Merge tag 'amlogic-dt-2' of https://git.kernel.org/pub/scm/linux/kernel/git/khilman...
[linux-2.6-block.git] / drivers / net / ethernet / ti / cpsw.c
1 /*
2  * Texas Instruments Ethernet Switch Driver
3  *
4  * Copyright (C) 2012 Texas Instruments
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation version 2.
9  *
10  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11  * kind, whether express or implied; without even the implied warranty
12  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/io.h>
18 #include <linux/clk.h>
19 #include <linux/timer.h>
20 #include <linux/module.h>
21 #include <linux/platform_device.h>
22 #include <linux/irqreturn.h>
23 #include <linux/interrupt.h>
24 #include <linux/if_ether.h>
25 #include <linux/etherdevice.h>
26 #include <linux/netdevice.h>
27 #include <linux/net_tstamp.h>
28 #include <linux/phy.h>
29 #include <linux/workqueue.h>
30 #include <linux/delay.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/gpio.h>
33 #include <linux/of.h>
34 #include <linux/of_mdio.h>
35 #include <linux/of_net.h>
36 #include <linux/of_device.h>
37 #include <linux/if_vlan.h>
38 #include <linux/kmemleak.h>
39
40 #include <linux/pinctrl/consumer.h>
41
42 #include "cpsw.h"
43 #include "cpsw_ale.h"
44 #include "cpts.h"
45 #include "davinci_cpdma.h"
46
47 #define CPSW_DEBUG      (NETIF_MSG_HW           | NETIF_MSG_WOL         | \
48                          NETIF_MSG_DRV          | NETIF_MSG_LINK        | \
49                          NETIF_MSG_IFUP         | NETIF_MSG_INTR        | \
50                          NETIF_MSG_PROBE        | NETIF_MSG_TIMER       | \
51                          NETIF_MSG_IFDOWN       | NETIF_MSG_RX_ERR      | \
52                          NETIF_MSG_TX_ERR       | NETIF_MSG_TX_DONE     | \
53                          NETIF_MSG_PKTDATA      | NETIF_MSG_TX_QUEUED   | \
54                          NETIF_MSG_RX_STATUS)
55
56 #define cpsw_info(priv, type, format, ...)              \
57 do {                                                            \
58         if (netif_msg_##type(priv) && net_ratelimit())          \
59                 dev_info(priv->dev, format, ## __VA_ARGS__);    \
60 } while (0)
61
62 #define cpsw_err(priv, type, format, ...)               \
63 do {                                                            \
64         if (netif_msg_##type(priv) && net_ratelimit())          \
65                 dev_err(priv->dev, format, ## __VA_ARGS__);     \
66 } while (0)
67
68 #define cpsw_dbg(priv, type, format, ...)               \
69 do {                                                            \
70         if (netif_msg_##type(priv) && net_ratelimit())          \
71                 dev_dbg(priv->dev, format, ## __VA_ARGS__);     \
72 } while (0)
73
74 #define cpsw_notice(priv, type, format, ...)            \
75 do {                                                            \
76         if (netif_msg_##type(priv) && net_ratelimit())          \
77                 dev_notice(priv->dev, format, ## __VA_ARGS__);  \
78 } while (0)
79
80 #define ALE_ALL_PORTS           0x7
81
82 #define CPSW_MAJOR_VERSION(reg)         (reg >> 8 & 0x7)
83 #define CPSW_MINOR_VERSION(reg)         (reg & 0xff)
84 #define CPSW_RTL_VERSION(reg)           ((reg >> 11) & 0x1f)
85
86 #define CPSW_VERSION_1          0x19010a
87 #define CPSW_VERSION_2          0x19010c
88 #define CPSW_VERSION_3          0x19010f
89 #define CPSW_VERSION_4          0x190112
90
91 #define HOST_PORT_NUM           0
92 #define CPSW_ALE_PORTS_NUM      3
93 #define SLIVER_SIZE             0x40
94
95 #define CPSW1_HOST_PORT_OFFSET  0x028
96 #define CPSW1_SLAVE_OFFSET      0x050
97 #define CPSW1_SLAVE_SIZE        0x040
98 #define CPSW1_CPDMA_OFFSET      0x100
99 #define CPSW1_STATERAM_OFFSET   0x200
100 #define CPSW1_HW_STATS          0x400
101 #define CPSW1_CPTS_OFFSET       0x500
102 #define CPSW1_ALE_OFFSET        0x600
103 #define CPSW1_SLIVER_OFFSET     0x700
104
105 #define CPSW2_HOST_PORT_OFFSET  0x108
106 #define CPSW2_SLAVE_OFFSET      0x200
107 #define CPSW2_SLAVE_SIZE        0x100
108 #define CPSW2_CPDMA_OFFSET      0x800
109 #define CPSW2_HW_STATS          0x900
110 #define CPSW2_STATERAM_OFFSET   0xa00
111 #define CPSW2_CPTS_OFFSET       0xc00
112 #define CPSW2_ALE_OFFSET        0xd00
113 #define CPSW2_SLIVER_OFFSET     0xd80
114 #define CPSW2_BD_OFFSET         0x2000
115
116 #define CPDMA_RXTHRESH          0x0c0
117 #define CPDMA_RXFREE            0x0e0
118 #define CPDMA_TXHDP             0x00
119 #define CPDMA_RXHDP             0x20
120 #define CPDMA_TXCP              0x40
121 #define CPDMA_RXCP              0x60
122
123 #define CPSW_POLL_WEIGHT        64
124 #define CPSW_RX_VLAN_ENCAP_HDR_SIZE             4
125 #define CPSW_MIN_PACKET_SIZE    (VLAN_ETH_ZLEN)
126 #define CPSW_MAX_PACKET_SIZE    (VLAN_ETH_FRAME_LEN +\
127                                  ETH_FCS_LEN +\
128                                  CPSW_RX_VLAN_ENCAP_HDR_SIZE)
129
130 #define RX_PRIORITY_MAPPING     0x76543210
131 #define TX_PRIORITY_MAPPING     0x33221100
132 #define CPDMA_TX_PRIORITY_MAP   0x76543210
133
134 #define CPSW_VLAN_AWARE         BIT(1)
135 #define CPSW_RX_VLAN_ENCAP      BIT(2)
136 #define CPSW_ALE_VLAN_AWARE     1
137
138 #define CPSW_FIFO_NORMAL_MODE           (0 << 16)
139 #define CPSW_FIFO_DUAL_MAC_MODE         (1 << 16)
140 #define CPSW_FIFO_RATE_LIMIT_MODE       (2 << 16)
141
142 #define CPSW_INTPACEEN          (0x3f << 16)
143 #define CPSW_INTPRESCALE_MASK   (0x7FF << 0)
144 #define CPSW_CMINTMAX_CNT       63
145 #define CPSW_CMINTMIN_CNT       2
146 #define CPSW_CMINTMAX_INTVL     (1000 / CPSW_CMINTMIN_CNT)
147 #define CPSW_CMINTMIN_INTVL     ((1000 / CPSW_CMINTMAX_CNT) + 1)
148
149 #define cpsw_slave_index(cpsw, priv)                            \
150                 ((cpsw->data.dual_emac) ? priv->emac_port :     \
151                 cpsw->data.active_slave)
152 #define IRQ_NUM                 2
153 #define CPSW_MAX_QUEUES         8
154 #define CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT 256
155
156 #define CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT       29
157 #define CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK         GENMASK(2, 0)
158 #define CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT        16
159 #define CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT   8
160 #define CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK     GENMASK(1, 0)
161 enum {
162         CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG = 0,
163         CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV,
164         CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG,
165         CPSW_RX_VLAN_ENCAP_HDR_PKT_UNTAG,
166 };
167
168 static int debug_level;
169 module_param(debug_level, int, 0);
170 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");
171
172 static int ale_ageout = 10;
173 module_param(ale_ageout, int, 0);
174 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");
175
176 static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
177 module_param(rx_packet_max, int, 0);
178 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");
179
180 static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT;
181 module_param(descs_pool_size, int, 0444);
182 MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool");
183
184 struct cpsw_wr_regs {
185         u32     id_ver;
186         u32     soft_reset;
187         u32     control;
188         u32     int_control;
189         u32     rx_thresh_en;
190         u32     rx_en;
191         u32     tx_en;
192         u32     misc_en;
193         u32     mem_allign1[8];
194         u32     rx_thresh_stat;
195         u32     rx_stat;
196         u32     tx_stat;
197         u32     misc_stat;
198         u32     mem_allign2[8];
199         u32     rx_imax;
200         u32     tx_imax;
201
202 };
203
204 struct cpsw_ss_regs {
205         u32     id_ver;
206         u32     control;
207         u32     soft_reset;
208         u32     stat_port_en;
209         u32     ptype;
210         u32     soft_idle;
211         u32     thru_rate;
212         u32     gap_thresh;
213         u32     tx_start_wds;
214         u32     flow_control;
215         u32     vlan_ltype;
216         u32     ts_ltype;
217         u32     dlr_ltype;
218 };
219
220 /* CPSW_PORT_V1 */
221 #define CPSW1_MAX_BLKS      0x00 /* Maximum FIFO Blocks */
222 #define CPSW1_BLK_CNT       0x04 /* FIFO Block Usage Count (Read Only) */
223 #define CPSW1_TX_IN_CTL     0x08 /* Transmit FIFO Control */
224 #define CPSW1_PORT_VLAN     0x0c /* VLAN Register */
225 #define CPSW1_TX_PRI_MAP    0x10 /* Tx Header Priority to Switch Pri Mapping */
226 #define CPSW1_TS_CTL        0x14 /* Time Sync Control */
227 #define CPSW1_TS_SEQ_LTYPE  0x18 /* Time Sync Sequence ID Offset and Msg Type */
228 #define CPSW1_TS_VLAN       0x1c /* Time Sync VLAN1 and VLAN2 */
229
230 /* CPSW_PORT_V2 */
231 #define CPSW2_CONTROL       0x00 /* Control Register */
232 #define CPSW2_MAX_BLKS      0x08 /* Maximum FIFO Blocks */
233 #define CPSW2_BLK_CNT       0x0c /* FIFO Block Usage Count (Read Only) */
234 #define CPSW2_TX_IN_CTL     0x10 /* Transmit FIFO Control */
235 #define CPSW2_PORT_VLAN     0x14 /* VLAN Register */
236 #define CPSW2_TX_PRI_MAP    0x18 /* Tx Header Priority to Switch Pri Mapping */
237 #define CPSW2_TS_SEQ_MTYPE  0x1c /* Time Sync Sequence ID Offset and Msg Type */
238
239 /* CPSW_PORT_V1 and V2 */
240 #define SA_LO               0x20 /* CPGMAC_SL Source Address Low */
241 #define SA_HI               0x24 /* CPGMAC_SL Source Address High */
242 #define SEND_PERCENT        0x28 /* Transmit Queue Send Percentages */
243
244 /* CPSW_PORT_V2 only */
245 #define RX_DSCP_PRI_MAP0    0x30 /* Rx DSCP Priority to Rx Packet Mapping */
246 #define RX_DSCP_PRI_MAP1    0x34 /* Rx DSCP Priority to Rx Packet Mapping */
247 #define RX_DSCP_PRI_MAP2    0x38 /* Rx DSCP Priority to Rx Packet Mapping */
248 #define RX_DSCP_PRI_MAP3    0x3c /* Rx DSCP Priority to Rx Packet Mapping */
249 #define RX_DSCP_PRI_MAP4    0x40 /* Rx DSCP Priority to Rx Packet Mapping */
250 #define RX_DSCP_PRI_MAP5    0x44 /* Rx DSCP Priority to Rx Packet Mapping */
251 #define RX_DSCP_PRI_MAP6    0x48 /* Rx DSCP Priority to Rx Packet Mapping */
252 #define RX_DSCP_PRI_MAP7    0x4c /* Rx DSCP Priority to Rx Packet Mapping */
253
254 /* Bit definitions for the CPSW2_CONTROL register */
255 #define PASS_PRI_TAGGED     (1<<24) /* Pass Priority Tagged */
256 #define VLAN_LTYPE2_EN      (1<<21) /* VLAN LTYPE 2 enable */
257 #define VLAN_LTYPE1_EN      (1<<20) /* VLAN LTYPE 1 enable */
258 #define DSCP_PRI_EN         (1<<16) /* DSCP Priority Enable */
259 #define TS_320              (1<<14) /* Time Sync Dest Port 320 enable */
260 #define TS_319              (1<<13) /* Time Sync Dest Port 319 enable */
261 #define TS_132              (1<<12) /* Time Sync Dest IP Addr 132 enable */
262 #define TS_131              (1<<11) /* Time Sync Dest IP Addr 131 enable */
263 #define TS_130              (1<<10) /* Time Sync Dest IP Addr 130 enable */
264 #define TS_129              (1<<9)  /* Time Sync Dest IP Addr 129 enable */
265 #define TS_TTL_NONZERO      (1<<8)  /* Time Sync Time To Live Non-zero enable */
266 #define TS_ANNEX_F_EN       (1<<6)  /* Time Sync Annex F enable */
267 #define TS_ANNEX_D_EN       (1<<4)  /* Time Sync Annex D enable */
268 #define TS_LTYPE2_EN        (1<<3)  /* Time Sync LTYPE 2 enable */
269 #define TS_LTYPE1_EN        (1<<2)  /* Time Sync LTYPE 1 enable */
270 #define TS_TX_EN            (1<<1)  /* Time Sync Transmit Enable */
271 #define TS_RX_EN            (1<<0)  /* Time Sync Receive Enable */
272
273 #define CTRL_V2_TS_BITS \
274         (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
275          TS_TTL_NONZERO  | TS_ANNEX_D_EN | TS_LTYPE1_EN)
276
277 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN)
278 #define CTRL_V2_TX_TS_BITS  (CTRL_V2_TS_BITS | TS_TX_EN)
279 #define CTRL_V2_RX_TS_BITS  (CTRL_V2_TS_BITS | TS_RX_EN)
