu_to_le16(ipw_passive_dwell_time(priv));
6432                 ipw_add_scan_channels(priv, &scan, scan_type);
6433                 goto send_request;
6434         }
6435
6436         /* Use active scan by default. */
6437         if (priv->config & CFG_SPEED_SCAN)
6438                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6439                         cpu_to_le16(30);
6440         else
6441                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6442                         cpu_to_le16(20);
6443
6444         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6445                 cpu_to_le16(20);
6446
6447         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6448                 cpu_to_le16(ipw_passive_dwell_time(priv));
6449         scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6450
6451 #ifdef CONFIG_IPW2200_MONITOR
6452         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6453                 u8 channel;
6454                 u8 band = 0;
6455
6456                 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
6457                 case LIBIPW_52GHZ_BAND:
6458                         band = (u8) (IPW_A_MODE << 6) | 1;
6459                         channel = priv->channel;
6460                         break;
6461
6462                 case LIBIPW_24GHZ_BAND:
6463                         band = (u8) (IPW_B_MODE << 6) | 1;
6464                         channel = priv->channel;
6465                         break;
6466
6467                 default:
6468                         band = (u8) (IPW_B_MODE << 6) | 1;
6469                         channel = 9;
6470                         break;
6471                 }
6472
6473                 scan.channels_list[0] = band;
6474                 scan.channels_list[1] = channel;
6475                 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6476
6477                 /* NOTE:  The card will sit on this channel for this time
6478                  * period.  Scan aborts are timing sensitive and frequently
6479                  * result in firmware restarts.  As such, it is best to
6480                  * set a small dwell_time here and just keep re-issuing
6481                  * scans.  Otherwise fast channel hopping will not actually
6482                  * hop channels.
6483                  *
6484                  * TODO: Move SPEED SCAN support to all modes and bands */
6485                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6486                         cpu_to_le16(2000);
6487         } else {
6488 #endif                          /* CONFIG_IPW2200_MONITOR */
6489                 /* Honor direct scans first, otherwise if we are roaming make
6490                  * this a direct scan for the current network.  Finally,
6491                  * ensure that every other scan is a fast channel hop scan */
6492                 if (direct) {
6493                         err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6494                                             priv->direct_scan_ssid_len);
6495                         if (err) {
6496                                 IPW_DEBUG_HC("Attempt to send SSID command  "
6497                                              "failed\n");
6498                                 goto done;
6499                         }
6500
6501                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6502                 } else if ((priv->status & STATUS_ROAMING)
6503                            || (!(priv->status & STATUS_ASSOCIATED)
6504                                && (priv->config & CFG_STATIC_ESSID)
6505                                && (le32_to_cpu(scan.full_scan_index) % 2))) {
6506                         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6507                         if (err) {
6508                                 IPW_DEBUG_HC("Attempt to send SSID command "
6509                                              "failed.\n");
6510                                 goto done;
6511                         }
6512
6513                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6514                 } else
6515                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6516
6517                 ipw_add_scan_channels(priv, &scan, scan_type);
6518 #ifdef CONFIG_IPW2200_MONITOR
6519         }
6520 #endif
6521
6522 send_request:
6523         err = ipw_send_scan_request_ext(priv, &scan);
6524         if (err) {
6525                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6526                 goto done;
6527         }
6528
6529         priv->status |= STATUS_SCANNING;
6530         if (direct) {
6531                 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6532                 priv->direct_scan_ssid_len = 0;
6533         } else
6534                 priv->status &= ~STATUS_SCAN_PENDING;
6535
6536         schedule_delayed_work(&priv->scan_check, IPW_SCAN_CHECK_WATCHDOG);
6537 done:
6538         mutex_unlock(&priv->mutex);
6539         return err;
6540 }
6541
6542 static void ipw_request_passive_scan(struct work_struct *work)
6543 {
6544         struct ipw_priv *priv =
6545                 container_of(work, struct ipw_priv, request_passive_scan.work);
6546         ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6547 }
6548
6549 static void ipw_request_scan(struct work_struct *work)
6550 {
6551         struct ipw_priv *priv =
6552                 container_of(work, struct ipw_priv, request_scan.work);
6553         ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6554 }
6555
6556 static void ipw_request_direct_scan(struct work_struct *work)
6557 {
6558         struct ipw_priv *priv =
6559                 container_of(work, struct ipw_priv, request_direct_scan.work);
6560         ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6561 }
6562
6563 static void ipw_bg_abort_scan(struct work_struct *work)
6564 {
6565         struct ipw_priv *priv =
6566                 container_of(work, struct ipw_priv, abort_scan);
6567         mutex_lock(&priv->mutex);
6568         ipw_abort_scan(priv);
6569         mutex_unlock(&priv->mutex);
6570 }
6571
6572 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6573 {
6574         /* This is called when wpa_supplicant loads and closes the driver
6575          * interface. */
6576         priv->ieee->wpa_enabled = value;
6577         return 0;
6578 }
6579
6580 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6581 {
6582         struct libipw_device *ieee = priv->ieee;
6583         struct libipw_security sec = {
6584                 .flags = SEC_AUTH_MODE,
6585         };
6586         int ret = 0;
6587
6588         if (value & IW_AUTH_ALG_SHARED_KEY) {
6589                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6590                 ieee->open_wep = 0;
6591         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6592                 sec.auth_mode = WLAN_AUTH_OPEN;
6593                 ieee->open_wep = 1;
6594         } else if (value & IW_AUTH_ALG_LEAP) {
6595                 sec.auth_mode = WLAN_AUTH_LEAP;
6596                 ieee->open_wep = 1;
6597         } else
6598                 return -EINVAL;
6599
6600         if (ieee->set_security)
6601                 ieee->set_security(ieee->dev, &sec);
6602         else
6603                 ret = -EOPNOTSUPP;
6604
6605         return ret;
6606 }
6607
6608 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6609                                 int wpa_ie_len)
6610 {
6611         /* make sure WPA is enabled */
6612         ipw_wpa_enable(priv, 1);
6613 }
6614
6615 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6616                             char *capabilities, int length)
6617 {
6618         IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6619
6620         return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6621                                 capabilities);
6622 }
6623
6624 /*
6625  * WE-18 support
6626  */
6627
6628 /* SIOCSIWGENIE */
6629 static int ipw_wx_set_genie(struct net_device *dev,
6630                             struct iw_request_info *info,
6631                             union iwreq_data *wrqu, char *extra)
6632 {
6633         struct ipw_priv *priv = libipw_priv(dev);
6634         struct libipw_device *ieee = priv->ieee;
6635         u8 *buf;
6636         int err = 0;
6637
6638         if (wrqu->data.length > MAX_WPA_IE_LEN ||
6639             (wrqu->data.length && extra == NULL))
6640                 return -EINVAL;
6641
6642         if (wrqu->data.length) {
6643                 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
6644                 if (buf == NULL) {
6645                         err = -ENOMEM;
6646                         goto out;
6647                 }
6648
6649                 kfree(ieee->wpa_ie);
6650                 ieee->wpa_ie = buf;
6651                 ieee->wpa_ie_len = wrqu->data.length;
6652         } else {
6653                 kfree(ieee->wpa_ie);
6654                 ieee->wpa_ie = NULL;
6655                 ieee->wpa_ie_len = 0;
6656         }
6657
6658         ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6659       out:
6660         return err;
6661 }
6662
6663 /* SIOCGIWGENIE */
6664 static int ipw_wx_get_genie(struct net_device *dev,
6665                             struct iw_request_info *info,
6666                             union iwreq_data *wrqu, char *extra)
6667 {
6668         struct ipw_priv *priv = libipw_priv(dev);
6669         struct libipw_device *ieee = priv->ieee;
6670         int err = 0;
6671
6672         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6673                 wrqu->data.length = 0;
6674                 goto out;
6675         }
6676
6677         if (wrqu->data.length < ieee->wpa_ie_len) {
6678                 err = -E2BIG;
6679                 goto out;
6680         }
6681
6682         wrqu->data.length = ieee->wpa_ie_len;
6683         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6684
6685       out:
6686         return err;
6687 }
6688
6689 static int wext_cipher2level(int cipher)
6690 {
6691         switch (cipher) {
6692         case IW_AUTH_CIPHER_NONE:
6693                 return SEC_LEVEL_0;
6694         case IW_AUTH_CIPHER_WEP40:
6695         case IW_AUTH_CIPHER_WEP104:
6696                 return SEC_LEVEL_1;
6697         case IW_AUTH_CIPHER_TKIP:
6698                 return SEC_LEVEL_2;
6699         case IW_AUTH_CIPHER_CCMP:
6700                 return SEC_LEVEL_3;
6701         default:
6702                 return -1;
6703         }
6704 }
6705
6706 /* SIOCSIWAUTH */
6707 static int ipw_wx_set_auth(struct net_device *dev,
6708                            struct iw_request_info *info,
6709                            union iwreq_data *wrqu, char *extra)
6710 {
6711         struct ipw_priv *priv = libipw_priv(dev);
6712         struct libipw_device *ieee = priv->ieee;
6713         struct iw_param *param = &wrqu->param;
6714         struct lib80211_crypt_data *crypt;
6715         unsigned long flags;
6716         int ret = 0;
6717
6718         switch (param->flags & IW_AUTH_INDEX) {
6719         case IW_AUTH_WPA_VERSION:
6720                 break;
6721         case IW_AUTH_CIPHER_PAIRWISE:
6722                 ipw_set_hw_decrypt_unicast(priv,
6723                                            wext_cipher2level(param->value));
6724                 break;
6725         case IW_AUTH_CIPHER_GROUP:
6726                 ipw_set_hw_decrypt_multicast(priv,
6727                                              wext_cipher2level(param->value));
6728                 break;
6729         case IW_AUTH_KEY_MGMT:
6730                 /*
6731                  * ipw2200 does not use these parameters
6732                  */
6733                 break;
6734
6735         case IW_AUTH_TKIP_COUNTERMEASURES:
6736                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6737                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6738                         break;
6739
6740                 flags = crypt->ops->get_flags(crypt->priv);
6741
6742                 if (param->value)
6743                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6744                 else
6745                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6746
6747                 crypt->ops->set_flags(flags, crypt->priv);
6748
6749                 break;
6750
6751         case IW_AUTH_DROP_UNENCRYPTED:{
6752                         /* HACK:
6753                          *
6754                          * wpa_supplicant calls set_wpa_enabled when the driver
6755                          * is loaded and unloaded, regardless of if WPA is being
6756                          * used.  No other calls are made which can be used to
6757                          * determine if encryption will be used or not prior to
6758                          * association being expected.  If encryption is not being
6759                          * used, drop_unencrypted is set to false, else true -- we
6760                          * can use this to determine if the CAP_PRIVACY_ON bit should
6761                          * be set.
6762                          */
6763                         struct libipw_security sec = {
6764                                 .flags = SEC_ENABLED,
6765                                 .enabled = param->value,
6766                         };
6767                         priv->ieee->drop_unencrypted = param->value;
6768                         /* We only change SEC_LEVEL for open mode. Others
6769                          * are set by ipw_wpa_set_encryption.
6770                          */
6771                         if (!param->value) {
6772                                 sec.flags |= SEC_LEVEL;
6773                                 sec.level = SEC_LEVEL_0;
6774                         } else {
6775                                 sec.flags |= SEC_LEVEL;
6776                                 sec.level = SEC_LEVEL_1;
6777                         }
6778                         if (priv->ieee->set_security)
6779                                 priv->ieee->set_security(priv->ieee->dev, &sec);
6780                         break;
6781                 }
6782
6783         case IW_AUTH_80211_AUTH_ALG:
6784                 ret = ipw_wpa_set_auth_algs(priv, param->value);
6785                 break;
6786
6787         case IW_AUTH_WPA_ENABLED:
6788                 ret = ipw_wpa_enable(priv, param->value);
6789                 ipw_disassociate(priv);
6790                 break;
6791
6792         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6793                 ieee->ieee802_1x = param->value;
6794                 break;
6795
6796         case IW_AUTH_PRIVACY_INVOKED:
6797                 ieee->privacy_invoked = param->value;
6798                 break;
6799
6800         default:
6801                 return -EOPNOTSUPP;
6802         }
6803         return ret;
6804 }
6805
6806 /* SIOCGIWAUTH */
6807 static int ipw_wx_get_auth(struct net_device *dev,
6808                            struct iw_request_info *info,
6809                            union iwreq_data *wrqu, char *extra)
6810 {
6811         struct ipw_priv *priv = libipw_priv(dev);
6812         struct libipw_device *ieee = priv->ieee;
6813         struct lib80211_crypt_data *crypt;
6814         struct iw_param *param = &wrqu->param;
6815         int ret = 0;
6816
6817         switch (param->flags & IW_AUTH_INDEX) {
6818         case IW_AUTH_WPA_VERSION:
6819         case IW_AUTH_CIPHER_PAIRWISE:
6820         case IW_AUTH_CIPHER_GROUP:
6821         case IW_AUTH_KEY_MGMT:
6822                 /*
6823                  * wpa_supplicant will control these internally
6824                  */
6825                 ret = -EOPNOTSUPP;
6826                 break;
6827
6828         case IW_AUTH_TKIP_COUNTERMEASURES:
6829                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6830                 if (!crypt || !crypt->ops->get_flags)
6831                         break;
6832
6833                 param->value = (crypt->ops->get_flags(crypt->priv) &
6834                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6835
6836                 break;
6837
6838         case IW_AUTH_DROP_UNENCRYPTED:
6839                 param->value = ieee->drop_unencrypted;
6840                 break;
6841
6842         case IW_AUTH_80211_AUTH_ALG:
6843                 param->value = ieee->sec.auth_mode;
6844                 break;
6845
6846         case IW_AUTH_WPA_ENABLED:
6847                 param->value = ieee->wpa_enabled;
6848                 break;
6849
6850         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6851                 param->value = ieee->ieee802_1x;
6852                 break;
6853
6854         case IW_AUTH_ROAMING_CONTROL:
6855         case IW_AUTH_PRIVACY_INVOKED:
6856                 param->value = ieee->privacy_invoked;
6857                 break;
6858
6859         default:
6860                 return -EOPNOTSUPP;
6861         }
6862         return 0;
6863 }
6864
6865 /* SIOCSIWENCODEEXT */
6866 static int ipw_wx_set_encodeext(struct net_device *dev,
6867                                 struct iw_request_info *info,
6868                                 union iwreq_data *wrqu, char *extra)
6869 {
6870         struct ipw_priv *priv = libipw_priv(dev);
6871         struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6872
6873         if (hwcrypto) {
6874                 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6875                         /* IPW HW can't build TKIP MIC,
6876                            host decryption still needed */
6877                         if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6878                                 priv->ieee->host_mc_decrypt = 1;
6879                         else {
6880                                 priv->ieee->host_encrypt = 0;
6881                                 priv->ieee->host_encrypt_msdu = 1;
6882                                 priv->ieee->host_decrypt = 1;
6883                         }
6884                 } else {
6885                         priv->ieee->host_encrypt = 0;
6886                         priv->ieee->host_encrypt_msdu = 0;
6887                         priv->ieee->host_decrypt = 0;
6888                         priv->ieee->host_mc_decrypt = 0;
6889                 }
6890         }
6891
6892         return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6893 }
6894
6895 /* SIOCGIWENCODEEXT */
6896 static int ipw_wx_get_encodeext(struct net_device *dev,
6897                                 struct iw_request_info *info,
6898                                 union iwreq_data *wrqu, char *extra)
6899 {
6900         struct ipw_priv *priv = libipw_priv(dev);
6901         return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6902 }
6903
6904 /* SIOCSIWMLME */
6905 static int ipw_wx_set_mlme(struct net_device *dev,
6906                            struct iw_request_info *info,
6907                            union iwreq_data *wrqu, char *extra)
6908 {
6909         struct ipw_priv *priv = libipw_priv(dev);
6910         struct iw_mlme *mlme = (struct iw_mlme *)extra;
6911         __le16 reason;
6912
6913         reason = cpu_to_le16(mlme->reason_code);
6914
6915         switch (mlme->cmd) {
6916         case IW_MLME_DEAUTH:
6917                 /* silently ignore */
6918                 break;
6919
6920         case IW_MLME_DISASSOC:
6921                 ipw_disassociate(priv);
6922                 break;
6923
6924         default:
6925                 return -EOPNOTSUPP;
6926         }
6927         return 0;
6928 }
6929
6930 #ifdef CONFIG_IPW2200_QOS
6931
6932 /* QoS */
6933 /*
6934 * get the modulation type of the current network or
6935 * the card current mode
6936 */
6937 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6938 {
6939         u8 mode = 0;
6940
6941         if (priv->status & STATUS_ASSOCIATED) {
6942                 unsigned long flags;
6943
6944                 spin_lock_irqsave(&priv->ieee->lock, flags);
6945                 mode = priv->assoc_network->mode;
6946                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6947         } else {
6948                 mode = priv->ieee->mode;
6949         }
6950         IPW_DEBUG_QOS("QoS network/card mode %d\n", mode);
6951         return mode;
6952 }
6953
6954 /*
6955 * Handle management frame beacon and probe response
6956 */
6957 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6958                                          int active_network,
6959                                          struct libipw_network *network)
6960 {
6961         u32 size = sizeof(struct libipw_qos_parameters);
6962
6963         if (network->capability & WLAN_CAPABILITY_IBSS)
6964                 network->qos_data.active = network->qos_data.supported;
6965
6966         if (network->flags & NETWORK_HAS_QOS_MASK) {
6967                 if (active_network &&
6968                     (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6969                         network->qos_data.active = network->qos_data.supported;
6970
6971                 if ((network->qos_data.active == 1) && (active_network == 1) &&
6972                     (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6973                     (network->qos_data.old_param_count !=
6974                      network->qos_data.param_count)) {
6975                         network->qos_data.old_param_count =
6976                             network->qos_data.param_count;
6977                         schedule_work(&priv->qos_activate);
6978                         IPW_DEBUG_QOS("QoS parameters change call "
6979                                       "qos_activate\n");
6980                 }
6981         } else {
6982                 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6983                         memcpy(&network->qos_data.parameters,
6984                                &def_parameters_CCK, size);
6985                 else
6986                         memcpy(&network->qos_data.parameters,
6987                                &def_parameters_OFDM, size);
6988
6989                 if ((network->qos_data.active == 1) && (active_network == 1)) {
6990                         IPW_DEBUG_QOS("QoS was disabled call qos_activate\n");
6991                         schedule_work(&priv->qos_activate);
6992                 }
6993
6994                 network->qos_data.active = 0;
6995                 network->qos_data.supported = 0;
6996         }
6997         if ((priv->status & STATUS_ASSOCIATED) &&
6998             (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6999                 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
7000                         if (network->capability & WLAN_CAPABILITY_IBSS)
7001                                 if ((network->ssid_len ==
7002                                      priv->assoc_network->ssid_len) &&
7003                                     !memcmp(network->ssid,
7004                                             priv->assoc_network->ssid,
7005                                             network->ssid_len)) {
7006                                         schedule_work(&priv->merge_networks);
7007                                 }
7008         }
7009
7010         return 0;
7011 }
7012
7013 /*
7014 * This function set up the firmware to support QoS. It sends
7015 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
7016 */
7017 static int ipw_qos_activate(struct ipw_priv *priv,
7018                             struct libipw_qos_data *qos_network_data)
7019 {
7020         int err;
7021         struct libipw_qos_parameters qos_parameters[QOS_QOS_SETS];
7022         struct libipw_qos_parameters *active_one = NULL;
7023         u32 size = sizeof(struct libipw_qos_parameters);
7024         u32 burst_duration;
7025         int i;
7026         u8 type;
7027
7028         type = ipw_qos_current_mode(priv);
7029
7030         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
7031         memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
7032         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
7033         memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
7034
7035         if (qos_network_data == NULL) {
7036                 if (type == IEEE_B) {
7037                         IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
7038                         active_one = &def_parameters_CCK;
7039                 } else
7040                         active_one = &def_parameters_OFDM;
7041
7042                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7043                 burst_duration = ipw_qos_get_burst_duration(priv);
7044                 for (i = 0; i < QOS_QUEUE_NUM; i++)
7045                         qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
7046                             cpu_to_le16(burst_duration);
7047         } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7048                 if (type == IEEE_B) {
7049                         IPW_DEBUG_QOS("QoS activate IBSS network mode %d\n",
7050                                       type);
7051                         if (priv->qos_data.qos_enable == 0)
7052                                 active_one = &def_parameters_CCK;
7053                         else
7054                                 active_one = priv->qos_data.def_qos_parm_CCK;
7055                 } else {
7056                         if (priv->qos_data.qos_enable == 0)
7057                                 active_one = &def_parameters_OFDM;
7058                         else
7059                                 active_one = priv->qos_data.def_qos_parm_OFDM;
7060                 }
7061                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7062         } else {
7063                 unsigned long flags;
7064                 int active;
7065
7066                 spin_lock_irqsave(&priv->ieee->lock, flags);
7067                 active_one = &(qos_network_data->parameters);
7068                 qos_network_data->old_param_count =
7069                     qos_network_data->param_count;
7070                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7071                 active = qos_network_data->supported;
7072                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7073
7074                 if (active == 0) {
7075                         burst_duration = ipw_qos_get_burst_duration(priv);
7076                         for (i = 0; i < QOS_QUEUE_NUM; i++)
7077                                 qos_parameters[QOS_PARAM_SET_ACTIVE].
