Merge tag 'acpi-4.19-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[linux-2.6-block.git] / drivers / net / phy / sfp.c
1 #include <linux/ctype.h>
2 #include <linux/delay.h>
3 #include <linux/gpio/consumer.h>
4 #include <linux/hwmon.h>
5 #include <linux/i2c.h>
6 #include <linux/interrupt.h>
7 #include <linux/jiffies.h>
8 #include <linux/module.h>
9 #include <linux/mutex.h>
10 #include <linux/of.h>
11 #include <linux/phy.h>
12 #include <linux/platform_device.h>
13 #include <linux/rtnetlink.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16
17 #include "mdio-i2c.h"
18 #include "sfp.h"
19 #include "swphy.h"
20
21 enum {
22         GPIO_MODDEF0,
23         GPIO_LOS,
24         GPIO_TX_FAULT,
25         GPIO_TX_DISABLE,
26         GPIO_RATE_SELECT,
27         GPIO_MAX,
28
29         SFP_F_PRESENT = BIT(GPIO_MODDEF0),
30         SFP_F_LOS = BIT(GPIO_LOS),
31         SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
32         SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
33         SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
34
35         SFP_E_INSERT = 0,
36         SFP_E_REMOVE,
37         SFP_E_DEV_DOWN,
38         SFP_E_DEV_UP,
39         SFP_E_TX_FAULT,
40         SFP_E_TX_CLEAR,
41         SFP_E_LOS_HIGH,
42         SFP_E_LOS_LOW,
43         SFP_E_TIMEOUT,
44
45         SFP_MOD_EMPTY = 0,
46         SFP_MOD_PROBE,
47         SFP_MOD_HPOWER,
48         SFP_MOD_PRESENT,
49         SFP_MOD_ERROR,
50
51         SFP_DEV_DOWN = 0,
52         SFP_DEV_UP,
53
54         SFP_S_DOWN = 0,
55         SFP_S_INIT,
56         SFP_S_WAIT_LOS,
57         SFP_S_LINK_UP,
58         SFP_S_TX_FAULT,
59         SFP_S_REINIT,
60         SFP_S_TX_DISABLE,
61 };
62
63 static const char  * const mod_state_strings[] = {
64         [SFP_MOD_EMPTY] = "empty",
65         [SFP_MOD_PROBE] = "probe",
66         [SFP_MOD_HPOWER] = "hpower",
67         [SFP_MOD_PRESENT] = "present",
68         [SFP_MOD_ERROR] = "error",
69 };
70
71 static const char *mod_state_to_str(unsigned short mod_state)
72 {
73         if (mod_state >= ARRAY_SIZE(mod_state_strings))
74                 return "Unknown module state";
75         return mod_state_strings[mod_state];
76 }
77
78 static const char * const dev_state_strings[] = {
79         [SFP_DEV_DOWN] = "down",
80         [SFP_DEV_UP] = "up",
81 };
82
83 static const char *dev_state_to_str(unsigned short dev_state)
84 {
85         if (dev_state >= ARRAY_SIZE(dev_state_strings))
86                 return "Unknown device state";
87         return dev_state_strings[dev_state];
88 }
89
90 static const char * const event_strings[] = {
91         [SFP_E_INSERT] = "insert",
92         [SFP_E_REMOVE] = "remove",
93         [SFP_E_DEV_DOWN] = "dev_down",
94         [SFP_E_DEV_UP] = "dev_up",
95         [SFP_E_TX_FAULT] = "tx_fault",
96         [SFP_E_TX_CLEAR] = "tx_clear",
97         [SFP_E_LOS_HIGH] = "los_high",
98         [SFP_E_LOS_LOW] = "los_low",
99         [SFP_E_TIMEOUT] = "timeout",
100 };
101
102 static const char *event_to_str(unsigned short event)
103 {
104         if (event >= ARRAY_SIZE(event_strings))
105                 return "Unknown event";
106         return event_strings[event];
107 }
108
109 static const char * const sm_state_strings[] = {
110         [SFP_S_DOWN] = "down",
111         [SFP_S_INIT] = "init",
112         [SFP_S_WAIT_LOS] = "wait_los",
113         [SFP_S_LINK_UP] = "link_up",
114         [SFP_S_TX_FAULT] = "tx_fault",
115         [SFP_S_REINIT] = "reinit",
116         [SFP_S_TX_DISABLE] = "rx_disable",
117 };
118
119 static const char *sm_state_to_str(unsigned short sm_state)
120 {
121         if (sm_state >= ARRAY_SIZE(sm_state_strings))
122                 return "Unknown state";
123         return sm_state_strings[sm_state];
124 }
125
126 static const char *gpio_of_names[] = {
127         "mod-def0",
128         "los",
129         "tx-fault",
130         "tx-disable",
131         "rate-select0",
132 };
133
134 static const enum gpiod_flags gpio_flags[] = {
135         GPIOD_IN,
136         GPIOD_IN,
137         GPIOD_IN,
138         GPIOD_ASIS,
139         GPIOD_ASIS,
140 };
141
142 #define T_INIT_JIFFIES  msecs_to_jiffies(300)
143 #define T_RESET_US      10
144 #define T_FAULT_RECOVER msecs_to_jiffies(1000)
145
146 /* SFP module presence detection is poor: the three MOD DEF signals are
147  * the same length on the PCB, which means it's possible for MOD DEF 0 to
148  * connect before the I2C bus on MOD DEF 1/2.
149  *
150  * The SFP MSA specifies 300ms as t_init (the time taken for TX_FAULT to
151  * be deasserted) but makes no mention of the earliest time before we can
152  * access the I2C EEPROM.  However, Avago modules require 300ms.
