Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[linux-2.6-block.git] / drivers / net / s2io.c
1 /************************************************************************
2  * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3  * Copyright(c) 2002-2010 Exar Corp.
4  *
5  * This software may be used and distributed according to the terms of
6  * the GNU General Public License (GPL), incorporated herein by reference.
7  * Drivers based on or derived from this code fall under the GPL and must
8  * retain the authorship, copyright and license notice.  This file is not
9  * a complete program and may only be used when the entire operating
10  * system is licensed under the GPL.
11  * See the file COPYING in this distribution for more information.
12  *
13  * Credits:
14  * Jeff Garzik          : For pointing out the improper error condition
15  *                        check in the s2io_xmit routine and also some
16  *                        issues in the Tx watch dog function. Also for
17  *                        patiently answering all those innumerable
18  *                        questions regaring the 2.6 porting issues.
19  * Stephen Hemminger    : Providing proper 2.6 porting mechanism for some
20  *                        macros available only in 2.6 Kernel.
21  * Francois Romieu      : For pointing out all code part that were
22  *                        deprecated and also styling related comments.
23  * Grant Grundler       : For helping me get rid of some Architecture
24  *                        dependent code.
25  * Christopher Hellwig  : Some more 2.6 specific issues in the driver.
26  *
27  * The module loadable parameters that are supported by the driver and a brief
28  * explanation of all the variables.
29  *
30  * rx_ring_num : This can be used to program the number of receive rings used
31  * in the driver.
32  * rx_ring_sz: This defines the number of receive blocks each ring can have.
33  *     This is also an array of size 8.
34  * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35  *              values are 1, 2.
36  * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37  * tx_fifo_len: This too is an array of 8. Each element defines the number of
38  * Tx descriptors that can be associated with each corresponding FIFO.
39  * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40  *     2(MSI_X). Default value is '2(MSI_X)'
41  * lro_max_pkts: This parameter defines maximum number of packets can be
42  *     aggregated as a single large packet
43  * napi: This parameter used to enable/disable NAPI (polling Rx)
44  *     Possible values '1' for enable and '0' for disable. Default is '1'
45  * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
46  *      Possible values '1' for enable and '0' for disable. Default is '0'
47  * vlan_tag_strip: This can be used to enable or disable vlan stripping.
48  *                 Possible values '1' for enable , '0' for disable.
49  *                 Default is '2' - which means disable in promisc mode
50  *                 and enable in non-promiscuous mode.
51  * multiq: This parameter used to enable/disable MULTIQUEUE support.
52  *      Possible values '1' for enable and '0' for disable. Default is '0'
53  ************************************************************************/
54
55 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
56
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/errno.h>
60 #include <linux/ioport.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/kernel.h>
64 #include <linux/netdevice.h>
65 #include <linux/etherdevice.h>
66 #include <linux/mdio.h>
67 #include <linux/skbuff.h>
68 #include <linux/init.h>
69 #include <linux/delay.h>
70 #include <linux/stddef.h>
71 #include <linux/ioctl.h>
72 #include <linux/timex.h>
73 #include <linux/ethtool.h>
74 #include <linux/workqueue.h>
75 #include <linux/if_vlan.h>
76 #include <linux/ip.h>
77 #include <linux/tcp.h>
78 #include <linux/uaccess.h>
79 #include <linux/io.h>
80 #include <linux/slab.h>
81 #include <net/tcp.h>
82
83 #include <asm/system.h>
84 #include <asm/div64.h>
85 #include <asm/irq.h>
86
87 /* local include */
88 #include "s2io.h"
89 #include "s2io-regs.h"
90
91 #define DRV_VERSION "2.0.26.28"
92
93 /* S2io Driver name & version. */
94 static const char s2io_driver_name[] = "Neterion";
95 static const char s2io_driver_version[] = DRV_VERSION;
96
97 static const int rxd_size[2] = {32, 48};
98 static const int rxd_count[2] = {127, 85};
99
100 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
101 {
102         int ret;
103
104         ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
105                (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
106
107         return ret;
108 }
109
110 /*
111  * Cards with following subsystem_id have a link state indication
112  * problem, 600B, 600C, 600D, 640B, 640C and 640D.
113  * macro below identifies these cards given the subsystem_id.
114  */
115 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid)              \
116         (dev_type == XFRAME_I_DEVICE) ?                                 \
117         ((((subid >= 0x600B) && (subid <= 0x600D)) ||                   \
118           ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
119
120 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
121                                       ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
122
123 static inline int is_s2io_card_up(const struct s2io_nic *sp)
124 {
125         return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
126 }
127
128 /* Ethtool related variables and Macros. */
129 static const char s2io_gstrings[][ETH_GSTRING_LEN] = {
130         "Register test\t(offline)",
131         "Eeprom test\t(offline)",
132         "Link test\t(online)",
133         "RLDRAM test\t(offline)",
134         "BIST Test\t(offline)"
135 };
136
137 static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
138         {"tmac_frms"},
139         {"tmac_data_octets"},
140         {"tmac_drop_frms"},
141         {"tmac_mcst_frms"},
142         {"tmac_bcst_frms"},
143         {"tmac_pause_ctrl_frms"},
144         {"tmac_ttl_octets"},
145         {"tmac_ucst_frms"},
146         {"tmac_nucst_frms"},
147         {"tmac_any_err_frms"},
148         {"tmac_ttl_less_fb_octets"},
149         {"tmac_vld_ip_octets"},
150         {"tmac_vld_ip"},
151         {"tmac_drop_ip"},
152         {"tmac_icmp"},
153         {"tmac_rst_tcp"},
154         {"tmac_tcp"},
155         {"tmac_udp"},
156         {"rmac_vld_frms"},
157         {"rmac_data_octets"},
158         {"rmac_fcs_err_frms"},
159         {"rmac_drop_frms"},
160         {"rmac_vld_mcst_frms"},
161         {"rmac_vld_bcst_frms"},
162         {"rmac_in_rng_len_err_frms"},
163         {"rmac_out_rng_len_err_frms"},
164         {"rmac_long_frms"},
165         {"rmac_pause_ctrl_frms"},
166         {"rmac_unsup_ctrl_frms"},
167         {"rmac_ttl_octets"},
168         {"rmac_accepted_ucst_frms"},
169         {"rmac_accepted_nucst_frms"},
170         {"rmac_discarded_frms"},
171         {"rmac_drop_events"},
172         {"rmac_ttl_less_fb_octets"},
173         {"rmac_ttl_frms"},
174         {"rmac_usized_frms"},
175         {"rmac_osized_frms"},
176         {"rmac_frag_frms"},
177         {"rmac_jabber_frms"},
178         {"rmac_ttl_64_frms"},
179         {"rmac_ttl_65_127_frms"},
180         {"rmac_ttl_128_255_frms"},
181         {"rmac_ttl_256_511_frms"},
182         {"rmac_ttl_512_1023_frms"},
183         {"rmac_ttl_1024_1518_frms"},
184         {"rmac_ip"},
185         {"rmac_ip_octets"},
186         {"rmac_hdr_err_ip"},
187         {"rmac_drop_ip"},
188         {"rmac_icmp"},
189         {"rmac_tcp"},
190         {"rmac_udp"},
191         {"rmac_err_drp_udp"},
192         {"rmac_xgmii_err_sym"},
193         {"rmac_frms_q0"},
194         {"rmac_frms_q1"},
195         {"rmac_frms_q2"},
196         {"rmac_frms_q3"},
197         {"rmac_frms_q4"},
198         {"rmac_frms_q5"},
199         {"rmac_frms_q6"},
200         {"rmac_frms_q7"},
201         {"rmac_full_q0"},
202         {"rmac_full_q1"},
203         {"rmac_full_q2"},
204         {"rmac_full_q3"},
205         {"rmac_full_q4"},
206         {"rmac_full_q5"},
207         {"rmac_full_q6"},
208         {"rmac_full_q7"},
209         {"rmac_pause_cnt"},
210         {"rmac_xgmii_data_err_cnt"},
211         {"rmac_xgmii_ctrl_err_cnt"},
212         {"rmac_accepted_ip"},
213         {"rmac_err_tcp"},
214         {"rd_req_cnt"},
215         {"new_rd_req_cnt"},
216         {"new_rd_req_rtry_cnt"},
217         {"rd_rtry_cnt"},
218         {"wr_rtry_rd_ack_cnt"},
219         {"wr_req_cnt"},
220         {"new_wr_req_cnt"},
221         {"new_wr_req_rtry_cnt"},
222         {"wr_rtry_cnt"},
223         {"wr_disc_cnt"},
224         {"rd_rtry_wr_ack_cnt"},
225         {"txp_wr_cnt"},
226         {"txd_rd_cnt"},
227         {"txd_wr_cnt"},
228         {"rxd_rd_cnt"},
229         {"rxd_wr_cnt"},
230         {"txf_rd_cnt"},
231         {"rxf_wr_cnt"}
232 };
233
234 static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
235         {"rmac_ttl_1519_4095_frms"},
236         {"rmac_ttl_4096_8191_frms"},
237         {"rmac_ttl_8192_max_frms"},
238         {"rmac_ttl_gt_max_frms"},
239         {"rmac_osized_alt_frms"},
240         {"rmac_jabber_alt_frms"},
241         {"rmac_gt_max_alt_frms"},
242         {"rmac_vlan_frms"},
243         {"rmac_len_discard"},
244         {"rmac_fcs_discard"},
245         {"rmac_pf_discard"},
246         {"rmac_da_discard"},
247         {"rmac_red_discard"},
248         {"rmac_rts_discard"},
249         {"rmac_ingm_full_discard"},
250         {"link_fault_cnt"}
251 };
252
253 static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
254         {"\n DRIVER STATISTICS"},
255         {"single_bit_ecc_errs"},
256         {"double_bit_ecc_errs"},
257         {"parity_err_cnt"},
258         {"serious_err_cnt"},
259         {"soft_reset_cnt"},
260         {"fifo_full_cnt"},
261         {"ring_0_full_cnt"},
262         {"ring_1_full_cnt"},
263         {"ring_2_full_cnt"},
264         {"ring_3_full_cnt"},
265         {"ring_4_full_cnt"},
266         {"ring_5_full_cnt"},
267         {"ring_6_full_cnt"},
268         {"ring_7_full_cnt"},
269         {"alarm_transceiver_temp_high"},
270         {"alarm_transceiver_temp_low"},
271         {"alarm_laser_bias_current_high"},
272         {"alarm_laser_bias_current_low"},
273         {"alarm_laser_output_power_high"},
274         {"alarm_laser_output_power_low"},
275         {"warn_transceiver_temp_high"},
276         {"warn_transceiver_temp_low"},
277         {"warn_laser_bias_current_high"},
278         {"warn_laser_bias_current_low"},
279         {"warn_laser_output_power_high"},
280         {"warn_laser_output_power_low"},
281         {"lro_aggregated_pkts"},
282         {"lro_flush_both_count"},
283         {"lro_out_of_sequence_pkts"},
284         {"lro_flush_due_to_max_pkts"},
285         {"lro_avg_aggr_pkts"},
286         {"mem_alloc_fail_cnt"},
287         {"pci_map_fail_cnt"},
288         {"watchdog_timer_cnt"},
289         {"mem_allocated"},
290         {"mem_freed"},
291         {"link_up_cnt"},
292         {"link_down_cnt"},
293         {"link_up_time"},
294         {"link_down_time"},
295         {"tx_tcode_buf_abort_cnt"},
296         {"tx_tcode_desc_abort_cnt"},
297         {"tx_tcode_parity_err_cnt"},
298         {"tx_tcode_link_loss_cnt"},
299         {"tx_tcode_list_proc_err_cnt"},
300         {"rx_tcode_parity_err_cnt"},
301         {"rx_tcode_abort_cnt"},
302         {"rx_tcode_parity_abort_cnt"},
303         {"rx_tcode_rda_fail_cnt"},
304         {"rx_tcode_unkn_prot_cnt"},
305         {"rx_tcode_fcs_err_cnt"},
306         {"rx_tcode_buf_size_err_cnt"},
307         {"rx_tcode_rxd_corrupt_cnt"},
308         {"rx_tcode_unkn_err_cnt"},
309         {"tda_err_cnt"},
310         {"pfc_err_cnt"},
311         {"pcc_err_cnt"},
312         {"tti_err_cnt"},
313         {"tpa_err_cnt"},
314         {"sm_err_cnt"},
315         {"lso_err_cnt"},
316         {"mac_tmac_err_cnt"},
317         {"mac_rmac_err_cnt"},
318         {"xgxs_txgxs_err_cnt"},
319         {"xgxs_rxgxs_err_cnt"},
320         {"rc_err_cnt"},
321         {"prc_pcix_err_cnt"},
322         {"rpa_err_cnt"},
323         {"rda_err_cnt"},
324         {"rti_err_cnt"},
325         {"mc_err_cnt"}
326 };
327
328 #define S2IO_XENA_STAT_LEN      ARRAY_SIZE(ethtool_xena_stats_keys)
329 #define S2IO_ENHANCED_STAT_LEN  ARRAY_SIZE(ethtool_enhanced_stats_keys)
330 #define S2IO_DRIVER_STAT_LEN    ARRAY_SIZE(ethtool_driver_stats_keys)
331
332 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
333 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
334
335 #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
336 #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
337
338 #define S2IO_TEST_LEN   ARRAY_SIZE(s2io_gstrings)
339 #define S2IO_STRINGS_LEN        (S2IO_TEST_LEN * ETH_GSTRING_LEN)
340
341 #define S2IO_TIMER_CONF(timer, handle, arg, exp)        \
342         init_timer(&timer);                             \
343         timer.function = handle;                        \
344         timer.data = (unsigned long)arg;                \
345         mod_timer(&timer, (jiffies + exp))              \
346
347 /* copy mac addr to def_mac_addr array */
348 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
349 {
350         sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
351         sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
352         sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
353         sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
354         sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
355         sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
356 }
357
358 /* Add the vlan */
359 static void s2io_vlan_rx_register(struct net_device *dev,
360                                   struct vlan_group *grp)
361 {
362         int i;
363         struct s2io_nic *nic = netdev_priv(dev);
364         unsigned long flags[MAX_TX_FIFOS];
365         struct config_param *config = &nic->config;
366         struct mac_info *mac_control = &nic->mac_control;
367
368         for (i = 0; i < config->tx_fifo_num; i++) {
369                 struct fifo_info *fifo = &mac_control->fifos[i];
370
371                 spin_lock_irqsave(&fifo->tx_lock, flags[i]);
372         }
373
374         nic->vlgrp = grp;
375
376         for (i = config->tx_fifo_num - 1; i >= 0; i--) {
377                 struct fifo_info *fifo = &mac_control->fifos[i];
378
379                 spin_unlock_irqrestore(&fifo->tx_lock, flags[i]);
380         }
381 }
382
383 /* Unregister the vlan */
384 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
385 {
386         int i;
387         struct s2io_nic *nic = netdev_priv(dev);
388         unsigned long flags[MAX_TX_FIFOS];
389         struct config_param *config = &nic->config;
390         struct mac_info *mac_control = &nic->mac_control;
391
392         for (i = 0; i < config->tx_fifo_num; i++) {
393                 struct fifo_info *fifo = &mac_control->fifos[i];
394
395                 spin_lock_irqsave(&fifo->tx_lock, flags[i]);
396         }
397
398         if (nic->vlgrp)
399                 vlan_group_set_device(nic->vlgrp, vid, NULL);
400
401         for (i = config->tx_fifo_num - 1; i >= 0; i--) {
402                 struct fifo_info *fifo = &mac_control->fifos[i];
403
404                 spin_unlock_irqrestore(&fifo->tx_lock, flags[i]);
405         }
406 }
407
408 /*
409  * Constants to be programmed into the Xena's registers, to configure
410  * the XAUI.
411  */
412
413 #define END_SIGN        0x0
414 static const u64 herc_act_dtx_cfg[] = {
415         /* Set address */
416         0x8000051536750000ULL, 0x80000515367500E0ULL,
417         /* Write data */
418         0x8000051536750004ULL, 0x80000515367500E4ULL,
419         /* Set address */
420         0x80010515003F0000ULL, 0x80010515003F00E0ULL,
421         /* Write data */
422         0x80010515003F0004ULL, 0x80010515003F00E4ULL,
423         /* Set address */
424         0x801205150D440000ULL, 0x801205150D4400E0ULL,
425         /* Write data */
426         0x801205150D440004ULL, 0x801205150D4400E4ULL,
427         /* Set address */
428         0x80020515F2100000ULL, 0x80020515F21000E0ULL,
429         /* Write data */
430         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
431         /* Done */
432         END_SIGN
433 };
434
435 static const u64 xena_dtx_cfg[] = {
436         /* Set address */
437         0x8000051500000000ULL, 0x80000515000000E0ULL,
438         /* Write data */
439         0x80000515D9350004ULL, 0x80000515D93500E4ULL,
440         /* Set address */
441         0x8001051500000000ULL, 0x80010515000000E0ULL,
442         /* Write data */
443         0x80010515001E0004ULL, 0x80010515001E00E4ULL,
444         /* Set address */
445         0x8002051500000000ULL, 0x80020515000000E0ULL,
446         /* Write data */
447         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
448         END_SIGN
449 };
450
451 /*
452  * Constants for Fixing the MacAddress problem seen mostly on
453  * Alpha machines.
454  */
455 static const u64 fix_mac[] = {
456         0x0060000000000000ULL, 0x0060600000000000ULL,
457         0x0040600000000000ULL, 0x0000600000000000ULL,
458         0x0020600000000000ULL, 0x0060600000000000ULL,
459         0x0020600000000000ULL, 0x0060600000000000ULL,
460         0x0020600000000000ULL, 0x0060600000000000ULL,
461         0x0020600000000000ULL, 0x0060600000000000ULL,
462         0x0020600000000000ULL, 0x0060600000000000ULL,
463         0x0020600000000000ULL, 0x0060600000000000ULL,
464         0x0020600000000000ULL, 0x0060600000000000ULL,
465         0x0020600000000000ULL, 0x0060600000000000ULL,
466         0x0020600000000000ULL, 0x0060600000000000ULL,
467         0x0020600000000000ULL, 0x0060600000000000ULL,
468         0x0020600000000000ULL, 0x0000600000000000ULL,
469         0x0040600000000000ULL, 0x0060600000000000ULL,
470         END_SIGN
471 };
472
473 MODULE_LICENSE("GPL");
474 MODULE_VERSION(DRV_VERSION);
475
476
477 /* Module Loadable parameters. */
478 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
479 S2IO_PARM_INT(rx_ring_num, 1);
480 S2IO_PARM_INT(multiq, 0);
481 S2IO_PARM_INT(rx_ring_mode, 1);
482 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
483 S2IO_PARM_INT(rmac_pause_time, 0x100);
484 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
485 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
486 S2IO_PARM_INT(shared_splits, 0);
487 S2IO_PARM_INT(tmac_util_period, 5);
488 S2IO_PARM_INT(rmac_util_period, 5);
489 S2IO_PARM_INT(l3l4hdr_size, 128);
490 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
491 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
492 /* Frequency of Rx desc syncs expressed as power of 2 */
493 S2IO_PARM_INT(rxsync_frequency, 3);
494 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
495 S2IO_PARM_INT(intr_type, 2);
496 /* Large receive offload feature */
497
498 /* Max pkts to be aggregated by LRO at one time. If not specified,
499  * aggregation happens until we hit max IP pkt size(64K)
500  */
501 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
502 S2IO_PARM_INT(indicate_max_pkts, 0);
503
504 S2IO_PARM_INT(napi, 1);
505 S2IO_PARM_INT(ufo, 0);
506 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
507
508 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
509 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
510 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
511 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
512 static unsigned int rts_frm_len[MAX_RX_RINGS] =
513 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
514
515 module_param_array(tx_fifo_len, uint, NULL, 0);
516 module_param_array(rx_ring_sz, uint, NULL, 0);
517 module_param_array(rts_frm_len, uint, NULL, 0);
518
519 /*
520  * S2IO device table.
521  * This table lists all the devices that this driver supports.
522  */
523 static DEFINE_PCI_DEVICE_TABLE(s2io_tbl) = {
524         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
525          PCI_ANY_ID, PCI_ANY_ID},
526         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
527          PCI_ANY_ID, PCI_ANY_ID},
528         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
529          PCI_ANY_ID, PCI_ANY_ID},
530         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
531          PCI_ANY_ID, PCI_ANY_ID},
532         {0,}
533 };
534
535 MODULE_DEVICE_TABLE(pci, s2io_tbl);
536
537 static struct pci_error_handlers s2io_err_handler = {
538         .error_detected = s2io_io_error_detected,
539         .slot_reset = s2io_io_slot_reset,
540         .resume = s2io_io_resume,
541 };
542
543 static struct pci_driver s2io_driver = {
544         .name = "S2IO",
545         .id_table = s2io_tbl,
546         .probe = s2io_init_nic,
547         .remove = __devexit_p(s2io_rem_nic),
548         .err_handler = &s2io_err_handler,
549 };
550
551 /* A simplifier macro used both by init and free shared_mem Fns(). */
552 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
553
554 /* netqueue manipulation helper functions */
555 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
556 {
557         if (!sp->config.multiq) {
558                 int i;
559
560                 for (i = 0; i < sp->config.tx_fifo_num; i++)
561                         sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
562         }
563         netif_tx_stop_all_queues(sp->dev);
564 }
565
566 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
567 {
568         if (!sp->config.multiq)
569                 sp->mac_control.fifos[fifo_no].queue_state =
570                         FIFO_QUEUE_STOP;
571
572         netif_tx_stop_all_queues(sp->dev);
573 }
574
575 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
576 {
577         if (!sp->config.multiq) {
578                 int i;
579
580                 for (i = 0; i < sp->config.tx_fifo_num; i++)
581                         sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
582         }
583         netif_tx_start_all_queues(sp->dev);
584 }
585
586 static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
587 {
588         if (!sp->config.multiq)
589                 sp->mac_control.fifos[fifo_no].queue_state =
590                         FIFO_QUEUE_START;
591
592         netif_tx_start_all_queues(sp->dev);
593 }
594
595 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
596 {
597         if (!sp->config.multiq) {
598                 int i;
599
600                 for (i = 0; i < sp->config.tx_fifo_num; i++)
601                         sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
602         }
603         netif_tx_wake_all_queues(sp->dev);
604 }
605
606 static inline void s2io_wake_tx_queue(
607         struct fifo_info *fifo, int cnt, u8 multiq)
608 {
609
610         if (multiq) {
611                 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
612                         netif_wake_subqueue(fifo->dev, fifo->fifo_no);
613         } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
614                 if (netif_queue_stopped(fifo->dev)) {
615                         fifo->queue_state = FIFO_QUEUE_START;
616                         netif_wake_queue(fifo->dev);
617                 }
618         }
619 }
620
621 /**
622  * init_shared_mem - Allocation and Initialization of Memory
623  * @nic: Device private variable.
624  * Description: The function allocates all the memory areas shared
625  * between the NIC and the driver. This includes Tx descriptors,
626  * Rx descriptors and the statistics block.
627  */
628
629 static int init_shared_mem(struct s2io_nic *nic)
630 {
631         u32 size;
632         void *tmp_v_addr, *tmp_v_addr_next;
633         dma_addr_t tmp_p_addr, tmp_p_addr_next;
634         struct RxD_block *pre_rxd_blk = NULL;
635         int i, j, blk_cnt;
636         int lst_size, lst_per_page;
637         struct net_device *dev = nic->dev;
638         unsigned long tmp;
639         struct buffAdd *ba;
640         struct config_param *config = &nic->config;
641         struct mac_info *mac_control = &nic->mac_control;
642         unsigned long long mem_allocated = 0;
643
644         /* Allocation and initialization of TXDLs in FIFOs */
645         size = 0;
646         for (i = 0; i < config->tx_fifo_num; i++) {
647                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
648
649                 size += tx_cfg->fifo_len;
650         }
651         if (size > MAX_AVAILABLE_TXDS) {
652                 DBG_PRINT(ERR_DBG,
653                           "Too many TxDs requested: %d, max supported: %d\n",
654                           size, MAX_AVAILABLE_TXDS);
655                 return -EINVAL;
656         }
657
658         size = 0;
659         for (i = 0; i < config->tx_fifo_num; i++) {
660                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
661
662                 size = tx_cfg->fifo_len;
663                 /*
664                  * Legal values are from 2 to 8192
665                  */
666                 if (size < 2) {
667                         DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - "
668                                   "Valid lengths are 2 through 8192\n",
669                                   i, size);
670                         return -EINVAL;
671                 }
672         }
673
674         lst_size = (sizeof(struct TxD) * config->max_txds);
675         lst_per_page = PAGE_SIZE / lst_size;
676
677         for (i = 0; i < config->tx_fifo_num; i++) {
678                 struct fifo_info *fifo = &mac_control->fifos[i];
679                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
680                 int fifo_len = tx_cfg->fifo_len;
681                 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
682
683                 fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL);
684                 if (!fifo->list_info) {
685                         DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n");
686                         return -ENOMEM;
687                 }
688                 mem_allocated += list_holder_size;
689         }
690         for (i = 0; i < config->tx_fifo_num; i++) {
691                 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
692                                                 lst_per_page);
693                 struct fifo_info *fifo = &mac_control->fifos[i];
694                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
695
696                 fifo->tx_curr_put_info.offset = 0;
697                 fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1;
698                 fifo->tx_curr_get_info.offset = 0;
699                 fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1;
700                 fifo->fifo_no = i;
701                 fifo->nic = nic;
702                 fifo->max_txds = MAX_SKB_FRAGS + 2;
703                 fifo->dev = dev;
704
705                 for (j = 0; j < page_num; j++) {
706                         int k = 0;
707                         dma_addr_t tmp_p;
708                         void *tmp_v;
709                         tmp_v = pci_alloc_consistent(nic->pdev,
710                                                      PAGE_SIZE, &tmp_p);
711                         if (!tmp_v) {
712                                 DBG_PRINT(INFO_DBG,
713                                           "pci_alloc_consistent failed for TxDL\n");
714                                 return -ENOMEM;
715                         }
716                         /* If we got a zero DMA address(can happen on
717                          * certain platforms like PPC), reallocate.
718                          * Store virtual address of page we don't want,
719                          * to be freed later.
720                          */
721                         if (!tmp_p) {
722                                 mac_control->zerodma_virt_addr = tmp_v;
723                                 DBG_PRINT(INIT_DBG,
724                                           "%s: Zero DMA address for TxDL. "
725                                           "Virtual address %p\n",
726                                           dev->name, tmp_v);
727                                 tmp_v = pci_alloc_consistent(nic->pdev,
728                                                              PAGE_SIZE, &tmp_p);
729                                 if (!tmp_v) {
730                                         DBG_PRINT(INFO_DBG,
731                                                   "pci_alloc_consistent failed for TxDL\n");
732                                         return -ENOMEM;
733                                 }
734                                 mem_allocated += PAGE_SIZE;
735                         }
736                         while (k < lst_per_page) {
737                                 int l = (j * lst_per_page) + k;
738                                 if (l == tx_cfg->fifo_len)
739                                         break;
740                                 fifo->list_info[l].list_virt_addr =
741                                         tmp_v + (k * lst_size);
742                                 fifo->list_info[l].list_phy_addr =
743                                         tmp_p + (k * lst_size);
744                                 k++;
745                         }
746                 }
747         }
748
749         for (i = 0; i < config->tx_fifo_num; i++) {
750                 struct fifo_info *fifo = &mac_control->fifos[i];
751                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
752
753                 size = tx_cfg->fifo_len;
754                 fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
755                 if (!fifo->ufo_in_band_v)
756                         return -ENOMEM;
757                 mem_allocated += (size * sizeof(u64));
758         }
759
760         /* Allocation and initialization of RXDs in Rings */
761         size = 0;
762         for (i = 0; i < config->rx_ring_num; i++) {
763                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
764                 struct ring_info *ring = &mac_control->rings[i];
765
766                 if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) {
767                         DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a "
768                                   "multiple of RxDs per Block\n",
769                                   dev->name, i);
770                         return FAILURE;
771                 }
772                 size += rx_cfg->num_rxd;
773                 ring->block_count = rx_cfg->num_rxd /
774                         (rxd_count[nic->rxd_mode] + 1);
775                 ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count;
776         }
777         if (nic->rxd_mode == RXD_MODE_1)
778                 size = (size * (sizeof(struct RxD1)));
779         else
780                 size = (size * (sizeof(struct RxD3)));
781
782         for (i = 0; i < config->rx_ring_num; i++) {
783                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
784                 struct ring_info *ring = &mac_control->rings[i];
785
786                 ring->rx_curr_get_info.block_index = 0;
787                 ring->rx_curr_get_info.offset = 0;
788                 ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1;
789                 ring->rx_curr_put_info.block_index = 0;
790                 ring->rx_curr_put_info.offset = 0;
791                 ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1;
792                 ring->nic = nic;
793                 ring->ring_no = i;
794
795                 blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1);
796                 /*  Allocating all the Rx blocks */
797                 for (j = 0; j < blk_cnt; j++) {
798                         struct rx_block_info *rx_blocks;
799                         int l;
800
801                         rx_blocks = &ring->rx_blocks[j];
802                         size = SIZE_OF_BLOCK;   /* size is always page size */
803                         tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
804                                                           &tmp_p_addr);
805                         if (tmp_v_addr == NULL) {
806                                 /*
807                                  * In case of failure, free_shared_mem()
808                                  * is called, which should free any
809                                  * memory that was alloced till the
810                                  * failure happened.
811                                  */
812                                 rx_blocks->block_virt_addr = tmp_v_addr;
813                                 return -ENOMEM;
814                         }
815                         mem_allocated += size;
816                         memset(tmp_v_addr, 0, size);
817
818                         size = sizeof(struct rxd_info) *
819                                 rxd_count[nic->rxd_mode];
820                         rx_blocks->block_virt_addr = tmp_v_addr;
821                         rx_blocks->block_dma_addr = tmp_p_addr;
822                         rx_blocks->rxds = kmalloc(size,  GFP_KERNEL);
823                         if (!rx_blocks->rxds)
824                                 return -ENOMEM;
825                         mem_allocated += size;
826                         for (l = 0; l < rxd_count[nic->rxd_mode]; l++) {
827                                 rx_blocks->rxds[l].virt_addr =
828                                         rx_blocks->block_virt_addr +
829                                         (rxd_size[nic->rxd_mode] * l);
830                                 rx_blocks->rxds[l].dma_addr =
831                                         rx_blocks->block_dma_addr +
832                                         (rxd_size[nic->rxd_mode] * l);
833                         }
834                 }
835                 /* Interlinking all Rx Blocks */
836                 for (j = 0; j < blk_cnt; j++) {
837                         int next = (j + 1) % blk_cnt;
838                         tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
839                         tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr;
840                         tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
841                         tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr;
842
843                         pre_rxd_blk = (struct RxD_block *)tmp_v_addr;
844                         pre_rxd_blk->reserved_2_pNext_RxD_block =
845                                 (unsigned long)tmp_v_addr_next;
846                         pre_rxd_blk->pNext_RxD_Blk_physical =
847                                 (u64)tmp_p_addr_next;
848                 }
849         }
850         if (nic->rxd_mode == RXD_MODE_3B) {
851                 /*
852                  * Allocation of Storages for buffer addresses in 2BUFF mode
853                  * and the buffers as well.
854                  */
855                 for (i = 0; i < config->rx_ring_num; i++) {
856                         struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
857                         struct ring_info *ring = &mac_control->rings[i];
858
859                         blk_cnt = rx_cfg->num_rxd /
860                                 (rxd_count[nic->rxd_mode] + 1);
861                         size = sizeof(struct buffAdd *) * blk_cnt;
862                         ring->ba = kmalloc(size, GFP_KERNEL);
863                         if (!ring->ba)
864                                 return -ENOMEM;
865                         mem_allocated += size;
866                         for (j = 0; j < blk_cnt; j++) {
867                                 int k = 0;
868
869                                 size = sizeof(struct buffAdd) *
870                                         (rxd_count[nic->rxd_mode] + 1);
871                                 ring->ba[j] = kmalloc(size, GFP_KERNEL);
872                                 if (!ring->ba[j])
873                                         return -ENOMEM;
874                                 mem_allocated += size;
875                                 while (k != rxd_count[nic->rxd_mode]) {
876                                         ba = &ring->ba[j][k];
877                                         size = BUF0_LEN + ALIGN_SIZE;
878                                         ba->ba_0_org = kmalloc(size, GFP_KERNEL);
879                                         if (!ba->ba_0_org)
880                                                 return -ENOMEM;
881                                         mem_allocated += size;
882                                         tmp = (unsigned long)ba->ba_0_org;
883                                         tmp += ALIGN_SIZE;
884                                         tmp &= ~((unsigned long)ALIGN_SIZE);
885                                         ba->ba_0 = (void *)tmp;
886
887                                         size = BUF1_LEN + ALIGN_SIZE;
888                                         ba->ba_1_org = kmalloc(size, GFP_KERNEL);
889                                         if (!ba->ba_1_org)
890                                                 return -ENOMEM;
891                                         mem_allocated += size;
892                                         tmp = (unsigned long)ba->ba_1_org;
893                                         tmp += ALIGN_SIZE;
894                                         tmp &= ~((unsigned long)ALIGN_SIZE);
895                                         ba->ba_1 = (void *)tmp;
896                                         k++;
897                                 }
898                         }
899                 }
900         }
901
902         /* Allocation and initialization of Statistics block */
903         size = sizeof(struct stat_block);
904         mac_control->stats_mem =
905                 pci_alloc_consistent(nic->pdev, size,
906                                      &mac_control->stats_mem_phy);
907
908         if (!mac_control->stats_mem) {
909                 /*
910                  * In case of failure, free_shared_mem() is called, which
911                  * should free any memory that was alloced till the
912                  * failure happened.
913                  */
914                 return -ENOMEM;
915         }
916         mem_allocated += size;
917         mac_control->stats_mem_sz = size;
918
919         tmp_v_addr = mac_control->stats_mem;
920         mac_control->stats_info = (struct stat_block *)tmp_v_addr;
921         memset(tmp_v_addr, 0, size);
922         DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n",
923                 dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr);
924         mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
925         return SUCCESS;
926 }
927
928 /**
929  * free_shared_mem - Free the allocated Memory
930  * @nic:  Device private variable.
931  * Description: This function is to free all memory locations allocated by
932  * the init_shared_mem() function and return it to the kernel.