280
281
282 #define CTRL_V3_TS_BITS \
283         (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
284          TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\
285          TS_LTYPE1_EN)
286
287 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN)
288 #define CTRL_V3_TX_TS_BITS  (CTRL_V3_TS_BITS | TS_TX_EN)
289 #define CTRL_V3_RX_TS_BITS  (CTRL_V3_TS_BITS | TS_RX_EN)
290
291 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */
292 #define TS_SEQ_ID_OFFSET_SHIFT   (16)    /* Time Sync Sequence ID Offset */
293 #define TS_SEQ_ID_OFFSET_MASK    (0x3f)
294 #define TS_MSG_TYPE_EN_SHIFT     (0)     /* Time Sync Message Type Enable */
295 #define TS_MSG_TYPE_EN_MASK      (0xffff)
296
297 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */
298 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3))
299
300 /* Bit definitions for the CPSW1_TS_CTL register */
301 #define CPSW_V1_TS_RX_EN                BIT(0)
302 #define CPSW_V1_TS_TX_EN                BIT(4)
303 #define CPSW_V1_MSG_TYPE_OFS            16
304
305 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */
306 #define CPSW_V1_SEQ_ID_OFS_SHIFT        16
307
308 #define CPSW_MAX_BLKS_TX                15
309 #define CPSW_MAX_BLKS_TX_SHIFT          4
310 #define CPSW_MAX_BLKS_RX                5
311
312 struct cpsw_host_regs {
313         u32     max_blks;
314         u32     blk_cnt;
315         u32     tx_in_ctl;
316         u32     port_vlan;
317         u32     tx_pri_map;
318         u32     cpdma_tx_pri_map;
319         u32     cpdma_rx_chan_map;
320 };
321
322 struct cpsw_sliver_regs {
323         u32     id_ver;
324         u32     mac_control;
325         u32     mac_status;
326         u32     soft_reset;
327         u32     rx_maxlen;
328         u32     __reserved_0;
329         u32     rx_pause;
330         u32     tx_pause;
331         u32     __reserved_1;
332         u32     rx_pri_map;
333 };
334
335 struct cpsw_hw_stats {
336         u32     rxgoodframes;
337         u32     rxbroadcastframes;
338         u32     rxmulticastframes;
339         u32     rxpauseframes;
340         u32     rxcrcerrors;
341         u32     rxaligncodeerrors;
342         u32     rxoversizedframes;
343         u32     rxjabberframes;
344         u32     rxundersizedframes;
345         u32     rxfragments;
346         u32     __pad_0[2];
347         u32     rxoctets;
348         u32     txgoodframes;
349         u32     txbroadcastframes;
350         u32     txmulticastframes;
351         u32     txpauseframes;
352         u32     txdeferredframes;
353         u32     txcollisionframes;
354         u32     txsinglecollframes;
355         u32     txmultcollframes;
356         u32     txexcessivecollisions;
357         u32     txlatecollisions;
358         u32     txunderrun;
359         u32     txcarriersenseerrors;
360         u32     txoctets;
361         u32     octetframes64;
362         u32     octetframes65t127;
363         u32     octetframes128t255;
364         u32     octetframes256t511;
365         u32     octetframes512t1023;
366         u32     octetframes1024tup;
367         u32     netoctets;
368         u32     rxsofoverruns;
369         u32     rxmofoverruns;
370         u32     rxdmaoverruns;
371 };
372
373 struct cpsw_slave_data {
374         struct device_node *phy_node;
375         char            phy_id[MII_BUS_ID_SIZE];
376         int             phy_if;
377         u8              mac_addr[ETH_ALEN];
378         u16             dual_emac_res_vlan;     /* Reserved VLAN for DualEMAC */
379 };
380
381 struct cpsw_platform_data {
382         struct cpsw_slave_data  *slave_data;
383         u32     ss_reg_ofs;     /* Subsystem control register offset */
384         u32     channels;       /* number of cpdma channels (symmetric) */
385         u32     slaves;         /* number of slave cpgmac ports */
386         u32     active_slave; /* time stamping, ethtool and SIOCGMIIPHY slave */
387         u32     ale_entries;    /* ale table size */
388         u32     bd_ram_size;  /*buffer descriptor ram size */
389         u32     mac_control;    /* Mac control register */
390         u16     default_vlan;   /* Def VLAN for ALE lookup in VLAN aware mode*/
391         bool    dual_emac;      /* Enable Dual EMAC mode */
392 };
393
394 struct cpsw_slave {
395         void __iomem                    *regs;
396         struct cpsw_sliver_regs __iomem *sliver;
397         int                             slave_num;
398         u32                             mac_control;
399         struct cpsw_slave_data          *data;
400         struct phy_device               *phy;
401         struct net_device               *ndev;
402         u32                             port_vlan;
403 };
404
405 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset)
406 {
407         return readl_relaxed(slave->regs + offset);
408 }
409
410 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset)
411 {
412         writel_relaxed(val, slave->regs + offset);
413 }
414
415 struct cpsw_vector {
416         struct cpdma_chan *ch;
417         int budget;
418 };
419
420 struct cpsw_common {
421         struct device                   *dev;
422         struct cpsw_platform_data       data;
423         struct napi_struct              napi_rx;
424         struct napi_struct              napi_tx;
425         struct cpsw_ss_regs __iomem     *regs;
426         struct cpsw_wr_regs __iomem     *wr_regs;
427         u8 __iomem                      *hw_stats;
428         struct cpsw_host_regs __iomem   *host_port_regs;
429         u32                             version;
430         u32                             coal_intvl;
431         u32                             bus_freq_mhz;
432         int                             rx_packet_max;
433         struct cpsw_slave               *slaves;
434         struct cpdma_ctlr               *dma;
435         struct cpsw_vector              txv[CPSW_MAX_QUEUES];
436         struct cpsw_vector              rxv[CPSW_MAX_QUEUES];
437         struct cpsw_ale                 *ale;
438         bool                            quirk_irq;
439         bool                            rx_irq_disabled;
440         bool                            tx_irq_disabled;
441         u32 irqs_table[IRQ_NUM];
442         struct cpts                     *cpts;
443         int                             rx_ch_num, tx_ch_num;
444         int                             speed;
445         int                             usage_count;
446 };
447
448 struct cpsw_priv {
449         struct net_device               *ndev;
450         struct device                   *dev;
451         u32                             msg_enable;
452         u8                              mac_addr[ETH_ALEN];
453         bool                            rx_pause;
454         bool                            tx_pause;
455         u32 emac_port;
456         struct cpsw_common *cpsw;
457 };
458
459 struct cpsw_stats {
460         char stat_string[ETH_GSTRING_LEN];
461         int type;
462         int sizeof_stat;
463         int stat_offset;
464 };
465
466 enum {
467         CPSW_STATS,
468         CPDMA_RX_STATS,
469         CPDMA_TX_STATS,
470 };
471
472 #define CPSW_STAT(m)            CPSW_STATS,                             \
473                                 sizeof(((struct cpsw_hw_stats *)0)->m), \
474                                 offsetof(struct cpsw_hw_stats, m)
475 #define CPDMA_RX_STAT(m)        CPDMA_RX_STATS,                            \
476                                 sizeof(((struct cpdma_chan_stats *)0)->m), \
477                                 offsetof(struct cpdma_chan_stats, m)
478 #define CPDMA_TX_STAT(m)        CPDMA_TX_STATS,                            \
479                                 sizeof(((struct cpdma_chan_stats *)0)->m), \
480                                 offsetof(struct cpdma_chan_stats, m)
481
482 static const struct cpsw_stats cpsw_gstrings_stats[] = {
483         { "Good Rx Frames", CPSW_STAT(rxgoodframes) },
484         { "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) },
485         { "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) },
486         { "Pause Rx Frames", CPSW_STAT(rxpauseframes) },
487         { "Rx CRC Errors", CPSW_STAT(rxcrcerrors) },
488         { "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) },
489         { "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) },
490         { "Rx Jabbers", CPSW_STAT(rxjabberframes) },
491         { "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) },
492         { "Rx Fragments", CPSW_STAT(rxfragments) },
493         { "Rx Octets", CPSW_STAT(rxoctets) },
494         { "Good Tx Frames", CPSW_STAT(txgoodframes) },
495         { "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) },
496         { "Multicast Tx Frames", CPSW_STAT(txmulticastframes) },
497         { "Pause Tx Frames", CPSW_STAT(txpauseframes) },
498         { "Deferred Tx Frames", CPSW_STAT(txdeferredframes) },
499         { "Collisions", CPSW_STAT(txcollisionframes) },
500         { "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) },
501         { "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) },
502         { "Excessive Collisions", CPSW_STAT(txexcessivecollisions) },
503         { "Late Collisions", CPSW_STAT(txlatecollisions) },
504         { "Tx Underrun", CPSW_STAT(txunderrun) },
505         { "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) },
506         { "Tx Octets", CPSW_STAT(txoctets) },
507         { "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) },
508         { "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) },
509         { "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) },
510         { "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) },
511         { "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) },
512         { "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) },
513         { "Net Octets", CPSW_STAT(netoctets) },
514         { "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) },
515         { "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) },
516         { "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) },
517 };
518
519 static const struct cpsw_stats cpsw_gstrings_ch_stats[] = {
520         { "head_enqueue", CPDMA_RX_STAT(head_enqueue) },
521         { "tail_enqueue", CPDMA_RX_STAT(tail_enqueue) },
522         { "pad_enqueue", CPDMA_RX_STAT(pad_enqueue) },
523         { "misqueued", CPDMA_RX_STAT(misqueued) },
524         { "desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) },
525         { "pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) },
526         { "runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) },
527         { "runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) },
528         { "empty_dequeue", CPDMA_RX_STAT(empty_dequeue) },
529         { "busy_dequeue", CPDMA_RX_STAT(busy_dequeue) },
530         { "good_dequeue", CPDMA_RX_STAT(good_dequeue) },
531         { "requeue", CPDMA_RX_STAT(requeue) },
532         { "teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) },
533 };
534
535 #define CPSW_STATS_COMMON_LEN   ARRAY_SIZE(cpsw_gstrings_stats)
536 #define CPSW_STATS_CH_LEN       ARRAY_SIZE(cpsw_gstrings_ch_stats)
537
538 #define ndev_to_cpsw(ndev) (((struct cpsw_priv *)netdev_priv(ndev))->cpsw)
539 #define napi_to_cpsw(napi)      container_of(napi, struct cpsw_common, napi)
540 #define for_each_slave(priv, func, arg...)                              \
541         do {                                                            \
542                 struct cpsw_slave *slave;                               \
543                 struct cpsw_common *cpsw = (priv)->cpsw;                \
544                 int n;                                                  \
545                 if (cpsw->data.dual_emac)                               \
546                         (func)((cpsw)->slaves + priv->emac_port, ##arg);\
