igb: add new data structure for handling interrupts and NAPI
[linux-2.6-block.git] / drivers / net / igb / igb_ethtool.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2009 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 /* ethtool support for igb */
29
30 #include <linux/vmalloc.h>
31 #include <linux/netdevice.h>
32 #include <linux/pci.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/if_ether.h>
36 #include <linux/ethtool.h>
37
38 #include "igb.h"
39
40 enum {NETDEV_STATS, IGB_STATS};
41
42 struct igb_stats {
43         char stat_string[ETH_GSTRING_LEN];
44         int type;
45         int sizeof_stat;
46         int stat_offset;
47 };
48
49 #define IGB_STAT(m)             IGB_STATS, \
50                                 FIELD_SIZEOF(struct igb_adapter, m), \
51                                 offsetof(struct igb_adapter, m)
52 #define IGB_NETDEV_STAT(m)      NETDEV_STATS, \
53                                 FIELD_SIZEOF(struct net_device, m), \
54                                 offsetof(struct net_device, m)
55
56 static const struct igb_stats igb_gstrings_stats[] = {
57         { "rx_packets", IGB_STAT(stats.gprc) },
58         { "tx_packets", IGB_STAT(stats.gptc) },
59         { "rx_bytes", IGB_STAT(stats.gorc) },
60         { "tx_bytes", IGB_STAT(stats.gotc) },
61         { "rx_broadcast", IGB_STAT(stats.bprc) },
62         { "tx_broadcast", IGB_STAT(stats.bptc) },
63         { "rx_multicast", IGB_STAT(stats.mprc) },
64         { "tx_multicast", IGB_STAT(stats.mptc) },
65         { "rx_errors", IGB_NETDEV_STAT(stats.rx_errors) },
66         { "tx_errors", IGB_NETDEV_STAT(stats.tx_errors) },
67         { "tx_dropped", IGB_NETDEV_STAT(stats.tx_dropped) },
68         { "multicast", IGB_STAT(stats.mprc) },
69         { "collisions", IGB_STAT(stats.colc) },
70         { "rx_length_errors", IGB_NETDEV_STAT(stats.rx_length_errors) },
71         { "rx_over_errors", IGB_NETDEV_STAT(stats.rx_over_errors) },
72         { "rx_crc_errors", IGB_STAT(stats.crcerrs) },
73         { "rx_frame_errors", IGB_NETDEV_STAT(stats.rx_frame_errors) },
74         { "rx_no_buffer_count", IGB_STAT(stats.rnbc) },
75         { "rx_queue_drop_packet_count", IGB_NETDEV_STAT(stats.rx_fifo_errors) },
76         { "rx_missed_errors", IGB_STAT(stats.mpc) },
77         { "tx_aborted_errors", IGB_STAT(stats.ecol) },
78         { "tx_carrier_errors", IGB_STAT(stats.tncrs) },
79         { "tx_fifo_errors", IGB_NETDEV_STAT(stats.tx_fifo_errors) },
80         { "tx_heartbeat_errors", IGB_NETDEV_STAT(stats.tx_heartbeat_errors) },
81         { "tx_window_errors", IGB_STAT(stats.latecol) },
82         { "tx_abort_late_coll", IGB_STAT(stats.latecol) },
83         { "tx_deferred_ok", IGB_STAT(stats.dc) },
84         { "tx_single_coll_ok", IGB_STAT(stats.scc) },
85         { "tx_multi_coll_ok", IGB_STAT(stats.mcc) },
86         { "tx_timeout_count", IGB_STAT(tx_timeout_count) },
87         { "tx_restart_queue", IGB_STAT(restart_queue) },
88         { "rx_long_length_errors", IGB_STAT(stats.roc) },
89         { "rx_short_length_errors", IGB_STAT(stats.ruc) },
90         { "rx_align_errors", IGB_STAT(stats.algnerrc) },
91         { "tx_tcp_seg_good", IGB_STAT(stats.tsctc) },
92         { "tx_tcp_seg_failed", IGB_STAT(stats.tsctfc) },
93         { "rx_flow_control_xon", IGB_STAT(stats.xonrxc) },
94         { "rx_flow_control_xoff", IGB_STAT(stats.xoffrxc) },
95         { "tx_flow_control_xon", IGB_STAT(stats.xontxc) },
96         { "tx_flow_control_xoff", IGB_STAT(stats.xofftxc) },
97         { "rx_long_byte_count", IGB_STAT(stats.gorc) },
98         { "rx_csum_offload_good", IGB_STAT(hw_csum_good) },
99         { "rx_csum_offload_errors", IGB_STAT(hw_csum_err) },
100         { "tx_dma_out_of_sync", IGB_STAT(stats.doosync) },
101         { "alloc_rx_buff_failed", IGB_STAT(alloc_rx_buff_failed) },
102         { "tx_smbus", IGB_STAT(stats.mgptc) },
103         { "rx_smbus", IGB_STAT(stats.mgprc) },
104         { "dropped_smbus", IGB_STAT(stats.mgpdc) },
105 };
106
107 #define IGB_QUEUE_STATS_LEN \
108         (((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues)* \
109           (sizeof(struct igb_rx_queue_stats) / sizeof(u64))) + \
110          ((((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues) * \
111           (sizeof(struct igb_tx_queue_stats) / sizeof(u64))))
112 #define IGB_GLOBAL_STATS_LEN    \
113         sizeof(igb_gstrings_stats) / sizeof(struct igb_stats)
114 #define IGB_STATS_LEN (IGB_GLOBAL_STATS_LEN + IGB_QUEUE_STATS_LEN)
115 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
116         "Register test  (offline)", "Eeprom test    (offline)",
117         "Interrupt test (offline)", "Loopback test  (offline)",
118         "Link test   (on/offline)"
119 };
120 #define IGB_TEST_LEN sizeof(igb_gstrings_test) / ETH_GSTRING_LEN
121
122 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
123 {
124         struct igb_adapter *adapter = netdev_priv(netdev);
125         struct e1000_hw *hw = &adapter->hw;
126
127         if (hw->phy.media_type == e1000_media_type_copper) {
128
129                 ecmd->supported = (SUPPORTED_10baseT_Half |
130                                    SUPPORTED_10baseT_Full |
131                                    SUPPORTED_100baseT_Half |
132                                    SUPPORTED_100baseT_Full |
133                                    SUPPORTED_1000baseT_Full|
134                                    SUPPORTED_Autoneg |
135                                    SUPPORTED_TP);
136                 ecmd->advertising = ADVERTISED_TP;
137
138                 if (hw->mac.autoneg == 1) {
139                         ecmd->advertising |= ADVERTISED_Autoneg;
140                         /* the e1000 autoneg seems to match ethtool nicely */
141                         ecmd->advertising |= hw->phy.autoneg_advertised;
142                 }
143
144                 ecmd->port = PORT_TP;
145                 ecmd->phy_address = hw->phy.addr;
146         } else {
147                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
148                                      SUPPORTED_FIBRE |
149                                      SUPPORTED_Autoneg);
150
151                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
152                                      ADVERTISED_FIBRE |
153                                      ADVERTISED_Autoneg);
154
155                 ecmd->port = PORT_FIBRE;
156         }
157
158         ecmd->transceiver = XCVR_INTERNAL;
159
160         if (rd32(E1000_STATUS) & E1000_STATUS_LU) {
161
162                 adapter->hw.mac.ops.get_speed_and_duplex(hw,
163                                         &adapter->link_speed,
164                                         &adapter->link_duplex);
165                 ecmd->speed = adapter->link_speed;
166
167                 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
168                  *          and HALF_DUPLEX != DUPLEX_HALF */
169
170                 if (adapter->link_duplex == FULL_DUPLEX)
171                         ecmd->duplex = DUPLEX_FULL;
172                 else
173                         ecmd->duplex = DUPLEX_HALF;
174         } else {
175                 ecmd->speed = -1;
176                 ecmd->duplex = -1;
177         }
178
179         ecmd->autoneg = hw->mac.autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE;
180         return 0;
181 }
182
183 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
184 {
185         struct igb_adapter *adapter = netdev_priv(netdev);
186         struct e1000_hw *hw = &adapter->hw;
187
188         /* When SoL/IDER sessions are active, autoneg/speed/duplex
189          * cannot be changed */
190         if (igb_check_reset_block(hw)) {
191                 dev_err(&adapter->pdev->dev, "Cannot change link "
192                         "characteristics when SoL/IDER is active.\n");
193                 return -EINVAL;
194         }
195
196         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
197                 msleep(1);
198
199         if (ecmd->autoneg == AUTONEG_ENABLE) {
200                 hw->mac.autoneg = 1;
201                 hw->phy.autoneg_advertised = ecmd->advertising |
202                                              ADVERTISED_TP |
203                                              ADVERTISED_Autoneg;
204                 ecmd->advertising = hw->phy.autoneg_advertised;
205                 if (adapter->fc_autoneg)
206                         hw->fc.requested_mode = e1000_fc_default;
207         } else {
208                 if (igb_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
209                         clear_bit(__IGB_RESETTING, &adapter->state);
210                         return -EINVAL;
211                 }
212         }
213
214         /* reset the link */
215         if (netif_running(adapter->netdev)) {
216                 igb_down(adapter);
217                 igb_up(adapter);
218         } else
219                 igb_reset(adapter);
220
221         clear_bit(__IGB_RESETTING, &adapter->state);
222         return 0;
223 }
224
225 static void igb_get_pauseparam(struct net_device *netdev,
226                                struct ethtool_pauseparam *pause)
227 {
228         struct igb_adapter *adapter = netdev_priv(netdev);
229         struct e1000_hw *hw = &adapter->hw;
230
231         pause->autoneg =
232                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
233
234         if (hw->fc.current_mode == e1000_fc_rx_pause)
235                 pause->rx_pause = 1;
236         else if (hw->fc.current_mode == e1000_fc_tx_pause)
237                 pause->tx_pause = 1;
238         else if (hw->fc.current_mode == e1000_fc_full) {
239                 pause->rx_pause = 1;
240                 pause->tx_pause = 1;
241         }
242 }
243
244 static int igb_set_pauseparam(struct net_device *netdev,
245                               struct ethtool_pauseparam *pause)
246 {
247         struct igb_adapter *adapter = netdev_priv(netdev);
248         struct e1000_hw *hw = &adapter->hw;
249         int retval = 0;
250
251         adapter->fc_autoneg = pause->autoneg;
252
253         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
254                 msleep(1);
255
256         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
257                 hw->fc.requested_mode = e1000_fc_default;
258                 if (netif_running(adapter->netdev)) {
259                         igb_down(adapter);
260                         igb_up(adapter);
261                 } else
262                         igb_reset(adapter);
263         } else {
264                 if (pause->rx_pause && pause->tx_pause)
265                         hw->fc.requested_mode = e1000_fc_full;
266                 else if (pause->rx_pause && !pause->tx_pause)
267                         hw->fc.requested_mode = e1000_fc_rx_pause;
268                 else if (!pause->rx_pause && pause->tx_pause)
269                         hw->fc.requested_mode = e1000_fc_tx_pause;
270                 else if (!pause->rx_pause && !pause->tx_pause)
271                         hw->fc.requested_mode = e1000_fc_none;
272
273                 hw->fc.current_mode = hw->fc.requested_mode;
274
275                 retval = ((hw->phy.media_type == e1000_media_type_copper) ?
