Merge tag 'for-linus-5.12b-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-block.git] / drivers / net / hyperv / netvsc_drv.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * Authors:
6  *   Haiyang Zhang <haiyangz@microsoft.com>
7  *   Hank Janssen  <hjanssen@microsoft.com>
8  */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/init.h>
12 #include <linux/atomic.h>
13 #include <linux/ethtool.h>
14 #include <linux/module.h>
15 #include <linux/highmem.h>
16 #include <linux/device.h>
17 #include <linux/io.h>
18 #include <linux/delay.h>
19 #include <linux/netdevice.h>
20 #include <linux/inetdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/pci.h>
23 #include <linux/skbuff.h>
24 #include <linux/if_vlan.h>
25 #include <linux/in.h>
26 #include <linux/slab.h>
27 #include <linux/rtnetlink.h>
28 #include <linux/netpoll.h>
29 #include <linux/bpf.h>
30
31 #include <net/arp.h>
32 #include <net/route.h>
33 #include <net/sock.h>
34 #include <net/pkt_sched.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37
38 #include "hyperv_net.h"
39
40 #define RING_SIZE_MIN   64
41 #define RETRY_US_LO     5000
42 #define RETRY_US_HI     10000
43 #define RETRY_MAX       2000    /* >10 sec */
44
45 #define LINKCHANGE_INT (2 * HZ)
46 #define VF_TAKEOVER_INT (HZ / 10)
47
48 static unsigned int ring_size __ro_after_init = 128;
49 module_param(ring_size, uint, 0444);
50 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
51 unsigned int netvsc_ring_bytes __ro_after_init;
52
53 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
54                                 NETIF_MSG_LINK | NETIF_MSG_IFUP |
55                                 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
56                                 NETIF_MSG_TX_ERR;
57
58 static int debug = -1;
59 module_param(debug, int, 0444);
60 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
61
62 static LIST_HEAD(netvsc_dev_list);
63
64 static void netvsc_change_rx_flags(struct net_device *net, int change)
65 {
66         struct net_device_context *ndev_ctx = netdev_priv(net);
67         struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
68         int inc;
69
70         if (!vf_netdev)
71                 return;
72
73         if (change & IFF_PROMISC) {
74                 inc = (net->flags & IFF_PROMISC) ? 1 : -1;
75                 dev_set_promiscuity(vf_netdev, inc);
76         }
77
78         if (change & IFF_ALLMULTI) {
79                 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
80                 dev_set_allmulti(vf_netdev, inc);
81         }
82 }
83
84 static void netvsc_set_rx_mode(struct net_device *net)
85 {
86         struct net_device_context *ndev_ctx = netdev_priv(net);
87         struct net_device *vf_netdev;
88         struct netvsc_device *nvdev;
89
90         rcu_read_lock();
91         vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
92         if (vf_netdev) {
93                 dev_uc_sync(vf_netdev, net);
94                 dev_mc_sync(vf_netdev, net);
95         }
96
97         nvdev = rcu_dereference(ndev_ctx->nvdev);
98         if (nvdev)
99                 rndis_filter_update(nvdev);
100         rcu_read_unlock();
101 }
102
103 static void netvsc_tx_enable(struct netvsc_device *nvscdev,
104                              struct net_device *ndev)
105 {
106         nvscdev->tx_disable = false;
107         virt_wmb(); /* ensure queue wake up mechanism is on */
108
109         netif_tx_wake_all_queues(ndev);
110 }
111
112 static int netvsc_open(struct net_device *net)
113 {
114         struct net_device_context *ndev_ctx = netdev_priv(net);
115         struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
116         struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
117         struct rndis_device *rdev;
118         int ret = 0;
119
120         netif_carrier_off(net);
121
122         /* Open up the device */
123         ret = rndis_filter_open(nvdev);
124         if (ret != 0) {
125                 netdev_err(net, "unable to open device (ret %d).\n", ret);
126                 return ret;
127         }
128
129         rdev = nvdev->extension;
130         if (!rdev->link_state) {
131                 netif_carrier_on(net);
132                 netvsc_tx_enable(nvdev, net);
133         }
134
135         if (vf_netdev) {
136                 /* Setting synthetic device up transparently sets
137                  * slave as up. If open fails, then slave will be
138                  * still be offline (and not used).
139                  */
140                 ret = dev_open(vf_netdev, NULL);
141                 if (ret)
142                         netdev_warn(net,
143                                     "unable to open slave: %s: %d\n",
144                                     vf_netdev->name, ret);
145         }
146         return 0;
147 }
148
149 static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
150 {
151         unsigned int retry = 0;
152         int i;
153
154         /* Ensure pending bytes in ring are read */
155         for (;;) {
156                 u32 aread = 0;
157
158                 for (i = 0; i < nvdev->num_chn; i++) {
159                         struct vmbus_channel *chn
160                                 = nvdev->chan_table[i].channel;
161
162                         if (!chn)
163                                 continue;
164
165                         /* make sure receive not running now */
166                         napi_synchronize(&nvdev->chan_table[i].napi);
167
168                         aread = hv_get_bytes_to_read(&chn->inbound);
169                         if (aread)
170                                 break;
171
172                         aread = hv_get_bytes_to_read(&chn->outbound);
173                         if (aread)
174                                 break;
175                 }
176
177                 if (aread == 0)
178                         return 0;
179
180                 if (++retry > RETRY_MAX)
181                         return -ETIMEDOUT;
182
183                 usleep_range(RETRY_US_LO, RETRY_US_HI);
184         }
185 }
186
187 static void netvsc_tx_disable(struct netvsc_device *nvscdev,
188                               struct net_device *ndev)
189 {
190         if (nvscdev) {
191                 nvscdev->tx_disable = true;
192                 virt_wmb(); /* ensure txq will not wake up after stop */
193         }
194
195         netif_tx_disable(ndev);
196 }
197
198 static int netvsc_close(struct net_device *net)
199 {
200         struct net_device_context *net_device_ctx = netdev_priv(net);
201         struct net_device *vf_netdev
202                 = rtnl_dereference(net_device_ctx->vf_netdev);
203         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
204         int ret;
205
206         netvsc_tx_disable(nvdev, net);
207
208         /* No need to close rndis filter if it is removed already */
209         if (!nvdev)
210                 return 0;
211
212         ret = rndis_filter_close(nvdev);
213         if (ret != 0) {
214                 netdev_err(net, "unable to close device (ret %d).\n", ret);
215                 return ret;
216         }
217
218         ret = netvsc_wait_until_empty(nvdev);
219         if (ret)
220                 netdev_err(net, "Ring buffer not empty after closing rndis\n");
221
222         if (vf_netdev)
223                 dev_close(vf_netdev);
224
225         return ret;
226 }
227
228 static inline void *init_ppi_data(struct rndis_message *msg,
229                                   u32 ppi_size, u32 pkt_type)
230 {
231         struct rndis_packet *rndis_pkt = &msg->msg.pkt;
232         struct rndis_per_packet_info *ppi;
233
234         rndis_pkt->data_offset += ppi_size;
235         ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
236                 + rndis_pkt->per_pkt_info_len;
237
238         ppi->size = ppi_size;
239         ppi->type = pkt_type;
240         ppi->internal = 0;
241         ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
242
243         rndis_pkt->per_pkt_info_len += ppi_size;
244
245         return ppi + 1;
246 }
247
248 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented
249  * packets. We can use ethtool to change UDP hash level when necessary.
250  */
251 static inline u32 netvsc_get_hash(
252         struct sk_buff *skb,
253         const struct net_device_context *ndc)
254 {
255         struct flow_keys flow;
256         u32 hash, pkt_proto = 0;
257         static u32 hashrnd __read_mostly;
258
259         net_get_random_once(&hashrnd, sizeof(hashrnd));
260
261         if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
262                 return 0;
263
264         switch (flow.basic.ip_proto) {
265         case IPPROTO_TCP:
266                 if (flow.basic.n_proto == htons(ETH_P_IP))
267                         pkt_proto = HV_TCP4_L4HASH;
268                 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
269                         pkt_proto = HV_TCP6_L4HASH;
270
271                 break;
272
273         case IPPROTO_UDP:
274                 if (flow.basic.n_proto == htons(ETH_P_IP))
275                         pkt_proto = HV_UDP4_L4HASH;
276                 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
277                         pkt_proto = HV_UDP6_L4HASH;
278
279                 break;
280         }
281
282         if (pkt_proto & ndc->l4_hash) {
283                 return skb_get_hash(skb);
284         } else {
285                 if (flow.basic.n_proto == htons(ETH_P_IP))
286                         hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
287                 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
288                         hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
289                 else
290                         return 0;
291
292                 __skb_set_sw_hash(skb, hash, false);
293         }
294
295         return hash;
296 }
297
298 static inline int netvsc_get_tx_queue(struct net_device *ndev,
299                                       struct sk_buff *skb, int old_idx)
300 {
301         const struct net_device_context *ndc = netdev_priv(ndev);
302         struct sock *sk = skb->sk;
303         int q_idx;
304
305         q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
306                               (VRSS_SEND_TAB_SIZE - 1)];
307
308         /* If queue index changed record the new value */
309         if (q_idx != old_idx &&
310             sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
311                 sk_tx_queue_set(sk, q_idx);
312
313         return q_idx;
314 }
315
316 /*
317  * Select queue for transmit.
318  *
319  * If a valid queue has already been assigned, then use that.
320  * Otherwise compute tx queue based on hash and the send table.
321  *
322  * This is basically similar to default (netdev_pick_tx) with the added step
323  * of using the host send_table when no other queue has been assigned.
324  *
325  * TODO support XPS - but get_xps_queue not exported
326  */
327 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
328 {
329         int q_idx = sk_tx_queue_get(skb->sk);
330
331         if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
332                 /* If forwarding a packet, we use the recorded queue when
333                  * available for better cache locality.
334                  */
335                 if (skb_rx_queue_recorded(skb))
336                         q_idx = skb_get_rx_queue(skb);
337                 else
338                         q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
339         }
340
341         return q_idx;
342 }
343
344 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
345                                struct net_device *sb_dev)
346 {
347         struct net_device_context *ndc = netdev_priv(ndev);
348         struct net_device *vf_netdev;
349         u16 txq;
350
351         rcu_read_lock();
352         vf_netdev = rcu_dereference(ndc->vf_netdev);
353         if (vf_netdev) {
354                 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
355
356                 if (vf_ops->ndo_select_queue)
357                         txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
358                 else
359                         txq = netdev_pick_tx(vf_netdev, skb, NULL);
360
361                 /* Record the queue selected by VF so that it can be
362                  * used for common case where VF has more queues than
363                  * the synthetic device.