547                 else                                                    \
548                         for (n = cpsw->data.slaves,                     \
549                                         slave = cpsw->slaves;           \
550                                         n; n--)                         \
551                                 (func)(slave++, ##arg);                 \
552         } while (0)
553
554 #define cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb)         \
555         do {                                                            \
556                 if (!cpsw->data.dual_emac)                              \
557                         break;                                          \
558                 if (CPDMA_RX_SOURCE_PORT(status) == 1) {                \
559                         ndev = cpsw->slaves[0].ndev;                    \
560                         skb->dev = ndev;                                \
561                 } else if (CPDMA_RX_SOURCE_PORT(status) == 2) {         \
562                         ndev = cpsw->slaves[1].ndev;                    \
563                         skb->dev = ndev;                                \
564                 }                                                       \
565         } while (0)
566 #define cpsw_add_mcast(cpsw, priv, addr)                                \
567         do {                                                            \
568                 if (cpsw->data.dual_emac) {                             \
569                         struct cpsw_slave *slave = cpsw->slaves +       \
570                                                 priv->emac_port;        \
571                         int slave_port = cpsw_get_slave_port(           \
572                                                 slave->slave_num);      \
573                         cpsw_ale_add_mcast(cpsw->ale, addr,             \
574                                 1 << slave_port | ALE_PORT_HOST,        \
575                                 ALE_VLAN, slave->port_vlan, 0);         \
576                 } else {                                                \
577                         cpsw_ale_add_mcast(cpsw->ale, addr,             \
578                                 ALE_ALL_PORTS,                          \
579                                 0, 0, 0);                               \
580                 }                                                       \
581         } while (0)
582
583 static inline int cpsw_get_slave_port(u32 slave_num)
584 {
585         return slave_num + 1;
586 }
587
588 static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
589 {
590         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
591         struct cpsw_ale *ale = cpsw->ale;
592         int i;
593
594         if (cpsw->data.dual_emac) {
595                 bool flag = false;
596
597                 /* Enabling promiscuous mode for one interface will be
598                  * common for both the interface as the interface shares
599                  * the same hardware resource.
600                  */
601                 for (i = 0; i < cpsw->data.slaves; i++)
602                         if (cpsw->slaves[i].ndev->flags & IFF_PROMISC)
603                                 flag = true;
604
605                 if (!enable && flag) {
606                         enable = true;
607                         dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
608                 }
609
610                 if (enable) {
611                         /* Enable Bypass */
612                         cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);
613
614                         dev_dbg(&ndev->dev, "promiscuity enabled\n");
615                 } else {
616                         /* Disable Bypass */
617                         cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
618                         dev_dbg(&ndev->dev, "promiscuity disabled\n");
619                 }
620         } else {
621                 if (enable) {
622                         unsigned long timeout = jiffies + HZ;
623
624                         /* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
625                         for (i = 0; i <= cpsw->data.slaves; i++) {
626                                 cpsw_ale_control_set(ale, i,
627                                                      ALE_PORT_NOLEARN, 1);
628                                 cpsw_ale_control_set(ale, i,
629                                                      ALE_PORT_NO_SA_UPDATE, 1);
630                         }
631
632                         /* Clear All Untouched entries */
633                         cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
634                         do {
635                                 cpu_relax();
636                                 if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
637                                         break;
638                         } while (time_after(timeout, jiffies));
639                         cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
640
641                         /* Clear all mcast from ALE */
642                         cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1);
643
644                         /* Flood All Unicast Packets to Host port */
645                         cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
646                         dev_dbg(&ndev->dev, "promiscuity enabled\n");
647                 } else {
648                         /* Don't Flood All Unicast Packets to Host port */
649                         cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);
650
651                         /* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
652                         for (i = 0; i <= cpsw->data.slaves; i++) {
653                                 cpsw_ale_control_set(ale, i,
654                                                      ALE_PORT_NOLEARN, 0);
655                                 cpsw_ale_control_set(ale, i,
656                                                      ALE_PORT_NO_SA_UPDATE, 0);
657                         }
658                         dev_dbg(&ndev->dev, "promiscuity disabled\n");
659                 }
660         }
661 }
662
663 static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
664 {
665         struct cpsw_priv *priv = netdev_priv(ndev);
666         struct cpsw_common *cpsw = priv->cpsw;
667         int vid;
668
669         if (cpsw->data.dual_emac)
670                 vid = cpsw->slaves[priv->emac_port].port_vlan;
671         else
672                 vid = cpsw->data.default_vlan;
673
674         if (ndev->flags & IFF_PROMISC) {
675                 /* Enable promiscuous mode */
676                 cpsw_set_promiscious(ndev, true);
677                 cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI);
678                 return;
679         } else {
680                 /* Disable promiscuous mode */
681                 cpsw_set_promiscious(ndev, false);
682         }
683
684         /* Restore allmulti on vlans if necessary */
685         cpsw_ale_set_allmulti(cpsw->ale, priv->ndev->flags & IFF_ALLMULTI);
686
687         /* Clear all mcast from ALE */
688         cpsw_ale_flush_multicast(cpsw->ale, ALE_ALL_PORTS, vid);
689
690         if (!netdev_mc_empty(ndev)) {
691                 struct netdev_hw_addr *ha;
692
693                 /* program multicast address list into ALE register */
694                 netdev_for_each_mc_addr(ha, ndev) {
695                         cpsw_add_mcast(cpsw, priv, (u8 *)ha->addr);
696                 }
697         }
698 }
699
700 static void cpsw_intr_enable(struct cpsw_common *cpsw)
701 {
702         writel_relaxed(0xFF, &cpsw->wr_regs->tx_en);
703         writel_relaxed(0xFF, &cpsw->wr_regs->rx_en);
704
705         cpdma_ctlr_int_ctrl(cpsw->dma, true);
706         return;
707 }
708
709 static void cpsw_intr_disable(struct cpsw_common *cpsw)
710 {
711         writel_relaxed(0, &cpsw->wr_regs->tx_en);
712         writel_relaxed(0, &cpsw->wr_regs->rx_en);
713
714         cpdma_ctlr_int_ctrl(cpsw->dma, false);
715         return;
716 }
717
718 static void cpsw_tx_handler(void *token, int len, int status)
719 {
720         struct netdev_queue     *txq;
721         struct sk_buff          *skb = token;
722         struct net_device       *ndev = skb->dev;
723         struct cpsw_common      *cpsw = ndev_to_cpsw(ndev);
724
725         /* Check whether the queue is stopped due to stalled tx dma, if the
726          * queue is stopped then start the queue as we have free desc for tx
727          */
728         txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
729         if (unlikely(netif_tx_queue_stopped(txq)))
730                 netif_tx_wake_queue(txq);
731
732         cpts_tx_timestamp(cpsw->cpts, skb);
733         ndev->stats.tx_packets++;
734         ndev->stats.tx_bytes += len;
735         dev_kfree_skb_any(skb);
736 }
737
738 static void cpsw_rx_vlan_encap(struct sk_buff *skb)
739 {
740         struct cpsw_priv *priv = netdev_priv(skb->dev);
741         struct cpsw_common *cpsw = priv->cpsw;
742         u32 rx_vlan_encap_hdr = *((u32 *)skb->data);
743         u16 vtag, vid, prio, pkt_type;
744
745         /* Remove VLAN header encapsulation word */
746         skb_pull(skb, CPSW_RX_VLAN_ENCAP_HDR_SIZE);
747
748         pkt_type = (rx_vlan_encap_hdr >>
749                     CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT) &
750                     CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK;
751         /* Ignore unknown & Priority-tagged packets*/
752         if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV ||
753             pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG)
754                 return;
755
756         vid = (rx_vlan_encap_hdr >>
757                CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT) &
758                VLAN_VID_MASK;
759         /* Ignore vid 0 and pass packet as is */
760         if (!vid)
761                 return;
762         /* Ignore default vlans in dual mac mode */
763         if (cpsw->data.dual_emac &&
764             vid == cpsw->slaves[priv->emac_port].port_vlan)
765                 return;
766
767         prio = (rx_vlan_encap_hdr >>
768                 CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT) &
769                 CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK;
770
771         vtag = (prio << VLAN_PRIO_SHIFT) | vid;
772         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag);
773
774         /* strip vlan tag for VLAN-tagged packet */
775         if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG) {
776                 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
777                 skb_pull(skb, VLAN_HLEN);
778         }
779 }
780
781 static void cpsw_rx_handler(void *token, int len, int status)
782 {
783         struct cpdma_chan       *ch;
784         struct sk_buff          *skb = token;
785         struct sk_buff          *new_skb;
786         struct net_device       *ndev = skb->dev;
787         int                     ret = 0;
788         struct cpsw_common      *cpsw = ndev_to_cpsw(ndev);
789
790         cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb);
791
792         if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
793                 /* In dual emac mode check for all interfaces */
794                 if (cpsw->data.dual_emac && cpsw->usage_count &&
795                     (status >= 0)) {
796                         /* The packet received is for the interface which
797                          * is already down and the other interface is up
798                          * and running, instead of freeing which results
799                          * in reducing of the number of rx descriptor in
800                          * DMA engine, requeue skb back to cpdma.
