Merge remote-tracking branches 'asoc/topic/max98090', 'asoc/topic/max98095', 'asoc...
[linux-block.git] / drivers / net / hyperv / netvsc_drv.c
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * Authors:
17  *   Haiyang Zhang <haiyangz@microsoft.com>
18  *   Hank Janssen  <hjanssen@microsoft.com>
19  */
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/init.h>
23 #include <linux/atomic.h>
24 #include <linux/module.h>
25 #include <linux/highmem.h>
26 #include <linux/device.h>
27 #include <linux/io.h>
28 #include <linux/delay.h>
29 #include <linux/netdevice.h>
30 #include <linux/inetdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/skbuff.h>
33 #include <linux/if_vlan.h>
34 #include <linux/in.h>
35 #include <linux/slab.h>
36 #include <linux/rtnetlink.h>
37 #include <linux/netpoll.h>
38 #include <linux/reciprocal_div.h>
39
40 #include <net/arp.h>
41 #include <net/route.h>
42 #include <net/sock.h>
43 #include <net/pkt_sched.h>
44 #include <net/checksum.h>
45 #include <net/ip6_checksum.h>
46
47 #include "hyperv_net.h"
48
49 #define RING_SIZE_MIN   64
50 #define RETRY_US_LO     5000
51 #define RETRY_US_HI     10000
52 #define RETRY_MAX       2000    /* >10 sec */
53
54 #define LINKCHANGE_INT (2 * HZ)
55 #define VF_TAKEOVER_INT (HZ / 10)
56
57 static unsigned int ring_size __ro_after_init = 128;
58 module_param(ring_size, uint, S_IRUGO);
59 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
60 unsigned int netvsc_ring_bytes __ro_after_init;
61 struct reciprocal_value netvsc_ring_reciprocal __ro_after_init;
62
63 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
64                                 NETIF_MSG_LINK | NETIF_MSG_IFUP |
65                                 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
66                                 NETIF_MSG_TX_ERR;
67
68 static int debug = -1;
69 module_param(debug, int, S_IRUGO);
70 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
71
72 static void netvsc_change_rx_flags(struct net_device *net, int change)
73 {
74         struct net_device_context *ndev_ctx = netdev_priv(net);
75         struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
76         int inc;
77
78         if (!vf_netdev)
79                 return;
80
81         if (change & IFF_PROMISC) {
82                 inc = (net->flags & IFF_PROMISC) ? 1 : -1;
83                 dev_set_promiscuity(vf_netdev, inc);
84         }
85
86         if (change & IFF_ALLMULTI) {
87                 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
88                 dev_set_allmulti(vf_netdev, inc);
89         }
90 }
91
92 static void netvsc_set_rx_mode(struct net_device *net)
93 {
94         struct net_device_context *ndev_ctx = netdev_priv(net);
95         struct net_device *vf_netdev;
96         struct netvsc_device *nvdev;
97
98         rcu_read_lock();
99         vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
100         if (vf_netdev) {
101                 dev_uc_sync(vf_netdev, net);
102                 dev_mc_sync(vf_netdev, net);
103         }
104
105         nvdev = rcu_dereference(ndev_ctx->nvdev);
106         if (nvdev)
107                 rndis_filter_update(nvdev);
108         rcu_read_unlock();
109 }
110
111 static int netvsc_open(struct net_device *net)
112 {
113         struct net_device_context *ndev_ctx = netdev_priv(net);
114         struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
115         struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
116         struct rndis_device *rdev;
117         int ret = 0;
118
119         netif_carrier_off(net);
120
121         /* Open up the device */
122         ret = rndis_filter_open(nvdev);
123         if (ret != 0) {
124                 netdev_err(net, "unable to open device (ret %d).\n", ret);
125                 return ret;
126         }
127
128         rdev = nvdev->extension;
129         if (!rdev->link_state)
130                 netif_carrier_on(net);
131
132         if (vf_netdev) {
133                 /* Setting synthetic device up transparently sets
134                  * slave as up. If open fails, then slave will be
135                  * still be offline (and not used).
136                  */
137                 ret = dev_open(vf_netdev);
138                 if (ret)
139                         netdev_warn(net,
140                                     "unable to open slave: %s: %d\n",
141                                     vf_netdev->name, ret);
142         }
143         return 0;
144 }
145
146 static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
147 {
148         unsigned int retry = 0;
149         int i;
150
151         /* Ensure pending bytes in ring are read */
152         for (;;) {
153                 u32 aread = 0;
154
155                 for (i = 0; i < nvdev->num_chn; i++) {
156                         struct vmbus_channel *chn
157                                 = nvdev->chan_table[i].channel;
158
159                         if (!chn)
160                                 continue;
161
162                         /* make sure receive not running now */
163                         napi_synchronize(&nvdev->chan_table[i].napi);
164
165                         aread = hv_get_bytes_to_read(&chn->inbound);
166                         if (aread)
167                                 break;
168
169                         aread = hv_get_bytes_to_read(&chn->outbound);
170                         if (aread)
171                                 break;
172                 }
173
174                 if (aread == 0)
175                         return 0;
176
177                 if (++retry > RETRY_MAX)
178                         return -ETIMEDOUT;
179
180                 usleep_range(RETRY_US_LO, RETRY_US_HI);
181         }
182 }
183
184 static int netvsc_close(struct net_device *net)
185 {
186         struct net_device_context *net_device_ctx = netdev_priv(net);
187         struct net_device *vf_netdev
188                 = rtnl_dereference(net_device_ctx->vf_netdev);
189         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
190         int ret;
191
192         netif_tx_disable(net);
193
194         /* No need to close rndis filter if it is removed already */
195         if (!nvdev)
196                 return 0;
197
198         ret = rndis_filter_close(nvdev);
199         if (ret != 0) {
200                 netdev_err(net, "unable to close device (ret %d).\n", ret);
201                 return ret;
202         }
203
204         ret = netvsc_wait_until_empty(nvdev);
205         if (ret)
206                 netdev_err(net, "Ring buffer not empty after closing rndis\n");
207
208         if (vf_netdev)
209                 dev_close(vf_netdev);
210
211         return ret;
212 }
213
214 static inline void *init_ppi_data(struct rndis_message *msg,
215                                   u32 ppi_size, u32 pkt_type)
216 {
217         struct rndis_packet *rndis_pkt = &msg->msg.pkt;
218         struct rndis_per_packet_info *ppi;
219
220         rndis_pkt->data_offset += ppi_size;
221         ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
222                 + rndis_pkt->per_pkt_info_len;
223
224         ppi->size = ppi_size;
225         ppi->type = pkt_type;
226         ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
227
228         rndis_pkt->per_pkt_info_len += ppi_size;
229
230         return ppi + 1;
231 }
232
233 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented
234  * packets. We can use ethtool to change UDP hash level when necessary.
235  */
236 static inline u32 netvsc_get_hash(
237         struct sk_buff *skb,
238         const struct net_device_context *ndc)
239 {
240         struct flow_keys flow;
241         u32 hash, pkt_proto = 0;
242         static u32 hashrnd __read_mostly;
243
244         net_get_random_once(&hashrnd, sizeof(hashrnd));
245
246         if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
247                 return 0;
248
249         switch (flow.basic.ip_proto) {
250         case IPPROTO_TCP:
251                 if (flow.basic.n_proto == htons(ETH_P_IP))
252                         pkt_proto = HV_TCP4_L4HASH;
253                 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
254                         pkt_proto = HV_TCP6_L4HASH;
255
256                 break;
257
258         case IPPROTO_UDP:
259                 if (flow.basic.n_proto == htons(ETH_P_IP))
260                         pkt_proto = HV_UDP4_L4HASH;
261                 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
262                         pkt_proto = HV_UDP6_L4HASH;
263
264                 break;
265         }
266
267         if (pkt_proto & ndc->l4_hash) {
268                 return skb_get_hash(skb);
269         } else {
270                 if (flow.basic.n_proto == htons(ETH_P_IP))
271                         hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
272                 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
273                         hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
274                 else
275                         hash = 0;
276
277                 skb_set_hash(skb, hash, PKT_HASH_TYPE_L3);
278         }
279
280         return hash;
281 }
282
283 static inline int netvsc_get_tx_queue(struct net_device *ndev,
284                                       struct sk_buff *skb, int old_idx)
285 {
286         const struct net_device_context *ndc = netdev_priv(ndev);
287         struct sock *sk = skb->sk;
288         int q_idx;
289
290         q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
291                               (VRSS_SEND_TAB_SIZE - 1)];
292
293         /* If queue index changed record the new value */
294         if (q_idx != old_idx &&
295             sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
296                 sk_tx_queue_set(sk, q_idx);
297
298         return q_idx;
299 }
300
301 /*
302  * Select queue for transmit.
303  *
304  * If a valid queue has already been assigned, then use that.
305  * Otherwise compute tx queue based on hash and the send table.
306  *
307  * This is basically similar to default (__netdev_pick_tx) with the added step
308  * of using the host send_table when no other queue has been assigned.