364                  */
365                 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
366         } else {
367                 txq = netvsc_pick_tx(ndev, skb);
368         }
369         rcu_read_unlock();
370
371         while (txq >= ndev->real_num_tx_queues)
372                 txq -= ndev->real_num_tx_queues;
373
374         return txq;
375 }
376
377 static u32 fill_pg_buf(unsigned long hvpfn, u32 offset, u32 len,
378                        struct hv_page_buffer *pb)
379 {
380         int j = 0;
381
382         hvpfn += offset >> HV_HYP_PAGE_SHIFT;
383         offset = offset & ~HV_HYP_PAGE_MASK;
384
385         while (len > 0) {
386                 unsigned long bytes;
387
388                 bytes = HV_HYP_PAGE_SIZE - offset;
389                 if (bytes > len)
390                         bytes = len;
391                 pb[j].pfn = hvpfn;
392                 pb[j].offset = offset;
393                 pb[j].len = bytes;
394
395                 offset += bytes;
396                 len -= bytes;
397
398                 if (offset == HV_HYP_PAGE_SIZE && len) {
399                         hvpfn++;
400                         offset = 0;
401                         j++;
402                 }
403         }
404
405         return j + 1;
406 }
407
408 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
409                            struct hv_netvsc_packet *packet,
410                            struct hv_page_buffer *pb)
411 {
412         u32 slots_used = 0;
413         char *data = skb->data;
414         int frags = skb_shinfo(skb)->nr_frags;
415         int i;
416
417         /* The packet is laid out thus:
418          * 1. hdr: RNDIS header and PPI
419          * 2. skb linear data
420          * 3. skb fragment data
421          */
422         slots_used += fill_pg_buf(virt_to_hvpfn(hdr),
423                                   offset_in_hvpage(hdr),
424                                   len,
425                                   &pb[slots_used]);
426
427         packet->rmsg_size = len;
428         packet->rmsg_pgcnt = slots_used;
429
430         slots_used += fill_pg_buf(virt_to_hvpfn(data),
431                                   offset_in_hvpage(data),
432                                   skb_headlen(skb),
433                                   &pb[slots_used]);
434
435         for (i = 0; i < frags; i++) {
436                 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
437
438                 slots_used += fill_pg_buf(page_to_hvpfn(skb_frag_page(frag)),
439                                           skb_frag_off(frag),
440                                           skb_frag_size(frag),
441                                           &pb[slots_used]);
442         }
443         return slots_used;
444 }
445
446 static int count_skb_frag_slots(struct sk_buff *skb)
447 {
448         int i, frags = skb_shinfo(skb)->nr_frags;
449         int pages = 0;
450
451         for (i = 0; i < frags; i++) {
452                 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
453                 unsigned long size = skb_frag_size(frag);
454                 unsigned long offset = skb_frag_off(frag);
455
456                 /* Skip unused frames from start of page */
457                 offset &= ~HV_HYP_PAGE_MASK;
458                 pages += HVPFN_UP(offset + size);
459         }
460         return pages;
461 }
462
463 static int netvsc_get_slots(struct sk_buff *skb)
464 {
465         char *data = skb->data;
466         unsigned int offset = offset_in_hvpage(data);
467         unsigned int len = skb_headlen(skb);
468         int slots;
469         int frag_slots;
470
471         slots = DIV_ROUND_UP(offset + len, HV_HYP_PAGE_SIZE);
472         frag_slots = count_skb_frag_slots(skb);
473         return slots + frag_slots;
474 }
475
476 static u32 net_checksum_info(struct sk_buff *skb)
477 {
478         if (skb->protocol == htons(ETH_P_IP)) {
479                 struct iphdr *ip = ip_hdr(skb);
480
481                 if (ip->protocol == IPPROTO_TCP)
482                         return TRANSPORT_INFO_IPV4_TCP;
483                 else if (ip->protocol == IPPROTO_UDP)
484                         return TRANSPORT_INFO_IPV4_UDP;
485         } else {
486                 struct ipv6hdr *ip6 = ipv6_hdr(skb);
487
488                 if (ip6->nexthdr == IPPROTO_TCP)
489                         return TRANSPORT_INFO_IPV6_TCP;
490                 else if (ip6->nexthdr == IPPROTO_UDP)
491                         return TRANSPORT_INFO_IPV6_UDP;
492         }
493
494         return TRANSPORT_INFO_NOT_IP;
495 }
496
497 /* Send skb on the slave VF device. */
498 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
499                           struct sk_buff *skb)
500 {
501         struct net_device_context *ndev_ctx = netdev_priv(net);
502         unsigned int len = skb->len;
503         int rc;
504
505         skb->dev = vf_netdev;
506         skb_record_rx_queue(skb, qdisc_skb_cb(skb)->slave_dev_queue_mapping);
507
508         rc = dev_queue_xmit(skb);
509         if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
510                 struct netvsc_vf_pcpu_stats *pcpu_stats
511                         = this_cpu_ptr(ndev_ctx->vf_stats);
512
513                 u64_stats_update_begin(&pcpu_stats->syncp);
514                 pcpu_stats->tx_packets++;
515                 pcpu_stats->tx_bytes += len;
516                 u64_stats_update_end(&pcpu_stats->syncp);
517         } else {
518                 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
519         }
520
521         return rc;
522 }
523
524 static int netvsc_xmit(struct sk_buff *skb, struct net_device *net, bool xdp_tx)
525 {
526         struct net_device_context *net_device_ctx = netdev_priv(net);
527         struct hv_netvsc_packet *packet = NULL;
528         int ret;
529         unsigned int num_data_pgs;
530         struct rndis_message *rndis_msg;
531         struct net_device *vf_netdev;
532         u32 rndis_msg_size;
533         u32 hash;
534         struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
535
536         /* If VF is present and up then redirect packets to it.
537          * Skip the VF if it is marked down or has no carrier.
538          * If netpoll is in uses, then VF can not be used either.
539          */
540         vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
541         if (vf_netdev && netif_running(vf_netdev) &&
542             netif_carrier_ok(vf_netdev) && !netpoll_tx_running(net) &&
543             net_device_ctx->data_path_is_vf)
544                 return netvsc_vf_xmit(net, vf_netdev, skb);
545
546         /* We will atmost need two pages to describe the rndis
547          * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
548          * of pages in a single packet. If skb is scattered around
549          * more pages we try linearizing it.
550          */
551
552         num_data_pgs = netvsc_get_slots(skb) + 2;
553
554         if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
555                 ++net_device_ctx->eth_stats.tx_scattered;
556
557                 if (skb_linearize(skb))
558                         goto no_memory;
559
560                 num_data_pgs = netvsc_get_slots(skb) + 2;
561                 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
562                         ++net_device_ctx->eth_stats.tx_too_big;
563                         goto drop;
564                 }
565         }
566
567         /*
568          * Place the rndis header in the skb head room and
569          * the skb->cb will be used for hv_netvsc_packet
570          * structure.
571          */
572         ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
573         if (ret)
574                 goto no_memory;
575
576         /* Use the skb control buffer for building up the packet */
577         BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
578                         sizeof_field(struct sk_buff, cb));
579         packet = (struct hv_netvsc_packet *)skb->cb;
580
581         packet->q_idx = skb_get_queue_mapping(skb);
582
583         packet->total_data_buflen = skb->len;
584         packet->total_bytes = skb->len;
585         packet->total_packets = 1;
586
587         rndis_msg = (struct rndis_message *)skb->head;
588
589         /* Add the rndis header */
590         rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
591         rndis_msg->msg_len = packet->total_data_buflen;
592
593         rndis_msg->msg.pkt = (struct rndis_packet) {
594                 .data_offset = sizeof(struct rndis_packet),
595                 .data_len = packet->total_data_buflen,
596                 .per_pkt_info_offset = sizeof(struct rndis_packet),
597         };
598
599         rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
600
601         hash = skb_get_hash_raw(skb);
602         if (hash != 0 && net->real_num_tx_queues > 1) {
603                 u32 *hash_info;
604
605                 rndis_msg_size += NDIS_HASH_PPI_SIZE;
606                 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
607                                           NBL_HASH_VALUE);
608                 *hash_info = hash;
609         }
610
611         /* When using AF_PACKET we need to drop VLAN header from
612          * the frame and update the SKB to allow the HOST OS
613          * to transmit the 802.1Q packet
614          */
615         if (skb->protocol == htons(ETH_P_8021Q)) {
616                 u16 vlan_tci;
617
618                 skb_reset_mac_header(skb);
619                 if (eth_type_vlan(eth_hdr(skb)->h_proto)) {
620                         if (unlikely(__skb_vlan_pop(skb, &vlan_tci) != 0)) {
621                                 ++net_device_ctx->eth_stats.vlan_error;
622                                 goto drop;
623                         }
624
625                         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
626                         /* Update the NDIS header pkt lengths */
627                         packet->total_data_buflen -= VLAN_HLEN;
628                         packet->total_bytes -= VLAN_HLEN;
629                         rndis_msg->msg_len = packet->total_data_buflen;
630                         rndis_msg->msg.pkt.data_len = packet->total_data_buflen;
631                 }
632         }
633
634         if (skb_vlan_tag_present(skb)) {
635                 struct ndis_pkt_8021q_info *vlan;
636
637                 rndis_msg_size += NDIS_VLAN_PPI_SIZE;
638                 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
639                                      IEEE_8021Q_INFO);
640
641                 vlan->value = 0;
642                 vlan->vlanid = skb_vlan_tag_get_id(skb);
643                 vlan->cfi = skb_vlan_tag_get_cfi(skb);
644                 vlan->pri = skb_vlan_tag_get_prio(skb);
645         }
646
647         if (skb_is_gso(skb)) {
648                 struct ndis_tcp_lso_info *lso_info;
649
650                 rndis_msg_size += NDIS_LSO_PPI_SIZE;
651                 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
652                                          TCP_LARGESEND_PKTINFO);
653
654                 lso_info->value = 0;
655                 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
656                 if (skb->protocol == htons(ETH_P_IP)) {
657                         lso_info->lso_v2_transmit.ip_version =
658                                 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
659                         ip_hdr(skb)->tot_len = 0;
660                         ip_hdr(skb)->check = 0;
661                         tcp_hdr(skb)->check =
662                                 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
663                                                    ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
664                 } else {
665                         lso_info->lso_v2_transmit.ip_version =
666                                 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
667                         tcp_v6_gso_csum_prep(skb);
668                 }
669                 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
670                 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
671         } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
672                 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
673                         struct ndis_tcp_ip_checksum_info *csum_info;
674
675                         rndis_msg_size += NDIS_CSUM_PPI_SIZE;
676                         csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
677                                                   TCPIP_CHKSUM_PKTINFO);
678
679                         csum_info->value = 0;
680                         csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
681
682                         if (skb->protocol == htons(ETH_P_IP)) {
683                                 csum_info->transmit.is_ipv4 = 1;
684
685                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
686                                         csum_info->transmit.tcp_checksum = 1;
687                                 else
688                                         csum_info->transmit.udp_checksum = 1;
689                         } else {
690                                 csum_info->transmit.is_ipv6 = 1;
691
692                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
693                                         csum_info->transmit.tcp_checksum = 1;
694                                 else
695                                         csum_info->transmit.udp_checksum = 1;
696                         }
697                 } else {
698                         /* Can't do offload of this type of checksum */
699                         if (skb_checksum_help(skb))
700                                 goto drop;
701                 }
702         }
703
704         /* Start filling in the page buffers with the rndis hdr */
705         rndis_msg->msg_len += rndis_msg_size;
706         packet->total_data_buflen = rndis_msg->msg_len;
707         packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
708                                                skb, packet, pb);
709
710         /* timestamp packet in software */
711         skb_tx_timestamp(skb);
712
713         ret = netvsc_send(net, packet, rndis_msg, pb, skb, xdp_tx);
714         if (likely(ret == 0))
715                 return NETDEV_TX_OK;
716
717         if (ret == -EAGAIN) {
718                 ++net_device_ctx->eth_stats.tx_busy;
719                 return NETDEV_TX_BUSY;
720         }
721
722         if (ret == -ENOSPC)
723                 ++net_device_ctx->eth_stats.tx_no_space;
724
725 drop:
726         dev_kfree_skb_any(skb);
727         net->stats.tx_dropped++;
728
729         return NETDEV_TX_OK;
730
731 no_memory:
732         ++net_device_ctx->eth_stats.tx_no_memory;
733         goto drop;
734 }
735
736 static netdev_tx_t netvsc_start_xmit(struct sk_buff *skb,
737                                      struct net_device *ndev)
738 {
739         return netvsc_xmit(skb, ndev, false);
740 }
741
742 /*
743  * netvsc_linkstatus_callback - Link up/down notification
744  */
745 void netvsc_linkstatus_callback(struct net_device *net,
746                                 struct rndis_message *resp,
747                                 void *data, u32 data_buflen)
748 {
749         struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
750         struct net_device_context *ndev_ctx = netdev_priv(net);
751         struct netvsc_reconfig *event;
752         unsigned long flags;
753
754         /* Ensure the packet is big enough to access its fields */
755         if (resp->msg_len - RNDIS_HEADER_SIZE < sizeof(struct rndis_indicate_status)) {
756                 netdev_err(net, "invalid rndis_indicate_status packet, len: %u\n",
757                            resp->msg_len);
758                 return;
759         }
760
761         /* Copy the RNDIS indicate status into nvchan->recv_buf */
762         memcpy(indicate, data + RNDIS_HEADER_SIZE, sizeof(*indicate));
763
764         /* Update the physical link speed when changing to another vSwitch */
765         if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
766                 u32 speed;
767
768                 /* Validate status_buf_offset and status_buflen.