7078                                     tx_op_limit[i] = cpu_to_le16(burst_duration);
7079                 }
7080         }
7081
7082         IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
7083         err = ipw_send_qos_params_command(priv, &qos_parameters[0]);
7084         if (err)
7085                 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
7086
7087         return err;
7088 }
7089
7090 /*
7091 * send IPW_CMD_WME_INFO to the firmware
7092 */
7093 static int ipw_qos_set_info_element(struct ipw_priv *priv)
7094 {
7095         int ret = 0;
7096         struct libipw_qos_information_element qos_info;
7097
7098         if (priv == NULL)
7099                 return -1;
7100
7101         qos_info.elementID = QOS_ELEMENT_ID;
7102         qos_info.length = sizeof(struct libipw_qos_information_element) - 2;
7103
7104         qos_info.version = QOS_VERSION_1;
7105         qos_info.ac_info = 0;
7106
7107         memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
7108         qos_info.qui_type = QOS_OUI_TYPE;
7109         qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
7110
7111         ret = ipw_send_qos_info_command(priv, &qos_info);
7112         if (ret != 0) {
7113                 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
7114         }
7115         return ret;
7116 }
7117
7118 /*
7119 * Set the QoS parameter with the association request structure
7120 */
7121 static int ipw_qos_association(struct ipw_priv *priv,
7122                                struct libipw_network *network)
7123 {
7124         int err = 0;
7125         struct libipw_qos_data *qos_data = NULL;
7126         struct libipw_qos_data ibss_data = {
7127                 .supported = 1,
7128                 .active = 1,
7129         };
7130
7131         switch (priv->ieee->iw_mode) {
7132         case IW_MODE_ADHOC:
7133                 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7134
7135                 qos_data = &ibss_data;
7136                 break;
7137
7138         case IW_MODE_INFRA:
7139                 qos_data = &network->qos_data;
7140                 break;
7141
7142         default:
7143                 BUG();
7144                 break;
7145         }
7146
7147         err = ipw_qos_activate(priv, qos_data);
7148         if (err) {
7149                 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7150                 return err;
7151         }
7152
7153         if (priv->qos_data.qos_enable && qos_data->supported) {
7154                 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7155                 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7156                 return ipw_qos_set_info_element(priv);
7157         }
7158
7159         return 0;
7160 }
7161
7162 /*
7163 * handling the beaconing responses. if we get different QoS setting
7164 * off the network from the associated setting, adjust the QoS
7165 * setting
7166 */
7167 static int ipw_qos_association_resp(struct ipw_priv *priv,
7168                                     struct libipw_network *network)
7169 {
7170         int ret = 0;
7171         unsigned long flags;
7172         u32 size = sizeof(struct libipw_qos_parameters);
7173         int set_qos_param = 0;
7174
7175         if ((priv == NULL) || (network == NULL) ||
7176             (priv->assoc_network == NULL))
7177                 return ret;
7178
7179         if (!(priv->status & STATUS_ASSOCIATED))
7180                 return ret;
7181
7182         if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7183                 return ret;
7184
7185         spin_lock_irqsave(&priv->ieee->lock, flags);
7186         if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7187                 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7188                        sizeof(struct libipw_qos_data));
7189                 priv->assoc_network->qos_data.active = 1;
7190                 if ((network->qos_data.old_param_count !=
7191                      network->qos_data.param_count)) {
7192                         set_qos_param = 1;
7193                         network->qos_data.old_param_count =
7194                             network->qos_data.param_count;
7195                 }
7196
7197         } else {
7198                 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7199                         memcpy(&priv->assoc_network->qos_data.parameters,
7200                                &def_parameters_CCK, size);
7201                 else
7202                         memcpy(&priv->assoc_network->qos_data.parameters,
7203                                &def_parameters_OFDM, size);
7204                 priv->assoc_network->qos_data.active = 0;
7205                 priv->assoc_network->qos_data.supported = 0;
7206                 set_qos_param = 1;
7207         }
7208
7209         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7210
7211         if (set_qos_param == 1)
7212                 schedule_work(&priv->qos_activate);
7213
7214         return ret;
7215 }
7216
7217 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7218 {
7219         u32 ret = 0;
7220
7221         if ((priv == NULL))
7222                 return 0;
7223
7224         if (!(priv->ieee->modulation & LIBIPW_OFDM_MODULATION))
7225                 ret = priv->qos_data.burst_duration_CCK;
7226         else
7227                 ret = priv->qos_data.burst_duration_OFDM;
7228
7229         return ret;
7230 }
7231
7232 /*
7233 * Initialize the setting of QoS global
7234 */
7235 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7236                          int burst_enable, u32 burst_duration_CCK,
7237                          u32 burst_duration_OFDM)
7238 {
7239         priv->qos_data.qos_enable = enable;
7240
7241         if (priv->qos_data.qos_enable) {
7242                 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7243                 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7244                 IPW_DEBUG_QOS("QoS is enabled\n");
7245         } else {
7246                 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7247                 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7248                 IPW_DEBUG_QOS("QoS is not enabled\n");
7249         }
7250
7251         priv->qos_data.burst_enable = burst_enable;
7252
7253         if (burst_enable) {
7254                 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7255                 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7256         } else {
7257                 priv->qos_data.burst_duration_CCK = 0;
7258                 priv->qos_data.burst_duration_OFDM = 0;
7259         }
7260 }
7261
7262 /*
7263 * map the packet priority to the right TX Queue
7264 */
7265 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7266 {
7267         if (priority > 7 || !priv->qos_data.qos_enable)
7268                 priority = 0;
7269
7270         return from_priority_to_tx_queue[priority] - 1;
7271 }
7272
7273 static int ipw_is_qos_active(struct net_device *dev,
7274                              struct sk_buff *skb)
7275 {
7276         struct ipw_priv *priv = libipw_priv(dev);
7277         struct libipw_qos_data *qos_data = NULL;
7278         int active, supported;
7279         u8 *daddr = skb->data + ETH_ALEN;
7280         int unicast = !is_multicast_ether_addr(daddr);
7281
7282         if (!(priv->status & STATUS_ASSOCIATED))
7283                 return 0;
7284
7285         qos_data = &priv->assoc_network->qos_data;
7286
7287         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7288                 if (unicast == 0)
7289                         qos_data->active = 0;
7290                 else
7291                         qos_data->active = qos_data->supported;
7292         }
7293         active = qos_data->active;
7294         supported = qos_data->supported;
7295         IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
7296                       "unicast %d\n",
7297                       priv->qos_data.qos_enable, active, supported, unicast);
7298         if (active && priv->qos_data.qos_enable)
7299                 return 1;
7300
7301         return 0;
7302
7303 }
7304 /*
7305 * add QoS parameter to the TX command
7306 */
7307 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7308                                         u16 priority,
7309                                         struct tfd_data *tfd)
7310 {
7311         int tx_queue_id = 0;
7312
7313
7314         tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7315         tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7316
7317         if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7318                 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7319                 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7320         }
7321         return 0;
7322 }
7323
7324 /*
7325 * background support to run QoS activate functionality
7326 */
7327 static void ipw_bg_qos_activate(struct work_struct *work)
7328 {
7329         struct ipw_priv *priv =
7330                 container_of(work, struct ipw_priv, qos_activate);
7331
7332         mutex_lock(&priv->mutex);
7333
7334         if (priv->status & STATUS_ASSOCIATED)
7335                 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7336
7337         mutex_unlock(&priv->mutex);
7338 }
7339
7340 static int ipw_handle_probe_response(struct net_device *dev,
7341                                      struct libipw_probe_response *resp,
7342                                      struct libipw_network *network)
7343 {
7344         struct ipw_priv *priv = libipw_priv(dev);
7345         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7346                               (network == priv->assoc_network));
7347
7348         ipw_qos_handle_probe_response(priv, active_network, network);
7349
7350         return 0;
7351 }
7352
7353 static int ipw_handle_beacon(struct net_device *dev,
7354                              struct libipw_beacon *resp,
7355                              struct libipw_network *network)
7356 {
7357         struct ipw_priv *priv = libipw_priv(dev);
7358         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7359                               (network == priv->assoc_network));
7360
7361         ipw_qos_handle_probe_response(priv, active_network, network);
7362
7363         return 0;
7364 }
7365
7366 static int ipw_handle_assoc_response(struct net_device *dev,
7367                                      struct libipw_assoc_response *resp,
7368                                      struct libipw_network *network)
7369 {
7370         struct ipw_priv *priv = libipw_priv(dev);
7371         ipw_qos_association_resp(priv, network);
7372         return 0;
7373 }
7374
7375 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
7376                                        *qos_param)
7377 {
7378         return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7379                                 sizeof(*qos_param) * 3, qos_param);
7380 }
7381
7382 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
7383                                      *qos_param)
7384 {
7385         return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7386                                 qos_param);
7387 }
7388
7389 #endif                          /* CONFIG_IPW2200_QOS */
7390
7391 static int ipw_associate_network(struct ipw_priv *priv,
7392                                  struct libipw_network *network,
7393                                  struct ipw_supported_rates *rates, int roaming)
7394 {
7395         int err;
7396         DECLARE_SSID_BUF(ssid);
7397
7398         if (priv->config & CFG_FIXED_RATE)
7399                 ipw_set_fixed_rate(priv, network->mode);
7400
7401         if (!(priv->config & CFG_STATIC_ESSID)) {
7402                 priv->essid_len = min(network->ssid_len,
7403                                       (u8) IW_ESSID_MAX_SIZE);
7404                 memcpy(priv->essid, network->ssid, priv->essid_len);
7405         }
7406
7407         network->last_associate = jiffies;
7408
7409         memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7410         priv->assoc_request.channel = network->channel;
7411         priv->assoc_request.auth_key = 0;
7412
7413         if ((priv->capability & CAP_PRIVACY_ON) &&
7414             (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7415                 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7416                 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7417
7418                 if (priv->ieee->sec.level == SEC_LEVEL_1)
7419                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7420
7421         } else if ((priv->capability & CAP_PRIVACY_ON) &&
7422                    (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7423                 priv->assoc_request.auth_type = AUTH_LEAP;
7424         else
7425                 priv->assoc_request.auth_type = AUTH_OPEN;
7426
7427         if (priv->ieee->wpa_ie_len) {
7428                 priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */
7429                 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7430                                  priv->ieee->wpa_ie_len);
7431         }
7432
7433         /*
7434          * It is valid for our ieee device to support multiple modes, but
7435          * when it comes to associating to a given network we have to choose
7436          * just one mode.
7437          */
7438         if (network->mode & priv->ieee->mode & IEEE_A)
7439                 priv->assoc_request.ieee_mode = IPW_A_MODE;
7440         else if (network->mode & priv->ieee->mode & IEEE_G)
7441                 priv->assoc_request.ieee_mode = IPW_G_MODE;
7442         else if (network->mode & priv->ieee->mode & IEEE_B)
7443                 priv->assoc_request.ieee_mode = IPW_B_MODE;
7444
7445         priv->assoc_request.capability = cpu_to_le16(network->capability);
7446         if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7447             && !(priv->config & CFG_PREAMBLE_LONG)) {
7448                 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7449         } else {
7450                 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7451
7452                 /* Clear the short preamble if we won't be supporting it */
7453                 priv->assoc_request.capability &=
7454                     ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7455         }
7456
7457         /* Clear capability bits that aren't used in Ad Hoc */
7458         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7459                 priv->assoc_request.capability &=
7460                     ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7461
7462         IPW_DEBUG_ASSOC("%ssociation attempt: '%s', channel %d, "
7463                         "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7464                         roaming ? "Rea" : "A",
7465                         print_ssid(ssid, priv->essid, priv->essid_len),
7466                         network->channel,
7467                         ipw_modes[priv->assoc_request.ieee_mode],
7468                         rates->num_rates,
7469                         (priv->assoc_request.preamble_length ==
7470                          DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7471                         network->capability &
7472                         WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7473                         priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7474                         priv->capability & CAP_PRIVACY_ON ?
7475                         (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7476                          "(open)") : "",
7477                         priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7478                         priv->capability & CAP_PRIVACY_ON ?
7479                         '1' + priv->ieee->sec.active_key : '.',
7480                         priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7481
7482         priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7483         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7484             (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7485                 priv->assoc_request.assoc_type = HC_IBSS_START;
7486                 priv->assoc_request.assoc_tsf_msw = 0;
7487                 priv->assoc_request.assoc_tsf_lsw = 0;
7488         } else {
7489                 if (unlikely(roaming))
7490                         priv->assoc_request.assoc_type = HC_REASSOCIATE;
7491                 else
7492                         priv->assoc_request.assoc_type = HC_ASSOCIATE;
7493                 priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7494                 priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7495         }
7496
7497         memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7498
7499         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7500                 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7501                 priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7502         } else {
7503                 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7504                 priv->assoc_request.atim_window = 0;
7505         }
7506
7507         priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7508
7509         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7510         if (err) {
7511                 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7512                 return err;
7513         }
7514
7515         rates->ieee_mode = priv->assoc_request.ieee_mode;
7516         rates->purpose = IPW_RATE_CONNECT;
7517         ipw_send_supported_rates(priv, rates);
7518
7519         if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7520                 priv->sys_config.dot11g_auto_detection = 1;
7521         else
7522                 priv->sys_config.dot11g_auto_detection = 0;
7523
7524         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7525                 priv->sys_config.answer_broadcast_ssid_probe = 1;
7526         else
7527                 priv->sys_config.answer_broadcast_ssid_probe = 0;
7528
7529         err = ipw_send_system_config(priv);
7530         if (err) {
7531                 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7532                 return err;
7533         }
7534
7535         IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7536         err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7537         if (err) {
7538                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7539                 return err;
7540         }
7541
7542         /*
7543          * If preemption is enabled, it is possible for the association
7544          * to complete before we return from ipw_send_associate.  Therefore
7545          * we have to be sure and update our priviate data first.
7546          */
7547         priv->channel = network->channel;
7548         memcpy(priv->bssid, network->bssid, ETH_ALEN);
7549         priv->status |= STATUS_ASSOCIATING;
7550         priv->status &= ~STATUS_SECURITY_UPDATED;
7551
7552         priv->assoc_network = network;
7553
7554 #ifdef CONFIG_IPW2200_QOS
7555         ipw_qos_association(priv, network);
7556 #endif
7557
7558         err = ipw_send_associate(priv, &priv->assoc_request);
7559         if (err) {
7560                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7561                 return err;
7562         }
7563
7564         IPW_DEBUG(IPW_DL_STATE, "associating: '%s' %pM\n",
7565                   print_ssid(ssid, priv->essid, priv->essid_len),
7566                   priv->bssid);
7567
7568         return 0;
7569 }
7570
7571 static void ipw_roam(void *data)
7572 {
7573         struct ipw_priv *priv = data;
7574         struct libipw_network *network = NULL;
7575         struct ipw_network_match match = {
7576                 .network = priv->assoc_network
7577         };
7578
7579         /* The roaming process is as follows:
7580          *
7581          * 1.  Missed beacon threshold triggers the roaming process by
7582          *     setting the status ROAM bit and requesting a scan.
7583          * 2.  When the scan completes, it schedules the ROAM work
7584          * 3.  The ROAM work looks at all of the known networks for one that
7585          *     is a better network than the currently associated.  If none
7586          *     found, the ROAM process is over (ROAM bit cleared)
7587          * 4.  If a better network is found, a disassociation request is
7588          *     sent.
7589          * 5.  When the disassociation completes, the roam work is again
7590          *     scheduled.  The second time through, the driver is no longer
7591          *     associated, and the newly selected network is sent an
7592          *     association request.
7593          * 6.  At this point ,the roaming process is complete and the ROAM
7594          *     status bit is cleared.
7595          */
7596
7597         /* If we are no longer associated, and the roaming bit is no longer
7598          * set, then we are not actively roaming, so just return */
7599         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7600                 return;
7601
7602         if (priv->status & STATUS_ASSOCIATED) {
7603                 /* First pass through ROAM process -- look for a better
7604                  * network */
7605                 unsigned long flags;
7606                 u8 rssi = priv->assoc_network->stats.rssi;
7607                 priv->assoc_network->stats.rssi = -128;
7608                 spin_lock_irqsave(&priv->ieee->lock, flags);
7609                 list_for_each_entry(network, &priv->ieee->network_list, list) {
7610                         if (network != priv->assoc_network)
7611                                 ipw_best_network(priv, &match, network, 1);
7612                 }
7613                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7614                 priv->assoc_network->stats.rssi = rssi;
7615
7616                 if (match.network == priv->assoc_network) {
7617                         IPW_DEBUG_ASSOC("No better APs in this network to "
7618                                         "roam to.\n");
7619                         priv->status &= ~STATUS_ROAMING;
7620                         ipw_debug_config(priv);
7621                         return;
7622                 }
7623
7624                 ipw_send_disassociate(priv, 1);
7625                 priv->assoc_network = match.network;
7626
7627                 return;
7628         }
7629
7630         /* Second pass through ROAM process -- request association */
7631         ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7632         ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7633         priv->status &= ~STATUS_ROAMING;
7634 }
7635
7636 static void ipw_bg_roam(struct work_struct *work)
7637 {
7638         struct ipw_priv *priv =
7639                 container_of(work, struct ipw_priv, roam);
7640         mutex_lock(&priv->mutex);
7641         ipw_roam(priv);
7642         mutex_unlock(&priv->mutex);
7643 }
7644
7645 static int ipw_associate(void *data)
7646 {
7647         struct ipw_priv *priv = data;
7648
7649         struct libipw_network *network = NULL;
7650         struct ipw_network_match match = {
7651                 .network = NULL
7652         };
7653         struct ipw_supported_rates *rates;
7654         struct list_head *element;
7655         unsigned long flags;
7656         DECLARE_SSID_BUF(ssid);
7657
7658         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7659                 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7660                 return 0;
7661         }
7662
7663         if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7664                 IPW_DEBUG_ASSOC("Not attempting association (already in "
7665                                 "progress)\n");
7666                 return 0;
7667         }
7668
7669         if (priv->status & STATUS_DISASSOCIATING) {
7670                 IPW_DEBUG_ASSOC("Not attempting association (in "
7671                                 "disassociating)\n ");
7672                 schedule_work(&priv->associate);
7673                 return 0;
7674         }
7675
7676         if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7677                 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7678                                 "initialized)\n");
7679                 return 0;
7680         }
7681
7682         if (!(priv->config & CFG_ASSOCIATE) &&
7683             !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) {
7684                 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7685                 return 0;
7686         }
7687
7688         /* Protect our use of the network_list */
7689         spin_lock_irqsave(&priv->ieee->lock, flags);
7690         list_for_each_entry(network, &priv->ieee->network_list, list)
7691             ipw_best_network(priv, &match, network, 0);
7692
7693         network = match.network;
7694         rates = &match.rates;
7695
7696         if (network == NULL &&
7697             priv->ieee->iw_mode == IW_MODE_ADHOC &&
7698             priv->config & CFG_ADHOC_CREATE &&
7699             priv->config & CFG_STATIC_ESSID &&
7700             priv->config & CFG_STATIC_CHANNEL) {
7701                 /* Use oldest network if the free list is empty */
7702                 if (list_empty(&priv->ieee->network_free_list)) {
7703                         struct libipw_network *oldest = NULL;
7704                         struct libipw_network *target;
7705
7706                         list_for_each_entry(target, &priv->ieee->network_list, list) {
7707                                 if ((oldest == NULL) ||
7708                                     (target->last_scanned < oldest->last_scanned))
7709                                         oldest = target;
7710                         }
7711
7712                         /* If there are no more slots, expire the oldest */
7713                         list_del(&oldest->list);
7714                         target = oldest;
7715                         IPW_DEBUG_ASSOC("Expired '%s' (%pM) from "
7716                                         "network list.\n",
7717                                         print_ssid(ssid, target->ssid,
7718                                                    target->ssid_len),
7719                                         target->bssid);
7720                         list_add_tail(&target->list,
7721                                       &priv->ieee->network_free_list);
7722                 }
7723
7724                 element = priv->ieee->network_free_list.next;
7725                 network = list_entry(element, struct libipw_network, list);
7726                 ipw_adhoc_create(priv, network);
7727                 rates = &priv->rates;
7728                 list_del(element);
7729                 list_add_tail(&network->list, &priv->ieee->network_list);
7730         }
7731         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7732
7733         /* If we reached the end of the list, then we don't have any valid
7734          * matching APs */
7735         if (!network) {
7736                 ipw_debug_config(priv);
7737
7738                 if (!(priv->status & STATUS_SCANNING)) {
7739                         if (!(priv->config & CFG_SPEED_SCAN))
7740                                 schedule_delayed_work(&priv->request_scan,
7741                                                       SCAN_INTERVAL);
7742                         else
7743                                 schedule_delayed_work(&priv->request_scan, 0);
7744                 }
7745
7746                 return 0;
7747         }
7748
7749         ipw_associate_network(priv, network, rates, 0);
7750
7751         return 1;
7752 }
7753
7754 static void ipw_bg_associate(struct work_struct *work)
7755 {
7756         struct ipw_priv *priv =
7757                 container_of(work, struct ipw_priv, associate);
7758         mutex_lock(&priv->mutex);
7759         ipw_associate(priv);
7760         mutex_unlock(&priv->mutex);
7761 }
7762
7763 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7764                                       struct sk_buff *skb)
7765 {
7766         struct ieee80211_hdr *hdr;
7767         u16 fc;
7768
7769         hdr = (struct ieee80211_hdr *)skb->data;
7770         fc = le16_to_cpu(hdr->frame_control);
7771         if (!(fc & IEEE80211_FCTL_PROTECTED))
7772                 return;
7773
7774         fc &= ~IEEE80211_FCTL_PROTECTED;
7775         hdr->frame_control = cpu_to_le16(fc);
7776         switch (priv->ieee->sec.level) {
7777         case SEC_LEVEL_3:
7778                 /* Remove CCMP HDR */
7779                 memmove(skb->data + LIBIPW_3ADDR_LEN,
7780                         skb->data + LIBIPW_3ADDR_LEN + 8,
7781                         skb->len - LIBIPW_3ADDR_LEN - 8);
7782                 skb_trim(skb, skb->len - 16);   /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7783                 break;
7784         case SEC_LEVEL_2:
7785                 break;
7786         case SEC_LEVEL_1:
7787                 /* Remove IV */
7788                 memmove(skb->data + LIBIPW_3ADDR_LEN,
7789                         skb->data + LIBIPW_3ADDR_LEN + 4,
7790                         skb->len - LIBIPW_3ADDR_LEN - 4);
7791                 skb_trim(skb, skb->len - 8);    /* IV + ICV */
7792                 break;
7793         case SEC_LEVEL_0:
7794                 break;
7795         default:
7796                 printk(KERN_ERR "Unknown security level %d\n",
7797                        priv->ieee->sec.level);
7798                 break;
7799         }
7800 }
7801
7802 static void ipw_handle_data_packet(struct ipw_priv *priv,
7803                                    struct ipw_rx_mem_buffer *rxb,
7804                                    struct libipw_rx_stats *stats)
7805 {
7806         struct net_device *dev = priv->net_dev;
7807         struct libipw_hdr_4addr *hdr;
7808         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7809
7810         /* We received data from the HW, so stop the watchdog */
7811         dev->trans_start = jiffies;
7812
7813         /* We only process data packets if the
7814          * interface is open */
7815         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7816                      skb_tailroom(rxb->skb))) {
7817                 dev->stats.rx_errors++;
7818                 priv->wstats.discard.misc++;
7819                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7820                 return;
7821         } else if (unlikely(!netif_running(priv->net_dev))) {
7822                 dev->stats.rx_dropped++;
7823                 priv->wstats.discard.misc++;
7824                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7825                 return;
7826         }
7827
7828         /* Advance skb->data to the start of the actual payload */
7829         skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7830
7831         /* Set the size of the skb to the size of the frame */
7832         skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7833
7834         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7835
7836         /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7837         hdr = (struct libipw_hdr_4addr *)rxb->skb->data;
7838         if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7839             (is_multicast_ether_addr(hdr->addr1) ?