801                          */
802                         new_skb = skb;
803                         goto requeue;
804                 }
805
806                 /* the interface is going down, skbs are purged */
807                 dev_kfree_skb_any(skb);
808                 return;
809         }
810
811         new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max);
812         if (new_skb) {
813                 skb_copy_queue_mapping(new_skb, skb);
814                 skb_put(skb, len);
815                 if (status & CPDMA_RX_VLAN_ENCAP)
816                         cpsw_rx_vlan_encap(skb);
817                 cpts_rx_timestamp(cpsw->cpts, skb);
818                 skb->protocol = eth_type_trans(skb, ndev);
819                 netif_receive_skb(skb);
820                 ndev->stats.rx_bytes += len;
821                 ndev->stats.rx_packets++;
822                 kmemleak_not_leak(new_skb);
823         } else {
824                 ndev->stats.rx_dropped++;
825                 new_skb = skb;
826         }
827
828 requeue:
829         if (netif_dormant(ndev)) {
830                 dev_kfree_skb_any(new_skb);
831                 return;
832         }
833
834         ch = cpsw->rxv[skb_get_queue_mapping(new_skb)].ch;
835         ret = cpdma_chan_submit(ch, new_skb, new_skb->data,
836                                 skb_tailroom(new_skb), 0);
837         if (WARN_ON(ret < 0))
838                 dev_kfree_skb_any(new_skb);
839 }
840
841 static void cpsw_split_res(struct net_device *ndev)
842 {
843         struct cpsw_priv *priv = netdev_priv(ndev);
844         u32 consumed_rate = 0, bigest_rate = 0;
845         struct cpsw_common *cpsw = priv->cpsw;
846         struct cpsw_vector *txv = cpsw->txv;
847         int i, ch_weight, rlim_ch_num = 0;
848         int budget, bigest_rate_ch = 0;
849         u32 ch_rate, max_rate;
850         int ch_budget = 0;
851
852         for (i = 0; i < cpsw->tx_ch_num; i++) {
853                 ch_rate = cpdma_chan_get_rate(txv[i].ch);
854                 if (!ch_rate)
855                         continue;
856
857                 rlim_ch_num++;
858                 consumed_rate += ch_rate;
859         }
860
861         if (cpsw->tx_ch_num == rlim_ch_num) {
862                 max_rate = consumed_rate;
863         } else if (!rlim_ch_num) {
864                 ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num;
865                 bigest_rate = 0;
866                 max_rate = consumed_rate;
867         } else {
868                 max_rate = cpsw->speed * 1000;
869
870                 /* if max_rate is less then expected due to reduced link speed,
871                  * split proportionally according next potential max speed
872                  */
873                 if (max_rate < consumed_rate)
874                         max_rate *= 10;
875
876                 if (max_rate < consumed_rate)
877                         max_rate *= 10;
878
879                 ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate;
880                 ch_budget = (CPSW_POLL_WEIGHT - ch_budget) /
881                             (cpsw->tx_ch_num - rlim_ch_num);
882                 bigest_rate = (max_rate - consumed_rate) /
883                               (cpsw->tx_ch_num - rlim_ch_num);
884         }
885
886         /* split tx weight/budget */
887         budget = CPSW_POLL_WEIGHT;
888         for (i = 0; i < cpsw->tx_ch_num; i++) {
889                 ch_rate = cpdma_chan_get_rate(txv[i].ch);
890                 if (ch_rate) {
891                         txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate;
892                         if (!txv[i].budget)
893                                 txv[i].budget++;
894                         if (ch_rate > bigest_rate) {
895                                 bigest_rate_ch = i;
896                                 bigest_rate = ch_rate;
897                         }
898
899                         ch_weight = (ch_rate * 100) / max_rate;
900                         if (!ch_weight)
901                                 ch_weight++;
902                         cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight);
903                 } else {
904                         txv[i].budget = ch_budget;
905                         if (!bigest_rate_ch)
906                                 bigest_rate_ch = i;
907                         cpdma_chan_set_weight(cpsw->txv[i].ch, 0);
908                 }
909
910                 budget -= txv[i].budget;
911         }
912
913         if (budget)
914                 txv[bigest_rate_ch].budget += budget;
915
916         /* split rx budget */
917         budget = CPSW_POLL_WEIGHT;
918         ch_budget = budget / cpsw->rx_ch_num;
919         for (i = 0; i < cpsw->rx_ch_num; i++) {
920                 cpsw->rxv[i].budget = ch_budget;
921                 budget -= ch_budget;
922         }
923
924         if (budget)
925                 cpsw->rxv[0].budget += budget;
926 }
927
928 static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
929 {
930         struct cpsw_common *cpsw = dev_id;
931
932         writel(0, &cpsw->wr_regs->tx_en);
933         cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX);
934
935         if (cpsw->quirk_irq) {
936                 disable_irq_nosync(cpsw->irqs_table[1]);
937                 cpsw->tx_irq_disabled = true;
938         }
939
940         napi_schedule(&cpsw->napi_tx);
941         return IRQ_HANDLED;
942 }
943
944 static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
945 {
946         struct cpsw_common *cpsw = dev_id;
947
948         cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX);
949         writel(0, &cpsw->wr_regs->rx_en);
950
951         if (cpsw->quirk_irq) {
952                 disable_irq_nosync(cpsw->irqs_table[0]);
953                 cpsw->rx_irq_disabled = true;
954         }
955
956         napi_schedule(&cpsw->napi_rx);
957         return IRQ_HANDLED;
958 }
959
960 static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
961 {
962         u32                     ch_map;
963         int                     num_tx, cur_budget, ch;
964         struct cpsw_common      *cpsw = napi_to_cpsw(napi_tx);
965         struct cpsw_vector      *txv;
966
967         /* process every unprocessed channel */
968         ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
969         for (ch = 0, num_tx = 0; ch_map; ch_map >>= 1, ch++) {
970                 if (!(ch_map & 0x01))
971                         continue;
972
973                 txv = &cpsw->txv[ch];
974                 if (unlikely(txv->budget > budget - num_tx))
975                         cur_budget = budget - num_tx;
976                 else
977                         cur_budget = txv->budget;
978
979                 num_tx += cpdma_chan_process(txv->ch, cur_budget);
980                 if (num_tx >= budget)
981                         break;
982         }
983
984         if (num_tx < budget) {
985                 napi_complete(napi_tx);
986                 writel(0xff, &cpsw->wr_regs->tx_en);
987                 if (cpsw->quirk_irq && cpsw->tx_irq_disabled) {
988                         cpsw->tx_irq_disabled = false;
989                         enable_irq(cpsw->irqs_table[1]);
990                 }
991         }
992
993         return num_tx;
994 }
995
996 static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
997 {
998         u32                     ch_map;
999         int                     num_rx, cur_budget, ch;
1000         struct cpsw_common      *cpsw = napi_to_cpsw(napi_rx);
1001         struct cpsw_vector      *rxv;
1002
1003         /* process every unprocessed channel */
1004         ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
1005         for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) {
1006                 if (!(ch_map & 0x01))
1007                         continue;
1008
1009                 rxv = &cpsw->rxv[ch];
1010                 if (unlikely(rxv->budget > budget - num_rx))
1011                         cur_budget = budget - num_rx;
1012                 else
1013                         cur_budget = rxv->budget;
1014
1015                 num_rx += cpdma_chan_process(rxv->ch, cur_budget);
1016                 if (num_rx >= budget)
1017                         break;
1018         }
1019
1020         if (num_rx < budget) {
1021                 napi_complete_done(napi_rx, num_rx);
1022                 writel(0xff, &cpsw->wr_regs->rx_en);
1023                 if (cpsw->quirk_irq && cpsw->rx_irq_disabled) {
1024                         cpsw->rx_irq_disabled = false;
1025                         enable_irq(cpsw->irqs_table[0]);
1026                 }
1027         }
1028
1029         return num_rx;
1030 }
1031
1032 static inline void soft_reset(const char *module, void __iomem *reg)
1033 {
1034         unsigned long timeout = jiffies + HZ;
1035
1036         writel_relaxed(1, reg);
1037         do {
1038                 cpu_relax();
1039         } while ((readl_relaxed(reg) & 1) && time_after(timeout, jiffies));
1040
1041         WARN(readl_relaxed(reg) & 1, "failed to soft-reset %s\n", module);
1042 }
1043
1044 static void cpsw_set_slave_mac(struct cpsw_slave *slave,
1045                                struct cpsw_priv *priv)
1046 {
1047         slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
1048         slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
1049 }
1050
1051 static void _cpsw_adjust_link(struct cpsw_slave *slave,
1052                               struct cpsw_priv *priv, bool *link)
1053 {
1054         struct phy_device       *phy = slave->phy;
1055         u32                     mac_control = 0;
1056         u32                     slave_port;
1057         struct cpsw_common *cpsw = priv->cpsw;
1058
1059         if (!phy)
1060                 return;
1061
1062         slave_port = cpsw_get_slave_port(slave->slave_num);
1063
1064         if (phy->link) {
1065                 mac_control = cpsw->data.mac_control;
1066
1067                 /* enable forwarding */
1068                 cpsw_ale_control_set(cpsw->ale, slave_port,
1069                                      ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
1070
1071                 if (phy->speed == 1000)
1072                         mac_control |= BIT(7);  /* GIGABITEN    */
1073                 if (phy->duplex)
1074                         mac_control |= BIT(0);  /* FULLDUPLEXEN */
1075
1076                 /* set speed_in input in case RMII mode is used in 100Mbps */
1077                 if (phy->speed == 100)
1078                         mac_control |= BIT(15);
1079                 /* in band mode only works in 10Mbps RGMII mode */
1080                 else if ((phy->speed == 10) && phy_interface_is_rgmii(phy))
1081                         mac_control |= BIT(18); /* In Band mode */
1082
1083                 if (priv->rx_pause)
1084                         mac_control |= BIT(3);
1085
1086                 if (priv->tx_pause)
1087                         mac_control |= BIT(4);
1088
1089                 *link = true;
1090         } else {
1091                 mac_control = 0;
1092                 /* disable forwarding */
1093                 cpsw_ale_control_set(cpsw->ale, slave_port,
1094                                      ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1095         }
1096
1097         if (mac_control != slave->mac_control) {
1098                 phy_print_status(phy);
1099                 writel_relaxed(mac_control, &slave->sliver->mac_control);
1100         }
1101
1102         slave->mac_control = mac_control;
1103 }
1104
1105 static int cpsw_get_common_speed(struct cpsw_common *cpsw)
1106 {
1107         int i, speed;
1108
1109         for (i = 0, speed = 0; i < cpsw->data.slaves; i++)
1110                 if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link)
1111                         speed += cpsw->slaves[i].phy->speed;