276                           igb_force_mac_fc(hw) : igb_setup_link(hw));
277         }
278
279         clear_bit(__IGB_RESETTING, &adapter->state);
280         return retval;
281 }
282
283 static u32 igb_get_rx_csum(struct net_device *netdev)
284 {
285         struct igb_adapter *adapter = netdev_priv(netdev);
286         return !(adapter->flags & IGB_FLAG_RX_CSUM_DISABLED);
287 }
288
289 static int igb_set_rx_csum(struct net_device *netdev, u32 data)
290 {
291         struct igb_adapter *adapter = netdev_priv(netdev);
292
293         if (data)
294                 adapter->flags &= ~IGB_FLAG_RX_CSUM_DISABLED;
295         else
296                 adapter->flags |= IGB_FLAG_RX_CSUM_DISABLED;
297
298         return 0;
299 }
300
301 static u32 igb_get_tx_csum(struct net_device *netdev)
302 {
303         return (netdev->features & NETIF_F_IP_CSUM) != 0;
304 }
305
306 static int igb_set_tx_csum(struct net_device *netdev, u32 data)
307 {
308         struct igb_adapter *adapter = netdev_priv(netdev);
309
310         if (data) {
311                 netdev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
312                 if (adapter->hw.mac.type == e1000_82576)
313                         netdev->features |= NETIF_F_SCTP_CSUM;
314         } else {
315                 netdev->features &= ~(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
316                                       NETIF_F_SCTP_CSUM);
317         }
318
319         return 0;
320 }
321
322 static int igb_set_tso(struct net_device *netdev, u32 data)
323 {
324         struct igb_adapter *adapter = netdev_priv(netdev);
325
326         if (data) {
327                 netdev->features |= NETIF_F_TSO;
328                 netdev->features |= NETIF_F_TSO6;
329         } else {
330                 netdev->features &= ~NETIF_F_TSO;
331                 netdev->features &= ~NETIF_F_TSO6;
332         }
333
334         dev_info(&adapter->pdev->dev, "TSO is %s\n",
335                  data ? "Enabled" : "Disabled");
336         return 0;
337 }
338
339 static u32 igb_get_msglevel(struct net_device *netdev)
340 {
341         struct igb_adapter *adapter = netdev_priv(netdev);
342         return adapter->msg_enable;
343 }
344
345 static void igb_set_msglevel(struct net_device *netdev, u32 data)
346 {
347         struct igb_adapter *adapter = netdev_priv(netdev);
348         adapter->msg_enable = data;
349 }
350
351 static int igb_get_regs_len(struct net_device *netdev)
352 {
353 #define IGB_REGS_LEN 551
354         return IGB_REGS_LEN * sizeof(u32);
355 }
356
357 static void igb_get_regs(struct net_device *netdev,
358                          struct ethtool_regs *regs, void *p)
359 {
360         struct igb_adapter *adapter = netdev_priv(netdev);
361         struct e1000_hw *hw = &adapter->hw;
362         u32 *regs_buff = p;
363         u8 i;
364
365         memset(p, 0, IGB_REGS_LEN * sizeof(u32));
366
367         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
368
369         /* General Registers */
370         regs_buff[0] = rd32(E1000_CTRL);
371         regs_buff[1] = rd32(E1000_STATUS);
372         regs_buff[2] = rd32(E1000_CTRL_EXT);
373         regs_buff[3] = rd32(E1000_MDIC);
374         regs_buff[4] = rd32(E1000_SCTL);
375         regs_buff[5] = rd32(E1000_CONNSW);
376         regs_buff[6] = rd32(E1000_VET);
377         regs_buff[7] = rd32(E1000_LEDCTL);
378         regs_buff[8] = rd32(E1000_PBA);
379         regs_buff[9] = rd32(E1000_PBS);
380         regs_buff[10] = rd32(E1000_FRTIMER);
381         regs_buff[11] = rd32(E1000_TCPTIMER);
382
383         /* NVM Register */
384         regs_buff[12] = rd32(E1000_EECD);
385
386         /* Interrupt */
387         /* Reading EICS for EICR because they read the
388          * same but EICS does not clear on read */
389         regs_buff[13] = rd32(E1000_EICS);
390         regs_buff[14] = rd32(E1000_EICS);
391         regs_buff[15] = rd32(E1000_EIMS);
392         regs_buff[16] = rd32(E1000_EIMC);
393         regs_buff[17] = rd32(E1000_EIAC);
394         regs_buff[18] = rd32(E1000_EIAM);
395         /* Reading ICS for ICR because they read the
396          * same but ICS does not clear on read */
397         regs_buff[19] = rd32(E1000_ICS);
398         regs_buff[20] = rd32(E1000_ICS);
399         regs_buff[21] = rd32(E1000_IMS);
400         regs_buff[22] = rd32(E1000_IMC);
401         regs_buff[23] = rd32(E1000_IAC);
402         regs_buff[24] = rd32(E1000_IAM);
403         regs_buff[25] = rd32(E1000_IMIRVP);
404
405         /* Flow Control */
406         regs_buff[26] = rd32(E1000_FCAL);
407         regs_buff[27] = rd32(E1000_FCAH);
408         regs_buff[28] = rd32(E1000_FCTTV);
409         regs_buff[29] = rd32(E1000_FCRTL);
410         regs_buff[30] = rd32(E1000_FCRTH);
411         regs_buff[31] = rd32(E1000_FCRTV);
412
413         /* Receive */
414         regs_buff[32] = rd32(E1000_RCTL);
415         regs_buff[33] = rd32(E1000_RXCSUM);
416         regs_buff[34] = rd32(E1000_RLPML);
417         regs_buff[35] = rd32(E1000_RFCTL);
418         regs_buff[36] = rd32(E1000_MRQC);
419         regs_buff[37] = rd32(E1000_VT_CTL);
420
421         /* Transmit */
422         regs_buff[38] = rd32(E1000_TCTL);
423         regs_buff[39] = rd32(E1000_TCTL_EXT);
424         regs_buff[40] = rd32(E1000_TIPG);
425         regs_buff[41] = rd32(E1000_DTXCTL);
426
427         /* Wake Up */
428         regs_buff[42] = rd32(E1000_WUC);
429         regs_buff[43] = rd32(E1000_WUFC);
430         regs_buff[44] = rd32(E1000_WUS);
431         regs_buff[45] = rd32(E1000_IPAV);
432         regs_buff[46] = rd32(E1000_WUPL);
433
434         /* MAC */
435         regs_buff[47] = rd32(E1000_PCS_CFG0);
436         regs_buff[48] = rd32(E1000_PCS_LCTL);
437         regs_buff[49] = rd32(E1000_PCS_LSTAT);
438         regs_buff[50] = rd32(E1000_PCS_ANADV);
439         regs_buff[51] = rd32(E1000_PCS_LPAB);
440         regs_buff[52] = rd32(E1000_PCS_NPTX);
441         regs_buff[53] = rd32(E1000_PCS_LPABNP);
442
443         /* Statistics */
444         regs_buff[54] = adapter->stats.crcerrs;
445         regs_buff[55] = adapter->stats.algnerrc;
446         regs_buff[56] = adapter->stats.symerrs;
447         regs_buff[57] = adapter->stats.rxerrc;
448         regs_buff[58] = adapter->stats.mpc;
449         regs_buff[59] = adapter->stats.scc;
450         regs_buff[60] = adapter->stats.ecol;
451         regs_buff[61] = adapter->stats.mcc;
452         regs_buff[62] = adapter->stats.latecol;
453         regs_buff[63] = adapter->stats.colc;
454         regs_buff[64] = adapter->stats.dc;
455         regs_buff[65] = adapter->stats.tncrs;
456         regs_buff[66] = adapter->stats.sec;
457         regs_buff[67] = adapter->stats.htdpmc;
458         regs_buff[68] = adapter->stats.rlec;
459         regs_buff[69] = adapter->stats.xonrxc;
460         regs_buff[70] = adapter->stats.xontxc;
461         regs_buff[71] = adapter->stats.xoffrxc;
462         regs_buff[72] = adapter->stats.xofftxc;
463         regs_buff[73] = adapter->stats.fcruc;
464         regs_buff[74] = adapter->stats.prc64;
465         regs_buff[75] = adapter->stats.prc127;
466         regs_buff[76] = adapter->stats.prc255;
467         regs_buff[77] = adapter->stats.prc511;
468         regs_buff[78] = adapter->stats.prc1023;
469         regs_buff[79] = adapter->stats.prc1522;
470         regs_buff[80] = adapter->stats.gprc;
471         regs_buff[81] = adapter->stats.bprc;
472         regs_buff[82] = adapter->stats.mprc;
473         regs_buff[83] = adapter->stats.gptc;
474         regs_buff[84] = adapter->stats.gorc;
475         regs_buff[86] = adapter->stats.gotc;
476         regs_buff[88] = adapter->stats.rnbc;
477         regs_buff[89] = adapter->stats.ruc;
478         regs_buff[90] = adapter->stats.rfc;
479         regs_buff[91] = adapter->stats.roc;
480         regs_buff[92] = adapter->stats.rjc;
481         regs_buff[93] = adapter->stats.mgprc;
482         regs_buff[94] = adapter->stats.mgpdc;
483         regs_buff[95] = adapter->stats.mgptc;
484         regs_buff[96] = adapter->stats.tor;
485         regs_buff[98] = adapter->stats.tot;
486         regs_buff[100] = adapter->stats.tpr;
487         regs_buff[101] = adapter->stats.tpt;
488         regs_buff[102] = adapter->stats.ptc64;
489         regs_buff[103] = adapter->stats.ptc127;
490         regs_buff[104] = adapter->stats.ptc255;
491         regs_buff[105] = adapter->stats.ptc511;
492         regs_buff[106] = adapter->stats.ptc1023;
493         regs_buff[107] = adapter->stats.ptc1522;
494         regs_buff[108] = adapter->stats.mptc;
495         regs_buff[109] = adapter->stats.bptc;
496         regs_buff[110] = adapter->stats.tsctc;
497         regs_buff[111] = adapter->stats.iac;
498         regs_buff[112] = adapter->stats.rpthc;
499         regs_buff[113] = adapter->stats.hgptc;
500         regs_buff[114] = adapter->stats.hgorc;
501         regs_buff[116] = adapter->stats.hgotc;
502         regs_buff[118] = adapter->stats.lenerrs;
503         regs_buff[119] = adapter->stats.scvpc;
504         regs_buff[120] = adapter->stats.hrmpc;
505
506         /* These should probably be added to e1000_regs.h instead */
507         #define E1000_PSRTYPE_REG(_i) (0x05480 + ((_i) * 4))
508         #define E1000_IP4AT_REG(_i)   (0x05840 + ((_i) * 8))
509         #define E1000_IP6AT_REG(_i)   (0x05880 + ((_i) * 4))
510         #define E1000_WUPM_REG(_i)    (0x05A00 + ((_i) * 4))
511         #define E1000_FFMT_REG(_i)    (0x09000 + ((_i) * 8))
512         #define E1000_FFVT_REG(_i)    (0x09800 + ((_i) * 8))
513         #define E1000_FFLT_REG(_i)    (0x05F00 + ((_i) * 8))
514
515         for (i = 0; i < 4; i++)
516                 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
517         for (i = 0; i < 4; i++)
518                 regs_buff[125 + i] = rd32(E1000_PSRTYPE_REG(i));
519         for (i = 0; i < 4; i++)
520                 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
521         for (i = 0; i < 4; i++)
522                 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
523         for (i = 0; i < 4; i++)
524                 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
525         for (i = 0; i < 4; i++)
526                 regs_buff[141 + i] = rd32(E1000_RDH(i));
527         for (i = 0; i < 4; i++)
528                 regs_buff[145 + i] = rd32(E1000_RDT(i));
529         for (i = 0; i < 4; i++)
530                 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
531
532         for (i = 0; i < 10; i++)
533                 regs_buff[153 + i] = rd32(E1000_EITR(i));
534         for (i = 0; i < 8; i++)