7840              !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7841                 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7842
7843         if (!libipw_rx(priv->ieee, rxb->skb, stats))
7844                 dev->stats.rx_errors++;
7845         else {                  /* libipw_rx succeeded, so it now owns the SKB */
7846                 rxb->skb = NULL;
7847                 __ipw_led_activity_on(priv);
7848         }
7849 }
7850
7851 #ifdef CONFIG_IPW2200_RADIOTAP
7852 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7853                                            struct ipw_rx_mem_buffer *rxb,
7854                                            struct libipw_rx_stats *stats)
7855 {
7856         struct net_device *dev = priv->net_dev;
7857         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7858         struct ipw_rx_frame *frame = &pkt->u.frame;
7859
7860         /* initial pull of some data */
7861         u16 received_channel = frame->received_channel;
7862         u8 antennaAndPhy = frame->antennaAndPhy;
7863         s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;       /* call it signed anyhow */
7864         u16 pktrate = frame->rate;
7865
7866         /* Magic struct that slots into the radiotap header -- no reason
7867          * to build this manually element by element, we can write it much
7868          * more efficiently than we can parse it. ORDER MATTERS HERE */
7869         struct ipw_rt_hdr *ipw_rt;
7870
7871         unsigned short len = le16_to_cpu(pkt->u.frame.length);
7872
7873         /* We received data from the HW, so stop the watchdog */
7874         dev->trans_start = jiffies;
7875
7876         /* We only process data packets if the
7877          * interface is open */
7878         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7879                      skb_tailroom(rxb->skb))) {
7880                 dev->stats.rx_errors++;
7881                 priv->wstats.discard.misc++;
7882                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7883                 return;
7884         } else if (unlikely(!netif_running(priv->net_dev))) {
7885                 dev->stats.rx_dropped++;
7886                 priv->wstats.discard.misc++;
7887                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7888                 return;
7889         }
7890
7891         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7892          * that now */
7893         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7894                 /* FIXME: Should alloc bigger skb instead */
7895                 dev->stats.rx_dropped++;
7896                 priv->wstats.discard.misc++;
7897                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7898                 return;
7899         }
7900
7901         /* copy the frame itself */
7902         memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7903                 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7904
7905         ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7906
7907         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7908         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7909         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */
7910
7911         /* Big bitfield of all the fields we provide in radiotap */
7912         ipw_rt->rt_hdr.it_present = cpu_to_le32(
7913              (1 << IEEE80211_RADIOTAP_TSFT) |
7914              (1 << IEEE80211_RADIOTAP_FLAGS) |
7915              (1 << IEEE80211_RADIOTAP_RATE) |
7916              (1 << IEEE80211_RADIOTAP_CHANNEL) |
7917              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7918              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7919              (1 << IEEE80211_RADIOTAP_ANTENNA));
7920
7921         /* Zero the flags, we'll add to them as we go */
7922         ipw_rt->rt_flags = 0;
7923         ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7924                                frame->parent_tsf[2] << 16 |
7925                                frame->parent_tsf[1] << 8  |
7926                                frame->parent_tsf[0]);
7927
7928         /* Convert signal to DBM */
7929         ipw_rt->rt_dbmsignal = antsignal;
7930         ipw_rt->rt_dbmnoise = (s8) le16_to_cpu(frame->noise);
7931
7932         /* Convert the channel data and set the flags */
7933         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7934         if (received_channel > 14) {    /* 802.11a */
7935                 ipw_rt->rt_chbitmask =
7936                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7937         } else if (antennaAndPhy & 32) {        /* 802.11b */
7938                 ipw_rt->rt_chbitmask =
7939                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7940         } else {                /* 802.11g */
7941                 ipw_rt->rt_chbitmask =
7942                     cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7943         }
7944
7945         /* set the rate in multiples of 500k/s */
7946         switch (pktrate) {
7947         case IPW_TX_RATE_1MB:
7948                 ipw_rt->rt_rate = 2;
7949                 break;
7950         case IPW_TX_RATE_2MB:
7951                 ipw_rt->rt_rate = 4;
7952                 break;
7953         case IPW_TX_RATE_5MB:
7954                 ipw_rt->rt_rate = 10;
7955                 break;
7956         case IPW_TX_RATE_6MB:
7957                 ipw_rt->rt_rate = 12;
7958                 break;
7959         case IPW_TX_RATE_9MB:
7960                 ipw_rt->rt_rate = 18;
7961                 break;
7962         case IPW_TX_RATE_11MB:
7963                 ipw_rt->rt_rate = 22;
7964                 break;
7965         case IPW_TX_RATE_12MB:
7966                 ipw_rt->rt_rate = 24;
7967                 break;
7968         case IPW_TX_RATE_18MB:
7969                 ipw_rt->rt_rate = 36;
7970                 break;
7971         case IPW_TX_RATE_24MB:
7972                 ipw_rt->rt_rate = 48;
7973                 break;
7974         case IPW_TX_RATE_36MB:
7975                 ipw_rt->rt_rate = 72;
7976                 break;
7977         case IPW_TX_RATE_48MB:
7978                 ipw_rt->rt_rate = 96;
7979                 break;
7980         case IPW_TX_RATE_54MB:
7981                 ipw_rt->rt_rate = 108;
7982                 break;
7983         default:
7984                 ipw_rt->rt_rate = 0;
7985                 break;
7986         }
7987
7988         /* antenna number */
7989         ipw_rt->rt_antenna = (antennaAndPhy & 3);       /* Is this right? */
7990
7991         /* set the preamble flag if we have it */
7992         if ((antennaAndPhy & 64))
7993                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7994
7995         /* Set the size of the skb to the size of the frame */
7996         skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7997
7998         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7999
8000         if (!libipw_rx(priv->ieee, rxb->skb, stats))
8001                 dev->stats.rx_errors++;
8002         else {                  /* libipw_rx succeeded, so it now owns the SKB */
8003                 rxb->skb = NULL;
8004                 /* no LED during capture */
8005         }
8006 }
8007 #endif
8008
8009 #ifdef CONFIG_IPW2200_PROMISCUOUS
8010 #define libipw_is_probe_response(fc) \
8011    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
8012     (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
8013
8014 #define libipw_is_management(fc) \
8015    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
8016
8017 #define libipw_is_control(fc) \
8018    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
8019
8020 #define libipw_is_data(fc) \
8021    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
8022
8023 #define libipw_is_assoc_request(fc) \
8024    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
8025
8026 #define libipw_is_reassoc_request(fc) \
8027    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
8028
8029 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
8030                                       struct ipw_rx_mem_buffer *rxb,
8031                                       struct libipw_rx_stats *stats)
8032 {
8033         struct net_device *dev = priv->prom_net_dev;
8034         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
8035         struct ipw_rx_frame *frame = &pkt->u.frame;
8036         struct ipw_rt_hdr *ipw_rt;
8037
8038         /* First cache any information we need before we overwrite
8039          * the information provided in the skb from the hardware */
8040         struct ieee80211_hdr *hdr;
8041         u16 channel = frame->received_channel;
8042         u8 phy_flags = frame->antennaAndPhy;
8043         s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
8044         s8 noise = (s8) le16_to_cpu(frame->noise);
8045         u8 rate = frame->rate;
8046         unsigned short len = le16_to_cpu(pkt->u.frame.length);
8047         struct sk_buff *skb;
8048         int hdr_only = 0;
8049         u16 filter = priv->prom_priv->filter;
8050
8051         /* If the filter is set to not include Rx frames then return */
8052         if (filter & IPW_PROM_NO_RX)
8053                 return;
8054
8055         /* We received data from the HW, so stop the watchdog */
8056         dev->trans_start = jiffies;
8057
8058         if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
8059                 dev->stats.rx_errors++;
8060                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
8061                 return;
8062         }
8063
8064         /* We only process data packets if the interface is open */
8065         if (unlikely(!netif_running(dev))) {
8066                 dev->stats.rx_dropped++;
8067                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
8068                 return;
8069         }
8070
8071         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
8072          * that now */
8073         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
8074                 /* FIXME: Should alloc bigger skb instead */
8075                 dev->stats.rx_dropped++;
8076                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
8077                 return;
8078         }
8079
8080         hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
8081         if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
8082                 if (filter & IPW_PROM_NO_MGMT)
8083                         return;
8084                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
8085                         hdr_only = 1;
8086         } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
8087                 if (filter & IPW_PROM_NO_CTL)
8088                         return;
8089                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
8090                         hdr_only = 1;
8091         } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
8092                 if (filter & IPW_PROM_NO_DATA)
8093                         return;
8094                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
8095                         hdr_only = 1;
8096         }
8097
8098         /* Copy the SKB since this is for the promiscuous side */
8099         skb = skb_copy(rxb->skb, GFP_ATOMIC);
8100         if (skb == NULL) {
8101                 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
8102                 return;
8103         }
8104
8105         /* copy the frame data to write after where the radiotap header goes */
8106         ipw_rt = (void *)skb->data;
8107
8108         if (hdr_only)
8109                 len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
8110
8111         memcpy(ipw_rt->payload, hdr, len);
8112
8113         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
8114         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
8115         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt));   /* total header+data */
8116
8117         /* Set the size of the skb to the size of the frame */
8118         skb_put(skb, sizeof(*ipw_rt) + len);
8119
8120         /* Big bitfield of all the fields we provide in radiotap */
8121         ipw_rt->rt_hdr.it_present = cpu_to_le32(
8122              (1 << IEEE80211_RADIOTAP_TSFT) |
8123              (1 << IEEE80211_RADIOTAP_FLAGS) |
8124              (1 << IEEE80211_RADIOTAP_RATE) |
8125              (1 << IEEE80211_RADIOTAP_CHANNEL) |
8126              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
8127              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
8128              (1 << IEEE80211_RADIOTAP_ANTENNA));
8129
8130         /* Zero the flags, we'll add to them as we go */
8131         ipw_rt->rt_flags = 0;
8132         ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8133                                frame->parent_tsf[2] << 16 |
8134                                frame->parent_tsf[1] << 8  |
8135                                frame->parent_tsf[0]);
8136
8137         /* Convert to DBM */
8138         ipw_rt->rt_dbmsignal = signal;
8139         ipw_rt->rt_dbmnoise = noise;
8140
8141         /* Convert the channel data and set the flags */
8142         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8143         if (channel > 14) {     /* 802.11a */
8144                 ipw_rt->rt_chbitmask =
8145                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8146         } else if (phy_flags & (1 << 5)) {      /* 802.11b */
8147                 ipw_rt->rt_chbitmask =
8148                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8149         } else {                /* 802.11g */
8150                 ipw_rt->rt_chbitmask =
8151                     cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8152         }
8153
8154         /* set the rate in multiples of 500k/s */
8155         switch (rate) {
8156         case IPW_TX_RATE_1MB:
8157                 ipw_rt->rt_rate = 2;
8158                 break;
8159         case IPW_TX_RATE_2MB:
8160                 ipw_rt->rt_rate = 4;
8161                 break;
8162         case IPW_TX_RATE_5MB:
8163                 ipw_rt->rt_rate = 10;
8164                 break;
8165         case IPW_TX_RATE_6MB:
8166                 ipw_rt->rt_rate = 12;
8167                 break;
8168         case IPW_TX_RATE_9MB:
8169                 ipw_rt->rt_rate = 18;
8170                 break;
8171         case IPW_TX_RATE_11MB:
8172                 ipw_rt->rt_rate = 22;
8173                 break;
8174         case IPW_TX_RATE_12MB:
8175                 ipw_rt->rt_rate = 24;
8176                 break;
8177         case IPW_TX_RATE_18MB:
8178                 ipw_rt->rt_rate = 36;
8179                 break;
8180         case IPW_TX_RATE_24MB:
8181                 ipw_rt->rt_rate = 48;
8182                 break;
8183         case IPW_TX_RATE_36MB:
8184                 ipw_rt->rt_rate = 72;
8185                 break;
8186         case IPW_TX_RATE_48MB:
8187                 ipw_rt->rt_rate = 96;
8188                 break;
8189         case IPW_TX_RATE_54MB:
8190                 ipw_rt->rt_rate = 108;
8191                 break;
8192         default:
8193                 ipw_rt->rt_rate = 0;
8194                 break;
8195         }
8196
8197         /* antenna number */
8198         ipw_rt->rt_antenna = (phy_flags & 3);
8199
8200         /* set the preamble flag if we have it */
8201         if (phy_flags & (1 << 6))
8202                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8203
8204         IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8205
8206         if (!libipw_rx(priv->prom_priv->ieee, skb, stats)) {
8207                 dev->stats.rx_errors++;
8208                 dev_kfree_skb_any(skb);
8209         }
8210 }
8211 #endif
8212
8213 static int is_network_packet(struct ipw_priv *priv,
8214                                     struct libipw_hdr_4addr *header)
8215 {
8216         /* Filter incoming packets to determine if they are targeted toward
8217          * this network, discarding packets coming from ourselves */
8218         switch (priv->ieee->iw_mode) {
8219         case IW_MODE_ADHOC:     /* Header: Dest. | Source    | BSSID */
8220                 /* packets from our adapter are dropped (echo) */
8221                 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
8222                         return 0;
8223
8224                 /* {broad,multi}cast packets to our BSSID go through */
8225                 if (is_multicast_ether_addr(header->addr1))
8226                         return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
8227
8228                 /* packets to our adapter go through */
8229                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8230                                ETH_ALEN);
8231
8232         case IW_MODE_INFRA:     /* Header: Dest. | BSSID | Source */
8233                 /* packets from our adapter are dropped (echo) */
8234                 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
8235                         return 0;
8236
8237                 /* {broad,multi}cast packets to our BSS go through */
8238                 if (is_multicast_ether_addr(header->addr1))
8239                         return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
8240
8241                 /* packets to our adapter go through */
8242                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8243                                ETH_ALEN);
8244         }
8245
8246         return 1;
8247 }
8248
8249 #define IPW_PACKET_RETRY_TIME HZ
8250
8251 static  int is_duplicate_packet(struct ipw_priv *priv,
8252                                       struct libipw_hdr_4addr *header)
8253 {
8254         u16 sc = le16_to_cpu(header->seq_ctl);
8255         u16 seq = WLAN_GET_SEQ_SEQ(sc);
8256         u16 frag = WLAN_GET_SEQ_FRAG(sc);
8257         u16 *last_seq, *last_frag;
8258         unsigned long *last_time;
8259
8260         switch (priv->ieee->iw_mode) {
8261         case IW_MODE_ADHOC:
8262                 {
8263                         struct list_head *p;
8264                         struct ipw_ibss_seq *entry = NULL;
8265                         u8 *mac = header->addr2;
8266                         int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8267
8268                         __list_for_each(p, &priv->ibss_mac_hash[index]) {
8269                                 entry =
8270                                     list_entry(p, struct ipw_ibss_seq, list);
8271                                 if (!memcmp(entry->mac, mac, ETH_ALEN))
8272                                         break;
8273                         }
8274                         if (p == &priv->ibss_mac_hash[index]) {
8275                                 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8276                                 if (!entry) {
8277                                         IPW_ERROR
8278                                             ("Cannot malloc new mac entry\n");
8279                                         return 0;
8280                                 }
8281                                 memcpy(entry->mac, mac, ETH_ALEN);
8282                                 entry->seq_num = seq;
8283                                 entry->frag_num = frag;
8284                                 entry->packet_time = jiffies;
8285                                 list_add(&entry->list,
8286                                          &priv->ibss_mac_hash[index]);
8287                                 return 0;
8288                         }
8289                         last_seq = &entry->seq_num;
8290                         last_frag = &entry->frag_num;
8291                         last_time = &entry->packet_time;
8292                         break;
8293                 }
8294         case IW_MODE_INFRA:
8295                 last_seq = &priv->last_seq_num;
8296                 last_frag = &priv->last_frag_num;
8297                 last_time = &priv->last_packet_time;
8298                 break;
8299         default:
8300                 return 0;
8301         }
8302         if ((*last_seq == seq) &&
8303             time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8304                 if (*last_frag == frag)
8305                         goto drop;
8306                 if (*last_frag + 1 != frag)
8307                         /* out-of-order fragment */
8308                         goto drop;
8309         } else
8310                 *last_seq = seq;
8311
8312         *last_frag = frag;
8313         *last_time = jiffies;
8314         return 0;
8315
8316       drop:
8317         /* Comment this line now since we observed the card receives
8318          * duplicate packets but the FCTL_RETRY bit is not set in the
8319          * IBSS mode with fragmentation enabled.
8320          BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8321         return 1;
8322 }
8323
8324 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8325                                    struct ipw_rx_mem_buffer *rxb,
8326                                    struct libipw_rx_stats *stats)
8327 {
8328         struct sk_buff *skb = rxb->skb;
8329         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8330         struct libipw_hdr_4addr *header = (struct libipw_hdr_4addr *)
8331             (skb->data + IPW_RX_FRAME_SIZE);
8332
8333         libipw_rx_mgt(priv->ieee, header, stats);
8334
8335         if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8336             ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8337               IEEE80211_STYPE_PROBE_RESP) ||
8338              (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8339               IEEE80211_STYPE_BEACON))) {
8340                 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8341                         ipw_add_station(priv, header->addr2);
8342         }
8343
8344         if (priv->config & CFG_NET_STATS) {
8345                 IPW_DEBUG_HC("sending stat packet\n");
8346
8347                 /* Set the size of the skb to the size of the full
8348                  * ipw header and 802.11 frame */
8349                 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8350                         IPW_RX_FRAME_SIZE);
8351
8352                 /* Advance past the ipw packet header to the 802.11 frame */
8353                 skb_pull(skb, IPW_RX_FRAME_SIZE);
8354
8355                 /* Push the libipw_rx_stats before the 802.11 frame */
8356                 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8357
8358                 skb->dev = priv->ieee->dev;
8359
8360                 /* Point raw at the libipw_stats */
8361                 skb_reset_mac_header(skb);
8362
8363                 skb->pkt_type = PACKET_OTHERHOST;
8364                 skb->protocol = cpu_to_be16(ETH_P_80211_STATS);
8365                 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8366                 netif_rx(skb);
8367                 rxb->skb = NULL;
8368         }
8369 }
8370
8371 /*
8372  * Main entry function for receiving a packet with 80211 headers.  This
8373  * should be called when ever the FW has notified us that there is a new
8374  * skb in the receive queue.
8375  */
8376 static void ipw_rx(struct ipw_priv *priv)
8377 {
8378         struct ipw_rx_mem_buffer *rxb;
8379         struct ipw_rx_packet *pkt;
8380         struct libipw_hdr_4addr *header;
8381         u32 r, w, i;
8382         u8 network_packet;
8383         u8 fill_rx = 0;
8384
8385         r = ipw_read32(priv, IPW_RX_READ_INDEX);
8386         w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8387         i = priv->rxq->read;
8388
8389         if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8390                 fill_rx = 1;
8391
8392         while (i != r) {
8393                 rxb = priv->rxq->queue[i];
8394                 if (unlikely(rxb == NULL)) {
8395                         printk(KERN_CRIT "Queue not allocated!\n");
8396                         break;
8397                 }
8398                 priv->rxq->queue[i] = NULL;
8399
8400                 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8401                                             IPW_RX_BUF_SIZE,
8402                                             PCI_DMA_FROMDEVICE);
8403
8404                 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8405                 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8406                              pkt->header.message_type,
8407                              pkt->header.rx_seq_num, pkt->header.control_bits);
8408
8409                 switch (pkt->header.message_type) {
8410                 case RX_FRAME_TYPE:     /* 802.11 frame */  {
8411                                 struct libipw_rx_stats stats = {
8412                                         .rssi = pkt->u.frame.rssi_dbm -
8413                                             IPW_RSSI_TO_DBM,
8414                                         .signal =
8415                                             pkt->u.frame.rssi_dbm -
8416                                             IPW_RSSI_TO_DBM + 0x100,
8417                                         .noise =
8418                                             le16_to_cpu(pkt->u.frame.noise),
8419                                         .rate = pkt->u.frame.rate,
8420                                         .mac_time = jiffies,
8421                                         .received_channel =
8422                                             pkt->u.frame.received_channel,
8423                                         .freq =
8424                                             (pkt->u.frame.
8425                                              control & (1 << 0)) ?
8426                                             LIBIPW_24GHZ_BAND :
8427                                             LIBIPW_52GHZ_BAND,
8428                                         .len = le16_to_cpu(pkt->u.frame.length),
8429                                 };
8430
8431                                 if (stats.rssi != 0)
8432                                         stats.mask |= LIBIPW_STATMASK_RSSI;
8433                                 if (stats.signal != 0)
8434                                         stats.mask |= LIBIPW_STATMASK_SIGNAL;
8435                                 if (stats.noise != 0)
8436                                         stats.mask |= LIBIPW_STATMASK_NOISE;
8437                                 if (stats.rate != 0)
8438                                         stats.mask |= LIBIPW_STATMASK_RATE;
8439
8440                                 priv->rx_packets++;
8441
8442 #ifdef CONFIG_IPW2200_PROMISCUOUS
8443         if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8444                 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8445 #endif
8446
8447 #ifdef CONFIG_IPW2200_MONITOR
8448                                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8449 #ifdef CONFIG_IPW2200_RADIOTAP
8450
8451                 ipw_handle_data_packet_monitor(priv,
8452                                                rxb,
8453                                                &stats);
8454 #else
8455                 ipw_handle_data_packet(priv, rxb,
8456                                        &stats);
8457 #endif
8458                                         break;
8459                                 }
8460 #endif
8461
8462                                 header =
8463                                     (struct libipw_hdr_4addr *)(rxb->skb->
8464                                                                    data +
8465                                                                    IPW_RX_FRAME_SIZE);
8466                                 /* TODO: Check Ad-Hoc dest/source and make sure
8467                                  * that we are actually parsing these packets
8468                                  * correctly -- we should probably use the
8469                                  * frame control of the packet and disregard
8470                                  * the current iw_mode */
8471
8472                                 network_packet =
8473                                     is_network_packet(priv, header);
8474                                 if (network_packet && priv->assoc_network) {
8475                                         priv->assoc_network->stats.rssi =
8476                                             stats.rssi;
8477                                         priv->exp_avg_rssi =
8478                                             exponential_average(priv->exp_avg_rssi,
8479                                             stats.rssi, DEPTH_RSSI);
8480                                 }
8481
8482                                 IPW_DEBUG_RX("Frame: len=%u\n",
8483                                              le16_to_cpu(pkt->u.frame.length));
8484
8485                                 if (le16_to_cpu(pkt->u.frame.length) <
8486                                     libipw_get_hdrlen(le16_to_cpu(
8487                                                     header->frame_ctl))) {
8488                                         IPW_DEBUG_DROP
8489                                             ("Received packet is too small. "
8490                                              "Dropping.\n");
8491                                         priv->net_dev->stats.rx_errors++;
8492                                         priv->wstats.discard.misc++;
8493                                         break;
8494                                 }
8495
8496                                 switch (WLAN_FC_GET_TYPE
8497                                         (le16_to_cpu(header->frame_ctl))) {
8498
8499                                 case IEEE80211_FTYPE_MGMT:
8500                                         ipw_handle_mgmt_packet(priv, rxb,
8501                                                                &stats);
8502                                         break;
8503
8504                                 case IEEE80211_FTYPE_CTL:
8505                                         break;
8506
8507                                 case IEEE80211_FTYPE_DATA:
8508                                         if (unlikely(!network_packet ||
8509                                                      is_duplicate_packet(priv,
8510                                                                          header)))
8511                                         {
8512                                                 IPW_DEBUG_DROP("Dropping: "
8513                                                                "%pM, "
8514                                                                "%pM, "
8515                                                                "%pM\n",
8516                                                                header->addr1,
8517                                                                header->addr2,
8518                                                                header->addr3);
8519                                                 break;
8520                                         }
8521
8522                                         ipw_handle_data_packet(priv, rxb,
8523                                                                &stats);
8524
8525                                         break;
8526                                 }
8527                                 break;
8528                         }
8529
8530                 case RX_HOST_NOTIFICATION_TYPE:{
8531                                 IPW_DEBUG_RX
8532                                     ("Notification: subtype=%02X flags=%02X size=%d\n",
8533                                      pkt->u.notification.subtype,
8534                                      pkt->u.notification.flags,
8535                                      le16_to_cpu(pkt->u.notification.size));
8536                                 ipw_rx_notification(priv, &pkt->u.notification);
8537                                 break;
8538                         }
8539
8540                 default:
8541                         IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8542                                      pkt->header.message_type);
8543                         break;
8544                 }
8545
8546                 /* For now we just don't re-use anything.  We can tweak this
8547                  * later to try and re-use notification packets and SKBs that
8548                  * fail to Rx correctly */
8549                 if (rxb->skb != NULL) {
8550                         dev_kfree_skb_any(rxb->skb);
8551                         rxb->skb = NULL;
8552                 }
8553
8554                 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8555                                  IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8556                 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8557
8558                 i = (i + 1) % RX_QUEUE_SIZE;
8559
8560                 /* If there are a lot of unsued frames, restock the Rx queue
8561                  * so the ucode won't assert */
8562                 if (fill_rx) {
8563                         priv->rxq->read = i;
8564                         ipw_rx_queue_replenish(priv);
8565                 }
8566         }
8567
8568         /* Backtrack one entry */
8569         priv->rxq->read = i;
8570         ipw_rx_queue_restock(priv);
8571 }
8572
8573 #define DEFAULT_RTS_THRESHOLD     2304U
8574 #define MIN_RTS_THRESHOLD         1U
8575 #define MAX_RTS_THRESHOLD         2304U
8576 #define DEFAULT_BEACON_INTERVAL   100U
8577 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8578 #define DEFAULT_LONG_RETRY_LIMIT  4U
8579
8580 /**
8581  * ipw_sw_reset
8582  * @option: options to control different reset behaviour
8583  *          0 = reset everything except the 'disable' module_param
8584  *          1 = reset everything and print out driver info (for probe only)
8585  *          2 = reset everything
8586  */
8587 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8588 {
8589         int band, modulation;
8590         int old_mode = priv->ieee->iw_mode;
8591
8592         /* Initialize module parameter values here */
8593         priv->config = 0;
8594
8595         /* We default to disabling the LED code as right now it causes
8596          * too many systems to lock up... */
8597         if (!led_support)
8598                 priv->config |= CFG_NO_LED;
8599
8600         if (associate)
8601                 priv->config |= CFG_ASSOCIATE;
8602         else
8603                 IPW_DEBUG_INFO("Auto associate disabled.\n");
8604
8605         if (auto_create)
8606                 priv->config |= CFG_ADHOC_CREATE;
8607         else
8608                 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8609
8610         priv->config &= ~CFG_STATIC_ESSID;
8611         priv->essid_len = 0;
8612         memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8613
8614         if (disable && option) {
8615                 priv->status |= STATUS_RF_KILL_SW;
8616                 IPW_DEBUG_INFO("Radio disabled.\n");
8617         }
8618
8619         if (default_channel != 0) {
8620                 priv->config |= CFG_STATIC_CHANNEL;
8621                 priv->channel = default_channel;
8622                 IPW_DEBUG_INFO("Bind to static channel %d\n", default_channel);
8623                 /* TODO: Validate that provided channel is in range */
8624         }
8625 #ifdef CONFIG_IPW2200_QOS
8626         ipw_qos_init(priv, qos_enable, qos_burst_enable,
8627                      burst_duration_CCK, burst_duration_OFDM);
8628 #endif                          /* CONFIG_IPW2200_QOS */
8629
8630         switch (network_mode) {
8631         case 1:
8632                 priv->ieee->iw_mode = IW_MODE_ADHOC;
8633                 priv->net_dev->type = ARPHRD_ETHER;
8634
8635                 break;
8636 #ifdef CONFIG_IPW2200_MONITOR
8637         case 2:
8638                 priv->ieee->iw_mode = IW_MODE_MONITOR;
8639 #ifdef CONFIG_IPW2200_RADIOTAP
8640                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8641 #else
8642                 priv->net_dev->type = ARPHRD_IEEE80211;
8643 #endif
8644                 break;
8645 #endif
8646         default:
8647         case 0:
8648                 priv->net_dev->type = ARPHRD_ETHER;
8649                 priv->ieee->iw_mode = IW_MODE_INFRA;
8650                 break;
8651         }
8652
8653         if (hwcrypto) {
8654                 priv->ieee->host_encrypt = 0;
8655                 priv->ieee->host_encrypt_msdu = 0;
8656                 priv->ieee->host_decrypt = 0;
8657                 priv->ieee->host_mc_decrypt = 0;
8658         }
8659         IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8660
8661         /* IPW2200/2915 is abled to do hardware fragmentation. */
8662         priv->ieee->host_open_frag = 0;
8663
8664         if ((priv->pci_dev->device == 0x4223) ||
8665             (priv->pci_dev->device == 0x4224)) {
8666                 if (option == 1)
8667                         printk(KERN_INFO DRV_NAME
8668                                ": Detected Intel PRO/Wireless 2915ABG Network "
8669                                "Connection\n");
8670                 priv->ieee->abg_true = 1;
8671                 band = LIBIPW_52GHZ_BAND | LIBIPW_24GHZ_BAND;
8672                 modulation = LIBIPW_OFDM_MODULATION |
8673                     LIBIPW_CCK_MODULATION;
8674                 priv->adapter = IPW_2915ABG;
8675                 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8676         } else {
8677                 if (option == 1)
8678                         printk(KERN_INFO DRV_NAME
8679                                ": Detected Intel PRO/Wireless 2200BG Network "
8680                                "Connection\n");
8681
8682                 priv->ieee->abg_true = 0;
8683                 band = LIBIPW_24GHZ_BAND;
8684                 modulation = LIBIPW_OFDM_MODULATION |
8685                     LIBIPW_CCK_MODULATION;
8686                 priv->adapter = IPW_2200BG;
8687                 priv->ieee->mode = IEEE_G | IEEE_B;
8688         }
8689
8690         priv->ieee->freq_band = band;
8691         priv->ieee->modulation = modulation;
8692
8693         priv->rates_mask = LIBIPW_DEFAULT_RATES_MASK;
8694
8695         priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8696         priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8697
8698         priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8699         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8700         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8701
8702         /* If power management is turned on, default to AC mode */
8703         priv->power_mode = IPW_POWER_AC;
8704         priv->tx_power = IPW_TX_POWER_DEFAULT;
8705
8706         return old_mode == priv->ieee->iw_mode;
8707 }
8708
8709 /*
8710  * This file defines the Wireless Extension handlers.  It does not
8711  * define any methods of hardware manipulation and relies on the
8712  * functions defined in ipw_main to provide the HW interaction.