1112
1113         return speed;
1114 }
1115
1116 static int cpsw_need_resplit(struct cpsw_common *cpsw)
1117 {
1118         int i, rlim_ch_num;
1119         int speed, ch_rate;
1120
1121         /* re-split resources only in case speed was changed */
1122         speed = cpsw_get_common_speed(cpsw);
1123         if (speed == cpsw->speed || !speed)
1124                 return 0;
1125
1126         cpsw->speed = speed;
1127
1128         for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) {
1129                 ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch);
1130                 if (!ch_rate)
1131                         break;
1132
1133                 rlim_ch_num++;
1134         }
1135
1136         /* cases not dependent on speed */
1137         if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num)
1138                 return 0;
1139
1140         return 1;
1141 }
1142
1143 static void cpsw_adjust_link(struct net_device *ndev)
1144 {
1145         struct cpsw_priv        *priv = netdev_priv(ndev);
1146         struct cpsw_common      *cpsw = priv->cpsw;
1147         bool                    link = false;
1148
1149         for_each_slave(priv, _cpsw_adjust_link, priv, &link);
1150
1151         if (link) {
1152                 if (cpsw_need_resplit(cpsw))
1153                         cpsw_split_res(ndev);
1154
1155                 netif_carrier_on(ndev);
1156                 if (netif_running(ndev))
1157                         netif_tx_wake_all_queues(ndev);
1158         } else {
1159                 netif_carrier_off(ndev);
1160                 netif_tx_stop_all_queues(ndev);
1161         }
1162 }
1163
1164 static int cpsw_get_coalesce(struct net_device *ndev,
1165                                 struct ethtool_coalesce *coal)
1166 {
1167         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1168
1169         coal->rx_coalesce_usecs = cpsw->coal_intvl;
1170         return 0;
1171 }
1172
1173 static int cpsw_set_coalesce(struct net_device *ndev,
1174                                 struct ethtool_coalesce *coal)
1175 {
1176         struct cpsw_priv *priv = netdev_priv(ndev);
1177         u32 int_ctrl;
1178         u32 num_interrupts = 0;
1179         u32 prescale = 0;
1180         u32 addnl_dvdr = 1;
1181         u32 coal_intvl = 0;
1182         struct cpsw_common *cpsw = priv->cpsw;
1183
1184         coal_intvl = coal->rx_coalesce_usecs;
1185
1186         int_ctrl =  readl(&cpsw->wr_regs->int_control);
1187         prescale = cpsw->bus_freq_mhz * 4;
1188
1189         if (!coal->rx_coalesce_usecs) {
1190                 int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN);
1191                 goto update_return;
1192         }
1193
1194         if (coal_intvl < CPSW_CMINTMIN_INTVL)
1195                 coal_intvl = CPSW_CMINTMIN_INTVL;
1196
1197         if (coal_intvl > CPSW_CMINTMAX_INTVL) {
1198                 /* Interrupt pacer works with 4us Pulse, we can
1199                  * throttle further by dilating the 4us pulse.
1200                  */
1201                 addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale;
1202
1203                 if (addnl_dvdr > 1) {
1204                         prescale *= addnl_dvdr;
1205                         if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr))
1206                                 coal_intvl = (CPSW_CMINTMAX_INTVL
1207                                                 * addnl_dvdr);
1208                 } else {
1209                         addnl_dvdr = 1;
1210                         coal_intvl = CPSW_CMINTMAX_INTVL;
1211                 }
1212         }
1213
1214         num_interrupts = (1000 * addnl_dvdr) / coal_intvl;
1215         writel(num_interrupts, &cpsw->wr_regs->rx_imax);
1216         writel(num_interrupts, &cpsw->wr_regs->tx_imax);
1217
1218         int_ctrl |= CPSW_INTPACEEN;
1219         int_ctrl &= (~CPSW_INTPRESCALE_MASK);
1220         int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK);
1221
1222 update_return:
1223         writel(int_ctrl, &cpsw->wr_regs->int_control);
1224
1225         cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl);
1226         cpsw->coal_intvl = coal_intvl;
1227
1228         return 0;
1229 }
1230
1231 static int cpsw_get_sset_count(struct net_device *ndev, int sset)
1232 {
1233         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1234
1235         switch (sset) {
1236         case ETH_SS_STATS:
1237                 return (CPSW_STATS_COMMON_LEN +
1238                        (cpsw->rx_ch_num + cpsw->tx_ch_num) *
1239                        CPSW_STATS_CH_LEN);
1240         default:
1241                 return -EOPNOTSUPP;
1242         }
1243 }
1244
1245 static void cpsw_add_ch_strings(u8 **p, int ch_num, int rx_dir)
1246 {
1247         int ch_stats_len;
1248         int line;
1249         int i;
1250
1251         ch_stats_len = CPSW_STATS_CH_LEN * ch_num;
1252         for (i = 0; i < ch_stats_len; i++) {
1253                 line = i % CPSW_STATS_CH_LEN;
1254                 snprintf(*p, ETH_GSTRING_LEN,
1255                          "%s DMA chan %d: %s", rx_dir ? "Rx" : "Tx",
1256                          i / CPSW_STATS_CH_LEN,
1257                          cpsw_gstrings_ch_stats[line].stat_string);
1258                 *p += ETH_GSTRING_LEN;
1259         }
1260 }
1261
1262 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1263 {
1264         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1265         u8 *p = data;
1266         int i;
1267
1268         switch (stringset) {
1269         case ETH_SS_STATS:
1270                 for (i = 0; i < CPSW_STATS_COMMON_LEN; i++) {
1271                         memcpy(p, cpsw_gstrings_stats[i].stat_string,
1272                                ETH_GSTRING_LEN);
1273                         p += ETH_GSTRING_LEN;
1274                 }
1275
1276                 cpsw_add_ch_strings(&p, cpsw->rx_ch_num, 1);
1277                 cpsw_add_ch_strings(&p, cpsw->tx_ch_num, 0);
1278                 break;
1279         }
1280 }
1281
1282 static void cpsw_get_ethtool_stats(struct net_device *ndev,
1283                                     struct ethtool_stats *stats, u64 *data)
1284 {
1285         u8 *p;
1286         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1287         struct cpdma_chan_stats ch_stats;
1288         int i, l, ch;
1289
1290         /* Collect Davinci CPDMA stats for Rx and Tx Channel */
1291         for (l = 0; l < CPSW_STATS_COMMON_LEN; l++)
1292                 data[l] = readl(cpsw->hw_stats +
1293                                 cpsw_gstrings_stats[l].stat_offset);
1294
1295         for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1296                 cpdma_chan_get_stats(cpsw->rxv[ch].ch, &ch_stats);
1297                 for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
1298                         p = (u8 *)&ch_stats +
1299                                 cpsw_gstrings_ch_stats[i].stat_offset;
1300                         data[l] = *(u32 *)p;
1301                 }
1302         }
1303
1304         for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1305                 cpdma_chan_get_stats(cpsw->txv[ch].ch, &ch_stats);
1306                 for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
1307                         p = (u8 *)&ch_stats +
1308                                 cpsw_gstrings_ch_stats[i].stat_offset;
1309                         data[l] = *(u32 *)p;
1310                 }
1311         }
1312 }
1313
1314 static inline int cpsw_tx_packet_submit(struct cpsw_priv *priv,
1315                                         struct sk_buff *skb,
1316                                         struct cpdma_chan *txch)
1317 {
1318         struct cpsw_common *cpsw = priv->cpsw;
1319
1320         skb_tx_timestamp(skb);
1321         return cpdma_chan_submit(txch, skb, skb->data, skb->len,
1322                                  priv->emac_port + cpsw->data.dual_emac);
1323 }
1324
1325 static inline void cpsw_add_dual_emac_def_ale_entries(
1326                 struct cpsw_priv *priv, struct cpsw_slave *slave,
1327                 u32 slave_port)
1328 {
1329         struct cpsw_common *cpsw = priv->cpsw;
1330         u32 port_mask = 1 << slave_port | ALE_PORT_HOST;
1331
1332         if (cpsw->version == CPSW_VERSION_1)
1333                 slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
1334         else
1335                 slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
1336         cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask,
1337                           port_mask, port_mask, 0);
1338         cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1339                            port_mask, ALE_VLAN, slave->port_vlan, 0);
1340         cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1341                            HOST_PORT_NUM, ALE_VLAN |
1342                            ALE_SECURE, slave->port_vlan);
1343         cpsw_ale_control_set(cpsw->ale, slave_port,
1344                              ALE_PORT_DROP_UNKNOWN_VLAN, 1);
1345 }
1346
1347 static void soft_reset_slave(struct cpsw_slave *slave)
1348 {
1349         char name[32];
1350
1351         snprintf(name, sizeof(name), "slave-%d", slave->slave_num);
1352         soft_reset(name, &slave->sliver->soft_reset);
1353 }
1354
1355 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
1356 {
1357         u32 slave_port;
1358         struct phy_device *phy;
1359         struct cpsw_common *cpsw = priv->cpsw;
1360
1361         soft_reset_slave(slave);
1362
1363         /* setup priority mapping */
1364         writel_relaxed(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map);
1365
1366         switch (cpsw->version) {
1367         case CPSW_VERSION_1:
1368                 slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
1369                 /* Increase RX FIFO size to 5 for supporting fullduplex
1370                  * flow control mode
1371                  */
1372                 slave_write(slave,
1373                             (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
1374                             CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS);
1375                 break;
1376         case CPSW_VERSION_2:
1377         case CPSW_VERSION_3:
1378         case CPSW_VERSION_4:
1379                 slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
1380                 /* Increase RX FIFO size to 5 for supporting fullduplex
1381                  * flow control mode
1382                  */
1383                 slave_write(slave,
1384                             (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
1385                             CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS);
1386                 break;
1387         }
1388
1389         /* setup max packet size, and mac address */
1390         writel_relaxed(cpsw->rx_packet_max, &slave->sliver->rx_maxlen);
1391         cpsw_set_slave_mac(slave, priv);
1392
1393         slave->mac_control = 0; /* no link yet */
1394
1395         slave_port = cpsw_get_slave_port(slave->slave_num);
1396
1397         if (cpsw->data.dual_emac)
1398                 cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
1399         else
1400                 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1401                                    1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
1402
1403         if (slave->data->phy_node) {
1404                 phy = of_phy_connect(priv->ndev, slave->data->phy_node,
1405                                  &cpsw_adjust_link, 0, slave->data->phy_if);
1406                 if (!phy) {
1407                         dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n",
1408                                 slave->data->phy_node,
1409                                 slave->slave_num);
1410                         return;