769                  *
770                  * Certain (pre-Fe) implementations of Hyper-V's vSwitch didn't account
771                  * for the status buffer field in resp->msg_len; perform the validation
772                  * using data_buflen (>= resp->msg_len).
773                  */
774                 if (indicate->status_buflen < sizeof(speed) ||
775                     indicate->status_buf_offset < sizeof(*indicate) ||
776                     data_buflen - RNDIS_HEADER_SIZE < indicate->status_buf_offset ||
777                     data_buflen - RNDIS_HEADER_SIZE - indicate->status_buf_offset
778                                 < indicate->status_buflen) {
779                         netdev_err(net, "invalid rndis_indicate_status packet\n");
780                         return;
781                 }
782
783                 speed = *(u32 *)(data + RNDIS_HEADER_SIZE + indicate->status_buf_offset) / 10000;
784                 ndev_ctx->speed = speed;
785                 return;
786         }
787
788         /* Handle these link change statuses below */
789         if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
790             indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
791             indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
792                 return;
793
794         if (net->reg_state != NETREG_REGISTERED)
795                 return;
796
797         event = kzalloc(sizeof(*event), GFP_ATOMIC);
798         if (!event)
799                 return;
800         event->event = indicate->status;
801
802         spin_lock_irqsave(&ndev_ctx->lock, flags);
803         list_add_tail(&event->list, &ndev_ctx->reconfig_events);
804         spin_unlock_irqrestore(&ndev_ctx->lock, flags);
805
806         schedule_delayed_work(&ndev_ctx->dwork, 0);
807 }
808
809 static void netvsc_xdp_xmit(struct sk_buff *skb, struct net_device *ndev)
810 {
811         int rc;
812
813         skb->queue_mapping = skb_get_rx_queue(skb);
814         __skb_push(skb, ETH_HLEN);
815
816         rc = netvsc_xmit(skb, ndev, true);
817
818         if (dev_xmit_complete(rc))
819                 return;
820
821         dev_kfree_skb_any(skb);
822         ndev->stats.tx_dropped++;
823 }
824
825 static void netvsc_comp_ipcsum(struct sk_buff *skb)
826 {
827         struct iphdr *iph = (struct iphdr *)skb->data;
828
829         iph->check = 0;
830         iph->check = ip_fast_csum(iph, iph->ihl);
831 }
832
833 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
834                                              struct netvsc_channel *nvchan,
835                                              struct xdp_buff *xdp)
836 {
837         struct napi_struct *napi = &nvchan->napi;
838         const struct ndis_pkt_8021q_info *vlan = &nvchan->rsc.vlan;
839         const struct ndis_tcp_ip_checksum_info *csum_info =
840                                                 &nvchan->rsc.csum_info;
841         const u32 *hash_info = &nvchan->rsc.hash_info;
842         u8 ppi_flags = nvchan->rsc.ppi_flags;
843         struct sk_buff *skb;
844         void *xbuf = xdp->data_hard_start;
845         int i;
846
847         if (xbuf) {
848                 unsigned int hdroom = xdp->data - xdp->data_hard_start;
849                 unsigned int xlen = xdp->data_end - xdp->data;
850                 unsigned int frag_size = xdp->frame_sz;
851
852                 skb = build_skb(xbuf, frag_size);
853
854                 if (!skb) {
855                         __free_page(virt_to_page(xbuf));
856                         return NULL;
857                 }
858
859                 skb_reserve(skb, hdroom);
860                 skb_put(skb, xlen);
861                 skb->dev = napi->dev;
862         } else {
863                 skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
864
865                 if (!skb)
866                         return NULL;
867
868                 /* Copy to skb. This copy is needed here since the memory
869                  * pointed by hv_netvsc_packet cannot be deallocated.
870                  */
871                 for (i = 0; i < nvchan->rsc.cnt; i++)
872                         skb_put_data(skb, nvchan->rsc.data[i],
873                                      nvchan->rsc.len[i]);
874         }
875
876         skb->protocol = eth_type_trans(skb, net);
877
878         /* skb is already created with CHECKSUM_NONE */
879         skb_checksum_none_assert(skb);
880
881         /* Incoming packets may have IP header checksum verified by the host.
882          * They may not have IP header checksum computed after coalescing.
883          * We compute it here if the flags are set, because on Linux, the IP
884          * checksum is always checked.
885          */
886         if ((ppi_flags & NVSC_RSC_CSUM_INFO) && csum_info->receive.ip_checksum_value_invalid &&
887             csum_info->receive.ip_checksum_succeeded &&
888             skb->protocol == htons(ETH_P_IP)) {
889                 /* Check that there is enough space to hold the IP header. */
890                 if (skb_headlen(skb) < sizeof(struct iphdr)) {
891                         kfree_skb(skb);
892                         return NULL;
893                 }
894                 netvsc_comp_ipcsum(skb);
895         }
896
897         /* Do L4 checksum offload if enabled and present. */
898         if ((ppi_flags & NVSC_RSC_CSUM_INFO) && (net->features & NETIF_F_RXCSUM)) {
899                 if (csum_info->receive.tcp_checksum_succeeded ||
900                     csum_info->receive.udp_checksum_succeeded)
901                         skb->ip_summed = CHECKSUM_UNNECESSARY;
902         }
903
904         if ((ppi_flags & NVSC_RSC_HASH_INFO) && (net->features & NETIF_F_RXHASH))
905                 skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4);
906
907         if (ppi_flags & NVSC_RSC_VLAN) {
908                 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
909                         (vlan->cfi ? VLAN_CFI_MASK : 0);
910
911                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
912                                        vlan_tci);
913         }
914
915         return skb;
916 }
917
918 /*
919  * netvsc_recv_callback -  Callback when we receive a packet from the
920  * "wire" on the specified device.
921  */
922 int netvsc_recv_callback(struct net_device *net,
923                          struct netvsc_device *net_device,
924                          struct netvsc_channel *nvchan)
925 {
926         struct net_device_context *net_device_ctx = netdev_priv(net);
927         struct vmbus_channel *channel = nvchan->channel;
928         u16 q_idx = channel->offermsg.offer.sub_channel_index;
929         struct sk_buff *skb;
930         struct netvsc_stats *rx_stats = &nvchan->rx_stats;
931         struct xdp_buff xdp;
932         u32 act;
933
934         if (net->reg_state != NETREG_REGISTERED)
935                 return NVSP_STAT_FAIL;
936
937         act = netvsc_run_xdp(net, nvchan, &xdp);
938
939         if (act != XDP_PASS && act != XDP_TX) {
940                 u64_stats_update_begin(&rx_stats->syncp);
941                 rx_stats->xdp_drop++;
942                 u64_stats_update_end(&rx_stats->syncp);
943
944                 return NVSP_STAT_SUCCESS; /* consumed by XDP */
945         }
946
947         /* Allocate a skb - TODO direct I/O to pages? */
948         skb = netvsc_alloc_recv_skb(net, nvchan, &xdp);
949
950         if (unlikely(!skb)) {
951                 ++net_device_ctx->eth_stats.rx_no_memory;
952                 return NVSP_STAT_FAIL;
953         }
954
955         skb_record_rx_queue(skb, q_idx);
956
957         /*
958          * Even if injecting the packet, record the statistics
959          * on the synthetic device because modifying the VF device
960          * statistics will not work correctly.
961          */
962         u64_stats_update_begin(&rx_stats->syncp);
963         rx_stats->packets++;
964         rx_stats->bytes += nvchan->rsc.pktlen;
965
966         if (skb->pkt_type == PACKET_BROADCAST)
967                 ++rx_stats->broadcast;
968         else if (skb->pkt_type == PACKET_MULTICAST)
969                 ++rx_stats->multicast;
970         u64_stats_update_end(&rx_stats->syncp);
971
972         if (act == XDP_TX) {
973                 netvsc_xdp_xmit(skb, net);
974                 return NVSP_STAT_SUCCESS;
975         }
976
977         napi_gro_receive(&nvchan->napi, skb);
978         return NVSP_STAT_SUCCESS;
979 }
980
981 static void netvsc_get_drvinfo(struct net_device *net,
982                                struct ethtool_drvinfo *info)
983 {
984         strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
985         strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
986 }
987
988 static void netvsc_get_channels(struct net_device *net,
989                                 struct ethtool_channels *channel)
990 {
991         struct net_device_context *net_device_ctx = netdev_priv(net);
992         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
993
994         if (nvdev) {
995                 channel->max_combined   = nvdev->max_chn;
996                 channel->combined_count = nvdev->num_chn;
997         }
998 }
999
1000 /* Alloc struct netvsc_device_info, and initialize it from either existing
1001  * struct netvsc_device, or from default values.