535                 regs_buff[163 + i] = rd32(E1000_IMIR(i));
536         for (i = 0; i < 8; i++)
537                 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
538         for (i = 0; i < 16; i++)
539                 regs_buff[179 + i] = rd32(E1000_RAL(i));
540         for (i = 0; i < 16; i++)
541                 regs_buff[195 + i] = rd32(E1000_RAH(i));
542
543         for (i = 0; i < 4; i++)
544                 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
545         for (i = 0; i < 4; i++)
546                 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
547         for (i = 0; i < 4; i++)
548                 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
549         for (i = 0; i < 4; i++)
550                 regs_buff[223 + i] = rd32(E1000_TDH(i));
551         for (i = 0; i < 4; i++)
552                 regs_buff[227 + i] = rd32(E1000_TDT(i));
553         for (i = 0; i < 4; i++)
554                 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
555         for (i = 0; i < 4; i++)
556                 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
557         for (i = 0; i < 4; i++)
558                 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
559         for (i = 0; i < 4; i++)
560                 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
561
562         for (i = 0; i < 4; i++)
563                 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
564         for (i = 0; i < 4; i++)
565                 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
566         for (i = 0; i < 32; i++)
567                 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
568         for (i = 0; i < 128; i++)
569                 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
570         for (i = 0; i < 128; i++)
571                 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
572         for (i = 0; i < 4; i++)
573                 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
574
575         regs_buff[547] = rd32(E1000_TDFH);
576         regs_buff[548] = rd32(E1000_TDFT);
577         regs_buff[549] = rd32(E1000_TDFHS);
578         regs_buff[550] = rd32(E1000_TDFPC);
579
580 }
581
582 static int igb_get_eeprom_len(struct net_device *netdev)
583 {
584         struct igb_adapter *adapter = netdev_priv(netdev);
585         return adapter->hw.nvm.word_size * 2;
586 }
587
588 static int igb_get_eeprom(struct net_device *netdev,
589                           struct ethtool_eeprom *eeprom, u8 *bytes)
590 {
591         struct igb_adapter *adapter = netdev_priv(netdev);
592         struct e1000_hw *hw = &adapter->hw;
593         u16 *eeprom_buff;
594         int first_word, last_word;
595         int ret_val = 0;
596         u16 i;
597
598         if (eeprom->len == 0)
599                 return -EINVAL;
600
601         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
602
603         first_word = eeprom->offset >> 1;
604         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
605
606         eeprom_buff = kmalloc(sizeof(u16) *
607                         (last_word - first_word + 1), GFP_KERNEL);
608         if (!eeprom_buff)
609                 return -ENOMEM;
610
611         if (hw->nvm.type == e1000_nvm_eeprom_spi)
612                 ret_val = hw->nvm.ops.read(hw, first_word,
613                                             last_word - first_word + 1,
614                                             eeprom_buff);
615         else {
616                 for (i = 0; i < last_word - first_word + 1; i++) {
617                         ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
618                                                     &eeprom_buff[i]);
619                         if (ret_val)
620                                 break;
621                 }
622         }
623
624         /* Device's eeprom is always little-endian, word addressable */
625         for (i = 0; i < last_word - first_word + 1; i++)
626                 le16_to_cpus(&eeprom_buff[i]);
627
628         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
629                         eeprom->len);
630         kfree(eeprom_buff);
631
632         return ret_val;
633 }
634
635 static int igb_set_eeprom(struct net_device *netdev,
636                           struct ethtool_eeprom *eeprom, u8 *bytes)
637 {
638         struct igb_adapter *adapter = netdev_priv(netdev);
639         struct e1000_hw *hw = &adapter->hw;
640         u16 *eeprom_buff;
641         void *ptr;
642         int max_len, first_word, last_word, ret_val = 0;
643         u16 i;
644
645         if (eeprom->len == 0)
646                 return -EOPNOTSUPP;
647
648         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
649                 return -EFAULT;
650
651         max_len = hw->nvm.word_size * 2;
652
653         first_word = eeprom->offset >> 1;
654         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
655         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
656         if (!eeprom_buff)
657                 return -ENOMEM;
658
659         ptr = (void *)eeprom_buff;
660
661         if (eeprom->offset & 1) {
662                 /* need read/modify/write of first changed EEPROM word */
663                 /* only the second byte of the word is being modified */
664                 ret_val = hw->nvm.ops.read(hw, first_word, 1,
665                                             &eeprom_buff[0]);
666                 ptr++;
667         }
668         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
669                 /* need read/modify/write of last changed EEPROM word */
670                 /* only the first byte of the word is being modified */
671                 ret_val = hw->nvm.ops.read(hw, last_word, 1,
672                                    &eeprom_buff[last_word - first_word]);
673         }
674
675         /* Device's eeprom is always little-endian, word addressable */
676         for (i = 0; i < last_word - first_word + 1; i++)
677                 le16_to_cpus(&eeprom_buff[i]);
678
679         memcpy(ptr, bytes, eeprom->len);
680
681         for (i = 0; i < last_word - first_word + 1; i++)
682                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
683
684         ret_val = hw->nvm.ops.write(hw, first_word,
685                                      last_word - first_word + 1, eeprom_buff);
686
687         /* Update the checksum over the first part of the EEPROM if needed
688          * and flush shadow RAM for 82573 controllers */
689         if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
690                 igb_update_nvm_checksum(hw);
691
692         kfree(eeprom_buff);
693         return ret_val;
694 }
695
696 static void igb_get_drvinfo(struct net_device *netdev,
697                             struct ethtool_drvinfo *drvinfo)
698 {
699         struct igb_adapter *adapter = netdev_priv(netdev);
700         char firmware_version[32];
701         u16 eeprom_data;
702
703         strncpy(drvinfo->driver,  igb_driver_name, 32);
704         strncpy(drvinfo->version, igb_driver_version, 32);
705
706         /* EEPROM image version # is reported as firmware version # for
707          * 82575 controllers */
708         adapter->hw.nvm.ops.read(&adapter->hw, 5, 1, &eeprom_data);
709         sprintf(firmware_version, "%d.%d-%d",
710                 (eeprom_data & 0xF000) >> 12,
711                 (eeprom_data & 0x0FF0) >> 4,
712                 eeprom_data & 0x000F);
713
714         strncpy(drvinfo->fw_version, firmware_version, 32);
715         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
716         drvinfo->n_stats = IGB_STATS_LEN;
717         drvinfo->testinfo_len = IGB_TEST_LEN;
718         drvinfo->regdump_len = igb_get_regs_len(netdev);
719         drvinfo->eedump_len = igb_get_eeprom_len(netdev);
720 }
721
722 static void igb_get_ringparam(struct net_device *netdev,
723                               struct ethtool_ringparam *ring)
724 {
725         struct igb_adapter *adapter = netdev_priv(netdev);
726
727         ring->rx_max_pending = IGB_MAX_RXD;
728         ring->tx_max_pending = IGB_MAX_TXD;
729         ring->rx_mini_max_pending = 0;
730         ring->rx_jumbo_max_pending = 0;
731         ring->rx_pending = adapter->rx_ring_count;
732         ring->tx_pending = adapter->tx_ring_count;
733         ring->rx_mini_pending = 0;
734         ring->rx_jumbo_pending = 0;
735 }
736
737 static int igb_set_ringparam(struct net_device *netdev,
738                              struct ethtool_ringparam *ring)
739 {
740         struct igb_adapter *adapter = netdev_priv(netdev);
741         struct igb_ring *temp_ring;
742         int i, err = 0;
743         u32 new_rx_count, new_tx_count;
744
745         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
746                 return -EINVAL;
747
748         new_rx_count = max(ring->rx_pending, (u32)IGB_MIN_RXD);
749         new_rx_count = min(new_rx_count, (u32)IGB_MAX_RXD);
750         new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
751
752         new_tx_count = max(ring->tx_pending, (u32)IGB_MIN_TXD);
753         new_tx_count = min(new_tx_count, (u32)IGB_MAX_TXD);
754         new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
755
756         if ((new_tx_count == adapter->tx_ring_count) &&
757             (new_rx_count == adapter->rx_ring_count)) {
758                 /* nothing to do */
759                 return 0;
760         }
761
762         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
763                 msleep(1);
764
765         if (!netif_running(adapter->netdev)) {
766                 for (i = 0; i < adapter->num_tx_queues; i++)
767                         adapter->tx_ring[i].count = new_tx_count;
768                 for (i = 0; i < adapter->num_rx_queues; i++)
769                         adapter->rx_ring[i].count = new_rx_count;
770                 adapter->tx_ring_count = new_tx_count;
771                 adapter->rx_ring_count = new_rx_count;
772                 goto clear_reset;
773         }
774
775         if (adapter->num_tx_queues > adapter->num_rx_queues)
776                 temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring));
777         else
778                 temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring));
779
780         if (!temp_ring) {
781                 err = -ENOMEM;
782                 goto clear_reset;
783         }
784
785         igb_down(adapter);
786
787         /*
788          * We can't just free everything and then setup again,
789          * because the ISRs in MSI-X mode get passed pointers