1411                 }
1412         } else {
1413                 phy = phy_connect(priv->ndev, slave->data->phy_id,
1414                                  &cpsw_adjust_link, slave->data->phy_if);
1415                 if (IS_ERR(phy)) {
1416                         dev_err(priv->dev,
1417                                 "phy \"%s\" not found on slave %d, err %ld\n",
1418                                 slave->data->phy_id, slave->slave_num,
1419                                 PTR_ERR(phy));
1420                         return;
1421                 }
1422         }
1423
1424         slave->phy = phy;
1425
1426         phy_attached_info(slave->phy);
1427
1428         phy_start(slave->phy);
1429
1430         /* Configure GMII_SEL register */
1431         cpsw_phy_sel(cpsw->dev, slave->phy->interface, slave->slave_num);
1432 }
1433
1434 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
1435 {
1436         struct cpsw_common *cpsw = priv->cpsw;
1437         const int vlan = cpsw->data.default_vlan;
1438         u32 reg;
1439         int i;
1440         int unreg_mcast_mask;
1441
1442         reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
1443                CPSW2_PORT_VLAN;
1444
1445         writel(vlan, &cpsw->host_port_regs->port_vlan);
1446
1447         for (i = 0; i < cpsw->data.slaves; i++)
1448                 slave_write(cpsw->slaves + i, vlan, reg);
1449
1450         if (priv->ndev->flags & IFF_ALLMULTI)
1451                 unreg_mcast_mask = ALE_ALL_PORTS;
1452         else
1453                 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1454
1455         cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS,
1456                           ALE_ALL_PORTS, ALE_ALL_PORTS,
1457                           unreg_mcast_mask);
1458 }
1459
1460 static void cpsw_init_host_port(struct cpsw_priv *priv)
1461 {
1462         u32 fifo_mode;
1463         u32 control_reg;
1464         struct cpsw_common *cpsw = priv->cpsw;
1465
1466         /* soft reset the controller and initialize ale */
1467         soft_reset("cpsw", &cpsw->regs->soft_reset);
1468         cpsw_ale_start(cpsw->ale);
1469
1470         /* switch to vlan unaware mode */
1471         cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
1472                              CPSW_ALE_VLAN_AWARE);
1473         control_reg = readl(&cpsw->regs->control);
1474         control_reg |= CPSW_VLAN_AWARE | CPSW_RX_VLAN_ENCAP;
1475         writel(control_reg, &cpsw->regs->control);
1476         fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1477                      CPSW_FIFO_NORMAL_MODE;
1478         writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl);
1479
1480         /* setup host port priority mapping */
1481         writel_relaxed(CPDMA_TX_PRIORITY_MAP,
1482                        &cpsw->host_port_regs->cpdma_tx_pri_map);
1483         writel_relaxed(0, &cpsw->host_port_regs->cpdma_rx_chan_map);
1484
1485         cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
1486                              ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
1487
1488         if (!cpsw->data.dual_emac) {
1489                 cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1490                                    0, 0);
1491                 cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1492                                    ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2);
1493         }
1494 }
1495
1496 static int cpsw_fill_rx_channels(struct cpsw_priv *priv)
1497 {
1498         struct cpsw_common *cpsw = priv->cpsw;
1499         struct sk_buff *skb;
1500         int ch_buf_num;
1501         int ch, i, ret;
1502
1503         for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1504                 ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch);
1505                 for (i = 0; i < ch_buf_num; i++) {
1506                         skb = __netdev_alloc_skb_ip_align(priv->ndev,
1507                                                           cpsw->rx_packet_max,
1508                                                           GFP_KERNEL);
1509                         if (!skb) {
1510                                 cpsw_err(priv, ifup, "cannot allocate skb\n");
1511                                 return -ENOMEM;
1512                         }
1513
1514                         skb_set_queue_mapping(skb, ch);
1515                         ret = cpdma_chan_submit(cpsw->rxv[ch].ch, skb,
1516                                                 skb->data, skb_tailroom(skb),
1517                                                 0);
1518                         if (ret < 0) {
1519                                 cpsw_err(priv, ifup,
1520                                          "cannot submit skb to channel %d rx, error %d\n",
1521                                          ch, ret);
1522                                 kfree_skb(skb);
1523                                 return ret;
1524                         }
1525                         kmemleak_not_leak(skb);
1526                 }
1527
1528                 cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n",
1529                           ch, ch_buf_num);
1530         }
1531
1532         return 0;
1533 }
1534
1535 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw)
1536 {
1537         u32 slave_port;
1538
1539         slave_port = cpsw_get_slave_port(slave->slave_num);
1540
1541         if (!slave->phy)
1542                 return;
1543         phy_stop(slave->phy);
1544         phy_disconnect(slave->phy);
1545         slave->phy = NULL;
1546         cpsw_ale_control_set(cpsw->ale, slave_port,
1547                              ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1548         soft_reset_slave(slave);
1549 }
1550
1551 static int cpsw_ndo_open(struct net_device *ndev)
1552 {
1553         struct cpsw_priv *priv = netdev_priv(ndev);
1554         struct cpsw_common *cpsw = priv->cpsw;
1555         int ret;
1556         u32 reg;
1557
1558         ret = pm_runtime_get_sync(cpsw->dev);
1559         if (ret < 0) {
1560                 pm_runtime_put_noidle(cpsw->dev);
1561                 return ret;
1562         }
1563
1564         netif_carrier_off(ndev);
1565
1566         /* Notify the stack of the actual queue counts. */
1567         ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num);
1568         if (ret) {
1569                 dev_err(priv->dev, "cannot set real number of tx queues\n");
1570                 goto err_cleanup;
1571         }
1572
1573         ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num);
1574         if (ret) {
1575                 dev_err(priv->dev, "cannot set real number of rx queues\n");
1576                 goto err_cleanup;
1577         }
1578
1579         reg = cpsw->version;
1580
1581         dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
1582                  CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
1583                  CPSW_RTL_VERSION(reg));
1584
1585         /* Initialize host and slave ports */
1586         if (!cpsw->usage_count)
1587                 cpsw_init_host_port(priv);
1588         for_each_slave(priv, cpsw_slave_open, priv);
1589
1590         /* Add default VLAN */
1591         if (!cpsw->data.dual_emac)
1592                 cpsw_add_default_vlan(priv);
1593         else
1594                 cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan,
1595                                   ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
1596
1597         /* initialize shared resources for every ndev */
1598         if (!cpsw->usage_count) {
1599                 /* disable priority elevation */
1600                 writel_relaxed(0, &cpsw->regs->ptype);
1601
1602                 /* enable statistics collection only on all ports */
1603                 writel_relaxed(0x7, &cpsw->regs->stat_port_en);
1604
1605                 /* Enable internal fifo flow control */
1606                 writel(0x7, &cpsw->regs->flow_control);
1607
1608                 napi_enable(&cpsw->napi_rx);
1609                 napi_enable(&cpsw->napi_tx);
1610
1611                 if (cpsw->tx_irq_disabled) {
1612                         cpsw->tx_irq_disabled = false;
1613                         enable_irq(cpsw->irqs_table[1]);
1614                 }
1615
1616                 if (cpsw->rx_irq_disabled) {
1617                         cpsw->rx_irq_disabled = false;
1618                         enable_irq(cpsw->irqs_table[0]);
1619                 }
1620
1621                 ret = cpsw_fill_rx_channels(priv);
1622                 if (ret < 0)
1623                         goto err_cleanup;
1624
1625                 if (cpts_register(cpsw->cpts))
1626                         dev_err(priv->dev, "error registering cpts device\n");
1627
1628         }
1629
1630         /* Enable Interrupt pacing if configured */
1631         if (cpsw->coal_intvl != 0) {
1632                 struct ethtool_coalesce coal;
1633
1634                 coal.rx_coalesce_usecs = cpsw->coal_intvl;
1635                 cpsw_set_coalesce(ndev, &coal);
1636         }
1637
1638         cpdma_ctlr_start(cpsw->dma);
1639         cpsw_intr_enable(cpsw);
1640         cpsw->usage_count++;
1641
1642         return 0;
1643
1644 err_cleanup:
1645         cpdma_ctlr_stop(cpsw->dma);
1646         for_each_slave(priv, cpsw_slave_stop, cpsw);
1647         pm_runtime_put_sync(cpsw->dev);
1648         netif_carrier_off(priv->ndev);
1649         return ret;
1650 }
1651
1652 static int cpsw_ndo_stop(struct net_device *ndev)
1653 {
1654         struct cpsw_priv *priv = netdev_priv(ndev);
1655         struct cpsw_common *cpsw = priv->cpsw;
1656
1657         cpsw_info(priv, ifdown, "shutting down cpsw device\n");
1658         netif_tx_stop_all_queues(priv->ndev);
1659         netif_carrier_off(priv->ndev);
1660
1661         if (cpsw->usage_count <= 1) {
1662                 napi_disable(&cpsw->napi_rx);
1663                 napi_disable(&cpsw->napi_tx);
1664                 cpts_unregister(cpsw->cpts);
1665                 cpsw_intr_disable(cpsw);
1666                 cpdma_ctlr_stop(cpsw->dma);
1667                 cpsw_ale_stop(cpsw->ale);
1668         }
1669         for_each_slave(priv, cpsw_slave_stop, cpsw);
1670
1671         if (cpsw_need_resplit(cpsw))
1672                 cpsw_split_res(ndev);
1673
1674         cpsw->usage_count--;
1675         pm_runtime_put_sync(cpsw->dev);
1676         return 0;
1677 }
1678
1679 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
1680                                        struct net_device *ndev)
1681 {
1682         struct cpsw_priv *priv = netdev_priv(ndev);
1683         struct cpsw_common *cpsw = priv->cpsw;
1684         struct cpts *cpts = cpsw->cpts;
1685         struct netdev_queue *txq;
1686         struct cpdma_chan *txch;
1687         int ret, q_idx;
1688
1689         if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
1690                 cpsw_err(priv, tx_err, "packet pad failed\n");
1691                 ndev->stats.tx_dropped++;
1692                 return NET_XMIT_DROP;
1693         }
1694
1695         if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
1696             cpts_is_tx_enabled(cpts) && cpts_can_timestamp(cpts, skb))
1697                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1698
1699         q_idx = skb_get_queue_mapping(skb);
1700         if (q_idx >= cpsw->tx_ch_num)
1701                 q_idx = q_idx % cpsw->tx_ch_num;
1702
1703         txch = cpsw->txv[q_idx].ch;
1704         txq = netdev_get_tx_queue(ndev, q_idx);
1705         ret = cpsw_tx_packet_submit(priv, skb, txch);
1706         if (unlikely(ret != 0)) {
1707                 cpsw_err(priv, tx_err, "desc submit failed\n");
1708                 goto fail;
1709         }
1710
1711         /* If there is no more tx desc left free then we need to
1712          * tell the kernel to stop sending us tx frames.