153  */
154 #define T_PROBE_INIT    msecs_to_jiffies(300)
155 #define T_HPOWER_LEVEL  msecs_to_jiffies(300)
156 #define T_PROBE_RETRY   msecs_to_jiffies(100)
157
158 /* SFP modules appear to always have their PHY configured for bus address
159  * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
160  */
161 #define SFP_PHY_ADDR    22
162
163 /* Give this long for the PHY to reset. */
164 #define T_PHY_RESET_MS  50
165
166 static DEFINE_MUTEX(sfp_mutex);
167
168 struct sff_data {
169         unsigned int gpios;
170         bool (*module_supported)(const struct sfp_eeprom_id *id);
171 };
172
173 struct sfp {
174         struct device *dev;
175         struct i2c_adapter *i2c;
176         struct mii_bus *i2c_mii;
177         struct sfp_bus *sfp_bus;
178         struct phy_device *mod_phy;
179         const struct sff_data *type;
180         u32 max_power_mW;
181
182         unsigned int (*get_state)(struct sfp *);
183         void (*set_state)(struct sfp *, unsigned int);
184         int (*read)(struct sfp *, bool, u8, void *, size_t);
185         int (*write)(struct sfp *, bool, u8, void *, size_t);
186
187         struct gpio_desc *gpio[GPIO_MAX];
188
189         unsigned int state;
190         struct delayed_work poll;
191         struct delayed_work timeout;
192         struct mutex sm_mutex;
193         unsigned char sm_mod_state;
194         unsigned char sm_dev_state;
195         unsigned short sm_state;
196         unsigned int sm_retries;
197
198         struct sfp_eeprom_id id;
199 #if IS_ENABLED(CONFIG_HWMON)
200         struct sfp_diag diag;
201         struct device *hwmon_dev;
202         char *hwmon_name;
203 #endif
204
205 };
206
207 static bool sff_module_supported(const struct sfp_eeprom_id *id)
208 {
209         return id->base.phys_id == SFP_PHYS_ID_SFF &&
210                id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
211 }
212
213 static const struct sff_data sff_data = {
214         .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
215         .module_supported = sff_module_supported,
216 };
217
218 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
219 {
220         return id->base.phys_id == SFP_PHYS_ID_SFP &&
221                id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
222 }
223
224 static const struct sff_data sfp_data = {
225         .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
226                  SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
227         .module_supported = sfp_module_supported,
228 };
229
230 static const struct of_device_id sfp_of_match[] = {
231         { .compatible = "sff,sff", .data = &sff_data, },
232         { .compatible = "sff,sfp", .data = &sfp_data, },
233         { },
234 };
235 MODULE_DEVICE_TABLE(of, sfp_of_match);
236
237 static unsigned long poll_jiffies;
238
239 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
240 {
241         unsigned int i, state, v;
242
243         for (i = state = 0; i < GPIO_MAX; i++) {
244                 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
245                         continue;
246
247                 v = gpiod_get_value_cansleep(sfp->gpio[i]);
248                 if (v)
249                         state |= BIT(i);
250         }
251
252         return state;
253 }
254
255 static unsigned int sff_gpio_get_state(struct sfp *sfp)
256 {
257         return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
258 }
259
260 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
261 {
262         if (state & SFP_F_PRESENT) {
263                 /* If the module is present, drive the signals */
264                 if (sfp->gpio[GPIO_TX_DISABLE])
265                         gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
266                                                state & SFP_F_TX_DISABLE);
267                 if (state & SFP_F_RATE_SELECT)
268                         gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
269                                                state & SFP_F_RATE_SELECT);
270         } else {
271                 /* Otherwise, let them float to the pull-ups */
272                 if (sfp->gpio[GPIO_TX_DISABLE])
273                         gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
274                 if (state & SFP_F_RATE_SELECT)
275                         gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
276         }
277 }
278
279 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
280                         size_t len)
281 {
282         struct i2c_msg msgs[2];
283         u8 bus_addr = a2 ? 0x51 : 0x50;
284         int ret;
285
286         msgs[0].addr = bus_addr;
287         msgs[0].flags = 0;
288         msgs[0].len = 1;
289         msgs[0].buf = &dev_addr;
290         msgs[1].addr = bus_addr;
291         msgs[1].flags = I2C_M_RD;
292         msgs[1].len = len;
293         msgs[1].buf = buf;
294
295         ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
296         if (ret < 0)
297                 return ret;
298
299         return ret == ARRAY_SIZE(msgs) ? len : 0;
300 }
301
302 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
303         size_t len)
304 {
305         struct i2c_msg msgs[1];
306         u8 bus_addr = a2 ? 0x51 : 0x50;
307         int ret;
308
309         msgs[0].addr = bus_addr;
310         msgs[0].flags = 0;
311         msgs[0].len = 1 + len;
312         msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
313         if (!msgs[0].buf)
314                 return -ENOMEM;
315
316         msgs[0].buf[0] = dev_addr;
317         memcpy(&msgs[0].buf[1], buf, len);
318
319         ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
320
321         kfree(msgs[0].buf);
322
323         if (ret < 0)
324                 return ret;
325
326         return ret == ARRAY_SIZE(msgs) ? len : 0;
327 }
328
329 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
330 {
331         struct mii_bus *i2c_mii;
332         int ret;
333
334         if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
335                 return -EINVAL;
336
337         sfp->i2c = i2c;
338         sfp->read = sfp_i2c_read;
339         sfp->write = sfp_i2c_write;
340
341         i2c_mii = mdio_i2c_alloc(sfp->dev, i2c);
342         if (IS_ERR(i2c_mii))
343                 return PTR_ERR(i2c_mii);
344
345         i2c_mii->name = "SFP I2C Bus";
346         i2c_mii->phy_mask = ~0;
347
348         ret = mdiobus_register(i2c_mii);
349         if (ret < 0) {
350                 mdiobus_free(i2c_mii);
351                 return ret;
352         }
353
354         sfp->i2c_mii = i2c_mii;
355
356         return 0;
357 }
358
359 /* Interface */
360 static unsigned int sfp_get_state(struct sfp *sfp)
361 {
362         return sfp->get_state(sfp);
363 }
364
365 static void sfp_set_state(struct sfp *sfp, unsigned int state)
366 {
367         sfp->set_state(sfp, state);
368 }
369
370 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
371 {
372         return sfp->read(sfp, a2, addr, buf, len);
373 }
374
375 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
376 {
377         return sfp->write(sfp, a2, addr, buf, len);
378 }
379
380 static unsigned int sfp_check(void *buf, size_t len)
381 {
382         u8 *p, check;
383
384         for (p = buf, check = 0; len; p++, len--)
385                 check += *p;
386
387         return check;
388 }
389
390 /* hwmon */
391 #if IS_ENABLED(CONFIG_HWMON)
392 static umode_t sfp_hwmon_is_visible(const void *data,
393                                     enum hwmon_sensor_types type,
394                                     u32 attr, int channel)
395 {
396         const struct sfp *sfp = data;
397
398         switch (type) {
399         case hwmon_temp:
400                 switch (attr) {
401                 case hwmon_temp_min_alarm:
402                 case hwmon_temp_max_alarm:
403                 case hwmon_temp_lcrit_alarm:
404                 case hwmon_temp_crit_alarm:
405                 case hwmon_temp_min:
406                 case hwmon_temp_max:
407                 case hwmon_temp_lcrit:
408                 case hwmon_temp_crit:
409                         if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
410                                 return 0;
411                         /* fall through */
412                 case hwmon_temp_input:
413                         return 0444;
414                 default:
415                         return 0;
416                 }
417         case hwmon_in:
418                 switch (attr) {
419                 case hwmon_in_min_alarm:
420                 case hwmon_in_max_alarm:
421                 case hwmon_in_lcrit_alarm:
422                 case hwmon_in_crit_alarm:
423                 case hwmon_in_min:
424                 case hwmon_in_max:
425                 case hwmon_in_lcrit:
426                 case hwmon_in_crit:
427                         if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
428                                 return 0;
429                         /* fall through */
430                 case hwmon_in_input:
431                         return 0444;
432                 default:
433                         return 0;
434                 }
435         case hwmon_curr:
436                 switch (attr) {
437                 case hwmon_curr_min_alarm:
438                 case hwmon_curr_max_alarm:
439                 case hwmon_curr_lcrit_alarm:
440                 case hwmon_curr_crit_alarm:
441                 case hwmon_curr_min:
442                 case hwmon_curr_max:
443                 case hwmon_curr_lcrit:
444                 case hwmon_curr_crit:
445                         if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
446                                 return 0;
447                         /* fall through */
448                 case hwmon_curr_input:
449                         return 0444;
450                 default:
451                         return 0;
452                 }
453         case hwmon_power:
454                 /* External calibration of receive power requires
455                  * floating point arithmetic. Doing that in the kernel
456                  * is not easy, so just skip it. If the module does
457                  * not require external calibration, we can however
458                  * show receiver power, since FP is then not needed.