790          * to the tx and rx ring structs.
791          */
792         if (new_tx_count != adapter->tx_ring_count) {
793                 memcpy(temp_ring, adapter->tx_ring,
794                        adapter->num_tx_queues * sizeof(struct igb_ring));
795
796                 for (i = 0; i < adapter->num_tx_queues; i++) {
797                         temp_ring[i].count = new_tx_count;
798                         err = igb_setup_tx_resources(adapter, &temp_ring[i]);
799                         if (err) {
800                                 while (i) {
801                                         i--;
802                                         igb_free_tx_resources(&temp_ring[i]);
803                                 }
804                                 goto err_setup;
805                         }
806                 }
807
808                 for (i = 0; i < adapter->num_tx_queues; i++)
809                         igb_free_tx_resources(&adapter->tx_ring[i]);
810
811                 memcpy(adapter->tx_ring, temp_ring,
812                        adapter->num_tx_queues * sizeof(struct igb_ring));
813
814                 adapter->tx_ring_count = new_tx_count;
815         }
816
817         if (new_rx_count != adapter->rx_ring->count) {
818                 memcpy(temp_ring, adapter->rx_ring,
819                        adapter->num_rx_queues * sizeof(struct igb_ring));
820
821                 for (i = 0; i < adapter->num_rx_queues; i++) {
822                         temp_ring[i].count = new_rx_count;
823                         err = igb_setup_rx_resources(adapter, &temp_ring[i]);
824                         if (err) {
825                                 while (i) {
826                                         i--;
827                                         igb_free_rx_resources(&temp_ring[i]);
828                                 }
829                                 goto err_setup;
830                         }
831
832                 }
833
834                 for (i = 0; i < adapter->num_rx_queues; i++)
835                         igb_free_rx_resources(&adapter->rx_ring[i]);
836
837                 memcpy(adapter->rx_ring, temp_ring,
838                        adapter->num_rx_queues * sizeof(struct igb_ring));
839
840                 adapter->rx_ring_count = new_rx_count;
841         }
842 err_setup:
843         igb_up(adapter);
844         vfree(temp_ring);
845 clear_reset:
846         clear_bit(__IGB_RESETTING, &adapter->state);
847         return err;
848 }
849
850 /* ethtool register test data */
851 struct igb_reg_test {
852         u16 reg;
853         u16 reg_offset;
854         u16 array_len;
855         u16 test_type;
856         u32 mask;
857         u32 write;
858 };
859
860 /* In the hardware, registers are laid out either singly, in arrays
861  * spaced 0x100 bytes apart, or in contiguous tables.  We assume
862  * most tests take place on arrays or single registers (handled
863  * as a single-element array) and special-case the tables.
864  * Table tests are always pattern tests.
865  *
866  * We also make provision for some required setup steps by specifying
867  * registers to be written without any read-back testing.
868  */
869
870 #define PATTERN_TEST    1
871 #define SET_READ_TEST   2
872 #define WRITE_NO_TEST   3
873 #define TABLE32_TEST    4
874 #define TABLE64_TEST_LO 5
875 #define TABLE64_TEST_HI 6
876
877 /* 82576 reg test */
878 static struct igb_reg_test reg_test_82576[] = {
879         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
880         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
881         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
882         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
883         { E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
884         { E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
885         { E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
886         { E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
887         { E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
888         { E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
889         /* Enable all RX queues before testing. */
890         { E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
891         { E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
892         /* RDH is read-only for 82576, only test RDT. */
893         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
894         { E1000_RDT(4),    0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
895         { E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
896         { E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
897         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
898         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
899         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
900         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
901         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
902         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
903         { E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
904         { E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
905         { E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
906         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
907         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
908         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
909         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
910         { E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
911         { E1000_RA,        0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
912         { E1000_RA2,       0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
913         { E1000_RA2,       0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
914         { E1000_MTA,       0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
915         { 0, 0, 0, 0 }
916 };
917
918 /* 82575 register test */
919 static struct igb_reg_test reg_test_82575[] = {
920         { E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
921         { E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
922         { E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
923         { E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
924         { E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
925         { E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
926         { E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
927         /* Enable all four RX queues before testing. */
928         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
929         /* RDH is read-only for 82575, only test RDT. */
930         { E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
931         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
932         { E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
933         { E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
934         { E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
935         { E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
936         { E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
937         { E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
938         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
939         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
940         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
941         { E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
942         { E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
943         { E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
944         { E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
945         { E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
946         { 0, 0, 0, 0 }
947 };
948
949 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
950                              int reg, u32 mask, u32 write)
951 {
952         struct e1000_hw *hw = &adapter->hw;
953         u32 pat, val;
954         u32 _test[] =
955                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
956         for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
957                 wr32(reg, (_test[pat] & write));
958                 val = rd32(reg);
959                 if (val != (_test[pat] & write & mask)) {
960                         dev_err(&adapter->pdev->dev, "pattern test reg %04X "
961                                 "failed: got 0x%08X expected 0x%08X\n",
962                                 reg, val, (_test[pat] & write & mask));
963                         *data = reg;
964                         return 1;
965                 }
966         }
967         return 0;
968 }
969
970 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
971                               int reg, u32 mask, u32 write)
972 {
973         struct e1000_hw *hw = &adapter->hw;
974         u32 val;
975         wr32(reg, write & mask);
976         val = rd32(reg);
977         if ((write & mask) != (val & mask)) {
978                 dev_err(&adapter->pdev->dev, "set/check reg %04X test failed:"
979                         " got 0x%08X expected 0x%08X\n", reg,
980                         (val & mask), (write & mask));
981                 *data = reg;
982                 return 1;
983         }
984         return 0;
985 }
986
987 #define REG_PATTERN_TEST(reg, mask, write) \
988         do { \
989                 if (reg_pattern_test(adapter, data, reg, mask, write)) \
990                         return 1; \
991         } while (0)
992
993 #define REG_SET_AND_CHECK(reg, mask, write) \
994         do { \
995                 if (reg_set_and_check(adapter, data, reg, mask, write)) \
996                         return 1; \
997         } while (0)
998
999 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1000 {
1001         struct e1000_hw *hw = &adapter->hw;
1002         struct igb_reg_test *test;
1003         u32 value, before, after;
1004         u32 i, toggle;
1005
1006         toggle = 0x7FFFF3FF;
1007
1008         switch (adapter->hw.mac.type) {
1009         case e1000_82576:
1010                 test = reg_test_82576;
1011                 break;
1012         default:
1013                 test = reg_test_82575;
1014                 break;
1015         }
1016
1017         /* Because the status register is such a special case,
1018          * we handle it separately from the rest of the register
1019          * tests.  Some bits are read-only, some toggle, and some
1020          * are writable on newer MACs.