309  *
310  * TODO support XPS - but get_xps_queue not exported
311  */
312 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
313 {
314         int q_idx = sk_tx_queue_get(skb->sk);
315
316         if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
317                 /* If forwarding a packet, we use the recorded queue when
318                  * available for better cache locality.
319                  */
320                 if (skb_rx_queue_recorded(skb))
321                         q_idx = skb_get_rx_queue(skb);
322                 else
323                         q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
324         }
325
326         return q_idx;
327 }
328
329 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
330                                void *accel_priv,
331                                select_queue_fallback_t fallback)
332 {
333         struct net_device_context *ndc = netdev_priv(ndev);
334         struct net_device *vf_netdev;
335         u16 txq;
336
337         rcu_read_lock();
338         vf_netdev = rcu_dereference(ndc->vf_netdev);
339         if (vf_netdev) {
340                 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
341
342                 if (vf_ops->ndo_select_queue)
343                         txq = vf_ops->ndo_select_queue(vf_netdev, skb,
344                                                        accel_priv, fallback);
345                 else
346                         txq = fallback(vf_netdev, skb);
347
348                 /* Record the queue selected by VF so that it can be
349                  * used for common case where VF has more queues than
350                  * the synthetic device.
351                  */
352                 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
353         } else {
354                 txq = netvsc_pick_tx(ndev, skb);
355         }
356         rcu_read_unlock();
357
358         while (unlikely(txq >= ndev->real_num_tx_queues))
359                 txq -= ndev->real_num_tx_queues;
360
361         return txq;
362 }
363
364 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
365                        struct hv_page_buffer *pb)
366 {
367         int j = 0;
368
369         /* Deal with compund pages by ignoring unused part
370          * of the page.
371          */
372         page += (offset >> PAGE_SHIFT);
373         offset &= ~PAGE_MASK;
374
375         while (len > 0) {
376                 unsigned long bytes;
377
378                 bytes = PAGE_SIZE - offset;
379                 if (bytes > len)
380                         bytes = len;
381                 pb[j].pfn = page_to_pfn(page);
382                 pb[j].offset = offset;
383                 pb[j].len = bytes;
384
385                 offset += bytes;
386                 len -= bytes;
387
388                 if (offset == PAGE_SIZE && len) {
389                         page++;
390                         offset = 0;
391                         j++;
392                 }
393         }
394
395         return j + 1;
396 }
397
398 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
399                            struct hv_netvsc_packet *packet,
400                            struct hv_page_buffer *pb)
401 {
402         u32 slots_used = 0;
403         char *data = skb->data;
404         int frags = skb_shinfo(skb)->nr_frags;
405         int i;
406
407         /* The packet is laid out thus:
408          * 1. hdr: RNDIS header and PPI
409          * 2. skb linear data
410          * 3. skb fragment data
411          */
412         slots_used += fill_pg_buf(virt_to_page(hdr),
413                                   offset_in_page(hdr),
414                                   len, &pb[slots_used]);
415
416         packet->rmsg_size = len;
417         packet->rmsg_pgcnt = slots_used;
418
419         slots_used += fill_pg_buf(virt_to_page(data),
420                                 offset_in_page(data),
421                                 skb_headlen(skb), &pb[slots_used]);
422
423         for (i = 0; i < frags; i++) {
424                 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
425
426                 slots_used += fill_pg_buf(skb_frag_page(frag),
427                                         frag->page_offset,
428                                         skb_frag_size(frag), &pb[slots_used]);
429         }
430         return slots_used;
431 }
432
433 static int count_skb_frag_slots(struct sk_buff *skb)
434 {
435         int i, frags = skb_shinfo(skb)->nr_frags;
436         int pages = 0;
437
438         for (i = 0; i < frags; i++) {
439                 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
440                 unsigned long size = skb_frag_size(frag);
441                 unsigned long offset = frag->page_offset;
442
443                 /* Skip unused frames from start of page */
444                 offset &= ~PAGE_MASK;
445                 pages += PFN_UP(offset + size);
446         }
447         return pages;
448 }
449
450 static int netvsc_get_slots(struct sk_buff *skb)
451 {
452         char *data = skb->data;
453         unsigned int offset = offset_in_page(data);
454         unsigned int len = skb_headlen(skb);
455         int slots;
456         int frag_slots;
457
458         slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
459         frag_slots = count_skb_frag_slots(skb);
460         return slots + frag_slots;
461 }
462
463 static u32 net_checksum_info(struct sk_buff *skb)
464 {
465         if (skb->protocol == htons(ETH_P_IP)) {
466                 struct iphdr *ip = ip_hdr(skb);
467
468                 if (ip->protocol == IPPROTO_TCP)
469                         return TRANSPORT_INFO_IPV4_TCP;
470                 else if (ip->protocol == IPPROTO_UDP)
471                         return TRANSPORT_INFO_IPV4_UDP;
472         } else {
473                 struct ipv6hdr *ip6 = ipv6_hdr(skb);
474
475                 if (ip6->nexthdr == IPPROTO_TCP)
476                         return TRANSPORT_INFO_IPV6_TCP;
477                 else if (ip6->nexthdr == IPPROTO_UDP)
478                         return TRANSPORT_INFO_IPV6_UDP;
479         }
480
481         return TRANSPORT_INFO_NOT_IP;
482 }
483
484 /* Send skb on the slave VF device. */
485 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
486                           struct sk_buff *skb)
487 {
488         struct net_device_context *ndev_ctx = netdev_priv(net);
489         unsigned int len = skb->len;
490         int rc;
491
492         skb->dev = vf_netdev;
493         skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping;
494
495         rc = dev_queue_xmit(skb);
496         if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
497                 struct netvsc_vf_pcpu_stats *pcpu_stats
498                         = this_cpu_ptr(ndev_ctx->vf_stats);
499
500                 u64_stats_update_begin(&pcpu_stats->syncp);
501                 pcpu_stats->tx_packets++;
502                 pcpu_stats->tx_bytes += len;
503                 u64_stats_update_end(&pcpu_stats->syncp);
504         } else {
505                 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
506         }
507
508         return rc;
509 }
510
511 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
512 {
513         struct net_device_context *net_device_ctx = netdev_priv(net);
514         struct hv_netvsc_packet *packet = NULL;
515         int ret;
516         unsigned int num_data_pgs;
517         struct rndis_message *rndis_msg;
518         struct net_device *vf_netdev;
519         u32 rndis_msg_size;
520         u32 hash;
521         struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
522
523         /* if VF is present and up then redirect packets
524          * already called with rcu_read_lock_bh
525          */
526         vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
527         if (vf_netdev && netif_running(vf_netdev) &&
528             !netpoll_tx_running(net))
529                 return netvsc_vf_xmit(net, vf_netdev, skb);
530
531         /* We will atmost need two pages to describe the rndis
532          * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
533          * of pages in a single packet. If skb is scattered around
534          * more pages we try linearizing it.
535          */
536
537         num_data_pgs = netvsc_get_slots(skb) + 2;
538
539         if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
540                 ++net_device_ctx->eth_stats.tx_scattered;
541
542                 if (skb_linearize(skb))
543                         goto no_memory;
544
545                 num_data_pgs = netvsc_get_slots(skb) + 2;
546                 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
547                         ++net_device_ctx->eth_stats.tx_too_big;
548                         goto drop;
549                 }
550         }
551
552         /*
553          * Place the rndis header in the skb head room and
554          * the skb->cb will be used for hv_netvsc_packet
555          * structure.