459                  */
460                 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
461                     channel == 1)
462                         return 0;
463                 switch (attr) {
464                 case hwmon_power_min_alarm:
465                 case hwmon_power_max_alarm:
466                 case hwmon_power_lcrit_alarm:
467                 case hwmon_power_crit_alarm:
468                 case hwmon_power_min:
469                 case hwmon_power_max:
470                 case hwmon_power_lcrit:
471                 case hwmon_power_crit:
472                         if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
473                                 return 0;
474                         /* fall through */
475                 case hwmon_power_input:
476                         return 0444;
477                 default:
478                         return 0;
479                 }
480         default:
481                 return 0;
482         }
483 }
484
485 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
486 {
487         __be16 val;
488         int err;
489
490         err = sfp_read(sfp, true, reg, &val, sizeof(val));
491         if (err < 0)
492                 return err;
493
494         *value = be16_to_cpu(val);
495
496         return 0;
497 }
498
499 static void sfp_hwmon_to_rx_power(long *value)
500 {
501         *value = DIV_ROUND_CLOSEST(*value, 100);
502 }
503
504 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
505                                 long *value)
506 {
507         if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
508                 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
509 }
510
511 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
512 {
513         sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
514                             be16_to_cpu(sfp->diag.cal_t_offset), value);
515
516         if (*value >= 0x8000)
517                 *value -= 0x10000;
518
519         *value = DIV_ROUND_CLOSEST(*value * 1000, 256);
520 }
521
522 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
523 {
524         sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
525                             be16_to_cpu(sfp->diag.cal_v_offset), value);
526
527         *value = DIV_ROUND_CLOSEST(*value, 10);
528 }
529
530 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
531 {
532         sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
533                             be16_to_cpu(sfp->diag.cal_txi_offset), value);
534
535         *value = DIV_ROUND_CLOSEST(*value, 500);
536 }
537
538 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
539 {
540         sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
541                             be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
542
543         *value = DIV_ROUND_CLOSEST(*value, 10);
544 }
545
546 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
547 {
548         int err;
549
550         err = sfp_hwmon_read_sensor(sfp, reg, value);
551         if (err < 0)
552                 return err;
553
554         sfp_hwmon_calibrate_temp(sfp, value);
555
556         return 0;
557 }
558
559 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
560 {
561         int err;
562
563         err = sfp_hwmon_read_sensor(sfp, reg, value);
564         if (err < 0)
565                 return err;
566
567         sfp_hwmon_calibrate_vcc(sfp, value);
568
569         return 0;
570 }
571
572 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
573 {
574         int err;
575
576         err = sfp_hwmon_read_sensor(sfp, reg, value);
577         if (err < 0)
578                 return err;
579
580         sfp_hwmon_calibrate_bias(sfp, value);
581
582         return 0;
583 }
584
585 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
586 {
587         int err;
588
589         err = sfp_hwmon_read_sensor(sfp, reg, value);
590         if (err < 0)
591                 return err;
592
593         sfp_hwmon_calibrate_tx_power(sfp, value);
594
595         return 0;
596 }
597
598 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
599 {
600         int err;
601
602         err = sfp_hwmon_read_sensor(sfp, reg, value);
603         if (err < 0)
604                 return err;
605
606         sfp_hwmon_to_rx_power(value);
607
608         return 0;
609 }
610
611 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
612 {
613         u8 status;
614         int err;
615
616         switch (attr) {
617         case hwmon_temp_input:
618                 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
619
620         case hwmon_temp_lcrit:
621                 *value = be16_to_cpu(sfp->diag.temp_low_alarm);
622                 sfp_hwmon_calibrate_temp(sfp, value);
623                 return 0;
624
625         case hwmon_temp_min:
626                 *value = be16_to_cpu(sfp->diag.temp_low_warn);
627                 sfp_hwmon_calibrate_temp(sfp, value);
628                 return 0;
629         case hwmon_temp_max:
630                 *value = be16_to_cpu(sfp->diag.temp_high_warn);
631                 sfp_hwmon_calibrate_temp(sfp, value);
632                 return 0;
633
634         case hwmon_temp_crit:
635                 *value = be16_to_cpu(sfp->diag.temp_high_alarm);
636                 sfp_hwmon_calibrate_temp(sfp, value);
637                 return 0;
638
639         case hwmon_temp_lcrit_alarm:
640                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
641                 if (err < 0)
642                         return err;
643
644                 *value = !!(status & SFP_ALARM0_TEMP_LOW);
645                 return 0;
646
647         case hwmon_temp_min_alarm:
648                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
649                 if (err < 0)
650                         return err;
651
652                 *value = !!(status & SFP_WARN0_TEMP_LOW);
653                 return 0;
654
655         case hwmon_temp_max_alarm:
656                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
657                 if (err < 0)
658                         return err;
659
660                 *value = !!(status & SFP_WARN0_TEMP_HIGH);
661                 return 0;
662
663         case hwmon_temp_crit_alarm:
664                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
665                 if (err < 0)
666                         return err;
667
668                 *value = !!(status & SFP_ALARM0_TEMP_HIGH);
669                 return 0;
670         default:
671                 return -EOPNOTSUPP;
672         }
673
674         return -EOPNOTSUPP;
675 }
676
677 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
678 {
679         u8 status;
680         int err;
681
682         switch (attr) {
683         case hwmon_in_input:
684                 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
685
686         case hwmon_in_lcrit:
687                 *value = be16_to_cpu(sfp->diag.volt_low_alarm);
688                 sfp_hwmon_calibrate_vcc(sfp, value);
689                 return 0;
690
691         case hwmon_in_min:
692                 *value = be16_to_cpu(sfp->diag.volt_low_warn);
693                 sfp_hwmon_calibrate_vcc(sfp, value);
694                 return 0;
695
696         case hwmon_in_max:
697                 *value = be16_to_cpu(sfp->diag.volt_high_warn);
698                 sfp_hwmon_calibrate_vcc(sfp, value);
699                 return 0;
700
701         case hwmon_in_crit:
702                 *value = be16_to_cpu(sfp->diag.volt_high_alarm);
703                 sfp_hwmon_calibrate_vcc(sfp, value);
704                 return 0;
705
706         case hwmon_in_lcrit_alarm:
707                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
708                 if (err < 0)
709                         return err;
710
711                 *value = !!(status & SFP_ALARM0_VCC_LOW);
712                 return 0;
713
714         case hwmon_in_min_alarm:
715                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
716                 if (err < 0)
717                         return err;
718
719                 *value = !!(status & SFP_WARN0_VCC_LOW);
720                 return 0;
721
722         case hwmon_in_max_alarm:
723                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
724                 if (err < 0)
725                         return err;
726
727                 *value = !!(status & SFP_WARN0_VCC_HIGH);
728                 return 0;
729
730         case hwmon_in_crit_alarm:
731                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
732                 if (err < 0)
733                         return err;
734
735                 *value = !!(status & SFP_ALARM0_VCC_HIGH);
736                 return 0;
737         default:
738                 return -EOPNOTSUPP;
739         }
740
741         return -EOPNOTSUPP;
742 }
743
744 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
745 {
746         u8 status;
747         int err;
748
749         switch (attr) {
750         case hwmon_curr_input:
751                 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
752
753         case hwmon_curr_lcrit:
754                 *value = be16_to_cpu(sfp->diag.bias_low_alarm);
755                 sfp_hwmon_calibrate_bias(sfp, value);
756                 return 0;
757
758         case hwmon_curr_min:
759                 *value = be16_to_cpu(sfp->diag.bias_low_warn);
760                 sfp_hwmon_calibrate_bias(sfp, value);
761                 return 0;
762
763         case hwmon_curr_max:
764                 *value = be16_to_cpu(sfp->diag.bias_high_warn);
765                 sfp_hwmon_calibrate_bias(sfp, value);
766                 return 0;
767
768         case hwmon_curr_crit:
769                 *value = be16_to_cpu(sfp->diag.bias_high_alarm);
770                 sfp_hwmon_calibrate_bias(sfp, value);
771                 return 0;
772
773         case hwmon_curr_lcrit_alarm:
774                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
775                 if (err < 0)
776                         return err;
777
778                 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