933  */
934
935 static void free_shared_mem(struct s2io_nic *nic)
936 {
937         int i, j, blk_cnt, size;
938         void *tmp_v_addr;
939         dma_addr_t tmp_p_addr;
940         int lst_size, lst_per_page;
941         struct net_device *dev;
942         int page_num = 0;
943         struct config_param *config;
944         struct mac_info *mac_control;
945         struct stat_block *stats;
946         struct swStat *swstats;
947
948         if (!nic)
949                 return;
950
951         dev = nic->dev;
952
953         config = &nic->config;
954         mac_control = &nic->mac_control;
955         stats = mac_control->stats_info;
956         swstats = &stats->sw_stat;
957
958         lst_size = sizeof(struct TxD) * config->max_txds;
959         lst_per_page = PAGE_SIZE / lst_size;
960
961         for (i = 0; i < config->tx_fifo_num; i++) {
962                 struct fifo_info *fifo = &mac_control->fifos[i];
963                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
964
965                 page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page);
966                 for (j = 0; j < page_num; j++) {
967                         int mem_blks = (j * lst_per_page);
968                         struct list_info_hold *fli;
969
970                         if (!fifo->list_info)
971                                 return;
972
973                         fli = &fifo->list_info[mem_blks];
974                         if (!fli->list_virt_addr)
975                                 break;
976                         pci_free_consistent(nic->pdev, PAGE_SIZE,
977                                             fli->list_virt_addr,
978                                             fli->list_phy_addr);
979                         swstats->mem_freed += PAGE_SIZE;
980                 }
981                 /* If we got a zero DMA address during allocation,
982                  * free the page now
983                  */
984                 if (mac_control->zerodma_virt_addr) {
985                         pci_free_consistent(nic->pdev, PAGE_SIZE,
986                                             mac_control->zerodma_virt_addr,
987                                             (dma_addr_t)0);
988                         DBG_PRINT(INIT_DBG,
989                                   "%s: Freeing TxDL with zero DMA address. "
990                                   "Virtual address %p\n",
991                                   dev->name, mac_control->zerodma_virt_addr);
992                         swstats->mem_freed += PAGE_SIZE;
993                 }
994                 kfree(fifo->list_info);
995                 swstats->mem_freed += tx_cfg->fifo_len *
996                         sizeof(struct list_info_hold);
997         }
998
999         size = SIZE_OF_BLOCK;
1000         for (i = 0; i < config->rx_ring_num; i++) {
1001                 struct ring_info *ring = &mac_control->rings[i];
1002
1003                 blk_cnt = ring->block_count;
1004                 for (j = 0; j < blk_cnt; j++) {
1005                         tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
1006                         tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
1007                         if (tmp_v_addr == NULL)
1008                                 break;
1009                         pci_free_consistent(nic->pdev, size,
1010                                             tmp_v_addr, tmp_p_addr);
1011                         swstats->mem_freed += size;
1012                         kfree(ring->rx_blocks[j].rxds);
1013                         swstats->mem_freed += sizeof(struct rxd_info) *
1014                                 rxd_count[nic->rxd_mode];
1015                 }
1016         }
1017
1018         if (nic->rxd_mode == RXD_MODE_3B) {
1019                 /* Freeing buffer storage addresses in 2BUFF mode. */
1020                 for (i = 0; i < config->rx_ring_num; i++) {
1021                         struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1022                         struct ring_info *ring = &mac_control->rings[i];
1023
1024                         blk_cnt = rx_cfg->num_rxd /
1025                                 (rxd_count[nic->rxd_mode] + 1);
1026                         for (j = 0; j < blk_cnt; j++) {
1027                                 int k = 0;
1028                                 if (!ring->ba[j])
1029                                         continue;
1030                                 while (k != rxd_count[nic->rxd_mode]) {
1031                                         struct buffAdd *ba = &ring->ba[j][k];
1032                                         kfree(ba->ba_0_org);
1033                                         swstats->mem_freed +=
1034                                                 BUF0_LEN + ALIGN_SIZE;
1035                                         kfree(ba->ba_1_org);
1036                                         swstats->mem_freed +=
1037                                                 BUF1_LEN + ALIGN_SIZE;
1038                                         k++;
1039                                 }
1040                                 kfree(ring->ba[j]);
1041                                 swstats->mem_freed += sizeof(struct buffAdd) *
1042                                         (rxd_count[nic->rxd_mode] + 1);
1043                         }
1044                         kfree(ring->ba);
1045                         swstats->mem_freed += sizeof(struct buffAdd *) *
1046                                 blk_cnt;
1047                 }
1048         }
1049
1050         for (i = 0; i < nic->config.tx_fifo_num; i++) {
1051                 struct fifo_info *fifo = &mac_control->fifos[i];
1052                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1053
1054                 if (fifo->ufo_in_band_v) {
1055                         swstats->mem_freed += tx_cfg->fifo_len *
1056                                 sizeof(u64);
1057                         kfree(fifo->ufo_in_band_v);
1058                 }
1059         }
1060
1061         if (mac_control->stats_mem) {
1062                 swstats->mem_freed += mac_control->stats_mem_sz;
1063                 pci_free_consistent(nic->pdev,
1064                                     mac_control->stats_mem_sz,
1065                                     mac_control->stats_mem,
1066                                     mac_control->stats_mem_phy);
1067         }
1068 }
1069
1070 /**
1071  * s2io_verify_pci_mode -
1072  */
1073
1074 static int s2io_verify_pci_mode(struct s2io_nic *nic)
1075 {
1076         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1077         register u64 val64 = 0;
1078         int     mode;
1079
1080         val64 = readq(&bar0->pci_mode);
1081         mode = (u8)GET_PCI_MODE(val64);
1082
1083         if (val64 & PCI_MODE_UNKNOWN_MODE)
1084                 return -1;      /* Unknown PCI mode */
1085         return mode;
1086 }
1087
1088 #define NEC_VENID   0x1033
1089 #define NEC_DEVID   0x0125
1090 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1091 {
1092         struct pci_dev *tdev = NULL;
1093         while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1094                 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1095                         if (tdev->bus == s2io_pdev->bus->parent) {
1096                                 pci_dev_put(tdev);
1097                                 return 1;
1098                         }
1099                 }
1100         }
1101         return 0;
1102 }
1103
1104 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1105 /**
1106  * s2io_print_pci_mode -
1107  */
1108 static int s2io_print_pci_mode(struct s2io_nic *nic)
1109 {
1110         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1111         register u64 val64 = 0;
1112         int     mode;
1113         struct config_param *config = &nic->config;
1114         const char *pcimode;
1115
1116         val64 = readq(&bar0->pci_mode);
1117         mode = (u8)GET_PCI_MODE(val64);
1118
1119         if (val64 & PCI_MODE_UNKNOWN_MODE)
1120                 return -1;      /* Unknown PCI mode */
1121
1122         config->bus_speed = bus_speed[mode];
1123
1124         if (s2io_on_nec_bridge(nic->pdev)) {
1125                 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1126                           nic->dev->name);
1127                 return mode;
1128         }
1129
1130         switch (mode) {
1131         case PCI_MODE_PCI_33:
1132                 pcimode = "33MHz PCI bus";
1133                 break;
1134         case PCI_MODE_PCI_66:
1135                 pcimode = "66MHz PCI bus";
1136                 break;
1137         case PCI_MODE_PCIX_M1_66:
1138                 pcimode = "66MHz PCIX(M1) bus";
1139                 break;
1140         case PCI_MODE_PCIX_M1_100:
1141                 pcimode = "100MHz PCIX(M1) bus";
1142                 break;
1143         case PCI_MODE_PCIX_M1_133:
1144                 pcimode = "133MHz PCIX(M1) bus";
1145                 break;
1146         case PCI_MODE_PCIX_M2_66:
1147                 pcimode = "133MHz PCIX(M2) bus";
1148                 break;
1149         case PCI_MODE_PCIX_M2_100:
1150                 pcimode = "200MHz PCIX(M2) bus";
1151                 break;
1152         case PCI_MODE_PCIX_M2_133:
1153                 pcimode = "266MHz PCIX(M2) bus";
1154                 break;
1155         default:
1156                 pcimode = "unsupported bus!";
1157                 mode = -1;
1158         }
1159
1160         DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n",
1161                   nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode);
1162
1163         return mode;
1164 }
1165
1166 /**
1167  *  init_tti - Initialization transmit traffic interrupt scheme
1168  *  @nic: device private variable
1169  *  @link: link status (UP/DOWN) used to enable/disable continuous
1170  *  transmit interrupts
1171  *  Description: The function configures transmit traffic interrupts
1172  *  Return Value:  SUCCESS on success and
1173  *  '-1' on failure
1174  */
1175
1176 static int init_tti(struct s2io_nic *nic, int link)
1177 {
1178         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1179         register u64 val64 = 0;
1180         int i;
1181         struct config_param *config = &nic->config;
1182
1183         for (i = 0; i < config->tx_fifo_num; i++) {
1184                 /*
1185                  * TTI Initialization. Default Tx timer gets us about
1186                  * 250 interrupts per sec. Continuous interrupts are enabled
1187                  * by default.
1188                  */
1189                 if (nic->device_type == XFRAME_II_DEVICE) {
1190                         int count = (nic->config.bus_speed * 125)/2;
1191                         val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1192                 } else
1193                         val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1194
1195                 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1196                         TTI_DATA1_MEM_TX_URNG_B(0x10) |
1197                         TTI_DATA1_MEM_TX_URNG_C(0x30) |
1198                         TTI_DATA1_MEM_TX_TIMER_AC_EN;
1199                 if (i == 0)
1200                         if (use_continuous_tx_intrs && (link == LINK_UP))
1201                                 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1202                 writeq(val64, &bar0->tti_data1_mem);
1203
1204                 if (nic->config.intr_type == MSI_X) {
1205                         val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1206                                 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1207                                 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1208                                 TTI_DATA2_MEM_TX_UFC_D(0x300);
1209                 } else {
1210                         if ((nic->config.tx_steering_type ==
1211                              TX_DEFAULT_STEERING) &&
1212                             (config->tx_fifo_num > 1) &&
1213                             (i >= nic->udp_fifo_idx) &&
1214                             (i < (nic->udp_fifo_idx +
1215                                   nic->total_udp_fifos)))
1216                                 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1217                                         TTI_DATA2_MEM_TX_UFC_B(0x80) |
1218                                         TTI_DATA2_MEM_TX_UFC_C(0x100) |
1219                                         TTI_DATA2_MEM_TX_UFC_D(0x120);
1220                         else
1221                                 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1222                                         TTI_DATA2_MEM_TX_UFC_B(0x20) |
1223                                         TTI_DATA2_MEM_TX_UFC_C(0x40) |
1224                                         TTI_DATA2_MEM_TX_UFC_D(0x80);
1225                 }
1226
1227                 writeq(val64, &bar0->tti_data2_mem);
1228
1229                 val64 = TTI_CMD_MEM_WE |
1230                         TTI_CMD_MEM_STROBE_NEW_CMD |
1231                         TTI_CMD_MEM_OFFSET(i);
1232                 writeq(val64, &bar0->tti_command_mem);
1233
1234                 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1235                                           TTI_CMD_MEM_STROBE_NEW_CMD,
1236                                           S2IO_BIT_RESET) != SUCCESS)
1237                         return FAILURE;
1238         }
1239
1240         return SUCCESS;
1241 }
1242
1243 /**
1244  *  init_nic - Initialization of hardware
1245  *  @nic: device private variable
1246  *  Description: The function sequentially configures every block
1247  *  of the H/W from their reset values.
1248  *  Return Value:  SUCCESS on success and
1249  *  '-1' on failure (endian settings incorrect).
1250  */
1251
1252 static int init_nic(struct s2io_nic *nic)
1253 {
1254         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1255         struct net_device *dev = nic->dev;
1256         register u64 val64 = 0;
1257         void __iomem *add;
1258         u32 time;
1259         int i, j;
1260         int dtx_cnt = 0;
1261         unsigned long long mem_share;
1262         int mem_size;
1263         struct config_param *config = &nic->config;
1264         struct mac_info *mac_control = &nic->mac_control;
1265
1266         /* to set the swapper controle on the card */
1267         if (s2io_set_swapper(nic)) {
1268                 DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n");
1269                 return -EIO;
1270         }
1271
1272         /*
1273          * Herc requires EOI to be removed from reset before XGXS, so..
1274          */
1275         if (nic->device_type & XFRAME_II_DEVICE) {
1276                 val64 = 0xA500000000ULL;
1277                 writeq(val64, &bar0->sw_reset);
1278                 msleep(500);
1279                 val64 = readq(&bar0->sw_reset);
1280         }
1281
1282         /* Remove XGXS from reset state */
1283         val64 = 0;
1284         writeq(val64, &bar0->sw_reset);
1285         msleep(500);
1286         val64 = readq(&bar0->sw_reset);
1287
1288         /* Ensure that it's safe to access registers by checking
1289          * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1290          */
1291         if (nic->device_type == XFRAME_II_DEVICE) {
1292                 for (i = 0; i < 50; i++) {
1293                         val64 = readq(&bar0->adapter_status);
1294                         if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1295                                 break;
1296                         msleep(10);
1297                 }
1298                 if (i == 50)
1299                         return -ENODEV;
1300         }
1301
1302         /*  Enable Receiving broadcasts */
1303         add = &bar0->mac_cfg;
1304         val64 = readq(&bar0->mac_cfg);
1305         val64 |= MAC_RMAC_BCAST_ENABLE;
1306         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1307         writel((u32)val64, add);
1308         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1309         writel((u32) (val64 >> 32), (add + 4));
1310
1311         /* Read registers in all blocks */
1312         val64 = readq(&bar0->mac_int_mask);
1313         val64 = readq(&bar0->mc_int_mask);
1314         val64 = readq(&bar0->xgxs_int_mask);
1315
1316         /*  Set MTU */
1317         val64 = dev->mtu;
1318         writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1319
1320         if (nic->device_type & XFRAME_II_DEVICE) {
1321                 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1322                         SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1323                                           &bar0->dtx_control, UF);
1324                         if (dtx_cnt & 0x1)
1325                                 msleep(1); /* Necessary!! */
1326                         dtx_cnt++;
1327                 }
1328         } else {
1329                 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1330                         SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1331                                           &bar0->dtx_control, UF);
1332                         val64 = readq(&bar0->dtx_control);
1333                         dtx_cnt++;
1334                 }
1335         }
1336
1337         /*  Tx DMA Initialization */
1338         val64 = 0;
1339         writeq(val64, &bar0->tx_fifo_partition_0);
1340         writeq(val64, &bar0->tx_fifo_partition_1);
1341         writeq(val64, &bar0->tx_fifo_partition_2);
1342         writeq(val64, &bar0->tx_fifo_partition_3);
1343
1344         for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1345                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1346
1347                 val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) |
1348                         vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3);
1349
1350                 if (i == (config->tx_fifo_num - 1)) {
1351                         if (i % 2 == 0)
1352                                 i++;
1353                 }
1354
1355                 switch (i) {
1356                 case 1:
1357                         writeq(val64, &bar0->tx_fifo_partition_0);
1358                         val64 = 0;
1359                         j = 0;
1360                         break;
1361                 case 3:
1362                         writeq(val64, &bar0->tx_fifo_partition_1);
1363                         val64 = 0;
1364                         j = 0;
1365                         break;
1366                 case 5:
1367                         writeq(val64, &bar0->tx_fifo_partition_2);
1368                         val64 = 0;
1369                         j = 0;
1370                         break;
1371                 case 7:
1372                         writeq(val64, &bar0->tx_fifo_partition_3);
1373                         val64 = 0;
1374                         j = 0;
1375                         break;
1376                 default:
1377                         j++;
1378                         break;
1379                 }
1380         }
1381
1382         /*
1383          * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1384          * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1385          */
1386         if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4))
1387                 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1388
1389         val64 = readq(&bar0->tx_fifo_partition_0);
1390         DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1391                   &bar0->tx_fifo_partition_0, (unsigned long long)val64);
1392
1393         /*
1394          * Initialization of Tx_PA_CONFIG register to ignore packet
1395          * integrity checking.
1396          */
1397         val64 = readq(&bar0->tx_pa_cfg);
1398         val64 |= TX_PA_CFG_IGNORE_FRM_ERR |
1399                 TX_PA_CFG_IGNORE_SNAP_OUI |
1400                 TX_PA_CFG_IGNORE_LLC_CTRL |
1401                 TX_PA_CFG_IGNORE_L2_ERR;
1402         writeq(val64, &bar0->tx_pa_cfg);
1403
1404         /* Rx DMA intialization. */
1405         val64 = 0;
1406         for (i = 0; i < config->rx_ring_num; i++) {
1407                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1408
1409                 val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3);
1410         }
1411         writeq(val64, &bar0->rx_queue_priority);
1412
1413         /*
1414          * Allocating equal share of memory to all the
1415          * configured Rings.
1416          */
1417         val64 = 0;
1418         if (nic->device_type & XFRAME_II_DEVICE)
1419                 mem_size = 32;
1420         else
1421                 mem_size = 64;
1422
1423         for (i = 0; i < config->rx_ring_num; i++) {
1424                 switch (i) {
1425                 case 0:
1426                         mem_share = (mem_size / config->rx_ring_num +
1427                                      mem_size % config->rx_ring_num);
1428                         val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1429                         continue;
1430                 case 1:
1431                         mem_share = (mem_size / config->rx_ring_num);
1432                         val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1433                         continue;
1434                 case 2:
1435                         mem_share = (mem_size / config->rx_ring_num);
1436                         val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1437                         continue;
1438                 case 3:
1439                         mem_share = (mem_size / config->rx_ring_num);
1440                         val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1441                         continue;
1442                 case 4:
1443                         mem_share = (mem_size / config->rx_ring_num);
1444                         val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1445                         continue;
1446                 case 5:
1447                         mem_share = (mem_size / config->rx_ring_num);
1448                         val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1449                         continue;
1450                 case 6:
1451                         mem_share = (mem_size / config->rx_ring_num);
1452                         val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1453                         continue;
1454                 case 7:
1455                         mem_share = (mem_size / config->rx_ring_num);
1456                         val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1457                         continue;
1458                 }
1459         }
1460         writeq(val64, &bar0->rx_queue_cfg);
1461
1462         /*
1463          * Filling Tx round robin registers
1464          * as per the number of FIFOs for equal scheduling priority
1465          */
1466         switch (config->tx_fifo_num) {
1467         case 1:
1468                 val64 = 0x0;
1469                 writeq(val64, &bar0->tx_w_round_robin_0);
1470                 writeq(val64, &bar0->tx_w_round_robin_1);
1471                 writeq(val64, &bar0->tx_w_round_robin_2);
1472                 writeq(val64, &bar0->tx_w_round_robin_3);
1473                 writeq(val64, &bar0->tx_w_round_robin_4);
1474                 break;
1475         case 2:
1476                 val64 = 0x0001000100010001ULL;
1477                 writeq(val64, &bar0->tx_w_round_robin_0);
1478                 writeq(val64, &bar0->tx_w_round_robin_1);
1479                 writeq(val64, &bar0->tx_w_round_robin_2);
1480                 writeq(val64, &bar0->tx_w_round_robin_3);
1481                 val64 = 0x0001000100000000ULL;
1482                 writeq(val64, &bar0->tx_w_round_robin_4);
1483                 break;
1484         case 3:
1485                 val64 = 0x0001020001020001ULL;
1486                 writeq(val64, &bar0->tx_w_round_robin_0);
1487                 val64 = 0x0200010200010200ULL;
1488                 writeq(val64, &bar0->tx_w_round_robin_1);
1489                 val64 = 0x0102000102000102ULL;
1490                 writeq(val64, &bar0->tx_w_round_robin_2);
1491                 val64 = 0x0001020001020001ULL;
1492                 writeq(val64, &bar0->tx_w_round_robin_3);
1493                 val64 = 0x0200010200000000ULL;
1494                 writeq(val64, &bar0->tx_w_round_robin_4);
1495                 break;
1496         case 4:
1497                 val64 = 0x0001020300010203ULL;
1498                 writeq(val64, &bar0->tx_w_round_robin_0);
1499                 writeq(val64, &bar0->tx_w_round_robin_1);
1500                 writeq(val64, &bar0->tx_w_round_robin_2);
1501                 writeq(val64, &bar0->tx_w_round_robin_3);
1502                 val64 = 0x0001020300000000ULL;
1503                 writeq(val64, &bar0->tx_w_round_robin_4);
1504                 break;
1505         case 5:
1506                 val64 = 0x0001020304000102ULL;
1507                 writeq(val64, &bar0->tx_w_round_robin_0);
1508                 val64 = 0x0304000102030400ULL;
1509                 writeq(val64, &bar0->tx_w_round_robin_1);
1510                 val64 = 0x0102030400010203ULL;
1511                 writeq(val64, &bar0->tx_w_round_robin_2);
1512                 val64 = 0x0400010203040001ULL;
1513                 writeq(val64, &bar0->tx_w_round_robin_3);
1514                 val64 = 0x0203040000000000ULL;
1515                 writeq(val64, &bar0->tx_w_round_robin_4);
1516                 break;
1517         case 6:
1518                 val64 = 0x0001020304050001ULL;
1519                 writeq(val64, &bar0->tx_w_round_robin_0);
1520                 val64 = 0x0203040500010203ULL;
1521                 writeq(val64, &bar0->tx_w_round_robin_1);
1522                 val64 = 0x0405000102030405ULL;
1523                 writeq(val64, &bar0->tx_w_round_robin_2);
1524                 val64 = 0x0001020304050001ULL;
1525                 writeq(val64, &bar0->tx_w_round_robin_3);
1526                 val64 = 0x0203040500000000ULL;
1527                 writeq(val64, &bar0->tx_w_round_robin_4);
1528                 break;
1529         case 7:
1530                 val64 = 0x0001020304050600ULL;
1531                 writeq(val64, &bar0->tx_w_round_robin_0);
1532                 val64 = 0x0102030405060001ULL;
1533                 writeq(val64, &bar0->tx_w_round_robin_1);
1534                 val64 = 0x0203040506000102ULL;
1535                 writeq(val64, &bar0->tx_w_round_robin_2);
1536                 val64 = 0x0304050600010203ULL;
1537                 writeq(val64, &bar0->tx_w_round_robin_3);
1538                 val64 = 0x0405060000000000ULL;
1539                 writeq(val64, &bar0->tx_w_round_robin_4);
1540                 break;
1541         case 8:
1542                 val64 = 0x0001020304050607ULL;
1543                 writeq(val64, &bar0->tx_w_round_robin_0);
1544                 writeq(val64, &bar0->tx_w_round_robin_1);
1545                 writeq(val64, &bar0->tx_w_round_robin_2);
1546                 writeq(val64, &bar0->tx_w_round_robin_3);
1547                 val64 = 0x0001020300000000ULL;
1548                 writeq(val64, &bar0->tx_w_round_robin_4);
1549                 break;
1550         }
1551
1552         /* Enable all configured Tx FIFO partitions */
1553         val64 = readq(&bar0->tx_fifo_partition_0);
1554         val64 |= (TX_FIFO_PARTITION_EN);
1555         writeq(val64, &bar0->tx_fifo_partition_0);
1556
1557         /* Filling the Rx round robin registers as per the
1558          * number of Rings and steering based on QoS with
1559          * equal priority.
1560          */
1561         switch (config->rx_ring_num) {
1562         case 1:
1563                 val64 = 0x0;
1564                 writeq(val64, &bar0->rx_w_round_robin_0);
1565                 writeq(val64, &bar0->rx_w_round_robin_1);
1566                 writeq(val64, &bar0->rx_w_round_robin_2);
1567                 writeq(val64, &bar0->rx_w_round_robin_3);
1568                 writeq(val64, &bar0->rx_w_round_robin_4);
1569
1570                 val64 = 0x8080808080808080ULL;
1571                 writeq(val64, &bar0->rts_qos_steering);
1572                 break;
1573         case 2:
1574                 val64 = 0x0001000100010001ULL;
1575                 writeq(val64, &bar0->rx_w_round_robin_0);
1576                 writeq(val64, &bar0->rx_w_round_robin_1);
1577                 writeq(val64, &bar0->rx_w_round_robin_2);
1578                 writeq(val64, &bar0->rx_w_round_robin_3);
1579                 val64 = 0x0001000100000000ULL;
1580                 writeq(val64, &bar0->rx_w_round_robin_4);
1581
1582                 val64 = 0x8080808040404040ULL;
1583                 writeq(val64, &bar0->rts_qos_steering);
1584                 break;
1585         case 3:
1586                 val64 = 0x0001020001020001ULL;
1587                 writeq(val64, &bar0->rx_w_round_robin_0);
1588                 val64 = 0x0200010200010200ULL;
1589                 writeq(val64, &bar0->rx_w_round_robin_1);
1590                 val64 = 0x0102000102000102ULL;
1591                 writeq(val64, &bar0->rx_w_round_robin_2);
1592                 val64 = 0x0001020001020001ULL;
1593                 writeq(val64, &bar0->rx_w_round_robin_3);
1594                 val64 = 0x0200010200000000ULL;
1595                 writeq(val64, &bar0->rx_w_round_robin_4);
1596
1597                 val64 = 0x8080804040402020ULL;
1598                 writeq(val64, &bar0->rts_qos_steering);
1599                 break;
1600         case 4:
1601                 val64 = 0x0001020300010203ULL;
1602                 writeq(val64, &bar0->rx_w_round_robin_0);
1603                 writeq(val64, &bar0->rx_w_round_robin_1);
1604                 writeq(val64, &bar0->rx_w_round_robin_2);
1605                 writeq(val64, &bar0->rx_w_round_robin_3);
1606                 val64 = 0x0001020300000000ULL;
1607                 writeq(val64, &bar0->rx_w_round_robin_4);
1608
1609                 val64 = 0x8080404020201010ULL;
1610                 writeq(val64, &bar0->rts_qos_steering);
1611                 break;
1612         case 5:
1613                 val64 = 0x0001020304000102ULL;
1614                 writeq(val64, &bar0->rx_w_round_robin_0);
1615                 val64 = 0x0304000102030400ULL;
1616                 writeq(val64, &bar0->rx_w_round_robin_1);
1617                 val64 = 0x0102030400010203ULL;
1618                 writeq(val64, &bar0->rx_w_round_robin_2);
1619                 val64 = 0x0400010203040001ULL;
1620                 writeq(val64, &bar0->rx_w_round_robin_3);
1621                 val64 = 0x0203040000000000ULL;
1622                 writeq(val64, &bar0->rx_w_round_robin_4);
1623
1624                 val64 = 0x8080404020201008ULL;
1625                 writeq(val64, &bar0->rts_qos_steering);
1626                 break;
1627         case 6:
1628                 val64 = 0x0001020304050001ULL;
1629                 writeq(val64, &bar0->rx_w_round_robin_0);
1630                 val64 = 0x0203040500010203ULL;
1631                 writeq(val64, &bar0->rx_w_round_robin_1);
1632                 val64 = 0x0405000102030405ULL;
1633                 writeq(val64, &bar0->rx_w_round_robin_2);
1634                 val64 = 0x0001020304050001ULL;
1635                 writeq(val64, &bar0->rx_w_round_robin_3);
1636                 val64 = 0x0203040500000000ULL;
1637                 writeq(val64, &bar0->rx_w_round_robin_4);
1638
1639                 val64 = 0x8080404020100804ULL;
1640                 writeq(val64, &bar0->rts_qos_steering);
1641                 break;
1642         case 7:
1643                 val64 = 0x0001020304050600ULL;
1644                 writeq(val64, &bar0->rx_w_round_robin_0);
1645                 val64 = 0x0102030405060001ULL;
1646                 writeq(val64, &bar0->rx_w_round_robin_1);
1647                 val64 = 0x0203040506000102ULL;
1648                 writeq(val64, &bar0->rx_w_round_robin_2);
1649                 val64 = 0x0304050600010203ULL;
1650                 writeq(val64, &bar0->rx_w_round_robin_3);
1651                 val64 = 0x0405060000000000ULL;
1652                 writeq(val64, &bar0->rx_w_round_robin_4);
1653
1654                 val64 = 0x8080402010080402ULL;
1655                 writeq(val64, &bar0->rts_qos_steering);
1656                 break;
1657         case 8:
1658                 val64 = 0x0001020304050607ULL;
1659                 writeq(val64, &bar0->rx_w_round_robin_0);
1660                 writeq(val64, &bar0->rx_w_round_robin_1);
1661                 writeq(val64, &bar0->rx_w_round_robin_2);
1662                 writeq(val64, &bar0->rx_w_round_robin_3);
1663                 val64 = 0x0001020300000000ULL;
1664                 writeq(val64, &bar0->rx_w_round_robin_4);
1665
1666                 val64 = 0x8040201008040201ULL;
1667                 writeq(val64, &bar0->rts_qos_steering);
1668                 break;
1669         }
1670
1671         /* UDP Fix */
1672         val64 = 0;
1673         for (i = 0; i < 8; i++)
1674                 writeq(val64, &bar0->rts_frm_len_n[i]);
1675
1676         /* Set the default rts frame length for the rings configured */
1677         val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1678         for (i = 0 ; i < config->rx_ring_num ; i++)
1679                 writeq(val64, &bar0->rts_frm_len_n[i]);
1680
1681         /* Set the frame length for the configured rings
1682          * desired by the user
1683          */
1684         for (i = 0; i < config->rx_ring_num; i++) {
1685                 /* If rts_frm_len[i] == 0 then it is assumed that user not
1686                  * specified frame length steering.
1687                  * If the user provides the frame length then program
1688                  * the rts_frm_len register for those values or else
1689                  * leave it as it is.
1690                  */
1691                 if (rts_frm_len[i] != 0) {
1692                         writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1693                                &bar0->rts_frm_len_n[i]);
1694                 }
1695         }
1696
1697         /* Disable differentiated services steering logic */
1698         for (i = 0; i < 64; i++) {
1699                 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1700                         DBG_PRINT(ERR_DBG,
1701                                   "%s: rts_ds_steer failed on codepoint %d\n",
1702                                   dev->name, i);
1703                         return -ENODEV;
1704                 }
1705         }
1706
1707         /* Program statistics memory */
1708         writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1709
1710         if (nic->device_type == XFRAME_II_DEVICE) {
1711                 val64 = STAT_BC(0x320);
1712                 writeq(val64, &bar0->stat_byte_cnt);
1713         }
1714
1715         /*
1716          * Initializing the sampling rate for the device to calculate the
1717          * bandwidth utilization.
1718          */
1719         val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1720                 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1721         writeq(val64, &bar0->mac_link_util);
1722
1723         /*
1724          * Initializing the Transmit and Receive Traffic Interrupt
1725          * Scheme.
1726          */
1727
1728         /* Initialize TTI */
1729         if (SUCCESS != init_tti(nic, nic->last_link_state))
1730                 return -ENODEV;
1731
1732         /* RTI Initialization */
1733         if (nic->device_type == XFRAME_II_DEVICE) {
1734                 /*
1735                  * Programmed to generate Apprx 500 Intrs per
1736                  * second
1737                  */
1738                 int count = (nic->config.bus_speed * 125)/4;
1739                 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1740         } else
1741                 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1742         val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1743                 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1744                 RTI_DATA1_MEM_RX_URNG_C(0x30) |
1745                 RTI_DATA1_MEM_RX_TIMER_AC_EN;
1746
1747         writeq(val64, &bar0->rti_data1_mem);
1748
1749         val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1750                 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1751         if (nic->config.intr_type == MSI_X)
1752                 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1753                           RTI_DATA2_MEM_RX_UFC_D(0x40));
1754         else
1755                 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1756                           RTI_DATA2_MEM_RX_UFC_D(0x80));
1757         writeq(val64, &bar0->rti_data2_mem);
1758
1759         for (i = 0; i < config->rx_ring_num; i++) {
1760                 val64 = RTI_CMD_MEM_WE |
1761                         RTI_CMD_MEM_STROBE_NEW_CMD |
1762                         RTI_CMD_MEM_OFFSET(i);
1763                 writeq(val64, &bar0->rti_command_mem);
1764
1765                 /*
1766                  * Once the operation completes, the Strobe bit of the
1767                  * command register will be reset. We poll for this
1768                  * particular condition. We wait for a maximum of 500ms
1769                  * for the operation to complete, if it's not complete
1770                  * by then we return error.
1771                  */
1772                 time = 0;
1773                 while (true) {
1774                         val64 = readq(&bar0->rti_command_mem);
1775                         if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1776                                 break;
1777
1778                         if (time > 10) {
1779                                 DBG_PRINT(ERR_DBG, "%s: RTI init failed\n",
1780                                           dev->name);
1781                                 return -ENODEV;
1782                         }
1783                         time++;
1784                         msleep(50);
1785                 }
1786         }
1787
1788         /*
1789          * Initializing proper values as Pause threshold into all
1790          * the 8 Queues on Rx side.
1791          */
1792         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1793         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1794
1795         /* Disable RMAC PAD STRIPPING */
1796         add = &bar0->mac_cfg;
1797         val64 = readq(&bar0->mac_cfg);
1798         val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1799         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1800         writel((u32) (val64), add);
1801         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1802         writel((u32) (val64 >> 32), (add + 4));
1803         val64 = readq(&bar0->mac_cfg);
1804
1805         /* Enable FCS stripping by adapter */
1806         add = &bar0->mac_cfg;
1807         val64 = readq(&bar0->mac_cfg);
1808         val64 |= MAC_CFG_RMAC_STRIP_FCS;
1809         if (nic->device_type == XFRAME_II_DEVICE)
1810                 writeq(val64, &bar0->mac_cfg);
1811         else {
1812                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1813                 writel((u32) (val64), add);
1814                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1815                 writel((u32) (val64 >> 32), (add + 4));
1816         }
1817
1818         /*
1819          * Set the time value to be inserted in the pause frame
1820          * generated by xena.
1821          */
1822         val64 = readq(&bar0->rmac_pause_cfg);
1823         val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1824         val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1825         writeq(val64, &bar0->rmac_pause_cfg);
1826
1827         /*
1828          * Set the Threshold Limit for Generating the pause frame
1829          * If the amount of data in any Queue exceeds ratio of
1830          * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1831          * pause frame is generated
1832          */
1833         val64 = 0;
1834         for (i = 0; i < 4; i++) {
1835                 val64 |= (((u64)0xFF00 |
1836                            nic->mac_control.mc_pause_threshold_q0q3)
1837                           << (i * 2 * 8));
1838         }
1839         writeq(val64, &bar0->mc_pause_thresh_q0q3);
1840
1841         val64 = 0;
1842         for (i = 0; i < 4; i++) {
1843                 val64 |= (((u64)0xFF00 |
1844                            nic->mac_control.mc_pause_threshold_q4q7)
1845                           << (i * 2 * 8));
1846         }
1847         writeq(val64, &bar0->mc_pause_thresh_q4q7);
1848
1849         /*
1850          * TxDMA will stop Read request if the number of read split has
1851          * exceeded the limit pointed by shared_splits
1852          */
1853         val64 = readq(&bar0->pic_control);
1854         val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1855         writeq(val64, &bar0->pic_control);
1856
1857         if (nic->config.bus_speed == 266) {
1858                 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1859                 writeq(0x0, &bar0->read_retry_delay);
1860                 writeq(0x0, &bar0->write_retry_delay);
1861         }
1862
1863         /*
1864          * Programming the Herc to split every write transaction
1865          * that does not start on an ADB to reduce disconnects.
1866          */
1867         if (nic->device_type == XFRAME_II_DEVICE) {
1868                 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1869                         MISC_LINK_STABILITY_PRD(3);
1870                 writeq(val64, &bar0->misc_control);
1871                 val64 = readq(&bar0->pic_control2);
1872                 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1873                 writeq(val64, &bar0->pic_control2);
1874         }
1875         if (strstr(nic->product_name, "CX4")) {
1876                 val64 = TMAC_AVG_IPG(0x17);
1877                 writeq(val64, &bar0->tmac_avg_ipg);
1878         }
1879
1880         return SUCCESS;
1881 }
1882 #define LINK_UP_DOWN_INTERRUPT          1
1883 #define MAC_RMAC_ERR_TIMER              2
1884
1885 static int s2io_link_fault_indication(struct s2io_nic *nic)
1886 {
1887         if (nic->device_type == XFRAME_II_DEVICE)
1888                 return LINK_UP_DOWN_INTERRUPT;
1889         else
1890                 return MAC_RMAC_ERR_TIMER;
1891 }
1892
1893 /**
1894  *  do_s2io_write_bits -  update alarm bits in alarm register
1895  *  @value: alarm bits
1896  *  @flag: interrupt status
1897  *  @addr: address value
1898  *  Description: update alarm bits in alarm register
1899  *  Return Value:
1900  *  NONE.
1901  */
1902 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1903 {
1904         u64 temp64;
1905
1906         temp64 = readq(addr);
1907
1908         if (flag == ENABLE_INTRS)
1909                 temp64 &= ~((u64)value);
1910         else
1911                 temp64 |= ((u64)value);
1912         writeq(temp64, addr);
1913 }
1914
1915 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1916 {
1917         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1918         register u64 gen_int_mask = 0;
1919         u64 interruptible;
1920
1921         writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
1922         if (mask & TX_DMA_INTR) {
1923                 gen_int_mask |= TXDMA_INT_M;
1924
1925                 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1926                                    TXDMA_PCC_INT | TXDMA_TTI_INT |
1927                                    TXDMA_LSO_INT | TXDMA_TPA_INT |
1928                                    TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1929
1930                 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1931                                    PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1932                                    PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1933                                    &bar0->pfc_err_mask);
1934
1935                 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1936                                    TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1937                                    TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1938
1939                 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1940                                    PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1941                                    PCC_N_SERR | PCC_6_COF_OV_ERR |
1942                                    PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1943                                    PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1944                                    PCC_TXB_ECC_SG_ERR,
1945                                    flag, &bar0->pcc_err_mask);
1946
1947                 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1948                                    TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1949
1950                 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1951                                    LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1952                                    LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1953                                    flag, &bar0->lso_err_mask);
1954
1955                 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1956                                    flag, &bar0->tpa_err_mask);
1957
1958                 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1959         }
1960
1961         if (mask & TX_MAC_INTR) {
1962                 gen_int_mask |= TXMAC_INT_M;
1963                 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1964                                    &bar0->mac_int_mask);
1965                 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1966                                    TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1967                                    TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1968                                    flag, &bar0->mac_tmac_err_mask);
1969         }
1970
1971         if (mask & TX_XGXS_INTR) {
1972                 gen_int_mask |= TXXGXS_INT_M;
1973                 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1974                                    &bar0->xgxs_int_mask);
1975                 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1976                                    TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1977                                    flag, &bar0->xgxs_txgxs_err_mask);
1978         }
1979
1980         if (mask & RX_DMA_INTR) {
1981                 gen_int_mask |= RXDMA_INT_M;
1982                 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1983                                    RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1984                                    flag, &bar0->rxdma_int_mask);
1985                 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1986                                    RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1987                                    RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1988                                    RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1989                 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1990                                    PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1991                                    PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1992                                    &bar0->prc_pcix_err_mask);
1993                 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1994                                    RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1995                                    &bar0->rpa_err_mask);
1996                 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1997                                    RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1998                                    RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1999                                    RDA_FRM_ECC_SG_ERR |
2000                                    RDA_MISC_ERR|RDA_PCIX_ERR,
2001                                    flag, &bar0->rda_err_mask);
2002                 do_s2io_write_bits(RTI_SM_ERR_ALARM |
2003                                    RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
2004                                    flag, &bar0->rti_err_mask);
2005         }
2006
2007         if (mask & RX_MAC_INTR) {
2008                 gen_int_mask |= RXMAC_INT_M;
2009                 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
2010                                    &bar0->mac_int_mask);
2011                 interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
2012                                  RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
2013                                  RMAC_DOUBLE_ECC_ERR);
2014                 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
2015                         interruptible |= RMAC_LINK_STATE_CHANGE_INT;
2016                 do_s2io_write_bits(interruptible,
2017                                    flag, &bar0->mac_rmac_err_mask);
2018         }
2019
2020         if (mask & RX_XGXS_INTR) {
2021                 gen_int_mask |= RXXGXS_INT_M;
2022                 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
2023                                    &bar0->xgxs_int_mask);
2024                 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
2025                                    &bar0->xgxs_rxgxs_err_mask);
2026         }
2027
2028         if (mask & MC_INTR) {
2029                 gen_int_mask |= MC_INT_M;
2030                 do_s2io_write_bits(MC_INT_MASK_MC_INT,
2031                                    flag, &bar0->mc_int_mask);
2032                 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
2033                                    MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
2034                                    &bar0->mc_err_mask);
2035         }
2036         nic->general_int_mask = gen_int_mask;
2037
2038         /* Remove this line when alarm interrupts are enabled */
2039         nic->general_int_mask = 0;
2040 }
2041
2042 /**
2043  *  en_dis_able_nic_intrs - Enable or Disable the interrupts
2044  *  @nic: device private variable,
2045  *  @mask: A mask indicating which Intr block must be modified and,
2046  *  @flag: A flag indicating whether to enable or disable the Intrs.
2047  *  Description: This function will either disable or enable the interrupts
2048  *  depending on the flag argument. The mask argument can be used to
2049  *  enable/disable any Intr block.
2050  *  Return Value: NONE.
2051  */
2052
2053 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2054 {
2055         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2056         register u64 temp64 = 0, intr_mask = 0;
2057
2058         intr_mask = nic->general_int_mask;
2059
2060         /*  Top level interrupt classification */
2061         /*  PIC Interrupts */
2062         if (mask & TX_PIC_INTR) {
2063                 /*  Enable PIC Intrs in the general intr mask register */
2064                 intr_mask |= TXPIC_INT_M;
2065                 if (flag == ENABLE_INTRS) {
2066                         /*
2067                          * If Hercules adapter enable GPIO otherwise
2068                          * disable all PCIX, Flash, MDIO, IIC and GPIO
2069                          * interrupts for now.
2070                          * TODO
2071                          */
2072                         if (s2io_link_fault_indication(nic) ==
2073                             LINK_UP_DOWN_INTERRUPT) {
2074                                 do_s2io_write_bits(PIC_INT_GPIO, flag,
2075                                                    &bar0->pic_int_mask);
2076                                 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2077                                                    &bar0->gpio_int_mask);
2078                         } else
2079                                 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2080                 } else if (flag == DISABLE_INTRS) {
2081                         /*
2082                          * Disable PIC Intrs in the general
2083                          * intr mask register
2084                          */
2085                         writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2086                 }
2087         }
2088
2089         /*  Tx traffic interrupts */
2090         if (mask & TX_TRAFFIC_INTR) {
2091                 intr_mask |= TXTRAFFIC_INT_M;
2092                 if (flag == ENABLE_INTRS) {
2093                         /*
2094                          * Enable all the Tx side interrupts
2095                          * writing 0 Enables all 64 TX interrupt levels
2096                          */
2097                         writeq(0x0, &bar0->tx_traffic_mask);
2098                 } else if (flag == DISABLE_INTRS) {
2099                         /*
2100                          * Disable Tx Traffic Intrs in the general intr mask
2101                          * register.