556          */
557         ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
558         if (ret)
559                 goto no_memory;
560
561         /* Use the skb control buffer for building up the packet */
562         BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
563                         FIELD_SIZEOF(struct sk_buff, cb));
564         packet = (struct hv_netvsc_packet *)skb->cb;
565
566         packet->q_idx = skb_get_queue_mapping(skb);
567
568         packet->total_data_buflen = skb->len;
569         packet->total_bytes = skb->len;
570         packet->total_packets = 1;
571
572         rndis_msg = (struct rndis_message *)skb->head;
573
574         /* Add the rndis header */
575         rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
576         rndis_msg->msg_len = packet->total_data_buflen;
577
578         rndis_msg->msg.pkt = (struct rndis_packet) {
579                 .data_offset = sizeof(struct rndis_packet),
580                 .data_len = packet->total_data_buflen,
581                 .per_pkt_info_offset = sizeof(struct rndis_packet),
582         };
583
584         rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
585
586         hash = skb_get_hash_raw(skb);
587         if (hash != 0 && net->real_num_tx_queues > 1) {
588                 u32 *hash_info;
589
590                 rndis_msg_size += NDIS_HASH_PPI_SIZE;
591                 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
592                                           NBL_HASH_VALUE);
593                 *hash_info = hash;
594         }
595
596         if (skb_vlan_tag_present(skb)) {
597                 struct ndis_pkt_8021q_info *vlan;
598
599                 rndis_msg_size += NDIS_VLAN_PPI_SIZE;
600                 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
601                                      IEEE_8021Q_INFO);
602
603                 vlan->value = 0;
604                 vlan->vlanid = skb->vlan_tci & VLAN_VID_MASK;
605                 vlan->pri = (skb->vlan_tci & VLAN_PRIO_MASK) >>
606                                 VLAN_PRIO_SHIFT;
607         }
608
609         if (skb_is_gso(skb)) {
610                 struct ndis_tcp_lso_info *lso_info;
611
612                 rndis_msg_size += NDIS_LSO_PPI_SIZE;
613                 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
614                                          TCP_LARGESEND_PKTINFO);
615
616                 lso_info->value = 0;
617                 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
618                 if (skb->protocol == htons(ETH_P_IP)) {
619                         lso_info->lso_v2_transmit.ip_version =
620                                 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
621                         ip_hdr(skb)->tot_len = 0;
622                         ip_hdr(skb)->check = 0;
623                         tcp_hdr(skb)->check =
624                                 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
625                                                    ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
626                 } else {
627                         lso_info->lso_v2_transmit.ip_version =
628                                 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
629                         ipv6_hdr(skb)->payload_len = 0;
630                         tcp_hdr(skb)->check =
631                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
632                                                  &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
633                 }
634                 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
635                 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
636         } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
637                 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
638                         struct ndis_tcp_ip_checksum_info *csum_info;
639
640                         rndis_msg_size += NDIS_CSUM_PPI_SIZE;
641                         csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
642                                                   TCPIP_CHKSUM_PKTINFO);
643
644                         csum_info->value = 0;
645                         csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
646
647                         if (skb->protocol == htons(ETH_P_IP)) {
648                                 csum_info->transmit.is_ipv4 = 1;
649
650                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
651                                         csum_info->transmit.tcp_checksum = 1;
652                                 else
653                                         csum_info->transmit.udp_checksum = 1;
654                         } else {
655                                 csum_info->transmit.is_ipv6 = 1;
656
657                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
658                                         csum_info->transmit.tcp_checksum = 1;
659                                 else
660                                         csum_info->transmit.udp_checksum = 1;
661                         }
662                 } else {
663                         /* Can't do offload of this type of checksum */
664                         if (skb_checksum_help(skb))
665                                 goto drop;
666                 }
667         }
668
669         /* Start filling in the page buffers with the rndis hdr */
670         rndis_msg->msg_len += rndis_msg_size;
671         packet->total_data_buflen = rndis_msg->msg_len;
672         packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
673                                                skb, packet, pb);
674
675         /* timestamp packet in software */
676         skb_tx_timestamp(skb);
677
678         ret = netvsc_send(net, packet, rndis_msg, pb, skb);
679         if (likely(ret == 0))
680                 return NETDEV_TX_OK;
681
682         if (ret == -EAGAIN) {
683                 ++net_device_ctx->eth_stats.tx_busy;
684                 return NETDEV_TX_BUSY;
685         }
686
687         if (ret == -ENOSPC)
688                 ++net_device_ctx->eth_stats.tx_no_space;
689
690 drop:
691         dev_kfree_skb_any(skb);
692         net->stats.tx_dropped++;
693
694         return NETDEV_TX_OK;
695
696 no_memory:
697         ++net_device_ctx->eth_stats.tx_no_memory;
698         goto drop;
699 }
700
701 /*
702  * netvsc_linkstatus_callback - Link up/down notification
703  */
704 void netvsc_linkstatus_callback(struct net_device *net,
705                                 struct rndis_message *resp)
706 {
707         struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
708         struct net_device_context *ndev_ctx = netdev_priv(net);
709         struct netvsc_reconfig *event;
710         unsigned long flags;
711
712         /* Update the physical link speed when changing to another vSwitch */
713         if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
714                 u32 speed;
715
716                 speed = *(u32 *)((void *)indicate
717                                  + indicate->status_buf_offset) / 10000;
718                 ndev_ctx->speed = speed;
719                 return;
720         }
721
722         /* Handle these link change statuses below */
723         if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
724             indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
725             indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
726                 return;
727
728         if (net->reg_state != NETREG_REGISTERED)
729                 return;
730
731         event = kzalloc(sizeof(*event), GFP_ATOMIC);
732         if (!event)
733                 return;
734         event->event = indicate->status;
735
736         spin_lock_irqsave(&ndev_ctx->lock, flags);
737         list_add_tail(&event->list, &ndev_ctx->reconfig_events);
738         spin_unlock_irqrestore(&ndev_ctx->lock, flags);
739
740         schedule_delayed_work(&ndev_ctx->dwork, 0);
741 }
742
743 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
744                                              struct napi_struct *napi,
745                                              const struct ndis_tcp_ip_checksum_info *csum_info,
746                                              const struct ndis_pkt_8021q_info *vlan,
747                                              void *data, u32 buflen)
748 {
749         struct sk_buff *skb;
750
751         skb = napi_alloc_skb(napi, buflen);
752         if (!skb)
753                 return skb;
754
755         /*
756          * Copy to skb. This copy is needed here since the memory pointed by
757          * hv_netvsc_packet cannot be deallocated
758          */
759         skb_put_data(skb, data, buflen);
760
761         skb->protocol = eth_type_trans(skb, net);
762
763         /* skb is already created with CHECKSUM_NONE */
764         skb_checksum_none_assert(skb);
765
766         /*
767          * In Linux, the IP checksum is always checked.
768          * Do L4 checksum offload if enabled and present.
769          */
770         if (csum_info && (net->features & NETIF_F_RXCSUM)) {
771                 if (csum_info->receive.tcp_checksum_succeeded ||
772                     csum_info->receive.udp_checksum_succeeded)
773                         skb->ip_summed = CHECKSUM_UNNECESSARY;
774         }
775
776         if (vlan) {
777                 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT);
778
779                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
780                                        vlan_tci);
781         }
782
783         return skb;
784 }
785
786 /*
787  * netvsc_recv_callback -  Callback when we receive a packet from the
788  * "wire" on the specified device.
789  */
790 int netvsc_recv_callback(struct net_device *net,
791                          struct netvsc_device *net_device,
792                          struct vmbus_channel *channel,
793                          void  *data, u32 len,
794                          const struct ndis_tcp_ip_checksum_info *csum_info,
795                          const struct ndis_pkt_8021q_info *vlan)
796 {
797         struct net_device_context *net_device_ctx = netdev_priv(net);
798         u16 q_idx = channel->offermsg.offer.sub_channel_index;
799         struct netvsc_channel *nvchan = &net_device->chan_table[q_idx];
800         struct sk_buff *skb;
801         struct netvsc_stats *rx_stats;
802
803         if (net->reg_state != NETREG_REGISTERED)
804                 return NVSP_STAT_FAIL;
805
806         /* Allocate a skb - TODO direct I/O to pages? */
807         skb = netvsc_alloc_recv_skb(net, &nvchan->napi,
808                                     csum_info, vlan, data, len);
809         if (unlikely(!skb)) {
810                 ++net_device_ctx->eth_stats.rx_no_memory;
811                 rcu_read_unlock();
812                 return NVSP_STAT_FAIL;
813         }
814
815         skb_record_rx_queue(skb, q_idx);
816
817         /*
818          * Even if injecting the packet, record the statistics
819          * on the synthetic device because modifying the VF device
820          * statistics will not work correctly.