779                 return 0;
780
781         case hwmon_curr_min_alarm:
782                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
783                 if (err < 0)
784                         return err;
785
786                 *value = !!(status & SFP_WARN0_TX_BIAS_LOW);
787                 return 0;
788
789         case hwmon_curr_max_alarm:
790                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
791                 if (err < 0)
792                         return err;
793
794                 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
795                 return 0;
796
797         case hwmon_curr_crit_alarm:
798                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
799                 if (err < 0)
800                         return err;
801
802                 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
803                 return 0;
804         default:
805                 return -EOPNOTSUPP;
806         }
807
808         return -EOPNOTSUPP;
809 }
810
811 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
812 {
813         u8 status;
814         int err;
815
816         switch (attr) {
817         case hwmon_power_input:
818                 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
819
820         case hwmon_power_lcrit:
821                 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
822                 sfp_hwmon_calibrate_tx_power(sfp, value);
823                 return 0;
824
825         case hwmon_power_min:
826                 *value = be16_to_cpu(sfp->diag.txpwr_low_warn);
827                 sfp_hwmon_calibrate_tx_power(sfp, value);
828                 return 0;
829
830         case hwmon_power_max:
831                 *value = be16_to_cpu(sfp->diag.txpwr_high_warn);
832                 sfp_hwmon_calibrate_tx_power(sfp, value);
833                 return 0;
834
835         case hwmon_power_crit:
836                 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
837                 sfp_hwmon_calibrate_tx_power(sfp, value);
838                 return 0;
839
840         case hwmon_power_lcrit_alarm:
841                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
842                 if (err < 0)
843                         return err;
844
845                 *value = !!(status & SFP_ALARM0_TXPWR_LOW);
846                 return 0;
847
848         case hwmon_power_min_alarm:
849                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
850                 if (err < 0)
851                         return err;
852
853                 *value = !!(status & SFP_WARN0_TXPWR_LOW);
854                 return 0;
855
856         case hwmon_power_max_alarm:
857                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
858                 if (err < 0)
859                         return err;
860
861                 *value = !!(status & SFP_WARN0_TXPWR_HIGH);
862                 return 0;
863
864         case hwmon_power_crit_alarm:
865                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
866                 if (err < 0)
867                         return err;
868
869                 *value = !!(status & SFP_ALARM0_TXPWR_HIGH);
870                 return 0;
871         default:
872                 return -EOPNOTSUPP;
873         }
874
875         return -EOPNOTSUPP;
876 }
877
878 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
879 {
880         u8 status;
881         int err;
882
883         switch (attr) {
884         case hwmon_power_input:
885                 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
886
887         case hwmon_power_lcrit:
888                 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
889                 sfp_hwmon_to_rx_power(value);
890                 return 0;
891
892         case hwmon_power_min:
893                 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
894                 sfp_hwmon_to_rx_power(value);
895                 return 0;
896
897         case hwmon_power_max:
898                 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
899                 sfp_hwmon_to_rx_power(value);
900                 return 0;
901
902         case hwmon_power_crit:
903                 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
904                 sfp_hwmon_to_rx_power(value);
905                 return 0;
906
907         case hwmon_power_lcrit_alarm:
908                 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
909                 if (err < 0)
910                         return err;
911
912                 *value = !!(status & SFP_ALARM1_RXPWR_LOW);
913                 return 0;
914
915         case hwmon_power_min_alarm:
916                 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
917                 if (err < 0)
918                         return err;
919
920                 *value = !!(status & SFP_WARN1_RXPWR_LOW);
921                 return 0;
922
923         case hwmon_power_max_alarm:
924                 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
925                 if (err < 0)
926                         return err;
927
928                 *value = !!(status & SFP_WARN1_RXPWR_HIGH);
929                 return 0;
930
931         case hwmon_power_crit_alarm:
932                 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
933                 if (err < 0)
934                         return err;
935
936                 *value = !!(status & SFP_ALARM1_RXPWR_HIGH);
937                 return 0;
938         default:
939                 return -EOPNOTSUPP;
940         }
941
942         return -EOPNOTSUPP;
943 }
944
945 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
946                           u32 attr, int channel, long *value)
947 {
948         struct sfp *sfp = dev_get_drvdata(dev);
949
950         switch (type) {
951         case hwmon_temp:
952                 return sfp_hwmon_temp(sfp, attr, value);
953         case hwmon_in:
954                 return sfp_hwmon_vcc(sfp, attr, value);
955         case hwmon_curr:
956                 return sfp_hwmon_bias(sfp, attr, value);
957         case hwmon_power:
958                 switch (channel) {
959                 case 0:
960                         return sfp_hwmon_tx_power(sfp, attr, value);
961                 case 1:
962                         return sfp_hwmon_rx_power(sfp, attr, value);
963                 default:
964                         return -EOPNOTSUPP;
965                 }
966         default:
967                 return -EOPNOTSUPP;
968         }
969 }
970
971 static const struct hwmon_ops sfp_hwmon_ops = {
972         .is_visible = sfp_hwmon_is_visible,
973         .read = sfp_hwmon_read,
974 };
975
976 static u32 sfp_hwmon_chip_config[] = {
977         HWMON_C_REGISTER_TZ,
978         0,
979 };
980
981 static const struct hwmon_channel_info sfp_hwmon_chip = {
982         .type = hwmon_chip,
983         .config = sfp_hwmon_chip_config,
984 };
985
986 static u32 sfp_hwmon_temp_config[] = {
987         HWMON_T_INPUT |
988         HWMON_T_MAX | HWMON_T_MIN |
989         HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
990         HWMON_T_CRIT | HWMON_T_LCRIT |
991         HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM,
992         0,
993 };
994
995 static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = {
996         .type = hwmon_temp,
997         .config = sfp_hwmon_temp_config,
998 };
999
1000 static u32 sfp_hwmon_vcc_config[] = {
1001         HWMON_I_INPUT |
1002         HWMON_I_MAX | HWMON_I_MIN |
1003         HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1004         HWMON_I_CRIT | HWMON_I_LCRIT |
1005         HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM,
1006         0,
1007 };
1008
1009 static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = {
1010         .type = hwmon_in,
1011         .config = sfp_hwmon_vcc_config,
1012 };
1013
1014 static u32 sfp_hwmon_bias_config[] = {
1015         HWMON_C_INPUT |
1016         HWMON_C_MAX | HWMON_C_MIN |
1017         HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1018         HWMON_C_CRIT | HWMON_C_LCRIT |
1019         HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM,
1020         0,
1021 };
1022
1023 static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = {
1024         .type = hwmon_curr,
1025         .config = sfp_hwmon_bias_config,
1026 };
1027
1028 static u32 sfp_hwmon_power_config[] = {
1029         /* Transmit power */
1030         HWMON_P_INPUT |
1031         HWMON_P_MAX | HWMON_P_MIN |
1032         HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1033         HWMON_P_CRIT | HWMON_P_LCRIT |
1034         HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM,
1035         /* Receive power */
1036         HWMON_P_INPUT |
1037         HWMON_P_MAX | HWMON_P_MIN |
1038         HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1039         HWMON_P_CRIT | HWMON_P_LCRIT |
1040         HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM,
1041         0,
1042 };
1043
1044 static const struct hwmon_channel_info sfp_hwmon_power_channel_info = {
1045         .type = hwmon_power,
1046         .config = sfp_hwmon_power_config,
1047 };
1048
1049 static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1050         &sfp_hwmon_chip,
1051         &sfp_hwmon_vcc_channel_info,
1052         &sfp_hwmon_temp_channel_info,
1053         &sfp_hwmon_bias_channel_info,
1054         &sfp_hwmon_power_channel_info,
1055         NULL,
1056 };
1057
1058 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1059         .ops = &sfp_hwmon_ops,
1060         .info = sfp_hwmon_info,
1061 };
1062
1063 static int sfp_hwmon_insert(struct sfp *sfp)
1064 {
1065         int err, i;
1066
1067         if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
1068                 return 0;
1069
1070         if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
1071                 return 0;
1072
1073         if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1074                 /* This driver in general does not support address
1075                  * change.