2102                          */
2103                         writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2104                 }
2105         }
2106
2107         /*  Rx traffic interrupts */
2108         if (mask & RX_TRAFFIC_INTR) {
2109                 intr_mask |= RXTRAFFIC_INT_M;
2110                 if (flag == ENABLE_INTRS) {
2111                         /* writing 0 Enables all 8 RX interrupt levels */
2112                         writeq(0x0, &bar0->rx_traffic_mask);
2113                 } else if (flag == DISABLE_INTRS) {
2114                         /*
2115                          * Disable Rx Traffic Intrs in the general intr mask
2116                          * register.
2117                          */
2118                         writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2119                 }
2120         }
2121
2122         temp64 = readq(&bar0->general_int_mask);
2123         if (flag == ENABLE_INTRS)
2124                 temp64 &= ~((u64)intr_mask);
2125         else
2126                 temp64 = DISABLE_ALL_INTRS;
2127         writeq(temp64, &bar0->general_int_mask);
2128
2129         nic->general_int_mask = readq(&bar0->general_int_mask);
2130 }
2131
2132 /**
2133  *  verify_pcc_quiescent- Checks for PCC quiescent state
2134  *  Return: 1 If PCC is quiescence
2135  *          0 If PCC is not quiescence
2136  */
2137 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2138 {
2139         int ret = 0, herc;
2140         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2141         u64 val64 = readq(&bar0->adapter_status);
2142
2143         herc = (sp->device_type == XFRAME_II_DEVICE);
2144
2145         if (flag == false) {
2146                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2147                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2148                                 ret = 1;
2149                 } else {
2150                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2151                                 ret = 1;
2152                 }
2153         } else {
2154                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2155                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2156                              ADAPTER_STATUS_RMAC_PCC_IDLE))
2157                                 ret = 1;
2158                 } else {
2159                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2160                              ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2161                                 ret = 1;
2162                 }
2163         }
2164
2165         return ret;
2166 }
2167 /**
2168  *  verify_xena_quiescence - Checks whether the H/W is ready
2169  *  Description: Returns whether the H/W is ready to go or not. Depending
2170  *  on whether adapter enable bit was written or not the comparison
2171  *  differs and the calling function passes the input argument flag to
2172  *  indicate this.
2173  *  Return: 1 If xena is quiescence
2174  *          0 If Xena is not quiescence
2175  */
2176
2177 static int verify_xena_quiescence(struct s2io_nic *sp)
2178 {
2179         int  mode;
2180         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2181         u64 val64 = readq(&bar0->adapter_status);
2182         mode = s2io_verify_pci_mode(sp);
2183
2184         if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2185                 DBG_PRINT(ERR_DBG, "TDMA is not ready!\n");
2186                 return 0;
2187         }
2188         if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2189                 DBG_PRINT(ERR_DBG, "RDMA is not ready!\n");
2190                 return 0;
2191         }
2192         if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2193                 DBG_PRINT(ERR_DBG, "PFC is not ready!\n");
2194                 return 0;
2195         }
2196         if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2197                 DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n");
2198                 return 0;
2199         }
2200         if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2201                 DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n");
2202                 return 0;
2203         }
2204         if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2205                 DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n");
2206                 return 0;
2207         }
2208         if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2209                 DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n");
2210                 return 0;
2211         }
2212         if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2213                 DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n");
2214                 return 0;
2215         }
2216
2217         /*
2218          * In PCI 33 mode, the P_PLL is not used, and therefore,
2219          * the the P_PLL_LOCK bit in the adapter_status register will
2220          * not be asserted.
2221          */
2222         if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2223             sp->device_type == XFRAME_II_DEVICE &&
2224             mode != PCI_MODE_PCI_33) {
2225                 DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n");
2226                 return 0;
2227         }
2228         if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2229               ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2230                 DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n");
2231                 return 0;
2232         }
2233         return 1;
2234 }
2235
2236 /**
2237  * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
2238  * @sp: Pointer to device specifc structure
2239  * Description :
2240  * New procedure to clear mac address reading  problems on Alpha platforms
2241  *
2242  */
2243
2244 static void fix_mac_address(struct s2io_nic *sp)
2245 {
2246         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2247         u64 val64;
2248         int i = 0;
2249
2250         while (fix_mac[i] != END_SIGN) {
2251                 writeq(fix_mac[i++], &bar0->gpio_control);
2252                 udelay(10);
2253                 val64 = readq(&bar0->gpio_control);
2254         }
2255 }
2256
2257 /**
2258  *  start_nic - Turns the device on
2259  *  @nic : device private variable.
2260  *  Description:
2261  *  This function actually turns the device on. Before this  function is
2262  *  called,all Registers are configured from their reset states
2263  *  and shared memory is allocated but the NIC is still quiescent. On
2264  *  calling this function, the device interrupts are cleared and the NIC is
2265  *  literally switched on by writing into the adapter control register.
2266  *  Return Value:
2267  *  SUCCESS on success and -1 on failure.
2268  */
2269
2270 static int start_nic(struct s2io_nic *nic)
2271 {
2272         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2273         struct net_device *dev = nic->dev;
2274         register u64 val64 = 0;
2275         u16 subid, i;
2276         struct config_param *config = &nic->config;
2277         struct mac_info *mac_control = &nic->mac_control;
2278
2279         /*  PRC Initialization and configuration */
2280         for (i = 0; i < config->rx_ring_num; i++) {
2281                 struct ring_info *ring = &mac_control->rings[i];
2282
2283                 writeq((u64)ring->rx_blocks[0].block_dma_addr,
2284                        &bar0->prc_rxd0_n[i]);
2285
2286                 val64 = readq(&bar0->prc_ctrl_n[i]);
2287                 if (nic->rxd_mode == RXD_MODE_1)
2288                         val64 |= PRC_CTRL_RC_ENABLED;
2289                 else
2290                         val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2291                 if (nic->device_type == XFRAME_II_DEVICE)
2292                         val64 |= PRC_CTRL_GROUP_READS;
2293                 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2294                 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2295                 writeq(val64, &bar0->prc_ctrl_n[i]);
2296         }
2297
2298         if (nic->rxd_mode == RXD_MODE_3B) {
2299                 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2300                 val64 = readq(&bar0->rx_pa_cfg);
2301                 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2302                 writeq(val64, &bar0->rx_pa_cfg);
2303         }
2304
2305         if (vlan_tag_strip == 0) {
2306                 val64 = readq(&bar0->rx_pa_cfg);
2307                 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2308                 writeq(val64, &bar0->rx_pa_cfg);
2309                 nic->vlan_strip_flag = 0;
2310         }
2311
2312         /*
2313          * Enabling MC-RLDRAM. After enabling the device, we timeout
2314          * for around 100ms, which is approximately the time required
2315          * for the device to be ready for operation.
2316          */
2317         val64 = readq(&bar0->mc_rldram_mrs);
2318         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2319         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2320         val64 = readq(&bar0->mc_rldram_mrs);
2321
2322         msleep(100);    /* Delay by around 100 ms. */
2323
2324         /* Enabling ECC Protection. */
2325         val64 = readq(&bar0->adapter_control);
2326         val64 &= ~ADAPTER_ECC_EN;
2327         writeq(val64, &bar0->adapter_control);
2328
2329         /*
2330          * Verify if the device is ready to be enabled, if so enable
2331          * it.
2332          */
2333         val64 = readq(&bar0->adapter_status);
2334         if (!verify_xena_quiescence(nic)) {
2335                 DBG_PRINT(ERR_DBG, "%s: device is not ready, "
2336                           "Adapter status reads: 0x%llx\n",
2337                           dev->name, (unsigned long long)val64);
2338                 return FAILURE;
2339         }
2340
2341         /*
2342          * With some switches, link might be already up at this point.
2343          * Because of this weird behavior, when we enable laser,
2344          * we may not get link. We need to handle this. We cannot
2345          * figure out which switch is misbehaving. So we are forced to
2346          * make a global change.
2347          */
2348
2349         /* Enabling Laser. */
2350         val64 = readq(&bar0->adapter_control);
2351         val64 |= ADAPTER_EOI_TX_ON;
2352         writeq(val64, &bar0->adapter_control);
2353
2354         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2355                 /*
2356                  * Dont see link state interrupts initially on some switches,
2357                  * so directly scheduling the link state task here.
2358                  */
2359                 schedule_work(&nic->set_link_task);
2360         }
2361         /* SXE-002: Initialize link and activity LED */
2362         subid = nic->pdev->subsystem_device;
2363         if (((subid & 0xFF) >= 0x07) &&
2364             (nic->device_type == XFRAME_I_DEVICE)) {
2365                 val64 = readq(&bar0->gpio_control);
2366                 val64 |= 0x0000800000000000ULL;
2367                 writeq(val64, &bar0->gpio_control);
2368                 val64 = 0x0411040400000000ULL;
2369                 writeq(val64, (void __iomem *)bar0 + 0x2700);
2370         }
2371
2372         return SUCCESS;
2373 }
2374 /**
2375  * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2376  */
2377 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data,
2378                                         struct TxD *txdlp, int get_off)
2379 {
2380         struct s2io_nic *nic = fifo_data->nic;
2381         struct sk_buff *skb;
2382         struct TxD *txds;
2383         u16 j, frg_cnt;
2384
2385         txds = txdlp;
2386         if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2387                 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2388                                  sizeof(u64), PCI_DMA_TODEVICE);
2389                 txds++;
2390         }
2391
2392         skb = (struct sk_buff *)((unsigned long)txds->Host_Control);
2393         if (!skb) {
2394                 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2395                 return NULL;
2396         }
2397         pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2398                          skb_headlen(skb), PCI_DMA_TODEVICE);
2399         frg_cnt = skb_shinfo(skb)->nr_frags;
2400         if (frg_cnt) {
2401                 txds++;
2402                 for (j = 0; j < frg_cnt; j++, txds++) {
2403                         skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2404                         if (!txds->Buffer_Pointer)
2405                                 break;
2406                         pci_unmap_page(nic->pdev,
2407                                        (dma_addr_t)txds->Buffer_Pointer,
2408                                        frag->size, PCI_DMA_TODEVICE);
2409                 }
2410         }
2411         memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2412         return skb;
2413 }
2414
2415 /**
2416  *  free_tx_buffers - Free all queued Tx buffers
2417  *  @nic : device private variable.
2418  *  Description:
2419  *  Free all queued Tx buffers.
2420  *  Return Value: void
2421  */
2422
2423 static void free_tx_buffers(struct s2io_nic *nic)
2424 {
2425         struct net_device *dev = nic->dev;
2426         struct sk_buff *skb;
2427         struct TxD *txdp;
2428         int i, j;
2429         int cnt = 0;
2430         struct config_param *config = &nic->config;
2431         struct mac_info *mac_control = &nic->mac_control;
2432         struct stat_block *stats = mac_control->stats_info;
2433         struct swStat *swstats = &stats->sw_stat;
2434
2435         for (i = 0; i < config->tx_fifo_num; i++) {
2436                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
2437                 struct fifo_info *fifo = &mac_control->fifos[i];
2438                 unsigned long flags;
2439
2440                 spin_lock_irqsave(&fifo->tx_lock, flags);
2441                 for (j = 0; j < tx_cfg->fifo_len; j++) {
2442                         txdp = (struct TxD *)fifo->list_info[j].list_virt_addr;
2443                         skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2444                         if (skb) {
2445                                 swstats->mem_freed += skb->truesize;
2446                                 dev_kfree_skb(skb);
2447                                 cnt++;
2448                         }
2449                 }
2450                 DBG_PRINT(INTR_DBG,
2451                           "%s: forcibly freeing %d skbs on FIFO%d\n",
2452                           dev->name, cnt, i);
2453                 fifo->tx_curr_get_info.offset = 0;
2454                 fifo->tx_curr_put_info.offset = 0;
2455                 spin_unlock_irqrestore(&fifo->tx_lock, flags);
2456         }
2457 }
2458
2459 /**
2460  *   stop_nic -  To stop the nic
2461  *   @nic ; device private variable.
2462  *   Description:
2463  *   This function does exactly the opposite of what the start_nic()
2464  *   function does. This function is called to stop the device.
2465  *   Return Value:
2466  *   void.
2467  */
2468
2469 static void stop_nic(struct s2io_nic *nic)
2470 {
2471         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2472         register u64 val64 = 0;
2473         u16 interruptible;
2474
2475         /*  Disable all interrupts */
2476         en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2477         interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2478         interruptible |= TX_PIC_INTR;
2479         en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2480
2481         /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2482         val64 = readq(&bar0->adapter_control);
2483         val64 &= ~(ADAPTER_CNTL_EN);
2484         writeq(val64, &bar0->adapter_control);
2485 }
2486
2487 /**
2488  *  fill_rx_buffers - Allocates the Rx side skbs
2489  *  @ring_info: per ring structure
2490  *  @from_card_up: If this is true, we will map the buffer to get
2491  *     the dma address for buf0 and buf1 to give it to the card.
2492  *     Else we will sync the already mapped buffer to give it to the card.
2493  *  Description:
2494  *  The function allocates Rx side skbs and puts the physical
2495  *  address of these buffers into the RxD buffer pointers, so that the NIC
2496  *  can DMA the received frame into these locations.
2497  *  The NIC supports 3 receive modes, viz
2498  *  1. single buffer,
2499  *  2. three buffer and
2500  *  3. Five buffer modes.
2501  *  Each mode defines how many fragments the received frame will be split
2502  *  up into by the NIC. The frame is split into L3 header, L4 Header,
2503  *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2504  *  is split into 3 fragments. As of now only single buffer mode is
2505  *  supported.
2506  *   Return Value:
2507  *  SUCCESS on success or an appropriate -ve value on failure.
2508  */
2509 static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
2510                            int from_card_up)
2511 {
2512         struct sk_buff *skb;
2513         struct RxD_t *rxdp;
2514         int off, size, block_no, block_no1;
2515         u32 alloc_tab = 0;
2516         u32 alloc_cnt;
2517         u64 tmp;
2518         struct buffAdd *ba;
2519         struct RxD_t *first_rxdp = NULL;
2520         u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2521         int rxd_index = 0;
2522         struct RxD1 *rxdp1;
2523         struct RxD3 *rxdp3;
2524         struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat;
2525
2526         alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
2527
2528         block_no1 = ring->rx_curr_get_info.block_index;
2529         while (alloc_tab < alloc_cnt) {
2530                 block_no = ring->rx_curr_put_info.block_index;
2531
2532                 off = ring->rx_curr_put_info.offset;
2533
2534                 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2535
2536                 rxd_index = off + 1;
2537                 if (block_no)
2538                         rxd_index += (block_no * ring->rxd_count);
2539
2540                 if ((block_no == block_no1) &&
2541                     (off == ring->rx_curr_get_info.offset) &&
2542                     (rxdp->Host_Control)) {
2543                         DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n",
2544                                   ring->dev->name);
2545                         goto end;
2546                 }
2547                 if (off && (off == ring->rxd_count)) {
2548                         ring->rx_curr_put_info.block_index++;
2549                         if (ring->rx_curr_put_info.block_index ==
2550                             ring->block_count)
2551                                 ring->rx_curr_put_info.block_index = 0;
2552                         block_no = ring->rx_curr_put_info.block_index;
2553                         off = 0;
2554                         ring->rx_curr_put_info.offset = off;
2555                         rxdp = ring->rx_blocks[block_no].block_virt_addr;
2556                         DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2557                                   ring->dev->name, rxdp);
2558
2559                 }
2560
2561                 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2562                     ((ring->rxd_mode == RXD_MODE_3B) &&
2563                      (rxdp->Control_2 & s2BIT(0)))) {
2564                         ring->rx_curr_put_info.offset = off;
2565                         goto end;
2566                 }
2567                 /* calculate size of skb based on ring mode */
2568                 size = ring->mtu +
2569                         HEADER_ETHERNET_II_802_3_SIZE +
2570                         HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2571                 if (ring->rxd_mode == RXD_MODE_1)
2572                         size += NET_IP_ALIGN;
2573                 else
2574                         size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2575
2576                 /* allocate skb */
2577                 skb = dev_alloc_skb(size);
2578                 if (!skb) {
2579                         DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n",
2580                                   ring->dev->name);
2581                         if (first_rxdp) {
2582                                 wmb();
2583                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2584                         }
2585                         swstats->mem_alloc_fail_cnt++;
2586
2587                         return -ENOMEM ;
2588                 }
2589                 swstats->mem_allocated += skb->truesize;
2590
2591                 if (ring->rxd_mode == RXD_MODE_1) {
2592                         /* 1 buffer mode - normal operation mode */
2593                         rxdp1 = (struct RxD1 *)rxdp;
2594                         memset(rxdp, 0, sizeof(struct RxD1));
2595                         skb_reserve(skb, NET_IP_ALIGN);
2596                         rxdp1->Buffer0_ptr =
2597                                 pci_map_single(ring->pdev, skb->data,
2598                                                size - NET_IP_ALIGN,
2599                                                PCI_DMA_FROMDEVICE);
2600                         if (pci_dma_mapping_error(nic->pdev,
2601                                                   rxdp1->Buffer0_ptr))
2602                                 goto pci_map_failed;
2603
2604                         rxdp->Control_2 =
2605                                 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2606                         rxdp->Host_Control = (unsigned long)skb;
2607                 } else if (ring->rxd_mode == RXD_MODE_3B) {
2608                         /*
2609                          * 2 buffer mode -
2610                          * 2 buffer mode provides 128
2611                          * byte aligned receive buffers.
2612                          */
2613
2614                         rxdp3 = (struct RxD3 *)rxdp;
2615                         /* save buffer pointers to avoid frequent dma mapping */
2616                         Buffer0_ptr = rxdp3->Buffer0_ptr;
2617                         Buffer1_ptr = rxdp3->Buffer1_ptr;
2618                         memset(rxdp, 0, sizeof(struct RxD3));
2619                         /* restore the buffer pointers for dma sync*/
2620                         rxdp3->Buffer0_ptr = Buffer0_ptr;
2621                         rxdp3->Buffer1_ptr = Buffer1_ptr;
2622
2623                         ba = &ring->ba[block_no][off];
2624                         skb_reserve(skb, BUF0_LEN);
2625                         tmp = (u64)(unsigned long)skb->data;
2626                         tmp += ALIGN_SIZE;
2627                         tmp &= ~ALIGN_SIZE;
2628                         skb->data = (void *) (unsigned long)tmp;
2629                         skb_reset_tail_pointer(skb);
2630
2631                         if (from_card_up) {
2632                                 rxdp3->Buffer0_ptr =
2633                                         pci_map_single(ring->pdev, ba->ba_0,
2634                                                        BUF0_LEN,
2635                                                        PCI_DMA_FROMDEVICE);
2636                                 if (pci_dma_mapping_error(nic->pdev,
2637                                                           rxdp3->Buffer0_ptr))
2638                                         goto pci_map_failed;
2639                         } else
2640                                 pci_dma_sync_single_for_device(ring->pdev,
2641                                                                (dma_addr_t)rxdp3->Buffer0_ptr,
2642                                                                BUF0_LEN,
2643                                                                PCI_DMA_FROMDEVICE);
2644
2645                         rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2646                         if (ring->rxd_mode == RXD_MODE_3B) {
2647                                 /* Two buffer mode */
2648
2649                                 /*
2650                                  * Buffer2 will have L3/L4 header plus
2651                                  * L4 payload
2652                                  */
2653                                 rxdp3->Buffer2_ptr = pci_map_single(ring->pdev,
2654                                                                     skb->data,
2655                                                                     ring->mtu + 4,
2656                                                                     PCI_DMA_FROMDEVICE);
2657
2658                                 if (pci_dma_mapping_error(nic->pdev,
2659                                                           rxdp3->Buffer2_ptr))
2660                                         goto pci_map_failed;
2661
2662                                 if (from_card_up) {
2663                                         rxdp3->Buffer1_ptr =
2664                                                 pci_map_single(ring->pdev,
2665                                                                ba->ba_1,
2666                                                                BUF1_LEN,
2667                                                                PCI_DMA_FROMDEVICE);
2668
2669                                         if (pci_dma_mapping_error(nic->pdev,
2670                                                                   rxdp3->Buffer1_ptr)) {
2671                                                 pci_unmap_single(ring->pdev,
2672                                                                  (dma_addr_t)(unsigned long)
2673                                                                  skb->data,
2674                                                                  ring->mtu + 4,
2675                                                                  PCI_DMA_FROMDEVICE);
2676                                                 goto pci_map_failed;
2677                                         }
2678                                 }
2679                                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2680                                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2681                                         (ring->mtu + 4);
2682                         }
2683                         rxdp->Control_2 |= s2BIT(0);
2684                         rxdp->Host_Control = (unsigned long) (skb);
2685                 }
2686                 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2687                         rxdp->Control_1 |= RXD_OWN_XENA;
2688                 off++;
2689                 if (off == (ring->rxd_count + 1))
2690                         off = 0;
2691                 ring->rx_curr_put_info.offset = off;
2692
2693                 rxdp->Control_2 |= SET_RXD_MARKER;
2694                 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2695                         if (first_rxdp) {
2696                                 wmb();
2697                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2698                         }
2699                         first_rxdp = rxdp;
2700                 }
2701                 ring->rx_bufs_left += 1;
2702                 alloc_tab++;
2703         }
2704
2705 end:
2706         /* Transfer ownership of first descriptor to adapter just before
2707          * exiting. Before that, use memory barrier so that ownership
2708          * and other fields are seen by adapter correctly.
2709          */
2710         if (first_rxdp) {
2711                 wmb();
2712                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2713         }
2714
2715         return SUCCESS;
2716
2717 pci_map_failed:
2718         swstats->pci_map_fail_cnt++;
2719         swstats->mem_freed += skb->truesize;
2720         dev_kfree_skb_irq(skb);
2721         return -ENOMEM;
2722 }
2723
2724 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2725 {
2726         struct net_device *dev = sp->dev;
2727         int j;
2728         struct sk_buff *skb;
2729         struct RxD_t *rxdp;
2730         struct buffAdd *ba;
2731         struct RxD1 *rxdp1;
2732         struct RxD3 *rxdp3;
2733         struct mac_info *mac_control = &sp->mac_control;
2734         struct stat_block *stats = mac_control->stats_info;
2735         struct swStat *swstats = &stats->sw_stat;
2736
2737         for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2738                 rxdp = mac_control->rings[ring_no].
2739                         rx_blocks[blk].rxds[j].virt_addr;
2740                 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2741                 if (!skb)
2742                         continue;
2743                 if (sp->rxd_mode == RXD_MODE_1) {
2744                         rxdp1 = (struct RxD1 *)rxdp;
2745                         pci_unmap_single(sp->pdev,
2746                                          (dma_addr_t)rxdp1->Buffer0_ptr,
2747                                          dev->mtu +
2748                                          HEADER_ETHERNET_II_802_3_SIZE +
2749                                          HEADER_802_2_SIZE + HEADER_SNAP_SIZE,
2750                                          PCI_DMA_FROMDEVICE);
2751                         memset(rxdp, 0, sizeof(struct RxD1));
2752                 } else if (sp->rxd_mode == RXD_MODE_3B) {
2753                         rxdp3 = (struct RxD3 *)rxdp;
2754                         ba = &mac_control->rings[ring_no].ba[blk][j];
2755                         pci_unmap_single(sp->pdev,
2756                                          (dma_addr_t)rxdp3->Buffer0_ptr,
2757                                          BUF0_LEN,
2758                                          PCI_DMA_FROMDEVICE);
2759                         pci_unmap_single(sp->pdev,
2760                                          (dma_addr_t)rxdp3->Buffer1_ptr,
2761                                          BUF1_LEN,
2762                                          PCI_DMA_FROMDEVICE);
2763                         pci_unmap_single(sp->pdev,
2764                                          (dma_addr_t)rxdp3->Buffer2_ptr,
2765                                          dev->mtu + 4,
2766                                          PCI_DMA_FROMDEVICE);
2767                         memset(rxdp, 0, sizeof(struct RxD3));
2768                 }
2769                 swstats->mem_freed += skb->truesize;
2770                 dev_kfree_skb(skb);
2771                 mac_control->rings[ring_no].rx_bufs_left -= 1;
2772         }
2773 }
2774
2775 /**
2776  *  free_rx_buffers - Frees all Rx buffers
2777  *  @sp: device private variable.
2778  *  Description:
2779  *  This function will free all Rx buffers allocated by host.
2780  *  Return Value:
2781  *  NONE.
2782  */
2783
2784 static void free_rx_buffers(struct s2io_nic *sp)
2785 {
2786         struct net_device *dev = sp->dev;
2787         int i, blk = 0, buf_cnt = 0;
2788         struct config_param *config = &sp->config;
2789         struct mac_info *mac_control = &sp->mac_control;
2790
2791         for (i = 0; i < config->rx_ring_num; i++) {
2792                 struct ring_info *ring = &mac_control->rings[i];
2793
2794                 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2795                         free_rxd_blk(sp, i, blk);
2796
2797                 ring->rx_curr_put_info.block_index = 0;
2798                 ring->rx_curr_get_info.block_index = 0;
2799                 ring->rx_curr_put_info.offset = 0;
2800                 ring->rx_curr_get_info.offset = 0;
2801                 ring->rx_bufs_left = 0;
2802                 DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n",
2803                           dev->name, buf_cnt, i);
2804         }
2805 }
2806
2807 static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
2808 {
2809         if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2810                 DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n",
2811                           ring->dev->name);
2812         }
2813         return 0;
2814 }
2815
2816 /**
2817  * s2io_poll - Rx interrupt handler for NAPI support
2818  * @napi : pointer to the napi structure.
2819  * @budget : The number of packets that were budgeted to be processed
2820  * during  one pass through the 'Poll" function.
2821  * Description:
2822  * Comes into picture only if NAPI support has been incorporated. It does
2823  * the same thing that rx_intr_handler does, but not in a interrupt context
2824  * also It will process only a given number of packets.
2825  * Return value:
2826  * 0 on success and 1 if there are No Rx packets to be processed.
2827  */
2828
2829 static int s2io_poll_msix(struct napi_struct *napi, int budget)
2830 {
2831         struct ring_info *ring = container_of(napi, struct ring_info, napi);
2832         struct net_device *dev = ring->dev;
2833         int pkts_processed = 0;
2834         u8 __iomem *addr = NULL;
2835         u8 val8 = 0;
2836         struct s2io_nic *nic = netdev_priv(dev);
2837         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2838         int budget_org = budget;
2839
2840         if (unlikely(!is_s2io_card_up(nic)))
2841                 return 0;
2842
2843         pkts_processed = rx_intr_handler(ring, budget);
2844         s2io_chk_rx_buffers(nic, ring);
2845
2846         if (pkts_processed < budget_org) {
2847                 napi_complete(napi);
2848                 /*Re Enable MSI-Rx Vector*/
2849                 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
2850                 addr += 7 - ring->ring_no;
2851                 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2852                 writeb(val8, addr);
2853                 val8 = readb(addr);
2854         }
2855         return pkts_processed;
2856 }
2857
2858 static int s2io_poll_inta(struct napi_struct *napi, int budget)
2859 {
2860         struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2861         int pkts_processed = 0;
2862         int ring_pkts_processed, i;
2863         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2864         int budget_org = budget;
2865         struct config_param *config = &nic->config;
2866         struct mac_info *mac_control = &nic->mac_control;
2867
2868         if (unlikely(!is_s2io_card_up(nic)))
2869                 return 0;
2870
2871         for (i = 0; i < config->rx_ring_num; i++) {
2872                 struct ring_info *ring = &mac_control->rings[i];
2873                 ring_pkts_processed = rx_intr_handler(ring, budget);
2874                 s2io_chk_rx_buffers(nic, ring);
2875                 pkts_processed += ring_pkts_processed;
2876                 budget -= ring_pkts_processed;
2877                 if (budget <= 0)
2878                         break;
2879         }
2880         if (pkts_processed < budget_org) {
2881                 napi_complete(napi);
2882                 /* Re enable the Rx interrupts for the ring */
2883                 writeq(0, &bar0->rx_traffic_mask);
2884                 readl(&bar0->rx_traffic_mask);
2885         }
2886         return pkts_processed;
2887 }
2888
2889 #ifdef CONFIG_NET_POLL_CONTROLLER
2890 /**
2891  * s2io_netpoll - netpoll event handler entry point
2892  * @dev : pointer to the device structure.
2893  * Description:
2894  *      This function will be called by upper layer to check for events on the
2895  * interface in situations where interrupts are disabled. It is used for
2896  * specific in-kernel networking tasks, such as remote consoles and kernel
2897  * debugging over the network (example netdump in RedHat).
2898  */
2899 static void s2io_netpoll(struct net_device *dev)
2900 {
2901         struct s2io_nic *nic = netdev_priv(dev);
2902         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2903         u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2904         int i;
2905         struct config_param *config = &nic->config;
2906         struct mac_info *mac_control = &nic->mac_control;
2907
2908         if (pci_channel_offline(nic->pdev))
2909                 return;
2910
2911         disable_irq(dev->irq);
2912
2913         writeq(val64, &bar0->rx_traffic_int);
2914         writeq(val64, &bar0->tx_traffic_int);
2915
2916         /* we need to free up the transmitted skbufs or else netpoll will
2917          * run out of skbs and will fail and eventually netpoll application such
2918          * as netdump will fail.
2919          */
2920         for (i = 0; i < config->tx_fifo_num; i++)
2921                 tx_intr_handler(&mac_control->fifos[i]);
2922
2923         /* check for received packet and indicate up to network */
2924         for (i = 0; i < config->rx_ring_num; i++) {
2925                 struct ring_info *ring = &mac_control->rings[i];
2926
2927                 rx_intr_handler(ring, 0);
2928         }
2929
2930         for (i = 0; i < config->rx_ring_num; i++) {
2931                 struct ring_info *ring = &mac_control->rings[i];
2932
2933                 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2934                         DBG_PRINT(INFO_DBG,
2935                                   "%s: Out of memory in Rx Netpoll!!\n",
2936                                   dev->name);
2937                         break;
2938                 }
2939         }
2940         enable_irq(dev->irq);
2941 }
2942 #endif
2943
2944 /**
2945  *  rx_intr_handler - Rx interrupt handler
2946  *  @ring_info: per ring structure.
2947  *  @budget: budget for napi processing.
2948  *  Description:
2949  *  If the interrupt is because of a received frame or if the
2950  *  receive ring contains fresh as yet un-processed frames,this function is
2951  *  called. It picks out the RxD at which place the last Rx processing had
2952  *  stopped and sends the skb to the OSM's Rx handler and then increments
2953  *  the offset.
2954  *  Return Value:
2955  *  No. of napi packets processed.
2956  */
2957 static int rx_intr_handler(struct ring_info *ring_data, int budget)
2958 {
2959         int get_block, put_block;
2960         struct rx_curr_get_info get_info, put_info;
2961         struct RxD_t *rxdp;
2962         struct sk_buff *skb;
2963         int pkt_cnt = 0, napi_pkts = 0;
2964         int i;
2965         struct RxD1 *rxdp1;
2966         struct RxD3 *rxdp3;
2967
2968         get_info = ring_data->rx_curr_get_info;
2969         get_block = get_info.block_index;
2970         memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2971         put_block = put_info.block_index;
2972         rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2973
2974         while (RXD_IS_UP2DT(rxdp)) {
2975                 /*
2976                  * If your are next to put index then it's
2977                  * FIFO full condition
2978                  */
2979                 if ((get_block == put_block) &&
2980                     (get_info.offset + 1) == put_info.offset) {
2981                         DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2982                                   ring_data->dev->name);
2983                         break;
2984                 }
2985                 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2986                 if (skb == NULL) {
2987                         DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n",
2988                                   ring_data->dev->name);
2989                         return 0;
2990                 }
2991                 if (ring_data->rxd_mode == RXD_MODE_1) {
2992                         rxdp1 = (struct RxD1 *)rxdp;
2993                         pci_unmap_single(ring_data->pdev, (dma_addr_t)
2994                                          rxdp1->Buffer0_ptr,
2995                                          ring_data->mtu +
2996                                          HEADER_ETHERNET_II_802_3_SIZE +
2997                                          HEADER_802_2_SIZE +
2998                                          HEADER_SNAP_SIZE,
2999                                          PCI_DMA_FROMDEVICE);
3000                 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
3001                         rxdp3 = (struct RxD3 *)rxdp;
3002                         pci_dma_sync_single_for_cpu(ring_data->pdev,
3003                                                     (dma_addr_t)rxdp3->Buffer0_ptr,
3004                                                     BUF0_LEN,
3005                                                     PCI_DMA_FROMDEVICE);
3006                         pci_unmap_single(ring_data->pdev,
3007                                          (dma_addr_t)rxdp3->Buffer2_ptr,
3008                                          ring_data->mtu + 4,
3009                                          PCI_DMA_FROMDEVICE);
3010                 }
3011                 prefetch(skb->data);
3012                 rx_osm_handler(ring_data, rxdp);
3013                 get_info.offset++;
3014                 ring_data->rx_curr_get_info.offset = get_info.offset;
3015                 rxdp = ring_data->rx_blocks[get_block].
3016                         rxds[get_info.offset].virt_addr;
3017                 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
3018                         get_info.offset = 0;
3019                         ring_data->rx_curr_get_info.offset = get_info.offset;
3020                         get_block++;
3021                         if (get_block == ring_data->block_count)
3022                                 get_block = 0;
3023                         ring_data->rx_curr_get_info.block_index = get_block;
3024                         rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
3025                 }
3026
3027                 if (ring_data->nic->config.napi) {
3028                         budget--;
3029                         napi_pkts++;
3030                         if (!budget)
3031                                 break;
3032                 }
3033                 pkt_cnt++;
3034                 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
3035                         break;
3036         }
3037         if (ring_data->lro) {
3038                 /* Clear all LRO sessions before exiting */
3039                 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
3040                         struct lro *lro = &ring_data->lro0_n[i];
3041                         if (lro->in_use) {
3042                                 update_L3L4_header(ring_data->nic, lro);
3043                                 queue_rx_frame(lro->parent, lro->vlan_tag);
3044                                 clear_lro_session(lro);
3045                         }
3046                 }
3047         }
3048         return napi_pkts;
3049 }
3050
3051 /**
3052  *  tx_intr_handler - Transmit interrupt handler
3053  *  @nic : device private variable
3054  *  Description:
3055  *  If an interrupt was raised to indicate DMA complete of the
3056  *  Tx packet, this function is called. It identifies the last TxD
3057  *  whose buffer was freed and frees all skbs whose data have already
3058  *  DMA'ed into the NICs internal memory.