821          */
822         rx_stats = &nvchan->rx_stats;
823         u64_stats_update_begin(&rx_stats->syncp);
824         rx_stats->packets++;
825         rx_stats->bytes += len;
826
827         if (skb->pkt_type == PACKET_BROADCAST)
828                 ++rx_stats->broadcast;
829         else if (skb->pkt_type == PACKET_MULTICAST)
830                 ++rx_stats->multicast;
831         u64_stats_update_end(&rx_stats->syncp);
832
833         napi_gro_receive(&nvchan->napi, skb);
834         return 0;
835 }
836
837 static void netvsc_get_drvinfo(struct net_device *net,
838                                struct ethtool_drvinfo *info)
839 {
840         strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
841         strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
842 }
843
844 static void netvsc_get_channels(struct net_device *net,
845                                 struct ethtool_channels *channel)
846 {
847         struct net_device_context *net_device_ctx = netdev_priv(net);
848         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
849
850         if (nvdev) {
851                 channel->max_combined   = nvdev->max_chn;
852                 channel->combined_count = nvdev->num_chn;
853         }
854 }
855
856 static int netvsc_detach(struct net_device *ndev,
857                          struct netvsc_device *nvdev)
858 {
859         struct net_device_context *ndev_ctx = netdev_priv(ndev);
860         struct hv_device *hdev = ndev_ctx->device_ctx;
861         int ret;
862
863         /* Don't try continuing to try and setup sub channels */
864         if (cancel_work_sync(&nvdev->subchan_work))
865                 nvdev->num_chn = 1;
866
867         /* If device was up (receiving) then shutdown */
868         if (netif_running(ndev)) {
869                 netif_tx_disable(ndev);
870
871                 ret = rndis_filter_close(nvdev);
872                 if (ret) {
873                         netdev_err(ndev,
874                                    "unable to close device (ret %d).\n", ret);
875                         return ret;
876                 }
877
878                 ret = netvsc_wait_until_empty(nvdev);
879                 if (ret) {
880                         netdev_err(ndev,
881                                    "Ring buffer not empty after closing rndis\n");
882                         return ret;
883                 }
884         }
885
886         netif_device_detach(ndev);
887
888         rndis_filter_device_remove(hdev, nvdev);
889
890         return 0;
891 }
892
893 static int netvsc_attach(struct net_device *ndev,
894                          struct netvsc_device_info *dev_info)
895 {
896         struct net_device_context *ndev_ctx = netdev_priv(ndev);
897         struct hv_device *hdev = ndev_ctx->device_ctx;
898         struct netvsc_device *nvdev;
899         struct rndis_device *rdev;
900         int ret;
901
902         nvdev = rndis_filter_device_add(hdev, dev_info);
903         if (IS_ERR(nvdev))
904                 return PTR_ERR(nvdev);
905
906         /* Note: enable and attach happen when sub-channels setup */
907
908         netif_carrier_off(ndev);
909
910         if (netif_running(ndev)) {
911                 ret = rndis_filter_open(nvdev);
912                 if (ret)
913                         return ret;
914
915                 rdev = nvdev->extension;
916                 if (!rdev->link_state)
917                         netif_carrier_on(ndev);
918         }
919
920         return 0;
921 }
922
923 static int netvsc_set_channels(struct net_device *net,
924                                struct ethtool_channels *channels)
925 {
926         struct net_device_context *net_device_ctx = netdev_priv(net);
927         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
928         unsigned int orig, count = channels->combined_count;
929         struct netvsc_device_info device_info;
930         int ret;
931
932         /* We do not support separate count for rx, tx, or other */
933         if (count == 0 ||
934             channels->rx_count || channels->tx_count || channels->other_count)
935                 return -EINVAL;
936
937         if (!nvdev || nvdev->destroy)
938                 return -ENODEV;
939
940         if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
941                 return -EINVAL;
942
943         if (count > nvdev->max_chn)
944                 return -EINVAL;
945
946         orig = nvdev->num_chn;
947
948         memset(&device_info, 0, sizeof(device_info));
949         device_info.num_chn = count;
950         device_info.send_sections = nvdev->send_section_cnt;
951         device_info.send_section_size = nvdev->send_section_size;
952         device_info.recv_sections = nvdev->recv_section_cnt;
953         device_info.recv_section_size = nvdev->recv_section_size;
954
955         ret = netvsc_detach(net, nvdev);
956         if (ret)
957                 return ret;
958
959         ret = netvsc_attach(net, &device_info);
960         if (ret) {
961                 device_info.num_chn = orig;
962                 if (netvsc_attach(net, &device_info))
963                         netdev_err(net, "restoring channel setting failed\n");
964         }
965
966         return ret;
967 }
968
969 static bool
970 netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd)
971 {
972         struct ethtool_link_ksettings diff1 = *cmd;
973         struct ethtool_link_ksettings diff2 = {};
974
975         diff1.base.speed = 0;
976         diff1.base.duplex = 0;
977         /* advertising and cmd are usually set */
978         ethtool_link_ksettings_zero_link_mode(&diff1, advertising);
979         diff1.base.cmd = 0;
980         /* We set port to PORT_OTHER */
981         diff2.base.port = PORT_OTHER;
982
983         return !memcmp(&diff1, &diff2, sizeof(diff1));
984 }
985
986 static void netvsc_init_settings(struct net_device *dev)
987 {
988         struct net_device_context *ndc = netdev_priv(dev);
989
990         ndc->l4_hash = HV_DEFAULT_L4HASH;
991
992         ndc->speed = SPEED_UNKNOWN;
993         ndc->duplex = DUPLEX_FULL;
994 }
995
996 static int netvsc_get_link_ksettings(struct net_device *dev,
997                                      struct ethtool_link_ksettings *cmd)
998 {
999         struct net_device_context *ndc = netdev_priv(dev);
1000
1001         cmd->base.speed = ndc->speed;
1002         cmd->base.duplex = ndc->duplex;
1003         cmd->base.port = PORT_OTHER;
1004
1005         return 0;
1006 }
1007
1008 static int netvsc_set_link_ksettings(struct net_device *dev,
1009                                      const struct ethtool_link_ksettings *cmd)
1010 {
1011         struct net_device_context *ndc = netdev_priv(dev);
1012         u32 speed;
1013
1014         speed = cmd->base.speed;
1015         if (!ethtool_validate_speed(speed) ||
1016             !ethtool_validate_duplex(cmd->base.duplex) ||
1017             !netvsc_validate_ethtool_ss_cmd(cmd))
1018                 return -EINVAL;
1019
1020         ndc->speed = speed;
1021         ndc->duplex = cmd->base.duplex;
1022
1023         return 0;
1024 }
1025
1026 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1027 {
1028         struct net_device_context *ndevctx = netdev_priv(ndev);
1029         struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1030         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1031         int orig_mtu = ndev->mtu;
1032         struct netvsc_device_info device_info;
1033         int ret = 0;
1034
1035         if (!nvdev || nvdev->destroy)
1036                 return -ENODEV;
1037
1038         /* Change MTU of underlying VF netdev first. */
1039         if (vf_netdev) {
1040                 ret = dev_set_mtu(vf_netdev, mtu);
1041                 if (ret)
1042                         return ret;
1043         }
1044
1045         memset(&device_info, 0, sizeof(device_info));
1046         device_info.num_chn = nvdev->num_chn;
1047         device_info.send_sections = nvdev->send_section_cnt;
1048         device_info.send_section_size = nvdev->send_section_size;
1049         device_info.recv_sections = nvdev->recv_section_cnt;
1050         device_info.recv_section_size = nvdev->recv_section_size;
1051
1052         ret = netvsc_detach(ndev, nvdev);
1053         if (ret)
1054                 goto rollback_vf;
1055
1056         ndev->mtu = mtu;
1057
1058         ret = netvsc_attach(ndev, &device_info);
1059         if (ret)
1060                 goto rollback;
1061
1062         return 0;
1063
1064 rollback:
1065         /* Attempt rollback to original MTU */
1066         ndev->mtu = orig_mtu;
1067
1068         if (netvsc_attach(ndev, &device_info))
1069                 netdev_err(ndev, "restoring mtu failed\n");
1070 rollback_vf:
1071         if (vf_netdev)
1072                 dev_set_mtu(vf_netdev, orig_mtu);
1073
1074         return ret;
1075 }
1076
1077 static void netvsc_get_vf_stats(struct net_device *net,
1078                                 struct netvsc_vf_pcpu_stats *tot)
1079 {
1080         struct net_device_context *ndev_ctx = netdev_priv(net);
1081         int i;
1082
1083         memset(tot, 0, sizeof(*tot));
1084
1085         for_each_possible_cpu(i) {
1086                 const struct netvsc_vf_pcpu_stats *stats
1087                         = per_cpu_ptr(ndev_ctx->vf_stats, i);
1088                 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1089                 unsigned int start;
1090
1091                 do {
1092                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1093                         rx_packets = stats->rx_packets;
1094                         tx_packets = stats->tx_packets;
1095                         rx_bytes = stats->rx_bytes;
1096                         tx_bytes = stats->tx_bytes;
1097                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1098
1099                 tot->rx_packets += rx_packets;
1100                 tot->tx_packets += tx_packets;
1101                 tot->rx_bytes   += rx_bytes;
1102                 tot->tx_bytes   += tx_bytes;
1103                 tot->tx_dropped += stats->tx_dropped;
1104         }
1105 }
1106
1107 static void netvsc_get_stats64(struct net_device *net,
1108                                struct rtnl_link_stats64 *t)
1109 {
1110         struct net_device_context *ndev_ctx = netdev_priv(net);
1111         struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1112         struct netvsc_vf_pcpu_stats vf_tot;
1113         int i;
1114
1115         if (!nvdev)
1116                 return;
1117
1118         netdev_stats_to_stats64(t, &net->stats);
1119
1120         netvsc_get_vf_stats(net, &vf_tot);
1121         t->rx_packets += vf_tot.rx_packets;
1122         t->tx_packets += vf_tot.tx_packets;
1123         t->rx_bytes   += vf_tot.rx_bytes;
1124         t->tx_bytes   += vf_tot.tx_bytes;
1125         t->tx_dropped += vf_tot.tx_dropped;
1126
1127         for (i = 0; i < nvdev->num_chn; i++) {
1128                 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1129                 const struct netvsc_stats *stats;
1130                 u64 packets, bytes, multicast;
1131                 unsigned int start;
1132
1133                 stats = &nvchan->tx_stats;
1134                 do {
1135                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1136                         packets = stats->packets;
1137                         bytes = stats->bytes;
1138                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1139
1140                 t->tx_bytes     += bytes;
1141                 t->tx_packets   += packets;
1142
1143                 stats = &nvchan->rx_stats;
1144                 do {
1145                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1146                         packets = stats->packets;
1147                         bytes = stats->bytes;
1148                         multicast = stats->multicast + stats->broadcast;
1149                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1150
1151                 t->rx_bytes     += bytes;
1152                 t->rx_packets   += packets;
1153                 t->multicast    += multicast;
1154         }
1155 }
1156
1157 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1158 {
1159         struct net_device_context *ndc = netdev_priv(ndev);
1160         struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1161         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1162         struct sockaddr *addr = p;
1163         int err;
1164
1165         err = eth_prepare_mac_addr_change(ndev, p);
1166         if (err)
1167                 return err;
1168
1169         if (!nvdev)
1170                 return -ENODEV;
1171
1172         if (vf_netdev) {
1173                 err = dev_set_mac_address(vf_netdev, addr);
1174                 if (err)