1021          */
1022         before = rd32(E1000_STATUS);
1023         value = (rd32(E1000_STATUS) & toggle);
1024         wr32(E1000_STATUS, toggle);
1025         after = rd32(E1000_STATUS) & toggle;
1026         if (value != after) {
1027                 dev_err(&adapter->pdev->dev, "failed STATUS register test "
1028                         "got: 0x%08X expected: 0x%08X\n", after, value);
1029                 *data = 1;
1030                 return 1;
1031         }
1032         /* restore previous status */
1033         wr32(E1000_STATUS, before);
1034
1035         /* Perform the remainder of the register test, looping through
1036          * the test table until we either fail or reach the null entry.
1037          */
1038         while (test->reg) {
1039                 for (i = 0; i < test->array_len; i++) {
1040                         switch (test->test_type) {
1041                         case PATTERN_TEST:
1042                                 REG_PATTERN_TEST(test->reg +
1043                                                 (i * test->reg_offset),
1044                                                 test->mask,
1045                                                 test->write);
1046                                 break;
1047                         case SET_READ_TEST:
1048                                 REG_SET_AND_CHECK(test->reg +
1049                                                 (i * test->reg_offset),
1050                                                 test->mask,
1051                                                 test->write);
1052                                 break;
1053                         case WRITE_NO_TEST:
1054                                 writel(test->write,
1055                                     (adapter->hw.hw_addr + test->reg)
1056                                         + (i * test->reg_offset));
1057                                 break;
1058                         case TABLE32_TEST:
1059                                 REG_PATTERN_TEST(test->reg + (i * 4),
1060                                                 test->mask,
1061                                                 test->write);
1062                                 break;
1063                         case TABLE64_TEST_LO:
1064                                 REG_PATTERN_TEST(test->reg + (i * 8),
1065                                                 test->mask,
1066                                                 test->write);
1067                                 break;
1068                         case TABLE64_TEST_HI:
1069                                 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1070                                                 test->mask,
1071                                                 test->write);
1072                                 break;
1073                         }
1074                 }
1075                 test++;
1076         }
1077
1078         *data = 0;
1079         return 0;
1080 }
1081
1082 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1083 {
1084         u16 temp;
1085         u16 checksum = 0;
1086         u16 i;
1087
1088         *data = 0;
1089         /* Read and add up the contents of the EEPROM */
1090         for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
1091                 if ((adapter->hw.nvm.ops.read(&adapter->hw, i, 1, &temp))
1092                     < 0) {
1093                         *data = 1;
1094                         break;
1095                 }
1096                 checksum += temp;
1097         }
1098
1099         /* If Checksum is not Correct return error else test passed */
1100         if ((checksum != (u16) NVM_SUM) && !(*data))
1101                 *data = 2;
1102
1103         return *data;
1104 }
1105
1106 static irqreturn_t igb_test_intr(int irq, void *data)
1107 {
1108         struct net_device *netdev = (struct net_device *) data;
1109         struct igb_adapter *adapter = netdev_priv(netdev);
1110         struct e1000_hw *hw = &adapter->hw;
1111
1112         adapter->test_icr |= rd32(E1000_ICR);
1113
1114         return IRQ_HANDLED;
1115 }
1116
1117 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1118 {
1119         struct e1000_hw *hw = &adapter->hw;
1120         struct net_device *netdev = adapter->netdev;
1121         u32 mask, ics_mask, i = 0, shared_int = true;
1122         u32 irq = adapter->pdev->irq;
1123
1124         *data = 0;
1125
1126         /* Hook up test interrupt handler just for this test */
1127         if (adapter->msix_entries)
1128                 /* NOTE: we don't test MSI-X interrupts here, yet */
1129                 return 0;
1130
1131         if (adapter->flags & IGB_FLAG_HAS_MSI) {
1132                 shared_int = false;
1133                 if (request_irq(irq, &igb_test_intr, 0, netdev->name, netdev)) {
1134                         *data = 1;
1135                         return -1;
1136                 }
1137         } else if (!request_irq(irq, &igb_test_intr, IRQF_PROBE_SHARED,
1138                                 netdev->name, netdev)) {
1139                 shared_int = false;
1140         } else if (request_irq(irq, &igb_test_intr, IRQF_SHARED,
1141                  netdev->name, netdev)) {
1142                 *data = 1;
1143                 return -1;
1144         }
1145         dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1146                 (shared_int ? "shared" : "unshared"));
1147         /* Disable all the interrupts */
1148         wr32(E1000_IMC, 0xFFFFFFFF);
1149         msleep(10);
1150
1151         /* Define all writable bits for ICS */
1152         switch(hw->mac.type) {
1153         case e1000_82575:
1154                 ics_mask = 0x37F47EDD;
1155                 break;
1156         case e1000_82576:
1157                 ics_mask = 0x77D4FBFD;
1158                 break;
1159         default:
1160                 ics_mask = 0x7FFFFFFF;
1161                 break;
1162         }
1163
1164         /* Test each interrupt */
1165         for (; i < 31; i++) {
1166                 /* Interrupt to test */
1167                 mask = 1 << i;
1168
1169                 if (!(mask & ics_mask))
1170                         continue;
1171
1172                 if (!shared_int) {
1173                         /* Disable the interrupt to be reported in
1174                          * the cause register and then force the same
1175                          * interrupt and see if one gets posted.  If
1176                          * an interrupt was posted to the bus, the
1177                          * test failed.
1178                          */
1179                         adapter->test_icr = 0;
1180
1181                         /* Flush any pending interrupts */
1182                         wr32(E1000_ICR, ~0);
1183
1184                         wr32(E1000_IMC, mask);
1185                         wr32(E1000_ICS, mask);
1186                         msleep(10);
1187
1188                         if (adapter->test_icr & mask) {
1189                                 *data = 3;
1190                                 break;
1191                         }
1192                 }
1193
1194                 /* Enable the interrupt to be reported in
1195                  * the cause register and then force the same
1196                  * interrupt and see if one gets posted.  If
1197                  * an interrupt was not posted to the bus, the
1198                  * test failed.
1199                  */
1200                 adapter->test_icr = 0;
1201
1202                 /* Flush any pending interrupts */
1203                 wr32(E1000_ICR, ~0);
1204
1205                 wr32(E1000_IMS, mask);
1206                 wr32(E1000_ICS, mask);
1207                 msleep(10);
1208
1209                 if (!(adapter->test_icr & mask)) {
1210                         *data = 4;
1211                         break;
1212                 }
1213
1214                 if (!shared_int) {
1215                         /* Disable the other interrupts to be reported in
1216                          * the cause register and then force the other
1217                          * interrupts and see if any get posted.  If
1218                          * an interrupt was posted to the bus, the
1219                          * test failed.