1002  */
1003 static
1004 struct netvsc_device_info *netvsc_devinfo_get(struct netvsc_device *nvdev)
1005 {
1006         struct netvsc_device_info *dev_info;
1007         struct bpf_prog *prog;
1008
1009         dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
1010
1011         if (!dev_info)
1012                 return NULL;
1013
1014         if (nvdev) {
1015                 ASSERT_RTNL();
1016
1017                 dev_info->num_chn = nvdev->num_chn;
1018                 dev_info->send_sections = nvdev->send_section_cnt;
1019                 dev_info->send_section_size = nvdev->send_section_size;
1020                 dev_info->recv_sections = nvdev->recv_section_cnt;
1021                 dev_info->recv_section_size = nvdev->recv_section_size;
1022
1023                 memcpy(dev_info->rss_key, nvdev->extension->rss_key,
1024                        NETVSC_HASH_KEYLEN);
1025
1026                 prog = netvsc_xdp_get(nvdev);
1027                 if (prog) {
1028                         bpf_prog_inc(prog);
1029                         dev_info->bprog = prog;
1030                 }
1031         } else {
1032                 dev_info->num_chn = VRSS_CHANNEL_DEFAULT;
1033                 dev_info->send_sections = NETVSC_DEFAULT_TX;
1034                 dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
1035                 dev_info->recv_sections = NETVSC_DEFAULT_RX;
1036                 dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
1037         }
1038
1039         return dev_info;
1040 }
1041
1042 /* Free struct netvsc_device_info */
1043 static void netvsc_devinfo_put(struct netvsc_device_info *dev_info)
1044 {
1045         if (dev_info->bprog) {
1046                 ASSERT_RTNL();
1047                 bpf_prog_put(dev_info->bprog);
1048         }
1049
1050         kfree(dev_info);
1051 }
1052
1053 static int netvsc_detach(struct net_device *ndev,
1054                          struct netvsc_device *nvdev)
1055 {
1056         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1057         struct hv_device *hdev = ndev_ctx->device_ctx;
1058         int ret;
1059
1060         /* Don't try continuing to try and setup sub channels */
1061         if (cancel_work_sync(&nvdev->subchan_work))
1062                 nvdev->num_chn = 1;
1063
1064         netvsc_xdp_set(ndev, NULL, NULL, nvdev);
1065
1066         /* If device was up (receiving) then shutdown */
1067         if (netif_running(ndev)) {
1068                 netvsc_tx_disable(nvdev, ndev);
1069
1070                 ret = rndis_filter_close(nvdev);
1071                 if (ret) {
1072                         netdev_err(ndev,
1073                                    "unable to close device (ret %d).\n", ret);
1074                         return ret;
1075                 }
1076
1077                 ret = netvsc_wait_until_empty(nvdev);
1078                 if (ret) {
1079                         netdev_err(ndev,
1080                                    "Ring buffer not empty after closing rndis\n");
1081                         return ret;
1082                 }
1083         }
1084
1085         netif_device_detach(ndev);
1086
1087         rndis_filter_device_remove(hdev, nvdev);
1088
1089         return 0;
1090 }
1091
1092 static int netvsc_attach(struct net_device *ndev,
1093                          struct netvsc_device_info *dev_info)
1094 {
1095         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1096         struct hv_device *hdev = ndev_ctx->device_ctx;
1097         struct netvsc_device *nvdev;
1098         struct rndis_device *rdev;
1099         struct bpf_prog *prog;
1100         int ret = 0;
1101
1102         nvdev = rndis_filter_device_add(hdev, dev_info);
1103         if (IS_ERR(nvdev))
1104                 return PTR_ERR(nvdev);
1105
1106         if (nvdev->num_chn > 1) {
1107                 ret = rndis_set_subchannel(ndev, nvdev, dev_info);
1108
1109                 /* if unavailable, just proceed with one queue */
1110                 if (ret) {
1111                         nvdev->max_chn = 1;
1112                         nvdev->num_chn = 1;
1113                 }
1114         }
1115
1116         prog = dev_info->bprog;
1117         if (prog) {
1118                 bpf_prog_inc(prog);
1119                 ret = netvsc_xdp_set(ndev, prog, NULL, nvdev);
1120                 if (ret) {
1121                         bpf_prog_put(prog);
1122                         goto err1;
1123                 }
1124         }
1125
1126         /* In any case device is now ready */
1127         nvdev->tx_disable = false;
1128         netif_device_attach(ndev);
1129
1130         /* Note: enable and attach happen when sub-channels setup */
1131         netif_carrier_off(ndev);
1132
1133         if (netif_running(ndev)) {
1134                 ret = rndis_filter_open(nvdev);
1135                 if (ret)
1136                         goto err2;
1137
1138                 rdev = nvdev->extension;
1139                 if (!rdev->link_state)
1140                         netif_carrier_on(ndev);
1141         }
1142
1143         return 0;
1144
1145 err2:
1146         netif_device_detach(ndev);
1147
1148 err1:
1149         rndis_filter_device_remove(hdev, nvdev);
1150
1151         return ret;
1152 }
1153
1154 static int netvsc_set_channels(struct net_device *net,
1155                                struct ethtool_channels *channels)
1156 {
1157         struct net_device_context *net_device_ctx = netdev_priv(net);
1158         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1159         unsigned int orig, count = channels->combined_count;
1160         struct netvsc_device_info *device_info;
1161         int ret;
1162
1163         /* We do not support separate count for rx, tx, or other */
1164         if (count == 0 ||
1165             channels->rx_count || channels->tx_count || channels->other_count)
1166                 return -EINVAL;
1167
1168         if (!nvdev || nvdev->destroy)
1169                 return -ENODEV;
1170
1171         if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1172                 return -EINVAL;
1173
1174         if (count > nvdev->max_chn)
1175                 return -EINVAL;
1176
1177         orig = nvdev->num_chn;
1178
1179         device_info = netvsc_devinfo_get(nvdev);
1180
1181         if (!device_info)
1182                 return -ENOMEM;
1183
1184         device_info->num_chn = count;
1185
1186         ret = netvsc_detach(net, nvdev);
1187         if (ret)
1188                 goto out;
1189
1190         ret = netvsc_attach(net, device_info);
1191         if (ret) {
1192                 device_info->num_chn = orig;
1193                 if (netvsc_attach(net, device_info))
1194                         netdev_err(net, "restoring channel setting failed\n");
1195         }
1196
1197 out:
1198         netvsc_devinfo_put(device_info);
1199         return ret;
1200 }
1201
1202 static void netvsc_init_settings(struct net_device *dev)
1203 {
1204         struct net_device_context *ndc = netdev_priv(dev);
1205
1206         ndc->l4_hash = HV_DEFAULT_L4HASH;
1207
1208         ndc->speed = SPEED_UNKNOWN;
1209         ndc->duplex = DUPLEX_FULL;
1210
1211         dev->features = NETIF_F_LRO;
1212 }
1213
1214 static int netvsc_get_link_ksettings(struct net_device *dev,
1215                                      struct ethtool_link_ksettings *cmd)
1216 {
1217         struct net_device_context *ndc = netdev_priv(dev);
1218         struct net_device *vf_netdev;
1219
1220         vf_netdev = rtnl_dereference(ndc->vf_netdev);
1221
1222         if (vf_netdev)
1223                 return __ethtool_get_link_ksettings(vf_netdev, cmd);
1224
1225         cmd->base.speed = ndc->speed;
1226         cmd->base.duplex = ndc->duplex;
1227         cmd->base.port = PORT_OTHER;
1228
1229         return 0;
1230 }
1231
1232 static int netvsc_set_link_ksettings(struct net_device *dev,
1233                                      const struct ethtool_link_ksettings *cmd)
1234 {
1235         struct net_device_context *ndc = netdev_priv(dev);
1236         struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1237
1238         if (vf_netdev) {
1239                 if (!vf_netdev->ethtool_ops->set_link_ksettings)
1240                         return -EOPNOTSUPP;
1241
1242                 return vf_netdev->ethtool_ops->set_link_ksettings(vf_netdev,
1243                                                                   cmd);
1244         }
1245
1246         return ethtool_virtdev_set_link_ksettings(dev, cmd,
1247                                                   &ndc->speed, &ndc->duplex);
1248 }
1249
1250 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1251 {
1252         struct net_device_context *ndevctx = netdev_priv(ndev);
1253         struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1254         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1255         int orig_mtu = ndev->mtu;
1256         struct netvsc_device_info *device_info;
1257         int ret = 0;
1258
1259         if (!nvdev || nvdev->destroy)
1260                 return -ENODEV;
1261
1262         device_info = netvsc_devinfo_get(nvdev);
1263
1264         if (!device_info)
1265                 return -ENOMEM;
1266
1267         /* Change MTU of underlying VF netdev first. */
1268         if (vf_netdev) {
1269                 ret = dev_set_mtu(vf_netdev, mtu);
1270                 if (ret)
1271                         goto out;
1272         }
1273
1274         ret = netvsc_detach(ndev, nvdev);
1275         if (ret)
1276                 goto rollback_vf;
1277
1278         ndev->mtu = mtu;
1279
1280         ret = netvsc_attach(ndev, device_info);
1281         if (!ret)
1282                 goto out;
1283
1284         /* Attempt rollback to original MTU */
1285         ndev->mtu = orig_mtu;
1286
1287         if (netvsc_attach(ndev, device_info))
1288                 netdev_err(ndev, "restoring mtu failed\n");
1289 rollback_vf:
1290         if (vf_netdev)
1291                 dev_set_mtu(vf_netdev, orig_mtu);
1292
1293 out:
1294         netvsc_devinfo_put(device_info);
1295         return ret;
1296 }
1297
1298 static void netvsc_get_vf_stats(struct net_device *net,
1299                                 struct netvsc_vf_pcpu_stats *tot)
1300 {
1301         struct net_device_context *ndev_ctx = netdev_priv(net);
1302         int i;
1303
1304         memset(tot, 0, sizeof(*tot));
1305
1306         for_each_possible_cpu(i) {
1307                 const struct netvsc_vf_pcpu_stats *stats
1308                         = per_cpu_ptr(ndev_ctx->vf_stats, i);
1309                 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1310                 unsigned int start;
1311
1312                 do {
1313                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1314                         rx_packets = stats->rx_packets;
1315                         tx_packets = stats->tx_packets;
1316                         rx_bytes = stats->rx_bytes;
1317                         tx_bytes = stats->tx_bytes;
1318                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1319
1320                 tot->rx_packets += rx_packets;
1321                 tot->tx_packets += tx_packets;
1322                 tot->rx_bytes   += rx_bytes;
1323                 tot->tx_bytes   += tx_bytes;
1324                 tot->tx_dropped += stats->tx_dropped;
1325         }
1326 }
1327
1328 static void netvsc_get_pcpu_stats(struct net_device *net,
1329                                   struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1330 {
1331         struct net_device_context *ndev_ctx = netdev_priv(net);
1332         struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1333         int i;
1334
1335         /* fetch percpu stats of vf */
1336         for_each_possible_cpu(i) {
1337                 const struct netvsc_vf_pcpu_stats *stats =
1338                         per_cpu_ptr(ndev_ctx->vf_stats, i);
1339                 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1340                 unsigned int start;
1341
1342                 do {
1343                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1344                         this_tot->vf_rx_packets = stats->rx_packets;
1345                         this_tot->vf_tx_packets = stats->tx_packets;
1346                         this_tot->vf_rx_bytes = stats->rx_bytes;
1347                         this_tot->vf_tx_bytes = stats->tx_bytes;
1348                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1349                 this_tot->rx_packets = this_tot->vf_rx_packets;
1350                 this_tot->tx_packets = this_tot->vf_tx_packets;
1351                 this_tot->rx_bytes   = this_tot->vf_rx_bytes;
1352                 this_tot->tx_bytes   = this_tot->vf_tx_bytes;
1353         }
1354
1355         /* fetch percpu stats of netvsc */
1356         for (i = 0; i < nvdev->num_chn; i++) {
1357                 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1358                 const struct netvsc_stats *stats;
1359                 struct netvsc_ethtool_pcpu_stats *this_tot =
1360                         &pcpu_tot[nvchan->channel->target_cpu];
1361                 u64 packets, bytes;
1362                 unsigned int start;
1363
1364                 stats = &nvchan->tx_stats;
1365                 do {
1366                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1367                         packets = stats->packets;
1368                         bytes = stats->bytes;
1369                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1370
1371                 this_tot->tx_bytes      += bytes;
1372                 this_tot->tx_packets    += packets;
1373
1374                 stats = &nvchan->rx_stats;
1375                 do {
1376                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1377                         packets = stats->packets;
1378                         bytes = stats->bytes;
1379                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1380
1381                 this_tot->rx_bytes      += bytes;
1382                 this_tot->rx_packets    += packets;
1383         }
1384 }
1385
1386 static void netvsc_get_stats64(struct net_device *net,
1387                                struct rtnl_link_stats64 *t)
1388 {
1389         struct net_device_context *ndev_ctx = netdev_priv(net);
1390         struct netvsc_device *nvdev;
1391         struct netvsc_vf_pcpu_stats vf_tot;
1392         int i;
1393
1394         rcu_read_lock();
1395
1396         nvdev = rcu_dereference(ndev_ctx->nvdev);
1397         if (!nvdev)
1398                 goto out;
1399
1400         netdev_stats_to_stats64(t, &net->stats);
1401
1402         netvsc_get_vf_stats(net, &vf_tot);
1403         t->rx_packets += vf_tot.rx_packets;
1404         t->tx_packets += vf_tot.tx_packets;
1405         t->rx_bytes   += vf_tot.rx_bytes;
1406         t->tx_bytes   += vf_tot.tx_bytes;
1407         t->tx_dropped += vf_tot.tx_dropped;
1408
1409         for (i = 0; i < nvdev->num_chn; i++) {
1410                 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1411                 const struct netvsc_stats *stats;
1412                 u64 packets, bytes, multicast;
1413                 unsigned int start;
1414
1415                 stats = &nvchan->tx_stats;
1416                 do {
1417                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1418                         packets = stats->packets;
1419                         bytes = stats->bytes;
1420                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1421
1422                 t->tx_bytes     += bytes;
1423                 t->tx_packets   += packets;
1424
1425                 stats = &nvchan->rx_stats;
1426                 do {