3059  *  Return Value:
3060  *  NONE
3061  */
3062
3063 static void tx_intr_handler(struct fifo_info *fifo_data)
3064 {
3065         struct s2io_nic *nic = fifo_data->nic;
3066         struct tx_curr_get_info get_info, put_info;
3067         struct sk_buff *skb = NULL;
3068         struct TxD *txdlp;
3069         int pkt_cnt = 0;
3070         unsigned long flags = 0;
3071         u8 err_mask;
3072         struct stat_block *stats = nic->mac_control.stats_info;
3073         struct swStat *swstats = &stats->sw_stat;
3074
3075         if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3076                 return;
3077
3078         get_info = fifo_data->tx_curr_get_info;
3079         memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3080         txdlp = (struct TxD *)
3081                 fifo_data->list_info[get_info.offset].list_virt_addr;
3082         while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3083                (get_info.offset != put_info.offset) &&
3084                (txdlp->Host_Control)) {
3085                 /* Check for TxD errors */
3086                 if (txdlp->Control_1 & TXD_T_CODE) {
3087                         unsigned long long err;
3088                         err = txdlp->Control_1 & TXD_T_CODE;
3089                         if (err & 0x1) {
3090                                 swstats->parity_err_cnt++;
3091                         }
3092
3093                         /* update t_code statistics */
3094                         err_mask = err >> 48;
3095                         switch (err_mask) {
3096                         case 2:
3097                                 swstats->tx_buf_abort_cnt++;
3098                                 break;
3099
3100                         case 3:
3101                                 swstats->tx_desc_abort_cnt++;
3102                                 break;
3103
3104                         case 7:
3105                                 swstats->tx_parity_err_cnt++;
3106                                 break;
3107
3108                         case 10:
3109                                 swstats->tx_link_loss_cnt++;
3110                                 break;
3111
3112                         case 15:
3113                                 swstats->tx_list_proc_err_cnt++;
3114                                 break;
3115                         }
3116                 }
3117
3118                 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3119                 if (skb == NULL) {
3120                         spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3121                         DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n",
3122                                   __func__);
3123                         return;
3124                 }
3125                 pkt_cnt++;
3126
3127                 /* Updating the statistics block */
3128                 swstats->mem_freed += skb->truesize;
3129                 dev_kfree_skb_irq(skb);
3130
3131                 get_info.offset++;
3132                 if (get_info.offset == get_info.fifo_len + 1)
3133                         get_info.offset = 0;
3134                 txdlp = (struct TxD *)
3135                         fifo_data->list_info[get_info.offset].list_virt_addr;
3136                 fifo_data->tx_curr_get_info.offset = get_info.offset;
3137         }
3138
3139         s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3140
3141         spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3142 }
3143
3144 /**
3145  *  s2io_mdio_write - Function to write in to MDIO registers
3146  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3147  *  @addr     : address value
3148  *  @value    : data value
3149  *  @dev      : pointer to net_device structure
3150  *  Description:
3151  *  This function is used to write values to the MDIO registers
3152  *  NONE
3153  */
3154 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value,
3155                             struct net_device *dev)
3156 {
3157         u64 val64;
3158         struct s2io_nic *sp = netdev_priv(dev);
3159         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3160
3161         /* address transaction */
3162         val64 = MDIO_MMD_INDX_ADDR(addr) |
3163                 MDIO_MMD_DEV_ADDR(mmd_type) |
3164                 MDIO_MMS_PRT_ADDR(0x0);
3165         writeq(val64, &bar0->mdio_control);
3166         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3167         writeq(val64, &bar0->mdio_control);
3168         udelay(100);
3169
3170         /* Data transaction */
3171         val64 = MDIO_MMD_INDX_ADDR(addr) |
3172                 MDIO_MMD_DEV_ADDR(mmd_type) |
3173                 MDIO_MMS_PRT_ADDR(0x0) |
3174                 MDIO_MDIO_DATA(value) |
3175                 MDIO_OP(MDIO_OP_WRITE_TRANS);
3176         writeq(val64, &bar0->mdio_control);
3177         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3178         writeq(val64, &bar0->mdio_control);
3179         udelay(100);
3180
3181         val64 = MDIO_MMD_INDX_ADDR(addr) |
3182                 MDIO_MMD_DEV_ADDR(mmd_type) |
3183                 MDIO_MMS_PRT_ADDR(0x0) |
3184                 MDIO_OP(MDIO_OP_READ_TRANS);
3185         writeq(val64, &bar0->mdio_control);
3186         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3187         writeq(val64, &bar0->mdio_control);
3188         udelay(100);
3189 }
3190
3191 /**
3192  *  s2io_mdio_read - Function to write in to MDIO registers
3193  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3194  *  @addr     : address value
3195  *  @dev      : pointer to net_device structure
3196  *  Description:
3197  *  This function is used to read values to the MDIO registers
3198  *  NONE
3199  */
3200 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3201 {
3202         u64 val64 = 0x0;
3203         u64 rval64 = 0x0;
3204         struct s2io_nic *sp = netdev_priv(dev);
3205         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3206
3207         /* address transaction */
3208         val64 = val64 | (MDIO_MMD_INDX_ADDR(addr)
3209                          | MDIO_MMD_DEV_ADDR(mmd_type)
3210                          | MDIO_MMS_PRT_ADDR(0x0));
3211         writeq(val64, &bar0->mdio_control);
3212         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3213         writeq(val64, &bar0->mdio_control);
3214         udelay(100);
3215
3216         /* Data transaction */
3217         val64 = MDIO_MMD_INDX_ADDR(addr) |
3218                 MDIO_MMD_DEV_ADDR(mmd_type) |
3219                 MDIO_MMS_PRT_ADDR(0x0) |
3220                 MDIO_OP(MDIO_OP_READ_TRANS);
3221         writeq(val64, &bar0->mdio_control);
3222         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3223         writeq(val64, &bar0->mdio_control);
3224         udelay(100);
3225
3226         /* Read the value from regs */
3227         rval64 = readq(&bar0->mdio_control);
3228         rval64 = rval64 & 0xFFFF0000;
3229         rval64 = rval64 >> 16;
3230         return rval64;
3231 }
3232
3233 /**
3234  *  s2io_chk_xpak_counter - Function to check the status of the xpak counters
3235  *  @counter      : counter value to be updated
3236  *  @flag         : flag to indicate the status
3237  *  @type         : counter type
3238  *  Description:
3239  *  This function is to check the status of the xpak counters value
3240  *  NONE
3241  */
3242
3243 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index,
3244                                   u16 flag, u16 type)
3245 {
3246         u64 mask = 0x3;
3247         u64 val64;
3248         int i;
3249         for (i = 0; i < index; i++)
3250                 mask = mask << 0x2;
3251
3252         if (flag > 0) {
3253                 *counter = *counter + 1;
3254                 val64 = *regs_stat & mask;
3255                 val64 = val64 >> (index * 0x2);
3256                 val64 = val64 + 1;
3257                 if (val64 == 3) {
3258                         switch (type) {
3259                         case 1:
3260                                 DBG_PRINT(ERR_DBG,
3261                                           "Take Xframe NIC out of service.\n");
3262                                 DBG_PRINT(ERR_DBG,
3263 "Excessive temperatures may result in premature transceiver failure.\n");
3264                                 break;
3265                         case 2:
3266                                 DBG_PRINT(ERR_DBG,
3267                                           "Take Xframe NIC out of service.\n");
3268                                 DBG_PRINT(ERR_DBG,
3269 "Excessive bias currents may indicate imminent laser diode failure.\n");
3270                                 break;
3271                         case 3:
3272                                 DBG_PRINT(ERR_DBG,
3273                                           "Take Xframe NIC out of service.\n");
3274                                 DBG_PRINT(ERR_DBG,
3275 "Excessive laser output power may saturate far-end receiver.\n");
3276                                 break;
3277                         default:
3278                                 DBG_PRINT(ERR_DBG,
3279                                           "Incorrect XPAK Alarm type\n");
3280                         }
3281                         val64 = 0x0;
3282                 }
3283                 val64 = val64 << (index * 0x2);
3284                 *regs_stat = (*regs_stat & (~mask)) | (val64);
3285
3286         } else {
3287                 *regs_stat = *regs_stat & (~mask);
3288         }
3289 }
3290
3291 /**
3292  *  s2io_updt_xpak_counter - Function to update the xpak counters
3293  *  @dev         : pointer to net_device struct
3294  *  Description:
3295  *  This function is to upate the status of the xpak counters value
3296  *  NONE
3297  */
3298 static void s2io_updt_xpak_counter(struct net_device *dev)
3299 {
3300         u16 flag  = 0x0;
3301         u16 type  = 0x0;
3302         u16 val16 = 0x0;
3303         u64 val64 = 0x0;
3304         u64 addr  = 0x0;
3305
3306         struct s2io_nic *sp = netdev_priv(dev);
3307         struct stat_block *stats = sp->mac_control.stats_info;
3308         struct xpakStat *xstats = &stats->xpak_stat;
3309
3310         /* Check the communication with the MDIO slave */
3311         addr = MDIO_CTRL1;
3312         val64 = 0x0;
3313         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3314         if ((val64 == 0xFFFF) || (val64 == 0x0000)) {
3315                 DBG_PRINT(ERR_DBG,
3316                           "ERR: MDIO slave access failed - Returned %llx\n",
3317                           (unsigned long long)val64);
3318                 return;
3319         }
3320
3321         /* Check for the expected value of control reg 1 */
3322         if (val64 != MDIO_CTRL1_SPEED10G) {
3323                 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - "
3324                           "Returned: %llx- Expected: 0x%x\n",
3325                           (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
3326                 return;
3327         }
3328
3329         /* Loading the DOM register to MDIO register */
3330         addr = 0xA100;
3331         s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
3332         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3333
3334         /* Reading the Alarm flags */
3335         addr = 0xA070;
3336         val64 = 0x0;
3337         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3338
3339         flag = CHECKBIT(val64, 0x7);
3340         type = 1;
3341         s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high,
3342                               &xstats->xpak_regs_stat,
3343                               0x0, flag, type);
3344
3345         if (CHECKBIT(val64, 0x6))
3346                 xstats->alarm_transceiver_temp_low++;
3347
3348         flag = CHECKBIT(val64, 0x3);
3349         type = 2;
3350         s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high,
3351                               &xstats->xpak_regs_stat,
3352                               0x2, flag, type);
3353
3354         if (CHECKBIT(val64, 0x2))
3355                 xstats->alarm_laser_bias_current_low++;
3356
3357         flag = CHECKBIT(val64, 0x1);
3358         type = 3;
3359         s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high,
3360                               &xstats->xpak_regs_stat,
3361                               0x4, flag, type);
3362
3363         if (CHECKBIT(val64, 0x0))
3364                 xstats->alarm_laser_output_power_low++;
3365
3366         /* Reading the Warning flags */
3367         addr = 0xA074;
3368         val64 = 0x0;
3369         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3370
3371         if (CHECKBIT(val64, 0x7))
3372                 xstats->warn_transceiver_temp_high++;
3373
3374         if (CHECKBIT(val64, 0x6))
3375                 xstats->warn_transceiver_temp_low++;
3376
3377         if (CHECKBIT(val64, 0x3))
3378                 xstats->warn_laser_bias_current_high++;
3379
3380         if (CHECKBIT(val64, 0x2))
3381                 xstats->warn_laser_bias_current_low++;
3382
3383         if (CHECKBIT(val64, 0x1))
3384                 xstats->warn_laser_output_power_high++;
3385
3386         if (CHECKBIT(val64, 0x0))
3387                 xstats->warn_laser_output_power_low++;
3388 }
3389
3390 /**
3391  *  wait_for_cmd_complete - waits for a command to complete.
3392  *  @sp : private member of the device structure, which is a pointer to the
3393  *  s2io_nic structure.
3394  *  Description: Function that waits for a command to Write into RMAC
3395  *  ADDR DATA registers to be completed and returns either success or
3396  *  error depending on whether the command was complete or not.
3397  *  Return value:
3398  *   SUCCESS on success and FAILURE on failure.
3399  */
3400
3401 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3402                                  int bit_state)
3403 {
3404         int ret = FAILURE, cnt = 0, delay = 1;
3405         u64 val64;
3406
3407         if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3408                 return FAILURE;
3409
3410         do {
3411                 val64 = readq(addr);
3412                 if (bit_state == S2IO_BIT_RESET) {
3413                         if (!(val64 & busy_bit)) {
3414                                 ret = SUCCESS;
3415                                 break;
3416                         }
3417                 } else {
3418                         if (val64 & busy_bit) {
3419                                 ret = SUCCESS;
3420                                 break;
3421                         }
3422                 }
3423
3424                 if (in_interrupt())
3425                         mdelay(delay);
3426                 else
3427                         msleep(delay);
3428
3429                 if (++cnt >= 10)
3430                         delay = 50;
3431         } while (cnt < 20);
3432         return ret;
3433 }
3434 /*
3435  * check_pci_device_id - Checks if the device id is supported
3436  * @id : device id
3437  * Description: Function to check if the pci device id is supported by driver.
3438  * Return value: Actual device id if supported else PCI_ANY_ID
3439  */
3440 static u16 check_pci_device_id(u16 id)
3441 {
3442         switch (id) {
3443         case PCI_DEVICE_ID_HERC_WIN:
3444         case PCI_DEVICE_ID_HERC_UNI:
3445                 return XFRAME_II_DEVICE;
3446         case PCI_DEVICE_ID_S2IO_UNI:
3447         case PCI_DEVICE_ID_S2IO_WIN:
3448                 return XFRAME_I_DEVICE;
3449         default:
3450                 return PCI_ANY_ID;
3451         }
3452 }
3453
3454 /**
3455  *  s2io_reset - Resets the card.
3456  *  @sp : private member of the device structure.
3457  *  Description: Function to Reset the card. This function then also
3458  *  restores the previously saved PCI configuration space registers as
3459  *  the card reset also resets the configuration space.
3460  *  Return value:
3461  *  void.
3462  */
3463
3464 static void s2io_reset(struct s2io_nic *sp)
3465 {
3466         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3467         u64 val64;
3468         u16 subid, pci_cmd;
3469         int i;
3470         u16 val16;
3471         unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3472         unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3473         struct stat_block *stats;
3474         struct swStat *swstats;
3475
3476         DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n",
3477                   __func__, pci_name(sp->pdev));
3478
3479         /* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3480         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3481
3482         val64 = SW_RESET_ALL;
3483         writeq(val64, &bar0->sw_reset);
3484         if (strstr(sp->product_name, "CX4"))
3485                 msleep(750);
3486         msleep(250);
3487         for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3488
3489                 /* Restore the PCI state saved during initialization. */
3490                 pci_restore_state(sp->pdev);
3491                 pci_save_state(sp->pdev);
3492                 pci_read_config_word(sp->pdev, 0x2, &val16);
3493                 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3494                         break;
3495                 msleep(200);
3496         }
3497
3498         if (check_pci_device_id(val16) == (u16)PCI_ANY_ID)
3499                 DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__);
3500
3501         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3502
3503         s2io_init_pci(sp);
3504
3505         /* Set swapper to enable I/O register access */
3506         s2io_set_swapper(sp);
3507
3508         /* restore mac_addr entries */
3509         do_s2io_restore_unicast_mc(sp);
3510
3511         /* Restore the MSIX table entries from local variables */
3512         restore_xmsi_data(sp);
3513
3514         /* Clear certain PCI/PCI-X fields after reset */
3515         if (sp->device_type == XFRAME_II_DEVICE) {
3516                 /* Clear "detected parity error" bit */
3517                 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3518
3519                 /* Clearing PCIX Ecc status register */
3520                 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3521
3522                 /* Clearing PCI_STATUS error reflected here */
3523                 writeq(s2BIT(62), &bar0->txpic_int_reg);
3524         }
3525
3526         /* Reset device statistics maintained by OS */
3527         memset(&sp->stats, 0, sizeof(struct net_device_stats));
3528
3529         stats = sp->mac_control.stats_info;
3530         swstats = &stats->sw_stat;
3531
3532         /* save link up/down time/cnt, reset/memory/watchdog cnt */
3533         up_cnt = swstats->link_up_cnt;
3534         down_cnt = swstats->link_down_cnt;
3535         up_time = swstats->link_up_time;
3536         down_time = swstats->link_down_time;
3537         reset_cnt = swstats->soft_reset_cnt;
3538         mem_alloc_cnt = swstats->mem_allocated;
3539         mem_free_cnt = swstats->mem_freed;
3540         watchdog_cnt = swstats->watchdog_timer_cnt;
3541
3542         memset(stats, 0, sizeof(struct stat_block));
3543
3544         /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3545         swstats->link_up_cnt = up_cnt;
3546         swstats->link_down_cnt = down_cnt;
3547         swstats->link_up_time = up_time;
3548         swstats->link_down_time = down_time;
3549         swstats->soft_reset_cnt = reset_cnt;
3550         swstats->mem_allocated = mem_alloc_cnt;
3551         swstats->mem_freed = mem_free_cnt;
3552         swstats->watchdog_timer_cnt = watchdog_cnt;
3553
3554         /* SXE-002: Configure link and activity LED to turn it off */
3555         subid = sp->pdev->subsystem_device;
3556         if (((subid & 0xFF) >= 0x07) &&
3557             (sp->device_type == XFRAME_I_DEVICE)) {
3558                 val64 = readq(&bar0->gpio_control);
3559                 val64 |= 0x0000800000000000ULL;
3560                 writeq(val64, &bar0->gpio_control);
3561                 val64 = 0x0411040400000000ULL;
3562                 writeq(val64, (void __iomem *)bar0 + 0x2700);
3563         }
3564
3565         /*
3566          * Clear spurious ECC interrupts that would have occurred on
3567          * XFRAME II cards after reset.
3568          */
3569         if (sp->device_type == XFRAME_II_DEVICE) {
3570                 val64 = readq(&bar0->pcc_err_reg);
3571                 writeq(val64, &bar0->pcc_err_reg);
3572         }
3573
3574         sp->device_enabled_once = false;
3575 }
3576
3577 /**
3578  *  s2io_set_swapper - to set the swapper controle on the card
3579  *  @sp : private member of the device structure,
3580  *  pointer to the s2io_nic structure.
3581  *  Description: Function to set the swapper control on the card
3582  *  correctly depending on the 'endianness' of the system.
3583  *  Return value:
3584  *  SUCCESS on success and FAILURE on failure.
3585  */
3586
3587 static int s2io_set_swapper(struct s2io_nic *sp)
3588 {
3589         struct net_device *dev = sp->dev;
3590         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3591         u64 val64, valt, valr;
3592
3593         /*
3594          * Set proper endian settings and verify the same by reading
3595          * the PIF Feed-back register.
3596          */
3597
3598         val64 = readq(&bar0->pif_rd_swapper_fb);
3599         if (val64 != 0x0123456789ABCDEFULL) {
3600                 int i = 0;
3601                 static const u64 value[] = {
3602                         0xC30000C3C30000C3ULL,  /* FE=1, SE=1 */
3603                         0x8100008181000081ULL,  /* FE=1, SE=0 */
3604                         0x4200004242000042ULL,  /* FE=0, SE=1 */
3605                         0                       /* FE=0, SE=0 */
3606                 };
3607
3608                 while (i < 4) {
3609                         writeq(value[i], &bar0->swapper_ctrl);
3610                         val64 = readq(&bar0->pif_rd_swapper_fb);
3611                         if (val64 == 0x0123456789ABCDEFULL)
3612                                 break;
3613                         i++;
3614                 }
3615                 if (i == 4) {
3616                         DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, "
3617                                   "feedback read %llx\n",
3618                                   dev->name, (unsigned long long)val64);
3619                         return FAILURE;
3620                 }
3621                 valr = value[i];
3622         } else {
3623                 valr = readq(&bar0->swapper_ctrl);
3624         }
3625
3626         valt = 0x0123456789ABCDEFULL;
3627         writeq(valt, &bar0->xmsi_address);
3628         val64 = readq(&bar0->xmsi_address);
3629
3630         if (val64 != valt) {
3631                 int i = 0;
3632                 static const u64 value[] = {
3633                         0x00C3C30000C3C300ULL,  /* FE=1, SE=1 */
3634                         0x0081810000818100ULL,  /* FE=1, SE=0 */
3635                         0x0042420000424200ULL,  /* FE=0, SE=1 */
3636                         0                       /* FE=0, SE=0 */
3637                 };
3638
3639                 while (i < 4) {
3640                         writeq((value[i] | valr), &bar0->swapper_ctrl);
3641                         writeq(valt, &bar0->xmsi_address);
3642                         val64 = readq(&bar0->xmsi_address);
3643                         if (val64 == valt)
3644                                 break;
3645                         i++;
3646                 }
3647                 if (i == 4) {
3648                         unsigned long long x = val64;
3649                         DBG_PRINT(ERR_DBG,
3650                                   "Write failed, Xmsi_addr reads:0x%llx\n", x);
3651                         return FAILURE;
3652                 }
3653         }
3654         val64 = readq(&bar0->swapper_ctrl);
3655         val64 &= 0xFFFF000000000000ULL;
3656
3657 #ifdef __BIG_ENDIAN
3658         /*
3659          * The device by default set to a big endian format, so a
3660          * big endian driver need not set anything.
3661          */
3662         val64 |= (SWAPPER_CTRL_TXP_FE |
3663                   SWAPPER_CTRL_TXP_SE |
3664                   SWAPPER_CTRL_TXD_R_FE |
3665                   SWAPPER_CTRL_TXD_W_FE |
3666                   SWAPPER_CTRL_TXF_R_FE |
3667                   SWAPPER_CTRL_RXD_R_FE |
3668                   SWAPPER_CTRL_RXD_W_FE |
3669                   SWAPPER_CTRL_RXF_W_FE |
3670                   SWAPPER_CTRL_XMSI_FE |
3671                   SWAPPER_CTRL_STATS_FE |
3672                   SWAPPER_CTRL_STATS_SE);
3673         if (sp->config.intr_type == INTA)
3674                 val64 |= SWAPPER_CTRL_XMSI_SE;
3675         writeq(val64, &bar0->swapper_ctrl);
3676 #else
3677         /*
3678          * Initially we enable all bits to make it accessible by the
3679          * driver, then we selectively enable only those bits that
3680          * we want to set.
3681          */
3682         val64 |= (SWAPPER_CTRL_TXP_FE |
3683                   SWAPPER_CTRL_TXP_SE |
3684                   SWAPPER_CTRL_TXD_R_FE |
3685                   SWAPPER_CTRL_TXD_R_SE |
3686                   SWAPPER_CTRL_TXD_W_FE |
3687                   SWAPPER_CTRL_TXD_W_SE |
3688                   SWAPPER_CTRL_TXF_R_FE |
3689                   SWAPPER_CTRL_RXD_R_FE |
3690                   SWAPPER_CTRL_RXD_R_SE |
3691                   SWAPPER_CTRL_RXD_W_FE |
3692                   SWAPPER_CTRL_RXD_W_SE |
3693                   SWAPPER_CTRL_RXF_W_FE |
3694                   SWAPPER_CTRL_XMSI_FE |
3695                   SWAPPER_CTRL_STATS_FE |
3696                   SWAPPER_CTRL_STATS_SE);
3697         if (sp->config.intr_type == INTA)
3698                 val64 |= SWAPPER_CTRL_XMSI_SE;
3699         writeq(val64, &bar0->swapper_ctrl);
3700 #endif
3701         val64 = readq(&bar0->swapper_ctrl);
3702
3703         /*
3704          * Verifying if endian settings are accurate by reading a
3705          * feedback register.
3706          */
3707         val64 = readq(&bar0->pif_rd_swapper_fb);
3708         if (val64 != 0x0123456789ABCDEFULL) {
3709                 /* Endian settings are incorrect, calls for another dekko. */
3710                 DBG_PRINT(ERR_DBG,
3711                           "%s: Endian settings are wrong, feedback read %llx\n",
3712                           dev->name, (unsigned long long)val64);
3713                 return FAILURE;
3714         }
3715
3716         return SUCCESS;
3717 }
3718
3719 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3720 {
3721         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3722         u64 val64;
3723         int ret = 0, cnt = 0;
3724
3725         do {
3726                 val64 = readq(&bar0->xmsi_access);
3727                 if (!(val64 & s2BIT(15)))
3728                         break;
3729                 mdelay(1);
3730                 cnt++;
3731         } while (cnt < 5);
3732         if (cnt == 5) {
3733                 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3734                 ret = 1;
3735         }
3736
3737         return ret;
3738 }
3739
3740 static void restore_xmsi_data(struct s2io_nic *nic)
3741 {
3742         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3743         u64 val64;
3744         int i, msix_index;
3745
3746         if (nic->device_type == XFRAME_I_DEVICE)
3747                 return;
3748
3749         for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3750                 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3751                 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3752                 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3753                 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
3754                 writeq(val64, &bar0->xmsi_access);
3755                 if (wait_for_msix_trans(nic, msix_index)) {
3756                         DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3757                                   __func__, msix_index);
3758                         continue;
3759                 }
3760         }
3761 }
3762
3763 static void store_xmsi_data(struct s2io_nic *nic)
3764 {
3765         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3766         u64 val64, addr, data;
3767         int i, msix_index;
3768
3769         if (nic->device_type == XFRAME_I_DEVICE)
3770                 return;
3771
3772         /* Store and display */
3773         for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3774                 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3775                 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
3776                 writeq(val64, &bar0->xmsi_access);
3777                 if (wait_for_msix_trans(nic, msix_index)) {
3778                         DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3779                                   __func__, msix_index);
3780                         continue;
3781                 }
3782                 addr = readq(&bar0->xmsi_address);
3783                 data = readq(&bar0->xmsi_data);
3784                 if (addr && data) {
3785                         nic->msix_info[i].addr = addr;
3786                         nic->msix_info[i].data = data;
3787                 }
3788         }
3789 }
3790
3791 static int s2io_enable_msi_x(struct s2io_nic *nic)
3792 {
3793         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3794         u64 rx_mat;
3795         u16 msi_control; /* Temp variable */
3796         int ret, i, j, msix_indx = 1;
3797         int size;
3798         struct stat_block *stats = nic->mac_control.stats_info;
3799         struct swStat *swstats = &stats->sw_stat;
3800
3801         size = nic->num_entries * sizeof(struct msix_entry);
3802         nic->entries = kzalloc(size, GFP_KERNEL);
3803         if (!nic->entries) {
3804                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3805                           __func__);
3806                 swstats->mem_alloc_fail_cnt++;
3807                 return -ENOMEM;
3808         }
3809         swstats->mem_allocated += size;
3810
3811         size = nic->num_entries * sizeof(struct s2io_msix_entry);
3812         nic->s2io_entries = kzalloc(size, GFP_KERNEL);
3813         if (!nic->s2io_entries) {
3814                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3815                           __func__);
3816                 swstats->mem_alloc_fail_cnt++;
3817                 kfree(nic->entries);
3818                 swstats->mem_freed
3819                         += (nic->num_entries * sizeof(struct msix_entry));
3820                 return -ENOMEM;
3821         }
3822         swstats->mem_allocated += size;
3823
3824         nic->entries[0].entry = 0;
3825         nic->s2io_entries[0].entry = 0;
3826         nic->s2io_entries[0].in_use = MSIX_FLG;
3827         nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3828         nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3829
3830         for (i = 1; i < nic->num_entries; i++) {
3831                 nic->entries[i].entry = ((i - 1) * 8) + 1;
3832                 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
3833                 nic->s2io_entries[i].arg = NULL;
3834                 nic->s2io_entries[i].in_use = 0;
3835         }
3836
3837         rx_mat = readq(&bar0->rx_mat);
3838         for (j = 0; j < nic->config.rx_ring_num; j++) {
3839                 rx_mat |= RX_MAT_SET(j, msix_indx);
3840                 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3841                 nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3842                 nic->s2io_entries[j+1].in_use = MSIX_FLG;
3843                 msix_indx += 8;
3844         }
3845         writeq(rx_mat, &bar0->rx_mat);
3846         readq(&bar0->rx_mat);
3847
3848         ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
3849         /* We fail init if error or we get less vectors than min required */
3850         if (ret) {
3851                 DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n");
3852                 kfree(nic->entries);
3853                 swstats->mem_freed += nic->num_entries *
3854                         sizeof(struct msix_entry);
3855                 kfree(nic->s2io_entries);
3856                 swstats->mem_freed += nic->num_entries *
3857                         sizeof(struct s2io_msix_entry);
3858                 nic->entries = NULL;
3859                 nic->s2io_entries = NULL;
3860                 return -ENOMEM;
3861         }
3862
3863         /*
3864          * To enable MSI-X, MSI also needs to be enabled, due to a bug
3865          * in the herc NIC. (Temp change, needs to be removed later)
3866          */
3867         pci_read_config_word(nic->pdev, 0x42, &msi_control);
3868         msi_control |= 0x1; /* Enable MSI */
3869         pci_write_config_word(nic->pdev, 0x42, msi_control);
3870
3871         return 0;
3872 }
3873
3874 /* Handle software interrupt used during MSI(X) test */
3875 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3876 {
3877         struct s2io_nic *sp = dev_id;
3878
3879         sp->msi_detected = 1;
3880         wake_up(&sp->msi_wait);
3881
3882         return IRQ_HANDLED;
3883 }
3884
3885 /* Test interrupt path by forcing a a software IRQ */
3886 static int s2io_test_msi(struct s2io_nic *sp)
3887 {
3888         struct pci_dev *pdev = sp->pdev;
3889         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3890         int err;
3891         u64 val64, saved64;
3892
3893         err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3894                           sp->name, sp);
3895         if (err) {
3896                 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3897                           sp->dev->name, pci_name(pdev), pdev->irq);
3898                 return err;
3899         }
3900
3901         init_waitqueue_head(&sp->msi_wait);
3902         sp->msi_detected = 0;
3903
3904         saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3905         val64 |= SCHED_INT_CTRL_ONE_SHOT;
3906         val64 |= SCHED_INT_CTRL_TIMER_EN;
3907         val64 |= SCHED_INT_CTRL_INT2MSI(1);
3908         writeq(val64, &bar0->scheduled_int_ctrl);
3909
3910         wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3911
3912         if (!sp->msi_detected) {
3913                 /* MSI(X) test failed, go back to INTx mode */
3914                 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3915                           "using MSI(X) during test\n",
3916                           sp->dev->name, pci_name(pdev));
3917
3918                 err = -EOPNOTSUPP;
3919         }
3920
3921         free_irq(sp->entries[1].vector, sp);
3922
3923         writeq(saved64, &bar0->scheduled_int_ctrl);
3924
3925         return err;
3926 }
3927
3928 static void remove_msix_isr(struct s2io_nic *sp)
3929 {
3930         int i;
3931         u16 msi_control;
3932
3933         for (i = 0; i < sp->num_entries; i++) {
3934                 if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) {
3935                         int vector = sp->entries[i].vector;
3936                         void *arg = sp->s2io_entries[i].arg;
3937                         free_irq(vector, arg);
3938                 }
3939         }
3940
3941         kfree(sp->entries);
3942         kfree(sp->s2io_entries);
3943         sp->entries = NULL;
3944         sp->s2io_entries = NULL;
3945
3946         pci_read_config_word(sp->pdev, 0x42, &msi_control);
3947         msi_control &= 0xFFFE; /* Disable MSI */
3948         pci_write_config_word(sp->pdev, 0x42, msi_control);
3949
3950         pci_disable_msix(sp->pdev);
3951 }
3952
3953 static void remove_inta_isr(struct s2io_nic *sp)
3954 {
3955         struct net_device *dev = sp->dev;
3956
3957         free_irq(sp->pdev->irq, dev);
3958 }
3959
3960 /* ********************************************************* *
3961  * Functions defined below concern the OS part of the driver *
3962  * ********************************************************* */
3963
3964 /**
3965  *  s2io_open - open entry point of the driver
3966  *  @dev : pointer to the device structure.
3967  *  Description:
3968  *  This function is the open entry point of the driver. It mainly calls a
3969  *  function to allocate Rx buffers and inserts them into the buffer
3970  *  descriptors and then enables the Rx part of the NIC.
3971  *  Return value:
3972  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3973  *   file on failure.
3974  */
3975
3976 static int s2io_open(struct net_device *dev)
3977 {
3978         struct s2io_nic *sp = netdev_priv(dev);
3979         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
3980         int err = 0;
3981
3982         /*
3983          * Make sure you have link off by default every time
3984          * Nic is initialized
3985          */
3986         netif_carrier_off(dev);
3987         sp->last_link_state = 0;
3988
3989         /* Initialize H/W and enable interrupts */
3990         err = s2io_card_up(sp);
3991         if (err) {
3992                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3993                           dev->name);
3994                 goto hw_init_failed;
3995         }
3996
3997         if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
3998                 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3999                 s2io_card_down(sp);
4000                 err = -ENODEV;
4001                 goto hw_init_failed;
4002         }
4003         s2io_start_all_tx_queue(sp);
4004         return 0;
4005
4006 hw_init_failed:
4007         if (sp->config.intr_type == MSI_X) {
4008                 if (sp->entries) {
4009                         kfree(sp->entries);
4010                         swstats->mem_freed += sp->num_entries *
4011                                 sizeof(struct msix_entry);
4012                 }
4013                 if (sp->s2io_entries) {
4014                         kfree(sp->s2io_entries);
4015                         swstats->mem_freed += sp->num_entries *
4016                                 sizeof(struct s2io_msix_entry);
4017                 }
4018         }
4019         return err;
4020 }
4021
4022 /**
4023  *  s2io_close -close entry point of the driver
4024  *  @dev : device pointer.
4025  *  Description:
4026  *  This is the stop entry point of the driver. It needs to undo exactly
4027  *  whatever was done by the open entry point,thus it's usually referred to
4028  *  as the close function.Among other things this function mainly stops the
4029  *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4030  *  Return value:
4031  *  0 on success and an appropriate (-)ve integer as defined in errno.h
4032  *  file on failure.
4033  */
4034
4035 static int s2io_close(struct net_device *dev)
4036 {
4037         struct s2io_nic *sp = netdev_priv(dev);
4038         struct config_param *config = &sp->config;
4039         u64 tmp64;
4040         int offset;
4041
4042         /* Return if the device is already closed               *
4043          *  Can happen when s2io_card_up failed in change_mtu    *
4044          */
4045         if (!is_s2io_card_up(sp))
4046                 return 0;
4047
4048         s2io_stop_all_tx_queue(sp);
4049         /* delete all populated mac entries */
4050         for (offset = 1; offset < config->max_mc_addr; offset++) {
4051                 tmp64 = do_s2io_read_unicast_mc(sp, offset);
4052                 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
4053                         do_s2io_delete_unicast_mc(sp, tmp64);
4054         }
4055
4056         s2io_card_down(sp);
4057
4058         return 0;
4059 }
4060
4061 /**
4062  *  s2io_xmit - Tx entry point of te driver
4063  *  @skb : the socket buffer containing the Tx data.
4064  *  @dev : device pointer.
4065  *  Description :
4066  *  This function is the Tx entry point of the driver. S2IO NIC supports
4067  *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
4068  *  NOTE: when device can't queue the pkt,just the trans_start variable will
4069  *  not be upadted.
4070  *  Return value:
4071  *  0 on success & 1 on failure.
4072  */
4073
4074 static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4075 {
4076         struct s2io_nic *sp = netdev_priv(dev);
4077         u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4078         register u64 val64;
4079         struct TxD *txdp;
4080         struct TxFIFO_element __iomem *tx_fifo;
4081         unsigned long flags = 0;
4082         u16 vlan_tag = 0;
4083         struct fifo_info *fifo = NULL;
4084         int do_spin_lock = 1;
4085         int offload_type;
4086         int enable_per_list_interrupt = 0;
4087         struct config_param *config = &sp->config;
4088         struct mac_info *mac_control = &sp->mac_control;
4089         struct stat_block *stats = mac_control->stats_info;
4090         struct swStat *swstats = &stats->sw_stat;
4091
4092         DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4093
4094         if (unlikely(skb->len <= 0)) {
4095                 DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name);
4096                 dev_kfree_skb_any(skb);
4097                 return NETDEV_TX_OK;
4098         }
4099
4100         if (!is_s2io_card_up(sp)) {
4101                 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4102                           dev->name);
4103                 dev_kfree_skb(skb);
4104                 return NETDEV_TX_OK;
4105         }
4106
4107         queue = 0;
4108         if (vlan_tx_tag_present(skb))
4109                 vlan_tag = vlan_tx_tag_get(skb);
4110         if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4111                 if (skb->protocol == htons(ETH_P_IP)) {
4112                         struct iphdr *ip;
4113                         struct tcphdr *th;
4114                         ip = ip_hdr(skb);
4115
4116                         if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
4117                                 th = (struct tcphdr *)(((unsigned char *)ip) +
4118                                                        ip->ihl*4);
4119
4120                                 if (ip->protocol == IPPROTO_TCP) {
4121                                         queue_len = sp->total_tcp_fifos;
4122                                         queue = (ntohs(th->source) +
4123                                                  ntohs(th->dest)) &
4124                                                 sp->fifo_selector[queue_len - 1];
4125                                         if (queue >= queue_len)
4126                                                 queue = queue_len - 1;
4127                                 } else if (ip->protocol == IPPROTO_UDP) {
4128                                         queue_len = sp->total_udp_fifos;
4129                                         queue = (ntohs(th->source) +
4130                                                  ntohs(th->dest)) &
4131                                                 sp->fifo_selector[queue_len - 1];
4132                                         if (queue >= queue_len)
4133                                                 queue = queue_len - 1;
4134                                         queue += sp->udp_fifo_idx;
4135                                         if (skb->len > 1024)
4136                                                 enable_per_list_interrupt = 1;
4137                                         do_spin_lock = 0;
4138                                 }
4139                         }
4140                 }
4141         } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4142                 /* get fifo number based on skb->priority value */
4143                 queue = config->fifo_mapping
4144                         [skb->priority & (MAX_TX_FIFOS - 1)];
4145         fifo = &mac_control->fifos[queue];
4146
4147         if (do_spin_lock)
4148                 spin_lock_irqsave(&fifo->tx_lock, flags);
4149         else {
4150                 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4151                         return NETDEV_TX_LOCKED;
4152         }
4153
4154         if (sp->config.multiq) {
4155                 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4156                         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4157                         return NETDEV_TX_BUSY;
4158                 }
4159         } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4160                 if (netif_queue_stopped(dev)) {
4161                         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4162                         return NETDEV_TX_BUSY;
4163                 }
4164         }
4165
4166         put_off = (u16)fifo->tx_curr_put_info.offset;
4167         get_off = (u16)fifo->tx_curr_get_info.offset;
4168         txdp = (struct TxD *)fifo->list_info[put_off].list_virt_addr;
4169
4170         queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4171         /* Avoid "put" pointer going beyond "get" pointer */
4172         if (txdp->Host_Control ||
4173             ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4174                 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4175                 s2io_stop_tx_queue(sp, fifo->fifo_no);
4176                 dev_kfree_skb(skb);
4177                 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4178                 return NETDEV_TX_OK;
4179         }
4180
4181         offload_type = s2io_offload_type(skb);
4182         if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4183                 txdp->Control_1 |= TXD_TCP_LSO_EN;
4184                 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4185         }
4186         if (skb->ip_summed == CHECKSUM_PARTIAL) {
4187                 txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN |
4188                                     TXD_TX_CKO_TCP_EN |
4189                                     TXD_TX_CKO_UDP_EN);
4190         }
4191         txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4192         txdp->Control_1 |= TXD_LIST_OWN_XENA;
4193         txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4194         if (enable_per_list_interrupt)
4195                 if (put_off & (queue_len >> 5))
4196                         txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4197         if (vlan_tag) {
4198                 txdp->Control_2 |= TXD_VLAN_ENABLE;
4199                 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4200         }
4201
4202         frg_len = skb_headlen(skb);
4203         if (offload_type == SKB_GSO_UDP) {
4204                 int ufo_size;
4205
4206                 ufo_size = s2io_udp_mss(skb);
4207                 ufo_size &= ~7;
4208                 txdp->Control_1 |= TXD_UFO_EN;
4209                 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4210                 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4211 #ifdef __BIG_ENDIAN
4212                 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4213                 fifo->ufo_in_band_v[put_off] =
4214                         (__force u64)skb_shinfo(skb)->ip6_frag_id;
4215 #else
4216                 fifo->ufo_in_band_v[put_off] =
4217                         (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
4218 #endif
4219                 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4220                 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4221                                                       fifo->ufo_in_band_v,
4222                                                       sizeof(u64),
4223                                                       PCI_DMA_TODEVICE);
4224                 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4225                         goto pci_map_failed;
4226                 txdp++;
4227         }
4228
4229         txdp->Buffer_Pointer = pci_map_single(sp->pdev, skb->data,
4230                                               frg_len, PCI_DMA_TODEVICE);
4231         if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4232                 goto pci_map_failed;
4233
4234         txdp->Host_Control = (unsigned long)skb;
4235         txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4236         if (offload_type == SKB_GSO_UDP)
4237                 txdp->Control_1 |= TXD_UFO_EN;
4238
4239         frg_cnt = skb_shinfo(skb)->nr_frags;
4240         /* For fragmented SKB. */
4241         for (i = 0; i < frg_cnt; i++) {
4242                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4243                 /* A '0' length fragment will be ignored */
4244                 if (!frag->size)
4245                         continue;
4246                 txdp++;
4247                 txdp->Buffer_Pointer = (u64)pci_map_page(sp->pdev, frag->page,
4248                                                          frag->page_offset,
4249                                                          frag->size,
4250                                                          PCI_DMA_TODEVICE);
4251                 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4252                 if (offload_type == SKB_GSO_UDP)
4253                         txdp->Control_1 |= TXD_UFO_EN;
4254         }
4255         txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4256
4257         if (offload_type == SKB_GSO_UDP)
4258                 frg_cnt++; /* as Txd0 was used for inband header */
4259
4260         tx_fifo = mac_control->tx_FIFO_start[queue];
4261         val64 = fifo->list_info[put_off].list_phy_addr;
4262         writeq(val64, &tx_fifo->TxDL_Pointer);
4263
4264         val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4265                  TX_FIFO_LAST_LIST);
4266         if (offload_type)
4267                 val64 |= TX_FIFO_SPECIAL_FUNC;
4268
4269         writeq(val64, &tx_fifo->List_Control);
4270
4271         mmiowb();
4272
4273         put_off++;
4274         if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4275                 put_off = 0;
4276         fifo->tx_curr_put_info.offset = put_off;
4277
4278         /* Avoid "put" pointer going beyond "get" pointer */
4279         if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4280                 swstats->fifo_full_cnt++;
4281                 DBG_PRINT(TX_DBG,
4282                           "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4283                           put_off, get_off);
4284                 s2io_stop_tx_queue(sp, fifo->fifo_no);
4285         }
4286         swstats->mem_allocated += skb->truesize;
4287         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4288
4289         if (sp->config.intr_type == MSI_X)
4290                 tx_intr_handler(fifo);
4291
4292         return NETDEV_TX_OK;
4293
4294 pci_map_failed:
4295         swstats->pci_map_fail_cnt++;
4296         s2io_stop_tx_queue(sp, fifo->fifo_no);
4297         swstats->mem_freed += skb->truesize;
4298         dev_kfree_skb(skb);
4299         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4300         return NETDEV_TX_OK;
4301 }
4302
4303 static void
4304 s2io_alarm_handle(unsigned long data)
4305 {
4306         struct s2io_nic *sp = (struct s2io_nic *)data;
4307         struct net_device *dev = sp->dev;
4308
4309         s2io_handle_errors(dev);
4310         mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4311 }
4312
4313 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4314 {
4315         struct ring_info *ring = (struct ring_info *)dev_id;
4316         struct s2io_nic *sp = ring->nic;
4317         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4318
4319         if (unlikely(!is_s2io_card_up(sp)))
4320                 return IRQ_HANDLED;
4321
4322         if (sp->config.napi) {
4323                 u8 __iomem *addr = NULL;
4324                 u8 val8 = 0;
4325
4326                 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
4327                 addr += (7 - ring->ring_no);
4328                 val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4329                 writeb(val8, addr);
4330                 val8 = readb(addr);
4331                 napi_schedule(&ring->napi);
4332         } else {
4333                 rx_intr_handler(ring, 0);
4334                 s2io_chk_rx_buffers(sp, ring);
4335         }
4336
4337         return IRQ_HANDLED;
4338 }
4339
4340 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4341 {
4342         int i;
4343         struct fifo_info *fifos = (struct fifo_info *)dev_id;
4344         struct s2io_nic *sp = fifos->nic;
4345         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4346         struct config_param *config  = &sp->config;
4347         u64 reason;
4348
4349         if (unlikely(!is_s2io_card_up(sp)))
4350                 return IRQ_NONE;
4351
4352         reason = readq(&bar0->general_int_status);
4353         if (unlikely(reason == S2IO_MINUS_ONE))
4354                 /* Nothing much can be done. Get out */
4355                 return IRQ_HANDLED;
4356
4357         if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4358                 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4359
4360                 if (reason & GEN_INTR_TXPIC)
4361                         s2io_txpic_intr_handle(sp);
4362
4363                 if (reason & GEN_INTR_TXTRAFFIC)
4364                         writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4365
4366                 for (i = 0; i < config->tx_fifo_num; i++)
4367                         tx_intr_handler(&fifos[i]);
4368
4369                 writeq(sp->general_int_mask, &bar0->general_int_mask);
4370                 readl(&bar0->general_int_status);
4371                 return IRQ_HANDLED;
4372         }
4373         /* The interrupt was not raised by us */
4374         return IRQ_NONE;
4375 }
4376
4377 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4378 {
4379         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4380         u64 val64;
4381
4382         val64 = readq(&bar0->pic_int_status);
4383         if (val64 & PIC_INT_GPIO) {
4384                 val64 = readq(&bar0->gpio_int_reg);
4385                 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4386                     (val64 & GPIO_INT_REG_LINK_UP)) {
4387                         /*
4388                          * This is unstable state so clear both up/down
4389                          * interrupt and adapter to re-evaluate the link state.