8713  *
8714  * The exception to this is the use of the ipw_get_ordinal()
8715  * function used to poll the hardware vs. making unnecessary calls.
8716  *
8717  */
8718
8719 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8720 {
8721         if (channel == 0) {
8722                 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8723                 priv->config &= ~CFG_STATIC_CHANNEL;
8724                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8725                                 "parameters.\n");
8726                 ipw_associate(priv);
8727                 return 0;
8728         }
8729
8730         priv->config |= CFG_STATIC_CHANNEL;
8731
8732         if (priv->channel == channel) {
8733                 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8734                                channel);
8735                 return 0;
8736         }
8737
8738         IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8739         priv->channel = channel;
8740
8741 #ifdef CONFIG_IPW2200_MONITOR
8742         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8743                 int i;
8744                 if (priv->status & STATUS_SCANNING) {
8745                         IPW_DEBUG_SCAN("Scan abort triggered due to "
8746                                        "channel change.\n");
8747                         ipw_abort_scan(priv);
8748                 }
8749
8750                 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8751                         udelay(10);
8752
8753                 if (priv->status & STATUS_SCANNING)
8754                         IPW_DEBUG_SCAN("Still scanning...\n");
8755                 else
8756                         IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8757                                        1000 - i);
8758
8759                 return 0;
8760         }
8761 #endif                          /* CONFIG_IPW2200_MONITOR */
8762
8763         /* Network configuration changed -- force [re]association */
8764         IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8765         if (!ipw_disassociate(priv))
8766                 ipw_associate(priv);
8767
8768         return 0;
8769 }
8770
8771 static int ipw_wx_set_freq(struct net_device *dev,
8772                            struct iw_request_info *info,
8773                            union iwreq_data *wrqu, char *extra)
8774 {
8775         struct ipw_priv *priv = libipw_priv(dev);
8776         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8777         struct iw_freq *fwrq = &wrqu->freq;
8778         int ret = 0, i;
8779         u8 channel, flags;
8780         int band;
8781
8782         if (fwrq->m == 0) {
8783                 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8784                 mutex_lock(&priv->mutex);
8785                 ret = ipw_set_channel(priv, 0);
8786                 mutex_unlock(&priv->mutex);
8787                 return ret;
8788         }
8789         /* if setting by freq convert to channel */
8790         if (fwrq->e == 1) {
8791                 channel = libipw_freq_to_channel(priv->ieee, fwrq->m);
8792                 if (channel == 0)
8793                         return -EINVAL;
8794         } else
8795                 channel = fwrq->m;
8796
8797         if (!(band = libipw_is_valid_channel(priv->ieee, channel)))
8798                 return -EINVAL;
8799
8800         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8801                 i = libipw_channel_to_index(priv->ieee, channel);
8802                 if (i == -1)
8803                         return -EINVAL;
8804
8805                 flags = (band == LIBIPW_24GHZ_BAND) ?
8806                     geo->bg[i].flags : geo->a[i].flags;
8807                 if (flags & LIBIPW_CH_PASSIVE_ONLY) {
8808                         IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8809                         return -EINVAL;
8810                 }
8811         }
8812
8813         IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
8814         mutex_lock(&priv->mutex);
8815         ret = ipw_set_channel(priv, channel);
8816         mutex_unlock(&priv->mutex);
8817         return ret;
8818 }
8819
8820 static int ipw_wx_get_freq(struct net_device *dev,
8821                            struct iw_request_info *info,
8822                            union iwreq_data *wrqu, char *extra)
8823 {
8824         struct ipw_priv *priv = libipw_priv(dev);
8825
8826         wrqu->freq.e = 0;
8827
8828         /* If we are associated, trying to associate, or have a statically
8829          * configured CHANNEL then return that; otherwise return ANY */
8830         mutex_lock(&priv->mutex);
8831         if (priv->config & CFG_STATIC_CHANNEL ||
8832             priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8833                 int i;
8834
8835                 i = libipw_channel_to_index(priv->ieee, priv->channel);
8836                 BUG_ON(i == -1);
8837                 wrqu->freq.e = 1;
8838
8839                 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
8840                 case LIBIPW_52GHZ_BAND:
8841                         wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8842                         break;
8843
8844                 case LIBIPW_24GHZ_BAND:
8845                         wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8846                         break;
8847
8848                 default:
8849                         BUG();
8850                 }
8851         } else
8852                 wrqu->freq.m = 0;
8853
8854         mutex_unlock(&priv->mutex);
8855         IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
8856         return 0;
8857 }
8858
8859 static int ipw_wx_set_mode(struct net_device *dev,
8860                            struct iw_request_info *info,
8861                            union iwreq_data *wrqu, char *extra)
8862 {
8863         struct ipw_priv *priv = libipw_priv(dev);
8864         int err = 0;
8865
8866         IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8867
8868         switch (wrqu->mode) {
8869 #ifdef CONFIG_IPW2200_MONITOR
8870         case IW_MODE_MONITOR:
8871 #endif
8872         case IW_MODE_ADHOC:
8873         case IW_MODE_INFRA:
8874                 break;
8875         case IW_MODE_AUTO:
8876                 wrqu->mode = IW_MODE_INFRA;
8877                 break;
8878         default:
8879                 return -EINVAL;
8880         }
8881         if (wrqu->mode == priv->ieee->iw_mode)
8882                 return 0;
8883
8884         mutex_lock(&priv->mutex);
8885
8886         ipw_sw_reset(priv, 0);
8887
8888 #ifdef CONFIG_IPW2200_MONITOR
8889         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8890                 priv->net_dev->type = ARPHRD_ETHER;
8891
8892         if (wrqu->mode == IW_MODE_MONITOR)
8893 #ifdef CONFIG_IPW2200_RADIOTAP
8894                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8895 #else
8896                 priv->net_dev->type = ARPHRD_IEEE80211;
8897 #endif
8898 #endif                          /* CONFIG_IPW2200_MONITOR */
8899
8900         /* Free the existing firmware and reset the fw_loaded
8901          * flag so ipw_load() will bring in the new firmware */
8902         free_firmware();
8903
8904         priv->ieee->iw_mode = wrqu->mode;
8905
8906         schedule_work(&priv->adapter_restart);
8907         mutex_unlock(&priv->mutex);
8908         return err;
8909 }
8910
8911 static int ipw_wx_get_mode(struct net_device *dev,
8912                            struct iw_request_info *info,
8913                            union iwreq_data *wrqu, char *extra)
8914 {
8915         struct ipw_priv *priv = libipw_priv(dev);
8916         mutex_lock(&priv->mutex);
8917         wrqu->mode = priv->ieee->iw_mode;
8918         IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8919         mutex_unlock(&priv->mutex);
8920         return 0;
8921 }
8922
8923 /* Values are in microsecond */
8924 static const s32 timeout_duration[] = {
8925         350000,
8926         250000,
8927         75000,
8928         37000,
8929         25000,
8930 };
8931
8932 static const s32 period_duration[] = {
8933         400000,
8934         700000,
8935         1000000,
8936         1000000,
8937         1000000
8938 };
8939
8940 static int ipw_wx_get_range(struct net_device *dev,
8941                             struct iw_request_info *info,
8942                             union iwreq_data *wrqu, char *extra)
8943 {
8944         struct ipw_priv *priv = libipw_priv(dev);
8945         struct iw_range *range = (struct iw_range *)extra;
8946         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8947         int i = 0, j;
8948
8949         wrqu->data.length = sizeof(*range);
8950         memset(range, 0, sizeof(*range));
8951
8952         /* 54Mbs == ~27 Mb/s real (802.11g) */
8953         range->throughput = 27 * 1000 * 1000;
8954
8955         range->max_qual.qual = 100;
8956         /* TODO: Find real max RSSI and stick here */
8957         range->max_qual.level = 0;
8958         range->max_qual.noise = 0;
8959         range->max_qual.updated = 7;    /* Updated all three */
8960
8961         range->avg_qual.qual = 70;
8962         /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
8963         range->avg_qual.level = 0;      /* FIXME to real average level */
8964         range->avg_qual.noise = 0;
8965         range->avg_qual.updated = 7;    /* Updated all three */
8966         mutex_lock(&priv->mutex);
8967         range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8968
8969         for (i = 0; i < range->num_bitrates; i++)
8970                 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8971                     500000;
8972
8973         range->max_rts = DEFAULT_RTS_THRESHOLD;
8974         range->min_frag = MIN_FRAG_THRESHOLD;
8975         range->max_frag = MAX_FRAG_THRESHOLD;
8976
8977         range->encoding_size[0] = 5;
8978         range->encoding_size[1] = 13;
8979         range->num_encoding_sizes = 2;
8980         range->max_encoding_tokens = WEP_KEYS;
8981
8982         /* Set the Wireless Extension versions */
8983         range->we_version_compiled = WIRELESS_EXT;
8984         range->we_version_source = 18;
8985
8986         i = 0;
8987         if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8988                 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8989                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8990                             (geo->bg[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8991                                 continue;
8992
8993                         range->freq[i].i = geo->bg[j].channel;
8994                         range->freq[i].m = geo->bg[j].freq * 100000;
8995                         range->freq[i].e = 1;
8996                         i++;
8997                 }
8998         }
8999
9000         if (priv->ieee->mode & IEEE_A) {
9001                 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
9002                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
9003                             (geo->a[j].flags & LIBIPW_CH_PASSIVE_ONLY))
9004                                 continue;
9005
9006                         range->freq[i].i = geo->a[j].channel;
9007                         range->freq[i].m = geo->a[j].freq * 100000;
9008                         range->freq[i].e = 1;
9009                         i++;
9010                 }
9011         }
9012
9013         range->num_channels = i;
9014         range->num_frequency = i;
9015
9016         mutex_unlock(&priv->mutex);
9017
9018         /* Event capability (kernel + driver) */
9019         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
9020                                 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
9021                                 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
9022                                 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
9023         range->event_capa[1] = IW_EVENT_CAPA_K_1;
9024
9025         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
9026                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
9027
9028         range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
9029
9030         IPW_DEBUG_WX("GET Range\n");
9031         return 0;
9032 }
9033
9034 static int ipw_wx_set_wap(struct net_device *dev,
9035                           struct iw_request_info *info,
9036                           union iwreq_data *wrqu, char *extra)
9037 {
9038         struct ipw_priv *priv = libipw_priv(dev);
9039
9040         static const unsigned char any[] = {
9041                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
9042         };
9043         static const unsigned char off[] = {
9044                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
9045         };
9046
9047         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
9048                 return -EINVAL;
9049         mutex_lock(&priv->mutex);
9050         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
9051             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
9052                 /* we disable mandatory BSSID association */
9053                 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
9054                 priv->config &= ~CFG_STATIC_BSSID;
9055                 IPW_DEBUG_ASSOC("Attempting to associate with new "
9056                                 "parameters.\n");
9057                 ipw_associate(priv);
9058                 mutex_unlock(&priv->mutex);
9059                 return 0;
9060         }
9061
9062         priv->config |= CFG_STATIC_BSSID;
9063         if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
9064                 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
9065                 mutex_unlock(&priv->mutex);
9066                 return 0;
9067         }
9068
9069         IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
9070                      wrqu->ap_addr.sa_data);
9071
9072         memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
9073
9074         /* Network configuration changed -- force [re]association */
9075         IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
9076         if (!ipw_disassociate(priv))
9077                 ipw_associate(priv);
9078
9079         mutex_unlock(&priv->mutex);
9080         return 0;
9081 }
9082
9083 static int ipw_wx_get_wap(struct net_device *dev,
9084                           struct iw_request_info *info,
9085                           union iwreq_data *wrqu, char *extra)
9086 {
9087         struct ipw_priv *priv = libipw_priv(dev);
9088
9089         /* If we are associated, trying to associate, or have a statically
9090          * configured BSSID then return that; otherwise return ANY */
9091         mutex_lock(&priv->mutex);
9092         if (priv->config & CFG_STATIC_BSSID ||
9093             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9094                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
9095                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
9096         } else
9097                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
9098
9099         IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
9100                      wrqu->ap_addr.sa_data);
9101         mutex_unlock(&priv->mutex);
9102         return 0;
9103 }
9104
9105 static int ipw_wx_set_essid(struct net_device *dev,
9106                             struct iw_request_info *info,
9107                             union iwreq_data *wrqu, char *extra)
9108 {
9109         struct ipw_priv *priv = libipw_priv(dev);
9110         int length;
9111         DECLARE_SSID_BUF(ssid);
9112
9113         mutex_lock(&priv->mutex);
9114
9115         if (!wrqu->essid.flags)
9116         {
9117                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
9118                 ipw_disassociate(priv);
9119                 priv->config &= ~CFG_STATIC_ESSID;
9120                 ipw_associate(priv);
9121                 mutex_unlock(&priv->mutex);
9122                 return 0;
9123         }
9124
9125         length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
9126
9127         priv->config |= CFG_STATIC_ESSID;
9128
9129         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
9130             && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
9131                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
9132                 mutex_unlock(&priv->mutex);
9133                 return 0;
9134         }
9135
9136         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
9137                      print_ssid(ssid, extra, length), length);
9138
9139         priv->essid_len = length;
9140         memcpy(priv->essid, extra, priv->essid_len);
9141
9142         /* Network configuration changed -- force [re]association */
9143         IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9144         if (!ipw_disassociate(priv))
9145                 ipw_associate(priv);
9146
9147         mutex_unlock(&priv->mutex);
9148         return 0;
9149 }
9150
9151 static int ipw_wx_get_essid(struct net_device *dev,
9152                             struct iw_request_info *info,
9153                             union iwreq_data *wrqu, char *extra)
9154 {
9155         struct ipw_priv *priv = libipw_priv(dev);
9156         DECLARE_SSID_BUF(ssid);
9157
9158         /* If we are associated, trying to associate, or have a statically
9159          * configured ESSID then return that; otherwise return ANY */
9160         mutex_lock(&priv->mutex);
9161         if (priv->config & CFG_STATIC_ESSID ||
9162             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9163                 IPW_DEBUG_WX("Getting essid: '%s'\n",
9164                              print_ssid(ssid, priv->essid, priv->essid_len));
9165                 memcpy(extra, priv->essid, priv->essid_len);
9166                 wrqu->essid.length = priv->essid_len;
9167                 wrqu->essid.flags = 1;  /* active */
9168         } else {
9169                 IPW_DEBUG_WX("Getting essid: ANY\n");
9170                 wrqu->essid.length = 0;
9171                 wrqu->essid.flags = 0;  /* active */
9172         }
9173         mutex_unlock(&priv->mutex);
9174         return 0;
9175 }
9176
9177 static int ipw_wx_set_nick(struct net_device *dev,
9178                            struct iw_request_info *info,
9179                            union iwreq_data *wrqu, char *extra)
9180 {
9181         struct ipw_priv *priv = libipw_priv(dev);
9182
9183         IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9184         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9185                 return -E2BIG;
9186         mutex_lock(&priv->mutex);
9187         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
9188         memset(priv->nick, 0, sizeof(priv->nick));
9189         memcpy(priv->nick, extra, wrqu->data.length);
9190         IPW_DEBUG_TRACE("<<\n");
9191         mutex_unlock(&priv->mutex);
9192         return 0;
9193
9194 }
9195
9196 static int ipw_wx_get_nick(struct net_device *dev,
9197                            struct iw_request_info *info,
9198                            union iwreq_data *wrqu, char *extra)
9199 {
9200         struct ipw_priv *priv = libipw_priv(dev);
9201         IPW_DEBUG_WX("Getting nick\n");
9202         mutex_lock(&priv->mutex);
9203         wrqu->data.length = strlen(priv->nick);
9204         memcpy(extra, priv->nick, wrqu->data.length);
9205         wrqu->data.flags = 1;   /* active */
9206         mutex_unlock(&priv->mutex);
9207         return 0;
9208 }
9209
9210 static int ipw_wx_set_sens(struct net_device *dev,
9211                             struct iw_request_info *info,
9212                             union iwreq_data *wrqu, char *extra)
9213 {
9214         struct ipw_priv *priv = libipw_priv(dev);
9215         int err = 0;
9216
9217         IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9218         IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9219         mutex_lock(&priv->mutex);
9220
9221         if (wrqu->sens.fixed == 0)
9222         {
9223                 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9224                 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9225                 goto out;
9226         }
9227         if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9228             (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9229                 err = -EINVAL;
9230                 goto out;
9231         }
9232
9233         priv->roaming_threshold = wrqu->sens.value;
9234         priv->disassociate_threshold = 3*wrqu->sens.value;
9235       out:
9236         mutex_unlock(&priv->mutex);
9237         return err;
9238 }
9239
9240 static int ipw_wx_get_sens(struct net_device *dev,
9241                             struct iw_request_info *info,
9242                             union iwreq_data *wrqu, char *extra)
9243 {
9244         struct ipw_priv *priv = libipw_priv(dev);
9245         mutex_lock(&priv->mutex);
9246         wrqu->sens.fixed = 1;
9247         wrqu->sens.value = priv->roaming_threshold;
9248         mutex_unlock(&priv->mutex);
9249
9250         IPW_DEBUG_WX("GET roaming threshold -> %s %d\n",
9251                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9252
9253         return 0;
9254 }
9255
9256 static int ipw_wx_set_rate(struct net_device *dev,
9257                            struct iw_request_info *info,
9258                            union iwreq_data *wrqu, char *extra)
9259 {
9260         /* TODO: We should use semaphores or locks for access to priv */
9261         struct ipw_priv *priv = libipw_priv(dev);
9262         u32 target_rate = wrqu->bitrate.value;
9263         u32 fixed, mask;
9264
9265         /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9266         /* value = X, fixed = 1 means only rate X */
9267         /* value = X, fixed = 0 means all rates lower equal X */
9268
9269         if (target_rate == -1) {
9270                 fixed = 0;
9271                 mask = LIBIPW_DEFAULT_RATES_MASK;
9272                 /* Now we should reassociate */
9273                 goto apply;
9274         }
9275
9276         mask = 0;
9277         fixed = wrqu->bitrate.fixed;
9278
9279         if (target_rate == 1000000 || !fixed)
9280                 mask |= LIBIPW_CCK_RATE_1MB_MASK;
9281         if (target_rate == 1000000)
9282                 goto apply;
9283
9284         if (target_rate == 2000000 || !fixed)
9285                 mask |= LIBIPW_CCK_RATE_2MB_MASK;
9286         if (target_rate == 2000000)
9287                 goto apply;
9288
9289         if (target_rate == 5500000 || !fixed)
9290                 mask |= LIBIPW_CCK_RATE_5MB_MASK;
9291         if (target_rate == 5500000)
9292                 goto apply;
9293
9294         if (target_rate == 6000000 || !fixed)
9295                 mask |= LIBIPW_OFDM_RATE_6MB_MASK;
9296         if (target_rate == 6000000)
9297                 goto apply;
9298
9299         if (target_rate == 9000000 || !fixed)
9300                 mask |= LIBIPW_OFDM_RATE_9MB_MASK;
9301         if (target_rate == 9000000)
9302                 goto apply;
9303
9304         if (target_rate == 11000000 || !fixed)
9305                 mask |= LIBIPW_CCK_RATE_11MB_MASK;
9306         if (target_rate == 11000000)
9307                 goto apply;
9308
9309         if (target_rate == 12000000 || !fixed)
9310                 mask |= LIBIPW_OFDM_RATE_12MB_MASK;
9311         if (target_rate == 12000000)
9312                 goto apply;
9313
9314         if (target_rate == 18000000 || !fixed)
9315                 mask |= LIBIPW_OFDM_RATE_18MB_MASK;
9316         if (target_rate == 18000000)
9317                 goto apply;
9318
9319         if (target_rate == 24000000 || !fixed)
9320                 mask |= LIBIPW_OFDM_RATE_24MB_MASK;
9321         if (target_rate == 24000000)
9322                 goto apply;
9323
9324         if (target_rate == 36000000 || !fixed)
9325                 mask |= LIBIPW_OFDM_RATE_36MB_MASK;
9326         if (target_rate == 36000000)
9327                 goto apply;
9328
9329         if (target_rate == 48000000 || !fixed)
9330                 mask |= LIBIPW_OFDM_RATE_48MB_MASK;
9331         if (target_rate == 48000000)
9332                 goto apply;
9333
9334         if (target_rate == 54000000 || !fixed)
9335                 mask |= LIBIPW_OFDM_RATE_54MB_MASK;
9336         if (target_rate == 54000000)
9337                 goto apply;
9338
9339         IPW_DEBUG_WX("invalid rate specified, returning error\n");
9340         return -EINVAL;
9341
9342       apply:
9343         IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9344                      mask, fixed ? "fixed" : "sub-rates");
9345         mutex_lock(&priv->mutex);
9346         if (mask == LIBIPW_DEFAULT_RATES_MASK) {
9347                 priv->config &= ~CFG_FIXED_RATE;
9348                 ipw_set_fixed_rate(priv, priv->ieee->mode);
9349         } else
9350                 priv->config |= CFG_FIXED_RATE;
9351
9352         if (priv->rates_mask == mask) {
9353                 IPW_DEBUG_WX("Mask set to current mask.\n");
9354                 mutex_unlock(&priv->mutex);
9355                 return 0;
9356         }
9357
9358         priv->rates_mask = mask;
9359
9360         /* Network configuration changed -- force [re]association */
9361         IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9362         if (!ipw_disassociate(priv))
9363                 ipw_associate(priv);
9364
9365         mutex_unlock(&priv->mutex);
9366         return 0;
9367 }
9368
9369 static int ipw_wx_get_rate(struct net_device *dev,
9370                            struct iw_request_info *info,
9371                            union iwreq_data *wrqu, char *extra)
9372 {
9373         struct ipw_priv *priv = libipw_priv(dev);
9374         mutex_lock(&priv->mutex);
9375         wrqu->bitrate.value = priv->last_rate;
9376         wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9377         mutex_unlock(&priv->mutex);
9378         IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
9379         return 0;
9380 }
9381
9382 static int ipw_wx_set_rts(struct net_device *dev,
9383                           struct iw_request_info *info,
9384                           union iwreq_data *wrqu, char *extra)
9385 {
9386         struct ipw_priv *priv = libipw_priv(dev);
9387         mutex_lock(&priv->mutex);
9388         if (wrqu->rts.disabled || !wrqu->rts.fixed)
9389                 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9390         else {
9391                 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9392                     wrqu->rts.value > MAX_RTS_THRESHOLD) {
9393                         mutex_unlock(&priv->mutex);
9394                         return -EINVAL;
9395                 }
9396                 priv->rts_threshold = wrqu->rts.value;
9397         }
9398
9399         ipw_send_rts_threshold(priv, priv->rts_threshold);
9400         mutex_unlock(&priv->mutex);
9401         IPW_DEBUG_WX("SET RTS Threshold -> %d\n", priv->rts_threshold);
9402         return 0;
9403 }
9404
9405 static int ipw_wx_get_rts(struct net_device *dev,
9406                           struct iw_request_info *info,
9407                           union iwreq_data *wrqu, char *extra)
9408 {
9409         struct ipw_priv *priv = libipw_priv(dev);
9410         mutex_lock(&priv->mutex);
9411         wrqu->rts.value = priv->rts_threshold;
9412         wrqu->rts.fixed = 0;    /* no auto select */
9413         wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9414         mutex_unlock(&priv->mutex);
9415         IPW_DEBUG_WX("GET RTS Threshold -> %d\n", wrqu->rts.value);
9416         return 0;
9417 }
9418
9419 static int ipw_wx_set_txpow(struct net_device *dev,
9420                             struct iw_request_info *info,
9421                             union iwreq_data *wrqu, char *extra)
9422 {
9423         struct ipw_priv *priv = libipw_priv(dev);
9424         int err = 0;
9425
9426         mutex_lock(&priv->mutex);
9427         if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9428                 err = -EINPROGRESS;
9429                 goto out;
9430         }
9431
9432         if (!wrqu->power.fixed)
9433                 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9434