1427                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1428                         packets = stats->packets;
1429                         bytes = stats->bytes;
1430                         multicast = stats->multicast + stats->broadcast;
1431                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1432
1433                 t->rx_bytes     += bytes;
1434                 t->rx_packets   += packets;
1435                 t->multicast    += multicast;
1436         }
1437 out:
1438         rcu_read_unlock();
1439 }
1440
1441 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1442 {
1443         struct net_device_context *ndc = netdev_priv(ndev);
1444         struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1445         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1446         struct sockaddr *addr = p;
1447         int err;
1448
1449         err = eth_prepare_mac_addr_change(ndev, p);
1450         if (err)
1451                 return err;
1452
1453         if (!nvdev)
1454                 return -ENODEV;
1455
1456         if (vf_netdev) {
1457                 err = dev_set_mac_address(vf_netdev, addr, NULL);
1458                 if (err)
1459                         return err;
1460         }
1461
1462         err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1463         if (!err) {
1464                 eth_commit_mac_addr_change(ndev, p);
1465         } else if (vf_netdev) {
1466                 /* rollback change on VF */
1467                 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1468                 dev_set_mac_address(vf_netdev, addr, NULL);
1469         }
1470
1471         return err;
1472 }
1473
1474 static const struct {
1475         char name[ETH_GSTRING_LEN];
1476         u16 offset;
1477 } netvsc_stats[] = {
1478         { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1479         { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1480         { "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1481         { "tx_too_big",   offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1482         { "tx_busy",      offsetof(struct netvsc_ethtool_stats, tx_busy) },
1483         { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1484         { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1485         { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1486         { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1487         { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1488         { "vlan_error", offsetof(struct netvsc_ethtool_stats, vlan_error) },
1489 }, pcpu_stats[] = {
1490         { "cpu%u_rx_packets",
1491                 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1492         { "cpu%u_rx_bytes",
1493                 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1494         { "cpu%u_tx_packets",
1495                 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1496         { "cpu%u_tx_bytes",
1497                 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1498         { "cpu%u_vf_rx_packets",
1499                 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1500         { "cpu%u_vf_rx_bytes",
1501                 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1502         { "cpu%u_vf_tx_packets",
1503                 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1504         { "cpu%u_vf_tx_bytes",
1505                 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1506 }, vf_stats[] = {
1507         { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1508         { "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1509         { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1510         { "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1511         { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1512 };
1513
1514 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
1515 #define NETVSC_VF_STATS_LEN     ARRAY_SIZE(vf_stats)
1516
1517 /* statistics per queue (rx/tx packets/bytes) */
1518 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1519
1520 /* 5 statistics per queue (rx/tx packets/bytes, rx xdp_drop) */
1521 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 5)
1522
1523 static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1524 {
1525         struct net_device_context *ndc = netdev_priv(dev);
1526         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1527
1528         if (!nvdev)
1529                 return -ENODEV;
1530
1531         switch (string_set) {
1532         case ETH_SS_STATS:
1533                 return NETVSC_GLOBAL_STATS_LEN
1534                         + NETVSC_VF_STATS_LEN
1535                         + NETVSC_QUEUE_STATS_LEN(nvdev)
1536                         + NETVSC_PCPU_STATS_LEN;
1537         default:
1538                 return -EINVAL;
1539         }
1540 }
1541
1542 static void netvsc_get_ethtool_stats(struct net_device *dev,
1543                                      struct ethtool_stats *stats, u64 *data)
1544 {
1545         struct net_device_context *ndc = netdev_priv(dev);
1546         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1547         const void *nds = &ndc->eth_stats;
1548         const struct netvsc_stats *qstats;
1549         struct netvsc_vf_pcpu_stats sum;
1550         struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1551         unsigned int start;
1552         u64 packets, bytes;
1553         u64 xdp_drop;
1554         int i, j, cpu;
1555
1556         if (!nvdev)
1557                 return;
1558
1559         for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1560                 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1561
1562         netvsc_get_vf_stats(dev, &sum);
1563         for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1564                 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1565
1566         for (j = 0; j < nvdev->num_chn; j++) {
1567                 qstats = &nvdev->chan_table[j].tx_stats;
1568
1569                 do {
1570                         start = u64_stats_fetch_begin_irq(&qstats->syncp);
1571                         packets = qstats->packets;
1572                         bytes = qstats->bytes;
1573                 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1574                 data[i++] = packets;
1575                 data[i++] = bytes;
1576
1577                 qstats = &nvdev->chan_table[j].rx_stats;
1578                 do {
1579                         start = u64_stats_fetch_begin_irq(&qstats->syncp);
1580                         packets = qstats->packets;
1581                         bytes = qstats->bytes;
1582                         xdp_drop = qstats->xdp_drop;
1583                 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1584                 data[i++] = packets;
1585                 data[i++] = bytes;
1586                 data[i++] = xdp_drop;
1587         }
1588
1589         pcpu_sum = kvmalloc_array(num_possible_cpus(),
1590                                   sizeof(struct netvsc_ethtool_pcpu_stats),
1591                                   GFP_KERNEL);
1592         netvsc_get_pcpu_stats(dev, pcpu_sum);
1593         for_each_present_cpu(cpu) {
1594                 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1595
1596                 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1597                         data[i++] = *(u64 *)((void *)this_sum
1598                                              + pcpu_stats[j].offset);
1599         }
1600         kvfree(pcpu_sum);
1601 }
1602
1603 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1604 {
1605         struct net_device_context *ndc = netdev_priv(dev);
1606         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1607         u8 *p = data;
1608         int i, cpu;
1609
1610         if (!nvdev)
1611                 return;
1612
1613         switch (stringset) {
1614         case ETH_SS_STATS:
1615                 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
1616                         memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
1617                         p += ETH_GSTRING_LEN;
1618                 }
1619
1620                 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
1621                         memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
1622                         p += ETH_GSTRING_LEN;
1623                 }
1624
1625                 for (i = 0; i < nvdev->num_chn; i++) {
1626                         sprintf(p, "tx_queue_%u_packets", i);
1627                         p += ETH_GSTRING_LEN;
1628                         sprintf(p, "tx_queue_%u_bytes", i);
1629                         p += ETH_GSTRING_LEN;
1630                         sprintf(p, "rx_queue_%u_packets", i);
1631                         p += ETH_GSTRING_LEN;
1632                         sprintf(p, "rx_queue_%u_bytes", i);
1633                         p += ETH_GSTRING_LEN;
1634                         sprintf(p, "rx_queue_%u_xdp_drop", i);
1635                         p += ETH_GSTRING_LEN;
1636                 }
1637
1638                 for_each_present_cpu(cpu) {
1639                         for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) {
1640                                 sprintf(p, pcpu_stats[i].name, cpu);
1641                                 p += ETH_GSTRING_LEN;
1642                         }
1643                 }
1644
1645                 break;
1646         }
1647 }
1648
1649 static int
1650 netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1651                          struct ethtool_rxnfc *info)
1652 {
1653         const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1654
1655         info->data = RXH_IP_SRC | RXH_IP_DST;
1656
1657         switch (info->flow_type) {
1658         case TCP_V4_FLOW:
1659                 if (ndc->l4_hash & HV_TCP4_L4HASH)
1660                         info->data |= l4_flag;
1661
1662                 break;
1663
1664         case TCP_V6_FLOW:
1665                 if (ndc->l4_hash & HV_TCP6_L4HASH)
1666                         info->data |= l4_flag;
1667
1668                 break;
1669
1670         case UDP_V4_FLOW:
1671                 if (ndc->l4_hash & HV_UDP4_L4HASH)
1672                         info->data |= l4_flag;
1673
1674                 break;
1675
1676         case UDP_V6_FLOW:
1677                 if (ndc->l4_hash & HV_UDP6_L4HASH)
1678                         info->data |= l4_flag;
1679
1680                 break;
1681
1682         case IPV4_FLOW:
1683         case IPV6_FLOW:
1684                 break;
1685         default:
1686                 info->data = 0;
1687                 break;
1688         }
1689
1690         return 0;
1691 }
1692
1693 static int
1694 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1695                  u32 *rules)
1696 {
1697         struct net_device_context *ndc = netdev_priv(dev);
1698         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1699
1700         if (!nvdev)
1701                 return -ENODEV;
1702
1703         switch (info->cmd) {
1704         case ETHTOOL_GRXRINGS:
1705                 info->data = nvdev->num_chn;
1706                 return 0;
1707
1708         case ETHTOOL_GRXFH:
1709                 return netvsc_get_rss_hash_opts(ndc, info);
1710         }
1711         return -EOPNOTSUPP;
1712 }
1713
1714 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1715                                     struct ethtool_rxnfc *info)
1716 {
1717         if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1718                            RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1719                 switch (info->flow_type) {
1720                 case TCP_V4_FLOW:
1721                         ndc->l4_hash |= HV_TCP4_L4HASH;
1722                         break;
1723
1724                 case TCP_V6_FLOW:
1725                         ndc->l4_hash |= HV_TCP6_L4HASH;
1726                         break;
1727
1728                 case UDP_V4_FLOW:
1729                         ndc->l4_hash |= HV_UDP4_L4HASH;
1730                         break;
1731
1732                 case UDP_V6_FLOW:
1733                         ndc->l4_hash |= HV_UDP6_L4HASH;
1734                         break;
1735
1736                 default:
1737                         return -EOPNOTSUPP;
1738                 }
1739
1740                 return 0;
1741         }
1742
1743         if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1744                 switch (info->flow_type) {
1745                 case TCP_V4_FLOW:
1746                         ndc->l4_hash &= ~HV_TCP4_L4HASH;
1747                         break;
1748
1749                 case TCP_V6_FLOW:
1750                         ndc->l4_hash &= ~HV_TCP6_L4HASH;
1751                         break;
1752
1753                 case UDP_V4_FLOW:
1754                         ndc->l4_hash &= ~HV_UDP4_L4HASH;
1755                         break;
1756
1757                 case UDP_V6_FLOW:
1758                         ndc->l4_hash &= ~HV_UDP6_L4HASH;
1759                         break;
1760
1761                 default:
1762                         return -EOPNOTSUPP;
1763                 }
1764
1765                 return 0;
1766         }
1767
1768         return -EOPNOTSUPP;
1769 }
1770
1771 static int
1772 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1773 {
1774         struct net_device_context *ndc = netdev_priv(ndev);
1775
1776         if (info->cmd == ETHTOOL_SRXFH)
1777                 return netvsc_set_rss_hash_opts(ndc, info);
1778
1779         return -EOPNOTSUPP;
1780 }
1781
1782 static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1783 {
1784         return NETVSC_HASH_KEYLEN;
1785 }
1786
1787 static u32 netvsc_rss_indir_size(struct net_device *dev)
1788 {
1789         return ITAB_NUM;
1790 }
1791
1792 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1793                            u8 *hfunc)
1794 {
1795         struct net_device_context *ndc = netdev_priv(dev);
1796         struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1797         struct rndis_device *rndis_dev;
1798         int i;
1799
1800         if (!ndev)
1801                 return -ENODEV;
1802
1803         if (hfunc)
1804                 *hfunc = ETH_RSS_HASH_TOP;      /* Toeplitz */
1805
1806         rndis_dev = ndev->extension;
1807         if (indir) {
1808                 for (i = 0; i < ITAB_NUM; i++)
1809                         indir[i] = ndc->rx_table[i];
1810         }
1811
1812         if (key)
1813                 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1814
1815         return 0;
1816 }
1817
1818 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1819                            const u8 *key, const u8 hfunc)
1820 {
1821         struct net_device_context *ndc = netdev_priv(dev);
1822         struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1823         struct rndis_device *rndis_dev;
1824         int i;
1825
1826         if (!ndev)
1827                 return -ENODEV;
1828
1829         if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1830                 return -EOPNOTSUPP;
1831
1832         rndis_dev = ndev->extension;
1833         if (indir) {
1834                 for (i = 0; i < ITAB_NUM; i++)
1835                         if (indir[i] >= ndev->num_chn)
1836                                 return -EINVAL;
1837
1838                 for (i = 0; i < ITAB_NUM; i++)
1839                         ndc->rx_table[i] = indir[i];
1840         }
1841
1842         if (!key) {
1843                 if (!indir)
1844                         return 0;
1845
1846                 key = rndis_dev->rss_key;
1847         }
1848
1849         return rndis_filter_set_rss_param(rndis_dev, key);
1850 }
1851
1852 /* Hyper-V RNDIS protocol does not have ring in the HW sense.