4390                          */
4391                         val64 |= GPIO_INT_REG_LINK_DOWN;
4392                         val64 |= GPIO_INT_REG_LINK_UP;
4393                         writeq(val64, &bar0->gpio_int_reg);
4394                         val64 = readq(&bar0->gpio_int_mask);
4395                         val64 &= ~(GPIO_INT_MASK_LINK_UP |
4396                                    GPIO_INT_MASK_LINK_DOWN);
4397                         writeq(val64, &bar0->gpio_int_mask);
4398                 } else if (val64 & GPIO_INT_REG_LINK_UP) {
4399                         val64 = readq(&bar0->adapter_status);
4400                         /* Enable Adapter */
4401                         val64 = readq(&bar0->adapter_control);
4402                         val64 |= ADAPTER_CNTL_EN;
4403                         writeq(val64, &bar0->adapter_control);
4404                         val64 |= ADAPTER_LED_ON;
4405                         writeq(val64, &bar0->adapter_control);
4406                         if (!sp->device_enabled_once)
4407                                 sp->device_enabled_once = 1;
4408
4409                         s2io_link(sp, LINK_UP);
4410                         /*
4411                          * unmask link down interrupt and mask link-up
4412                          * intr
4413                          */
4414                         val64 = readq(&bar0->gpio_int_mask);
4415                         val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4416                         val64 |= GPIO_INT_MASK_LINK_UP;
4417                         writeq(val64, &bar0->gpio_int_mask);
4418
4419                 } else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4420                         val64 = readq(&bar0->adapter_status);
4421                         s2io_link(sp, LINK_DOWN);
4422                         /* Link is down so unmaks link up interrupt */
4423                         val64 = readq(&bar0->gpio_int_mask);
4424                         val64 &= ~GPIO_INT_MASK_LINK_UP;
4425                         val64 |= GPIO_INT_MASK_LINK_DOWN;
4426                         writeq(val64, &bar0->gpio_int_mask);
4427
4428                         /* turn off LED */
4429                         val64 = readq(&bar0->adapter_control);
4430                         val64 = val64 & (~ADAPTER_LED_ON);
4431                         writeq(val64, &bar0->adapter_control);
4432                 }
4433         }
4434         val64 = readq(&bar0->gpio_int_mask);
4435 }
4436
4437 /**
4438  *  do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4439  *  @value: alarm bits
4440  *  @addr: address value
4441  *  @cnt: counter variable
4442  *  Description: Check for alarm and increment the counter
4443  *  Return Value:
4444  *  1 - if alarm bit set
4445  *  0 - if alarm bit is not set
4446  */
4447 static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr,
4448                                  unsigned long long *cnt)
4449 {
4450         u64 val64;
4451         val64 = readq(addr);
4452         if (val64 & value) {
4453                 writeq(val64, addr);
4454                 (*cnt)++;
4455                 return 1;
4456         }
4457         return 0;
4458
4459 }
4460
4461 /**
4462  *  s2io_handle_errors - Xframe error indication handler
4463  *  @nic: device private variable
4464  *  Description: Handle alarms such as loss of link, single or
4465  *  double ECC errors, critical and serious errors.
4466  *  Return Value:
4467  *  NONE
4468  */
4469 static void s2io_handle_errors(void *dev_id)
4470 {
4471         struct net_device *dev = (struct net_device *)dev_id;
4472         struct s2io_nic *sp = netdev_priv(dev);
4473         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4474         u64 temp64 = 0, val64 = 0;
4475         int i = 0;
4476
4477         struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4478         struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4479
4480         if (!is_s2io_card_up(sp))
4481                 return;
4482
4483         if (pci_channel_offline(sp->pdev))
4484                 return;
4485
4486         memset(&sw_stat->ring_full_cnt, 0,
4487                sizeof(sw_stat->ring_full_cnt));
4488
4489         /* Handling the XPAK counters update */
4490         if (stats->xpak_timer_count < 72000) {
4491                 /* waiting for an hour */
4492                 stats->xpak_timer_count++;
4493         } else {
4494                 s2io_updt_xpak_counter(dev);
4495                 /* reset the count to zero */
4496                 stats->xpak_timer_count = 0;
4497         }
4498
4499         /* Handling link status change error Intr */
4500         if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4501                 val64 = readq(&bar0->mac_rmac_err_reg);
4502                 writeq(val64, &bar0->mac_rmac_err_reg);
4503                 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4504                         schedule_work(&sp->set_link_task);
4505         }
4506
4507         /* In case of a serious error, the device will be Reset. */
4508         if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4509                                   &sw_stat->serious_err_cnt))
4510                 goto reset;
4511
4512         /* Check for data parity error */
4513         if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4514                                   &sw_stat->parity_err_cnt))
4515                 goto reset;
4516
4517         /* Check for ring full counter */
4518         if (sp->device_type == XFRAME_II_DEVICE) {
4519                 val64 = readq(&bar0->ring_bump_counter1);
4520                 for (i = 0; i < 4; i++) {
4521                         temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4522                         temp64 >>= 64 - ((i+1)*16);
4523                         sw_stat->ring_full_cnt[i] += temp64;
4524                 }
4525
4526                 val64 = readq(&bar0->ring_bump_counter2);
4527                 for (i = 0; i < 4; i++) {
4528                         temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4529                         temp64 >>= 64 - ((i+1)*16);
4530                         sw_stat->ring_full_cnt[i+4] += temp64;
4531                 }
4532         }
4533
4534         val64 = readq(&bar0->txdma_int_status);
4535         /*check for pfc_err*/
4536         if (val64 & TXDMA_PFC_INT) {
4537                 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
4538                                           PFC_MISC_0_ERR | PFC_MISC_1_ERR |
4539                                           PFC_PCIX_ERR,
4540                                           &bar0->pfc_err_reg,
4541                                           &sw_stat->pfc_err_cnt))
4542                         goto reset;
4543                 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR,
4544                                       &bar0->pfc_err_reg,
4545                                       &sw_stat->pfc_err_cnt);
4546         }
4547
4548         /*check for tda_err*/
4549         if (val64 & TXDMA_TDA_INT) {
4550                 if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR |
4551                                           TDA_SM0_ERR_ALARM |
4552                                           TDA_SM1_ERR_ALARM,
4553                                           &bar0->tda_err_reg,
4554                                           &sw_stat->tda_err_cnt))
4555                         goto reset;
4556                 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4557                                       &bar0->tda_err_reg,
4558                                       &sw_stat->tda_err_cnt);
4559         }
4560         /*check for pcc_err*/
4561         if (val64 & TXDMA_PCC_INT) {
4562                 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
4563                                           PCC_N_SERR | PCC_6_COF_OV_ERR |
4564                                           PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
4565                                           PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
4566                                           PCC_TXB_ECC_DB_ERR,
4567                                           &bar0->pcc_err_reg,
4568                                           &sw_stat->pcc_err_cnt))
4569                         goto reset;
4570                 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4571                                       &bar0->pcc_err_reg,
4572                                       &sw_stat->pcc_err_cnt);
4573         }
4574
4575         /*check for tti_err*/
4576         if (val64 & TXDMA_TTI_INT) {
4577                 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM,
4578                                           &bar0->tti_err_reg,
4579                                           &sw_stat->tti_err_cnt))
4580                         goto reset;
4581                 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4582                                       &bar0->tti_err_reg,
4583                                       &sw_stat->tti_err_cnt);
4584         }
4585
4586         /*check for lso_err*/
4587         if (val64 & TXDMA_LSO_INT) {
4588                 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
4589                                           LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4590                                           &bar0->lso_err_reg,
4591                                           &sw_stat->lso_err_cnt))
4592                         goto reset;
4593                 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4594                                       &bar0->lso_err_reg,
4595                                       &sw_stat->lso_err_cnt);
4596         }
4597
4598         /*check for tpa_err*/
4599         if (val64 & TXDMA_TPA_INT) {
4600                 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM,
4601                                           &bar0->tpa_err_reg,
4602                                           &sw_stat->tpa_err_cnt))
4603                         goto reset;
4604                 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP,
4605                                       &bar0->tpa_err_reg,
4606                                       &sw_stat->tpa_err_cnt);
4607         }
4608
4609         /*check for sm_err*/
4610         if (val64 & TXDMA_SM_INT) {
4611                 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM,
4612                                           &bar0->sm_err_reg,
4613                                           &sw_stat->sm_err_cnt))
4614                         goto reset;
4615         }
4616
4617         val64 = readq(&bar0->mac_int_status);
4618         if (val64 & MAC_INT_STATUS_TMAC_INT) {
4619                 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4620                                           &bar0->mac_tmac_err_reg,
4621                                           &sw_stat->mac_tmac_err_cnt))
4622                         goto reset;
4623                 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
4624                                       TMAC_DESC_ECC_SG_ERR |
4625                                       TMAC_DESC_ECC_DB_ERR,
4626                                       &bar0->mac_tmac_err_reg,
4627                                       &sw_stat->mac_tmac_err_cnt);
4628         }
4629
4630         val64 = readq(&bar0->xgxs_int_status);
4631         if (val64 & XGXS_INT_STATUS_TXGXS) {
4632                 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4633                                           &bar0->xgxs_txgxs_err_reg,
4634                                           &sw_stat->xgxs_txgxs_err_cnt))
4635                         goto reset;
4636                 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4637                                       &bar0->xgxs_txgxs_err_reg,
4638                                       &sw_stat->xgxs_txgxs_err_cnt);
4639         }
4640
4641         val64 = readq(&bar0->rxdma_int_status);
4642         if (val64 & RXDMA_INT_RC_INT_M) {
4643                 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR |
4644                                           RC_FTC_ECC_DB_ERR |
4645                                           RC_PRCn_SM_ERR_ALARM |
4646                                           RC_FTC_SM_ERR_ALARM,
4647                                           &bar0->rc_err_reg,
4648                                           &sw_stat->rc_err_cnt))
4649                         goto reset;
4650                 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR |
4651                                       RC_FTC_ECC_SG_ERR |
4652                                       RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4653                                       &sw_stat->rc_err_cnt);
4654                 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn |
4655                                           PRC_PCI_AB_WR_Rn |
4656                                           PRC_PCI_AB_F_WR_Rn,
4657                                           &bar0->prc_pcix_err_reg,
4658                                           &sw_stat->prc_pcix_err_cnt))
4659                         goto reset;
4660                 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn |
4661                                       PRC_PCI_DP_WR_Rn |
4662                                       PRC_PCI_DP_F_WR_Rn,
4663                                       &bar0->prc_pcix_err_reg,
4664                                       &sw_stat->prc_pcix_err_cnt);
4665         }
4666
4667         if (val64 & RXDMA_INT_RPA_INT_M) {
4668                 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4669                                           &bar0->rpa_err_reg,
4670                                           &sw_stat->rpa_err_cnt))
4671                         goto reset;
4672                 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4673                                       &bar0->rpa_err_reg,
4674                                       &sw_stat->rpa_err_cnt);
4675         }
4676
4677         if (val64 & RXDMA_INT_RDA_INT_M) {
4678                 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
4679                                           RDA_FRM_ECC_DB_N_AERR |
4680                                           RDA_SM1_ERR_ALARM |
4681                                           RDA_SM0_ERR_ALARM |
4682                                           RDA_RXD_ECC_DB_SERR,
4683                                           &bar0->rda_err_reg,
4684                                           &sw_stat->rda_err_cnt))
4685                         goto reset;
4686                 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR |
4687                                       RDA_FRM_ECC_SG_ERR |
4688                                       RDA_MISC_ERR |
4689                                       RDA_PCIX_ERR,
4690                                       &bar0->rda_err_reg,
4691                                       &sw_stat->rda_err_cnt);
4692         }
4693
4694         if (val64 & RXDMA_INT_RTI_INT_M) {
4695                 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM,
4696                                           &bar0->rti_err_reg,
4697                                           &sw_stat->rti_err_cnt))
4698                         goto reset;
4699                 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4700                                       &bar0->rti_err_reg,
4701                                       &sw_stat->rti_err_cnt);
4702         }
4703
4704         val64 = readq(&bar0->mac_int_status);
4705         if (val64 & MAC_INT_STATUS_RMAC_INT) {
4706                 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4707                                           &bar0->mac_rmac_err_reg,
4708                                           &sw_stat->mac_rmac_err_cnt))
4709                         goto reset;
4710                 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT |
4711                                       RMAC_SINGLE_ECC_ERR |
4712                                       RMAC_DOUBLE_ECC_ERR,
4713                                       &bar0->mac_rmac_err_reg,
4714                                       &sw_stat->mac_rmac_err_cnt);
4715         }
4716
4717         val64 = readq(&bar0->xgxs_int_status);
4718         if (val64 & XGXS_INT_STATUS_RXGXS) {
4719                 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4720                                           &bar0->xgxs_rxgxs_err_reg,
4721                                           &sw_stat->xgxs_rxgxs_err_cnt))
4722                         goto reset;
4723         }
4724
4725         val64 = readq(&bar0->mc_int_status);
4726         if (val64 & MC_INT_STATUS_MC_INT) {
4727                 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR,
4728                                           &bar0->mc_err_reg,
4729                                           &sw_stat->mc_err_cnt))
4730                         goto reset;
4731
4732                 /* Handling Ecc errors */
4733                 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4734                         writeq(val64, &bar0->mc_err_reg);
4735                         if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4736                                 sw_stat->double_ecc_errs++;
4737                                 if (sp->device_type != XFRAME_II_DEVICE) {
4738                                         /*
4739                                          * Reset XframeI only if critical error
4740                                          */
4741                                         if (val64 &
4742                                             (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4743                                              MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4744                                                 goto reset;
4745                                 }
4746                         } else
4747                                 sw_stat->single_ecc_errs++;
4748                 }
4749         }
4750         return;
4751
4752 reset:
4753         s2io_stop_all_tx_queue(sp);
4754         schedule_work(&sp->rst_timer_task);
4755         sw_stat->soft_reset_cnt++;
4756 }
4757
4758 /**
4759  *  s2io_isr - ISR handler of the device .
4760  *  @irq: the irq of the device.
4761  *  @dev_id: a void pointer to the dev structure of the NIC.
4762  *  Description:  This function is the ISR handler of the device. It
4763  *  identifies the reason for the interrupt and calls the relevant
4764  *  service routines. As a contongency measure, this ISR allocates the
4765  *  recv buffers, if their numbers are below the panic value which is
4766  *  presently set to 25% of the original number of rcv buffers allocated.
4767  *  Return value:
4768  *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
4769  *   IRQ_NONE: will be returned if interrupt is not from our device
4770  */
4771 static irqreturn_t s2io_isr(int irq, void *dev_id)
4772 {
4773         struct net_device *dev = (struct net_device *)dev_id;
4774         struct s2io_nic *sp = netdev_priv(dev);
4775         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4776         int i;
4777         u64 reason = 0;
4778         struct mac_info *mac_control;
4779         struct config_param *config;
4780
4781         /* Pretend we handled any irq's from a disconnected card */
4782         if (pci_channel_offline(sp->pdev))
4783                 return IRQ_NONE;
4784
4785         if (!is_s2io_card_up(sp))
4786                 return IRQ_NONE;
4787
4788         config = &sp->config;
4789         mac_control = &sp->mac_control;
4790
4791         /*
4792          * Identify the cause for interrupt and call the appropriate
4793          * interrupt handler. Causes for the interrupt could be;
4794          * 1. Rx of packet.
4795          * 2. Tx complete.
4796          * 3. Link down.
4797          */
4798         reason = readq(&bar0->general_int_status);
4799
4800         if (unlikely(reason == S2IO_MINUS_ONE))
4801                 return IRQ_HANDLED;     /* Nothing much can be done. Get out */
4802
4803         if (reason &
4804             (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) {
4805                 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4806
4807                 if (config->napi) {
4808                         if (reason & GEN_INTR_RXTRAFFIC) {
4809                                 napi_schedule(&sp->napi);
4810                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4811                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4812                                 readl(&bar0->rx_traffic_int);
4813                         }
4814                 } else {
4815                         /*
4816                          * rx_traffic_int reg is an R1 register, writing all 1's
4817                          * will ensure that the actual interrupt causing bit
4818                          * get's cleared and hence a read can be avoided.
4819                          */
4820                         if (reason & GEN_INTR_RXTRAFFIC)
4821                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4822
4823                         for (i = 0; i < config->rx_ring_num; i++) {
4824                                 struct ring_info *ring = &mac_control->rings[i];
4825
4826                                 rx_intr_handler(ring, 0);
4827                         }
4828                 }
4829
4830                 /*
4831                  * tx_traffic_int reg is an R1 register, writing all 1's
4832                  * will ensure that the actual interrupt causing bit get's
4833                  * cleared and hence a read can be avoided.
4834                  */
4835                 if (reason & GEN_INTR_TXTRAFFIC)
4836                         writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4837
4838                 for (i = 0; i < config->tx_fifo_num; i++)
4839                         tx_intr_handler(&mac_control->fifos[i]);
4840
4841                 if (reason & GEN_INTR_TXPIC)
4842                         s2io_txpic_intr_handle(sp);
4843
4844                 /*
4845                  * Reallocate the buffers from the interrupt handler itself.
4846                  */
4847                 if (!config->napi) {
4848                         for (i = 0; i < config->rx_ring_num; i++) {
4849                                 struct ring_info *ring = &mac_control->rings[i];
4850
4851                                 s2io_chk_rx_buffers(sp, ring);
4852                         }
4853                 }
4854                 writeq(sp->general_int_mask, &bar0->general_int_mask);
4855                 readl(&bar0->general_int_status);
4856
4857                 return IRQ_HANDLED;
4858
4859         } else if (!reason) {
4860                 /* The interrupt was not raised by us */
4861                 return IRQ_NONE;
4862         }
4863
4864         return IRQ_HANDLED;
4865 }
4866
4867 /**
4868  * s2io_updt_stats -
4869  */
4870 static void s2io_updt_stats(struct s2io_nic *sp)
4871 {
4872         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4873         u64 val64;
4874         int cnt = 0;
4875
4876         if (is_s2io_card_up(sp)) {
4877                 /* Apprx 30us on a 133 MHz bus */
4878                 val64 = SET_UPDT_CLICKS(10) |
4879                         STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4880                 writeq(val64, &bar0->stat_cfg);
4881                 do {
4882                         udelay(100);
4883                         val64 = readq(&bar0->stat_cfg);
4884                         if (!(val64 & s2BIT(0)))
4885                                 break;
4886                         cnt++;
4887                         if (cnt == 5)
4888                                 break; /* Updt failed */
4889                 } while (1);
4890         }
4891 }
4892
4893 /**
4894  *  s2io_get_stats - Updates the device statistics structure.
4895  *  @dev : pointer to the device structure.
4896  *  Description:
4897  *  This function updates the device statistics structure in the s2io_nic
4898  *  structure and returns a pointer to the same.
4899  *  Return value:
4900  *  pointer to the updated net_device_stats structure.
4901  */
4902 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4903 {
4904         struct s2io_nic *sp = netdev_priv(dev);
4905         struct mac_info *mac_control = &sp->mac_control;
4906         struct stat_block *stats = mac_control->stats_info;
4907         u64 delta;
4908
4909         /* Configure Stats for immediate updt */
4910         s2io_updt_stats(sp);
4911
4912         /* A device reset will cause the on-adapter statistics to be zero'ed.
4913          * This can be done while running by changing the MTU.  To prevent the
4914          * system from having the stats zero'ed, the driver keeps a copy of the
4915          * last update to the system (which is also zero'ed on reset).  This
4916          * enables the driver to accurately know the delta between the last
4917          * update and the current update.
4918          */
4919         delta = ((u64) le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
4920                 le32_to_cpu(stats->rmac_vld_frms)) - sp->stats.rx_packets;
4921         sp->stats.rx_packets += delta;
4922         dev->stats.rx_packets += delta;
4923
4924         delta = ((u64) le32_to_cpu(stats->tmac_frms_oflow) << 32 |
4925                 le32_to_cpu(stats->tmac_frms)) - sp->stats.tx_packets;
4926         sp->stats.tx_packets += delta;
4927         dev->stats.tx_packets += delta;
4928
4929         delta = ((u64) le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
4930                 le32_to_cpu(stats->rmac_data_octets)) - sp->stats.rx_bytes;
4931         sp->stats.rx_bytes += delta;
4932         dev->stats.rx_bytes += delta;
4933
4934         delta = ((u64) le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
4935                 le32_to_cpu(stats->tmac_data_octets)) - sp->stats.tx_bytes;
4936         sp->stats.tx_bytes += delta;
4937         dev->stats.tx_bytes += delta;
4938
4939         delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_errors;
4940         sp->stats.rx_errors += delta;
4941         dev->stats.rx_errors += delta;
4942
4943         delta = ((u64) le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
4944                 le32_to_cpu(stats->tmac_any_err_frms)) - sp->stats.tx_errors;
4945         sp->stats.tx_errors += delta;
4946         dev->stats.tx_errors += delta;
4947
4948         delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_dropped;
4949         sp->stats.rx_dropped += delta;
4950         dev->stats.rx_dropped += delta;
4951
4952         delta = le64_to_cpu(stats->tmac_drop_frms) - sp->stats.tx_dropped;
4953         sp->stats.tx_dropped += delta;
4954         dev->stats.tx_dropped += delta;
4955
4956         /* The adapter MAC interprets pause frames as multicast packets, but
4957          * does not pass them up.  This erroneously increases the multicast
4958          * packet count and needs to be deducted when the multicast frame count
4959          * is queried.
4960          */
4961         delta = (u64) le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
4962                 le32_to_cpu(stats->rmac_vld_mcst_frms);
4963         delta -= le64_to_cpu(stats->rmac_pause_ctrl_frms);
4964         delta -= sp->stats.multicast;
4965         sp->stats.multicast += delta;
4966         dev->stats.multicast += delta;
4967
4968         delta = ((u64) le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
4969                 le32_to_cpu(stats->rmac_usized_frms)) +
4970                 le64_to_cpu(stats->rmac_long_frms) - sp->stats.rx_length_errors;
4971         sp->stats.rx_length_errors += delta;
4972         dev->stats.rx_length_errors += delta;
4973
4974         delta = le64_to_cpu(stats->rmac_fcs_err_frms) - sp->stats.rx_crc_errors;
4975         sp->stats.rx_crc_errors += delta;
4976         dev->stats.rx_crc_errors += delta;
4977
4978         return &dev->stats;
4979 }
4980
4981 /**
4982  *  s2io_set_multicast - entry point for multicast address enable/disable.
4983  *  @dev : pointer to the device structure
4984  *  Description:
4985  *  This function is a driver entry point which gets called by the kernel
4986  *  whenever multicast addresses must be enabled/disabled. This also gets
4987  *  called to set/reset promiscuous mode. Depending on the deivce flag, we
4988  *  determine, if multicast address must be enabled or if promiscuous mode
4989  *  is to be disabled etc.
4990  *  Return value:
4991  *  void.
4992  */
4993
4994 static void s2io_set_multicast(struct net_device *dev)
4995 {
4996         int i, j, prev_cnt;
4997         struct netdev_hw_addr *ha;
4998         struct s2io_nic *sp = netdev_priv(dev);
4999         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5000         u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
5001                 0xfeffffffffffULL;
5002         u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
5003         void __iomem *add;
5004         struct config_param *config = &sp->config;
5005
5006         if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
5007                 /*  Enable all Multicast addresses */
5008                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
5009                        &bar0->rmac_addr_data0_mem);
5010                 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
5011                        &bar0->rmac_addr_data1_mem);
5012                 val64 = RMAC_ADDR_CMD_MEM_WE |
5013                         RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5014                         RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
5015                 writeq(val64, &bar0->rmac_addr_cmd_mem);
5016                 /* Wait till command completes */
5017                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5018                                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5019                                       S2IO_BIT_RESET);
5020
5021                 sp->m_cast_flg = 1;
5022                 sp->all_multi_pos = config->max_mc_addr - 1;
5023         } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
5024                 /*  Disable all Multicast addresses */
5025                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5026                        &bar0->rmac_addr_data0_mem);
5027                 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
5028                        &bar0->rmac_addr_data1_mem);
5029                 val64 = RMAC_ADDR_CMD_MEM_WE |
5030                         RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5031                         RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
5032                 writeq(val64, &bar0->rmac_addr_cmd_mem);
5033                 /* Wait till command completes */
5034                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5035                                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5036                                       S2IO_BIT_RESET);
5037
5038                 sp->m_cast_flg = 0;
5039                 sp->all_multi_pos = 0;
5040         }
5041
5042         if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
5043                 /*  Put the NIC into promiscuous mode */
5044                 add = &bar0->mac_cfg;
5045                 val64 = readq(&bar0->mac_cfg);
5046                 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
5047
5048                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5049                 writel((u32)val64, add);
5050                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5051                 writel((u32) (val64 >> 32), (add + 4));
5052
5053                 if (vlan_tag_strip != 1) {
5054                         val64 = readq(&bar0->rx_pa_cfg);
5055                         val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5056                         writeq(val64, &bar0->rx_pa_cfg);
5057                         sp->vlan_strip_flag = 0;
5058                 }
5059
5060                 val64 = readq(&bar0->mac_cfg);
5061                 sp->promisc_flg = 1;
5062                 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
5063                           dev->name);
5064         } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5065                 /*  Remove the NIC from promiscuous mode */
5066                 add = &bar0->mac_cfg;
5067                 val64 = readq(&bar0->mac_cfg);
5068                 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5069
5070                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5071                 writel((u32)val64, add);
5072                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5073                 writel((u32) (val64 >> 32), (add + 4));
5074
5075                 if (vlan_tag_strip != 0) {
5076                         val64 = readq(&bar0->rx_pa_cfg);
5077                         val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5078                         writeq(val64, &bar0->rx_pa_cfg);
5079                         sp->vlan_strip_flag = 1;
5080                 }
5081
5082                 val64 = readq(&bar0->mac_cfg);
5083                 sp->promisc_flg = 0;
5084                 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name);
5085         }
5086
5087         /*  Update individual M_CAST address list */
5088         if ((!sp->m_cast_flg) && netdev_mc_count(dev)) {
5089                 if (netdev_mc_count(dev) >
5090                     (config->max_mc_addr - config->max_mac_addr)) {
5091                         DBG_PRINT(ERR_DBG,
5092                                   "%s: No more Rx filters can be added - "
5093                                   "please enable ALL_MULTI instead\n",
5094                                   dev->name);
5095                         return;
5096                 }
5097
5098                 prev_cnt = sp->mc_addr_count;
5099                 sp->mc_addr_count = netdev_mc_count(dev);
5100
5101                 /* Clear out the previous list of Mc in the H/W. */
5102                 for (i = 0; i < prev_cnt; i++) {
5103                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5104                                &bar0->rmac_addr_data0_mem);
5105                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5106                                &bar0->rmac_addr_data1_mem);
5107                         val64 = RMAC_ADDR_CMD_MEM_WE |
5108                                 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5109                                 RMAC_ADDR_CMD_MEM_OFFSET
5110                                 (config->mc_start_offset + i);
5111                         writeq(val64, &bar0->rmac_addr_cmd_mem);
5112
5113                         /* Wait for command completes */
5114                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5115                                                   RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5116                                                   S2IO_BIT_RESET)) {
5117                                 DBG_PRINT(ERR_DBG,
5118                                           "%s: Adding Multicasts failed\n",
5119                                           dev->name);
5120                                 return;
5121                         }
5122                 }
5123
5124                 /* Create the new Rx filter list and update the same in H/W. */
5125                 i = 0;
5126                 netdev_for_each_mc_addr(ha, dev) {
5127                         mac_addr = 0;
5128                         for (j = 0; j < ETH_ALEN; j++) {
5129                                 mac_addr |= ha->addr[j];
5130                                 mac_addr <<= 8;
5131                         }
5132                         mac_addr >>= 8;
5133                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5134                                &bar0->rmac_addr_data0_mem);
5135                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5136                                &bar0->rmac_addr_data1_mem);
5137                         val64 = RMAC_ADDR_CMD_MEM_WE |
5138                                 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5139                                 RMAC_ADDR_CMD_MEM_OFFSET
5140                                 (i + config->mc_start_offset);
5141                         writeq(val64, &bar0->rmac_addr_cmd_mem);
5142
5143                         /* Wait for command completes */
5144                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5145                                                   RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5146                                                   S2IO_BIT_RESET)) {
5147                                 DBG_PRINT(ERR_DBG,
5148                                           "%s: Adding Multicasts failed\n",
5149                                           dev->name);
5150                                 return;
5151                         }
5152                         i++;
5153                 }
5154         }
5155 }
5156
5157 /* read from CAM unicast & multicast addresses and store it in
5158  * def_mac_addr structure
5159  */
5160 static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5161 {
5162         int offset;
5163         u64 mac_addr = 0x0;
5164         struct config_param *config = &sp->config;
5165
5166         /* store unicast & multicast mac addresses */
5167         for (offset = 0; offset < config->max_mc_addr; offset++) {
5168                 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5169                 /* if read fails disable the entry */
5170                 if (mac_addr == FAILURE)
5171                         mac_addr = S2IO_DISABLE_MAC_ENTRY;
5172                 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5173         }
5174 }
5175
5176 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5177 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5178 {
5179         int offset;
5180         struct config_param *config = &sp->config;
5181         /* restore unicast mac address */
5182         for (offset = 0; offset < config->max_mac_addr; offset++)
5183                 do_s2io_prog_unicast(sp->dev,
5184                                      sp->def_mac_addr[offset].mac_addr);
5185
5186         /* restore multicast mac address */
5187         for (offset = config->mc_start_offset;
5188              offset < config->max_mc_addr; offset++)
5189                 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5190 }
5191
5192 /* add a multicast MAC address to CAM */
5193 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5194 {
5195         int i;
5196         u64 mac_addr = 0;
5197         struct config_param *config = &sp->config;
5198
5199         for (i = 0; i < ETH_ALEN; i++) {
5200                 mac_addr <<= 8;
5201                 mac_addr |= addr[i];
5202         }
5203         if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5204                 return SUCCESS;
5205
5206         /* check if the multicast mac already preset in CAM */
5207         for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5208                 u64 tmp64;
5209                 tmp64 = do_s2io_read_unicast_mc(sp, i);
5210                 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5211                         break;
5212
5213                 if (tmp64 == mac_addr)
5214                         return SUCCESS;
5215         }
5216         if (i == config->max_mc_addr) {
5217                 DBG_PRINT(ERR_DBG,
5218                           "CAM full no space left for multicast MAC\n");
5219                 return FAILURE;
5220         }
5221         /* Update the internal structure with this new mac address */
5222         do_s2io_copy_mac_addr(sp, i, mac_addr);
5223
5224         return do_s2io_add_mac(sp, mac_addr, i);
5225 }
5226
5227 /* add MAC address to CAM */
5228 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5229 {
5230         u64 val64;
5231         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5232
5233         writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5234                &bar0->rmac_addr_data0_mem);
5235
5236         val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5237                 RMAC_ADDR_CMD_MEM_OFFSET(off);
5238         writeq(val64, &bar0->rmac_addr_cmd_mem);
5239
5240         /* Wait till command completes */
5241         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5242                                   RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5243                                   S2IO_BIT_RESET)) {
5244                 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5245                 return FAILURE;
5246         }
5247         return SUCCESS;
5248 }
5249 /* deletes a specified unicast/multicast mac entry from CAM */
5250 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5251 {
5252         int offset;
5253         u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5254         struct config_param *config = &sp->config;
5255
5256         for (offset = 1;
5257              offset < config->max_mc_addr; offset++) {
5258                 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5259                 if (tmp64 == addr) {
5260                         /* disable the entry by writing  0xffffffffffffULL */
5261                         if (do_s2io_add_mac(sp, dis_addr, offset) ==  FAILURE)
5262                                 return FAILURE;
5263                         /* store the new mac list from CAM */
5264                         do_s2io_store_unicast_mc(sp);
5265                         return SUCCESS;
5266                 }
5267         }
5268         DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5269                   (unsigned long long)addr);
5270         return FAILURE;
5271 }
5272
5273 /* read mac entries from CAM */
5274 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5275 {
5276         u64 tmp64 = 0xffffffffffff0000ULL, val64;
5277         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5278
5279         /* read mac addr */
5280         val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5281                 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5282         writeq(val64, &bar0->rmac_addr_cmd_mem);
5283
5284         /* Wait till command completes */
5285         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5286                                   RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5287                                   S2IO_BIT_RESET)) {
5288                 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5289                 return FAILURE;
5290         }
5291         tmp64 = readq(&bar0->rmac_addr_data0_mem);
5292
5293         return tmp64 >> 16;
5294 }
5295
5296 /**
5297  * s2io_set_mac_addr driver entry point
5298  */
5299
5300 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5301 {
5302         struct sockaddr *addr = p;
5303
5304         if (!is_valid_ether_addr(addr->sa_data))
5305                 return -EINVAL;
5306
5307         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5308
5309         /* store the MAC address in CAM */
5310         return do_s2io_prog_unicast(dev, dev->dev_addr);
5311 }
5312 /**
5313  *  do_s2io_prog_unicast - Programs the Xframe mac address
5314  *  @dev : pointer to the device structure.
5315  *  @addr: a uchar pointer to the new mac address which is to be set.
5316  *  Description : This procedure will program the Xframe to receive
5317  *  frames with new Mac Address
5318  *  Return value: SUCCESS on success and an appropriate (-)ve integer
5319  *  as defined in errno.h file on failure.
5320  */
5321
5322 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5323 {
5324         struct s2io_nic *sp = netdev_priv(dev);
5325         register u64 mac_addr = 0, perm_addr = 0;
5326         int i;
5327         u64 tmp64;
5328         struct config_param *config = &sp->config;
5329
5330         /*
5331          * Set the new MAC address as the new unicast filter and reflect this
5332          * change on the device address registered with the OS. It will be
5333          * at offset 0.
5334          */
5335         for (i = 0; i < ETH_ALEN; i++) {
5336                 mac_addr <<= 8;
5337                 mac_addr |= addr[i];
5338                 perm_addr <<= 8;
5339                 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5340         }
5341
5342         /* check if the dev_addr is different than perm_addr */
5343         if (mac_addr == perm_addr)
5344                 return SUCCESS;
5345
5346         /* check if the mac already preset in CAM */
5347         for (i = 1; i < config->max_mac_addr; i++) {
5348                 tmp64 = do_s2io_read_unicast_mc(sp, i);
5349                 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5350                         break;
5351
5352                 if (tmp64 == mac_addr) {
5353                         DBG_PRINT(INFO_DBG,
5354                                   "MAC addr:0x%llx already present in CAM\n",
5355                                   (unsigned long long)mac_addr);
5356                         return SUCCESS;
5357                 }
5358         }
5359         if (i == config->max_mac_addr) {
5360                 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5361                 return FAILURE;
5362         }
5363         /* Update the internal structure with this new mac address */
5364         do_s2io_copy_mac_addr(sp, i, mac_addr);
5365
5366         return do_s2io_add_mac(sp, mac_addr, i);
5367 }
5368
5369 /**
5370  * s2io_ethtool_sset - Sets different link parameters.
5371  * @sp : private member of the device structure, which is a pointer to the  * s2io_nic structure.
5372  * @info: pointer to the structure with parameters given by ethtool to set
5373  * link information.
5374  * Description:
5375  * The function sets different link parameters provided by the user onto
5376  * the NIC.
5377  * Return value:
5378  * 0 on success.