9435         if (wrqu->power.flags != IW_TXPOW_DBM) {
9436                 err = -EINVAL;
9437                 goto out;
9438         }
9439
9440         if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9441             (wrqu->power.value < IPW_TX_POWER_MIN)) {
9442                 err = -EINVAL;
9443                 goto out;
9444         }
9445
9446         priv->tx_power = wrqu->power.value;
9447         err = ipw_set_tx_power(priv);
9448       out:
9449         mutex_unlock(&priv->mutex);
9450         return err;
9451 }
9452
9453 static int ipw_wx_get_txpow(struct net_device *dev,
9454                             struct iw_request_info *info,
9455                             union iwreq_data *wrqu, char *extra)
9456 {
9457         struct ipw_priv *priv = libipw_priv(dev);
9458         mutex_lock(&priv->mutex);
9459         wrqu->power.value = priv->tx_power;
9460         wrqu->power.fixed = 1;
9461         wrqu->power.flags = IW_TXPOW_DBM;
9462         wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9463         mutex_unlock(&priv->mutex);
9464
9465         IPW_DEBUG_WX("GET TX Power -> %s %d\n",
9466                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9467
9468         return 0;
9469 }
9470
9471 static int ipw_wx_set_frag(struct net_device *dev,
9472                            struct iw_request_info *info,
9473                            union iwreq_data *wrqu, char *extra)
9474 {
9475         struct ipw_priv *priv = libipw_priv(dev);
9476         mutex_lock(&priv->mutex);
9477         if (wrqu->frag.disabled || !wrqu->frag.fixed)
9478                 priv->ieee->fts = DEFAULT_FTS;
9479         else {
9480                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9481                     wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9482                         mutex_unlock(&priv->mutex);
9483                         return -EINVAL;
9484                 }
9485
9486                 priv->ieee->fts = wrqu->frag.value & ~0x1;
9487         }
9488
9489         ipw_send_frag_threshold(priv, wrqu->frag.value);
9490         mutex_unlock(&priv->mutex);
9491         IPW_DEBUG_WX("SET Frag Threshold -> %d\n", wrqu->frag.value);
9492         return 0;
9493 }
9494
9495 static int ipw_wx_get_frag(struct net_device *dev,
9496                            struct iw_request_info *info,
9497                            union iwreq_data *wrqu, char *extra)
9498 {
9499         struct ipw_priv *priv = libipw_priv(dev);
9500         mutex_lock(&priv->mutex);
9501         wrqu->frag.value = priv->ieee->fts;
9502         wrqu->frag.fixed = 0;   /* no auto select */
9503         wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9504         mutex_unlock(&priv->mutex);
9505         IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
9506
9507         return 0;
9508 }
9509
9510 static int ipw_wx_set_retry(struct net_device *dev,
9511                             struct iw_request_info *info,
9512                             union iwreq_data *wrqu, char *extra)
9513 {
9514         struct ipw_priv *priv = libipw_priv(dev);
9515
9516         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9517                 return -EINVAL;
9518
9519         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9520                 return 0;
9521
9522         if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9523                 return -EINVAL;
9524
9525         mutex_lock(&priv->mutex);
9526         if (wrqu->retry.flags & IW_RETRY_SHORT)
9527                 priv->short_retry_limit = (u8) wrqu->retry.value;
9528         else if (wrqu->retry.flags & IW_RETRY_LONG)
9529                 priv->long_retry_limit = (u8) wrqu->retry.value;
9530         else {
9531                 priv->short_retry_limit = (u8) wrqu->retry.value;
9532                 priv->long_retry_limit = (u8) wrqu->retry.value;
9533         }
9534
9535         ipw_send_retry_limit(priv, priv->short_retry_limit,
9536                              priv->long_retry_limit);
9537         mutex_unlock(&priv->mutex);
9538         IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9539                      priv->short_retry_limit, priv->long_retry_limit);
9540         return 0;
9541 }
9542
9543 static int ipw_wx_get_retry(struct net_device *dev,
9544                             struct iw_request_info *info,
9545                             union iwreq_data *wrqu, char *extra)
9546 {
9547         struct ipw_priv *priv = libipw_priv(dev);
9548
9549         mutex_lock(&priv->mutex);
9550         wrqu->retry.disabled = 0;
9551
9552         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9553                 mutex_unlock(&priv->mutex);
9554                 return -EINVAL;
9555         }
9556
9557         if (wrqu->retry.flags & IW_RETRY_LONG) {
9558                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9559                 wrqu->retry.value = priv->long_retry_limit;
9560         } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9561                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9562                 wrqu->retry.value = priv->short_retry_limit;
9563         } else {
9564                 wrqu->retry.flags = IW_RETRY_LIMIT;
9565                 wrqu->retry.value = priv->short_retry_limit;
9566         }
9567         mutex_unlock(&priv->mutex);
9568
9569         IPW_DEBUG_WX("GET retry -> %d\n", wrqu->retry.value);
9570
9571         return 0;
9572 }
9573
9574 static int ipw_wx_set_scan(struct net_device *dev,
9575                            struct iw_request_info *info,
9576                            union iwreq_data *wrqu, char *extra)
9577 {
9578         struct ipw_priv *priv = libipw_priv(dev);
9579         struct iw_scan_req *req = (struct iw_scan_req *)extra;
9580         struct delayed_work *work = NULL;
9581
9582         mutex_lock(&priv->mutex);
9583
9584         priv->user_requested_scan = 1;
9585
9586         if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9587                 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9588                         int len = min((int)req->essid_len,
9589                                       (int)sizeof(priv->direct_scan_ssid));
9590                         memcpy(priv->direct_scan_ssid, req->essid, len);
9591                         priv->direct_scan_ssid_len = len;
9592                         work = &priv->request_direct_scan;
9593                 } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9594                         work = &priv->request_passive_scan;
9595                 }
9596         } else {
9597                 /* Normal active broadcast scan */
9598                 work = &priv->request_scan;
9599         }
9600
9601         mutex_unlock(&priv->mutex);
9602
9603         IPW_DEBUG_WX("Start scan\n");
9604
9605         schedule_delayed_work(work, 0);
9606
9607         return 0;
9608 }
9609
9610 static int ipw_wx_get_scan(struct net_device *dev,
9611                            struct iw_request_info *info,
9612                            union iwreq_data *wrqu, char *extra)
9613 {
9614         struct ipw_priv *priv = libipw_priv(dev);
9615         return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
9616 }
9617
9618 static int ipw_wx_set_encode(struct net_device *dev,
9619                              struct iw_request_info *info,
9620                              union iwreq_data *wrqu, char *key)
9621 {
9622         struct ipw_priv *priv = libipw_priv(dev);
9623         int ret;
9624         u32 cap = priv->capability;
9625
9626         mutex_lock(&priv->mutex);
9627         ret = libipw_wx_set_encode(priv->ieee, info, wrqu, key);
9628
9629         /* In IBSS mode, we need to notify the firmware to update
9630          * the beacon info after we changed the capability. */
9631         if (cap != priv->capability &&
9632             priv->ieee->iw_mode == IW_MODE_ADHOC &&
9633             priv->status & STATUS_ASSOCIATED)
9634                 ipw_disassociate(priv);
9635
9636         mutex_unlock(&priv->mutex);
9637         return ret;
9638 }
9639
9640 static int ipw_wx_get_encode(struct net_device *dev,
9641                              struct iw_request_info *info,
9642                              union iwreq_data *wrqu, char *key)
9643 {
9644         struct ipw_priv *priv = libipw_priv(dev);
9645         return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
9646 }
9647
9648 static int ipw_wx_set_power(struct net_device *dev,
9649                             struct iw_request_info *info,
9650                             union iwreq_data *wrqu, char *extra)
9651 {
9652         struct ipw_priv *priv = libipw_priv(dev);
9653         int err;
9654         mutex_lock(&priv->mutex);
9655         if (wrqu->power.disabled) {
9656                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9657                 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9658                 if (err) {
9659                         IPW_DEBUG_WX("failed setting power mode.\n");
9660                         mutex_unlock(&priv->mutex);
9661                         return err;
9662                 }
9663                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9664                 mutex_unlock(&priv->mutex);
9665                 return 0;
9666         }
9667
9668         switch (wrqu->power.flags & IW_POWER_MODE) {
9669         case IW_POWER_ON:       /* If not specified */
9670         case IW_POWER_MODE:     /* If set all mask */
9671         case IW_POWER_ALL_R:    /* If explicitly state all */
9672                 break;
9673         default:                /* Otherwise we don't support it */
9674                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9675                              wrqu->power.flags);
9676                 mutex_unlock(&priv->mutex);
9677                 return -EOPNOTSUPP;
9678         }
9679
9680         /* If the user hasn't specified a power management mode yet, default
9681          * to BATTERY */
9682         if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9683                 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9684         else
9685                 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9686
9687         err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9688         if (err) {
9689                 IPW_DEBUG_WX("failed setting power mode.\n");
9690                 mutex_unlock(&priv->mutex);
9691                 return err;
9692         }
9693
9694         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9695         mutex_unlock(&priv->mutex);
9696         return 0;
9697 }
9698
9699 static int ipw_wx_get_power(struct net_device *dev,
9700                             struct iw_request_info *info,
9701                             union iwreq_data *wrqu, char *extra)
9702 {
9703         struct ipw_priv *priv = libipw_priv(dev);
9704         mutex_lock(&priv->mutex);
9705         if (!(priv->power_mode & IPW_POWER_ENABLED))
9706                 wrqu->power.disabled = 1;
9707         else
9708                 wrqu->power.disabled = 0;
9709
9710         mutex_unlock(&priv->mutex);
9711         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9712
9713         return 0;
9714 }
9715
9716 static int ipw_wx_set_powermode(struct net_device *dev,
9717                                 struct iw_request_info *info,
9718                                 union iwreq_data *wrqu, char *extra)
9719 {
9720         struct ipw_priv *priv = libipw_priv(dev);
9721         int mode = *(int *)extra;
9722         int err;
9723
9724         mutex_lock(&priv->mutex);
9725         if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9726                 mode = IPW_POWER_AC;
9727
9728         if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9729                 err = ipw_send_power_mode(priv, mode);
9730                 if (err) {
9731                         IPW_DEBUG_WX("failed setting power mode.\n");
9732                         mutex_unlock(&priv->mutex);
9733                         return err;
9734                 }
9735                 priv->power_mode = IPW_POWER_ENABLED | mode;
9736         }
9737         mutex_unlock(&priv->mutex);
9738         return 0;
9739 }
9740
9741 #define MAX_WX_STRING 80
9742 static int ipw_wx_get_powermode(struct net_device *dev,
9743                                 struct iw_request_info *info,
9744                                 union iwreq_data *wrqu, char *extra)
9745 {
9746         struct ipw_priv *priv = libipw_priv(dev);
9747         int level = IPW_POWER_LEVEL(priv->power_mode);
9748         char *p = extra;
9749
9750         p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9751
9752         switch (level) {
9753         case IPW_POWER_AC:
9754                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9755                 break;
9756         case IPW_POWER_BATTERY:
9757                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9758                 break;
9759         default:
9760                 p += snprintf(p, MAX_WX_STRING - (p - extra),
9761                               "(Timeout %dms, Period %dms)",
9762                               timeout_duration[level - 1] / 1000,
9763                               period_duration[level - 1] / 1000);
9764         }
9765
9766         if (!(priv->power_mode & IPW_POWER_ENABLED))
9767                 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9768
9769         wrqu->data.length = p - extra + 1;
9770
9771         return 0;
9772 }
9773
9774 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9775                                     struct iw_request_info *info,
9776                                     union iwreq_data *wrqu, char *extra)
9777 {
9778         struct ipw_priv *priv = libipw_priv(dev);
9779         int mode = *(int *)extra;
9780         u8 band = 0, modulation = 0;
9781
9782         if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9783                 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9784                 return -EINVAL;
9785         }
9786         mutex_lock(&priv->mutex);
9787         if (priv->adapter == IPW_2915ABG) {
9788                 priv->ieee->abg_true = 1;
9789                 if (mode & IEEE_A) {
9790                         band |= LIBIPW_52GHZ_BAND;
9791                         modulation |= LIBIPW_OFDM_MODULATION;
9792                 } else
9793                         priv->ieee->abg_true = 0;
9794         } else {
9795                 if (mode & IEEE_A) {
9796                         IPW_WARNING("Attempt to set 2200BG into "
9797                                     "802.11a mode\n");
9798                         mutex_unlock(&priv->mutex);
9799                         return -EINVAL;
9800                 }
9801
9802                 priv->ieee->abg_true = 0;
9803         }
9804
9805         if (mode & IEEE_B) {
9806                 band |= LIBIPW_24GHZ_BAND;
9807                 modulation |= LIBIPW_CCK_MODULATION;
9808         } else
9809                 priv->ieee->abg_true = 0;
9810
9811         if (mode & IEEE_G) {
9812                 band |= LIBIPW_24GHZ_BAND;
9813                 modulation |= LIBIPW_OFDM_MODULATION;
9814         } else
9815                 priv->ieee->abg_true = 0;
9816
9817         priv->ieee->mode = mode;
9818         priv->ieee->freq_band = band;
9819         priv->ieee->modulation = modulation;
9820         init_supported_rates(priv, &priv->rates);
9821
9822         /* Network configuration changed -- force [re]association */
9823         IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9824         if (!ipw_disassociate(priv)) {
9825                 ipw_send_supported_rates(priv, &priv->rates);
9826                 ipw_associate(priv);
9827         }
9828
9829         /* Update the band LEDs */
9830         ipw_led_band_on(priv);
9831
9832         IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9833                      mode & IEEE_A ? 'a' : '.',
9834                      mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9835         mutex_unlock(&priv->mutex);
9836         return 0;
9837 }
9838
9839 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9840                                     struct iw_request_info *info,
9841                                     union iwreq_data *wrqu, char *extra)
9842 {
9843         struct ipw_priv *priv = libipw_priv(dev);
9844         mutex_lock(&priv->mutex);
9845         switch (priv->ieee->mode) {
9846         case IEEE_A:
9847                 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9848                 break;
9849         case IEEE_B:
9850                 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9851                 break;
9852         case IEEE_A | IEEE_B:
9853                 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9854                 break;
9855         case IEEE_G:
9856                 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9857                 break;
9858         case IEEE_A | IEEE_G:
9859                 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9860                 break;
9861         case IEEE_B | IEEE_G:
9862                 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9863                 break;
9864         case IEEE_A | IEEE_B | IEEE_G:
9865                 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9866                 break;
9867         default:
9868                 strncpy(extra, "unknown", MAX_WX_STRING);
9869                 break;
9870         }
9871
9872         IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9873
9874         wrqu->data.length = strlen(extra) + 1;
9875         mutex_unlock(&priv->mutex);
9876
9877         return 0;
9878 }
9879
9880 static int ipw_wx_set_preamble(struct net_device *dev,
9881                                struct iw_request_info *info,
9882                                union iwreq_data *wrqu, char *extra)
9883 {
9884         struct ipw_priv *priv = libipw_priv(dev);
9885         int mode = *(int *)extra;
9886         mutex_lock(&priv->mutex);
9887         /* Switching from SHORT -> LONG requires a disassociation */
9888         if (mode == 1) {
9889                 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9890                         priv->config |= CFG_PREAMBLE_LONG;
9891
9892                         /* Network configuration changed -- force [re]association */
9893                         IPW_DEBUG_ASSOC
9894                             ("[re]association triggered due to preamble change.\n");
9895                         if (!ipw_disassociate(priv))
9896                                 ipw_associate(priv);
9897                 }
9898                 goto done;
9899         }
9900
9901         if (mode == 0) {
9902                 priv->config &= ~CFG_PREAMBLE_LONG;
9903                 goto done;
9904         }
9905         mutex_unlock(&priv->mutex);
9906         return -EINVAL;
9907
9908       done:
9909         mutex_unlock(&priv->mutex);
9910         return 0;
9911 }
9912
9913 static int ipw_wx_get_preamble(struct net_device *dev,
9914                                struct iw_request_info *info,
9915                                union iwreq_data *wrqu, char *extra)
9916 {
9917         struct ipw_priv *priv = libipw_priv(dev);
9918         mutex_lock(&priv->mutex);
9919         if (priv->config & CFG_PREAMBLE_LONG)
9920                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9921         else
9922                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9923         mutex_unlock(&priv->mutex);
9924         return 0;
9925 }
9926
9927 #ifdef CONFIG_IPW2200_MONITOR
9928 static int ipw_wx_set_monitor(struct net_device *dev,
9929                               struct iw_request_info *info,
9930                               union iwreq_data *wrqu, char *extra)
9931 {
9932         struct ipw_priv *priv = libipw_priv(dev);
9933         int *parms = (int *)extra;
9934         int enable = (parms[0] > 0);
9935         mutex_lock(&priv->mutex);
9936         IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9937         if (enable) {
9938                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9939 #ifdef CONFIG_IPW2200_RADIOTAP
9940                         priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9941 #else
9942                         priv->net_dev->type = ARPHRD_IEEE80211;
9943 #endif
9944                         schedule_work(&priv->adapter_restart);
9945                 }
9946
9947                 ipw_set_channel(priv, parms[1]);
9948         } else {
9949                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9950                         mutex_unlock(&priv->mutex);
9951                         return 0;
9952                 }
9953                 priv->net_dev->type = ARPHRD_ETHER;
9954                 schedule_work(&priv->adapter_restart);
9955         }
9956         mutex_unlock(&priv->mutex);
9957         return 0;
9958 }
9959
9960 #endif                          /* CONFIG_IPW2200_MONITOR */
9961
9962 static int ipw_wx_reset(struct net_device *dev,
9963                         struct iw_request_info *info,
9964                         union iwreq_data *wrqu, char *extra)
9965 {
9966         struct ipw_priv *priv = libipw_priv(dev);
9967         IPW_DEBUG_WX("RESET\n");
9968         schedule_work(&priv->adapter_restart);
9969         return 0;
9970 }
9971
9972 static int ipw_wx_sw_reset(struct net_device *dev,
9973                            struct iw_request_info *info,
9974                            union iwreq_data *wrqu, char *extra)
9975 {
9976         struct ipw_priv *priv = libipw_priv(dev);
9977         union iwreq_data wrqu_sec = {
9978                 .encoding = {
9979                              .flags = IW_ENCODE_DISABLED,
9980                              },
9981         };
9982         int ret;
9983
9984         IPW_DEBUG_WX("SW_RESET\n");
9985
9986         mutex_lock(&priv->mutex);
9987
9988         ret = ipw_sw_reset(priv, 2);
9989         if (!ret) {
9990                 free_firmware();
9991                 ipw_adapter_restart(priv);
9992         }
9993
9994         /* The SW reset bit might have been toggled on by the 'disable'
9995          * module parameter, so take appropriate action */
9996         ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9997
9998         mutex_unlock(&priv->mutex);
9999         libipw_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
10000         mutex_lock(&priv->mutex);
10001
10002         if (!(priv->status & STATUS_RF_KILL_MASK)) {
10003                 /* Configuration likely changed -- force [re]association */
10004                 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
10005                                 "reset.\n");
10006                 if (!ipw_disassociate(priv))
10007                         ipw_associate(priv);
10008         }
10009
10010         mutex_unlock(&priv->mutex);
10011
10012         return 0;
10013 }
10014
10015 /* Rebase the WE IOCTLs to zero for the handler array */
10016 static iw_handler ipw_wx_handlers[] = {
10017         IW_HANDLER(SIOCGIWNAME, (iw_handler)cfg80211_wext_giwname),
10018         IW_HANDLER(SIOCSIWFREQ, ipw_wx_set_freq),
10019         IW_HANDLER(SIOCGIWFREQ, ipw_wx_get_freq),
10020         IW_HANDLER(SIOCSIWMODE, ipw_wx_set_mode),
10021         IW_HANDLER(SIOCGIWMODE, ipw_wx_get_mode),
10022         IW_HANDLER(SIOCSIWSENS, ipw_wx_set_sens),
10023         IW_HANDLER(SIOCGIWSENS, ipw_wx_get_sens),
10024         IW_HANDLER(SIOCGIWRANGE, ipw_wx_get_range),
10025         IW_HANDLER(SIOCSIWAP, ipw_wx_set_wap),
10026         IW_HANDLER(SIOCGIWAP, ipw_wx_get_wap),
10027         IW_HANDLER(SIOCSIWSCAN, ipw_wx_set_scan),
10028         IW_HANDLER(SIOCGIWSCAN, ipw_wx_get_scan),
10029         IW_HANDLER(SIOCSIWESSID, ipw_wx_set_essid),
10030         IW_HANDLER(SIOCGIWESSID, ipw_wx_get_essid),
10031         IW_HANDLER(SIOCSIWNICKN, ipw_wx_set_nick),
10032         IW_HANDLER(SIOCGIWNICKN, ipw_wx_get_nick),
10033         IW_HANDLER(SIOCSIWRATE, ipw_wx_set_rate),
10034         IW_HANDLER(SIOCGIWRATE, ipw_wx_get_rate),
10035         IW_HANDLER(SIOCSIWRTS, ipw_wx_set_rts),
10036         IW_HANDLER(SIOCGIWRTS, ipw_wx_get_rts),
10037         IW_HANDLER(SIOCSIWFRAG, ipw_wx_set_frag),
10038         IW_HANDLER(SIOCGIWFRAG, ipw_wx_get_frag),
10039         IW_HANDLER(SIOCSIWTXPOW, ipw_wx_set_txpow),
10040         IW_HANDLER(SIOCGIWTXPOW, ipw_wx_get_txpow),
10041         IW_HANDLER(SIOCSIWRETRY, ipw_wx_set_retry),
10042         IW_HANDLER(SIOCGIWRETRY, ipw_wx_get_retry),
10043         IW_HANDLER(SIOCSIWENCODE, ipw_wx_set_encode),
10044         IW_HANDLER(SIOCGIWENCODE, ipw_wx_get_encode),
10045         IW_HANDLER(SIOCSIWPOWER, ipw_wx_set_power),
10046         IW_HANDLER(SIOCGIWPOWER, ipw_wx_get_power),
10047         IW_HANDLER(SIOCSIWSPY, iw_handler_set_spy),
10048         IW_HANDLER(SIOCGIWSPY, iw_handler_get_spy),
10049         IW_HANDLER(SIOCSIWTHRSPY, iw_handler_set_thrspy),
10050         IW_HANDLER(SIOCGIWTHRSPY, iw_handler_get_thrspy),
10051         IW_HANDLER(SIOCSIWGENIE, ipw_wx_set_genie),
10052         IW_HANDLER(SIOCGIWGENIE, ipw_wx_get_genie),
10053         IW_HANDLER(SIOCSIWMLME, ipw_wx_set_mlme),
10054         IW_HANDLER(SIOCSIWAUTH, ipw_wx_set_auth),
10055         IW_HANDLER(SIOCGIWAUTH, ipw_wx_get_auth),
10056         IW_HANDLER(SIOCSIWENCODEEXT, ipw_wx_set_encodeext),
10057         IW_HANDLER(SIOCGIWENCODEEXT, ipw_wx_get_encodeext),
10058 };
10059
10060 enum {
10061         IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
10062         IPW_PRIV_GET_POWER,
10063         IPW_PRIV_SET_MODE,
10064         IPW_PRIV_GET_MODE,
10065         IPW_PRIV_SET_PREAMBLE,
10066         IPW_PRIV_GET_PREAMBLE,
10067         IPW_PRIV_RESET,
10068         IPW_PRIV_SW_RESET,
10069 #ifdef CONFIG_IPW2200_MONITOR
10070         IPW_PRIV_SET_MONITOR,
10071 #endif
10072 };
10073
10074 static struct iw_priv_args ipw_priv_args[] = {
10075         {
10076          .cmd = IPW_PRIV_SET_POWER,
10077          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10078          .name = "set_power"},
10079         {
10080          .cmd = IPW_PRIV_GET_POWER,
10081          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10082          .name = "get_power"},
10083         {
10084          .cmd = IPW_PRIV_SET_MODE,
10085          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10086          .name = "set_mode"},
10087         {
10088          .cmd = IPW_PRIV_GET_MODE,
10089          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10090          .name = "get_mode"},
10091         {
10092          .cmd = IPW_PRIV_SET_PREAMBLE,
10093          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10094          .name = "set_preamble"},
10095         {
10096          .cmd = IPW_PRIV_GET_PREAMBLE,
10097          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
10098          .name = "get_preamble"},
10099         {
10100          IPW_PRIV_RESET,
10101          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
10102         {
10103          IPW_PRIV_SW_RESET,
10104          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
10105 #ifdef CONFIG_IPW2200_MONITOR
10106         {
10107          IPW_PRIV_SET_MONITOR,
10108          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
10109 #endif                          /* CONFIG_IPW2200_MONITOR */
10110 };
10111
10112 static iw_handler ipw_priv_handler[] = {
10113         ipw_wx_set_powermode,
10114         ipw_wx_get_powermode,
10115         ipw_wx_set_wireless_mode,
10116         ipw_wx_get_wireless_mode,
10117         ipw_wx_set_preamble,
10118         ipw_wx_get_preamble,
10119         ipw_wx_reset,
10120         ipw_wx_sw_reset,
10121 #ifdef CONFIG_IPW2200_MONITOR
10122         ipw_wx_set_monitor,
10123 #endif
10124 };
10125
10126 static struct iw_handler_def ipw_wx_handler_def = {
10127         .standard = ipw_wx_handlers,
10128         .num_standard = ARRAY_SIZE(ipw_wx_handlers),
10129         .num_private = ARRAY_SIZE(ipw_priv_handler),
10130         .num_private_args = ARRAY_SIZE(ipw_priv_args),
10131         .private = ipw_priv_handler,
10132         .private_args = ipw_priv_args,
10133         .get_wireless_stats = ipw_get_wireless_stats,
10134 };
10135
10136 /*
10137  * Get wireless statistics.