1853  * It does have pre-allocated receive area which is divided into sections.
1854  */
1855 static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1856                                    struct ethtool_ringparam *ring)
1857 {
1858         u32 max_buf_size;
1859
1860         ring->rx_pending = nvdev->recv_section_cnt;
1861         ring->tx_pending = nvdev->send_section_cnt;
1862
1863         if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1864                 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1865         else
1866                 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1867
1868         ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1869         ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1870                 / nvdev->send_section_size;
1871 }
1872
1873 static void netvsc_get_ringparam(struct net_device *ndev,
1874                                  struct ethtool_ringparam *ring)
1875 {
1876         struct net_device_context *ndevctx = netdev_priv(ndev);
1877         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1878
1879         if (!nvdev)
1880                 return;
1881
1882         __netvsc_get_ringparam(nvdev, ring);
1883 }
1884
1885 static int netvsc_set_ringparam(struct net_device *ndev,
1886                                 struct ethtool_ringparam *ring)
1887 {
1888         struct net_device_context *ndevctx = netdev_priv(ndev);
1889         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1890         struct netvsc_device_info *device_info;
1891         struct ethtool_ringparam orig;
1892         u32 new_tx, new_rx;
1893         int ret = 0;
1894
1895         if (!nvdev || nvdev->destroy)
1896                 return -ENODEV;
1897
1898         memset(&orig, 0, sizeof(orig));
1899         __netvsc_get_ringparam(nvdev, &orig);
1900
1901         new_tx = clamp_t(u32, ring->tx_pending,
1902                          NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1903         new_rx = clamp_t(u32, ring->rx_pending,
1904                          NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1905
1906         if (new_tx == orig.tx_pending &&
1907             new_rx == orig.rx_pending)
1908                 return 0;        /* no change */
1909
1910         device_info = netvsc_devinfo_get(nvdev);
1911
1912         if (!device_info)
1913                 return -ENOMEM;
1914
1915         device_info->send_sections = new_tx;
1916         device_info->recv_sections = new_rx;
1917
1918         ret = netvsc_detach(ndev, nvdev);
1919         if (ret)
1920                 goto out;
1921
1922         ret = netvsc_attach(ndev, device_info);
1923         if (ret) {
1924                 device_info->send_sections = orig.tx_pending;
1925                 device_info->recv_sections = orig.rx_pending;
1926
1927                 if (netvsc_attach(ndev, device_info))
1928                         netdev_err(ndev, "restoring ringparam failed");
1929         }
1930
1931 out:
1932         netvsc_devinfo_put(device_info);
1933         return ret;
1934 }
1935
1936 static netdev_features_t netvsc_fix_features(struct net_device *ndev,
1937                                              netdev_features_t features)
1938 {
1939         struct net_device_context *ndevctx = netdev_priv(ndev);
1940         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1941
1942         if (!nvdev || nvdev->destroy)
1943                 return features;
1944
1945         if ((features & NETIF_F_LRO) && netvsc_xdp_get(nvdev)) {
1946                 features ^= NETIF_F_LRO;
1947                 netdev_info(ndev, "Skip LRO - unsupported with XDP\n");
1948         }
1949
1950         return features;
1951 }
1952
1953 static int netvsc_set_features(struct net_device *ndev,
1954                                netdev_features_t features)
1955 {
1956         netdev_features_t change = features ^ ndev->features;
1957         struct net_device_context *ndevctx = netdev_priv(ndev);
1958         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1959         struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1960         struct ndis_offload_params offloads;
1961         int ret = 0;
1962
1963         if (!nvdev || nvdev->destroy)
1964                 return -ENODEV;
1965
1966         if (!(change & NETIF_F_LRO))
1967                 goto syncvf;
1968
1969         memset(&offloads, 0, sizeof(struct ndis_offload_params));
1970
1971         if (features & NETIF_F_LRO) {
1972                 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1973                 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1974         } else {
1975                 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1976                 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1977         }
1978
1979         ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1980
1981         if (ret) {
1982                 features ^= NETIF_F_LRO;
1983                 ndev->features = features;
1984         }
1985
1986 syncvf:
1987         if (!vf_netdev)
1988                 return ret;
1989
1990         vf_netdev->wanted_features = features;
1991         netdev_update_features(vf_netdev);
1992
1993         return ret;
1994 }
1995
1996 static int netvsc_get_regs_len(struct net_device *netdev)
1997 {
1998         return VRSS_SEND_TAB_SIZE * sizeof(u32);
1999 }
2000
2001 static void netvsc_get_regs(struct net_device *netdev,
2002                             struct ethtool_regs *regs, void *p)
2003 {
2004         struct net_device_context *ndc = netdev_priv(netdev);
2005         u32 *regs_buff = p;
2006
2007         /* increase the version, if buffer format is changed. */
2008         regs->version = 1;
2009
2010         memcpy(regs_buff, ndc->tx_table, VRSS_SEND_TAB_SIZE * sizeof(u32));
2011 }
2012
2013 static u32 netvsc_get_msglevel(struct net_device *ndev)
2014 {
2015         struct net_device_context *ndev_ctx = netdev_priv(ndev);
2016
2017         return ndev_ctx->msg_enable;
2018 }
2019
2020 static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
2021 {
2022         struct net_device_context *ndev_ctx = netdev_priv(ndev);
2023
2024         ndev_ctx->msg_enable = val;
2025 }
2026
2027 static const struct ethtool_ops ethtool_ops = {
2028         .get_drvinfo    = netvsc_get_drvinfo,
2029         .get_regs_len   = netvsc_get_regs_len,
2030         .get_regs       = netvsc_get_regs,
2031         .get_msglevel   = netvsc_get_msglevel,
2032         .set_msglevel   = netvsc_set_msglevel,
2033         .get_link       = ethtool_op_get_link,
2034         .get_ethtool_stats = netvsc_get_ethtool_stats,
2035         .get_sset_count = netvsc_get_sset_count,
2036         .get_strings    = netvsc_get_strings,
2037         .get_channels   = netvsc_get_channels,
2038         .set_channels   = netvsc_set_channels,
2039         .get_ts_info    = ethtool_op_get_ts_info,
2040         .get_rxnfc      = netvsc_get_rxnfc,
2041         .set_rxnfc      = netvsc_set_rxnfc,
2042         .get_rxfh_key_size = netvsc_get_rxfh_key_size,
2043         .get_rxfh_indir_size = netvsc_rss_indir_size,
2044         .get_rxfh       = netvsc_get_rxfh,
2045         .set_rxfh       = netvsc_set_rxfh,
2046         .get_link_ksettings = netvsc_get_link_ksettings,
2047         .set_link_ksettings = netvsc_set_link_ksettings,
2048         .get_ringparam  = netvsc_get_ringparam,
2049         .set_ringparam  = netvsc_set_ringparam,
2050 };
2051
2052 static const struct net_device_ops device_ops = {
2053         .ndo_open =                     netvsc_open,
2054         .ndo_stop =                     netvsc_close,
2055         .ndo_start_xmit =               netvsc_start_xmit,
2056         .ndo_change_rx_flags =          netvsc_change_rx_flags,
2057         .ndo_set_rx_mode =              netvsc_set_rx_mode,
2058         .ndo_fix_features =             netvsc_fix_features,
2059         .ndo_set_features =             netvsc_set_features,
2060         .ndo_change_mtu =               netvsc_change_mtu,
2061         .ndo_validate_addr =            eth_validate_addr,
2062         .ndo_set_mac_address =          netvsc_set_mac_addr,
2063         .ndo_select_queue =             netvsc_select_queue,
2064         .ndo_get_stats64 =              netvsc_get_stats64,
2065         .ndo_bpf =                      netvsc_bpf,
2066 };
2067
2068 /*
2069  * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
2070  * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
2071  * present send GARP packet to network peers with netif_notify_peers().
2072  */
2073 static void netvsc_link_change(struct work_struct *w)
2074 {
2075         struct net_device_context *ndev_ctx =
2076                 container_of(w, struct net_device_context, dwork.work);
2077         struct hv_device *device_obj = ndev_ctx->device_ctx;
2078         struct net_device *net = hv_get_drvdata(device_obj);
2079         unsigned long flags, next_reconfig, delay;
2080         struct netvsc_reconfig *event = NULL;
2081         struct netvsc_device *net_device;
2082         struct rndis_device *rdev;
2083         bool reschedule = false;
2084
2085         /* if changes are happening, comeback later */
2086         if (!rtnl_trylock()) {
2087                 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2088                 return;
2089         }
2090
2091         net_device = rtnl_dereference(ndev_ctx->nvdev);
2092         if (!net_device)
2093                 goto out_unlock;
2094
2095         rdev = net_device->extension;
2096
2097         next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
2098         if (time_is_after_jiffies(next_reconfig)) {
2099                 /* link_watch only sends one notification with current state
2100                  * per second, avoid doing reconfig more frequently. Handle
2101                  * wrap around.