5379  */
5380
5381 static int s2io_ethtool_sset(struct net_device *dev,
5382                              struct ethtool_cmd *info)
5383 {
5384         struct s2io_nic *sp = netdev_priv(dev);
5385         if ((info->autoneg == AUTONEG_ENABLE) ||
5386             (info->speed != SPEED_10000) ||
5387             (info->duplex != DUPLEX_FULL))
5388                 return -EINVAL;
5389         else {
5390                 s2io_close(sp->dev);
5391                 s2io_open(sp->dev);
5392         }
5393
5394         return 0;
5395 }
5396
5397 /**
5398  * s2io_ethtol_gset - Return link specific information.
5399  * @sp : private member of the device structure, pointer to the
5400  *      s2io_nic structure.
5401  * @info : pointer to the structure with parameters given by ethtool
5402  * to return link information.
5403  * Description:
5404  * Returns link specific information like speed, duplex etc.. to ethtool.
5405  * Return value :
5406  * return 0 on success.
5407  */
5408
5409 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5410 {
5411         struct s2io_nic *sp = netdev_priv(dev);
5412         info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5413         info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5414         info->port = PORT_FIBRE;
5415
5416         /* info->transceiver */
5417         info->transceiver = XCVR_EXTERNAL;
5418
5419         if (netif_carrier_ok(sp->dev)) {
5420                 info->speed = 10000;
5421                 info->duplex = DUPLEX_FULL;
5422         } else {
5423                 info->speed = -1;
5424                 info->duplex = -1;
5425         }
5426
5427         info->autoneg = AUTONEG_DISABLE;
5428         return 0;
5429 }
5430
5431 /**
5432  * s2io_ethtool_gdrvinfo - Returns driver specific information.
5433  * @sp : private member of the device structure, which is a pointer to the
5434  * s2io_nic structure.
5435  * @info : pointer to the structure with parameters given by ethtool to
5436  * return driver information.
5437  * Description:
5438  * Returns driver specefic information like name, version etc.. to ethtool.
5439  * Return value:
5440  *  void
5441  */
5442
5443 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5444                                   struct ethtool_drvinfo *info)
5445 {
5446         struct s2io_nic *sp = netdev_priv(dev);
5447
5448         strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5449         strncpy(info->version, s2io_driver_version, sizeof(info->version));
5450         strncpy(info->fw_version, "", sizeof(info->fw_version));
5451         strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5452         info->regdump_len = XENA_REG_SPACE;
5453         info->eedump_len = XENA_EEPROM_SPACE;
5454 }
5455
5456 /**
5457  *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5458  *  @sp: private member of the device structure, which is a pointer to the
5459  *  s2io_nic structure.
5460  *  @regs : pointer to the structure with parameters given by ethtool for
5461  *  dumping the registers.
5462  *  @reg_space: The input argumnet into which all the registers are dumped.
5463  *  Description:
5464  *  Dumps the entire register space of xFrame NIC into the user given
5465  *  buffer area.
5466  * Return value :
5467  * void .
5468  */
5469
5470 static void s2io_ethtool_gregs(struct net_device *dev,
5471                                struct ethtool_regs *regs, void *space)
5472 {
5473         int i;
5474         u64 reg;
5475         u8 *reg_space = (u8 *)space;
5476         struct s2io_nic *sp = netdev_priv(dev);
5477
5478         regs->len = XENA_REG_SPACE;
5479         regs->version = sp->pdev->subsystem_device;
5480
5481         for (i = 0; i < regs->len; i += 8) {
5482                 reg = readq(sp->bar0 + i);
5483                 memcpy((reg_space + i), &reg, 8);
5484         }
5485 }
5486
5487 /*
5488  *  s2io_set_led - control NIC led
5489  */
5490 static void s2io_set_led(struct s2io_nic *sp, bool on)
5491 {
5492         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5493         u16 subid = sp->pdev->subsystem_device;
5494         u64 val64;
5495
5496         if ((sp->device_type == XFRAME_II_DEVICE) ||
5497             ((subid & 0xFF) >= 0x07)) {
5498                 val64 = readq(&bar0->gpio_control);
5499                 if (on)
5500                         val64 |= GPIO_CTRL_GPIO_0;
5501                 else
5502                         val64 &= ~GPIO_CTRL_GPIO_0;
5503
5504                 writeq(val64, &bar0->gpio_control);
5505         } else {
5506                 val64 = readq(&bar0->adapter_control);
5507                 if (on)
5508                         val64 |= ADAPTER_LED_ON;
5509                 else
5510                         val64 &= ~ADAPTER_LED_ON;
5511
5512                 writeq(val64, &bar0->adapter_control);
5513         }
5514
5515 }
5516
5517 /**
5518  * s2io_ethtool_set_led - To physically identify the nic on the system.
5519  * @dev : network device
5520  * @state: led setting
5521  *
5522  * Description: Used to physically identify the NIC on the system.
5523  * The Link LED will blink for a time specified by the user for
5524  * identification.
5525  * NOTE: The Link has to be Up to be able to blink the LED. Hence
5526  * identification is possible only if it's link is up.
5527  */
5528
5529 static int s2io_ethtool_set_led(struct net_device *dev,
5530                                 enum ethtool_phys_id_state state)
5531 {
5532         struct s2io_nic *sp = netdev_priv(dev);
5533         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5534         u16 subid = sp->pdev->subsystem_device;
5535
5536         if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) {
5537                 u64 val64 = readq(&bar0->adapter_control);
5538                 if (!(val64 & ADAPTER_CNTL_EN)) {
5539                         pr_err("Adapter Link down, cannot blink LED\n");
5540                         return -EAGAIN;
5541                 }
5542         }
5543
5544         switch (state) {
5545         case ETHTOOL_ID_ACTIVE:
5546                 sp->adapt_ctrl_org = readq(&bar0->gpio_control);
5547                 return -EINVAL;
5548
5549         case ETHTOOL_ID_ON:
5550                 s2io_set_led(sp, true);
5551                 break;
5552
5553         case ETHTOOL_ID_OFF:
5554                 s2io_set_led(sp, false);
5555                 break;
5556
5557         case ETHTOOL_ID_INACTIVE:
5558                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid))
5559                         writeq(sp->adapt_ctrl_org, &bar0->gpio_control);
5560         }
5561
5562         return 0;
5563 }
5564
5565 static void s2io_ethtool_gringparam(struct net_device *dev,
5566                                     struct ethtool_ringparam *ering)
5567 {
5568         struct s2io_nic *sp = netdev_priv(dev);
5569         int i, tx_desc_count = 0, rx_desc_count = 0;
5570
5571         if (sp->rxd_mode == RXD_MODE_1) {
5572                 ering->rx_max_pending = MAX_RX_DESC_1;
5573                 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5574         } else {
5575                 ering->rx_max_pending = MAX_RX_DESC_2;
5576                 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5577         }
5578
5579         ering->rx_mini_max_pending = 0;
5580         ering->tx_max_pending = MAX_TX_DESC;
5581
5582         for (i = 0; i < sp->config.rx_ring_num; i++)
5583                 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5584         ering->rx_pending = rx_desc_count;
5585         ering->rx_jumbo_pending = rx_desc_count;
5586         ering->rx_mini_pending = 0;
5587
5588         for (i = 0; i < sp->config.tx_fifo_num; i++)
5589                 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5590         ering->tx_pending = tx_desc_count;
5591         DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds);
5592 }
5593
5594 /**
5595  * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5596  * @sp : private member of the device structure, which is a pointer to the
5597  *      s2io_nic structure.
5598  * @ep : pointer to the structure with pause parameters given by ethtool.
5599  * Description:
5600  * Returns the Pause frame generation and reception capability of the NIC.
5601  * Return value:
5602  *  void
5603  */
5604 static void s2io_ethtool_getpause_data(struct net_device *dev,
5605                                        struct ethtool_pauseparam *ep)
5606 {
5607         u64 val64;
5608         struct s2io_nic *sp = netdev_priv(dev);
5609         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5610
5611         val64 = readq(&bar0->rmac_pause_cfg);
5612         if (val64 & RMAC_PAUSE_GEN_ENABLE)
5613                 ep->tx_pause = true;
5614         if (val64 & RMAC_PAUSE_RX_ENABLE)
5615                 ep->rx_pause = true;
5616         ep->autoneg = false;
5617 }
5618
5619 /**
5620  * s2io_ethtool_setpause_data -  set/reset pause frame generation.
5621  * @sp : private member of the device structure, which is a pointer to the
5622  *      s2io_nic structure.
5623  * @ep : pointer to the structure with pause parameters given by ethtool.
5624  * Description:
5625  * It can be used to set or reset Pause frame generation or reception
5626  * support of the NIC.
5627  * Return value:
5628  * int, returns 0 on Success
5629  */
5630
5631 static int s2io_ethtool_setpause_data(struct net_device *dev,
5632                                       struct ethtool_pauseparam *ep)
5633 {
5634         u64 val64;
5635         struct s2io_nic *sp = netdev_priv(dev);
5636         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5637
5638         val64 = readq(&bar0->rmac_pause_cfg);
5639         if (ep->tx_pause)
5640                 val64 |= RMAC_PAUSE_GEN_ENABLE;
5641         else
5642                 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5643         if (ep->rx_pause)
5644                 val64 |= RMAC_PAUSE_RX_ENABLE;
5645         else
5646                 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5647         writeq(val64, &bar0->rmac_pause_cfg);
5648         return 0;
5649 }
5650
5651 /**
5652  * read_eeprom - reads 4 bytes of data from user given offset.
5653  * @sp : private member of the device structure, which is a pointer to the
5654  *      s2io_nic structure.
5655  * @off : offset at which the data must be written
5656  * @data : Its an output parameter where the data read at the given
5657  *      offset is stored.
5658  * Description:
5659  * Will read 4 bytes of data from the user given offset and return the
5660  * read data.
5661  * NOTE: Will allow to read only part of the EEPROM visible through the
5662  *   I2C bus.
5663  * Return value:
5664  *  -1 on failure and 0 on success.
5665  */
5666
5667 #define S2IO_DEV_ID             5
5668 static int read_eeprom(struct s2io_nic *sp, int off, u64 *data)
5669 {
5670         int ret = -1;
5671         u32 exit_cnt = 0;
5672         u64 val64;
5673         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5674
5675         if (sp->device_type == XFRAME_I_DEVICE) {
5676                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5677                         I2C_CONTROL_ADDR(off) |
5678                         I2C_CONTROL_BYTE_CNT(0x3) |
5679                         I2C_CONTROL_READ |
5680                         I2C_CONTROL_CNTL_START;
5681                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5682
5683                 while (exit_cnt < 5) {
5684                         val64 = readq(&bar0->i2c_control);
5685                         if (I2C_CONTROL_CNTL_END(val64)) {
5686                                 *data = I2C_CONTROL_GET_DATA(val64);
5687                                 ret = 0;
5688                                 break;
5689                         }
5690                         msleep(50);
5691                         exit_cnt++;
5692                 }
5693         }
5694
5695         if (sp->device_type == XFRAME_II_DEVICE) {
5696                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5697                         SPI_CONTROL_BYTECNT(0x3) |
5698                         SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5699                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5700                 val64 |= SPI_CONTROL_REQ;
5701                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5702                 while (exit_cnt < 5) {
5703                         val64 = readq(&bar0->spi_control);
5704                         if (val64 & SPI_CONTROL_NACK) {
5705                                 ret = 1;
5706                                 break;
5707                         } else if (val64 & SPI_CONTROL_DONE) {
5708                                 *data = readq(&bar0->spi_data);
5709                                 *data &= 0xffffff;
5710                                 ret = 0;
5711                                 break;
5712                         }
5713                         msleep(50);
5714                         exit_cnt++;
5715                 }
5716         }
5717         return ret;
5718 }
5719
5720 /**
5721  *  write_eeprom - actually writes the relevant part of the data value.
5722  *  @sp : private member of the device structure, which is a pointer to the
5723  *       s2io_nic structure.
5724  *  @off : offset at which the data must be written
5725  *  @data : The data that is to be written
5726  *  @cnt : Number of bytes of the data that are actually to be written into
5727  *  the Eeprom. (max of 3)
5728  * Description:
5729  *  Actually writes the relevant part of the data value into the Eeprom
5730  *  through the I2C bus.
5731  * Return value:
5732  *  0 on success, -1 on failure.
5733  */
5734
5735 static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt)
5736 {
5737         int exit_cnt = 0, ret = -1;
5738         u64 val64;
5739         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5740
5741         if (sp->device_type == XFRAME_I_DEVICE) {
5742                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5743                         I2C_CONTROL_ADDR(off) |
5744                         I2C_CONTROL_BYTE_CNT(cnt) |
5745                         I2C_CONTROL_SET_DATA((u32)data) |
5746                         I2C_CONTROL_CNTL_START;
5747                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5748
5749                 while (exit_cnt < 5) {
5750                         val64 = readq(&bar0->i2c_control);
5751                         if (I2C_CONTROL_CNTL_END(val64)) {
5752                                 if (!(val64 & I2C_CONTROL_NACK))
5753                                         ret = 0;
5754                                 break;
5755                         }
5756                         msleep(50);
5757                         exit_cnt++;
5758                 }
5759         }
5760
5761         if (sp->device_type == XFRAME_II_DEVICE) {
5762                 int write_cnt = (cnt == 8) ? 0 : cnt;
5763                 writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data);
5764
5765                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5766                         SPI_CONTROL_BYTECNT(write_cnt) |
5767                         SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5768                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5769                 val64 |= SPI_CONTROL_REQ;
5770                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5771                 while (exit_cnt < 5) {
5772                         val64 = readq(&bar0->spi_control);
5773                         if (val64 & SPI_CONTROL_NACK) {
5774                                 ret = 1;
5775                                 break;
5776                         } else if (val64 & SPI_CONTROL_DONE) {
5777                                 ret = 0;
5778                                 break;
5779                         }
5780                         msleep(50);
5781                         exit_cnt++;
5782                 }
5783         }
5784         return ret;
5785 }
5786 static void s2io_vpd_read(struct s2io_nic *nic)
5787 {
5788         u8 *vpd_data;
5789         u8 data;
5790         int i = 0, cnt, len, fail = 0;
5791         int vpd_addr = 0x80;
5792         struct swStat *swstats = &nic->mac_control.stats_info->sw_stat;
5793
5794         if (nic->device_type == XFRAME_II_DEVICE) {
5795                 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5796                 vpd_addr = 0x80;
5797         } else {
5798                 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5799                 vpd_addr = 0x50;
5800         }
5801         strcpy(nic->serial_num, "NOT AVAILABLE");
5802
5803         vpd_data = kmalloc(256, GFP_KERNEL);
5804         if (!vpd_data) {
5805                 swstats->mem_alloc_fail_cnt++;
5806                 return;
5807         }
5808         swstats->mem_allocated += 256;
5809
5810         for (i = 0; i < 256; i += 4) {
5811                 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5812                 pci_read_config_byte(nic->pdev,  (vpd_addr + 2), &data);
5813                 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5814                 for (cnt = 0; cnt < 5; cnt++) {
5815                         msleep(2);
5816                         pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5817                         if (data == 0x80)
5818                                 break;
5819                 }
5820                 if (cnt >= 5) {
5821                         DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5822                         fail = 1;
5823                         break;
5824                 }
5825                 pci_read_config_dword(nic->pdev,  (vpd_addr + 4),
5826                                       (u32 *)&vpd_data[i]);
5827         }
5828
5829         if (!fail) {
5830                 /* read serial number of adapter */
5831                 for (cnt = 0; cnt < 252; cnt++) {
5832                         if ((vpd_data[cnt] == 'S') &&
5833                             (vpd_data[cnt+1] == 'N')) {
5834                                 len = vpd_data[cnt+2];
5835                                 if (len < min(VPD_STRING_LEN, 256-cnt-2)) {
5836                                         memcpy(nic->serial_num,
5837                                                &vpd_data[cnt + 3],
5838                                                len);
5839                                         memset(nic->serial_num+len,
5840                                                0,
5841                                                VPD_STRING_LEN-len);
5842                                         break;
5843                                 }
5844                         }
5845                 }
5846         }
5847
5848         if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5849                 len = vpd_data[1];
5850                 memcpy(nic->product_name, &vpd_data[3], len);
5851                 nic->product_name[len] = 0;
5852         }
5853         kfree(vpd_data);
5854         swstats->mem_freed += 256;
5855 }
5856
5857 /**
5858  *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
5859  *  @sp : private member of the device structure, which is a pointer to the *       s2io_nic structure.
5860  *  @eeprom : pointer to the user level structure provided by ethtool,
5861  *  containing all relevant information.
5862  *  @data_buf : user defined value to be written into Eeprom.
5863  *  Description: Reads the values stored in the Eeprom at given offset
5864  *  for a given length. Stores these values int the input argument data
5865  *  buffer 'data_buf' and returns these to the caller (ethtool.)
5866  *  Return value:
5867  *  int  0 on success
5868  */
5869
5870 static int s2io_ethtool_geeprom(struct net_device *dev,
5871                                 struct ethtool_eeprom *eeprom, u8 * data_buf)
5872 {
5873         u32 i, valid;
5874         u64 data;
5875         struct s2io_nic *sp = netdev_priv(dev);
5876
5877         eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5878
5879         if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5880                 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5881
5882         for (i = 0; i < eeprom->len; i += 4) {
5883                 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5884                         DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5885                         return -EFAULT;
5886                 }
5887                 valid = INV(data);
5888                 memcpy((data_buf + i), &valid, 4);
5889         }
5890         return 0;
5891 }
5892
5893 /**
5894  *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5895  *  @sp : private member of the device structure, which is a pointer to the
5896  *  s2io_nic structure.
5897  *  @eeprom : pointer to the user level structure provided by ethtool,
5898  *  containing all relevant information.
5899  *  @data_buf ; user defined value to be written into Eeprom.
5900  *  Description:
5901  *  Tries to write the user provided value in the Eeprom, at the offset
5902  *  given by the user.
5903  *  Return value:
5904  *  0 on success, -EFAULT on failure.
5905  */
5906
5907 static int s2io_ethtool_seeprom(struct net_device *dev,
5908                                 struct ethtool_eeprom *eeprom,
5909                                 u8 *data_buf)
5910 {
5911         int len = eeprom->len, cnt = 0;
5912         u64 valid = 0, data;
5913         struct s2io_nic *sp = netdev_priv(dev);
5914
5915         if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5916                 DBG_PRINT(ERR_DBG,
5917                           "ETHTOOL_WRITE_EEPROM Err: "
5918                           "Magic value is wrong, it is 0x%x should be 0x%x\n",
5919                           (sp->pdev->vendor | (sp->pdev->device << 16)),
5920                           eeprom->magic);
5921                 return -EFAULT;
5922         }
5923
5924         while (len) {
5925                 data = (u32)data_buf[cnt] & 0x000000FF;
5926                 if (data)
5927                         valid = (u32)(data << 24);
5928                 else
5929                         valid = data;
5930
5931                 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5932                         DBG_PRINT(ERR_DBG,
5933                                   "ETHTOOL_WRITE_EEPROM Err: "
5934                                   "Cannot write into the specified offset\n");
5935                         return -EFAULT;
5936                 }
5937                 cnt++;
5938                 len--;
5939         }
5940
5941         return 0;
5942 }
5943
5944 /**
5945  * s2io_register_test - reads and writes into all clock domains.
5946  * @sp : private member of the device structure, which is a pointer to the
5947  * s2io_nic structure.
5948  * @data : variable that returns the result of each of the test conducted b
5949  * by the driver.
5950  * Description:
5951  * Read and write into all clock domains. The NIC has 3 clock domains,
5952  * see that registers in all the three regions are accessible.
5953  * Return value:
5954  * 0 on success.
5955  */
5956
5957 static int s2io_register_test(struct s2io_nic *sp, uint64_t *data)
5958 {
5959         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5960         u64 val64 = 0, exp_val;
5961         int fail = 0;
5962
5963         val64 = readq(&bar0->pif_rd_swapper_fb);
5964         if (val64 != 0x123456789abcdefULL) {
5965                 fail = 1;
5966                 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1);
5967         }
5968
5969         val64 = readq(&bar0->rmac_pause_cfg);
5970         if (val64 != 0xc000ffff00000000ULL) {
5971                 fail = 1;
5972                 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2);
5973         }
5974
5975         val64 = readq(&bar0->rx_queue_cfg);
5976         if (sp->device_type == XFRAME_II_DEVICE)
5977                 exp_val = 0x0404040404040404ULL;
5978         else
5979                 exp_val = 0x0808080808080808ULL;
5980         if (val64 != exp_val) {
5981                 fail = 1;
5982                 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3);
5983         }
5984
5985         val64 = readq(&bar0->xgxs_efifo_cfg);
5986         if (val64 != 0x000000001923141EULL) {
5987                 fail = 1;
5988                 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4);
5989         }
5990
5991         val64 = 0x5A5A5A5A5A5A5A5AULL;
5992         writeq(val64, &bar0->xmsi_data);
5993         val64 = readq(&bar0->xmsi_data);
5994         if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5995                 fail = 1;
5996                 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1);
5997         }
5998
5999         val64 = 0xA5A5A5A5A5A5A5A5ULL;
6000         writeq(val64, &bar0->xmsi_data);
6001         val64 = readq(&bar0->xmsi_data);
6002         if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
6003                 fail = 1;
6004                 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2);
6005         }
6006
6007         *data = fail;
6008         return fail;
6009 }
6010
6011 /**
6012  * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
6013  * @sp : private member of the device structure, which is a pointer to the
6014  * s2io_nic structure.
6015  * @data:variable that returns the result of each of the test conducted by
6016  * the driver.
6017  * Description:
6018  * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
6019  * register.
6020  * Return value:
6021  * 0 on success.
6022  */
6023
6024 static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data)
6025 {
6026         int fail = 0;
6027         u64 ret_data, org_4F0, org_7F0;
6028         u8 saved_4F0 = 0, saved_7F0 = 0;
6029         struct net_device *dev = sp->dev;
6030
6031         /* Test Write Error at offset 0 */
6032         /* Note that SPI interface allows write access to all areas
6033          * of EEPROM. Hence doing all negative testing only for Xframe I.
6034          */
6035         if (sp->device_type == XFRAME_I_DEVICE)
6036                 if (!write_eeprom(sp, 0, 0, 3))
6037                         fail = 1;
6038
6039         /* Save current values at offsets 0x4F0 and 0x7F0 */
6040         if (!read_eeprom(sp, 0x4F0, &org_4F0))
6041                 saved_4F0 = 1;
6042         if (!read_eeprom(sp, 0x7F0, &org_7F0))
6043                 saved_7F0 = 1;
6044
6045         /* Test Write at offset 4f0 */
6046         if (write_eeprom(sp, 0x4F0, 0x012345, 3))
6047                 fail = 1;
6048         if (read_eeprom(sp, 0x4F0, &ret_data))
6049                 fail = 1;
6050
6051         if (ret_data != 0x012345) {
6052                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
6053                           "Data written %llx Data read %llx\n",
6054                           dev->name, (unsigned long long)0x12345,
6055                           (unsigned long long)ret_data);
6056                 fail = 1;
6057         }
6058
6059         /* Reset the EEPROM data go FFFF */
6060         write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
6061
6062         /* Test Write Request Error at offset 0x7c */
6063         if (sp->device_type == XFRAME_I_DEVICE)
6064                 if (!write_eeprom(sp, 0x07C, 0, 3))
6065                         fail = 1;
6066
6067         /* Test Write Request at offset 0x7f0 */
6068         if (write_eeprom(sp, 0x7F0, 0x012345, 3))
6069                 fail = 1;
6070         if (read_eeprom(sp, 0x7F0, &ret_data))
6071                 fail = 1;
6072
6073         if (ret_data != 0x012345) {
6074                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
6075                           "Data written %llx Data read %llx\n",
6076                           dev->name, (unsigned long long)0x12345,
6077                           (unsigned long long)ret_data);
6078                 fail = 1;
6079         }
6080
6081         /* Reset the EEPROM data go FFFF */
6082         write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
6083
6084         if (sp->device_type == XFRAME_I_DEVICE) {
6085                 /* Test Write Error at offset 0x80 */
6086                 if (!write_eeprom(sp, 0x080, 0, 3))
6087                         fail = 1;
6088
6089                 /* Test Write Error at offset 0xfc */
6090                 if (!write_eeprom(sp, 0x0FC, 0, 3))
6091                         fail = 1;
6092
6093                 /* Test Write Error at offset 0x100 */
6094                 if (!write_eeprom(sp, 0x100, 0, 3))
6095                         fail = 1;
6096
6097                 /* Test Write Error at offset 4ec */
6098                 if (!write_eeprom(sp, 0x4EC, 0, 3))
6099                         fail = 1;
6100         }
6101
6102         /* Restore values at offsets 0x4F0 and 0x7F0 */
6103         if (saved_4F0)
6104                 write_eeprom(sp, 0x4F0, org_4F0, 3);
6105         if (saved_7F0)
6106                 write_eeprom(sp, 0x7F0, org_7F0, 3);
6107
6108         *data = fail;
6109         return fail;
6110 }
6111
6112 /**
6113  * s2io_bist_test - invokes the MemBist test of the card .
6114  * @sp : private member of the device structure, which is a pointer to the
6115  * s2io_nic structure.
6116  * @data:variable that returns the result of each of the test conducted by
6117  * the driver.
6118  * Description:
6119  * This invokes the MemBist test of the card. We give around
6120  * 2 secs time for the Test to complete. If it's still not complete
6121  * within this peiod, we consider that the test failed.
6122  * Return value:
6123  * 0 on success and -1 on failure.
6124  */
6125
6126 static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data)
6127 {
6128         u8 bist = 0;
6129         int cnt = 0, ret = -1;
6130
6131         pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6132         bist |= PCI_BIST_START;
6133         pci_write_config_word(sp->pdev, PCI_BIST, bist);
6134
6135         while (cnt < 20) {
6136                 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6137                 if (!(bist & PCI_BIST_START)) {
6138                         *data = (bist & PCI_BIST_CODE_MASK);
6139                         ret = 0;
6140                         break;
6141                 }
6142                 msleep(100);
6143                 cnt++;
6144         }
6145
6146         return ret;
6147 }
6148
6149 /**
6150  * s2io-link_test - verifies the link state of the nic
6151  * @sp ; private member of the device structure, which is a pointer to the
6152  * s2io_nic structure.
6153  * @data: variable that returns the result of each of the test conducted by
6154  * the driver.
6155  * Description:
6156  * The function verifies the link state of the NIC and updates the input
6157  * argument 'data' appropriately.
6158  * Return value:
6159  * 0 on success.
6160  */
6161
6162 static int s2io_link_test(struct s2io_nic *sp, uint64_t *data)
6163 {
6164         struct XENA_dev_config __iomem *bar0 = sp->bar0;
6165         u64 val64;
6166
6167         val64 = readq(&bar0->adapter_status);
6168         if (!(LINK_IS_UP(val64)))
6169                 *data = 1;
6170         else
6171                 *data = 0;
6172
6173         return *data;
6174 }
6175
6176 /**
6177  * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6178  * @sp - private member of the device structure, which is a pointer to the
6179  * s2io_nic structure.
6180  * @data - variable that returns the result of each of the test
6181  * conducted by the driver.
6182  * Description:
6183  *  This is one of the offline test that tests the read and write
6184  *  access to the RldRam chip on the NIC.
6185  * Return value:
6186  *  0 on success.
6187  */
6188
6189 static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data)
6190 {
6191         struct XENA_dev_config __iomem *bar0 = sp->bar0;
6192         u64 val64;
6193         int cnt, iteration = 0, test_fail = 0;
6194
6195         val64 = readq(&bar0->adapter_control);
6196         val64 &= ~ADAPTER_ECC_EN;
6197         writeq(val64, &bar0->adapter_control);
6198
6199         val64 = readq(&bar0->mc_rldram_test_ctrl);
6200         val64 |= MC_RLDRAM_TEST_MODE;
6201         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6202
6203         val64 = readq(&bar0->mc_rldram_mrs);
6204         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6205         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6206
6207         val64 |= MC_RLDRAM_MRS_ENABLE;
6208         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6209
6210         while (iteration < 2) {
6211                 val64 = 0x55555555aaaa0000ULL;
6212                 if (iteration == 1)
6213                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6214                 writeq(val64, &bar0->mc_rldram_test_d0);
6215
6216                 val64 = 0xaaaa5a5555550000ULL;
6217                 if (iteration == 1)
6218                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6219                 writeq(val64, &bar0->mc_rldram_test_d1);
6220
6221                 val64 = 0x55aaaaaaaa5a0000ULL;
6222                 if (iteration == 1)
6223                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6224                 writeq(val64, &bar0->mc_rldram_test_d2);
6225
6226                 val64 = (u64) (0x0000003ffffe0100ULL);
6227                 writeq(val64, &bar0->mc_rldram_test_add);
6228
6229                 val64 = MC_RLDRAM_TEST_MODE |
6230                         MC_RLDRAM_TEST_WRITE |
6231                         MC_RLDRAM_TEST_GO;
6232                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6233
6234                 for (cnt = 0; cnt < 5; cnt++) {
6235                         val64 = readq(&bar0->mc_rldram_test_ctrl);
6236                         if (val64 & MC_RLDRAM_TEST_DONE)
6237                                 break;
6238                         msleep(200);
6239                 }
6240
6241                 if (cnt == 5)
6242                         break;
6243
6244                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6245                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6246
6247                 for (cnt = 0; cnt < 5; cnt++) {
6248                         val64 = readq(&bar0->mc_rldram_test_ctrl);
6249                         if (val64 & MC_RLDRAM_TEST_DONE)
6250                                 break;
6251                         msleep(500);
6252                 }
6253
6254                 if (cnt == 5)
6255                         break;
6256
6257                 val64 = readq(&bar0->mc_rldram_test_ctrl);
6258                 if (!(val64 & MC_RLDRAM_TEST_PASS))
6259                         test_fail = 1;
6260
6261                 iteration++;
6262         }
6263
6264         *data = test_fail;
6265
6266         /* Bring the adapter out of test mode */
6267         SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6268
6269         return test_fail;
6270 }
6271
6272 /**
6273  *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6274  *  @sp : private member of the device structure, which is a pointer to the
6275  *  s2io_nic structure.
6276  *  @ethtest : pointer to a ethtool command specific structure that will be
6277  *  returned to the user.
6278  *  @data : variable that returns the result of each of the test
6279  * conducted by the driver.
6280  * Description:
6281  *  This function conducts 6 tests ( 4 offline and 2 online) to determine
6282  *  the health of the card.
6283  * Return value:
6284  *  void
6285  */
6286
6287 static void s2io_ethtool_test(struct net_device *dev,
6288                               struct ethtool_test *ethtest,
6289                               uint64_t *data)
6290 {
6291         struct s2io_nic *sp = netdev_priv(dev);
6292         int orig_state = netif_running(sp->dev);
6293
6294         if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6295                 /* Offline Tests. */
6296                 if (orig_state)
6297                         s2io_close(sp->dev);
6298
6299                 if (s2io_register_test(sp, &data[0]))
6300                         ethtest->flags |= ETH_TEST_FL_FAILED;
6301
6302                 s2io_reset(sp);
6303
6304                 if (s2io_rldram_test(sp, &data[3]))
6305                         ethtest->flags |= ETH_TEST_FL_FAILED;
6306
6307                 s2io_reset(sp);
6308
6309                 if (s2io_eeprom_test(sp, &data[1]))
6310                         ethtest->flags |= ETH_TEST_FL_FAILED;
6311
6312                 if (s2io_bist_test(sp, &data[4]))
6313                         ethtest->flags |= ETH_TEST_FL_FAILED;
6314
6315                 if (orig_state)
6316                         s2io_open(sp->dev);
6317
6318                 data[2] = 0;
6319         } else {
6320                 /* Online Tests. */
6321                 if (!orig_state) {
6322                         DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n",
6323                                   dev->name);
6324                         data[0] = -1;
6325                         data[1] = -1;
6326                         data[2] = -1;
6327                         data[3] = -1;
6328                         data[4] = -1;
6329                 }
6330
6331                 if (s2io_link_test(sp, &data[2]))
6332                         ethtest->flags |= ETH_TEST_FL_FAILED;
6333
6334                 data[0] = 0;
6335                 data[1] = 0;
6336                 data[3] = 0;
6337                 data[4] = 0;
6338         }
6339 }
6340
6341 static void s2io_get_ethtool_stats(struct net_device *dev,
6342                                    struct ethtool_stats *estats,
6343                                    u64 *tmp_stats)
6344 {
6345         int i = 0, k;
6346         struct s2io_nic *sp = netdev_priv(dev);
6347         struct stat_block *stats = sp->mac_control.stats_info;
6348         struct swStat *swstats = &stats->sw_stat;
6349         struct xpakStat *xstats = &stats->xpak_stat;
6350
6351         s2io_updt_stats(sp);
6352         tmp_stats[i++] =
6353                 (u64)le32_to_cpu(stats->tmac_frms_oflow) << 32  |
6354                 le32_to_cpu(stats->tmac_frms);
6355         tmp_stats[i++] =
6356                 (u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
6357                 le32_to_cpu(stats->tmac_data_octets);
6358         tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms);
6359         tmp_stats[i++] =
6360                 (u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 |
6361                 le32_to_cpu(stats->tmac_mcst_frms);
6362         tmp_stats[i++] =
6363                 (u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 |
6364                 le32_to_cpu(stats->tmac_bcst_frms);
6365         tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms);
6366         tmp_stats[i++] =
6367                 (u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 |
6368                 le32_to_cpu(stats->tmac_ttl_octets);
6369         tmp_stats[i++] =
6370                 (u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 |
6371                 le32_to_cpu(stats->tmac_ucst_frms);
6372         tmp_stats[i++] =
6373                 (u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 |
6374                 le32_to_cpu(stats->tmac_nucst_frms);
6375         tmp_stats[i++] =
6376                 (u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
6377                 le32_to_cpu(stats->tmac_any_err_frms);
6378         tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets);
6379         tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets);
6380         tmp_stats[i++] =
6381                 (u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 |
6382                 le32_to_cpu(stats->tmac_vld_ip);
6383         tmp_stats[i++] =
6384                 (u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 |
6385                 le32_to_cpu(stats->tmac_drop_ip);
6386         tmp_stats[i++] =
6387                 (u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 |
6388                 le32_to_cpu(stats->tmac_icmp);
6389         tmp_stats[i++] =
6390                 (u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 |
6391                 le32_to_cpu(stats->tmac_rst_tcp);
6392         tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp);
6393         tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 |
6394                 le32_to_cpu(stats->tmac_udp);
6395         tmp_stats[i++] =
6396                 (u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
6397                 le32_to_cpu(stats->rmac_vld_frms);
6398         tmp_stats[i++] =
6399                 (u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
6400                 le32_to_cpu(stats->rmac_data_octets);
6401         tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms);
6402         tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms);
6403         tmp_stats[i++] =
6404                 (u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
6405                 le32_to_cpu(stats->rmac_vld_mcst_frms);
6406         tmp_stats[i++] =
6407                 (u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 |
6408                 le32_to_cpu(stats->rmac_vld_bcst_frms);
6409         tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms);
6410         tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms);
6411         tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms);
6412         tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms);
6413         tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms);
6414         tmp_stats[i++] =
6415                 (u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 |
6416                 le32_to_cpu(stats->rmac_ttl_octets);
6417         tmp_stats[i++] =
6418                 (u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32
6419                 | le32_to_cpu(stats->rmac_accepted_ucst_frms);
6420         tmp_stats[i++] =
6421                 (u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow)
6422                 << 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms);
6423         tmp_stats[i++] =
6424                 (u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 |
6425                 le32_to_cpu(stats->rmac_discarded_frms);
6426         tmp_stats[i++] =
6427                 (u64)le32_to_cpu(stats->rmac_drop_events_oflow)
6428                 << 32 | le32_to_cpu(stats->rmac_drop_events);
6429         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets);
6430         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms);
6431         tmp_stats[i++] =
6432                 (u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
6433                 le32_to_cpu(stats->rmac_usized_frms);
6434         tmp_stats[i++] =
6435                 (u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 |
6436                 le32_to_cpu(stats->rmac_osized_frms);
6437         tmp_stats[i++] =
6438                 (u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 |
6439                 le32_to_cpu(stats->rmac_frag_frms);
6440         tmp_stats[i++] =
6441                 (u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 |
6442                 le32_to_cpu(stats->rmac_jabber_frms);
6443         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms);
6444         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms);
6445         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms);
6446         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms);
6447         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms);
6448         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms);
6449         tmp_stats[i++] =
6450                 (u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 |
6451                 le32_to_cpu(stats->rmac_ip);
6452         tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets);
6453         tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip);
6454         tmp_stats[i++] =
6455                 (u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 |
6456                 le32_to_cpu(stats->rmac_drop_ip);
6457         tmp_stats[i++] =
6458                 (u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 |
6459                 le32_to_cpu(stats->rmac_icmp);
6460         tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp);
6461         tmp_stats[i++] =
6462                 (u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 |
6463                 le32_to_cpu(stats->rmac_udp);
6464         tmp_stats[i++] =
6465                 (u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 |
6466                 le32_to_cpu(stats->rmac_err_drp_udp);
6467         tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym);
6468         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0);
6469         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1);
6470         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2);
6471         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3);
6472         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4);
6473         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5);
6474         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6);
6475         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7);
6476         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0);
6477         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1);
6478         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2);
6479         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3);
6480         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4);
6481         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5);
6482         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6);
6483         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7);
6484         tmp_stats[i++] =
6485                 (u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 |
6486                 le32_to_cpu(stats->rmac_pause_cnt);
6487         tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt);
6488         tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt);
6489         tmp_stats[i++] =
6490                 (u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 |
6491                 le32_to_cpu(stats->rmac_accepted_ip);
6492         tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp);
6493         tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt);
6494         tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt);
6495         tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt);
6496         tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt);
6497         tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt);
6498         tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt);
6499         tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt);
6500         tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt);
6501         tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt);
6502         tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt);
6503         tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt);
6504         tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt);
6505         tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt);
6506         tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt);
6507         tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt);
6508         tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt);
6509         tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt);
6510         tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt);
6511
6512         /* Enhanced statistics exist only for Hercules */
6513         if (sp->device_type == XFRAME_II_DEVICE) {
6514                 tmp_stats[i++] =
6515                         le64_to_cpu(stats->rmac_ttl_1519_4095_frms);
6516                 tmp_stats[i++] =
6517                         le64_to_cpu(stats->rmac_ttl_4096_8191_frms);
6518                 tmp_stats[i++] =
6519                         le64_to_cpu(stats->rmac_ttl_8192_max_frms);
6520                 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms);
6521                 tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms);
6522                 tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms);
6523                 tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms);
6524                 tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms);
6525                 tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard);
6526                 tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard);
6527                 tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard);
6528                 tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard);
6529                 tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard);
6530                 tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard);
6531                 tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard);
6532                 tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt);
6533         }
6534
6535         tmp_stats[i++] = 0;
6536         tmp_stats[i++] = swstats->single_ecc_errs;
6537         tmp_stats[i++] = swstats->double_ecc_errs;
6538         tmp_stats[i++] = swstats->parity_err_cnt;
6539         tmp_stats[i++] = swstats->serious_err_cnt;
6540         tmp_stats[i++] = swstats->soft_reset_cnt;
6541         tmp_stats[i++] = swstats->fifo_full_cnt;
6542         for (k = 0; k < MAX_RX_RINGS; k++)
6543                 tmp_stats[i++] = swstats->ring_full_cnt[k];
6544         tmp_stats[i++] = xstats->alarm_transceiver_temp_high;
6545         tmp_stats[i++] = xstats->alarm_transceiver_temp_low;
6546         tmp_stats[i++] = xstats->alarm_laser_bias_current_high;
6547         tmp_stats[i++] = xstats->alarm_laser_bias_current_low;
6548         tmp_stats[i++] = xstats->alarm_laser_output_power_high;
6549         tmp_stats[i++] = xstats->alarm_laser_output_power_low;
6550         tmp_stats[i++] = xstats->warn_transceiver_temp_high;
6551         tmp_stats[i++] = xstats->warn_transceiver_temp_low;
6552         tmp_stats[i++] = xstats->warn_laser_bias_current_high;
6553         tmp_stats[i++] = xstats->warn_laser_bias_current_low;
6554         tmp_stats[i++] = xstats->warn_laser_output_power_high;
6555         tmp_stats[i++] = xstats->warn_laser_output_power_low;
6556         tmp_stats[i++] = swstats->clubbed_frms_cnt;
6557         tmp_stats[i++] = swstats->sending_both;
6558         tmp_stats[i++] = swstats->outof_sequence_pkts;
6559         tmp_stats[i++] = swstats->flush_max_pkts;
6560         if (swstats->num_aggregations) {
6561                 u64 tmp = swstats->sum_avg_pkts_aggregated;
6562                 int count = 0;
6563                 /*
6564                  * Since 64-bit divide does not work on all platforms,
6565                  * do repeated subtraction.