10138  * Called by /proc/net/wireless
10139  * Also called by SIOCGIWSTATS
10140  */
10141 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10142 {
10143         struct ipw_priv *priv = libipw_priv(dev);
10144         struct iw_statistics *wstats;
10145
10146         wstats = &priv->wstats;
10147
10148         /* if hw is disabled, then ipw_get_ordinal() can't be called.
10149          * netdev->get_wireless_stats seems to be called before fw is
10150          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
10151          * and associated; if not associcated, the values are all meaningless
10152          * anyway, so set them all to NULL and INVALID */
10153         if (!(priv->status & STATUS_ASSOCIATED)) {
10154                 wstats->miss.beacon = 0;
10155                 wstats->discard.retries = 0;
10156                 wstats->qual.qual = 0;
10157                 wstats->qual.level = 0;
10158                 wstats->qual.noise = 0;
10159                 wstats->qual.updated = 7;
10160                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10161                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10162                 return wstats;
10163         }
10164
10165         wstats->qual.qual = priv->quality;
10166         wstats->qual.level = priv->exp_avg_rssi;
10167         wstats->qual.noise = priv->exp_avg_noise;
10168         wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10169             IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10170
10171         wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10172         wstats->discard.retries = priv->last_tx_failures;
10173         wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10174
10175 /*      if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10176         goto fail_get_ordinal;
10177         wstats->discard.retries += tx_retry; */
10178
10179         return wstats;
10180 }
10181
10182 /* net device stuff */
10183
10184 static  void init_sys_config(struct ipw_sys_config *sys_config)
10185 {
10186         memset(sys_config, 0, sizeof(struct ipw_sys_config));
10187         sys_config->bt_coexistence = 0;
10188         sys_config->answer_broadcast_ssid_probe = 0;
10189         sys_config->accept_all_data_frames = 0;
10190         sys_config->accept_non_directed_frames = 1;
10191         sys_config->exclude_unicast_unencrypted = 0;
10192         sys_config->disable_unicast_decryption = 1;
10193         sys_config->exclude_multicast_unencrypted = 0;
10194         sys_config->disable_multicast_decryption = 1;
10195         if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10196                 antenna = CFG_SYS_ANTENNA_BOTH;
10197         sys_config->antenna_diversity = antenna;
10198         sys_config->pass_crc_to_host = 0;       /* TODO: See if 1 gives us FCS */
10199         sys_config->dot11g_auto_detection = 0;
10200         sys_config->enable_cts_to_self = 0;
10201         sys_config->bt_coexist_collision_thr = 0;
10202         sys_config->pass_noise_stats_to_host = 1;       /* 1 -- fix for 256 */
10203         sys_config->silence_threshold = 0x1e;
10204 }
10205
10206 static int ipw_net_open(struct net_device *dev)
10207 {
10208         IPW_DEBUG_INFO("dev->open\n");
10209         netif_start_queue(dev);
10210         return 0;
10211 }
10212
10213 static int ipw_net_stop(struct net_device *dev)
10214 {
10215         IPW_DEBUG_INFO("dev->close\n");
10216         netif_stop_queue(dev);
10217         return 0;
10218 }
10219
10220 /*
10221 todo:
10222
10223 modify to send one tfd per fragment instead of using chunking.  otherwise
10224 we need to heavily modify the libipw_skb_to_txb.
10225 */
10226
10227 static int ipw_tx_skb(struct ipw_priv *priv, struct libipw_txb *txb,
10228                              int pri)
10229 {
10230         struct libipw_hdr_3addrqos *hdr = (struct libipw_hdr_3addrqos *)
10231             txb->fragments[0]->data;
10232         int i = 0;
10233         struct tfd_frame *tfd;
10234 #ifdef CONFIG_IPW2200_QOS
10235         int tx_id = ipw_get_tx_queue_number(priv, pri);
10236         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10237 #else
10238         struct clx2_tx_queue *txq = &priv->txq[0];
10239 #endif
10240         struct clx2_queue *q = &txq->q;
10241         u8 id, hdr_len, unicast;
10242         int fc;
10243
10244         if (!(priv->status & STATUS_ASSOCIATED))
10245                 goto drop;
10246
10247         hdr_len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10248         switch (priv->ieee->iw_mode) {
10249         case IW_MODE_ADHOC:
10250                 unicast = !is_multicast_ether_addr(hdr->addr1);
10251                 id = ipw_find_station(priv, hdr->addr1);
10252                 if (id == IPW_INVALID_STATION) {
10253                         id = ipw_add_station(priv, hdr->addr1);
10254                         if (id == IPW_INVALID_STATION) {
10255                                 IPW_WARNING("Attempt to send data to "
10256                                             "invalid cell: %pM\n",
10257                                             hdr->addr1);
10258                                 goto drop;
10259                         }
10260                 }
10261                 break;
10262
10263         case IW_MODE_INFRA:
10264         default:
10265                 unicast = !is_multicast_ether_addr(hdr->addr3);
10266                 id = 0;
10267                 break;
10268         }
10269
10270         tfd = &txq->bd[q->first_empty];
10271         txq->txb[q->first_empty] = txb;
10272         memset(tfd, 0, sizeof(*tfd));
10273         tfd->u.data.station_number = id;
10274
10275         tfd->control_flags.message_type = TX_FRAME_TYPE;
10276         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10277
10278         tfd->u.data.cmd_id = DINO_CMD_TX;
10279         tfd->u.data.len = cpu_to_le16(txb->payload_size);
10280
10281         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10282                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10283         else
10284                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10285
10286         if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10287                 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10288
10289         fc = le16_to_cpu(hdr->frame_ctl);
10290         hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10291
10292         memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10293
10294         if (likely(unicast))
10295                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10296
10297         if (txb->encrypted && !priv->ieee->host_encrypt) {
10298                 switch (priv->ieee->sec.level) {
10299                 case SEC_LEVEL_3:
10300                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10301                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10302                         /* XXX: ACK flag must be set for CCMP even if it
10303                          * is a multicast/broadcast packet, because CCMP
10304                          * group communication encrypted by GTK is
10305                          * actually done by the AP. */
10306                         if (!unicast)
10307                                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10308
10309                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10310                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10311                         tfd->u.data.key_index = 0;
10312                         tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10313                         break;
10314                 case SEC_LEVEL_2:
10315                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10316                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10317                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10318                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10319                         tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10320                         break;
10321                 case SEC_LEVEL_1:
10322                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10323                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10324                         tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx;
10325                         if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <=
10326                             40)
10327                                 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10328                         else
10329                                 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10330                         break;
10331                 case SEC_LEVEL_0:
10332                         break;
10333                 default:
10334                         printk(KERN_ERR "Unknown security level %d\n",
10335                                priv->ieee->sec.level);
10336                         break;
10337                 }
10338         } else
10339                 /* No hardware encryption */
10340                 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10341
10342 #ifdef CONFIG_IPW2200_QOS
10343         if (fc & IEEE80211_STYPE_QOS_DATA)
10344                 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10345 #endif                          /* CONFIG_IPW2200_QOS */
10346
10347         /* payload */
10348         tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10349                                                  txb->nr_frags));
10350         IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10351                        txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10352         for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10353                 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10354                                i, le32_to_cpu(tfd->u.data.num_chunks),
10355                                txb->fragments[i]->len - hdr_len);
10356                 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10357                              i, tfd->u.data.num_chunks,
10358                              txb->fragments[i]->len - hdr_len);
10359                 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10360                            txb->fragments[i]->len - hdr_len);
10361
10362                 tfd->u.data.chunk_ptr[i] =
10363                     cpu_to_le32(pci_map_single
10364                                 (priv->pci_dev,
10365                                  txb->fragments[i]->data + hdr_len,
10366                                  txb->fragments[i]->len - hdr_len,
10367                                  PCI_DMA_TODEVICE));
10368                 tfd->u.data.chunk_len[i] =
10369                     cpu_to_le16(txb->fragments[i]->len - hdr_len);
10370         }
10371
10372         if (i != txb->nr_frags) {
10373                 struct sk_buff *skb;
10374                 u16 remaining_bytes = 0;
10375                 int j;
10376
10377                 for (j = i; j < txb->nr_frags; j++)
10378                         remaining_bytes += txb->fragments[j]->len - hdr_len;
10379
10380                 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10381                        remaining_bytes);
10382                 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10383                 if (skb != NULL) {
10384                         tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10385                         for (j = i; j < txb->nr_frags; j++) {
10386                                 int size = txb->fragments[j]->len - hdr_len;
10387
10388                                 printk(KERN_INFO "Adding frag %d %d...\n",
10389                                        j, size);
10390                                 memcpy(skb_put(skb, size),
10391                                        txb->fragments[j]->data + hdr_len, size);
10392                         }
10393                         dev_kfree_skb_any(txb->fragments[i]);
10394                         txb->fragments[i] = skb;
10395                         tfd->u.data.chunk_ptr[i] =
10396                             cpu_to_le32(pci_map_single
10397                                         (priv->pci_dev, skb->data,
10398                                          remaining_bytes,
10399                                          PCI_DMA_TODEVICE));
10400
10401                         le32_add_cpu(&tfd->u.data.num_chunks, 1);
10402                 }
10403         }
10404
10405         /* kick DMA */
10406         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10407         ipw_write32(priv, q->reg_w, q->first_empty);
10408
10409         if (ipw_tx_queue_space(q) < q->high_mark)
10410                 netif_stop_queue(priv->net_dev);
10411
10412         return NETDEV_TX_OK;
10413
10414       drop:
10415         IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10416         libipw_txb_free(txb);
10417         return NETDEV_TX_OK;
10418 }
10419
10420 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10421 {
10422         struct ipw_priv *priv = libipw_priv(dev);
10423 #ifdef CONFIG_IPW2200_QOS
10424         int tx_id = ipw_get_tx_queue_number(priv, pri);
10425         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10426 #else
10427         struct clx2_tx_queue *txq = &priv->txq[0];
10428 #endif                          /* CONFIG_IPW2200_QOS */
10429
10430         if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10431                 return 1;
10432
10433         return 0;
10434 }
10435
10436 #ifdef CONFIG_IPW2200_PROMISCUOUS
10437 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10438                                       struct libipw_txb *txb)
10439 {
10440         struct libipw_rx_stats dummystats;
10441         struct ieee80211_hdr *hdr;
10442         u8 n;
10443         u16 filter = priv->prom_priv->filter;
10444         int hdr_only = 0;
10445
10446         if (filter & IPW_PROM_NO_TX)
10447                 return;
10448
10449         memset(&dummystats, 0, sizeof(dummystats));
10450
10451         /* Filtering of fragment chains is done against the first fragment */
10452         hdr = (void *)txb->fragments[0]->data;
10453         if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
10454                 if (filter & IPW_PROM_NO_MGMT)
10455                         return;
10456                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10457                         hdr_only = 1;
10458         } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
10459                 if (filter & IPW_PROM_NO_CTL)
10460                         return;
10461                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10462                         hdr_only = 1;
10463         } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
10464                 if (filter & IPW_PROM_NO_DATA)
10465                         return;
10466                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10467                         hdr_only = 1;
10468         }
10469
10470         for(n=0; n<txb->nr_frags; ++n) {
10471                 struct sk_buff *src = txb->fragments[n];
10472                 struct sk_buff *dst;
10473                 struct ieee80211_radiotap_header *rt_hdr;
10474                 int len;
10475
10476                 if (hdr_only) {
10477                         hdr = (void *)src->data;
10478                         len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
10479                 } else
10480                         len = src->len;
10481
10482                 dst = alloc_skb(len + sizeof(*rt_hdr), GFP_ATOMIC);
10483                 if (!dst)
10484                         continue;
10485
10486                 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10487
10488                 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10489                 rt_hdr->it_pad = 0;
10490                 rt_hdr->it_present = 0; /* after all, it's just an idea */
10491                 rt_hdr->it_present |=  cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10492
10493                 *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10494                         ieee80211chan2mhz(priv->channel));
10495                 if (priv->channel > 14)         /* 802.11a */
10496                         *(__le16*)skb_put(dst, sizeof(u16)) =
10497                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10498                                              IEEE80211_CHAN_5GHZ);
10499                 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10500                         *(__le16*)skb_put(dst, sizeof(u16)) =
10501                                 cpu_to_le16(IEEE80211_CHAN_CCK |
10502                                              IEEE80211_CHAN_2GHZ);
10503                 else            /* 802.11g */
10504                         *(__le16*)skb_put(dst, sizeof(u16)) =
10505                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10506                                  IEEE80211_CHAN_2GHZ);
10507
10508                 rt_hdr->it_len = cpu_to_le16(dst->len);
10509
10510                 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10511
10512                 if (!libipw_rx(priv->prom_priv->ieee, dst, &dummystats))
10513                         dev_kfree_skb_any(dst);
10514         }
10515 }
10516 #endif
10517
10518 static netdev_tx_t ipw_net_hard_start_xmit(struct libipw_txb *txb,
10519                                            struct net_device *dev, int pri)
10520 {
10521         struct ipw_priv *priv = libipw_priv(dev);
10522         unsigned long flags;
10523         netdev_tx_t ret;
10524
10525         IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10526         spin_lock_irqsave(&priv->lock, flags);
10527
10528 #ifdef CONFIG_IPW2200_PROMISCUOUS
10529         if (rtap_iface && netif_running(priv->prom_net_dev))
10530                 ipw_handle_promiscuous_tx(priv, txb);
10531 #endif
10532
10533         ret = ipw_tx_skb(priv, txb, pri);
10534         if (ret == NETDEV_TX_OK)
10535                 __ipw_led_activity_on(priv);
10536         spin_unlock_irqrestore(&priv->lock, flags);
10537
10538         return ret;
10539 }
10540
10541 static void ipw_net_set_multicast_list(struct net_device *dev)
10542 {
10543
10544 }
10545
10546 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10547 {
10548         struct ipw_priv *priv = libipw_priv(dev);
10549         struct sockaddr *addr = p;
10550
10551         if (!is_valid_ether_addr(addr->sa_data))
10552                 return -EADDRNOTAVAIL;
10553         mutex_lock(&priv->mutex);
10554         priv->config |= CFG_CUSTOM_MAC;
10555         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10556         printk(KERN_INFO "%s: Setting MAC to %pM\n",
10557                priv->net_dev->name, priv->mac_addr);
10558         schedule_work(&priv->adapter_restart);
10559         mutex_unlock(&priv->mutex);
10560         return 0;
10561 }
10562
10563 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10564                                     struct ethtool_drvinfo *info)
10565 {
10566         struct ipw_priv *p = libipw_priv(dev);
10567         char vers[64];
10568         char date[32];
10569         u32 len;
10570
10571         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
10572         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
10573
10574         len = sizeof(vers);
10575         ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10576         len = sizeof(date);
10577         ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10578
10579         snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10580                  vers, date);
10581         strlcpy(info->bus_info, pci_name(p->pci_dev),
10582                 sizeof(info->bus_info));
10583         info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10584 }
10585
10586 static u32 ipw_ethtool_get_link(struct net_device *dev)
10587 {
10588         struct ipw_priv *priv = libipw_priv(dev);
10589         return (priv->status & STATUS_ASSOCIATED) != 0;
10590 }
10591
10592 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10593 {
10594         return IPW_EEPROM_IMAGE_SIZE;
10595 }
10596
10597 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10598                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10599 {
10600         struct ipw_priv *p = libipw_priv(dev);
10601
10602         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10603                 return -EINVAL;
10604         mutex_lock(&p->mutex);
10605         memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10606         mutex_unlock(&p->mutex);
10607         return 0;
10608 }
10609
10610 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10611                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10612 {
10613         struct ipw_priv *p = libipw_priv(dev);
10614         int i;
10615
10616         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10617                 return -EINVAL;
10618         mutex_lock(&p->mutex);
10619         memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10620         for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10621                 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10622         mutex_unlock(&p->mutex);
10623         return 0;
10624 }
10625
10626 static const struct ethtool_ops ipw_ethtool_ops = {
10627         .get_link = ipw_ethtool_get_link,
10628         .get_drvinfo = ipw_ethtool_get_drvinfo,
10629         .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10630         .get_eeprom = ipw_ethtool_get_eeprom,
10631         .set_eeprom = ipw_ethtool_set_eeprom,
10632 };
10633
10634 static irqreturn_t ipw_isr(int irq, void *data)
10635 {
10636         struct ipw_priv *priv = data;
10637         u32 inta, inta_mask;
10638
10639         if (!priv)
10640                 return IRQ_NONE;
10641
10642         spin_lock(&priv->irq_lock);
10643
10644         if (!(priv->status & STATUS_INT_ENABLED)) {
10645                 /* IRQ is disabled */
10646                 goto none;
10647         }
10648
10649         inta = ipw_read32(priv, IPW_INTA_RW);
10650         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10651
10652         if (inta == 0xFFFFFFFF) {
10653                 /* Hardware disappeared */
10654                 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10655                 goto none;
10656         }
10657
10658         if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10659                 /* Shared interrupt */
10660                 goto none;
10661         }
10662
10663         /* tell the device to stop sending interrupts */
10664         __ipw_disable_interrupts(priv);
10665
10666         /* ack current interrupts */
10667         inta &= (IPW_INTA_MASK_ALL & inta_mask);
10668         ipw_write32(priv, IPW_INTA_RW, inta);
10669
10670         /* Cache INTA value for our tasklet */
10671         priv->isr_inta = inta;
10672
10673         tasklet_schedule(&priv->irq_tasklet);
10674
10675         spin_unlock(&priv->irq_lock);
10676
10677         return IRQ_HANDLED;
10678       none:
10679         spin_unlock(&priv->irq_lock);
10680         return IRQ_NONE;
10681 }
10682
10683 static void ipw_rf_kill(void *adapter)
10684 {
10685         struct ipw_priv *priv = adapter;
10686         unsigned long flags;
10687
10688         spin_lock_irqsave(&priv->lock, flags);
10689
10690         if (rf_kill_active(priv)) {
10691                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10692                 schedule_delayed_work(&priv->rf_kill, 2 * HZ);
10693                 goto exit_unlock;
10694         }
10695
10696         /* RF Kill is now disabled, so bring the device back up */
10697
10698         if (!(priv->status & STATUS_RF_KILL_MASK)) {
10699                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10700                                   "device\n");
10701
10702                 /* we can not do an adapter restart while inside an irq lock */
10703                 schedule_work(&priv->adapter_restart);
10704         } else
10705                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
10706                                   "enabled\n");
10707
10708       exit_unlock:
10709         spin_unlock_irqrestore(&priv->lock, flags);
10710 }
10711
10712 static void ipw_bg_rf_kill(struct work_struct *work)
10713 {
10714         struct ipw_priv *priv =
10715                 container_of(work, struct ipw_priv, rf_kill.work);
10716         mutex_lock(&priv->mutex);
10717         ipw_rf_kill(priv);
10718         mutex_unlock(&priv->mutex);
10719 }
10720
10721 static void ipw_link_up(struct ipw_priv *priv)
10722 {
10723         priv->last_seq_num = -1;
10724         priv->last_frag_num = -1;
10725         priv->last_packet_time = 0;
10726
10727         netif_carrier_on(priv->net_dev);
10728
10729         cancel_delayed_work(&priv->request_scan);
10730         cancel_delayed_work(&priv->request_direct_scan);
10731         cancel_delayed_work(&priv->request_passive_scan);
10732         cancel_delayed_work(&priv->scan_event);
10733         ipw_reset_stats(priv);
10734         /* Ensure the rate is updated immediately */
10735         priv->last_rate = ipw_get_current_rate(priv);
10736         ipw_gather_stats(priv);
10737         ipw_led_link_up(priv);
10738         notify_wx_assoc_event(priv);
10739
10740         if (priv->config & CFG_BACKGROUND_SCAN)
10741                 schedule_delayed_work(&priv->request_scan, HZ);
10742 }
10743
10744 static void ipw_bg_link_up(struct work_struct *work)
10745 {
10746         struct ipw_priv *priv =
10747                 container_of(work, struct ipw_priv, link_up);
10748         mutex_lock(&priv->mutex);