1713          */
1714         if (unlikely(!cpdma_check_free_tx_desc(txch))) {
1715                 netif_tx_stop_queue(txq);
1716
1717                 /* Barrier, so that stop_queue visible to other cpus */
1718                 smp_mb__after_atomic();
1719
1720                 if (cpdma_check_free_tx_desc(txch))
1721                         netif_tx_wake_queue(txq);
1722         }
1723
1724         return NETDEV_TX_OK;
1725 fail:
1726         ndev->stats.tx_dropped++;
1727         netif_tx_stop_queue(txq);
1728
1729         /* Barrier, so that stop_queue visible to other cpus */
1730         smp_mb__after_atomic();
1731
1732         if (cpdma_check_free_tx_desc(txch))
1733                 netif_tx_wake_queue(txq);
1734
1735         return NETDEV_TX_BUSY;
1736 }
1737
1738 #if IS_ENABLED(CONFIG_TI_CPTS)
1739
1740 static void cpsw_hwtstamp_v1(struct cpsw_common *cpsw)
1741 {
1742         struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave];
1743         u32 ts_en, seq_id;
1744
1745         if (!cpts_is_tx_enabled(cpsw->cpts) &&
1746             !cpts_is_rx_enabled(cpsw->cpts)) {
1747                 slave_write(slave, 0, CPSW1_TS_CTL);
1748                 return;
1749         }
1750
1751         seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
1752         ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;
1753
1754         if (cpts_is_tx_enabled(cpsw->cpts))
1755                 ts_en |= CPSW_V1_TS_TX_EN;
1756
1757         if (cpts_is_rx_enabled(cpsw->cpts))
1758                 ts_en |= CPSW_V1_TS_RX_EN;
1759
1760         slave_write(slave, ts_en, CPSW1_TS_CTL);
1761         slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
1762 }
1763
1764 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
1765 {
1766         struct cpsw_slave *slave;
1767         struct cpsw_common *cpsw = priv->cpsw;
1768         u32 ctrl, mtype;
1769
1770         slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1771
1772         ctrl = slave_read(slave, CPSW2_CONTROL);
1773         switch (cpsw->version) {
1774         case CPSW_VERSION_2:
1775                 ctrl &= ~CTRL_V2_ALL_TS_MASK;
1776
1777                 if (cpts_is_tx_enabled(cpsw->cpts))
1778                         ctrl |= CTRL_V2_TX_TS_BITS;
1779
1780                 if (cpts_is_rx_enabled(cpsw->cpts))
1781                         ctrl |= CTRL_V2_RX_TS_BITS;
1782                 break;
1783         case CPSW_VERSION_3:
1784         default:
1785                 ctrl &= ~CTRL_V3_ALL_TS_MASK;
1786
1787                 if (cpts_is_tx_enabled(cpsw->cpts))
1788                         ctrl |= CTRL_V3_TX_TS_BITS;
1789
1790                 if (cpts_is_rx_enabled(cpsw->cpts))
1791                         ctrl |= CTRL_V3_RX_TS_BITS;
1792                 break;
1793         }
1794
1795         mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;
1796
1797         slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
1798         slave_write(slave, ctrl, CPSW2_CONTROL);
1799         writel_relaxed(ETH_P_1588, &cpsw->regs->ts_ltype);
1800 }
1801
1802 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1803 {
1804         struct cpsw_priv *priv = netdev_priv(dev);
1805         struct hwtstamp_config cfg;
1806         struct cpsw_common *cpsw = priv->cpsw;
1807         struct cpts *cpts = cpsw->cpts;
1808
1809         if (cpsw->version != CPSW_VERSION_1 &&
1810             cpsw->version != CPSW_VERSION_2 &&
1811             cpsw->version != CPSW_VERSION_3)
1812                 return -EOPNOTSUPP;
1813
1814         if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1815                 return -EFAULT;
1816
1817         /* reserved for future extensions */
1818         if (cfg.flags)
1819                 return -EINVAL;
1820
1821         if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
1822                 return -ERANGE;
1823
1824         switch (cfg.rx_filter) {
1825         case HWTSTAMP_FILTER_NONE:
1826                 cpts_rx_enable(cpts, 0);
1827                 break;
1828         case HWTSTAMP_FILTER_ALL:
1829         case HWTSTAMP_FILTER_NTP_ALL:
1830                 return -ERANGE;
1831         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1832         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1833         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1834                 cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V1_L4_EVENT);
1835                 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
1836                 break;
1837         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1838         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1839         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1840         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1841         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1842         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1843         case HWTSTAMP_FILTER_PTP_V2_EVENT:
1844         case HWTSTAMP_FILTER_PTP_V2_SYNC:
1845         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1846                 cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V2_EVENT);
1847                 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1848                 break;
1849         default:
1850                 return -ERANGE;
1851         }
1852
1853         cpts_tx_enable(cpts, cfg.tx_type == HWTSTAMP_TX_ON);
1854
1855         switch (cpsw->version) {
1856         case CPSW_VERSION_1:
1857                 cpsw_hwtstamp_v1(cpsw);
1858                 break;
1859         case CPSW_VERSION_2:
1860         case CPSW_VERSION_3:
1861                 cpsw_hwtstamp_v2(priv);
1862                 break;
1863         default:
1864                 WARN_ON(1);
1865         }
1866
1867         return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1868 }
1869
1870 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
1871 {
1872         struct cpsw_common *cpsw = ndev_to_cpsw(dev);
1873         struct cpts *cpts = cpsw->cpts;
1874         struct hwtstamp_config cfg;
1875
1876         if (cpsw->version != CPSW_VERSION_1 &&
1877             cpsw->version != CPSW_VERSION_2 &&
1878             cpsw->version != CPSW_VERSION_3)
1879                 return -EOPNOTSUPP;
1880
1881         cfg.flags = 0;
1882         cfg.tx_type = cpts_is_tx_enabled(cpts) ?
1883                       HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
1884         cfg.rx_filter = (cpts_is_rx_enabled(cpts) ?
1885                          cpts->rx_enable : HWTSTAMP_FILTER_NONE);
1886
1887         return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1888 }
1889 #else
1890 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
1891 {
1892         return -EOPNOTSUPP;
1893 }
1894
1895 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1896 {
1897         return -EOPNOTSUPP;
1898 }
1899 #endif /*CONFIG_TI_CPTS*/
1900
1901 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1902 {
1903         struct cpsw_priv *priv = netdev_priv(dev);
1904         struct cpsw_common *cpsw = priv->cpsw;
1905         int slave_no = cpsw_slave_index(cpsw, priv);
1906
1907         if (!netif_running(dev))
1908                 return -EINVAL;
1909
1910         switch (cmd) {
1911         case SIOCSHWTSTAMP:
1912                 return cpsw_hwtstamp_set(dev, req);
1913         case SIOCGHWTSTAMP:
1914                 return cpsw_hwtstamp_get(dev, req);
1915         }
1916
1917         if (!cpsw->slaves[slave_no].phy)
1918                 return -EOPNOTSUPP;
1919         return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd);
1920 }
1921
1922 static void cpsw_ndo_tx_timeout(struct net_device *ndev)
1923 {
1924         struct cpsw_priv *priv = netdev_priv(ndev);
1925         struct cpsw_common *cpsw = priv->cpsw;
1926         int ch;
1927
1928         cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
1929         ndev->stats.tx_errors++;
1930         cpsw_intr_disable(cpsw);
1931         for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1932                 cpdma_chan_stop(cpsw->txv[ch].ch);
1933                 cpdma_chan_start(cpsw->txv[ch].ch);
1934         }
1935
1936         cpsw_intr_enable(cpsw);
1937         netif_trans_update(ndev);
1938         netif_tx_wake_all_queues(ndev);
1939 }
1940
1941 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
1942 {
1943         struct cpsw_priv *priv = netdev_priv(ndev);
1944         struct sockaddr *addr = (struct sockaddr *)p;
1945         struct cpsw_common *cpsw = priv->cpsw;
1946         int flags = 0;
1947         u16 vid = 0;
1948         int ret;
1949
1950         if (!is_valid_ether_addr(addr->sa_data))
1951                 return -EADDRNOTAVAIL;
1952
1953         ret = pm_runtime_get_sync(cpsw->dev);
1954         if (ret < 0) {
1955                 pm_runtime_put_noidle(cpsw->dev);
1956                 return ret;
1957         }
1958
1959         if (cpsw->data.dual_emac) {
1960                 vid = cpsw->slaves[priv->emac_port].port_vlan;
1961                 flags = ALE_VLAN;
1962         }
1963
1964         cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1965                            flags, vid);
1966         cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM,
1967                            flags, vid);
1968
1969         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
1970         memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
1971         for_each_slave(priv, cpsw_set_slave_mac, priv);
1972
1973         pm_runtime_put(cpsw->dev);
1974
1975         return 0;
1976 }
1977
1978 #ifdef CONFIG_NET_POLL_CONTROLLER
1979 static void cpsw_ndo_poll_controller(struct net_device *ndev)
1980 {
1981         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1982
1983         cpsw_intr_disable(cpsw);
1984         cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw);
1985         cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw);
1986         cpsw_intr_enable(cpsw);
1987 }
1988 #endif
1989
1990 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
1991                                 unsigned short vid)
1992 {
1993         int ret;
1994         int unreg_mcast_mask = 0;
1995         u32 port_mask;
1996         struct cpsw_common *cpsw = priv->cpsw;
1997
1998         if (cpsw->data.dual_emac) {
1999                 port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
2000
2001                 if (priv->ndev->flags & IFF_ALLMULTI)
2002                         unreg_mcast_mask = port_mask;
2003         } else {
2004                 port_mask = ALE_ALL_PORTS;
2005
2006                 if (priv->ndev->flags & IFF_ALLMULTI)
2007                         unreg_mcast_mask = ALE_ALL_PORTS;
2008                 else
2009                         unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