6566                  */
6567                 while (tmp >= swstats->num_aggregations) {
6568                         tmp -= swstats->num_aggregations;
6569                         count++;
6570                 }
6571                 tmp_stats[i++] = count;
6572         } else
6573                 tmp_stats[i++] = 0;
6574         tmp_stats[i++] = swstats->mem_alloc_fail_cnt;
6575         tmp_stats[i++] = swstats->pci_map_fail_cnt;
6576         tmp_stats[i++] = swstats->watchdog_timer_cnt;
6577         tmp_stats[i++] = swstats->mem_allocated;
6578         tmp_stats[i++] = swstats->mem_freed;
6579         tmp_stats[i++] = swstats->link_up_cnt;
6580         tmp_stats[i++] = swstats->link_down_cnt;
6581         tmp_stats[i++] = swstats->link_up_time;
6582         tmp_stats[i++] = swstats->link_down_time;
6583
6584         tmp_stats[i++] = swstats->tx_buf_abort_cnt;
6585         tmp_stats[i++] = swstats->tx_desc_abort_cnt;
6586         tmp_stats[i++] = swstats->tx_parity_err_cnt;
6587         tmp_stats[i++] = swstats->tx_link_loss_cnt;
6588         tmp_stats[i++] = swstats->tx_list_proc_err_cnt;
6589
6590         tmp_stats[i++] = swstats->rx_parity_err_cnt;
6591         tmp_stats[i++] = swstats->rx_abort_cnt;
6592         tmp_stats[i++] = swstats->rx_parity_abort_cnt;
6593         tmp_stats[i++] = swstats->rx_rda_fail_cnt;
6594         tmp_stats[i++] = swstats->rx_unkn_prot_cnt;
6595         tmp_stats[i++] = swstats->rx_fcs_err_cnt;
6596         tmp_stats[i++] = swstats->rx_buf_size_err_cnt;
6597         tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt;
6598         tmp_stats[i++] = swstats->rx_unkn_err_cnt;
6599         tmp_stats[i++] = swstats->tda_err_cnt;
6600         tmp_stats[i++] = swstats->pfc_err_cnt;
6601         tmp_stats[i++] = swstats->pcc_err_cnt;
6602         tmp_stats[i++] = swstats->tti_err_cnt;
6603         tmp_stats[i++] = swstats->tpa_err_cnt;
6604         tmp_stats[i++] = swstats->sm_err_cnt;
6605         tmp_stats[i++] = swstats->lso_err_cnt;
6606         tmp_stats[i++] = swstats->mac_tmac_err_cnt;
6607         tmp_stats[i++] = swstats->mac_rmac_err_cnt;
6608         tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt;
6609         tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt;
6610         tmp_stats[i++] = swstats->rc_err_cnt;
6611         tmp_stats[i++] = swstats->prc_pcix_err_cnt;
6612         tmp_stats[i++] = swstats->rpa_err_cnt;
6613         tmp_stats[i++] = swstats->rda_err_cnt;
6614         tmp_stats[i++] = swstats->rti_err_cnt;
6615         tmp_stats[i++] = swstats->mc_err_cnt;
6616 }
6617
6618 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6619 {
6620         return XENA_REG_SPACE;
6621 }
6622
6623
6624 static u32 s2io_ethtool_get_rx_csum(struct net_device *dev)
6625 {
6626         struct s2io_nic *sp = netdev_priv(dev);
6627
6628         return sp->rx_csum;
6629 }
6630
6631 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
6632 {
6633         struct s2io_nic *sp = netdev_priv(dev);
6634
6635         if (data)
6636                 sp->rx_csum = 1;
6637         else
6638                 sp->rx_csum = 0;
6639
6640         return 0;
6641 }
6642
6643 static int s2io_get_eeprom_len(struct net_device *dev)
6644 {
6645         return XENA_EEPROM_SPACE;
6646 }
6647
6648 static int s2io_get_sset_count(struct net_device *dev, int sset)
6649 {
6650         struct s2io_nic *sp = netdev_priv(dev);
6651
6652         switch (sset) {
6653         case ETH_SS_TEST:
6654                 return S2IO_TEST_LEN;
6655         case ETH_SS_STATS:
6656                 switch (sp->device_type) {
6657                 case XFRAME_I_DEVICE:
6658                         return XFRAME_I_STAT_LEN;
6659                 case XFRAME_II_DEVICE:
6660                         return XFRAME_II_STAT_LEN;
6661                 default:
6662                         return 0;
6663                 }
6664         default:
6665                 return -EOPNOTSUPP;
6666         }
6667 }
6668
6669 static void s2io_ethtool_get_strings(struct net_device *dev,
6670                                      u32 stringset, u8 *data)
6671 {
6672         int stat_size = 0;
6673         struct s2io_nic *sp = netdev_priv(dev);
6674
6675         switch (stringset) {
6676         case ETH_SS_TEST:
6677                 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6678                 break;
6679         case ETH_SS_STATS:
6680                 stat_size = sizeof(ethtool_xena_stats_keys);
6681                 memcpy(data, &ethtool_xena_stats_keys, stat_size);
6682                 if (sp->device_type == XFRAME_II_DEVICE) {
6683                         memcpy(data + stat_size,
6684                                &ethtool_enhanced_stats_keys,
6685                                sizeof(ethtool_enhanced_stats_keys));
6686                         stat_size += sizeof(ethtool_enhanced_stats_keys);
6687                 }
6688
6689                 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6690                        sizeof(ethtool_driver_stats_keys));
6691         }
6692 }
6693
6694 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
6695 {
6696         if (data)
6697                 dev->features |= NETIF_F_IP_CSUM;
6698         else
6699                 dev->features &= ~NETIF_F_IP_CSUM;
6700
6701         return 0;
6702 }
6703
6704 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6705 {
6706         return (dev->features & NETIF_F_TSO) != 0;
6707 }
6708
6709 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6710 {
6711         if (data)
6712                 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6713         else
6714                 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6715
6716         return 0;
6717 }
6718
6719 static int s2io_ethtool_set_flags(struct net_device *dev, u32 data)
6720 {
6721         struct s2io_nic *sp = netdev_priv(dev);
6722         int rc = 0;
6723         int changed = 0;
6724
6725         if (ethtool_invalid_flags(dev, data, ETH_FLAG_LRO))
6726                 return -EINVAL;
6727
6728         if (data & ETH_FLAG_LRO) {
6729                 if (!(dev->features & NETIF_F_LRO)) {
6730                         dev->features |= NETIF_F_LRO;
6731                         changed = 1;
6732                 }
6733         } else if (dev->features & NETIF_F_LRO) {
6734                 dev->features &= ~NETIF_F_LRO;
6735                 changed = 1;
6736         }
6737
6738         if (changed && netif_running(dev)) {
6739                 s2io_stop_all_tx_queue(sp);
6740                 s2io_card_down(sp);
6741                 rc = s2io_card_up(sp);
6742                 if (rc)
6743                         s2io_reset(sp);
6744                 else
6745                         s2io_start_all_tx_queue(sp);
6746         }
6747
6748         return rc;
6749 }
6750
6751 static const struct ethtool_ops netdev_ethtool_ops = {
6752         .get_settings = s2io_ethtool_gset,
6753         .set_settings = s2io_ethtool_sset,
6754         .get_drvinfo = s2io_ethtool_gdrvinfo,
6755         .get_regs_len = s2io_ethtool_get_regs_len,
6756         .get_regs = s2io_ethtool_gregs,
6757         .get_link = ethtool_op_get_link,
6758         .get_eeprom_len = s2io_get_eeprom_len,
6759         .get_eeprom = s2io_ethtool_geeprom,
6760         .set_eeprom = s2io_ethtool_seeprom,
6761         .get_ringparam = s2io_ethtool_gringparam,
6762         .get_pauseparam = s2io_ethtool_getpause_data,
6763         .set_pauseparam = s2io_ethtool_setpause_data,
6764         .get_rx_csum = s2io_ethtool_get_rx_csum,
6765         .set_rx_csum = s2io_ethtool_set_rx_csum,
6766         .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6767         .set_flags = s2io_ethtool_set_flags,
6768         .get_flags = ethtool_op_get_flags,
6769         .set_sg = ethtool_op_set_sg,
6770         .get_tso = s2io_ethtool_op_get_tso,
6771         .set_tso = s2io_ethtool_op_set_tso,
6772         .set_ufo = ethtool_op_set_ufo,
6773         .self_test = s2io_ethtool_test,
6774         .get_strings = s2io_ethtool_get_strings,
6775         .set_phys_id = s2io_ethtool_set_led,
6776         .get_ethtool_stats = s2io_get_ethtool_stats,
6777         .get_sset_count = s2io_get_sset_count,
6778 };
6779
6780 /**
6781  *  s2io_ioctl - Entry point for the Ioctl
6782  *  @dev :  Device pointer.
6783  *  @ifr :  An IOCTL specefic structure, that can contain a pointer to
6784  *  a proprietary structure used to pass information to the driver.
6785  *  @cmd :  This is used to distinguish between the different commands that
6786  *  can be passed to the IOCTL functions.
6787  *  Description:
6788  *  Currently there are no special functionality supported in IOCTL, hence
6789  *  function always return EOPNOTSUPPORTED
6790  */
6791
6792 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6793 {
6794         return -EOPNOTSUPP;
6795 }
6796
6797 /**
6798  *  s2io_change_mtu - entry point to change MTU size for the device.
6799  *   @dev : device pointer.
6800  *   @new_mtu : the new MTU size for the device.
6801  *   Description: A driver entry point to change MTU size for the device.
6802  *   Before changing the MTU the device must be stopped.
6803  *  Return value:
6804  *   0 on success and an appropriate (-)ve integer as defined in errno.h
6805  *   file on failure.
6806  */
6807
6808 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6809 {
6810         struct s2io_nic *sp = netdev_priv(dev);
6811         int ret = 0;
6812
6813         if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6814                 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", dev->name);
6815                 return -EPERM;
6816         }
6817
6818         dev->mtu = new_mtu;
6819         if (netif_running(dev)) {
6820                 s2io_stop_all_tx_queue(sp);
6821                 s2io_card_down(sp);
6822                 ret = s2io_card_up(sp);
6823                 if (ret) {
6824                         DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6825                                   __func__);
6826                         return ret;
6827                 }
6828                 s2io_wake_all_tx_queue(sp);
6829         } else { /* Device is down */
6830                 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6831                 u64 val64 = new_mtu;
6832
6833                 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6834         }
6835
6836         return ret;
6837 }
6838
6839 /**
6840  * s2io_set_link - Set the LInk status
6841  * @data: long pointer to device private structue
6842  * Description: Sets the link status for the adapter
6843  */
6844
6845 static void s2io_set_link(struct work_struct *work)
6846 {
6847         struct s2io_nic *nic = container_of(work, struct s2io_nic,
6848                                             set_link_task);
6849         struct net_device *dev = nic->dev;
6850         struct XENA_dev_config __iomem *bar0 = nic->bar0;
6851         register u64 val64;
6852         u16 subid;
6853
6854         rtnl_lock();
6855
6856         if (!netif_running(dev))
6857                 goto out_unlock;
6858
6859         if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6860                 /* The card is being reset, no point doing anything */
6861                 goto out_unlock;
6862         }
6863
6864         subid = nic->pdev->subsystem_device;
6865         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6866                 /*
6867                  * Allow a small delay for the NICs self initiated
6868                  * cleanup to complete.
6869                  */
6870                 msleep(100);
6871         }
6872
6873         val64 = readq(&bar0->adapter_status);
6874         if (LINK_IS_UP(val64)) {
6875                 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6876                         if (verify_xena_quiescence(nic)) {
6877                                 val64 = readq(&bar0->adapter_control);
6878                                 val64 |= ADAPTER_CNTL_EN;
6879                                 writeq(val64, &bar0->adapter_control);
6880                                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6881                                             nic->device_type, subid)) {
6882                                         val64 = readq(&bar0->gpio_control);
6883                                         val64 |= GPIO_CTRL_GPIO_0;
6884                                         writeq(val64, &bar0->gpio_control);
6885                                         val64 = readq(&bar0->gpio_control);
6886                                 } else {
6887                                         val64 |= ADAPTER_LED_ON;
6888                                         writeq(val64, &bar0->adapter_control);
6889                                 }
6890                                 nic->device_enabled_once = true;
6891                         } else {
6892                                 DBG_PRINT(ERR_DBG,
6893                                           "%s: Error: device is not Quiescent\n",
6894                                           dev->name);
6895                                 s2io_stop_all_tx_queue(nic);
6896                         }
6897                 }
6898                 val64 = readq(&bar0->adapter_control);
6899                 val64 |= ADAPTER_LED_ON;
6900                 writeq(val64, &bar0->adapter_control);
6901                 s2io_link(nic, LINK_UP);
6902         } else {
6903                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6904                                                       subid)) {
6905                         val64 = readq(&bar0->gpio_control);
6906                         val64 &= ~GPIO_CTRL_GPIO_0;
6907                         writeq(val64, &bar0->gpio_control);
6908                         val64 = readq(&bar0->gpio_control);
6909                 }
6910                 /* turn off LED */
6911                 val64 = readq(&bar0->adapter_control);
6912                 val64 = val64 & (~ADAPTER_LED_ON);
6913                 writeq(val64, &bar0->adapter_control);
6914                 s2io_link(nic, LINK_DOWN);
6915         }
6916         clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6917
6918 out_unlock:
6919         rtnl_unlock();
6920 }
6921
6922 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6923                                   struct buffAdd *ba,
6924                                   struct sk_buff **skb, u64 *temp0, u64 *temp1,
6925                                   u64 *temp2, int size)
6926 {
6927         struct net_device *dev = sp->dev;
6928         struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6929
6930         if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6931                 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6932                 /* allocate skb */
6933                 if (*skb) {
6934                         DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6935                         /*
6936                          * As Rx frame are not going to be processed,
6937                          * using same mapped address for the Rxd
6938                          * buffer pointer
6939                          */
6940                         rxdp1->Buffer0_ptr = *temp0;
6941                 } else {
6942                         *skb = dev_alloc_skb(size);
6943                         if (!(*skb)) {
6944                                 DBG_PRINT(INFO_DBG,
6945                                           "%s: Out of memory to allocate %s\n",
6946                                           dev->name, "1 buf mode SKBs");
6947                                 stats->mem_alloc_fail_cnt++;
6948                                 return -ENOMEM ;
6949                         }
6950                         stats->mem_allocated += (*skb)->truesize;
6951                         /* storing the mapped addr in a temp variable
6952                          * such it will be used for next rxd whose
6953                          * Host Control is NULL
6954                          */
6955                         rxdp1->Buffer0_ptr = *temp0 =
6956                                 pci_map_single(sp->pdev, (*skb)->data,
6957                                                size - NET_IP_ALIGN,
6958                                                PCI_DMA_FROMDEVICE);
6959                         if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
6960                                 goto memalloc_failed;
6961                         rxdp->Host_Control = (unsigned long) (*skb);
6962                 }
6963         } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6964                 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6965                 /* Two buffer Mode */
6966                 if (*skb) {
6967                         rxdp3->Buffer2_ptr = *temp2;
6968                         rxdp3->Buffer0_ptr = *temp0;
6969                         rxdp3->Buffer1_ptr = *temp1;
6970                 } else {
6971                         *skb = dev_alloc_skb(size);
6972                         if (!(*skb)) {
6973                                 DBG_PRINT(INFO_DBG,
6974                                           "%s: Out of memory to allocate %s\n",
6975                                           dev->name,
6976                                           "2 buf mode SKBs");
6977                                 stats->mem_alloc_fail_cnt++;
6978                                 return -ENOMEM;
6979                         }
6980                         stats->mem_allocated += (*skb)->truesize;
6981                         rxdp3->Buffer2_ptr = *temp2 =
6982                                 pci_map_single(sp->pdev, (*skb)->data,
6983                                                dev->mtu + 4,
6984                                                PCI_DMA_FROMDEVICE);
6985                         if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
6986                                 goto memalloc_failed;
6987                         rxdp3->Buffer0_ptr = *temp0 =
6988                                 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6989                                                PCI_DMA_FROMDEVICE);
6990                         if (pci_dma_mapping_error(sp->pdev,
6991                                                   rxdp3->Buffer0_ptr)) {
6992                                 pci_unmap_single(sp->pdev,
6993                                                  (dma_addr_t)rxdp3->Buffer2_ptr,
6994                                                  dev->mtu + 4,
6995                                                  PCI_DMA_FROMDEVICE);
6996                                 goto memalloc_failed;
6997                         }
6998                         rxdp->Host_Control = (unsigned long) (*skb);
6999
7000                         /* Buffer-1 will be dummy buffer not used */
7001                         rxdp3->Buffer1_ptr = *temp1 =
7002                                 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
7003                                                PCI_DMA_FROMDEVICE);
7004                         if (pci_dma_mapping_error(sp->pdev,
7005                                                   rxdp3->Buffer1_ptr)) {
7006                                 pci_unmap_single(sp->pdev,
7007                                                  (dma_addr_t)rxdp3->Buffer0_ptr,
7008                                                  BUF0_LEN, PCI_DMA_FROMDEVICE);
7009                                 pci_unmap_single(sp->pdev,
7010                                                  (dma_addr_t)rxdp3->Buffer2_ptr,
7011                                                  dev->mtu + 4,
7012                                                  PCI_DMA_FROMDEVICE);
7013                                 goto memalloc_failed;
7014                         }
7015                 }
7016         }
7017         return 0;
7018
7019 memalloc_failed:
7020         stats->pci_map_fail_cnt++;
7021         stats->mem_freed += (*skb)->truesize;
7022         dev_kfree_skb(*skb);
7023         return -ENOMEM;
7024 }
7025
7026 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
7027                                 int size)
7028 {
7029         struct net_device *dev = sp->dev;
7030         if (sp->rxd_mode == RXD_MODE_1) {
7031                 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
7032         } else if (sp->rxd_mode == RXD_MODE_3B) {
7033                 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
7034                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
7035                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4);
7036         }
7037 }
7038
7039 static  int rxd_owner_bit_reset(struct s2io_nic *sp)
7040 {
7041         int i, j, k, blk_cnt = 0, size;
7042         struct config_param *config = &sp->config;
7043         struct mac_info *mac_control = &sp->mac_control;
7044         struct net_device *dev = sp->dev;
7045         struct RxD_t *rxdp = NULL;
7046         struct sk_buff *skb = NULL;
7047         struct buffAdd *ba = NULL;
7048         u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
7049
7050         /* Calculate the size based on ring mode */
7051         size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
7052                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
7053         if (sp->rxd_mode == RXD_MODE_1)
7054                 size += NET_IP_ALIGN;
7055         else if (sp->rxd_mode == RXD_MODE_3B)
7056                 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
7057
7058         for (i = 0; i < config->rx_ring_num; i++) {
7059                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7060                 struct ring_info *ring = &mac_control->rings[i];
7061
7062                 blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1);
7063
7064                 for (j = 0; j < blk_cnt; j++) {
7065                         for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
7066                                 rxdp = ring->rx_blocks[j].rxds[k].virt_addr;
7067                                 if (sp->rxd_mode == RXD_MODE_3B)
7068                                         ba = &ring->ba[j][k];
7069                                 if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb,
7070                                                            (u64 *)&temp0_64,
7071                                                            (u64 *)&temp1_64,
7072                                                            (u64 *)&temp2_64,
7073                                                            size) == -ENOMEM) {
7074                                         return 0;
7075                                 }
7076
7077                                 set_rxd_buffer_size(sp, rxdp, size);
7078                                 wmb();
7079                                 /* flip the Ownership bit to Hardware */
7080                                 rxdp->Control_1 |= RXD_OWN_XENA;
7081                         }
7082                 }
7083         }
7084         return 0;
7085
7086 }
7087
7088 static int s2io_add_isr(struct s2io_nic *sp)
7089 {
7090         int ret = 0;
7091         struct net_device *dev = sp->dev;
7092         int err = 0;
7093
7094         if (sp->config.intr_type == MSI_X)
7095                 ret = s2io_enable_msi_x(sp);
7096         if (ret) {
7097                 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
7098                 sp->config.intr_type = INTA;
7099         }
7100
7101         /*
7102          * Store the values of the MSIX table in
7103          * the struct s2io_nic structure
7104          */
7105         store_xmsi_data(sp);
7106
7107         /* After proper initialization of H/W, register ISR */
7108         if (sp->config.intr_type == MSI_X) {
7109                 int i, msix_rx_cnt = 0;
7110
7111                 for (i = 0; i < sp->num_entries; i++) {
7112                         if (sp->s2io_entries[i].in_use == MSIX_FLG) {
7113                                 if (sp->s2io_entries[i].type ==
7114                                     MSIX_RING_TYPE) {
7115                                         sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
7116                                                 dev->name, i);
7117                                         err = request_irq(sp->entries[i].vector,
7118                                                           s2io_msix_ring_handle,
7119                                                           0,
7120                                                           sp->desc[i],
7121                                                           sp->s2io_entries[i].arg);
7122                                 } else if (sp->s2io_entries[i].type ==
7123                                            MSIX_ALARM_TYPE) {
7124                                         sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
7125                                                 dev->name, i);
7126                                         err = request_irq(sp->entries[i].vector,
7127                                                           s2io_msix_fifo_handle,
7128                                                           0,
7129                                                           sp->desc[i],
7130                                                           sp->s2io_entries[i].arg);
7131
7132                                 }
7133                                 /* if either data or addr is zero print it. */
7134                                 if (!(sp->msix_info[i].addr &&
7135                                       sp->msix_info[i].data)) {
7136                                         DBG_PRINT(ERR_DBG,
7137                                                   "%s @Addr:0x%llx Data:0x%llx\n",
7138                                                   sp->desc[i],
7139                                                   (unsigned long long)
7140                                                   sp->msix_info[i].addr,
7141                                                   (unsigned long long)
7142                                                   ntohl(sp->msix_info[i].data));
7143                                 } else
7144                                         msix_rx_cnt++;
7145                                 if (err) {
7146                                         remove_msix_isr(sp);
7147
7148                                         DBG_PRINT(ERR_DBG,
7149                                                   "%s:MSI-X-%d registration "
7150                                                   "failed\n", dev->name, i);
7151
7152                                         DBG_PRINT(ERR_DBG,
7153                                                   "%s: Defaulting to INTA\n",
7154                                                   dev->name);
7155                                         sp->config.intr_type = INTA;
7156                                         break;
7157                                 }
7158                                 sp->s2io_entries[i].in_use =
7159                                         MSIX_REGISTERED_SUCCESS;
7160                         }
7161                 }
7162                 if (!err) {
7163                         pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt);
7164                         DBG_PRINT(INFO_DBG,
7165                                   "MSI-X-TX entries enabled through alarm vector\n");
7166                 }
7167         }
7168         if (sp->config.intr_type == INTA) {
7169                 err = request_irq((int)sp->pdev->irq, s2io_isr, IRQF_SHARED,
7170                                   sp->name, dev);
7171                 if (err) {
7172                         DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7173                                   dev->name);
7174                         return -1;
7175                 }
7176         }
7177         return 0;
7178 }
7179
7180 static void s2io_rem_isr(struct s2io_nic *sp)
7181 {
7182         if (sp->config.intr_type == MSI_X)
7183                 remove_msix_isr(sp);
7184         else
7185                 remove_inta_isr(sp);
7186 }
7187
7188 static void do_s2io_card_down(struct s2io_nic *sp, int do_io)
7189 {
7190         int cnt = 0;
7191         struct XENA_dev_config __iomem *bar0 = sp->bar0;
7192         register u64 val64 = 0;
7193         struct config_param *config;
7194         config = &sp->config;
7195
7196         if (!is_s2io_card_up(sp))
7197                 return;
7198
7199         del_timer_sync(&sp->alarm_timer);
7200         /* If s2io_set_link task is executing, wait till it completes. */
7201         while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state)))
7202                 msleep(50);
7203         clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7204
7205         /* Disable napi */
7206         if (sp->config.napi) {
7207                 int off = 0;
7208                 if (config->intr_type ==  MSI_X) {
7209                         for (; off < sp->config.rx_ring_num; off++)
7210                                 napi_disable(&sp->mac_control.rings[off].napi);
7211                 }
7212                 else
7213                         napi_disable(&sp->napi);
7214         }
7215
7216         /* disable Tx and Rx traffic on the NIC */
7217         if (do_io)
7218                 stop_nic(sp);
7219
7220         s2io_rem_isr(sp);
7221
7222         /* stop the tx queue, indicate link down */
7223         s2io_link(sp, LINK_DOWN);
7224
7225         /* Check if the device is Quiescent and then Reset the NIC */
7226         while (do_io) {
7227                 /* As per the HW requirement we need to replenish the
7228                  * receive buffer to avoid the ring bump. Since there is
7229                  * no intention of processing the Rx frame at this pointwe are
7230                  * just settting the ownership bit of rxd in Each Rx
7231                  * ring to HW and set the appropriate buffer size
7232                  * based on the ring mode
7233                  */
7234                 rxd_owner_bit_reset(sp);
7235
7236                 val64 = readq(&bar0->adapter_status);
7237                 if (verify_xena_quiescence(sp)) {
7238                         if (verify_pcc_quiescent(sp, sp->device_enabled_once))
7239                                 break;
7240                 }
7241
7242                 msleep(50);
7243                 cnt++;
7244                 if (cnt == 10) {
7245                         DBG_PRINT(ERR_DBG, "Device not Quiescent - "
7246                                   "adapter status reads 0x%llx\n",
7247                                   (unsigned long long)val64);
7248                         break;
7249                 }
7250         }
7251         if (do_io)
7252                 s2io_reset(sp);
7253
7254         /* Free all Tx buffers */
7255         free_tx_buffers(sp);
7256
7257         /* Free all Rx buffers */
7258         free_rx_buffers(sp);
7259
7260         clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7261 }
7262
7263 static void s2io_card_down(struct s2io_nic *sp)
7264 {
7265         do_s2io_card_down(sp, 1);
7266 }
7267
7268 static int s2io_card_up(struct s2io_nic *sp)
7269 {
7270         int i, ret = 0;
7271         struct config_param *config;
7272         struct mac_info *mac_control;
7273         struct net_device *dev = (struct net_device *)sp->dev;
7274         u16 interruptible;
7275
7276         /* Initialize the H/W I/O registers */
7277         ret = init_nic(sp);
7278         if (ret != 0) {
7279                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7280                           dev->name);
7281                 if (ret != -EIO)
7282                         s2io_reset(sp);
7283                 return ret;
7284         }
7285
7286         /*
7287          * Initializing the Rx buffers. For now we are considering only 1
7288          * Rx ring and initializing buffers into 30 Rx blocks
7289          */
7290         config = &sp->config;
7291         mac_control = &sp->mac_control;
7292
7293         for (i = 0; i < config->rx_ring_num; i++) {
7294                 struct ring_info *ring = &mac_control->rings[i];
7295
7296                 ring->mtu = dev->mtu;
7297                 ring->lro = !!(dev->features & NETIF_F_LRO);
7298                 ret = fill_rx_buffers(sp, ring, 1);
7299                 if (ret) {
7300                         DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7301                                   dev->name);
7302                         s2io_reset(sp);
7303                         free_rx_buffers(sp);
7304                         return -ENOMEM;
7305                 }
7306                 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7307                           ring->rx_bufs_left);
7308         }
7309
7310         /* Initialise napi */
7311         if (config->napi) {
7312                 if (config->intr_type ==  MSI_X) {
7313                         for (i = 0; i < sp->config.rx_ring_num; i++)
7314                                 napi_enable(&sp->mac_control.rings[i].napi);
7315                 } else {
7316                         napi_enable(&sp->napi);
7317                 }
7318         }
7319
7320         /* Maintain the state prior to the open */
7321         if (sp->promisc_flg)
7322                 sp->promisc_flg = 0;
7323         if (sp->m_cast_flg) {
7324                 sp->m_cast_flg = 0;
7325                 sp->all_multi_pos = 0;
7326         }
7327
7328         /* Setting its receive mode */
7329         s2io_set_multicast(dev);
7330
7331         if (dev->features & NETIF_F_LRO) {
7332                 /* Initialize max aggregatable pkts per session based on MTU */
7333                 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7334                 /* Check if we can use (if specified) user provided value */
7335                 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7336                         sp->lro_max_aggr_per_sess = lro_max_pkts;
7337         }
7338
7339         /* Enable Rx Traffic and interrupts on the NIC */
7340         if (start_nic(sp)) {
7341                 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7342                 s2io_reset(sp);
7343                 free_rx_buffers(sp);
7344                 return -ENODEV;
7345         }
7346
7347         /* Add interrupt service routine */
7348         if (s2io_add_isr(sp) != 0) {
7349                 if (sp->config.intr_type == MSI_X)
7350                         s2io_rem_isr(sp);
7351                 s2io_reset(sp);
7352                 free_rx_buffers(sp);
7353                 return -ENODEV;
7354         }
7355
7356         S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7357
7358         set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7359
7360         /*  Enable select interrupts */
7361         en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7362         if (sp->config.intr_type != INTA) {
7363                 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7364                 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7365         } else {
7366                 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7367                 interruptible |= TX_PIC_INTR;
7368                 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7369         }
7370
7371         return 0;
7372 }
7373
7374 /**
7375  * s2io_restart_nic - Resets the NIC.
7376  * @data : long pointer to the device private structure
7377  * Description:
7378  * This function is scheduled to be run by the s2io_tx_watchdog
7379  * function after 0.5 secs to reset the NIC. The idea is to reduce
7380  * the run time of the watch dog routine which is run holding a
7381  * spin lock.
7382  */
7383
7384 static void s2io_restart_nic(struct work_struct *work)
7385 {
7386         struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7387         struct net_device *dev = sp->dev;
7388
7389         rtnl_lock();
7390
7391         if (!netif_running(dev))
7392                 goto out_unlock;
7393
7394         s2io_card_down(sp);
7395         if (s2io_card_up(sp)) {
7396                 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name);
7397         }
7398         s2io_wake_all_tx_queue(sp);
7399         DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name);
7400 out_unlock:
7401         rtnl_unlock();
7402 }
7403
7404 /**
7405  *  s2io_tx_watchdog - Watchdog for transmit side.
7406  *  @dev : Pointer to net device structure
7407  *  Description:
7408  *  This function is triggered if the Tx Queue is stopped
7409  *  for a pre-defined amount of time when the Interface is still up.
7410  *  If the Interface is jammed in such a situation, the hardware is
7411  *  reset (by s2io_close) and restarted again (by s2io_open) to
7412  *  overcome any problem that might have been caused in the hardware.
7413  *  Return value:
7414  *  void
7415  */
7416
7417 static void s2io_tx_watchdog(struct net_device *dev)
7418 {
7419         struct s2io_nic *sp = netdev_priv(dev);
7420         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7421
7422         if (netif_carrier_ok(dev)) {
7423                 swstats->watchdog_timer_cnt++;
7424                 schedule_work(&sp->rst_timer_task);
7425                 swstats->soft_reset_cnt++;
7426         }
7427 }
7428
7429 /**
7430  *   rx_osm_handler - To perform some OS related operations on SKB.
7431  *   @sp: private member of the device structure,pointer to s2io_nic structure.
7432  *   @skb : the socket buffer pointer.
7433  *   @len : length of the packet
7434  *   @cksum : FCS checksum of the frame.
7435  *   @ring_no : the ring from which this RxD was extracted.
7436  *   Description:
7437  *   This function is called by the Rx interrupt serivce routine to perform
7438  *   some OS related operations on the SKB before passing it to the upper
7439  *   layers. It mainly checks if the checksum is OK, if so adds it to the
7440  *   SKBs cksum variable, increments the Rx packet count and passes the SKB
7441  *   to the upper layer. If the checksum is wrong, it increments the Rx
7442  *   packet error count, frees the SKB and returns error.
7443  *   Return value:
7444  *   SUCCESS on success and -1 on failure.
7445  */
7446 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7447 {
7448         struct s2io_nic *sp = ring_data->nic;
7449         struct net_device *dev = (struct net_device *)ring_data->dev;
7450         struct sk_buff *skb = (struct sk_buff *)
7451                 ((unsigned long)rxdp->Host_Control);
7452         int ring_no = ring_data->ring_no;
7453         u16 l3_csum, l4_csum;
7454         unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7455         struct lro *uninitialized_var(lro);
7456         u8 err_mask;
7457         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7458
7459         skb->dev = dev;
7460
7461         if (err) {
7462                 /* Check for parity error */
7463                 if (err & 0x1)
7464                         swstats->parity_err_cnt++;
7465
7466                 err_mask = err >> 48;
7467                 switch (err_mask) {
7468                 case 1:
7469                         swstats->rx_parity_err_cnt++;
7470                         break;
7471
7472                 case 2:
7473                         swstats->rx_abort_cnt++;
7474                         break;
7475
7476                 case 3:
7477                         swstats->rx_parity_abort_cnt++;
7478                         break;
7479
7480                 case 4:
7481                         swstats->rx_rda_fail_cnt++;
7482                         break;
7483
7484                 case 5:
7485                         swstats->rx_unkn_prot_cnt++;
7486                         break;
7487
7488                 case 6:
7489                         swstats->rx_fcs_err_cnt++;
7490                         break;
7491
7492                 case 7:
7493                         swstats->rx_buf_size_err_cnt++;
7494                         break;
7495
7496                 case 8:
7497                         swstats->rx_rxd_corrupt_cnt++;
7498                         break;
7499
7500                 case 15:
7501                         swstats->rx_unkn_err_cnt++;
7502                         break;
7503                 }
7504                 /*
7505                  * Drop the packet if bad transfer code. Exception being
7506                  * 0x5, which could be due to unsupported IPv6 extension header.
7507                  * In this case, we let stack handle the packet.
7508                  * Note that in this case, since checksum will be incorrect,
7509                  * stack will validate the same.
7510                  */
7511                 if (err_mask != 0x5) {
7512                         DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7513                                   dev->name, err_mask);
7514                         dev->stats.rx_crc_errors++;
7515                         swstats->mem_freed
7516                                 += skb->truesize;
7517                         dev_kfree_skb(skb);
7518                         ring_data->rx_bufs_left -= 1;
7519                         rxdp->Host_Control = 0;
7520                         return 0;
7521                 }
7522         }
7523
7524         rxdp->Host_Control = 0;
7525         if (sp->rxd_mode == RXD_MODE_1) {
7526                 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7527
7528                 skb_put(skb, len);
7529         } else if (sp->rxd_mode == RXD_MODE_3B) {
7530                 int get_block = ring_data->rx_curr_get_info.block_index;
7531                 int get_off = ring_data->rx_curr_get_info.offset;
7532                 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7533                 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7534                 unsigned char *buff = skb_push(skb, buf0_len);
7535
7536                 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7537                 memcpy(buff, ba->ba_0, buf0_len);
7538                 skb_put(skb, buf2_len);
7539         }
7540
7541         if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
7542             ((!ring_data->lro) ||
7543              (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7544             (sp->rx_csum)) {
7545                 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7546                 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7547                 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7548                         /*
7549                          * NIC verifies if the Checksum of the received
7550                          * frame is Ok or not and accordingly returns
7551                          * a flag in the RxD.
7552                          */
7553                         skb->ip_summed = CHECKSUM_UNNECESSARY;
7554                         if (ring_data->lro) {
7555                                 u32 tcp_len = 0;
7556                                 u8 *tcp;
7557                                 int ret = 0;
7558
7559                                 ret = s2io_club_tcp_session(ring_data,
7560                                                             skb->data, &tcp,
7561                                                             &tcp_len, &lro,
7562                                                             rxdp, sp);
7563                                 switch (ret) {
7564                                 case 3: /* Begin anew */
7565                                         lro->parent = skb;
7566                                         goto aggregate;
7567                                 case 1: /* Aggregate */
7568                                         lro_append_pkt(sp, lro, skb, tcp_len);
7569                                         goto aggregate;
7570                                 case 4: /* Flush session */
7571                                         lro_append_pkt(sp, lro, skb, tcp_len);
7572                                         queue_rx_frame(lro->parent,
7573                                                        lro->vlan_tag);
7574                                         clear_lro_session(lro);
7575                                         swstats->flush_max_pkts++;
7576                                         goto aggregate;
7577                                 case 2: /* Flush both */
7578                                         lro->parent->data_len = lro->frags_len;
7579                                         swstats->sending_both++;
7580                                         queue_rx_frame(lro->parent,
7581                                                        lro->vlan_tag);
7582                                         clear_lro_session(lro);
7583                                         goto send_up;
7584                                 case 0: /* sessions exceeded */
7585                                 case -1: /* non-TCP or not L2 aggregatable */
7586                                 case 5: /*
7587                                          * First pkt in session not
7588                                          * L3/L4 aggregatable
7589                                          */
7590                                         break;
7591                                 default:
7592                                         DBG_PRINT(ERR_DBG,
7593                                                   "%s: Samadhana!!\n",
7594                                                   __func__);
7595                                         BUG();
7596                                 }
7597                         }
7598                 } else {
7599                         /*
7600                          * Packet with erroneous checksum, let the
7601                          * upper layers deal with it.