10749         ipw_link_up(priv);
10750         mutex_unlock(&priv->mutex);
10751 }
10752
10753 static void ipw_link_down(struct ipw_priv *priv)
10754 {
10755         ipw_led_link_down(priv);
10756         netif_carrier_off(priv->net_dev);
10757         notify_wx_assoc_event(priv);
10758
10759         /* Cancel any queued work ... */
10760         cancel_delayed_work(&priv->request_scan);
10761         cancel_delayed_work(&priv->request_direct_scan);
10762         cancel_delayed_work(&priv->request_passive_scan);
10763         cancel_delayed_work(&priv->adhoc_check);
10764         cancel_delayed_work(&priv->gather_stats);
10765
10766         ipw_reset_stats(priv);
10767
10768         if (!(priv->status & STATUS_EXIT_PENDING)) {
10769                 /* Queue up another scan... */
10770                 schedule_delayed_work(&priv->request_scan, 0);
10771         } else
10772                 cancel_delayed_work(&priv->scan_event);
10773 }
10774
10775 static void ipw_bg_link_down(struct work_struct *work)
10776 {
10777         struct ipw_priv *priv =
10778                 container_of(work, struct ipw_priv, link_down);
10779         mutex_lock(&priv->mutex);
10780         ipw_link_down(priv);
10781         mutex_unlock(&priv->mutex);
10782 }
10783
10784 static int __devinit ipw_setup_deferred_work(struct ipw_priv *priv)
10785 {
10786         int ret = 0;
10787
10788         init_waitqueue_head(&priv->wait_command_queue);
10789         init_waitqueue_head(&priv->wait_state);
10790
10791         INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10792         INIT_WORK(&priv->associate, ipw_bg_associate);
10793         INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10794         INIT_WORK(&priv->system_config, ipw_system_config);
10795         INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10796         INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10797         INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10798         INIT_WORK(&priv->up, ipw_bg_up);
10799         INIT_WORK(&priv->down, ipw_bg_down);
10800         INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10801         INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10802         INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10803         INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10804         INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10805         INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10806         INIT_WORK(&priv->roam, ipw_bg_roam);
10807         INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10808         INIT_WORK(&priv->link_up, ipw_bg_link_up);
10809         INIT_WORK(&priv->link_down, ipw_bg_link_down);
10810         INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10811         INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10812         INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10813         INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10814
10815 #ifdef CONFIG_IPW2200_QOS
10816         INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10817 #endif                          /* CONFIG_IPW2200_QOS */
10818
10819         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10820                      ipw_irq_tasklet, (unsigned long)priv);
10821
10822         return ret;
10823 }
10824
10825 static void shim__set_security(struct net_device *dev,
10826                                struct libipw_security *sec)
10827 {
10828         struct ipw_priv *priv = libipw_priv(dev);
10829         int i;
10830         for (i = 0; i < 4; i++) {
10831                 if (sec->flags & (1 << i)) {
10832                         priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10833                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10834                         if (sec->key_sizes[i] == 0)
10835                                 priv->ieee->sec.flags &= ~(1 << i);
10836                         else {
10837                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10838                                        sec->key_sizes[i]);
10839                                 priv->ieee->sec.flags |= (1 << i);
10840                         }
10841                         priv->status |= STATUS_SECURITY_UPDATED;
10842                 } else if (sec->level != SEC_LEVEL_1)
10843                         priv->ieee->sec.flags &= ~(1 << i);
10844         }
10845
10846         if (sec->flags & SEC_ACTIVE_KEY) {
10847                 if (sec->active_key <= 3) {
10848                         priv->ieee->sec.active_key = sec->active_key;
10849                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10850                 } else
10851                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10852                 priv->status |= STATUS_SECURITY_UPDATED;
10853         } else
10854                 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10855
10856         if ((sec->flags & SEC_AUTH_MODE) &&
10857             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10858                 priv->ieee->sec.auth_mode = sec->auth_mode;
10859                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10860                 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10861                         priv->capability |= CAP_SHARED_KEY;
10862                 else
10863                         priv->capability &= ~CAP_SHARED_KEY;
10864                 priv->status |= STATUS_SECURITY_UPDATED;
10865         }
10866
10867         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10868                 priv->ieee->sec.flags |= SEC_ENABLED;
10869                 priv->ieee->sec.enabled = sec->enabled;
10870                 priv->status |= STATUS_SECURITY_UPDATED;
10871                 if (sec->enabled)
10872                         priv->capability |= CAP_PRIVACY_ON;
10873                 else
10874                         priv->capability &= ~CAP_PRIVACY_ON;
10875         }
10876
10877         if (sec->flags & SEC_ENCRYPT)
10878                 priv->ieee->sec.encrypt = sec->encrypt;
10879
10880         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10881                 priv->ieee->sec.level = sec->level;
10882                 priv->ieee->sec.flags |= SEC_LEVEL;
10883                 priv->status |= STATUS_SECURITY_UPDATED;
10884         }
10885
10886         if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10887                 ipw_set_hwcrypto_keys(priv);
10888
10889         /* To match current functionality of ipw2100 (which works well w/
10890          * various supplicants, we don't force a disassociate if the
10891          * privacy capability changes ... */
10892 #if 0
10893         if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10894             (((priv->assoc_request.capability &
10895                cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10896              (!(priv->assoc_request.capability &
10897                 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10898                 IPW_DEBUG_ASSOC("Disassociating due to capability "
10899                                 "change.\n");
10900                 ipw_disassociate(priv);
10901         }
10902 #endif
10903 }
10904
10905 static int init_supported_rates(struct ipw_priv *priv,
10906                                 struct ipw_supported_rates *rates)
10907 {
10908         /* TODO: Mask out rates based on priv->rates_mask */
10909
10910         memset(rates, 0, sizeof(*rates));
10911         /* configure supported rates */
10912         switch (priv->ieee->freq_band) {
10913         case LIBIPW_52GHZ_BAND:
10914                 rates->ieee_mode = IPW_A_MODE;
10915                 rates->purpose = IPW_RATE_CAPABILITIES;
10916                 ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10917                                         LIBIPW_OFDM_DEFAULT_RATES_MASK);
10918                 break;
10919
10920         default:                /* Mixed or 2.4Ghz */
10921                 rates->ieee_mode = IPW_G_MODE;
10922                 rates->purpose = IPW_RATE_CAPABILITIES;
10923                 ipw_add_cck_scan_rates(rates, LIBIPW_CCK_MODULATION,
10924                                        LIBIPW_CCK_DEFAULT_RATES_MASK);
10925                 if (priv->ieee->modulation & LIBIPW_OFDM_MODULATION) {
10926                         ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10927                                                 LIBIPW_OFDM_DEFAULT_RATES_MASK);
10928                 }
10929                 break;
10930         }
10931
10932         return 0;
10933 }
10934
10935 static int ipw_config(struct ipw_priv *priv)
10936 {
10937         /* This is only called from ipw_up, which resets/reloads the firmware
10938            so, we don't need to first disable the card before we configure
10939            it */
10940         if (ipw_set_tx_power(priv))
10941                 goto error;
10942
10943         /* initialize adapter address */
10944         if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10945                 goto error;
10946
10947         /* set basic system config settings */
10948         init_sys_config(&priv->sys_config);
10949
10950         /* Support Bluetooth if we have BT h/w on board, and user wants to.
10951          * Does not support BT priority yet (don't abort or defer our Tx) */
10952         if (bt_coexist) {
10953                 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10954
10955                 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10956                         priv->sys_config.bt_coexistence
10957                             |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10958                 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10959                         priv->sys_config.bt_coexistence
10960                             |= CFG_BT_COEXISTENCE_OOB;
10961         }
10962
10963 #ifdef CONFIG_IPW2200_PROMISCUOUS
10964         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10965                 priv->sys_config.accept_all_data_frames = 1;
10966                 priv->sys_config.accept_non_directed_frames = 1;
10967                 priv->sys_config.accept_all_mgmt_bcpr = 1;
10968                 priv->sys_config.accept_all_mgmt_frames = 1;
10969         }
10970 #endif
10971
10972         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10973                 priv->sys_config.answer_broadcast_ssid_probe = 1;
10974         else
10975                 priv->sys_config.answer_broadcast_ssid_probe = 0;
10976
10977         if (ipw_send_system_config(priv))
10978                 goto error;
10979
10980         init_supported_rates(priv, &priv->rates);
10981         if (ipw_send_supported_rates(priv, &priv->rates))
10982                 goto error;
10983
10984         /* Set request-to-send threshold */
10985         if (priv->rts_threshold) {
10986                 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10987                         goto error;
10988         }
10989 #ifdef CONFIG_IPW2200_QOS
10990         IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10991         ipw_qos_activate(priv, NULL);
10992 #endif                          /* CONFIG_IPW2200_QOS */
10993
10994         if (ipw_set_random_seed(priv))
10995                 goto error;
10996
10997         /* final state transition to the RUN state */
10998         if (ipw_send_host_complete(priv))
10999                 goto error;
11000
11001         priv->status |= STATUS_INIT;
11002
11003         ipw_led_init(priv);
11004         ipw_led_radio_on(priv);
11005         priv->notif_missed_beacons = 0;
11006
11007         /* Set hardware WEP key if it is configured. */
11008         if ((priv->capability & CAP_PRIVACY_ON) &&
11009             (priv->ieee->sec.level == SEC_LEVEL_1) &&
11010             !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
11011                 ipw_set_hwcrypto_keys(priv);
11012
11013         return 0;
11014
11015       error:
11016         return -EIO;
11017 }
11018
11019 /*
11020  * NOTE:
11021  *
11022  * These tables have been tested in conjunction with the
11023  * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
11024  *
11025  * Altering this values, using it on other hardware, or in geographies
11026  * not intended for resale of the above mentioned Intel adapters has
11027  * not been tested.
11028  *
11029  * Remember to update the table in README.ipw2200 when changing this
11030  * table.
11031  *
11032  */
11033 static const struct libipw_geo ipw_geos[] = {
11034         {                       /* Restricted */
11035          "---",
11036          .bg_channels = 11,
11037          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11038                 {2427, 4}, {2432, 5}, {2437, 6},
11039                 {2442, 7}, {2447, 8}, {2452, 9},
11040                 {2457, 10}, {2462, 11}},
11041          },
11042
11043         {                       /* Custom US/Canada */
11044          "ZZF",
11045          .bg_channels = 11,
11046          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11047                 {2427, 4}, {2432, 5}, {2437, 6},
11048                 {2442, 7}, {2447, 8}, {2452, 9},
11049                 {2457, 10}, {2462, 11}},
11050          .a_channels = 8,
11051          .a = {{5180, 36},
11052                {5200, 40},
11053                {5220, 44},
11054                {5240, 48},
11055                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11056                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11057                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11058                {5320, 64, LIBIPW_CH_PASSIVE_ONLY}},
11059          },
11060
11061         {                       /* Rest of World */
11062          "ZZD",
11063          .bg_channels = 13,
11064          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11065                 {2427, 4}, {2432, 5}, {2437, 6},
11066                 {2442, 7}, {2447, 8}, {2452, 9},
11067                 {2457, 10}, {2462, 11}, {2467, 12},
11068                 {2472, 13}},
11069          },
11070
11071         {                       /* Custom USA & Europe & High */
11072          "ZZA",
11073          .bg_channels = 11,
11074          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11075                 {2427, 4}, {2432, 5}, {2437, 6},
11076                 {2442, 7}, {2447, 8}, {2452, 9},
11077                 {2457, 10}, {2462, 11}},
11078          .a_channels = 13,
11079          .a = {{5180, 36},
11080                {5200, 40},
11081                {5220, 44},
11082                {5240, 48},
11083                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11084                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11085                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11086                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11087                {5745, 149},
11088                {5765, 153},
11089                {5785, 157},
11090                {5805, 161},
11091                {5825, 165}},
11092          },
11093
11094         {                       /* Custom NA & Europe */
11095          "ZZB",
11096          .bg_channels = 11,
11097          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11098                 {2427, 4}, {2432, 5}, {2437, 6},
11099                 {2442, 7}, {2447, 8}, {2452, 9},
11100                 {2457, 10}, {2462, 11}},
11101          .a_channels = 13,
11102          .a = {{5180, 36},
11103                {5200, 40},
11104                {5220, 44},
11105                {5240, 48},
11106                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11107                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11108                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11109                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11110                {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11111                {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11112                {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11113                {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11114                {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11115          },
11116
11117         {                       /* Custom Japan */
11118          "ZZC",
11119          .bg_channels = 11,
11120          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11121                 {2427, 4}, {2432, 5}, {2437, 6},
11122                 {2442, 7}, {2447, 8}, {2452, 9},
11123                 {2457, 10}, {2462, 11}},
11124          .a_channels = 4,
11125          .a = {{5170, 34}, {5190, 38},
11126                {5210, 42}, {5230, 46}},
11127          },
11128
11129         {                       /* Custom */
11130          "ZZM",
11131          .bg_channels = 11,
11132          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11133                 {2427, 4}, {2432, 5}, {2437, 6},
11134                 {2442, 7}, {2447, 8}, {2452, 9},
11135                 {2457, 10}, {2462, 11}},
11136          },
11137
11138         {                       /* Europe */
11139          "ZZE",
11140          .bg_channels = 13,
11141          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11142                 {2427, 4}, {2432, 5}, {2437, 6},
11143                 {2442, 7}, {2447, 8}, {2452, 9},
11144                 {2457, 10}, {2462, 11}, {2467, 12},
11145                 {2472, 13}},
11146          .a_channels = 19,
11147          .a = {{5180, 36},
11148                {5200, 40},
11149                {5220, 44},
11150                {5240, 48},
11151                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11152                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11153                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11154                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11155                {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11156                {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11157                {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11158                {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11159                {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11160                {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11161                {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11162                {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11163                {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11164                {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11165                {5700, 140, LIBIPW_CH_PASSIVE_ONLY}},
11166          },
11167
11168         {                       /* Custom Japan */
11169          "ZZJ",
11170          .bg_channels = 14,
11171          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11172                 {2427, 4}, {2432, 5}, {2437, 6},
11173                 {2442, 7}, {2447, 8}, {2452, 9},
11174                 {2457, 10}, {2462, 11}, {2467, 12},
11175                 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY}},
11176          .a_channels = 4,
11177          .a = {{5170, 34}, {5190, 38},
11178                {5210, 42}, {5230, 46}},
11179          },
11180
11181         {                       /* Rest of World */
11182          "ZZR",
11183          .bg_channels = 14,
11184          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11185                 {2427, 4}, {2432, 5}, {2437, 6},
11186                 {2442, 7}, {2447, 8}, {2452, 9},
11187                 {2457, 10}, {2462, 11}, {2467, 12},
11188                 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY |
11189                              LIBIPW_CH_PASSIVE_ONLY}},
11190          },
11191
11192         {                       /* High Band */
11193          "ZZH",
11194          .bg_channels = 13,
11195          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11196                 {2427, 4}, {2432, 5}, {2437, 6},
11197                 {2442, 7}, {2447, 8}, {2452, 9},
11198                 {2457, 10}, {2462, 11},
11199                 {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11200                 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11201          .a_channels = 4,
11202          .a = {{5745, 149}, {5765, 153},
11203                {5785, 157}, {5805, 161}},
11204          },
11205
11206         {                       /* Custom Europe */
11207          "ZZG",
11208          .bg_channels = 13,
11209          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11210                 {2427, 4}, {2432, 5}, {2437, 6},
11211                 {2442, 7}, {2447, 8}, {2452, 9},
11212                 {2457, 10}, {2462, 11},
11213                 {2467, 12}, {2472, 13}},
11214          .a_channels = 4,
11215          .a = {{5180, 36}, {5200, 40},
11216                {5220, 44}, {5240, 48}},
11217          },
11218
11219         {                       /* Europe */
11220          "ZZK",
11221          .bg_channels = 13,
11222          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11223                 {2427, 4}, {2432, 5}, {2437, 6},
11224                 {2442, 7}, {2447, 8}, {2452, 9},
11225                 {2457, 10}, {2462, 11},
11226                 {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11227                 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11228          .a_channels = 24,
11229          .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11230                {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11231                {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11232                {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11233                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11234                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11235                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11236                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11237                {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11238                {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11239                {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11240                {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11241                {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11242                {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11243                {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11244                {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11245                {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11246                {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11247                {5700, 140, LIBIPW_CH_PASSIVE_ONLY},
11248                {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11249                {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11250                {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11251                {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11252                {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11253          },
11254
11255         {                       /* Europe */
11256          "ZZL",
11257          .bg_channels = 11,
11258          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11259                 {2427, 4}, {2432, 5}, {2437, 6},
11260                 {2442, 7}, {2447, 8}, {2452, 9},
11261                 {2457, 10}, {2462, 11}},
11262          .a_channels = 13,
11263          .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11264                {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11265                {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11266                {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11267                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11268                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11269                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11270                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11271                {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11272                {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11273                {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11274                {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11275                {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11276          }
11277 };
11278
11279 #define MAX_HW_RESTARTS 5
11280 static int ipw_up(struct ipw_priv *priv)
11281 {
11282         int rc, i, j;
11283
11284         /* Age scan list entries found before suspend */
11285         if (priv->suspend_time) {
11286                 libipw_networks_age(priv->ieee, priv->suspend_time);
11287                 priv->suspend_time = 0;
11288         }
11289
11290         if (priv->status & STATUS_EXIT_PENDING)
11291                 return -EIO;
11292
11293         if (cmdlog && !priv->cmdlog) {
11294                 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11295                                        GFP_KERNEL);
11296                 if (priv->cmdlog == NULL) {
11297                         IPW_ERROR("Error allocating %d command log entries.\n",
11298                                   cmdlog);
11299                         return -ENOMEM;
11300                 } else {
11301                         priv->cmdlog_len = cmdlog;
11302                 }
11303         }
11304
11305         for (i = 0; i < MAX_HW_RESTARTS; i++) {
11306                 /* Load the microcode, firmware, and eeprom.