2102                  */
2103                 delay = next_reconfig - jiffies;
2104                 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
2105                 schedule_delayed_work(&ndev_ctx->dwork, delay);
2106                 goto out_unlock;
2107         }
2108         ndev_ctx->last_reconfig = jiffies;
2109
2110         spin_lock_irqsave(&ndev_ctx->lock, flags);
2111         if (!list_empty(&ndev_ctx->reconfig_events)) {
2112                 event = list_first_entry(&ndev_ctx->reconfig_events,
2113                                          struct netvsc_reconfig, list);
2114                 list_del(&event->list);
2115                 reschedule = !list_empty(&ndev_ctx->reconfig_events);
2116         }
2117         spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2118
2119         if (!event)
2120                 goto out_unlock;
2121
2122         switch (event->event) {
2123                 /* Only the following events are possible due to the check in
2124                  * netvsc_linkstatus_callback()
2125                  */
2126         case RNDIS_STATUS_MEDIA_CONNECT:
2127                 if (rdev->link_state) {
2128                         rdev->link_state = false;
2129                         netif_carrier_on(net);
2130                         netvsc_tx_enable(net_device, net);
2131                 } else {
2132                         __netdev_notify_peers(net);
2133                 }
2134                 kfree(event);
2135                 break;
2136         case RNDIS_STATUS_MEDIA_DISCONNECT:
2137                 if (!rdev->link_state) {
2138                         rdev->link_state = true;
2139                         netif_carrier_off(net);
2140                         netvsc_tx_disable(net_device, net);
2141                 }
2142                 kfree(event);
2143                 break;
2144         case RNDIS_STATUS_NETWORK_CHANGE:
2145                 /* Only makes sense if carrier is present */
2146                 if (!rdev->link_state) {
2147                         rdev->link_state = true;
2148                         netif_carrier_off(net);
2149                         netvsc_tx_disable(net_device, net);
2150                         event->event = RNDIS_STATUS_MEDIA_CONNECT;
2151                         spin_lock_irqsave(&ndev_ctx->lock, flags);
2152                         list_add(&event->list, &ndev_ctx->reconfig_events);
2153                         spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2154                         reschedule = true;
2155                 }
2156                 break;
2157         }
2158
2159         rtnl_unlock();
2160
2161         /* link_watch only sends one notification with current state per
2162          * second, handle next reconfig event in 2 seconds.
2163          */
2164         if (reschedule)
2165                 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2166
2167         return;
2168
2169 out_unlock:
2170         rtnl_unlock();
2171 }
2172
2173 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
2174 {
2175         struct net_device_context *net_device_ctx;
2176         struct net_device *dev;
2177
2178         dev = netdev_master_upper_dev_get(vf_netdev);
2179         if (!dev || dev->netdev_ops != &device_ops)
2180                 return NULL;    /* not a netvsc device */
2181
2182         net_device_ctx = netdev_priv(dev);
2183         if (!rtnl_dereference(net_device_ctx->nvdev))
2184                 return NULL;    /* device is removed */
2185
2186         return dev;
2187 }
2188
2189 /* Called when VF is injecting data into network stack.
2190  * Change the associated network device from VF to netvsc.
2191  * note: already called with rcu_read_lock
2192  */
2193 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
2194 {
2195         struct sk_buff *skb = *pskb;
2196         struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
2197         struct net_device_context *ndev_ctx = netdev_priv(ndev);
2198         struct netvsc_vf_pcpu_stats *pcpu_stats
2199                  = this_cpu_ptr(ndev_ctx->vf_stats);
2200
2201         skb = skb_share_check(skb, GFP_ATOMIC);
2202         if (unlikely(!skb))
2203                 return RX_HANDLER_CONSUMED;
2204
2205         *pskb = skb;
2206
2207         skb->dev = ndev;
2208
2209         u64_stats_update_begin(&pcpu_stats->syncp);
2210         pcpu_stats->rx_packets++;
2211         pcpu_stats->rx_bytes += skb->len;
2212         u64_stats_update_end(&pcpu_stats->syncp);
2213
2214         return RX_HANDLER_ANOTHER;
2215 }
2216
2217 static int netvsc_vf_join(struct net_device *vf_netdev,
2218                           struct net_device *ndev)
2219 {
2220         struct net_device_context *ndev_ctx = netdev_priv(ndev);
2221         int ret;
2222
2223         ret = netdev_rx_handler_register(vf_netdev,
2224                                          netvsc_vf_handle_frame, ndev);
2225         if (ret != 0) {
2226                 netdev_err(vf_netdev,
2227                            "can not register netvsc VF receive handler (err = %d)\n",
2228                            ret);
2229                 goto rx_handler_failed;
2230         }
2231
2232         ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2233                                            NULL, NULL, NULL);
2234         if (ret != 0) {
2235                 netdev_err(vf_netdev,
2236                            "can not set master device %s (err = %d)\n",
2237                            ndev->name, ret);
2238                 goto upper_link_failed;
2239         }
2240
2241         /* set slave flag before open to prevent IPv6 addrconf */
2242         vf_netdev->flags |= IFF_SLAVE;
2243
2244         schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2245
2246         call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2247
2248         netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2249         return 0;
2250
2251 upper_link_failed:
2252         netdev_rx_handler_unregister(vf_netdev);
2253 rx_handler_failed:
2254         return ret;
2255 }
2256
2257 static void __netvsc_vf_setup(struct net_device *ndev,
2258                               struct net_device *vf_netdev)
2259 {
2260         int ret;
2261
2262         /* Align MTU of VF with master */
2263         ret = dev_set_mtu(vf_netdev, ndev->mtu);
2264         if (ret)
2265                 netdev_warn(vf_netdev,
2266                             "unable to change mtu to %u\n", ndev->mtu);
2267
2268         /* set multicast etc flags on VF */
2269         dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2270
2271         /* sync address list from ndev to VF */
2272         netif_addr_lock_bh(ndev);
2273         dev_uc_sync(vf_netdev, ndev);
2274         dev_mc_sync(vf_netdev, ndev);
2275         netif_addr_unlock_bh(ndev);
2276
2277         if (netif_running(ndev)) {
2278                 ret = dev_open(vf_netdev, NULL);
2279                 if (ret)
2280                         netdev_warn(vf_netdev,
2281                                     "unable to open: %d\n", ret);
2282         }
2283 }
2284
2285 /* Setup VF as slave of the synthetic device.
2286  * Runs in workqueue to avoid recursion in netlink callbacks.
2287  */
2288 static void netvsc_vf_setup(struct work_struct *w)
2289 {
2290         struct net_device_context *ndev_ctx
2291                 = container_of(w, struct net_device_context, vf_takeover.work);
2292         struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2293         struct net_device *vf_netdev;
2294
2295         if (!rtnl_trylock()) {
2296                 schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2297                 return;
2298         }
2299
2300         vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2301         if (vf_netdev)
2302                 __netvsc_vf_setup(ndev, vf_netdev);
2303
2304         rtnl_unlock();
2305 }
2306
2307 /* Find netvsc by VF serial number.
2308  * The PCI hyperv controller records the serial number as the slot kobj name.
2309  */
2310 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2311 {
2312         struct device *parent = vf_netdev->dev.parent;
2313         struct net_device_context *ndev_ctx;
2314         struct pci_dev *pdev;
2315         u32 serial;
2316
2317         if (!parent || !dev_is_pci(parent))
2318                 return NULL; /* not a PCI device */
2319
2320         pdev = to_pci_dev(parent);
2321         if (!pdev->slot) {
2322                 netdev_notice(vf_netdev, "no PCI slot information\n");
2323                 return NULL;
2324         }
2325
2326         if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2327                 netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2328                               pci_slot_name(pdev->slot));
2329                 return NULL;
2330         }
2331
2332         list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2333                 if (!ndev_ctx->vf_alloc)
2334                         continue;
2335
2336                 if (ndev_ctx->vf_serial == serial)
2337                         return hv_get_drvdata(ndev_ctx->device_ctx);
2338         }
2339
2340         netdev_notice(vf_netdev,
2341                       "no netdev found for vf serial:%u\n", serial);
2342         return NULL;
2343 }
2344
2345 static int netvsc_register_vf(struct net_device *vf_netdev)
2346 {
2347         struct net_device_context *net_device_ctx;
2348         struct netvsc_device *netvsc_dev;
2349         struct bpf_prog *prog;
2350         struct net_device *ndev;
2351         int ret;
2352
2353         if (vf_netdev->addr_len != ETH_ALEN)
2354                 return NOTIFY_DONE;
2355
2356         ndev = get_netvsc_byslot(vf_netdev);
2357         if (!ndev)
2358                 return NOTIFY_DONE;
2359
2360         net_device_ctx = netdev_priv(ndev);
2361         netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2362         if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2363                 return NOTIFY_DONE;
2364
2365         /* if synthetic interface is a different namespace,
2366          * then move the VF to that namespace; join will be
2367          * done again in that context.
2368          */
2369         if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2370                 ret = dev_change_net_namespace(vf_netdev,
2371                                                dev_net(ndev), "eth%d");
2372                 if (ret)
2373                         netdev_err(vf_netdev,
2374                                    "could not move to same namespace as %s: %d\n",
2375                                    ndev->name, ret);
2376                 else
2377                         netdev_info(vf_netdev,
2378                                     "VF moved to namespace with: %s\n",
2379                                     ndev->name);
2380                 return NOTIFY_DONE;
2381         }
2382
2383         netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2384
2385         if (netvsc_vf_join(vf_netdev, ndev) != 0)
2386                 return NOTIFY_DONE;
2387
2388         dev_hold(vf_netdev);
2389         rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2390
2391         vf_netdev->wanted_features = ndev->features;
2392         netdev_update_features(vf_netdev);
2393
2394         prog = netvsc_xdp_get(netvsc_dev);
2395         netvsc_vf_setxdp(vf_netdev, prog);
2396
2397         return NOTIFY_OK;
2398 }
2399
2400 /* Change the data path when VF UP/DOWN/CHANGE are detected.
2401  *
2402  * Typically a UP or DOWN event is followed by a CHANGE event, so
2403  * net_device_ctx->data_path_is_vf is used to cache the current data path
2404  * to avoid the duplicate call of netvsc_switch_datapath() and the duplicate
2405  * message.
2406  *
2407  * During hibernation, if a VF NIC driver (e.g. mlx5) preserves the network
2408  * interface, there is only the CHANGE event and no UP or DOWN event.