1175                         return err;
1176         }
1177
1178         err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1179         if (!err) {
1180                 eth_commit_mac_addr_change(ndev, p);
1181         } else if (vf_netdev) {
1182                 /* rollback change on VF */
1183                 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1184                 dev_set_mac_address(vf_netdev, addr);
1185         }
1186
1187         return err;
1188 }
1189
1190 static const struct {
1191         char name[ETH_GSTRING_LEN];
1192         u16 offset;
1193 } netvsc_stats[] = {
1194         { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1195         { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1196         { "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1197         { "tx_too_big",   offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1198         { "tx_busy",      offsetof(struct netvsc_ethtool_stats, tx_busy) },
1199         { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1200         { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1201         { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1202         { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1203         { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1204 }, vf_stats[] = {
1205         { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1206         { "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1207         { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1208         { "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1209         { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1210 };
1211
1212 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
1213 #define NETVSC_VF_STATS_LEN     ARRAY_SIZE(vf_stats)
1214
1215 /* 4 statistics per queue (rx/tx packets/bytes) */
1216 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4)
1217
1218 static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1219 {
1220         struct net_device_context *ndc = netdev_priv(dev);
1221         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1222
1223         if (!nvdev)
1224                 return -ENODEV;
1225
1226         switch (string_set) {
1227         case ETH_SS_STATS:
1228                 return NETVSC_GLOBAL_STATS_LEN
1229                         + NETVSC_VF_STATS_LEN
1230                         + NETVSC_QUEUE_STATS_LEN(nvdev);
1231         default:
1232                 return -EINVAL;
1233         }
1234 }
1235
1236 static void netvsc_get_ethtool_stats(struct net_device *dev,
1237                                      struct ethtool_stats *stats, u64 *data)
1238 {
1239         struct net_device_context *ndc = netdev_priv(dev);
1240         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1241         const void *nds = &ndc->eth_stats;
1242         const struct netvsc_stats *qstats;
1243         struct netvsc_vf_pcpu_stats sum;
1244         unsigned int start;
1245         u64 packets, bytes;
1246         int i, j;
1247
1248         if (!nvdev)
1249                 return;
1250
1251         for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1252                 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1253
1254         netvsc_get_vf_stats(dev, &sum);
1255         for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1256                 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1257
1258         for (j = 0; j < nvdev->num_chn; j++) {
1259                 qstats = &nvdev->chan_table[j].tx_stats;
1260
1261                 do {
1262                         start = u64_stats_fetch_begin_irq(&qstats->syncp);
1263                         packets = qstats->packets;
1264                         bytes = qstats->bytes;
1265                 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1266                 data[i++] = packets;
1267                 data[i++] = bytes;
1268
1269                 qstats = &nvdev->chan_table[j].rx_stats;
1270                 do {
1271                         start = u64_stats_fetch_begin_irq(&qstats->syncp);
1272                         packets = qstats->packets;
1273                         bytes = qstats->bytes;
1274                 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1275                 data[i++] = packets;
1276                 data[i++] = bytes;
1277         }
1278 }
1279
1280 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1281 {
1282         struct net_device_context *ndc = netdev_priv(dev);
1283         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1284         u8 *p = data;
1285         int i;
1286
1287         if (!nvdev)
1288                 return;
1289
1290         switch (stringset) {
1291         case ETH_SS_STATS:
1292                 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
1293                         memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
1294                         p += ETH_GSTRING_LEN;
1295                 }
1296
1297                 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
1298                         memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
1299                         p += ETH_GSTRING_LEN;
1300                 }
1301
1302                 for (i = 0; i < nvdev->num_chn; i++) {
1303                         sprintf(p, "tx_queue_%u_packets", i);
1304                         p += ETH_GSTRING_LEN;
1305                         sprintf(p, "tx_queue_%u_bytes", i);
1306                         p += ETH_GSTRING_LEN;
1307                         sprintf(p, "rx_queue_%u_packets", i);
1308                         p += ETH_GSTRING_LEN;
1309                         sprintf(p, "rx_queue_%u_bytes", i);
1310                         p += ETH_GSTRING_LEN;
1311                 }
1312
1313                 break;
1314         }
1315 }
1316
1317 static int
1318 netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1319                          struct ethtool_rxnfc *info)
1320 {
1321         const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1322
1323         info->data = RXH_IP_SRC | RXH_IP_DST;
1324
1325         switch (info->flow_type) {
1326         case TCP_V4_FLOW:
1327                 if (ndc->l4_hash & HV_TCP4_L4HASH)
1328                         info->data |= l4_flag;
1329
1330                 break;
1331
1332         case TCP_V6_FLOW:
1333                 if (ndc->l4_hash & HV_TCP6_L4HASH)
1334                         info->data |= l4_flag;
1335
1336                 break;
1337
1338         case UDP_V4_FLOW:
1339                 if (ndc->l4_hash & HV_UDP4_L4HASH)
1340                         info->data |= l4_flag;
1341
1342                 break;
1343
1344         case UDP_V6_FLOW:
1345                 if (ndc->l4_hash & HV_UDP6_L4HASH)
1346                         info->data |= l4_flag;
1347
1348                 break;
1349
1350         case IPV4_FLOW:
1351         case IPV6_FLOW:
1352                 break;
1353         default:
1354                 info->data = 0;
1355                 break;
1356         }
1357
1358         return 0;
1359 }
1360
1361 static int
1362 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1363                  u32 *rules)
1364 {
1365         struct net_device_context *ndc = netdev_priv(dev);
1366         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1367
1368         if (!nvdev)
1369                 return -ENODEV;
1370
1371         switch (info->cmd) {
1372         case ETHTOOL_GRXRINGS:
1373                 info->data = nvdev->num_chn;
1374                 return 0;
1375
1376         case ETHTOOL_GRXFH:
1377                 return netvsc_get_rss_hash_opts(ndc, info);
1378         }
1379         return -EOPNOTSUPP;
1380 }
1381
1382 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1383                                     struct ethtool_rxnfc *info)
1384 {
1385         if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1386                            RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1387                 switch (info->flow_type) {
1388                 case TCP_V4_FLOW:
1389                         ndc->l4_hash |= HV_TCP4_L4HASH;
1390                         break;
1391
1392                 case TCP_V6_FLOW:
1393                         ndc->l4_hash |= HV_TCP6_L4HASH;
1394                         break;
1395
1396                 case UDP_V4_FLOW:
1397                         ndc->l4_hash |= HV_UDP4_L4HASH;
1398                         break;
1399
1400                 case UDP_V6_FLOW:
1401                         ndc->l4_hash |= HV_UDP6_L4HASH;
1402                         break;
1403
1404                 default:
1405                         return -EOPNOTSUPP;
1406                 }
1407
1408                 return 0;
1409         }
1410
1411         if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1412                 switch (info->flow_type) {
1413                 case TCP_V4_FLOW:
1414                         ndc->l4_hash &= ~HV_TCP4_L4HASH;
1415                         break;
1416
1417                 case TCP_V6_FLOW:
1418                         ndc->l4_hash &= ~HV_TCP6_L4HASH;
1419                         break;
1420
1421                 case UDP_V4_FLOW:
1422                         ndc->l4_hash &= ~HV_UDP4_L4HASH;
1423                         break;
1424
1425                 case UDP_V6_FLOW:
1426                         ndc->l4_hash &= ~HV_UDP6_L4HASH;
1427                         break;
1428
1429                 default:
1430                         return -EOPNOTSUPP;
1431                 }
1432
1433                 return 0;
1434         }
1435
1436         return -EOPNOTSUPP;
1437 }
1438
1439 static int
1440 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1441 {
1442         struct net_device_context *ndc = netdev_priv(ndev);
1443
1444         if (info->cmd == ETHTOOL_SRXFH)
1445                 return netvsc_set_rss_hash_opts(ndc, info);
1446
1447         return -EOPNOTSUPP;
1448 }
1449
1450 #ifdef CONFIG_NET_POLL_CONTROLLER
1451 static void netvsc_poll_controller(struct net_device *dev)
1452 {
1453         struct net_device_context *ndc = netdev_priv(dev);
1454         struct netvsc_device *ndev;
1455         int i;
1456
1457         rcu_read_lock();
1458         ndev = rcu_dereference(ndc->nvdev);
1459         if (ndev) {
1460                 for (i = 0; i < ndev->num_chn; i++) {
1461                         struct netvsc_channel *nvchan = &ndev->chan_table[i];
1462
1463                         napi_schedule(&nvchan->napi);
1464                 }
1465         }
1466         rcu_read_unlock();
1467 }
1468 #endif
1469
1470 static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1471 {
1472         return NETVSC_HASH_KEYLEN;
1473 }
1474
1475 static u32 netvsc_rss_indir_size(struct net_device *dev)
1476 {
1477         return ITAB_NUM;
1478 }
1479
1480 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1481                            u8 *hfunc)
1482 {
1483         struct net_device_context *ndc = netdev_priv(dev);
1484         struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1485         struct rndis_device *rndis_dev;
1486         int i;
1487
1488         if (!ndev)
1489                 return -ENODEV;
1490
1491         if (hfunc)
1492                 *hfunc = ETH_RSS_HASH_TOP;      /* Toeplitz */
1493
1494         rndis_dev = ndev->extension;
1495         if (indir) {
1496                 for (i = 0; i < ITAB_NUM; i++)
1497                         indir[i] = rndis_dev->rx_table[i];
1498         }
1499
1500         if (key)
1501                 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1502
1503         return 0;
1504 }
1505
1506 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1507                            const u8 *key, const u8 hfunc)
1508 {
1509         struct net_device_context *ndc = netdev_priv(dev);
1510         struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1511         struct rndis_device *rndis_dev;
1512         int i;
1513
1514         if (!ndev)
1515                 return -ENODEV;
1516
1517         if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1518                 return -EOPNOTSUPP;
1519
1520         rndis_dev = ndev->extension;
1521         if (indir) {
1522                 for (i = 0; i < ITAB_NUM; i++)
1523                         if (indir[i] >= ndev->num_chn)
1524                                 return -EINVAL;
1525
1526                 for (i = 0; i < ITAB_NUM; i++)
1527                         rndis_dev->rx_table[i] = indir[i];
1528         }
1529
1530         if (!key) {
1531                 if (!indir)
1532                         return 0;
1533
1534                 key = rndis_dev->rss_key;
1535         }
1536
1537         return rndis_filter_set_rss_param(rndis_dev, key);
1538 }
1539
1540 /* Hyper-V RNDIS protocol does not have ring in the HW sense.