1076                  */
1077                 return 0;
1078
1079         err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1080         if (err < 0)
1081                 return err;
1082
1083         sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL);
1084         if (!sfp->hwmon_name)
1085                 return -ENODEV;
1086
1087         for (i = 0; sfp->hwmon_name[i]; i++)
1088                 if (hwmon_is_bad_char(sfp->hwmon_name[i]))
1089                         sfp->hwmon_name[i] = '_';
1090
1091         sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1092                                                          sfp->hwmon_name, sfp,
1093                                                          &sfp_hwmon_chip_info,
1094                                                          NULL);
1095
1096         return PTR_ERR_OR_ZERO(sfp->hwmon_dev);
1097 }
1098
1099 static void sfp_hwmon_remove(struct sfp *sfp)
1100 {
1101         hwmon_device_unregister(sfp->hwmon_dev);
1102         kfree(sfp->hwmon_name);
1103 }
1104 #else
1105 static int sfp_hwmon_insert(struct sfp *sfp)
1106 {
1107         return 0;
1108 }
1109
1110 static void sfp_hwmon_remove(struct sfp *sfp)
1111 {
1112 }
1113 #endif
1114
1115 /* Helpers */
1116 static void sfp_module_tx_disable(struct sfp *sfp)
1117 {
1118         dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1119                 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1120         sfp->state |= SFP_F_TX_DISABLE;
1121         sfp_set_state(sfp, sfp->state);
1122 }
1123
1124 static void sfp_module_tx_enable(struct sfp *sfp)
1125 {
1126         dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1127                 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1128         sfp->state &= ~SFP_F_TX_DISABLE;
1129         sfp_set_state(sfp, sfp->state);
1130 }
1131
1132 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1133 {
1134         unsigned int state = sfp->state;
1135
1136         if (state & SFP_F_TX_DISABLE)
1137                 return;
1138
1139         sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1140
1141         udelay(T_RESET_US);
1142
1143         sfp_set_state(sfp, state);
1144 }
1145
1146 /* SFP state machine */
1147 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1148 {
1149         if (timeout)
1150                 mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1151                                  timeout);
1152         else
1153                 cancel_delayed_work(&sfp->timeout);
1154 }
1155
1156 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1157                         unsigned int timeout)
1158 {
1159         sfp->sm_state = state;
1160         sfp_sm_set_timer(sfp, timeout);
1161 }
1162
1163 static void sfp_sm_ins_next(struct sfp *sfp, unsigned int state,
1164                             unsigned int timeout)
1165 {
1166         sfp->sm_mod_state = state;
1167         sfp_sm_set_timer(sfp, timeout);
1168 }
1169
1170 static void sfp_sm_phy_detach(struct sfp *sfp)
1171 {
1172         phy_stop(sfp->mod_phy);
1173         sfp_remove_phy(sfp->sfp_bus);
1174         phy_device_remove(sfp->mod_phy);
1175         phy_device_free(sfp->mod_phy);
1176         sfp->mod_phy = NULL;
1177 }
1178
1179 static void sfp_sm_probe_phy(struct sfp *sfp)
1180 {
1181         struct phy_device *phy;
1182         int err;
1183
1184         msleep(T_PHY_RESET_MS);
1185
1186         phy = mdiobus_scan(sfp->i2c_mii, SFP_PHY_ADDR);
1187         if (phy == ERR_PTR(-ENODEV)) {
1188                 dev_info(sfp->dev, "no PHY detected\n");
1189                 return;
1190         }
1191         if (IS_ERR(phy)) {
1192                 dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy));
1193                 return;
1194         }
1195
1196         err = sfp_add_phy(sfp->sfp_bus, phy);
1197         if (err) {
1198                 phy_device_remove(phy);
1199                 phy_device_free(phy);
1200                 dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err);
1201                 return;
1202         }
1203
1204         sfp->mod_phy = phy;
1205         phy_start(phy);
1206 }
1207
1208 static void sfp_sm_link_up(struct sfp *sfp)
1209 {
1210         sfp_link_up(sfp->sfp_bus);
1211         sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1212 }
1213
1214 static void sfp_sm_link_down(struct sfp *sfp)
1215 {
1216         sfp_link_down(sfp->sfp_bus);
1217 }
1218
1219 static void sfp_sm_link_check_los(struct sfp *sfp)
1220 {
1221         unsigned int los = sfp->state & SFP_F_LOS;
1222
1223         /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1224          * are set, we assume that no LOS signal is available.
1225          */
1226         if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED))
1227                 los ^= SFP_F_LOS;
1228         else if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL)))
1229                 los = 0;
1230
1231         if (los)
1232                 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1233         else
1234                 sfp_sm_link_up(sfp);
1235 }
1236
1237 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1238 {
1239         return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) &&
1240                 event == SFP_E_LOS_LOW) ||
1241                (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) &&
1242                 event == SFP_E_LOS_HIGH);
1243 }
1244
1245 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1246 {
1247         return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) &&
1248                 event == SFP_E_LOS_HIGH) ||
1249                (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) &&
1250                 event == SFP_E_LOS_LOW);
1251 }
1252
1253 static void sfp_sm_fault(struct sfp *sfp, bool warn)
1254 {
1255         if (sfp->sm_retries && !--sfp->sm_retries) {
1256                 dev_err(sfp->dev,
1257                         "module persistently indicates fault, disabling\n");
1258                 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1259         } else {
1260                 if (warn)
1261                         dev_err(sfp->dev, "module transmit fault indicated\n");
1262
1263                 sfp_sm_next(sfp, SFP_S_TX_FAULT, T_FAULT_RECOVER);
1264         }
1265 }
1266
1267 static void sfp_sm_mod_init(struct sfp *sfp)
1268 {
1269         sfp_module_tx_enable(sfp);
1270
1271         /* Wait t_init before indicating that the link is up, provided the
1272          * current state indicates no TX_FAULT.  If TX_FAULT clears before
1273          * this time, that's fine too.