2409  */
2410 static int netvsc_vf_changed(struct net_device *vf_netdev, unsigned long event)
2411 {
2412         struct net_device_context *net_device_ctx;
2413         struct netvsc_device *netvsc_dev;
2414         struct net_device *ndev;
2415         bool vf_is_up = false;
2416
2417         if (event != NETDEV_GOING_DOWN)
2418                 vf_is_up = netif_running(vf_netdev);
2419
2420         ndev = get_netvsc_byref(vf_netdev);
2421         if (!ndev)
2422                 return NOTIFY_DONE;
2423
2424         net_device_ctx = netdev_priv(ndev);
2425         netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2426         if (!netvsc_dev)
2427                 return NOTIFY_DONE;
2428
2429         if (net_device_ctx->data_path_is_vf == vf_is_up)
2430                 return NOTIFY_OK;
2431
2432         netvsc_switch_datapath(ndev, vf_is_up);
2433         netdev_info(ndev, "Data path switched %s VF: %s\n",
2434                     vf_is_up ? "to" : "from", vf_netdev->name);
2435
2436         return NOTIFY_OK;
2437 }
2438
2439 static int netvsc_unregister_vf(struct net_device *vf_netdev)
2440 {
2441         struct net_device *ndev;
2442         struct net_device_context *net_device_ctx;
2443
2444         ndev = get_netvsc_byref(vf_netdev);
2445         if (!ndev)
2446                 return NOTIFY_DONE;
2447
2448         net_device_ctx = netdev_priv(ndev);
2449         cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2450
2451         netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2452
2453         netvsc_vf_setxdp(vf_netdev, NULL);
2454
2455         netdev_rx_handler_unregister(vf_netdev);
2456         netdev_upper_dev_unlink(vf_netdev, ndev);
2457         RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2458         dev_put(vf_netdev);
2459
2460         return NOTIFY_OK;
2461 }
2462
2463 static int netvsc_probe(struct hv_device *dev,
2464                         const struct hv_vmbus_device_id *dev_id)
2465 {
2466         struct net_device *net = NULL;
2467         struct net_device_context *net_device_ctx;
2468         struct netvsc_device_info *device_info = NULL;
2469         struct netvsc_device *nvdev;
2470         int ret = -ENOMEM;
2471
2472         net = alloc_etherdev_mq(sizeof(struct net_device_context),
2473                                 VRSS_CHANNEL_MAX);
2474         if (!net)
2475                 goto no_net;
2476
2477         netif_carrier_off(net);
2478
2479         netvsc_init_settings(net);
2480
2481         net_device_ctx = netdev_priv(net);
2482         net_device_ctx->device_ctx = dev;
2483         net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2484         if (netif_msg_probe(net_device_ctx))
2485                 netdev_dbg(net, "netvsc msg_enable: %d\n",
2486                            net_device_ctx->msg_enable);
2487
2488         hv_set_drvdata(dev, net);
2489
2490         INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2491
2492         spin_lock_init(&net_device_ctx->lock);
2493         INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2494         INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2495
2496         net_device_ctx->vf_stats
2497                 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2498         if (!net_device_ctx->vf_stats)
2499                 goto no_stats;
2500
2501         net->netdev_ops = &device_ops;
2502         net->ethtool_ops = &ethtool_ops;
2503         SET_NETDEV_DEV(net, &dev->device);
2504
2505         /* We always need headroom for rndis header */
2506         net->needed_headroom = RNDIS_AND_PPI_SIZE;
2507
2508         /* Initialize the number of queues to be 1, we may change it if more
2509          * channels are offered later.
2510          */
2511         netif_set_real_num_tx_queues(net, 1);
2512         netif_set_real_num_rx_queues(net, 1);
2513
2514         /* Notify the netvsc driver of the new device */
2515         device_info = netvsc_devinfo_get(NULL);
2516
2517         if (!device_info) {
2518                 ret = -ENOMEM;
2519                 goto devinfo_failed;
2520         }
2521
2522         nvdev = rndis_filter_device_add(dev, device_info);
2523         if (IS_ERR(nvdev)) {
2524                 ret = PTR_ERR(nvdev);
2525                 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2526                 goto rndis_failed;
2527         }
2528
2529         memcpy(net->dev_addr, device_info->mac_adr, ETH_ALEN);
2530
2531         /* We must get rtnl lock before scheduling nvdev->subchan_work,
2532          * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2533          * all subchannels to show up, but that may not happen because
2534          * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2535          * -> ... -> device_add() -> ... -> __device_attach() can't get
2536          * the device lock, so all the subchannels can't be processed --
2537          * finally netvsc_subchan_work() hangs forever.
2538          */
2539         rtnl_lock();
2540
2541         if (nvdev->num_chn > 1)
2542                 schedule_work(&nvdev->subchan_work);
2543
2544         /* hw_features computed in rndis_netdev_set_hwcaps() */
2545         net->features = net->hw_features |
2546                 NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX |
2547                 NETIF_F_HW_VLAN_CTAG_RX;
2548         net->vlan_features = net->features;
2549
2550         netdev_lockdep_set_classes(net);
2551
2552         /* MTU range: 68 - 1500 or 65521 */
2553         net->min_mtu = NETVSC_MTU_MIN;
2554         if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2555                 net->max_mtu = NETVSC_MTU - ETH_HLEN;
2556         else
2557                 net->max_mtu = ETH_DATA_LEN;
2558
2559         nvdev->tx_disable = false;
2560
2561         ret = register_netdevice(net);
2562         if (ret != 0) {
2563                 pr_err("Unable to register netdev.\n");
2564                 goto register_failed;
2565         }
2566
2567         list_add(&net_device_ctx->list, &netvsc_dev_list);
2568         rtnl_unlock();
2569
2570         netvsc_devinfo_put(device_info);
2571         return 0;
2572
2573 register_failed:
2574         rtnl_unlock();
2575         rndis_filter_device_remove(dev, nvdev);
2576 rndis_failed:
2577         netvsc_devinfo_put(device_info);
2578 devinfo_failed:
2579         free_percpu(net_device_ctx->vf_stats);
2580 no_stats:
2581         hv_set_drvdata(dev, NULL);
2582         free_netdev(net);
2583 no_net:
2584         return ret;
2585 }
2586
2587 static int netvsc_remove(struct hv_device *dev)
2588 {
2589         struct net_device_context *ndev_ctx;
2590         struct net_device *vf_netdev, *net;
2591         struct netvsc_device *nvdev;
2592
2593         net = hv_get_drvdata(dev);
2594         if (net == NULL) {
2595                 dev_err(&dev->device, "No net device to remove\n");
2596                 return 0;
2597         }
2598
2599         ndev_ctx = netdev_priv(net);
2600
2601         cancel_delayed_work_sync(&ndev_ctx->dwork);
2602
2603         rtnl_lock();
2604         nvdev = rtnl_dereference(ndev_ctx->nvdev);
2605         if (nvdev) {
2606                 cancel_work_sync(&nvdev->subchan_work);
2607                 netvsc_xdp_set(net, NULL, NULL, nvdev);
2608         }
2609
2610         /*
2611          * Call to the vsc driver to let it know that the device is being
2612          * removed. Also blocks mtu and channel changes.
2613          */
2614         vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2615         if (vf_netdev)
2616                 netvsc_unregister_vf(vf_netdev);
2617
2618         if (nvdev)
2619                 rndis_filter_device_remove(dev, nvdev);
2620
2621         unregister_netdevice(net);
2622         list_del(&ndev_ctx->list);
2623
2624         rtnl_unlock();
2625
2626         hv_set_drvdata(dev, NULL);
2627
2628         free_percpu(ndev_ctx->vf_stats);
2629         free_netdev(net);
2630         return 0;
2631 }
2632
2633 static int netvsc_suspend(struct hv_device *dev)
2634 {
2635         struct net_device_context *ndev_ctx;
2636         struct netvsc_device *nvdev;
2637         struct net_device *net;
2638         int ret;
2639
2640         net = hv_get_drvdata(dev);
2641
2642         ndev_ctx = netdev_priv(net);
2643         cancel_delayed_work_sync(&ndev_ctx->dwork);
2644
2645         rtnl_lock();
2646
2647         nvdev = rtnl_dereference(ndev_ctx->nvdev);
2648         if (nvdev == NULL) {
2649                 ret = -ENODEV;
2650                 goto out;
2651         }
2652
2653         /* Save the current config info */
2654         ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev);
2655
2656         ret = netvsc_detach(net, nvdev);
2657 out:
2658         rtnl_unlock();
2659
2660         return ret;
2661 }
2662
2663 static int netvsc_resume(struct hv_device *dev)
2664 {
2665         struct net_device *net = hv_get_drvdata(dev);
2666         struct net_device_context *net_device_ctx;
2667         struct netvsc_device_info *device_info;
2668         int ret;
2669
2670         rtnl_lock();
2671
2672         net_device_ctx = netdev_priv(net);
2673
2674         /* Reset the data path to the netvsc NIC before re-opening the vmbus
2675          * channel. Later netvsc_netdev_event() will switch the data path to
2676          * the VF upon the UP or CHANGE event.
2677          */
2678         net_device_ctx->data_path_is_vf = false;
2679         device_info = net_device_ctx->saved_netvsc_dev_info;
2680
2681         ret = netvsc_attach(net, device_info);
2682
2683         netvsc_devinfo_put(device_info);
2684         net_device_ctx->saved_netvsc_dev_info = NULL;
2685
2686         rtnl_unlock();
2687
2688         return ret;
2689 }
2690 static const struct hv_vmbus_device_id id_table[] = {
2691         /* Network guid */
2692         { HV_NIC_GUID, },
2693         { },
2694 };
2695
2696 MODULE_DEVICE_TABLE(vmbus, id_table);
2697
2698 /* The one and only one */
2699 static struct  hv_driver netvsc_drv = {
2700         .name = KBUILD_MODNAME,
2701         .id_table = id_table,
2702         .probe = netvsc_probe,
2703         .remove = netvsc_remove,
2704         .suspend = netvsc_suspend,
2705         .resume = netvsc_resume,
2706         .driver = {
2707                 .probe_type = PROBE_FORCE_SYNCHRONOUS,
2708         },
2709 };
2710
2711 /*
2712  * On Hyper-V, every VF interface is matched with a corresponding
2713  * synthetic interface. The synthetic interface is presented first
2714  * to the guest. When the corresponding VF instance is registered,
2715  * we will take care of switching the data path.
2716  */
2717 static int netvsc_netdev_event(struct notifier_block *this,
2718                                unsigned long event, void *ptr)
2719 {
2720         struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2721
2722         /* Skip our own events */
2723         if (event_dev->netdev_ops == &device_ops)
2724                 return NOTIFY_DONE;
2725
2726         /* Avoid non-Ethernet type devices */
2727         if (event_dev->type != ARPHRD_ETHER)
2728                 return NOTIFY_DONE;
2729
2730         /* Avoid Vlan dev with same MAC registering as VF */
2731         if (is_vlan_dev(event_dev))
2732                 return NOTIFY_DONE;
2733
2734         /* Avoid Bonding master dev with same MAC registering as VF */
2735         if ((event_dev->priv_flags & IFF_BONDING) &&
2736             (event_dev->flags & IFF_MASTER))
2737                 return NOTIFY_DONE;
2738
2739         switch (event) {
2740         case NETDEV_REGISTER:
2741                 return netvsc_register_vf(event_dev);
2742         case NETDEV_UNREGISTER:
2743                 return netvsc_unregister_vf(event_dev);
2744         case NETDEV_UP:
2745         case NETDEV_DOWN:
2746         case NETDEV_CHANGE:
2747         case NETDEV_GOING_DOWN:
2748                 return netvsc_vf_changed(event_dev, event);
2749         default:
2750                 return NOTIFY_DONE;
2751         }
2752 }
2753
2754 static struct notifier_block netvsc_netdev_notifier = {
2755         .notifier_call = netvsc_netdev_event,
2756 };
2757
2758 static void __exit netvsc_drv_exit(void)
2759 {
2760         unregister_netdevice_notifier(&netvsc_netdev_notifier);
2761         vmbus_driver_unregister(&netvsc_drv);
2762 }
2763
2764 static int __init netvsc_drv_init(void)
2765 {
2766         int ret;
2767
2768         if (ring_size < RING_SIZE_MIN) {
2769                 ring_size = RING_SIZE_MIN;
2770                 pr_info("Increased ring_size to %u (min allowed)\n",
2771                         ring_size);
2772         }
2773         netvsc_ring_bytes = ring_size * PAGE_SIZE;
2774
2775         ret = vmbus_driver_register(&netvsc_drv);
2776         if (ret)
2777                 return ret;
2778
2779         register_netdevice_notifier(&netvsc_netdev_notifier);
2780         return 0;
2781 }
2782
2783 MODULE_LICENSE("GPL");
2784 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2785
2786 module_init(netvsc_drv_init);
2787 module_exit(netvsc_drv_exit);