1220                          */
1221                         adapter->test_icr = 0;
1222
1223                         /* Flush any pending interrupts */
1224                         wr32(E1000_ICR, ~0);
1225
1226                         wr32(E1000_IMC, ~mask);
1227                         wr32(E1000_ICS, ~mask);
1228                         msleep(10);
1229
1230                         if (adapter->test_icr & mask) {
1231                                 *data = 5;
1232                                 break;
1233                         }
1234                 }
1235         }
1236
1237         /* Disable all the interrupts */
1238         wr32(E1000_IMC, ~0);
1239         msleep(10);
1240
1241         /* Unhook test interrupt handler */
1242         free_irq(irq, netdev);
1243
1244         return *data;
1245 }
1246
1247 static void igb_free_desc_rings(struct igb_adapter *adapter)
1248 {
1249         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1250         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1251         struct pci_dev *pdev = adapter->pdev;
1252         int i;
1253
1254         if (tx_ring->desc && tx_ring->buffer_info) {
1255                 for (i = 0; i < tx_ring->count; i++) {
1256                         struct igb_buffer *buf = &(tx_ring->buffer_info[i]);
1257                         if (buf->dma)
1258                                 pci_unmap_single(pdev, buf->dma, buf->length,
1259                                                  PCI_DMA_TODEVICE);
1260                         if (buf->skb)
1261                                 dev_kfree_skb(buf->skb);
1262                 }
1263         }
1264
1265         if (rx_ring->desc && rx_ring->buffer_info) {
1266                 for (i = 0; i < rx_ring->count; i++) {
1267                         struct igb_buffer *buf = &(rx_ring->buffer_info[i]);
1268                         if (buf->dma)
1269                                 pci_unmap_single(pdev, buf->dma,
1270                                                  IGB_RXBUFFER_2048,
1271                                                  PCI_DMA_FROMDEVICE);
1272                         if (buf->skb)
1273                                 dev_kfree_skb(buf->skb);
1274                 }
1275         }
1276
1277         if (tx_ring->desc) {
1278                 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc,
1279                                     tx_ring->dma);
1280                 tx_ring->desc = NULL;
1281         }
1282         if (rx_ring->desc) {
1283                 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc,
1284                                     rx_ring->dma);
1285                 rx_ring->desc = NULL;
1286         }
1287
1288         kfree(tx_ring->buffer_info);
1289         tx_ring->buffer_info = NULL;
1290         kfree(rx_ring->buffer_info);
1291         rx_ring->buffer_info = NULL;
1292
1293         return;
1294 }
1295
1296 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1297 {
1298         struct e1000_hw *hw = &adapter->hw;
1299         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1300         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1301         struct pci_dev *pdev = adapter->pdev;
1302         struct igb_buffer *buffer_info;
1303         u32 rctl;
1304         int i, ret_val;
1305
1306         /* Setup Tx descriptor ring and Tx buffers */
1307
1308         if (!tx_ring->count)
1309                 tx_ring->count = IGB_DEFAULT_TXD;
1310
1311         tx_ring->buffer_info = kcalloc(tx_ring->count,
1312                                        sizeof(struct igb_buffer),
1313                                        GFP_KERNEL);
1314         if (!tx_ring->buffer_info) {
1315                 ret_val = 1;
1316                 goto err_nomem;
1317         }
1318
1319         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
1320         tx_ring->size = ALIGN(tx_ring->size, 4096);
1321         tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1322                                              &tx_ring->dma);
1323         if (!tx_ring->desc) {
1324                 ret_val = 2;
1325                 goto err_nomem;
1326         }
1327         tx_ring->next_to_use = tx_ring->next_to_clean = 0;
1328
1329         wr32(E1000_TDBAL(0),
1330                         ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1331         wr32(E1000_TDBAH(0), ((u64) tx_ring->dma >> 32));
1332         wr32(E1000_TDLEN(0),
1333                         tx_ring->count * sizeof(union e1000_adv_tx_desc));
1334         wr32(E1000_TDH(0), 0);
1335         wr32(E1000_TDT(0), 0);
1336         wr32(E1000_TCTL,
1337                         E1000_TCTL_PSP | E1000_TCTL_EN |
1338                         E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1339                         E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1340
1341         for (i = 0; i < tx_ring->count; i++) {
1342                 union e1000_adv_tx_desc *tx_desc;
1343                 struct sk_buff *skb;
1344                 unsigned int size = 1024;
1345
1346                 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
1347                 skb = alloc_skb(size, GFP_KERNEL);
1348                 if (!skb) {
1349                         ret_val = 3;
1350                         goto err_nomem;
1351                 }
1352                 skb_put(skb, size);
1353                 buffer_info = &tx_ring->buffer_info[i];
1354                 buffer_info->skb = skb;
1355                 buffer_info->length = skb->len;
1356                 buffer_info->dma = pci_map_single(pdev, skb->data, skb->len,
1357                                                   PCI_DMA_TODEVICE);
1358                 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
1359                 tx_desc->read.olinfo_status = cpu_to_le32(skb->len) <<
1360                                               E1000_ADVTXD_PAYLEN_SHIFT;
1361                 tx_desc->read.cmd_type_len = cpu_to_le32(skb->len);
1362                 tx_desc->read.cmd_type_len |= cpu_to_le32(E1000_TXD_CMD_EOP |
1363                                                           E1000_TXD_CMD_IFCS |
1364                                                           E1000_TXD_CMD_RS |
1365                                                           E1000_ADVTXD_DTYP_DATA |
1366                                                           E1000_ADVTXD_DCMD_DEXT);
1367         }
1368
1369         /* Setup Rx descriptor ring and Rx buffers */
1370
1371         if (!rx_ring->count)
1372                 rx_ring->count = IGB_DEFAULT_RXD;
1373
1374         rx_ring->buffer_info = kcalloc(rx_ring->count,
1375                                        sizeof(struct igb_buffer),
1376                                        GFP_KERNEL);
1377         if (!rx_ring->buffer_info) {
1378                 ret_val = 4;
1379                 goto err_nomem;
1380         }
1381
1382         rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1383         rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1384                                              &rx_ring->dma);
1385         if (!rx_ring->desc) {
1386                 ret_val = 5;
1387                 goto err_nomem;
1388         }
1389         rx_ring->next_to_use = rx_ring->next_to_clean = 0;
1390
1391         rctl = rd32(E1000_RCTL);
1392         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1393         wr32(E1000_RDBAL(0),
1394                         ((u64) rx_ring->dma & 0xFFFFFFFF));
1395         wr32(E1000_RDBAH(0),
1396                         ((u64) rx_ring->dma >> 32));
1397         wr32(E1000_RDLEN(0), rx_ring->size);
1398         wr32(E1000_RDH(0), 0);
1399         wr32(E1000_RDT(0), 0);
1400         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1401         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
1402                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1403         wr32(E1000_RCTL, rctl);
1404         wr32(E1000_SRRCTL(0), E1000_SRRCTL_DESCTYPE_ADV_ONEBUF);
1405
1406         for (i = 0; i < rx_ring->count; i++) {
1407                 union e1000_adv_rx_desc *rx_desc;
1408                 struct sk_buff *skb;
1409
1410                 buffer_info = &rx_ring->buffer_info[i];
1411                 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
1412                 skb = alloc_skb(IGB_RXBUFFER_2048 + NET_IP_ALIGN,
1413                                 GFP_KERNEL);
1414                 if (!skb) {
1415                         ret_val = 6;
1416                         goto err_nomem;
1417                 }
1418                 skb_reserve(skb, NET_IP_ALIGN);
1419                 buffer_info->skb = skb;
1420                 buffer_info->dma = pci_map_single(pdev, skb->data,
1421                                                   IGB_RXBUFFER_2048,
1422                                                   PCI_DMA_FROMDEVICE);
1423                 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
1424                 memset(skb->data, 0x00, skb->len);
1425         }
1426
1427         return 0;
1428
1429 err_nomem:
1430         igb_free_desc_rings(adapter);
1431         return ret_val;
1432 }
1433
1434 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1435 {
1436         struct e1000_hw *hw = &adapter->hw;
1437
1438         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1439         igb_write_phy_reg(hw, 29, 0x001F);
1440         igb_write_phy_reg(hw, 30, 0x8FFC);
1441         igb_write_phy_reg(hw, 29, 0x001A);
1442         igb_write_phy_reg(hw, 30, 0x8FF0);
1443 }
1444
1445 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1446 {
1447         struct e1000_hw *hw = &adapter->hw;
1448         u32 ctrl_reg = 0;
1449
1450         hw->mac.autoneg = false;
1451
1452         if (hw->phy.type == e1000_phy_m88) {
1453                 /* Auto-MDI/MDIX Off */
1454                 igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1455                 /* reset to update Auto-MDI/MDIX */
1456                 igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1457                 /* autoneg off */
1458                 igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1459         }
1460
1461         ctrl_reg = rd32(E1000_CTRL);
1462
1463         /* force 1000, set loopback */
1464         igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1465
1466         /* Now set up the MAC to the same speed/duplex as the PHY. */
1467         ctrl_reg = rd32(E1000_CTRL);
1468         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1469         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1470                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1471                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1472                      E1000_CTRL_FD |     /* Force Duplex to FULL */
1473                      E1000_CTRL_SLU);    /* Set link up enable bit */
1474
1475         if (hw->phy.type == e1000_phy_m88)
1476                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1477
1478         wr32(E1000_CTRL, ctrl_reg);
1479
1480         /* Disable the receiver on the PHY so when a cable is plugged in, the
1481          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1482          */
1483         if (hw->phy.type == e1000_phy_m88)
1484                 igb_phy_disable_receiver(adapter);
1485
1486         udelay(500);
1487
1488         return 0;
1489 }
1490
1491 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1492 {
1493         return igb_integrated_phy_loopback(adapter);
1494 }
1495
1496 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1497 {
1498         struct e1000_hw *hw = &adapter->hw;
1499         u32 reg;
1500
1501         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1502                 reg = rd32(E1000_RCTL);
1503                 reg |= E1000_RCTL_LBM_TCVR;
1504                 wr32(E1000_RCTL, reg);
1505
1506                 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1507
1508                 reg = rd32(E1000_CTRL);