1541  * It does have pre-allocated receive area which is divided into sections.
1542  */
1543 static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1544                                    struct ethtool_ringparam *ring)
1545 {
1546         u32 max_buf_size;
1547
1548         ring->rx_pending = nvdev->recv_section_cnt;
1549         ring->tx_pending = nvdev->send_section_cnt;
1550
1551         if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1552                 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1553         else
1554                 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1555
1556         ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1557         ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1558                 / nvdev->send_section_size;
1559 }
1560
1561 static void netvsc_get_ringparam(struct net_device *ndev,
1562                                  struct ethtool_ringparam *ring)
1563 {
1564         struct net_device_context *ndevctx = netdev_priv(ndev);
1565         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1566
1567         if (!nvdev)
1568                 return;
1569
1570         __netvsc_get_ringparam(nvdev, ring);
1571 }
1572
1573 static int netvsc_set_ringparam(struct net_device *ndev,
1574                                 struct ethtool_ringparam *ring)
1575 {
1576         struct net_device_context *ndevctx = netdev_priv(ndev);
1577         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1578         struct netvsc_device_info device_info;
1579         struct ethtool_ringparam orig;
1580         u32 new_tx, new_rx;
1581         int ret = 0;
1582
1583         if (!nvdev || nvdev->destroy)
1584                 return -ENODEV;
1585
1586         memset(&orig, 0, sizeof(orig));
1587         __netvsc_get_ringparam(nvdev, &orig);
1588
1589         new_tx = clamp_t(u32, ring->tx_pending,
1590                          NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1591         new_rx = clamp_t(u32, ring->rx_pending,
1592                          NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1593
1594         if (new_tx == orig.tx_pending &&
1595             new_rx == orig.rx_pending)
1596                 return 0;        /* no change */
1597
1598         memset(&device_info, 0, sizeof(device_info));
1599         device_info.num_chn = nvdev->num_chn;
1600         device_info.send_sections = new_tx;
1601         device_info.send_section_size = nvdev->send_section_size;
1602         device_info.recv_sections = new_rx;
1603         device_info.recv_section_size = nvdev->recv_section_size;
1604
1605         ret = netvsc_detach(ndev, nvdev);
1606         if (ret)
1607                 return ret;
1608
1609         ret = netvsc_attach(ndev, &device_info);
1610         if (ret) {
1611                 device_info.send_sections = orig.tx_pending;
1612                 device_info.recv_sections = orig.rx_pending;
1613
1614                 if (netvsc_attach(ndev, &device_info))
1615                         netdev_err(ndev, "restoring ringparam failed");
1616         }
1617
1618         return ret;
1619 }
1620
1621 static const struct ethtool_ops ethtool_ops = {
1622         .get_drvinfo    = netvsc_get_drvinfo,
1623         .get_link       = ethtool_op_get_link,
1624         .get_ethtool_stats = netvsc_get_ethtool_stats,
1625         .get_sset_count = netvsc_get_sset_count,
1626         .get_strings    = netvsc_get_strings,
1627         .get_channels   = netvsc_get_channels,
1628         .set_channels   = netvsc_set_channels,
1629         .get_ts_info    = ethtool_op_get_ts_info,
1630         .get_rxnfc      = netvsc_get_rxnfc,
1631         .set_rxnfc      = netvsc_set_rxnfc,
1632         .get_rxfh_key_size = netvsc_get_rxfh_key_size,
1633         .get_rxfh_indir_size = netvsc_rss_indir_size,
1634         .get_rxfh       = netvsc_get_rxfh,
1635         .set_rxfh       = netvsc_set_rxfh,
1636         .get_link_ksettings = netvsc_get_link_ksettings,
1637         .set_link_ksettings = netvsc_set_link_ksettings,
1638         .get_ringparam  = netvsc_get_ringparam,
1639         .set_ringparam  = netvsc_set_ringparam,
1640 };
1641
1642 static const struct net_device_ops device_ops = {
1643         .ndo_open =                     netvsc_open,
1644         .ndo_stop =                     netvsc_close,
1645         .ndo_start_xmit =               netvsc_start_xmit,
1646         .ndo_change_rx_flags =          netvsc_change_rx_flags,
1647         .ndo_set_rx_mode =              netvsc_set_rx_mode,
1648         .ndo_change_mtu =               netvsc_change_mtu,
1649         .ndo_validate_addr =            eth_validate_addr,
1650         .ndo_set_mac_address =          netvsc_set_mac_addr,
1651         .ndo_select_queue =             netvsc_select_queue,
1652         .ndo_get_stats64 =              netvsc_get_stats64,
1653 #ifdef CONFIG_NET_POLL_CONTROLLER
1654         .ndo_poll_controller =          netvsc_poll_controller,
1655 #endif
1656 };
1657
1658 /*
1659  * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1660  * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1661  * present send GARP packet to network peers with netif_notify_peers().
1662  */
1663 static void netvsc_link_change(struct work_struct *w)
1664 {
1665         struct net_device_context *ndev_ctx =
1666                 container_of(w, struct net_device_context, dwork.work);
1667         struct hv_device *device_obj = ndev_ctx->device_ctx;
1668         struct net_device *net = hv_get_drvdata(device_obj);
1669         struct netvsc_device *net_device;
1670         struct rndis_device *rdev;
1671         struct netvsc_reconfig *event = NULL;
1672         bool notify = false, reschedule = false;
1673         unsigned long flags, next_reconfig, delay;
1674
1675         /* if changes are happening, comeback later */
1676         if (!rtnl_trylock()) {
1677                 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1678                 return;
1679         }
1680
1681         net_device = rtnl_dereference(ndev_ctx->nvdev);
1682         if (!net_device)
1683                 goto out_unlock;
1684
1685         rdev = net_device->extension;
1686
1687         next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
1688         if (time_is_after_jiffies(next_reconfig)) {
1689                 /* link_watch only sends one notification with current state
1690                  * per second, avoid doing reconfig more frequently. Handle
1691                  * wrap around.