1274          */
1275         sfp_sm_next(sfp, SFP_S_INIT, T_INIT_JIFFIES);
1276         sfp->sm_retries = 5;
1277
1278         /* Setting the serdes link mode is guesswork: there's no
1279          * field in the EEPROM which indicates what mode should
1280          * be used.
1281          *
1282          * If it's a gigabit-only fiber module, it probably does
1283          * not have a PHY, so switch to 802.3z negotiation mode.
1284          * Otherwise, switch to SGMII mode (which is required to
1285          * support non-gigabit speeds) and probe for a PHY.
1286          */
1287         if (sfp->id.base.e1000_base_t ||
1288             sfp->id.base.e100_base_lx ||
1289             sfp->id.base.e100_base_fx)
1290                 sfp_sm_probe_phy(sfp);
1291 }
1292
1293 static int sfp_sm_mod_hpower(struct sfp *sfp)
1294 {
1295         u32 power;
1296         u8 val;
1297         int err;
1298
1299         power = 1000;
1300         if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1301                 power = 1500;
1302         if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1303                 power = 2000;
1304
1305         if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE &&
1306             (sfp->id.ext.diagmon & (SFP_DIAGMON_DDM | SFP_DIAGMON_ADDRMODE)) !=
1307             SFP_DIAGMON_DDM) {
1308                 /* The module appears not to implement bus address 0xa2,
1309                  * or requires an address change sequence, so assume that
1310                  * the module powers up in the indicated power mode.
1311                  */
1312                 if (power > sfp->max_power_mW) {
1313                         dev_err(sfp->dev,
1314                                 "Host does not support %u.%uW modules\n",
1315                                 power / 1000, (power / 100) % 10);
1316                         return -EINVAL;
1317                 }
1318                 return 0;
1319         }
1320
1321         if (power > sfp->max_power_mW) {
1322                 dev_warn(sfp->dev,
1323                          "Host does not support %u.%uW modules, module left in power mode 1\n",
1324                          power / 1000, (power / 100) % 10);
1325                 return 0;
1326         }
1327
1328         if (power <= 1000)
1329                 return 0;
1330
1331         err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1332         if (err != sizeof(val)) {
1333                 dev_err(sfp->dev, "Failed to read EEPROM: %d\n", err);
1334                 err = -EAGAIN;
1335                 goto err;
1336         }
1337
1338         val |= BIT(0);
1339
1340         err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1341         if (err != sizeof(val)) {
1342                 dev_err(sfp->dev, "Failed to write EEPROM: %d\n", err);
1343                 err = -EAGAIN;
1344                 goto err;
1345         }
1346
1347         dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1348                  power / 1000, (power / 100) % 10);
1349         return T_HPOWER_LEVEL;
1350
1351 err:
1352         return err;
1353 }
1354
1355 static int sfp_sm_mod_probe(struct sfp *sfp)
1356 {
1357         /* SFP module inserted - read I2C data */
1358         struct sfp_eeprom_id id;
1359         bool cotsworks;
1360         u8 check;
1361         int ret;
1362
1363         ret = sfp_read(sfp, false, 0, &id, sizeof(id));
1364         if (ret < 0) {
1365                 dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
1366                 return -EAGAIN;
1367         }
1368
1369         if (ret != sizeof(id)) {
1370                 dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1371                 return -EAGAIN;
1372         }
1373
1374         /* Cotsworks do not seem to update the checksums when they
1375          * do the final programming with the final module part number,
1376          * serial number and date code.
1377          */
1378         cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS       ", 16);
1379
1380         /* Validate the checksum over the base structure */
1381         check = sfp_check(&id.base, sizeof(id.base) - 1);
1382         if (check != id.base.cc_base) {
1383                 if (cotsworks) {
1384                         dev_warn(sfp->dev,
1385                                  "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
1386                                  check, id.base.cc_base);
1387                 } else {
1388                         dev_err(sfp->dev,
1389                                 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
1390                                 check, id.base.cc_base);
1391                         print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1392                                        16, 1, &id, sizeof(id), true);
1393                         return -EINVAL;
1394                 }
1395         }
1396
1397         check = sfp_check(&id.ext, sizeof(id.ext) - 1);
1398         if (check != id.ext.cc_ext) {
1399                 if (cotsworks) {
1400                         dev_warn(sfp->dev,
1401                                  "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
1402                                  check, id.ext.cc_ext);
1403                 } else {
1404                         dev_err(sfp->dev,
1405                                 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
1406                                 check, id.ext.cc_ext);
1407                         print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1408                                        16, 1, &id, sizeof(id), true);
1409                         memset(&id.ext, 0, sizeof(id.ext));
1410                 }
1411         }
1412
1413         sfp->id = id;
1414
1415         dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
1416                  (int)sizeof(id.base.vendor_name), id.base.vendor_name,
1417                  (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
1418                  (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
1419                  (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
1420                  (int)sizeof(id.ext.datecode), id.ext.datecode);
1421
1422         /* Check whether we support this module */
1423         if (!sfp->type->module_supported(&sfp->id)) {
1424                 dev_err(sfp->dev,
1425                         "module is not supported - phys id 0x%02x 0x%02x\n",
1426                         sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
1427                 return -EINVAL;
1428         }
1429
1430         /* If the module requires address swap mode, warn about it */
1431         if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1432                 dev_warn(sfp->dev,
1433                          "module address swap to access page 0xA2 is not supported.\n");
1434
1435         ret = sfp_hwmon_insert(sfp);
1436         if (ret < 0)
1437                 return ret;
1438
1439         ret = sfp_module_insert(sfp->sfp_bus, &sfp->id);
1440         if (ret < 0)
1441                 return ret;
1442
1443         return sfp_sm_mod_hpower(sfp);
1444 }
1445
1446 static void sfp_sm_mod_remove(struct sfp *sfp)
1447 {
1448         sfp_module_remove(sfp->sfp_bus);
1449
1450         sfp_hwmon_remove(sfp);
1451
1452         if (sfp->mod_phy)
1453                 sfp_sm_phy_detach(sfp);
1454
1455         sfp_module_tx_disable(sfp);
1456
1457         memset(&sfp->id, 0, sizeof(sfp->id));
1458
1459         dev_info(sfp->dev, "module removed\n");
1460 }
1461
1462 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
1463 {
1464         mutex_lock(&sfp->sm_mutex);
1465
1466         dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
1467                 mod_state_to_str(sfp->sm_mod_state),
1468                 dev_state_to_str(sfp->sm_dev_state),
1469                 sm_state_to_str(sfp->sm_state),
1470                 event_to_str(event));
1471
1472         /* This state machine tracks the insert/remove state of
1473          * the module, and handles probing the on-board EEPROM.