1509                 reg &= ~(E1000_CTRL_RFCE |
1510                          E1000_CTRL_TFCE |
1511                          E1000_CTRL_LRST);
1512                 reg |= E1000_CTRL_SLU |
1513                        E1000_CTRL_FD;
1514                 wr32(E1000_CTRL, reg);
1515
1516                 /* Unset switch control to serdes energy detect */
1517                 reg = rd32(E1000_CONNSW);
1518                 reg &= ~E1000_CONNSW_ENRGSRC;
1519                 wr32(E1000_CONNSW, reg);
1520
1521                 /* Set PCS register for forced speed */
1522                 reg = rd32(E1000_PCS_LCTL);
1523                 reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1524                 reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1525                        E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1526                        E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1527                        E1000_PCS_LCTL_FSD |           /* Force Speed */
1528                        E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1529                 wr32(E1000_PCS_LCTL, reg);
1530
1531                 return 0;
1532         } else if (hw->phy.media_type == e1000_media_type_copper) {
1533                 return igb_set_phy_loopback(adapter);
1534         }
1535
1536         return 7;
1537 }
1538
1539 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1540 {
1541         struct e1000_hw *hw = &adapter->hw;
1542         u32 rctl;
1543         u16 phy_reg;
1544
1545         rctl = rd32(E1000_RCTL);
1546         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1547         wr32(E1000_RCTL, rctl);
1548
1549         hw->mac.autoneg = true;
1550         igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1551         if (phy_reg & MII_CR_LOOPBACK) {
1552                 phy_reg &= ~MII_CR_LOOPBACK;
1553                 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1554                 igb_phy_sw_reset(hw);
1555         }
1556 }
1557
1558 static void igb_create_lbtest_frame(struct sk_buff *skb,
1559                                     unsigned int frame_size)
1560 {
1561         memset(skb->data, 0xFF, frame_size);
1562         frame_size &= ~1;
1563         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1564         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1565         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1566 }
1567
1568 static int igb_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1569 {
1570         frame_size &= ~1;
1571         if (*(skb->data + 3) == 0xFF)
1572                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1573                    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1574                         return 0;
1575         return 13;
1576 }
1577
1578 static int igb_run_loopback_test(struct igb_adapter *adapter)
1579 {
1580         struct e1000_hw *hw = &adapter->hw;
1581         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1582         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1583         struct pci_dev *pdev = adapter->pdev;
1584         int i, j, k, l, lc, good_cnt;
1585         int ret_val = 0;
1586         unsigned long time;
1587
1588         wr32(E1000_RDT(0), rx_ring->count - 1);
1589
1590         /* Calculate the loop count based on the largest descriptor ring
1591          * The idea is to wrap the largest ring a number of times using 64
1592          * send/receive pairs during each loop
1593          */
1594
1595         if (rx_ring->count <= tx_ring->count)
1596                 lc = ((tx_ring->count / 64) * 2) + 1;
1597         else
1598                 lc = ((rx_ring->count / 64) * 2) + 1;
1599
1600         k = l = 0;
1601         for (j = 0; j <= lc; j++) { /* loop count loop */
1602                 for (i = 0; i < 64; i++) { /* send the packets */
1603                         igb_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1604                                                 1024);
1605                         pci_dma_sync_single_for_device(pdev,
1606                                 tx_ring->buffer_info[k].dma,
1607                                 tx_ring->buffer_info[k].length,
1608                                 PCI_DMA_TODEVICE);
1609                         k++;
1610                         if (k == tx_ring->count)
1611                                 k = 0;
1612                 }
1613                 wr32(E1000_TDT(0), k);
1614                 msleep(200);
1615                 time = jiffies; /* set the start time for the receive */
1616                 good_cnt = 0;
1617                 do { /* receive the sent packets */
1618                         pci_dma_sync_single_for_cpu(pdev,
1619                                         rx_ring->buffer_info[l].dma,
1620                                         IGB_RXBUFFER_2048,
1621                                         PCI_DMA_FROMDEVICE);
1622
1623                         ret_val = igb_check_lbtest_frame(
1624                                              rx_ring->buffer_info[l].skb, 1024);
1625                         if (!ret_val)
1626                                 good_cnt++;
1627                         l++;
1628                         if (l == rx_ring->count)
1629                                 l = 0;
1630                         /* time + 20 msecs (200 msecs on 2.4) is more than
1631                          * enough time to complete the receives, if it's
1632                          * exceeded, break and error off
1633                          */
1634                 } while (good_cnt < 64 && jiffies < (time + 20));
1635                 if (good_cnt != 64) {
1636                         ret_val = 13; /* ret_val is the same as mis-compare */
1637                         break;
1638                 }
1639                 if (jiffies >= (time + 20)) {
1640                         ret_val = 14; /* error code for time out error */
1641                         break;
1642                 }
1643         } /* end loop count loop */
1644         return ret_val;
1645 }
1646
1647 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1648 {
1649         /* PHY loopback cannot be performed if SoL/IDER
1650          * sessions are active */
1651         if (igb_check_reset_block(&adapter->hw)) {
1652                 dev_err(&adapter->pdev->dev,
1653                         "Cannot do PHY loopback test "
1654                         "when SoL/IDER is active.\n");
1655                 *data = 0;
1656                 goto out;
1657         }
1658         *data = igb_setup_desc_rings(adapter);
1659         if (*data)
1660                 goto out;
1661         *data = igb_setup_loopback_test(adapter);
1662         if (*data)
1663                 goto err_loopback;
1664         *data = igb_run_loopback_test(adapter);
1665         igb_loopback_cleanup(adapter);
1666
1667 err_loopback:
1668         igb_free_desc_rings(adapter);
1669 out:
1670         return *data;
1671 }
1672
1673 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1674 {
1675         struct e1000_hw *hw = &adapter->hw;
1676         *data = 0;
1677         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1678                 int i = 0;
1679                 hw->mac.serdes_has_link = false;
1680
1681                 /* On some blade server designs, link establishment
1682                  * could take as long as 2-3 minutes */
1683                 do {
1684                         hw->mac.ops.check_for_link(&adapter->hw);
1685                         if (hw->mac.serdes_has_link)
1686                                 return *data;
1687                         msleep(20);
1688                 } while (i++ < 3750);
1689
1690                 *data = 1;
1691         } else {
1692                 hw->mac.ops.check_for_link(&adapter->hw);
1693                 if (hw->mac.autoneg)
1694                         msleep(4000);
1695
1696                 if (!(rd32(E1000_STATUS) &
1697                       E1000_STATUS_LU))
1698                         *data = 1;
1699         }
1700         return *data;
1701 }
1702
1703 static void igb_diag_test(struct net_device *netdev,
1704                           struct ethtool_test *eth_test, u64 *data)
1705 {
1706         struct igb_adapter *adapter = netdev_priv(netdev);
1707         u16 autoneg_advertised;
1708         u8 forced_speed_duplex, autoneg;
1709         bool if_running = netif_running(netdev);
1710
1711         set_bit(__IGB_TESTING, &adapter->state);
1712         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1713                 /* Offline tests */
1714
1715                 /* save speed, duplex, autoneg settings */
1716                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1717                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1718                 autoneg = adapter->hw.mac.autoneg;
1719
1720                 dev_info(&adapter->pdev->dev, "offline testing starting\n");
1721
1722                 /* Link test performed before hardware reset so autoneg doesn't
1723                  * interfere with test result */
1724                 if (igb_link_test(adapter, &data[4]))
1725                         eth_test->flags |= ETH_TEST_FL_FAILED;
1726
1727                 if (if_running)
1728                         /* indicate we're in test mode */
1729                         dev_close(netdev);
1730                 else
1731                         igb_reset(adapter);
1732
1733                 if (igb_reg_test(adapter, &data[0]))
1734                         eth_test->flags |= ETH_TEST_FL_FAILED;
1735
1736                 igb_reset(adapter);
1737                 if (igb_eeprom_test(adapter, &data[1]))
1738                         eth_test->flags |= ETH_TEST_FL_FAILED;
1739
1740                 igb_reset(adapter);
1741                 if (igb_intr_test(adapter, &data[2]))
1742                         eth_test->flags |= ETH_TEST_FL_FAILED;
1743
1744                 igb_reset(adapter);
1745                 if (igb_loopback_test(adapter, &data[3]))
1746                         eth_test->flags |= ETH_TEST_FL_FAILED;
1747
1748                 /* restore speed, duplex, autoneg settings */
1749                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1750                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1751                 adapter->hw.mac.autoneg = autoneg;
1752
1753                 /* force this routine to wait until autoneg complete/timeout */
1754                 adapter->hw.phy.autoneg_wait_to_complete = true;
1755                 igb_reset(adapter);
1756                 adapter->hw.phy.autoneg_wait_to_complete = false;
1757
1758                 clear_bit(__IGB_TESTING, &adapter->state);
1759                 if (if_running)
1760                         dev_open(netdev);
1761         } else {
1762                 dev_info(&adapter->pdev->dev, "online testing starting\n");
1763                 /* Online tests */
1764                 if (igb_link_test(adapter, &data[4]))
1765                         eth_test->flags |= ETH_TEST_FL_FAILED;
1766
1767                 /* Online tests aren't run; pass by default */
1768                 data[0] = 0;
1769                 data[1] = 0;
1770                 data[2] = 0;
1771                 data[3] = 0;
1772
1773                 clear_bit(__IGB_TESTING, &adapter->state);
1774         }
1775         msleep_interruptible(4 * 1000);
1776 }
1777
1778 static int igb_wol_exclusion(struct igb_adapter *adapter,
1779                              struct ethtool_wolinfo *wol)
1780 {
1781         struct e1000_hw *hw = &adapter->hw;
1782         int retval = 1; /* fail by default */
1783
1784         switch (hw->device_id) {
1785         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1786                 /* WoL not supported */
1787                 wol->supported = 0;
1788                 break;
1789         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1790         case E1000_DEV_ID_82576_FIBER:
1791         case E1000_DEV_ID_82576_SERDES:
1792                 /* Wake events not supported on port B */
1793                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) {
1794                         wol->supported = 0;
1795                         break;
1796                 }
1797                 /* return success for non excluded adapter ports */
1798                 retval = 0;
1799                 break;
1800         case E1000_DEV_ID_82576_QUAD_COPPER:
1801                 /* quad port adapters only support WoL on port A */
1802                 if (!(adapter->flags & IGB_FLAG_QUAD_PORT_A)) {
1803                         wol->supported = 0;
1804                         break;
1805                 }
1806                 /* return success for non excluded adapter ports */
1807                 retval = 0;
1808                 break;
1809         default:
1810                 /* dual port cards only support WoL on port A from now on
1811                  * unless it was enabled in the eeprom for port B
1812                  * so exclude FUNC_1 ports from having WoL enabled */
1813                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1 &&
1814                     !adapter->eeprom_wol) {
1815                         wol->supported = 0;
1816                         break;
1817                 }
1818
1819                 retval = 0;
1820         }
1821
1822         return retval;
1823 }
1824
1825 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1826 {
1827         struct igb_adapter *adapter = netdev_priv(netdev);
1828
1829         wol->supported = WAKE_UCAST | WAKE_MCAST |
1830                          WAKE_BCAST | WAKE_MAGIC;
1831         wol->wolopts = 0;
1832
1833         /* this function will set ->supported = 0 and return 1 if wol is not
1834          * supported by this hardware */
1835         if (igb_wol_exclusion(adapter, wol) ||
1836             !device_can_wakeup(&adapter->pdev->dev))
1837                 return;
1838
1839         /* apply any specific unsupported masks here */
1840         switch (adapter->hw.device_id) {
1841         default:
1842                 break;
1843         }
1844
1845         if (adapter->wol & E1000_WUFC_EX)
1846                 wol->wolopts |= WAKE_UCAST;
1847         if (adapter->wol & E1000_WUFC_MC)
1848                 wol->wolopts |= WAKE_MCAST;
1849         if (adapter->wol & E1000_WUFC_BC)
1850                 wol->wolopts |= WAKE_BCAST;
1851         if (adapter->wol & E1000_WUFC_MAG)
1852                 wol->wolopts |= WAKE_MAGIC;
1853
1854         return;
1855 }
1856
1857 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1858 {
1859         struct igb_adapter *adapter = netdev_priv(netdev);
1860
1861         if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1862                 return -EOPNOTSUPP;
1863
1864         if (igb_wol_exclusion(adapter, wol) ||
1865             !device_can_wakeup(&adapter->pdev->dev))
1866                 return wol->wolopts ? -EOPNOTSUPP : 0;
1867
1868         /* these settings will always override what we currently have */
1869         adapter->wol = 0;
1870
1871         if (wol->wolopts & WAKE_UCAST)
1872                 adapter->wol |= E1000_WUFC_EX;
1873         if (wol->wolopts & WAKE_MCAST)
1874                 adapter->wol |= E1000_WUFC_MC;
1875         if (wol->wolopts & WAKE_BCAST)
1876                 adapter->wol |= E1000_WUFC_BC;
1877         if (wol->wolopts & WAKE_MAGIC)
1878                 adapter->wol |= E1000_WUFC_MAG;
1879
1880         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1881
1882         return 0;
1883 }
1884
1885 /* bit defines for adapter->led_status */
1886 #define IGB_LED_ON              0
1887
1888 static int igb_phys_id(struct net_device *netdev, u32 data)
1889 {
1890         struct igb_adapter *adapter = netdev_priv(netdev);
1891         struct e1000_hw *hw = &adapter->hw;
1892
1893         if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
1894                 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
1895
1896         igb_blink_led(hw);
1897         msleep_interruptible(data * 1000);
1898
1899         igb_led_off(hw);
1900         clear_bit(IGB_LED_ON, &adapter->led_status);
1901         igb_cleanup_led(hw);
1902
1903         return 0;
1904 }
1905
1906 static int igb_set_coalesce(struct net_device *netdev,
1907                             struct ethtool_coalesce *ec)
1908 {
1909         struct igb_adapter *adapter = netdev_priv(netdev);
1910         int i;
1911
1912         if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
1913             ((ec->rx_coalesce_usecs > 3) &&
1914              (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
1915             (ec->rx_coalesce_usecs == 2))
1916                 return -EINVAL;
1917
1918         /* convert to rate of irq's per second */
1919         if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3) {
1920                 adapter->itr_setting = ec->rx_coalesce_usecs;
1921                 adapter->itr = IGB_START_ITR;
1922         } else {
1923                 adapter->itr_setting = ec->rx_coalesce_usecs << 2;
1924                 adapter->itr = adapter->itr_setting;
1925         }
1926
1927         for (i = 0; i < adapter->num_q_vectors; i++) {
1928                 struct igb_q_vector *q_vector = adapter->q_vector[i];
1929                 q_vector->itr_val = adapter->itr;
1930                 q_vector->set_itr = 1;
1931         }
1932
1933         return 0;
1934 }
1935
1936 static int igb_get_coalesce(struct net_device *netdev,
1937                             struct ethtool_coalesce *ec)
1938 {
1939         struct igb_adapter *adapter = netdev_priv(netdev);
1940
1941         if (adapter->itr_setting <= 3)
1942                 ec->rx_coalesce_usecs = adapter->itr_setting;
1943         else
1944                 ec->rx_coalesce_usecs = adapter->itr_setting >> 2;
1945
1946         return 0;
1947 }
1948
1949
1950 static int igb_nway_reset(struct net_device *netdev)
1951 {
1952         struct igb_adapter *adapter = netdev_priv(netdev);
1953         if (netif_running(netdev))
1954                 igb_reinit_locked(adapter);
1955         return 0;
1956 }
1957
1958 static int igb_get_sset_count(struct net_device *netdev, int sset)
1959 {
1960         switch (sset) {
1961         case ETH_SS_STATS:
1962                 return IGB_STATS_LEN;
1963         case ETH_SS_TEST:
1964                 return IGB_TEST_LEN;
1965         default:
1966                 return -ENOTSUPP;
1967         }
1968 }
1969
1970 static void igb_get_ethtool_stats(struct net_device *netdev,
1971                                   struct ethtool_stats *stats, u64 *data)
1972 {
1973         struct igb_adapter *adapter = netdev_priv(netdev);
1974         u64 *queue_stat;
1975         int stat_count_tx = sizeof(struct igb_tx_queue_stats) / sizeof(u64);
1976         int stat_count_rx = sizeof(struct igb_rx_queue_stats) / sizeof(u64);
1977         int j;
1978         int i;
1979         char *p = NULL;
1980
1981         igb_update_stats(adapter);
1982         for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
1983                 switch (igb_gstrings_stats[i].type) {
1984                 case NETDEV_STATS:
1985                         p = (char *) netdev +
1986                                         igb_gstrings_stats[i].stat_offset;
1987                         break;
1988                 case IGB_STATS:
1989                         p = (char *) adapter +
1990                                         igb_gstrings_stats[i].stat_offset;
1991                         break;
1992                 }
1993
1994                 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
1995                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1996         }
1997         for (j = 0; j < adapter->num_tx_queues; j++) {
1998                 int k;
1999                 queue_stat = (u64 *)&adapter->tx_ring[j].tx_stats;
2000                 for (k = 0; k < stat_count_tx; k++)
2001                         data[i + k] = queue_stat[k];
2002                 i += k;
2003         }
2004         for (j = 0; j < adapter->num_rx_queues; j++) {
2005                 int k;
2006                 queue_stat = (u64 *)&adapter->rx_ring[j].rx_stats;
2007                 for (k = 0; k < stat_count_rx; k++)
2008                         data[i + k] = queue_stat[k];
2009                 i += k;
2010         }
2011 }
2012
2013 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2014 {
2015         struct igb_adapter *adapter = netdev_priv(netdev);
2016         u8 *p = data;
2017         int i;
2018
2019         switch (stringset) {
2020         case ETH_SS_TEST:
2021                 memcpy(data, *igb_gstrings_test,
2022                         IGB_TEST_LEN*ETH_GSTRING_LEN);
2023                 break;
2024         case ETH_SS_STATS:
2025                 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2026                         memcpy(p, igb_gstrings_stats[i].stat_string,
2027                                ETH_GSTRING_LEN);
2028                         p += ETH_GSTRING_LEN;
2029                 }
2030                 for (i = 0; i < adapter->num_tx_queues; i++) {
2031                         sprintf(p, "tx_queue_%u_packets", i);
2032                         p += ETH_GSTRING_LEN;
2033                         sprintf(p, "tx_queue_%u_bytes", i);
2034                         p += ETH_GSTRING_LEN;
2035                 }
2036                 for (i = 0; i < adapter->num_rx_queues; i++) {
2037                         sprintf(p, "rx_queue_%u_packets", i);
2038                         p += ETH_GSTRING_LEN;
2039                         sprintf(p, "rx_queue_%u_bytes", i);
2040                         p += ETH_GSTRING_LEN;
2041                         sprintf(p, "rx_queue_%u_drops", i);
2042                         p += ETH_GSTRING_LEN;
2043                 }
2044 /*              BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2045                 break;
2046         }
2047 }
2048
2049 static const struct ethtool_ops igb_ethtool_ops = {
2050         .get_settings           = igb_get_settings,
2051         .set_settings           = igb_set_settings,
2052         .get_drvinfo            = igb_get_drvinfo,
2053         .get_regs_len           = igb_get_regs_len,
2054         .get_regs               = igb_get_regs,
2055         .get_wol                = igb_get_wol,
2056         .set_wol                = igb_set_wol,
2057         .get_msglevel           = igb_get_msglevel,
2058         .set_msglevel           = igb_set_msglevel,
2059         .nway_reset             = igb_nway_reset,
2060         .get_link               = ethtool_op_get_link,
2061         .get_eeprom_len         = igb_get_eeprom_len,
2062         .get_eeprom             = igb_get_eeprom,
2063         .set_eeprom             = igb_set_eeprom,
2064         .get_ringparam          = igb_get_ringparam,
2065         .set_ringparam          = igb_set_ringparam,
2066         .get_pauseparam         = igb_get_pauseparam,
2067         .set_pauseparam         = igb_set_pauseparam,
2068         .get_rx_csum            = igb_get_rx_csum,
2069         .set_rx_csum            = igb_set_rx_csum,
2070         .get_tx_csum            = igb_get_tx_csum,
2071         .set_tx_csum            = igb_set_tx_csum,
2072         .get_sg                 = ethtool_op_get_sg,
2073         .set_sg                 = ethtool_op_set_sg,
2074         .get_tso                = ethtool_op_get_tso,
2075         .set_tso                = igb_set_tso,
2076         .self_test              = igb_diag_test,
2077         .get_strings            = igb_get_strings,
2078         .phys_id                = igb_phys_id,
2079         .get_sset_count         = igb_get_sset_count,
2080         .get_ethtool_stats      = igb_get_ethtool_stats,
2081         .get_coalesce           = igb_get_coalesce,
2082         .set_coalesce           = igb_set_coalesce,
2083 };
2084
2085 void igb_set_ethtool_ops(struct net_device *netdev)
2086 {
2087         SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2088 }