1692                  */
1693                 delay = next_reconfig - jiffies;
1694                 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
1695                 schedule_delayed_work(&ndev_ctx->dwork, delay);
1696                 goto out_unlock;
1697         }
1698         ndev_ctx->last_reconfig = jiffies;
1699
1700         spin_lock_irqsave(&ndev_ctx->lock, flags);
1701         if (!list_empty(&ndev_ctx->reconfig_events)) {
1702                 event = list_first_entry(&ndev_ctx->reconfig_events,
1703                                          struct netvsc_reconfig, list);
1704                 list_del(&event->list);
1705                 reschedule = !list_empty(&ndev_ctx->reconfig_events);
1706         }
1707         spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1708
1709         if (!event)
1710                 goto out_unlock;
1711
1712         switch (event->event) {
1713                 /* Only the following events are possible due to the check in
1714                  * netvsc_linkstatus_callback()
1715                  */
1716         case RNDIS_STATUS_MEDIA_CONNECT:
1717                 if (rdev->link_state) {
1718                         rdev->link_state = false;
1719                         netif_carrier_on(net);
1720                         netif_tx_wake_all_queues(net);
1721                 } else {
1722                         notify = true;
1723                 }
1724                 kfree(event);
1725                 break;
1726         case RNDIS_STATUS_MEDIA_DISCONNECT:
1727                 if (!rdev->link_state) {
1728                         rdev->link_state = true;
1729                         netif_carrier_off(net);
1730                         netif_tx_stop_all_queues(net);
1731                 }
1732                 kfree(event);
1733                 break;
1734         case RNDIS_STATUS_NETWORK_CHANGE:
1735                 /* Only makes sense if carrier is present */
1736                 if (!rdev->link_state) {
1737                         rdev->link_state = true;
1738                         netif_carrier_off(net);
1739                         netif_tx_stop_all_queues(net);
1740                         event->event = RNDIS_STATUS_MEDIA_CONNECT;
1741                         spin_lock_irqsave(&ndev_ctx->lock, flags);
1742                         list_add(&event->list, &ndev_ctx->reconfig_events);
1743                         spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1744                         reschedule = true;
1745                 }
1746                 break;
1747         }
1748
1749         rtnl_unlock();
1750
1751         if (notify)
1752                 netdev_notify_peers(net);
1753
1754         /* link_watch only sends one notification with current state per
1755          * second, handle next reconfig event in 2 seconds.
1756          */
1757         if (reschedule)
1758                 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1759
1760         return;
1761
1762 out_unlock:
1763         rtnl_unlock();
1764 }
1765
1766 static struct net_device *get_netvsc_bymac(const u8 *mac)
1767 {
1768         struct net_device *dev;
1769
1770         ASSERT_RTNL();
1771
1772         for_each_netdev(&init_net, dev) {
1773                 if (dev->netdev_ops != &device_ops)
1774                         continue;       /* not a netvsc device */
1775
1776                 if (ether_addr_equal(mac, dev->perm_addr))
1777                         return dev;
1778         }
1779
1780         return NULL;
1781 }
1782
1783 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
1784 {
1785         struct net_device *dev;
1786
1787         ASSERT_RTNL();
1788
1789         for_each_netdev(&init_net, dev) {
1790                 struct net_device_context *net_device_ctx;
1791
1792                 if (dev->netdev_ops != &device_ops)
1793                         continue;       /* not a netvsc device */
1794
1795                 net_device_ctx = netdev_priv(dev);
1796                 if (!rtnl_dereference(net_device_ctx->nvdev))
1797                         continue;       /* device is removed */
1798
1799                 if (rtnl_dereference(net_device_ctx->vf_netdev) == vf_netdev)
1800                         return dev;     /* a match */
1801         }
1802
1803         return NULL;
1804 }
1805
1806 /* Called when VF is injecting data into network stack.
1807  * Change the associated network device from VF to netvsc.
1808  * note: already called with rcu_read_lock
1809  */
1810 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
1811 {
1812         struct sk_buff *skb = *pskb;
1813         struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
1814         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1815         struct netvsc_vf_pcpu_stats *pcpu_stats
1816                  = this_cpu_ptr(ndev_ctx->vf_stats);
1817
1818         skb->dev = ndev;
1819
1820         u64_stats_update_begin(&pcpu_stats->syncp);
1821         pcpu_stats->rx_packets++;
1822         pcpu_stats->rx_bytes += skb->len;
1823         u64_stats_update_end(&pcpu_stats->syncp);
1824
1825         return RX_HANDLER_ANOTHER;
1826 }
1827
1828 static int netvsc_vf_join(struct net_device *vf_netdev,
1829                           struct net_device *ndev)
1830 {
1831         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1832         int ret;
1833
1834         ret = netdev_rx_handler_register(vf_netdev,
1835                                          netvsc_vf_handle_frame, ndev);
1836         if (ret != 0) {
1837                 netdev_err(vf_netdev,
1838                            "can not register netvsc VF receive handler (err = %d)\n",
1839                            ret);
1840                 goto rx_handler_failed;
1841         }
1842
1843         ret = netdev_upper_dev_link(vf_netdev, ndev, NULL);
1844         if (ret != 0) {
1845                 netdev_err(vf_netdev,
1846                            "can not set master device %s (err = %d)\n",
1847                            ndev->name, ret);
1848                 goto upper_link_failed;
1849         }
1850
1851         /* set slave flag before open to prevent IPv6 addrconf */
1852         vf_netdev->flags |= IFF_SLAVE;
1853
1854         schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
1855
1856         call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
1857
1858         netdev_info(vf_netdev, "joined to %s\n", ndev->name);
1859         return 0;
1860
1861 upper_link_failed:
1862         netdev_rx_handler_unregister(vf_netdev);
1863 rx_handler_failed:
1864         return ret;
1865 }
1866
1867 static void __netvsc_vf_setup(struct net_device *ndev,
1868                               struct net_device *vf_netdev)
1869 {
1870         int ret;
1871
1872         /* Align MTU of VF with master */
1873         ret = dev_set_mtu(vf_netdev, ndev->mtu);
1874         if (ret)
1875                 netdev_warn(vf_netdev,
1876                             "unable to change mtu to %u\n", ndev->mtu);
1877
1878         /* set multicast etc flags on VF */
1879         dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE);
1880
1881         /* sync address list from ndev to VF */
1882         netif_addr_lock_bh(ndev);
1883         dev_uc_sync(vf_netdev, ndev);
1884         dev_mc_sync(vf_netdev, ndev);
1885         netif_addr_unlock_bh(ndev);
1886
1887         if (netif_running(ndev)) {
1888                 ret = dev_open(vf_netdev);
1889                 if (ret)
1890                         netdev_warn(vf_netdev,
1891                                     "unable to open: %d\n", ret);
1892         }
1893 }
1894
1895 /* Setup VF as slave of the synthetic device.
1896  * Runs in workqueue to avoid recursion in netlink callbacks.
1897  */
1898 static void netvsc_vf_setup(struct work_struct *w)
1899 {
1900         struct net_device_context *ndev_ctx
1901                 = container_of(w, struct net_device_context, vf_takeover.work);
1902         struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
1903         struct net_device *vf_netdev;
1904
1905         if (!rtnl_trylock()) {
1906                 schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
1907                 return;
1908         }
1909
1910         vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
1911         if (vf_netdev)
1912                 __netvsc_vf_setup(ndev, vf_netdev);
1913
1914         rtnl_unlock();
1915 }
1916
1917 static int netvsc_register_vf(struct net_device *vf_netdev)
1918 {
1919         struct net_device *ndev;
1920         struct net_device_context *net_device_ctx;
1921         struct netvsc_device *netvsc_dev;
1922
1923         if (vf_netdev->addr_len != ETH_ALEN)
1924                 return NOTIFY_DONE;
1925
1926         /*
1927          * We will use the MAC address to locate the synthetic interface to
1928          * associate with the VF interface. If we don't find a matching
1929          * synthetic interface, move on.