1474          */
1475         switch (sfp->sm_mod_state) {
1476         default:
1477                 if (event == SFP_E_INSERT) {
1478                         sfp_module_tx_disable(sfp);
1479                         sfp_sm_ins_next(sfp, SFP_MOD_PROBE, T_PROBE_INIT);
1480                 }
1481                 break;
1482
1483         case SFP_MOD_PROBE:
1484                 if (event == SFP_E_REMOVE) {
1485                         sfp_sm_ins_next(sfp, SFP_MOD_EMPTY, 0);
1486                 } else if (event == SFP_E_TIMEOUT) {
1487                         int val = sfp_sm_mod_probe(sfp);
1488
1489                         if (val == 0)
1490                                 sfp_sm_ins_next(sfp, SFP_MOD_PRESENT, 0);
1491                         else if (val > 0)
1492                                 sfp_sm_ins_next(sfp, SFP_MOD_HPOWER, val);
1493                         else if (val != -EAGAIN)
1494                                 sfp_sm_ins_next(sfp, SFP_MOD_ERROR, 0);
1495                         else
1496                                 sfp_sm_set_timer(sfp, T_PROBE_RETRY);
1497                 }
1498                 break;
1499
1500         case SFP_MOD_HPOWER:
1501                 if (event == SFP_E_TIMEOUT) {
1502                         sfp_sm_ins_next(sfp, SFP_MOD_PRESENT, 0);
1503                         break;
1504                 }
1505                 /* fallthrough */
1506         case SFP_MOD_PRESENT:
1507         case SFP_MOD_ERROR:
1508                 if (event == SFP_E_REMOVE) {
1509                         sfp_sm_mod_remove(sfp);
1510                         sfp_sm_ins_next(sfp, SFP_MOD_EMPTY, 0);
1511                 }
1512                 break;
1513         }
1514
1515         /* This state machine tracks the netdev up/down state */
1516         switch (sfp->sm_dev_state) {
1517         default:
1518                 if (event == SFP_E_DEV_UP)
1519                         sfp->sm_dev_state = SFP_DEV_UP;
1520                 break;
1521
1522         case SFP_DEV_UP:
1523                 if (event == SFP_E_DEV_DOWN) {
1524                         /* If the module has a PHY, avoid raising TX disable
1525                          * as this resets the PHY. Otherwise, raise it to
1526                          * turn the laser off.
1527                          */
1528                         if (!sfp->mod_phy)
1529                                 sfp_module_tx_disable(sfp);
1530                         sfp->sm_dev_state = SFP_DEV_DOWN;
1531                 }
1532                 break;
1533         }
1534
1535         /* Some events are global */
1536         if (sfp->sm_state != SFP_S_DOWN &&
1537             (sfp->sm_mod_state != SFP_MOD_PRESENT ||
1538              sfp->sm_dev_state != SFP_DEV_UP)) {
1539                 if (sfp->sm_state == SFP_S_LINK_UP &&
1540                     sfp->sm_dev_state == SFP_DEV_UP)
1541                         sfp_sm_link_down(sfp);
1542                 if (sfp->mod_phy)
1543                         sfp_sm_phy_detach(sfp);
1544                 sfp_sm_next(sfp, SFP_S_DOWN, 0);
1545                 mutex_unlock(&sfp->sm_mutex);
1546                 return;
1547         }
1548
1549         /* The main state machine */
1550         switch (sfp->sm_state) {
1551         case SFP_S_DOWN:
1552                 if (sfp->sm_mod_state == SFP_MOD_PRESENT &&
1553                     sfp->sm_dev_state == SFP_DEV_UP)
1554                         sfp_sm_mod_init(sfp);
1555                 break;
1556
1557         case SFP_S_INIT:
1558                 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT)
1559                         sfp_sm_fault(sfp, true);
1560                 else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR)
1561                         sfp_sm_link_check_los(sfp);
1562                 break;
1563
1564         case SFP_S_WAIT_LOS:
1565                 if (event == SFP_E_TX_FAULT)
1566                         sfp_sm_fault(sfp, true);
1567                 else if (sfp_los_event_inactive(sfp, event))
1568                         sfp_sm_link_up(sfp);
1569                 break;
1570
1571         case SFP_S_LINK_UP:
1572                 if (event == SFP_E_TX_FAULT) {
1573                         sfp_sm_link_down(sfp);
1574                         sfp_sm_fault(sfp, true);
1575                 } else if (sfp_los_event_active(sfp, event)) {
1576                         sfp_sm_link_down(sfp);
1577                         sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1578                 }
1579                 break;
1580
1581         case SFP_S_TX_FAULT:
1582                 if (event == SFP_E_TIMEOUT) {
1583                         sfp_module_tx_fault_reset(sfp);
1584                         sfp_sm_next(sfp, SFP_S_REINIT, T_INIT_JIFFIES);
1585                 }
1586                 break;
1587
1588         case SFP_S_REINIT:
1589                 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
1590                         sfp_sm_fault(sfp, false);
1591                 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
1592                         dev_info(sfp->dev, "module transmit fault recovered\n");
1593                         sfp_sm_link_check_los(sfp);
1594                 }
1595                 break;
1596
1597         case SFP_S_TX_DISABLE:
1598                 break;
1599         }
1600
1601         dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
1602                 mod_state_to_str(sfp->sm_mod_state),
1603                 dev_state_to_str(sfp->sm_dev_state),
1604                 sm_state_to_str(sfp->sm_state));
1605
1606         mutex_unlock(&sfp->sm_mutex);
1607 }
1608
1609 static void sfp_start(struct sfp *sfp)
1610 {
1611         sfp_sm_event(sfp, SFP_E_DEV_UP);
1612 }
1613
1614 static void sfp_stop(struct sfp *sfp)
1615 {
1616         sfp_sm_event(sfp, SFP_E_DEV_DOWN);
1617 }
1618
1619 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
1620 {
1621         /* locking... and check module is present */
1622
1623         if (sfp->id.ext.sff8472_compliance &&
1624             !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
1625                 modinfo->type = ETH_MODULE_SFF_8472;
1626                 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
1627         } else {
1628                 modinfo->type = ETH_MODULE_SFF_8079;
1629                 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
1630         }
1631         return 0;
1632 }
1633
1634 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
1635                              u8 *data)
1636 {
1637         unsigned int first, last, len;
1638         int ret;
1639
1640         if (ee->len == 0)
1641                 return -EINVAL;
1642
1643         first = ee->offset;
1644         last = ee->offset + ee->len;
1645         if (first < ETH_MODULE_SFF_8079_LEN) {
1646                 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
1647                 len -= first;
1648
1649                 ret = sfp_read(sfp, false, first, data, len);
1650                 if (ret < 0)
1651                         return ret;
1652
1653                 first += len;
1654                 data += len;
1655         }
1656         if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
1657                 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
1658                 len -= first;
1659                 first -= ETH_MODULE_SFF_8079_LEN;
1660
1661                 ret = sfp_read(sfp, true, first, data, len);
1662                 if (ret < 0)
1663                         return ret;
1664         }
1665         return 0;
1666 }
1667
1668 static const struct sfp_socket_ops sfp_module_ops = {
1669         .start = sfp_start,
1670         .stop = sfp_stop,
1671         .module_info = sfp_module_info,
1672         .module_eeprom = sfp_module_eeprom,
1673 };
1674
1675 static void sfp_timeout(struct work_struct *work)
1676 {
1677         struct sfp *sfp = container_of(work, struct sfp, timeout.work);
1678
1679         rtnl_lock();
1680         sfp_sm_event(sfp, SFP_E_TIMEOUT);
1681         rtnl_unlock();
1682 }
1683
1684 static void sfp_check_state(struct sfp *sfp)
1685 {
1686         unsigned int state, i, changed;
1687
1688         state = sfp_get_state(sfp);
1689         changed = state ^ sfp->state;
1690         changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
1691
1692         for (i = 0; i < GPIO_MAX; i++)
1693                 if (changed & BIT(i))
1694                         dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
1695                                 !!(sfp->state & BIT(i)), !!(state & BIT(i)));
1696
1697         state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
1698         sfp->state = state;
1699
1700         rtnl_lock();
1701         if (changed & SFP_F_PRESENT)
1702                 sfp_sm_event(sfp, state & SFP_F_PRESENT ?