11307                  * Also start the clocks. */
11308                 rc = ipw_load(priv);
11309                 if (rc) {
11310                         IPW_ERROR("Unable to load firmware: %d\n", rc);
11311                         return rc;
11312                 }
11313
11314                 ipw_init_ordinals(priv);
11315                 if (!(priv->config & CFG_CUSTOM_MAC))
11316                         eeprom_parse_mac(priv, priv->mac_addr);
11317                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11318                 memcpy(priv->net_dev->perm_addr, priv->mac_addr, ETH_ALEN);
11319
11320                 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11321                         if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11322                                     ipw_geos[j].name, 3))
11323                                 break;
11324                 }
11325                 if (j == ARRAY_SIZE(ipw_geos)) {
11326                         IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11327                                     priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11328                                     priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11329                                     priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11330                         j = 0;
11331                 }
11332                 if (libipw_set_geo(priv->ieee, &ipw_geos[j])) {
11333                         IPW_WARNING("Could not set geography.");
11334                         return 0;
11335                 }
11336
11337                 if (priv->status & STATUS_RF_KILL_SW) {
11338                         IPW_WARNING("Radio disabled by module parameter.\n");
11339                         return 0;
11340                 } else if (rf_kill_active(priv)) {
11341                         IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11342                                     "Kill switch must be turned off for "
11343                                     "wireless networking to work.\n");
11344                         schedule_delayed_work(&priv->rf_kill, 2 * HZ);
11345                         return 0;
11346                 }
11347
11348                 rc = ipw_config(priv);
11349                 if (!rc) {
11350                         IPW_DEBUG_INFO("Configured device on count %i\n", i);
11351
11352                         /* If configure to try and auto-associate, kick
11353                          * off a scan. */
11354                         schedule_delayed_work(&priv->request_scan, 0);
11355
11356                         return 0;
11357                 }
11358
11359                 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11360                 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11361                                i, MAX_HW_RESTARTS);
11362
11363                 /* We had an error bringing up the hardware, so take it
11364                  * all the way back down so we can try again */
11365                 ipw_down(priv);
11366         }
11367
11368         /* tried to restart and config the device for as long as our
11369          * patience could withstand */
11370         IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11371
11372         return -EIO;
11373 }
11374
11375 static void ipw_bg_up(struct work_struct *work)
11376 {
11377         struct ipw_priv *priv =
11378                 container_of(work, struct ipw_priv, up);
11379         mutex_lock(&priv->mutex);
11380         ipw_up(priv);
11381         mutex_unlock(&priv->mutex);
11382 }
11383
11384 static void ipw_deinit(struct ipw_priv *priv)
11385 {
11386         int i;
11387
11388         if (priv->status & STATUS_SCANNING) {
11389                 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11390                 ipw_abort_scan(priv);
11391         }
11392
11393         if (priv->status & STATUS_ASSOCIATED) {
11394                 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11395                 ipw_disassociate(priv);
11396         }
11397
11398         ipw_led_shutdown(priv);
11399
11400         /* Wait up to 1s for status to change to not scanning and not
11401          * associated (disassociation can take a while for a ful 802.11
11402          * exchange */
11403         for (i = 1000; i && (priv->status &
11404                              (STATUS_DISASSOCIATING |
11405                               STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11406                 udelay(10);
11407
11408         if (priv->status & (STATUS_DISASSOCIATING |
11409                             STATUS_ASSOCIATED | STATUS_SCANNING))
11410                 IPW_DEBUG_INFO("Still associated or scanning...\n");
11411         else
11412                 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11413
11414         /* Attempt to disable the card */
11415         ipw_send_card_disable(priv, 0);
11416
11417         priv->status &= ~STATUS_INIT;
11418 }
11419
11420 static void ipw_down(struct ipw_priv *priv)
11421 {
11422         int exit_pending = priv->status & STATUS_EXIT_PENDING;
11423
11424         priv->status |= STATUS_EXIT_PENDING;
11425
11426         if (ipw_is_init(priv))
11427                 ipw_deinit(priv);
11428
11429         /* Wipe out the EXIT_PENDING status bit if we are not actually
11430          * exiting the module */
11431         if (!exit_pending)
11432                 priv->status &= ~STATUS_EXIT_PENDING;
11433
11434         /* tell the device to stop sending interrupts */
11435         ipw_disable_interrupts(priv);
11436
11437         /* Clear all bits but the RF Kill */
11438         priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11439         netif_carrier_off(priv->net_dev);
11440
11441         ipw_stop_nic(priv);
11442
11443         ipw_led_radio_off(priv);
11444 }
11445
11446 static void ipw_bg_down(struct work_struct *work)
11447 {
11448         struct ipw_priv *priv =
11449                 container_of(work, struct ipw_priv, down);
11450         mutex_lock(&priv->mutex);
11451         ipw_down(priv);
11452         mutex_unlock(&priv->mutex);
11453 }
11454
11455 static int ipw_wdev_init(struct net_device *dev)
11456 {
11457         int i, rc = 0;
11458         struct ipw_priv *priv = libipw_priv(dev);
11459         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
11460         struct wireless_dev *wdev = &priv->ieee->wdev;
11461
11462         memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
11463
11464         /* fill-out priv->ieee->bg_band */
11465         if (geo->bg_channels) {
11466                 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
11467
11468                 bg_band->band = IEEE80211_BAND_2GHZ;
11469                 bg_band->n_channels = geo->bg_channels;
11470                 bg_band->channels = kcalloc(geo->bg_channels,
11471                                             sizeof(struct ieee80211_channel),
11472                                             GFP_KERNEL);
11473                 if (!bg_band->channels) {
11474                         rc = -ENOMEM;
11475                         goto out;
11476                 }
11477                 /* translate geo->bg to bg_band.channels */
11478                 for (i = 0; i < geo->bg_channels; i++) {
11479                         bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
11480                         bg_band->channels[i].center_freq = geo->bg[i].freq;
11481                         bg_band->channels[i].hw_value = geo->bg[i].channel;
11482                         bg_band->channels[i].max_power = geo->bg[i].max_power;
11483                         if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11484                                 bg_band->channels[i].flags |=
11485                                         IEEE80211_CHAN_PASSIVE_SCAN;
11486                         if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
11487                                 bg_band->channels[i].flags |=
11488                                         IEEE80211_CHAN_NO_IBSS;
11489                         if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
11490                                 bg_band->channels[i].flags |=
11491                                         IEEE80211_CHAN_RADAR;
11492                         /* No equivalent for LIBIPW_CH_80211H_RULES,
11493                            LIBIPW_CH_UNIFORM_SPREADING, or
11494                            LIBIPW_CH_B_ONLY... */
11495                 }
11496                 /* point at bitrate info */
11497                 bg_band->bitrates = ipw2200_bg_rates;
11498                 bg_band->n_bitrates = ipw2200_num_bg_rates;
11499
11500                 wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
11501         }
11502
11503         /* fill-out priv->ieee->a_band */
11504         if (geo->a_channels) {
11505                 struct ieee80211_supported_band *a_band = &priv->ieee->a_band;
11506
11507                 a_band->band = IEEE80211_BAND_5GHZ;
11508                 a_band->n_channels = geo->a_channels;
11509                 a_band->channels = kcalloc(geo->a_channels,
11510                                            sizeof(struct ieee80211_channel),
11511                                            GFP_KERNEL);
11512                 if (!a_band->channels) {
11513                         rc = -ENOMEM;
11514                         goto out;
11515                 }
11516                 /* translate geo->a to a_band.channels */
11517                 for (i = 0; i < geo->a_channels; i++) {
11518                         a_band->channels[i].band = IEEE80211_BAND_5GHZ;
11519                         a_band->channels[i].center_freq = geo->a[i].freq;
11520                         a_band->channels[i].hw_value = geo->a[i].channel;
11521                         a_band->channels[i].max_power = geo->a[i].max_power;
11522                         if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11523                                 a_band->channels[i].flags |=
11524                                         IEEE80211_CHAN_PASSIVE_SCAN;
11525                         if (geo->a[i].flags & LIBIPW_CH_NO_IBSS)
11526                                 a_band->channels[i].flags |=
11527                                         IEEE80211_CHAN_NO_IBSS;
11528                         if (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT)
11529                                 a_band->channels[i].flags |=
11530                                         IEEE80211_CHAN_RADAR;
11531                         /* No equivalent for LIBIPW_CH_80211H_RULES,
11532                            LIBIPW_CH_UNIFORM_SPREADING, or
11533                            LIBIPW_CH_B_ONLY... */
11534                 }
11535                 /* point at bitrate info */
11536                 a_band->bitrates = ipw2200_a_rates;
11537                 a_band->n_bitrates = ipw2200_num_a_rates;
11538
11539                 wdev->wiphy->bands[IEEE80211_BAND_5GHZ] = a_band;
11540         }
11541
11542         wdev->wiphy->cipher_suites = ipw_cipher_suites;
11543         wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
11544
11545         set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
11546
11547         /* With that information in place, we can now register the wiphy... */
11548         if (wiphy_register(wdev->wiphy))
11549                 rc = -EIO;
11550 out:
11551         return rc;
11552 }
11553
11554 /* PCI driver stuff */
11555 static DEFINE_PCI_DEVICE_TABLE(card_ids) = {
11556         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11557         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11558         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11559         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11560         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11561         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11562         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11563         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11564         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11565         {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11566         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11567         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11568         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11569         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11570         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11571         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11572         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11573         {PCI_VDEVICE(INTEL, 0x104f), 0},
11574         {PCI_VDEVICE(INTEL, 0x4220), 0},        /* BG */
11575         {PCI_VDEVICE(INTEL, 0x4221), 0},        /* BG */
11576         {PCI_VDEVICE(INTEL, 0x4223), 0},        /* ABG */
11577         {PCI_VDEVICE(INTEL, 0x4224), 0},        /* ABG */
11578
11579         /* required last entry */
11580         {0,}
11581 };
11582
11583 MODULE_DEVICE_TABLE(pci, card_ids);
11584
11585 static struct attribute *ipw_sysfs_entries[] = {
11586         &dev_attr_rf_kill.attr,
11587         &dev_attr_direct_dword.attr,
11588         &dev_attr_indirect_byte.attr,
11589         &dev_attr_indirect_dword.attr,
11590         &dev_attr_mem_gpio_reg.attr,
11591         &dev_attr_command_event_reg.attr,
11592         &dev_attr_nic_type.attr,
11593         &dev_attr_status.attr,
11594         &dev_attr_cfg.attr,
11595         &dev_attr_error.attr,
11596         &dev_attr_event_log.attr,
11597         &dev_attr_cmd_log.attr,
11598         &dev_attr_eeprom_delay.attr,
11599         &dev_attr_ucode_version.attr,
11600         &dev_attr_rtc.attr,
11601         &dev_attr_scan_age.attr,
11602         &dev_attr_led.attr,
11603         &dev_attr_speed_scan.attr,
11604         &dev_attr_net_stats.attr,
11605         &dev_attr_channels.attr,
11606 #ifdef CONFIG_IPW2200_PROMISCUOUS
11607         &dev_attr_rtap_iface.attr,
11608         &dev_attr_rtap_filter.attr,
11609 #endif
11610         NULL
11611 };
11612
11613 static struct attribute_group ipw_attribute_group = {
11614         .name = NULL,           /* put in device directory */
11615         .attrs = ipw_sysfs_entries,
11616 };
11617
11618 #ifdef CONFIG_IPW2200_PROMISCUOUS
11619 static int ipw_prom_open(struct net_device *dev)
11620 {
11621         struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11622         struct ipw_priv *priv = prom_priv->priv;
11623
11624         IPW_DEBUG_INFO("prom dev->open\n");
11625         netif_carrier_off(dev);
11626
11627         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11628                 priv->sys_config.accept_all_data_frames = 1;
11629                 priv->sys_config.accept_non_directed_frames = 1;
11630                 priv->sys_config.accept_all_mgmt_bcpr = 1;
11631                 priv->sys_config.accept_all_mgmt_frames = 1;
11632
11633                 ipw_send_system_config(priv);
11634         }
11635
11636         return 0;
11637 }
11638
11639 static int ipw_prom_stop(struct net_device *dev)
11640 {
11641         struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11642         struct ipw_priv *priv = prom_priv->priv;
11643
11644         IPW_DEBUG_INFO("prom dev->stop\n");
11645
11646         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11647                 priv->sys_config.accept_all_data_frames = 0;
11648                 priv->sys_config.accept_non_directed_frames = 0;
11649                 priv->sys_config.accept_all_mgmt_bcpr = 0;
11650                 priv->sys_config.accept_all_mgmt_frames = 0;
11651
11652                 ipw_send_system_config(priv);
11653         }
11654
11655         return 0;
11656 }
11657
11658 static netdev_tx_t ipw_prom_hard_start_xmit(struct sk_buff *skb,
11659                                             struct net_device *dev)
11660 {
11661         IPW_DEBUG_INFO("prom dev->xmit\n");
11662         dev_kfree_skb(skb);
11663         return NETDEV_TX_OK;
11664 }
11665
11666 static const struct net_device_ops ipw_prom_netdev_ops = {
11667         .ndo_open               = ipw_prom_open,
11668         .ndo_stop               = ipw_prom_stop,
11669         .ndo_start_xmit         = ipw_prom_hard_start_xmit,
11670         .ndo_change_mtu         = libipw_change_mtu,
11671         .ndo_set_mac_address    = eth_mac_addr,
11672         .ndo_validate_addr      = eth_validate_addr,
11673 };
11674
11675 static int ipw_prom_alloc(struct ipw_priv *priv)
11676 {
11677         int rc = 0;
11678
11679         if (priv->prom_net_dev)
11680                 return -EPERM;
11681
11682         priv->prom_net_dev = alloc_libipw(sizeof(struct ipw_prom_priv), 1);
11683         if (priv->prom_net_dev == NULL)
11684                 return -ENOMEM;
11685
11686         priv->prom_priv = libipw_priv(priv->prom_net_dev);
11687         priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11688         priv->prom_priv->priv = priv;
11689
11690         strcpy(priv->prom_net_dev->name, "rtap%d");
11691         memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11692
11693         priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11694         priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops;
11695
11696         priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11697         SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11698
11699         rc = register_netdev(priv->prom_net_dev);
11700         if (rc) {
11701                 free_libipw(priv->prom_net_dev, 1);
11702                 priv->prom_net_dev = NULL;
11703                 return rc;
11704         }
11705
11706         return 0;
11707 }
11708
11709 static void ipw_prom_free(struct ipw_priv *priv)
11710 {
11711         if (!priv->prom_net_dev)
11712                 return;
11713
11714         unregister_netdev(priv->prom_net_dev);
11715         free_libipw(priv->prom_net_dev, 1);
11716
11717         priv->prom_net_dev = NULL;
11718 }
11719
11720 #endif
11721
11722 static const struct net_device_ops ipw_netdev_ops = {
11723         .ndo_open               = ipw_net_open,
11724         .ndo_stop               = ipw_net_stop,
11725         .ndo_set_rx_mode        = ipw_net_set_multicast_list,
11726         .ndo_set_mac_address    = ipw_net_set_mac_address,
11727         .ndo_start_xmit         = libipw_xmit,
11728         .ndo_change_mtu         = libipw_change_mtu,
11729         .ndo_validate_addr      = eth_validate_addr,
11730 };
11731
11732 static int __devinit ipw_pci_probe(struct pci_dev *pdev,
11733                                    const struct pci_device_id *ent)
11734 {
11735         int err = 0;
11736         struct net_device *net_dev;
11737         void __iomem *base;
11738         u32 length, val;
11739         struct ipw_priv *priv;
11740         int i;
11741
11742         net_dev = alloc_libipw(sizeof(struct ipw_priv), 0);
11743         if (net_dev == NULL) {
11744                 err = -ENOMEM;
11745                 goto out;
11746         }
11747
11748         priv = libipw_priv(net_dev);
11749         priv->ieee = netdev_priv(net_dev);
11750
11751         priv->net_dev = net_dev;
11752         priv->pci_dev = pdev;
11753         ipw_debug_level = debug;
11754         spin_lock_init(&priv->irq_lock);
11755         spin_lock_init(&priv->lock);
11756         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11757                 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11758
11759         mutex_init(&priv->mutex);
11760         if (pci_enable_device(pdev)) {
11761                 err = -ENODEV;
11762                 goto out_free_libipw;
11763         }
11764
11765         pci_set_master(pdev);
11766
11767         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
11768         if (!err)
11769                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
11770         if (err) {
11771                 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11772                 goto out_pci_disable_device;
11773         }
11774
11775         pci_set_drvdata(pdev, priv);
11776
11777         err = pci_request_regions(pdev, DRV_NAME);
11778         if (err)
11779                 goto out_pci_disable_device;
11780
11781         /* We disable the RETRY_TIMEOUT register (0x41) to keep
11782          * PCI Tx retries from interfering with C3 CPU state */
11783         pci_read_config_dword(pdev, 0x40, &val);
11784         if ((val & 0x0000ff00) != 0)
11785                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11786
11787         length = pci_resource_len(pdev, 0);
11788         priv->hw_len = length;
11789
11790         base = pci_ioremap_bar(pdev, 0);
11791         if (!base) {
11792                 err = -ENODEV;
11793                 goto out_pci_release_regions;
11794         }
11795
11796         priv->hw_base = base;
11797         IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11798         IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11799
11800         err = ipw_setup_deferred_work(priv);
11801         if (err) {
11802                 IPW_ERROR("Unable to setup deferred work\n");
11803                 goto out_iounmap;
11804         }
11805
11806         ipw_sw_reset(priv, 1);
11807
11808         err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11809         if (err) {
11810                 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11811                 goto out_iounmap;
11812         }
11813
11814         SET_NETDEV_DEV(net_dev, &pdev->dev);
11815
11816         mutex_lock(&priv->mutex);
11817
11818         priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11819         priv->ieee->set_security = shim__set_security;
11820         priv->ieee->is_queue_full = ipw_net_is_queue_full;
11821
11822 #ifdef CONFIG_IPW2200_QOS
11823         priv->ieee->is_qos_active = ipw_is_qos_active;
11824         priv->ieee->handle_probe_response = ipw_handle_beacon;
11825         priv->ieee->handle_beacon = ipw_handle_probe_response;
11826         priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11827 #endif                          /* CONFIG_IPW2200_QOS */
11828
11829         priv->ieee->perfect_rssi = -20;
11830         priv->ieee->worst_rssi = -85;
11831
11832         net_dev->netdev_ops = &ipw_netdev_ops;
11833         priv->wireless_data.spy_data = &priv->ieee->spy_data;
11834         net_dev->wireless_data = &priv->wireless_data;
11835         net_dev->wireless_handlers = &ipw_wx_handler_def;
11836         net_dev->ethtool_ops = &ipw_ethtool_ops;
11837
11838         err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11839         if (err) {
11840                 IPW_ERROR("failed to create sysfs device attributes\n");
11841                 mutex_unlock(&priv->mutex);
11842                 goto out_release_irq;
11843         }
11844
11845         if (ipw_up(priv)) {
11846                 mutex_unlock(&priv->mutex);
11847                 err = -EIO;
11848                 goto out_remove_sysfs;
11849         }
11850
11851         mutex_unlock(&priv->mutex);
11852
11853         err = ipw_wdev_init(net_dev);
11854         if (err) {
11855                 IPW_ERROR("failed to register wireless device\n");
11856                 goto out_remove_sysfs;
11857         }
11858
11859         err = register_netdev(net_dev);
11860         if (err) {
11861                 IPW_ERROR("failed to register network device\n");
11862                 goto out_unregister_wiphy;
11863         }
11864
11865 #ifdef CONFIG_IPW2200_PROMISCUOUS
11866         if (rtap_iface) {
11867                 err = ipw_prom_alloc(priv);
11868                 if (err) {
11869                         IPW_ERROR("Failed to register promiscuous network "
11870                                   "device (error %d).\n", err);
11871                         unregister_netdev(priv->net_dev);
11872                         goto out_unregister_wiphy;
11873                 }
11874         }
11875 #endif
11876
11877         printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11878                "channels, %d 802.11a channels)\n",
11879                priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11880                priv->ieee->geo.a_channels);
11881
11882         return 0;
11883
11884       out_unregister_wiphy:
11885         wiphy_unregister(priv->ieee->wdev.wiphy);
11886         kfree(priv->ieee->a_band.channels);
11887         kfree(priv->ieee->bg_band.channels);
11888       out_remove_sysfs:
11889         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11890       out_release_irq:
11891         free_irq(pdev->irq, priv);
11892       out_iounmap:
11893         iounmap(priv->hw_base);
11894       out_pci_release_regions:
11895         pci_release_regions(pdev);
11896       out_pci_disable_device:
11897         pci_disable_device(pdev);
11898         pci_set_drvdata(pdev, NULL);
11899       out_free_libipw:
11900         free_libipw(priv->net_dev, 0);
11901       out:
11902         return err;
11903 }
11904
11905 static void __devexit ipw_pci_remove(struct pci_dev *pdev)
11906 {
11907         struct ipw_priv *priv = pci_get_drvdata(pdev);
11908         struct list_head *p, *q;
11909         int i;
11910
11911         if (!priv)
11912                 return;
11913
11914         mutex_lock(&priv->mutex);
11915
11916         priv->status |= STATUS_EXIT_PENDING;
11917         ipw_down(priv);
11918         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11919
11920         mutex_unlock(&priv->mutex);
11921
11922         unregister_netdev(priv->net_dev);
11923
11924         if (priv->rxq) {
11925                 ipw_rx_queue_free(priv, priv->rxq);
11926                 priv->rxq = NULL;
11927         }
11928         ipw_tx_queue_free(priv);
11929
11930         if (priv->cmdlog) {
11931                 kfree(priv->cmdlog);
11932                 priv->cmdlog = NULL;
11933         }
11934
11935         /* make sure all works are inactive */
11936         cancel_delayed_work_sync(&priv->adhoc_check);
11937         cancel_work_sync(&priv->associate);
11938         cancel_work_sync(&priv->disassociate);
11939         cancel_work_sync(&priv->system_config);
11940         cancel_work_sync(&priv->rx_replenish);
11941         cancel_work_sync(&priv->adapter_restart);
11942         cancel_delayed_work_sync(&priv->rf_kill);
11943         cancel_work_sync(&priv->up);
11944         cancel_work_sync(&priv->down);
11945         cancel_delayed_work_sync(&priv->request_scan);
11946         cancel_delayed_work_sync(&priv->request_direct_scan);
11947         cancel_delayed_work_sync(&priv->request_passive_scan);
11948         cancel_delayed_work_sync(&priv->scan_event);
11949         cancel_delayed_work_sync(&priv->gather_stats);
11950         cancel_work_sync(&priv->abort_scan);
11951         cancel_work_sync(&priv->roam);
11952         cancel_delayed_work_sync(&priv->scan_check);
11953         cancel_work_sync(&priv->link_up);
11954         cancel_work_sync(&priv->link_down);
11955         cancel_delayed_work_sync(&priv->led_link_on);
11956         cancel_delayed_work_sync(&priv->led_link_off);
11957         cancel_delayed_work_sync(&priv->led_act_off);
11958         cancel_work_sync(&priv->merge_networks);
11959
11960         /* Free MAC hash list for ADHOC */
11961         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11962                 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11963                         list_del(p);
11964                         kfree(list_entry(p, struct ipw_ibss_seq, list));
11965                 }
11966         }
11967
11968         kfree(priv->error);
11969         priv->error = NULL;
11970
11971 #ifdef CONFIG_IPW2200_PROMISCUOUS
11972         ipw_prom_free(priv);
11973 #endif
11974
11975         free_irq(pdev->irq, priv);
11976         iounmap(priv->hw_base);
11977         pci_release_regions(pdev);
11978         pci_disable_device(pdev);
11979         pci_set_drvdata(pdev, NULL);
11980         /* wiphy_unregister needs to be here, before free_libipw */
11981         wiphy_unregister(priv->ieee->wdev.wiphy);
11982         kfree(priv->ieee->a_band.channels);
11983         kfree(priv->ieee->bg_band.channels);
11984         free_libipw(priv->net_dev, 0);
11985         free_firmware();
11986 }
11987
11988 #ifdef CONFIG_PM
11989 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11990 {
11991         struct ipw_priv *priv = pci_get_drvdata(pdev);
11992         struct net_device *dev = priv->net_dev;
11993
11994         printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11995
11996         /* Take down the device; powers it off, etc. */
11997         ipw_down(priv);
11998
11999         /* Remove the PRESENT state of the device */
12000         netif_device_detach(dev);
12001
12002         pci_save_state(pdev);
12003         pci_disable_device(pdev);
12004         pci_set_power_state(pdev, pci_choose_state(pdev, state));
12005
12006         priv->suspend_at = get_seconds();
12007
12008         return 0;
12009 }
12010
12011 static int ipw_pci_resume(struct pci_dev *pdev)
12012 {
12013         struct ipw_priv *priv = pci_get_drvdata(pdev);
12014         struct net_device *dev = priv->net_dev;
12015         int err;
12016         u32 val;
12017
12018         printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
12019
12020         pci_set_power_state(pdev, PCI_D0);
12021         err = pci_enable_device(pdev);
12022         if (err) {
12023                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
12024                        dev->name);
12025                 return err;
12026         }
12027         pci_restore_state(pdev);
12028
12029         /*
12030          * Suspend/Resume resets the PCI configuration space, so we have to
12031          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
12032          * from interfering with C3 CPU state. pci_restore_state won't help
12033          * here since it only restores the first 64 bytes pci config header.
12034          */
12035         pci_read_config_dword(pdev, 0x40, &val);
12036         if ((val & 0x0000ff00) != 0)
12037                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
12038
12039         /* Set the device back into the PRESENT state; this will also wake
12040          * the queue of needed */
12041         netif_device_attach(dev);
12042
12043         priv->suspend_time = get_seconds() - priv->suspend_at;
12044
12045         /* Bring the device back up */
12046         schedule_work(&priv->up);
12047
12048         return 0;
12049 }
12050 #endif
12051
12052 static void ipw_pci_shutdown(struct pci_dev *pdev)
12053 {
12054         struct ipw_priv *priv = pci_get_drvdata(pdev);
12055
12056         /* Take down the device; powers it off, etc. */
12057         ipw_down(priv);
12058
12059         pci_disable_device(pdev);
12060 }
12061
12062 /* driver initialization stuff */
12063 static struct pci_driver ipw_driver = {
12064         .name = DRV_NAME,
12065         .id_table = card_ids,
12066         .probe = ipw_pci_probe,
12067         .remove = __devexit_p(ipw_pci_remove),
12068 #ifdef CONFIG_PM
12069         .suspend = ipw_pci_suspend,
12070         .resume = ipw_pci_resume,
12071 #endif
12072         .shutdown = ipw_pci_shutdown,
12073 };
12074
12075 static int __init ipw_init(void)
12076 {
12077         int ret;
12078
12079         printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
12080         printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
12081
12082         ret = pci_register_driver(&ipw_driver);
12083         if (ret) {
12084                 IPW_ERROR("Unable to initialize PCI module\n");
12085                 return ret;
12086         }
12087
12088         ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
12089         if (ret) {
12090                 IPW_ERROR("Unable to create driver sysfs file\n");
12091                 pci_unregister_driver(&ipw_driver);
12092                 return ret;
12093         }
12094
12095         return ret;
12096 }
12097
12098 static void __exit ipw_exit(void)
12099 {
12100         driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
12101         pci_unregister_driver(&ipw_driver);
12102 }
12103
12104 module_param(disable, int, 0444);
12105 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
12106
12107 module_param(associate, int, 0444);
12108 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
12109
12110 module_param(auto_create, int, 0444);
12111 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
12112
12113 module_param_named(led, led_support, int, 0444);
12114 MODULE_PARM_DESC(led, "enable led control on some systems (default 1 on)");
12115
12116 module_param(debug, int, 0444);
12117 MODULE_PARM_DESC(debug, "debug output mask");
12118
12119 module_param_named(channel, default_channel, int, 0444);
12120 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
12121
12122 #ifdef CONFIG_IPW2200_PROMISCUOUS
12123 module_param(rtap_iface, int, 0444);
12124 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
12125 #endif
12126
12127 #ifdef CONFIG_IPW2200_QOS
12128 module_param(qos_enable, int, 0444);
12129 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
12130
12131 module_param(qos_burst_enable, int, 0444);
12132 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
12133
12134 module_param(qos_no_ack_mask, int, 0444);
12135 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
12136
12137 module_param(burst_duration_CCK, int, 0444);
12138 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
12139
12140 module_param(burst_duration_OFDM, int, 0444);
12141 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
12142 #endif                          /* CONFIG_IPW2200_QOS */
12143
12144 #ifdef CONFIG_IPW2200_MONITOR
12145 module_param_named(mode, network_mode, int, 0444);
12146 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
12147 #else
12148 module_param_named(mode, network_mode, int, 0444);
12149 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
12150 #endif
12151
12152 module_param(bt_coexist, int, 0444);
12153 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
12154
12155 module_param(hwcrypto, int, 0444);
12156 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
12157
12158 module_param(cmdlog, int, 0444);
12159 MODULE_PARM_DESC(cmdlog,
12160                  "allocate a ring buffer for logging firmware commands");
12161
12162 module_param(roaming, int, 0444);
12163 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12164
12165 module_param(antenna, int, 0444);
12166 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12167
12168 module_exit(ipw_exit);
12169 module_init(ipw_init);