7602                          */
7603                         skb_checksum_none_assert(skb);
7604                 }
7605         } else
7606                 skb_checksum_none_assert(skb);
7607
7608         swstats->mem_freed += skb->truesize;
7609 send_up:
7610         skb_record_rx_queue(skb, ring_no);
7611         queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7612 aggregate:
7613         sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
7614         return SUCCESS;
7615 }
7616
7617 /**
7618  *  s2io_link - stops/starts the Tx queue.
7619  *  @sp : private member of the device structure, which is a pointer to the
7620  *  s2io_nic structure.
7621  *  @link : inidicates whether link is UP/DOWN.
7622  *  Description:
7623  *  This function stops/starts the Tx queue depending on whether the link
7624  *  status of the NIC is is down or up. This is called by the Alarm
7625  *  interrupt handler whenever a link change interrupt comes up.
7626  *  Return value:
7627  *  void.
7628  */
7629
7630 static void s2io_link(struct s2io_nic *sp, int link)
7631 {
7632         struct net_device *dev = (struct net_device *)sp->dev;
7633         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7634
7635         if (link != sp->last_link_state) {
7636                 init_tti(sp, link);
7637                 if (link == LINK_DOWN) {
7638                         DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7639                         s2io_stop_all_tx_queue(sp);
7640                         netif_carrier_off(dev);
7641                         if (swstats->link_up_cnt)
7642                                 swstats->link_up_time =
7643                                         jiffies - sp->start_time;
7644                         swstats->link_down_cnt++;
7645                 } else {
7646                         DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7647                         if (swstats->link_down_cnt)
7648                                 swstats->link_down_time =
7649                                         jiffies - sp->start_time;
7650                         swstats->link_up_cnt++;
7651                         netif_carrier_on(dev);
7652                         s2io_wake_all_tx_queue(sp);
7653                 }
7654         }
7655         sp->last_link_state = link;
7656         sp->start_time = jiffies;
7657 }
7658
7659 /**
7660  *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7661  *  @sp : private member of the device structure, which is a pointer to the
7662  *  s2io_nic structure.
7663  *  Description:
7664  *  This function initializes a few of the PCI and PCI-X configuration registers
7665  *  with recommended values.
7666  *  Return value:
7667  *  void
7668  */
7669
7670 static void s2io_init_pci(struct s2io_nic *sp)
7671 {
7672         u16 pci_cmd = 0, pcix_cmd = 0;
7673
7674         /* Enable Data Parity Error Recovery in PCI-X command register. */
7675         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7676                              &(pcix_cmd));
7677         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7678                               (pcix_cmd | 1));
7679         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7680                              &(pcix_cmd));
7681
7682         /* Set the PErr Response bit in PCI command register. */
7683         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7684         pci_write_config_word(sp->pdev, PCI_COMMAND,
7685                               (pci_cmd | PCI_COMMAND_PARITY));
7686         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7687 }
7688
7689 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7690                             u8 *dev_multiq)
7691 {
7692         int i;
7693
7694         if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) {
7695                 DBG_PRINT(ERR_DBG, "Requested number of tx fifos "
7696                           "(%d) not supported\n", tx_fifo_num);
7697
7698                 if (tx_fifo_num < 1)
7699                         tx_fifo_num = 1;
7700                 else
7701                         tx_fifo_num = MAX_TX_FIFOS;
7702
7703                 DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num);
7704         }
7705
7706         if (multiq)
7707                 *dev_multiq = multiq;
7708
7709         if (tx_steering_type && (1 == tx_fifo_num)) {
7710                 if (tx_steering_type != TX_DEFAULT_STEERING)
7711                         DBG_PRINT(ERR_DBG,
7712                                   "Tx steering is not supported with "
7713                                   "one fifo. Disabling Tx steering.\n");
7714                 tx_steering_type = NO_STEERING;
7715         }
7716
7717         if ((tx_steering_type < NO_STEERING) ||
7718             (tx_steering_type > TX_DEFAULT_STEERING)) {
7719                 DBG_PRINT(ERR_DBG,
7720                           "Requested transmit steering not supported\n");
7721                 DBG_PRINT(ERR_DBG, "Disabling transmit steering\n");
7722                 tx_steering_type = NO_STEERING;
7723         }
7724
7725         if (rx_ring_num > MAX_RX_RINGS) {
7726                 DBG_PRINT(ERR_DBG,
7727                           "Requested number of rx rings not supported\n");
7728                 DBG_PRINT(ERR_DBG, "Default to %d rx rings\n",
7729                           MAX_RX_RINGS);
7730                 rx_ring_num = MAX_RX_RINGS;
7731         }
7732
7733         if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7734                 DBG_PRINT(ERR_DBG, "Wrong intr_type requested. "
7735                           "Defaulting to INTA\n");
7736                 *dev_intr_type = INTA;
7737         }
7738
7739         if ((*dev_intr_type == MSI_X) &&
7740             ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7741              (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7742                 DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. "
7743                           "Defaulting to INTA\n");
7744                 *dev_intr_type = INTA;
7745         }
7746
7747         if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7748                 DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n");
7749                 DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n");
7750                 rx_ring_mode = 1;
7751         }
7752
7753         for (i = 0; i < MAX_RX_RINGS; i++)
7754                 if (rx_ring_sz[i] > MAX_RX_BLOCKS_PER_RING) {
7755                         DBG_PRINT(ERR_DBG, "Requested rx ring size not "
7756                                   "supported\nDefaulting to %d\n",
7757                                   MAX_RX_BLOCKS_PER_RING);
7758                         rx_ring_sz[i] = MAX_RX_BLOCKS_PER_RING;
7759                 }
7760
7761         return SUCCESS;
7762 }
7763
7764 /**
7765  * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7766  * or Traffic class respectively.
7767  * @nic: device private variable
7768  * Description: The function configures the receive steering to
7769  * desired receive ring.
7770  * Return Value:  SUCCESS on success and
7771  * '-1' on failure (endian settings incorrect).
7772  */
7773 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7774 {
7775         struct XENA_dev_config __iomem *bar0 = nic->bar0;
7776         register u64 val64 = 0;
7777
7778         if (ds_codepoint > 63)
7779                 return FAILURE;
7780
7781         val64 = RTS_DS_MEM_DATA(ring);
7782         writeq(val64, &bar0->rts_ds_mem_data);
7783
7784         val64 = RTS_DS_MEM_CTRL_WE |
7785                 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7786                 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7787
7788         writeq(val64, &bar0->rts_ds_mem_ctrl);
7789
7790         return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7791                                      RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7792                                      S2IO_BIT_RESET);
7793 }
7794
7795 static const struct net_device_ops s2io_netdev_ops = {
7796         .ndo_open               = s2io_open,
7797         .ndo_stop               = s2io_close,
7798         .ndo_get_stats          = s2io_get_stats,
7799         .ndo_start_xmit         = s2io_xmit,
7800         .ndo_validate_addr      = eth_validate_addr,
7801         .ndo_set_multicast_list = s2io_set_multicast,
7802         .ndo_do_ioctl           = s2io_ioctl,
7803         .ndo_set_mac_address    = s2io_set_mac_addr,
7804         .ndo_change_mtu         = s2io_change_mtu,
7805         .ndo_vlan_rx_register   = s2io_vlan_rx_register,
7806         .ndo_vlan_rx_kill_vid   = s2io_vlan_rx_kill_vid,
7807         .ndo_tx_timeout         = s2io_tx_watchdog,
7808 #ifdef CONFIG_NET_POLL_CONTROLLER
7809         .ndo_poll_controller    = s2io_netpoll,
7810 #endif
7811 };
7812
7813 /**
7814  *  s2io_init_nic - Initialization of the adapter .
7815  *  @pdev : structure containing the PCI related information of the device.
7816  *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7817  *  Description:
7818  *  The function initializes an adapter identified by the pci_dec structure.
7819  *  All OS related initialization including memory and device structure and
7820  *  initlaization of the device private variable is done. Also the swapper
7821  *  control register is initialized to enable read and write into the I/O
7822  *  registers of the device.
7823  *  Return value:
7824  *  returns 0 on success and negative on failure.
7825  */
7826
7827 static int __devinit
7828 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7829 {
7830         struct s2io_nic *sp;
7831         struct net_device *dev;
7832         int i, j, ret;
7833         int dma_flag = false;
7834         u32 mac_up, mac_down;
7835         u64 val64 = 0, tmp64 = 0;
7836         struct XENA_dev_config __iomem *bar0 = NULL;
7837         u16 subid;
7838         struct config_param *config;
7839         struct mac_info *mac_control;
7840         int mode;
7841         u8 dev_intr_type = intr_type;
7842         u8 dev_multiq = 0;
7843
7844         ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7845         if (ret)
7846                 return ret;
7847
7848         ret = pci_enable_device(pdev);
7849         if (ret) {
7850                 DBG_PRINT(ERR_DBG,
7851                           "%s: pci_enable_device failed\n", __func__);
7852                 return ret;
7853         }
7854
7855         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
7856                 DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__);
7857                 dma_flag = true;
7858                 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
7859                         DBG_PRINT(ERR_DBG,
7860                                   "Unable to obtain 64bit DMA "
7861                                   "for consistent allocations\n");
7862                         pci_disable_device(pdev);
7863                         return -ENOMEM;
7864                 }
7865         } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
7866                 DBG_PRINT(INIT_DBG, "%s: Using 32bit DMA\n", __func__);
7867         } else {
7868                 pci_disable_device(pdev);
7869                 return -ENOMEM;
7870         }
7871         ret = pci_request_regions(pdev, s2io_driver_name);
7872         if (ret) {
7873                 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n",
7874                           __func__, ret);
7875                 pci_disable_device(pdev);
7876                 return -ENODEV;
7877         }
7878         if (dev_multiq)
7879                 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7880         else
7881                 dev = alloc_etherdev(sizeof(struct s2io_nic));
7882         if (dev == NULL) {
7883                 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7884                 pci_disable_device(pdev);
7885                 pci_release_regions(pdev);
7886                 return -ENODEV;
7887         }
7888
7889         pci_set_master(pdev);
7890         pci_set_drvdata(pdev, dev);
7891         SET_NETDEV_DEV(dev, &pdev->dev);
7892
7893         /*  Private member variable initialized to s2io NIC structure */
7894         sp = netdev_priv(dev);
7895         sp->dev = dev;
7896         sp->pdev = pdev;
7897         sp->high_dma_flag = dma_flag;
7898         sp->device_enabled_once = false;
7899         if (rx_ring_mode == 1)
7900                 sp->rxd_mode = RXD_MODE_1;
7901         if (rx_ring_mode == 2)
7902                 sp->rxd_mode = RXD_MODE_3B;
7903
7904         sp->config.intr_type = dev_intr_type;
7905
7906         if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7907             (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7908                 sp->device_type = XFRAME_II_DEVICE;
7909         else
7910                 sp->device_type = XFRAME_I_DEVICE;
7911
7912
7913         /* Initialize some PCI/PCI-X fields of the NIC. */
7914         s2io_init_pci(sp);
7915
7916         /*
7917          * Setting the device configuration parameters.
7918          * Most of these parameters can be specified by the user during
7919          * module insertion as they are module loadable parameters. If
7920          * these parameters are not not specified during load time, they
7921          * are initialized with default values.
7922          */
7923         config = &sp->config;
7924         mac_control = &sp->mac_control;
7925
7926         config->napi = napi;
7927         config->tx_steering_type = tx_steering_type;
7928
7929         /* Tx side parameters. */
7930         if (config->tx_steering_type == TX_PRIORITY_STEERING)
7931                 config->tx_fifo_num = MAX_TX_FIFOS;
7932         else
7933                 config->tx_fifo_num = tx_fifo_num;
7934
7935         /* Initialize the fifos used for tx steering */
7936         if (config->tx_fifo_num < 5) {
7937                 if (config->tx_fifo_num  == 1)
7938                         sp->total_tcp_fifos = 1;
7939                 else
7940                         sp->total_tcp_fifos = config->tx_fifo_num - 1;
7941                 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7942                 sp->total_udp_fifos = 1;
7943                 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7944         } else {
7945                 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7946                                        FIFO_OTHER_MAX_NUM);
7947                 sp->udp_fifo_idx = sp->total_tcp_fifos;
7948                 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7949                 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7950         }
7951
7952         config->multiq = dev_multiq;
7953         for (i = 0; i < config->tx_fifo_num; i++) {
7954                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7955
7956                 tx_cfg->fifo_len = tx_fifo_len[i];
7957                 tx_cfg->fifo_priority = i;
7958         }
7959
7960         /* mapping the QoS priority to the configured fifos */
7961         for (i = 0; i < MAX_TX_FIFOS; i++)
7962                 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7963
7964         /* map the hashing selector table to the configured fifos */
7965         for (i = 0; i < config->tx_fifo_num; i++)
7966                 sp->fifo_selector[i] = fifo_selector[i];
7967
7968
7969         config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7970         for (i = 0; i < config->tx_fifo_num; i++) {
7971                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7972
7973                 tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7974                 if (tx_cfg->fifo_len < 65) {
7975                         config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7976                         break;
7977                 }
7978         }
7979         /* + 2 because one Txd for skb->data and one Txd for UFO */
7980         config->max_txds = MAX_SKB_FRAGS + 2;
7981
7982         /* Rx side parameters. */
7983         config->rx_ring_num = rx_ring_num;
7984         for (i = 0; i < config->rx_ring_num; i++) {
7985                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7986                 struct ring_info *ring = &mac_control->rings[i];
7987
7988                 rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1);
7989                 rx_cfg->ring_priority = i;
7990                 ring->rx_bufs_left = 0;
7991                 ring->rxd_mode = sp->rxd_mode;
7992                 ring->rxd_count = rxd_count[sp->rxd_mode];
7993                 ring->pdev = sp->pdev;
7994                 ring->dev = sp->dev;
7995         }
7996
7997         for (i = 0; i < rx_ring_num; i++) {
7998                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7999
8000                 rx_cfg->ring_org = RING_ORG_BUFF1;
8001                 rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
8002         }
8003
8004         /*  Setting Mac Control parameters */
8005         mac_control->rmac_pause_time = rmac_pause_time;
8006         mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
8007         mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
8008
8009
8010         /*  initialize the shared memory used by the NIC and the host */
8011         if (init_shared_mem(sp)) {
8012                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name);
8013                 ret = -ENOMEM;
8014                 goto mem_alloc_failed;
8015         }
8016
8017         sp->bar0 = pci_ioremap_bar(pdev, 0);
8018         if (!sp->bar0) {
8019                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
8020                           dev->name);
8021                 ret = -ENOMEM;
8022                 goto bar0_remap_failed;
8023         }
8024
8025         sp->bar1 = pci_ioremap_bar(pdev, 2);
8026         if (!sp->bar1) {
8027                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
8028                           dev->name);
8029                 ret = -ENOMEM;
8030                 goto bar1_remap_failed;
8031         }
8032
8033         dev->irq = pdev->irq;
8034         dev->base_addr = (unsigned long)sp->bar0;
8035
8036         /* Initializing the BAR1 address as the start of the FIFO pointer. */
8037         for (j = 0; j < MAX_TX_FIFOS; j++) {
8038                 mac_control->tx_FIFO_start[j] =
8039                         (struct TxFIFO_element __iomem *)
8040                         (sp->bar1 + (j * 0x00020000));
8041         }
8042
8043         /*  Driver entry points */
8044         dev->netdev_ops = &s2io_netdev_ops;
8045         SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
8046         dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
8047         dev->features |= NETIF_F_LRO;
8048         dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
8049         if (sp->high_dma_flag == true)
8050                 dev->features |= NETIF_F_HIGHDMA;
8051         dev->features |= NETIF_F_TSO;
8052         dev->features |= NETIF_F_TSO6;
8053         if ((sp->device_type & XFRAME_II_DEVICE) && (ufo))  {
8054                 dev->features |= NETIF_F_UFO;
8055                 dev->features |= NETIF_F_HW_CSUM;
8056         }
8057         dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
8058         INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
8059         INIT_WORK(&sp->set_link_task, s2io_set_link);
8060
8061         pci_save_state(sp->pdev);
8062
8063         /* Setting swapper control on the NIC, for proper reset operation */
8064         if (s2io_set_swapper(sp)) {
8065                 DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n",
8066                           dev->name);
8067                 ret = -EAGAIN;
8068                 goto set_swap_failed;
8069         }
8070
8071         /* Verify if the Herc works on the slot its placed into */
8072         if (sp->device_type & XFRAME_II_DEVICE) {
8073                 mode = s2io_verify_pci_mode(sp);
8074                 if (mode < 0) {
8075                         DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n",
8076                                   __func__);
8077                         ret = -EBADSLT;
8078                         goto set_swap_failed;
8079                 }
8080         }
8081
8082         if (sp->config.intr_type == MSI_X) {
8083                 sp->num_entries = config->rx_ring_num + 1;
8084                 ret = s2io_enable_msi_x(sp);
8085
8086                 if (!ret) {
8087                         ret = s2io_test_msi(sp);
8088                         /* rollback MSI-X, will re-enable during add_isr() */
8089                         remove_msix_isr(sp);
8090                 }
8091                 if (ret) {
8092
8093                         DBG_PRINT(ERR_DBG,
8094                                   "MSI-X requested but failed to enable\n");
8095                         sp->config.intr_type = INTA;
8096                 }
8097         }
8098
8099         if (config->intr_type ==  MSI_X) {
8100                 for (i = 0; i < config->rx_ring_num ; i++) {
8101                         struct ring_info *ring = &mac_control->rings[i];
8102
8103                         netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64);
8104                 }
8105         } else {
8106                 netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
8107         }
8108
8109         /* Not needed for Herc */
8110         if (sp->device_type & XFRAME_I_DEVICE) {
8111                 /*
8112                  * Fix for all "FFs" MAC address problems observed on
8113                  * Alpha platforms
8114                  */
8115                 fix_mac_address(sp);
8116                 s2io_reset(sp);
8117         }
8118
8119         /*
8120          * MAC address initialization.
8121          * For now only one mac address will be read and used.
8122          */
8123         bar0 = sp->bar0;
8124         val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
8125                 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
8126         writeq(val64, &bar0->rmac_addr_cmd_mem);
8127         wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
8128                               RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
8129                               S2IO_BIT_RESET);
8130         tmp64 = readq(&bar0->rmac_addr_data0_mem);
8131         mac_down = (u32)tmp64;
8132         mac_up = (u32) (tmp64 >> 32);
8133
8134         sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8135         sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8136         sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8137         sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8138         sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8139         sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8140
8141         /*  Set the factory defined MAC address initially   */
8142         dev->addr_len = ETH_ALEN;
8143         memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
8144         memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
8145
8146         /* initialize number of multicast & unicast MAC entries variables */
8147         if (sp->device_type == XFRAME_I_DEVICE) {
8148                 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8149                 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8150                 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8151         } else if (sp->device_type == XFRAME_II_DEVICE) {
8152                 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8153                 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8154                 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8155         }
8156
8157         /* store mac addresses from CAM to s2io_nic structure */
8158         do_s2io_store_unicast_mc(sp);
8159
8160         /* Configure MSIX vector for number of rings configured plus one */
8161         if ((sp->device_type == XFRAME_II_DEVICE) &&
8162             (config->intr_type == MSI_X))
8163                 sp->num_entries = config->rx_ring_num + 1;
8164
8165         /* Store the values of the MSIX table in the s2io_nic structure */
8166         store_xmsi_data(sp);
8167         /* reset Nic and bring it to known state */
8168         s2io_reset(sp);
8169
8170         /*
8171          * Initialize link state flags
8172          * and the card state parameter
8173          */
8174         sp->state = 0;
8175
8176         /* Initialize spinlocks */
8177         for (i = 0; i < sp->config.tx_fifo_num; i++) {
8178                 struct fifo_info *fifo = &mac_control->fifos[i];
8179
8180                 spin_lock_init(&fifo->tx_lock);
8181         }
8182
8183         /*
8184          * SXE-002: Configure link and activity LED to init state
8185          * on driver load.
8186          */
8187         subid = sp->pdev->subsystem_device;
8188         if ((subid & 0xFF) >= 0x07) {
8189                 val64 = readq(&bar0->gpio_control);
8190                 val64 |= 0x0000800000000000ULL;
8191                 writeq(val64, &bar0->gpio_control);
8192                 val64 = 0x0411040400000000ULL;
8193                 writeq(val64, (void __iomem *)bar0 + 0x2700);
8194                 val64 = readq(&bar0->gpio_control);
8195         }
8196
8197         sp->rx_csum = 1;        /* Rx chksum verify enabled by default */
8198
8199         if (register_netdev(dev)) {
8200                 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8201                 ret = -ENODEV;
8202                 goto register_failed;
8203         }
8204         s2io_vpd_read(sp);
8205         DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2010 Exar Corp.\n");
8206         DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name,
8207                   sp->product_name, pdev->revision);
8208         DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8209                   s2io_driver_version);
8210         DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr);
8211         DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num);
8212         if (sp->device_type & XFRAME_II_DEVICE) {
8213                 mode = s2io_print_pci_mode(sp);
8214                 if (mode < 0) {
8215                         ret = -EBADSLT;
8216                         unregister_netdev(dev);
8217                         goto set_swap_failed;
8218                 }
8219         }
8220         switch (sp->rxd_mode) {
8221         case RXD_MODE_1:
8222                 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8223                           dev->name);
8224                 break;
8225         case RXD_MODE_3B:
8226                 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8227                           dev->name);
8228                 break;
8229         }
8230
8231         switch (sp->config.napi) {
8232         case 0:
8233                 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8234                 break;
8235         case 1:
8236                 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8237                 break;
8238         }
8239
8240         DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8241                   sp->config.tx_fifo_num);
8242
8243         DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8244                   sp->config.rx_ring_num);
8245
8246         switch (sp->config.intr_type) {
8247         case INTA:
8248                 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8249                 break;
8250         case MSI_X:
8251                 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8252                 break;
8253         }
8254         if (sp->config.multiq) {
8255                 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8256                         struct fifo_info *fifo = &mac_control->fifos[i];
8257
8258                         fifo->multiq = config->multiq;
8259                 }
8260                 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8261                           dev->name);
8262         } else
8263                 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8264                           dev->name);
8265
8266         switch (sp->config.tx_steering_type) {
8267         case NO_STEERING:
8268                 DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n",
8269                           dev->name);
8270                 break;
8271         case TX_PRIORITY_STEERING:
8272                 DBG_PRINT(ERR_DBG,
8273                           "%s: Priority steering enabled for transmit\n",
8274                           dev->name);
8275                 break;
8276         case TX_DEFAULT_STEERING:
8277                 DBG_PRINT(ERR_DBG,
8278                           "%s: Default steering enabled for transmit\n",
8279                           dev->name);
8280         }
8281
8282         DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8283                   dev->name);
8284         if (ufo)
8285                 DBG_PRINT(ERR_DBG,
8286                           "%s: UDP Fragmentation Offload(UFO) enabled\n",
8287                           dev->name);
8288         /* Initialize device name */
8289         sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
8290
8291         if (vlan_tag_strip)
8292                 sp->vlan_strip_flag = 1;
8293         else
8294                 sp->vlan_strip_flag = 0;
8295
8296         /*
8297          * Make Link state as off at this point, when the Link change
8298          * interrupt comes the state will be automatically changed to
8299          * the right state.
8300          */
8301         netif_carrier_off(dev);
8302
8303         return 0;
8304
8305 register_failed:
8306 set_swap_failed:
8307         iounmap(sp->bar1);
8308 bar1_remap_failed:
8309         iounmap(sp->bar0);
8310 bar0_remap_failed:
8311 mem_alloc_failed:
8312         free_shared_mem(sp);
8313         pci_disable_device(pdev);
8314         pci_release_regions(pdev);
8315         pci_set_drvdata(pdev, NULL);
8316         free_netdev(dev);
8317
8318         return ret;
8319 }
8320
8321 /**
8322  * s2io_rem_nic - Free the PCI device
8323  * @pdev: structure containing the PCI related information of the device.
8324  * Description: This function is called by the Pci subsystem to release a
8325  * PCI device and free up all resource held up by the device. This could
8326  * be in response to a Hot plug event or when the driver is to be removed
8327  * from memory.
8328  */
8329
8330 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8331 {
8332         struct net_device *dev = pci_get_drvdata(pdev);
8333         struct s2io_nic *sp;
8334
8335         if (dev == NULL) {
8336                 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8337                 return;
8338         }
8339
8340         sp = netdev_priv(dev);
8341
8342         cancel_work_sync(&sp->rst_timer_task);
8343         cancel_work_sync(&sp->set_link_task);
8344
8345         unregister_netdev(dev);
8346
8347         free_shared_mem(sp);
8348         iounmap(sp->bar0);
8349         iounmap(sp->bar1);
8350         pci_release_regions(pdev);
8351         pci_set_drvdata(pdev, NULL);
8352         free_netdev(dev);
8353         pci_disable_device(pdev);
8354 }
8355
8356 /**
8357  * s2io_starter - Entry point for the driver
8358  * Description: This function is the entry point for the driver. It verifies
8359  * the module loadable parameters and initializes PCI configuration space.
8360  */
8361
8362 static int __init s2io_starter(void)
8363 {
8364         return pci_register_driver(&s2io_driver);
8365 }
8366
8367 /**
8368  * s2io_closer - Cleanup routine for the driver
8369  * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8370  */
8371
8372 static __exit void s2io_closer(void)
8373 {
8374         pci_unregister_driver(&s2io_driver);
8375         DBG_PRINT(INIT_DBG, "cleanup done\n");
8376 }
8377
8378 module_init(s2io_starter);
8379 module_exit(s2io_closer);
8380
8381 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8382                                 struct tcphdr **tcp, struct RxD_t *rxdp,
8383                                 struct s2io_nic *sp)
8384 {
8385         int ip_off;
8386         u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8387
8388         if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8389                 DBG_PRINT(INIT_DBG,
8390                           "%s: Non-TCP frames not supported for LRO\n",
8391                           __func__);
8392                 return -1;
8393         }
8394
8395         /* Checking for DIX type or DIX type with VLAN */
8396         if ((l2_type == 0) || (l2_type == 4)) {
8397                 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8398                 /*
8399                  * If vlan stripping is disabled and the frame is VLAN tagged,
8400                  * shift the offset by the VLAN header size bytes.
8401                  */
8402                 if ((!sp->vlan_strip_flag) &&
8403                     (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8404                         ip_off += HEADER_VLAN_SIZE;
8405         } else {
8406                 /* LLC, SNAP etc are considered non-mergeable */
8407                 return -1;
8408         }
8409
8410         *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8411         ip_len = (u8)((*ip)->ihl);
8412         ip_len <<= 2;
8413         *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8414
8415         return 0;
8416 }
8417
8418 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8419                                   struct tcphdr *tcp)
8420 {
8421         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8422         if ((lro->iph->saddr != ip->saddr) ||
8423             (lro->iph->daddr != ip->daddr) ||
8424             (lro->tcph->source != tcp->source) ||
8425             (lro->tcph->dest != tcp->dest))
8426                 return -1;
8427         return 0;
8428 }
8429
8430 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8431 {
8432         return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2);
8433 }
8434
8435 static void initiate_new_session(struct lro *lro, u8 *l2h,
8436                                  struct iphdr *ip, struct tcphdr *tcp,
8437                                  u32 tcp_pyld_len, u16 vlan_tag)
8438 {
8439         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8440         lro->l2h = l2h;
8441         lro->iph = ip;
8442         lro->tcph = tcp;
8443         lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8444         lro->tcp_ack = tcp->ack_seq;
8445         lro->sg_num = 1;
8446         lro->total_len = ntohs(ip->tot_len);
8447         lro->frags_len = 0;
8448         lro->vlan_tag = vlan_tag;
8449         /*
8450          * Check if we saw TCP timestamp.
8451          * Other consistency checks have already been done.
8452          */
8453         if (tcp->doff == 8) {
8454                 __be32 *ptr;
8455                 ptr = (__be32 *)(tcp+1);
8456                 lro->saw_ts = 1;
8457                 lro->cur_tsval = ntohl(*(ptr+1));
8458                 lro->cur_tsecr = *(ptr+2);
8459         }
8460         lro->in_use = 1;
8461 }
8462
8463 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8464 {
8465         struct iphdr *ip = lro->iph;
8466         struct tcphdr *tcp = lro->tcph;
8467         __sum16 nchk;
8468         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8469
8470         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8471
8472         /* Update L3 header */
8473         ip->tot_len = htons(lro->total_len);
8474         ip->check = 0;
8475         nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8476         ip->check = nchk;
8477
8478         /* Update L4 header */
8479         tcp->ack_seq = lro->tcp_ack;
8480         tcp->window = lro->window;
8481
8482         /* Update tsecr field if this session has timestamps enabled */
8483         if (lro->saw_ts) {
8484                 __be32 *ptr = (__be32 *)(tcp + 1);
8485                 *(ptr+2) = lro->cur_tsecr;
8486         }
8487
8488         /* Update counters required for calculation of
8489          * average no. of packets aggregated.
8490          */
8491         swstats->sum_avg_pkts_aggregated += lro->sg_num;
8492         swstats->num_aggregations++;
8493 }
8494
8495 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8496                              struct tcphdr *tcp, u32 l4_pyld)
8497 {
8498         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8499         lro->total_len += l4_pyld;
8500         lro->frags_len += l4_pyld;
8501         lro->tcp_next_seq += l4_pyld;
8502         lro->sg_num++;
8503
8504         /* Update ack seq no. and window ad(from this pkt) in LRO object */
8505         lro->tcp_ack = tcp->ack_seq;
8506         lro->window = tcp->window;
8507
8508         if (lro->saw_ts) {
8509                 __be32 *ptr;
8510                 /* Update tsecr and tsval from this packet */
8511                 ptr = (__be32 *)(tcp+1);
8512                 lro->cur_tsval = ntohl(*(ptr+1));
8513                 lro->cur_tsecr = *(ptr + 2);
8514         }
8515 }
8516
8517 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8518                                     struct tcphdr *tcp, u32 tcp_pyld_len)
8519 {
8520         u8 *ptr;
8521
8522         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8523
8524         if (!tcp_pyld_len) {
8525                 /* Runt frame or a pure ack */
8526                 return -1;
8527         }
8528
8529         if (ip->ihl != 5) /* IP has options */
8530                 return -1;
8531
8532         /* If we see CE codepoint in IP header, packet is not mergeable */
8533         if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8534                 return -1;
8535
8536         /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8537         if (tcp->urg || tcp->psh || tcp->rst ||
8538             tcp->syn || tcp->fin ||
8539             tcp->ece || tcp->cwr || !tcp->ack) {
8540                 /*
8541                  * Currently recognize only the ack control word and
8542                  * any other control field being set would result in
8543                  * flushing the LRO session
8544                  */
8545                 return -1;
8546         }
8547
8548         /*
8549          * Allow only one TCP timestamp option. Don't aggregate if
8550          * any other options are detected.
8551          */
8552         if (tcp->doff != 5 && tcp->doff != 8)
8553                 return -1;
8554
8555         if (tcp->doff == 8) {
8556                 ptr = (u8 *)(tcp + 1);
8557                 while (*ptr == TCPOPT_NOP)
8558                         ptr++;
8559                 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8560                         return -1;
8561
8562                 /* Ensure timestamp value increases monotonically */
8563                 if (l_lro)
8564                         if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8565                                 return -1;
8566
8567                 /* timestamp echo reply should be non-zero */
8568                 if (*((__be32 *)(ptr+6)) == 0)
8569                         return -1;
8570         }
8571
8572         return 0;
8573 }
8574
8575 static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer,
8576                                  u8 **tcp, u32 *tcp_len, struct lro **lro,
8577                                  struct RxD_t *rxdp, struct s2io_nic *sp)
8578 {
8579         struct iphdr *ip;
8580         struct tcphdr *tcph;
8581         int ret = 0, i;
8582         u16 vlan_tag = 0;
8583         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8584
8585         ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8586                                    rxdp, sp);
8587         if (ret)
8588                 return ret;
8589
8590         DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr);
8591
8592         vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8593         tcph = (struct tcphdr *)*tcp;
8594         *tcp_len = get_l4_pyld_length(ip, tcph);
8595         for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8596                 struct lro *l_lro = &ring_data->lro0_n[i];
8597                 if (l_lro->in_use) {
8598                         if (check_for_socket_match(l_lro, ip, tcph))
8599                                 continue;
8600                         /* Sock pair matched */
8601                         *lro = l_lro;
8602
8603                         if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8604                                 DBG_PRINT(INFO_DBG, "%s: Out of sequence. "
8605                                           "expected 0x%x, actual 0x%x\n",
8606                                           __func__,
8607                                           (*lro)->tcp_next_seq,
8608                                           ntohl(tcph->seq));
8609
8610                                 swstats->outof_sequence_pkts++;
8611                                 ret = 2;
8612                                 break;
8613                         }
8614
8615                         if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,
8616                                                       *tcp_len))
8617                                 ret = 1; /* Aggregate */
8618                         else
8619                                 ret = 2; /* Flush both */
8620                         break;
8621                 }
8622         }
8623
8624         if (ret == 0) {
8625                 /* Before searching for available LRO objects,
8626                  * check if the pkt is L3/L4 aggregatable. If not
8627                  * don't create new LRO session. Just send this
8628                  * packet up.
8629                  */
8630                 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len))
8631                         return 5;
8632
8633                 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8634                         struct lro *l_lro = &ring_data->lro0_n[i];
8635                         if (!(l_lro->in_use)) {
8636                                 *lro = l_lro;
8637                                 ret = 3; /* Begin anew */
8638                                 break;
8639                         }
8640                 }
8641         }
8642
8643         if (ret == 0) { /* sessions exceeded */
8644                 DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n",
8645                           __func__);
8646                 *lro = NULL;
8647                 return ret;
8648         }
8649
8650         switch (ret) {
8651         case 3:
8652                 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8653                                      vlan_tag);
8654                 break;
8655         case 2:
8656                 update_L3L4_header(sp, *lro);
8657                 break;
8658         case 1:
8659                 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8660                 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8661                         update_L3L4_header(sp, *lro);
8662                         ret = 4; /* Flush the LRO */
8663                 }
8664                 break;
8665         default:
8666                 DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__);
8667                 break;
8668         }
8669
8670         return ret;
8671 }
8672
8673 static void clear_lro_session(struct lro *lro)
8674 {
8675         static u16 lro_struct_size = sizeof(struct lro);
8676
8677         memset(lro, 0, lro_struct_size);
8678 }
8679
8680 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8681 {
8682         struct net_device *dev = skb->dev;
8683         struct s2io_nic *sp = netdev_priv(dev);
8684
8685         skb->protocol = eth_type_trans(skb, dev);
8686         if (sp->vlgrp && vlan_tag && (sp->vlan_strip_flag)) {
8687                 /* Queueing the vlan frame to the upper layer */
8688                 if (sp->config.napi)
8689                         vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
8690                 else
8691                         vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
8692         } else {
8693                 if (sp->config.napi)
8694                         netif_receive_skb(skb);
8695                 else
8696                         netif_rx(skb);
8697         }
8698 }
8699
8700 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8701                            struct sk_buff *skb, u32 tcp_len)
8702 {
8703         struct sk_buff *first = lro->parent;
8704         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8705
8706         first->len += tcp_len;
8707         first->data_len = lro->frags_len;
8708         skb_pull(skb, (skb->len - tcp_len));
8709         if (skb_shinfo(first)->frag_list)
8710                 lro->last_frag->next = skb;
8711         else
8712                 skb_shinfo(first)->frag_list = skb;
8713         first->truesize += skb->truesize;
8714         lro->last_frag = skb;
8715         swstats->clubbed_frms_cnt++;
8716 }
8717
8718 /**
8719  * s2io_io_error_detected - called when PCI error is detected
8720  * @pdev: Pointer to PCI device
8721  * @state: The current pci connection state
8722  *
8723  * This function is called after a PCI bus error affecting
8724  * this device has been detected.
8725  */
8726 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8727                                                pci_channel_state_t state)
8728 {
8729         struct net_device *netdev = pci_get_drvdata(pdev);
8730         struct s2io_nic *sp = netdev_priv(netdev);
8731
8732         netif_device_detach(netdev);
8733
8734         if (state == pci_channel_io_perm_failure)
8735                 return PCI_ERS_RESULT_DISCONNECT;
8736
8737         if (netif_running(netdev)) {
8738                 /* Bring down the card, while avoiding PCI I/O */
8739                 do_s2io_card_down(sp, 0);
8740         }
8741         pci_disable_device(pdev);
8742
8743         return PCI_ERS_RESULT_NEED_RESET;
8744 }
8745
8746 /**
8747  * s2io_io_slot_reset - called after the pci bus has been reset.
8748  * @pdev: Pointer to PCI device
8749  *
8750  * Restart the card from scratch, as if from a cold-boot.
8751  * At this point, the card has exprienced a hard reset,
8752  * followed by fixups by BIOS, and has its config space
8753  * set up identically to what it was at cold boot.
8754  */
8755 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8756 {
8757         struct net_device *netdev = pci_get_drvdata(pdev);
8758         struct s2io_nic *sp = netdev_priv(netdev);
8759
8760         if (pci_enable_device(pdev)) {
8761                 pr_err("Cannot re-enable PCI device after reset.\n");
8762                 return PCI_ERS_RESULT_DISCONNECT;
8763         }
8764
8765         pci_set_master(pdev);
8766         s2io_reset(sp);
8767
8768         return PCI_ERS_RESULT_RECOVERED;
8769 }
8770
8771 /**
8772  * s2io_io_resume - called when traffic can start flowing again.
8773  * @pdev: Pointer to PCI device
8774  *
8775  * This callback is called when the error recovery driver tells
8776  * us that its OK to resume normal operation.
8777  */
8778 static void s2io_io_resume(struct pci_dev *pdev)
8779 {
8780         struct net_device *netdev = pci_get_drvdata(pdev);
8781         struct s2io_nic *sp = netdev_priv(netdev);
8782
8783         if (netif_running(netdev)) {
8784                 if (s2io_card_up(sp)) {
8785                         pr_err("Can't bring device back up after reset.\n");
8786                         return;
8787                 }
8788
8789                 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8790                         s2io_card_down(sp);
8791                         pr_err("Can't restore mac addr after reset.\n");
8792                         return;
8793                 }
8794         }
8795
8796         netif_device_attach(netdev);
8797         netif_tx_wake_all_queues(netdev);
8798 }