1703                                 SFP_E_INSERT : SFP_E_REMOVE);
1704
1705         if (changed & SFP_F_TX_FAULT)
1706                 sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
1707                                 SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
1708
1709         if (changed & SFP_F_LOS)
1710                 sfp_sm_event(sfp, state & SFP_F_LOS ?
1711                                 SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
1712         rtnl_unlock();
1713 }
1714
1715 static irqreturn_t sfp_irq(int irq, void *data)
1716 {
1717         struct sfp *sfp = data;
1718
1719         sfp_check_state(sfp);
1720
1721         return IRQ_HANDLED;
1722 }
1723
1724 static void sfp_poll(struct work_struct *work)
1725 {
1726         struct sfp *sfp = container_of(work, struct sfp, poll.work);
1727
1728         sfp_check_state(sfp);
1729         mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
1730 }
1731
1732 static struct sfp *sfp_alloc(struct device *dev)
1733 {
1734         struct sfp *sfp;
1735
1736         sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
1737         if (!sfp)
1738                 return ERR_PTR(-ENOMEM);
1739
1740         sfp->dev = dev;
1741
1742         mutex_init(&sfp->sm_mutex);
1743         INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
1744         INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
1745
1746         return sfp;
1747 }
1748
1749 static void sfp_cleanup(void *data)
1750 {
1751         struct sfp *sfp = data;
1752
1753         cancel_delayed_work_sync(&sfp->poll);
1754         cancel_delayed_work_sync(&sfp->timeout);
1755         if (sfp->i2c_mii) {
1756                 mdiobus_unregister(sfp->i2c_mii);
1757                 mdiobus_free(sfp->i2c_mii);
1758         }
1759         if (sfp->i2c)
1760                 i2c_put_adapter(sfp->i2c);
1761         kfree(sfp);
1762 }
1763
1764 static int sfp_probe(struct platform_device *pdev)
1765 {
1766         const struct sff_data *sff;
1767         struct sfp *sfp;
1768         bool poll = false;
1769         int irq, err, i;
1770
1771         sfp = sfp_alloc(&pdev->dev);
1772         if (IS_ERR(sfp))
1773                 return PTR_ERR(sfp);
1774
1775         platform_set_drvdata(pdev, sfp);
1776
1777         err = devm_add_action(sfp->dev, sfp_cleanup, sfp);
1778         if (err < 0)
1779                 return err;
1780
1781         sff = sfp->type = &sfp_data;
1782
1783         if (pdev->dev.of_node) {
1784                 struct device_node *node = pdev->dev.of_node;
1785                 const struct of_device_id *id;
1786                 struct i2c_adapter *i2c;
1787                 struct device_node *np;
1788
1789                 id = of_match_node(sfp_of_match, node);
1790                 if (WARN_ON(!id))
1791                         return -EINVAL;
1792
1793                 sff = sfp->type = id->data;
1794
1795                 np = of_parse_phandle(node, "i2c-bus", 0);
1796                 if (!np) {
1797                         dev_err(sfp->dev, "missing 'i2c-bus' property\n");
1798                         return -ENODEV;
1799                 }
1800
1801                 i2c = of_find_i2c_adapter_by_node(np);
1802                 of_node_put(np);
1803                 if (!i2c)
1804                         return -EPROBE_DEFER;
1805
1806                 err = sfp_i2c_configure(sfp, i2c);
1807                 if (err < 0) {
1808                         i2c_put_adapter(i2c);
1809                         return err;
1810                 }
1811         }
1812
1813         for (i = 0; i < GPIO_MAX; i++)
1814                 if (sff->gpios & BIT(i)) {
1815                         sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
1816                                            gpio_of_names[i], gpio_flags[i]);
1817                         if (IS_ERR(sfp->gpio[i]))
1818                                 return PTR_ERR(sfp->gpio[i]);
1819                 }
1820
1821         sfp->get_state = sfp_gpio_get_state;
1822         sfp->set_state = sfp_gpio_set_state;
1823
1824         /* Modules that have no detect signal are always present */
1825         if (!(sfp->gpio[GPIO_MODDEF0]))
1826                 sfp->get_state = sff_gpio_get_state;
1827
1828         device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
1829                                  &sfp->max_power_mW);
1830         if (!sfp->max_power_mW)
1831                 sfp->max_power_mW = 1000;
1832
1833         dev_info(sfp->dev, "Host maximum power %u.%uW\n",
1834                  sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
1835
1836         sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
1837         if (!sfp->sfp_bus)
1838                 return -ENOMEM;
1839
1840         /* Get the initial state, and always signal TX disable,
1841          * since the network interface will not be up.
1842          */
1843         sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
1844
1845         if (sfp->gpio[GPIO_RATE_SELECT] &&
1846             gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
1847                 sfp->state |= SFP_F_RATE_SELECT;
1848         sfp_set_state(sfp, sfp->state);
1849         sfp_module_tx_disable(sfp);
1850         rtnl_lock();
1851         if (sfp->state & SFP_F_PRESENT)
1852                 sfp_sm_event(sfp, SFP_E_INSERT);
1853         rtnl_unlock();
1854
1855         for (i = 0; i < GPIO_MAX; i++) {
1856                 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
1857                         continue;
1858
1859                 irq = gpiod_to_irq(sfp->gpio[i]);
1860                 if (!irq) {
1861                         poll = true;
1862                         continue;
1863                 }
1864
1865                 err = devm_request_threaded_irq(sfp->dev, irq, NULL, sfp_irq,
1866                                                 IRQF_ONESHOT |
1867                                                 IRQF_TRIGGER_RISING |
1868                                                 IRQF_TRIGGER_FALLING,
1869                                                 dev_name(sfp->dev), sfp);
1870                 if (err)
1871                         poll = true;
1872         }
1873
1874         if (poll)
1875                 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
1876
1877         /* We could have an issue in cases no Tx disable pin is available or
1878          * wired as modules using a laser as their light source will continue to
1879          * be active when the fiber is removed. This could be a safety issue and
1880          * we should at least warn the user about that.
1881          */
1882         if (!sfp->gpio[GPIO_TX_DISABLE])
1883                 dev_warn(sfp->dev,
1884                          "No tx_disable pin: SFP modules will always be emitting.\n");
1885
1886         return 0;
1887 }
1888
1889 static int sfp_remove(struct platform_device *pdev)
1890 {
1891         struct sfp *sfp = platform_get_drvdata(pdev);
1892
1893         sfp_unregister_socket(sfp->sfp_bus);
1894
1895         return 0;
1896 }
1897
1898 static struct platform_driver sfp_driver = {
1899         .probe = sfp_probe,
1900         .remove = sfp_remove,
1901         .driver = {
1902                 .name = "sfp",
1903                 .of_match_table = sfp_of_match,
1904         },
1905 };
1906
1907 static int sfp_init(void)
1908 {
1909         poll_jiffies = msecs_to_jiffies(100);
1910
1911         return platform_driver_register(&sfp_driver);
1912 }
1913 module_init(sfp_init);
1914
1915 static void sfp_exit(void)
1916 {
1917         platform_driver_unregister(&sfp_driver);
1918 }
1919 module_exit(sfp_exit);
1920
1921 MODULE_ALIAS("platform:sfp");
1922 MODULE_AUTHOR("Russell King");
1923 MODULE_LICENSE("GPL v2");