1930          */
1931         ndev = get_netvsc_bymac(vf_netdev->perm_addr);
1932         if (!ndev)
1933                 return NOTIFY_DONE;
1934
1935         net_device_ctx = netdev_priv(ndev);
1936         netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
1937         if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
1938                 return NOTIFY_DONE;
1939
1940         if (netvsc_vf_join(vf_netdev, ndev) != 0)
1941                 return NOTIFY_DONE;
1942
1943         netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
1944
1945         dev_hold(vf_netdev);
1946         rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
1947         return NOTIFY_OK;
1948 }
1949
1950 /* VF up/down change detected, schedule to change data path */
1951 static int netvsc_vf_changed(struct net_device *vf_netdev)
1952 {
1953         struct net_device_context *net_device_ctx;
1954         struct netvsc_device *netvsc_dev;
1955         struct net_device *ndev;
1956         bool vf_is_up = netif_running(vf_netdev);
1957
1958         ndev = get_netvsc_byref(vf_netdev);
1959         if (!ndev)
1960                 return NOTIFY_DONE;
1961
1962         net_device_ctx = netdev_priv(ndev);
1963         netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
1964         if (!netvsc_dev)
1965                 return NOTIFY_DONE;
1966
1967         netvsc_switch_datapath(ndev, vf_is_up);
1968         netdev_info(ndev, "Data path switched %s VF: %s\n",
1969                     vf_is_up ? "to" : "from", vf_netdev->name);
1970
1971         return NOTIFY_OK;
1972 }
1973
1974 static int netvsc_unregister_vf(struct net_device *vf_netdev)
1975 {
1976         struct net_device *ndev;
1977         struct net_device_context *net_device_ctx;
1978
1979         ndev = get_netvsc_byref(vf_netdev);
1980         if (!ndev)
1981                 return NOTIFY_DONE;
1982
1983         net_device_ctx = netdev_priv(ndev);
1984         cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
1985
1986         netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
1987
1988         netdev_rx_handler_unregister(vf_netdev);
1989         netdev_upper_dev_unlink(vf_netdev, ndev);
1990         RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
1991         dev_put(vf_netdev);
1992
1993         return NOTIFY_OK;
1994 }
1995
1996 static int netvsc_probe(struct hv_device *dev,
1997                         const struct hv_vmbus_device_id *dev_id)
1998 {
1999         struct net_device *net = NULL;
2000         struct net_device_context *net_device_ctx;
2001         struct netvsc_device_info device_info;
2002         struct netvsc_device *nvdev;
2003         int ret = -ENOMEM;
2004
2005         net = alloc_etherdev_mq(sizeof(struct net_device_context),
2006                                 VRSS_CHANNEL_MAX);
2007         if (!net)
2008                 goto no_net;
2009
2010         netif_carrier_off(net);
2011
2012         netvsc_init_settings(net);
2013
2014         net_device_ctx = netdev_priv(net);
2015         net_device_ctx->device_ctx = dev;
2016         net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2017         if (netif_msg_probe(net_device_ctx))
2018                 netdev_dbg(net, "netvsc msg_enable: %d\n",
2019                            net_device_ctx->msg_enable);
2020
2021         hv_set_drvdata(dev, net);
2022
2023         INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2024
2025         spin_lock_init(&net_device_ctx->lock);
2026         INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2027         INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2028
2029         net_device_ctx->vf_stats
2030                 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2031         if (!net_device_ctx->vf_stats)
2032                 goto no_stats;
2033
2034         net->netdev_ops = &device_ops;
2035         net->ethtool_ops = &ethtool_ops;
2036         SET_NETDEV_DEV(net, &dev->device);
2037
2038         /* We always need headroom for rndis header */
2039         net->needed_headroom = RNDIS_AND_PPI_SIZE;
2040
2041         /* Initialize the number of queues to be 1, we may change it if more
2042          * channels are offered later.
2043          */
2044         netif_set_real_num_tx_queues(net, 1);
2045         netif_set_real_num_rx_queues(net, 1);
2046
2047         /* Notify the netvsc driver of the new device */
2048         memset(&device_info, 0, sizeof(device_info));
2049         device_info.num_chn = VRSS_CHANNEL_DEFAULT;
2050         device_info.send_sections = NETVSC_DEFAULT_TX;
2051         device_info.send_section_size = NETVSC_SEND_SECTION_SIZE;
2052         device_info.recv_sections = NETVSC_DEFAULT_RX;
2053         device_info.recv_section_size = NETVSC_RECV_SECTION_SIZE;
2054
2055         nvdev = rndis_filter_device_add(dev, &device_info);
2056         if (IS_ERR(nvdev)) {
2057                 ret = PTR_ERR(nvdev);
2058                 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2059                 goto rndis_failed;
2060         }
2061
2062         memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN);
2063
2064         /* hw_features computed in rndis_netdev_set_hwcaps() */
2065         net->features = net->hw_features |
2066                 NETIF_F_HIGHDMA | NETIF_F_SG |
2067                 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2068         net->vlan_features = net->features;
2069
2070         netdev_lockdep_set_classes(net);
2071
2072         /* MTU range: 68 - 1500 or 65521 */
2073         net->min_mtu = NETVSC_MTU_MIN;
2074         if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2075                 net->max_mtu = NETVSC_MTU - ETH_HLEN;
2076         else
2077                 net->max_mtu = ETH_DATA_LEN;
2078
2079         ret = register_netdev(net);
2080         if (ret != 0) {
2081                 pr_err("Unable to register netdev.\n");
2082                 goto register_failed;
2083         }
2084
2085         return ret;
2086
2087 register_failed:
2088         rndis_filter_device_remove(dev, nvdev);
2089 rndis_failed:
2090         free_percpu(net_device_ctx->vf_stats);
2091 no_stats:
2092         hv_set_drvdata(dev, NULL);
2093         free_netdev(net);
2094 no_net:
2095         return ret;
2096 }
2097
2098 static int netvsc_remove(struct hv_device *dev)
2099 {
2100         struct net_device_context *ndev_ctx;
2101         struct net_device *vf_netdev, *net;
2102         struct netvsc_device *nvdev;
2103
2104         net = hv_get_drvdata(dev);
2105         if (net == NULL) {
2106                 dev_err(&dev->device, "No net device to remove\n");
2107                 return 0;
2108         }
2109
2110         ndev_ctx = netdev_priv(net);
2111
2112         cancel_delayed_work_sync(&ndev_ctx->dwork);
2113
2114         rcu_read_lock();
2115         nvdev = rcu_dereference(ndev_ctx->nvdev);
2116
2117         if  (nvdev)
2118                 cancel_work_sync(&nvdev->subchan_work);
2119
2120         /*
2121          * Call to the vsc driver to let it know that the device is being
2122          * removed. Also blocks mtu and channel changes.
2123          */
2124         rtnl_lock();
2125         vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2126         if (vf_netdev)
2127                 netvsc_unregister_vf(vf_netdev);
2128
2129         if (nvdev)
2130                 rndis_filter_device_remove(dev, nvdev);
2131
2132         unregister_netdevice(net);
2133
2134         rtnl_unlock();
2135         rcu_read_unlock();
2136
2137         hv_set_drvdata(dev, NULL);
2138
2139         free_percpu(ndev_ctx->vf_stats);
2140         free_netdev(net);
2141         return 0;
2142 }
2143
2144 static const struct hv_vmbus_device_id id_table[] = {
2145         /* Network guid */
2146         { HV_NIC_GUID, },
2147         { },
2148 };
2149
2150 MODULE_DEVICE_TABLE(vmbus, id_table);
2151
2152 /* The one and only one */
2153 static struct  hv_driver netvsc_drv = {
2154         .name = KBUILD_MODNAME,
2155         .id_table = id_table,
2156         .probe = netvsc_probe,
2157         .remove = netvsc_remove,
2158 };
2159
2160 /*
2161  * On Hyper-V, every VF interface is matched with a corresponding
2162  * synthetic interface. The synthetic interface is presented first
2163  * to the guest. When the corresponding VF instance is registered,
2164  * we will take care of switching the data path.
2165  */
2166 static int netvsc_netdev_event(struct notifier_block *this,
2167                                unsigned long event, void *ptr)
2168 {
2169         struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2170
2171         /* Skip our own events */
2172         if (event_dev->netdev_ops == &device_ops)
2173                 return NOTIFY_DONE;
2174
2175         /* Avoid non-Ethernet type devices */
2176         if (event_dev->type != ARPHRD_ETHER)
2177                 return NOTIFY_DONE;
2178
2179         /* Avoid Vlan dev with same MAC registering as VF */
2180         if (is_vlan_dev(event_dev))
2181                 return NOTIFY_DONE;
2182
2183         /* Avoid Bonding master dev with same MAC registering as VF */
2184         if ((event_dev->priv_flags & IFF_BONDING) &&
2185             (event_dev->flags & IFF_MASTER))
2186                 return NOTIFY_DONE;
2187
2188         switch (event) {
2189         case NETDEV_REGISTER:
2190                 return netvsc_register_vf(event_dev);
2191         case NETDEV_UNREGISTER:
2192                 return netvsc_unregister_vf(event_dev);
2193         case NETDEV_UP:
2194         case NETDEV_DOWN:
2195                 return netvsc_vf_changed(event_dev);
2196         default:
2197                 return NOTIFY_DONE;
2198         }
2199 }
2200
2201 static struct notifier_block netvsc_netdev_notifier = {
2202         .notifier_call = netvsc_netdev_event,
2203 };
2204
2205 static void __exit netvsc_drv_exit(void)
2206 {
2207         unregister_netdevice_notifier(&netvsc_netdev_notifier);
2208         vmbus_driver_unregister(&netvsc_drv);
2209 }
2210
2211 static int __init netvsc_drv_init(void)
2212 {
2213         int ret;
2214
2215         if (ring_size < RING_SIZE_MIN) {
2216                 ring_size = RING_SIZE_MIN;
2217                 pr_info("Increased ring_size to %u (min allowed)\n",
2218                         ring_size);
2219         }
2220         netvsc_ring_bytes = ring_size * PAGE_SIZE;
2221         netvsc_ring_reciprocal = reciprocal_value(netvsc_ring_bytes);
2222
2223         ret = vmbus_driver_register(&netvsc_drv);
2224         if (ret)
2225                 return ret;
2226
2227         register_netdevice_notifier(&netvsc_netdev_notifier);
2228         return 0;
2229 }
2230
2231 MODULE_LICENSE("GPL");
2232 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2233
2234 module_init(netvsc_drv_init);
2235 module_exit(netvsc_drv_exit);