2010         }
2011
2012         ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask,
2013                                 unreg_mcast_mask);
2014         if (ret != 0)
2015                 return ret;
2016
2017         ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
2018                                  HOST_PORT_NUM, ALE_VLAN, vid);
2019         if (ret != 0)
2020                 goto clean_vid;
2021
2022         ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
2023                                  port_mask, ALE_VLAN, vid, 0);
2024         if (ret != 0)
2025                 goto clean_vlan_ucast;
2026         return 0;
2027
2028 clean_vlan_ucast:
2029         cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
2030                            HOST_PORT_NUM, ALE_VLAN, vid);
2031 clean_vid:
2032         cpsw_ale_del_vlan(cpsw->ale, vid, 0);
2033         return ret;
2034 }
2035
2036 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
2037                                     __be16 proto, u16 vid)
2038 {
2039         struct cpsw_priv *priv = netdev_priv(ndev);
2040         struct cpsw_common *cpsw = priv->cpsw;
2041         int ret;
2042
2043         if (vid == cpsw->data.default_vlan)
2044                 return 0;
2045
2046         ret = pm_runtime_get_sync(cpsw->dev);
2047         if (ret < 0) {
2048                 pm_runtime_put_noidle(cpsw->dev);
2049                 return ret;
2050         }
2051
2052         if (cpsw->data.dual_emac) {
2053                 /* In dual EMAC, reserved VLAN id should not be used for
2054                  * creating VLAN interfaces as this can break the dual
2055                  * EMAC port separation
2056                  */
2057                 int i;
2058
2059                 for (i = 0; i < cpsw->data.slaves; i++) {
2060                         if (vid == cpsw->slaves[i].port_vlan)
2061                                 return -EINVAL;
2062                 }
2063         }
2064
2065         dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
2066         ret = cpsw_add_vlan_ale_entry(priv, vid);
2067
2068         pm_runtime_put(cpsw->dev);
2069         return ret;
2070 }
2071
2072 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
2073                                      __be16 proto, u16 vid)
2074 {
2075         struct cpsw_priv *priv = netdev_priv(ndev);
2076         struct cpsw_common *cpsw = priv->cpsw;
2077         int ret;
2078
2079         if (vid == cpsw->data.default_vlan)
2080                 return 0;
2081
2082         ret = pm_runtime_get_sync(cpsw->dev);
2083         if (ret < 0) {
2084                 pm_runtime_put_noidle(cpsw->dev);
2085                 return ret;
2086         }
2087
2088         if (cpsw->data.dual_emac) {
2089                 int i;
2090
2091                 for (i = 0; i < cpsw->data.slaves; i++) {
2092                         if (vid == cpsw->slaves[i].port_vlan)
2093                                 return -EINVAL;
2094                 }
2095         }
2096
2097         dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
2098         ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0);
2099         if (ret != 0)
2100                 return ret;
2101
2102         ret = cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
2103                                  HOST_PORT_NUM, ALE_VLAN, vid);
2104         if (ret != 0)
2105                 return ret;
2106
2107         ret = cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast,
2108                                  0, ALE_VLAN, vid);
2109         pm_runtime_put(cpsw->dev);
2110         return ret;
2111 }
2112
2113 static int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate)
2114 {
2115         struct cpsw_priv *priv = netdev_priv(ndev);
2116         struct cpsw_common *cpsw = priv->cpsw;
2117         struct cpsw_slave *slave;
2118         u32 min_rate;
2119         u32 ch_rate;
2120         int i, ret;
2121
2122         ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate;
2123         if (ch_rate == rate)
2124                 return 0;
2125
2126         ch_rate = rate * 1000;
2127         min_rate = cpdma_chan_get_min_rate(cpsw->dma);
2128         if ((ch_rate < min_rate && ch_rate)) {
2129                 dev_err(priv->dev, "The channel rate cannot be less than %dMbps",
2130                         min_rate);
2131                 return -EINVAL;
2132         }
2133
2134         if (rate > cpsw->speed) {
2135                 dev_err(priv->dev, "The channel rate cannot be more than 2Gbps");
2136                 return -EINVAL;
2137         }
2138
2139         ret = pm_runtime_get_sync(cpsw->dev);
2140         if (ret < 0) {
2141                 pm_runtime_put_noidle(cpsw->dev);
2142                 return ret;
2143         }
2144
2145         ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate);
2146         pm_runtime_put(cpsw->dev);
2147
2148         if (ret)
2149                 return ret;
2150
2151         /* update rates for slaves tx queues */
2152         for (i = 0; i < cpsw->data.slaves; i++) {
2153                 slave = &cpsw->slaves[i];
2154                 if (!slave->ndev)
2155                         continue;
2156
2157                 netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate;
2158         }
2159
2160         cpsw_split_res(ndev);
2161         return ret;
2162 }
2163
2164 static const struct net_device_ops cpsw_netdev_ops = {
2165         .ndo_open               = cpsw_ndo_open,
2166         .ndo_stop               = cpsw_ndo_stop,
2167         .ndo_start_xmit         = cpsw_ndo_start_xmit,
2168         .ndo_set_mac_address    = cpsw_ndo_set_mac_address,
2169         .ndo_do_ioctl           = cpsw_ndo_ioctl,
2170         .ndo_validate_addr      = eth_validate_addr,
2171         .ndo_tx_timeout         = cpsw_ndo_tx_timeout,
2172         .ndo_set_rx_mode        = cpsw_ndo_set_rx_mode,
2173         .ndo_set_tx_maxrate     = cpsw_ndo_set_tx_maxrate,
2174 #ifdef CONFIG_NET_POLL_CONTROLLER
2175         .ndo_poll_controller    = cpsw_ndo_poll_controller,
2176 #endif
2177         .ndo_vlan_rx_add_vid    = cpsw_ndo_vlan_rx_add_vid,
2178         .ndo_vlan_rx_kill_vid   = cpsw_ndo_vlan_rx_kill_vid,
2179 };
2180
2181 static int cpsw_get_regs_len(struct net_device *ndev)
2182 {
2183         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2184
2185         return cpsw->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32);
2186 }
2187
2188 static void cpsw_get_regs(struct net_device *ndev,
2189                           struct ethtool_regs *regs, void *p)
2190 {
2191         u32 *reg = p;
2192         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2193
2194         /* update CPSW IP version */
2195         regs->version = cpsw->version;
2196
2197         cpsw_ale_dump(cpsw->ale, reg);
2198 }
2199
2200 static void cpsw_get_drvinfo(struct net_device *ndev,
2201                              struct ethtool_drvinfo *info)
2202 {
2203         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2204         struct platform_device  *pdev = to_platform_device(cpsw->dev);
2205
2206         strlcpy(info->driver, "cpsw", sizeof(info->driver));
2207         strlcpy(info->version, "1.0", sizeof(info->version));
2208         strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info));
2209 }
2210
2211 static u32 cpsw_get_msglevel(struct net_device *ndev)
2212 {
2213         struct cpsw_priv *priv = netdev_priv(ndev);
2214         return priv->msg_enable;
2215 }
2216
2217 static void cpsw_set_msglevel(struct net_device *ndev, u32 value)
2218 {
2219         struct cpsw_priv *priv = netdev_priv(ndev);
2220         priv->msg_enable = value;
2221 }
2222
2223 #if IS_ENABLED(CONFIG_TI_CPTS)
2224 static int cpsw_get_ts_info(struct net_device *ndev,
2225                             struct ethtool_ts_info *info)
2226 {
2227         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2228
2229         info->so_timestamping =
2230                 SOF_TIMESTAMPING_TX_HARDWARE |
2231                 SOF_TIMESTAMPING_TX_SOFTWARE |
2232                 SOF_TIMESTAMPING_RX_HARDWARE |
2233                 SOF_TIMESTAMPING_RX_SOFTWARE |
2234                 SOF_TIMESTAMPING_SOFTWARE |
2235                 SOF_TIMESTAMPING_RAW_HARDWARE;
2236         info->phc_index = cpsw->cpts->phc_index;
2237         info->tx_types =
2238                 (1 << HWTSTAMP_TX_OFF) |
2239                 (1 << HWTSTAMP_TX_ON);
2240         info->rx_filters =
2241                 (1 << HWTSTAMP_FILTER_NONE) |
2242                 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
2243                 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2244         return 0;
2245 }
2246 #else
2247 static int cpsw_get_ts_info(struct net_device *ndev,
2248                             struct ethtool_ts_info *info)
2249 {
2250         info->so_timestamping =
2251                 SOF_TIMESTAMPING_TX_SOFTWARE |
2252                 SOF_TIMESTAMPING_RX_SOFTWARE |
2253                 SOF_TIMESTAMPING_SOFTWARE;
2254         info->phc_index = -1;
2255         info->tx_types = 0;
2256         info->rx_filters = 0;
2257         return 0;
2258 }
2259 #endif
2260
2261 static int cpsw_get_link_ksettings(struct net_device *ndev,
2262                                    struct ethtool_link_ksettings *ecmd)
2263 {
2264         struct cpsw_priv *priv = netdev_priv(ndev);
2265         struct cpsw_common *cpsw = priv->cpsw;
2266         int slave_no = cpsw_slave_index(cpsw, priv);
2267
2268         if (!cpsw->slaves[slave_no].phy)
2269                 return -EOPNOTSUPP;
2270
2271         phy_ethtool_ksettings_get(cpsw->slaves[slave_no].phy, ecmd);
2272         return 0;
2273 }
2274
2275 static int cpsw_set_link_ksettings(struct net_device *ndev,
2276                                    const struct ethtool_link_ksettings *ecmd)
2277 {
2278         struct cpsw_priv *priv = netdev_priv(ndev);
2279         struct cpsw_common *cpsw = priv->cpsw;
2280         int slave_no = cpsw_slave_index(cpsw, priv);
2281
2282         if (cpsw->slaves[slave_no].phy)
2283                 return phy_ethtool_ksettings_set(cpsw->slaves[slave_no].phy,
2284                                                  ecmd);
2285         else
2286                 return -EOPNOTSUPP;
2287 }
2288
2289 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2290 {
2291         struct cpsw_priv *priv = netdev_priv(ndev);
2292         struct cpsw_common *cpsw = priv->cpsw;
2293         int slave_no = cpsw_slave_index(cpsw, priv);
2294
2295         wol->supported = 0;
2296         wol->wolopts = 0;
2297
2298         if (cpsw->slaves[slave_no].phy)
2299                 phy_ethtool_get_wol(cpsw->slaves[slave_no].phy, wol);
2300 }
2301
2302 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2303 {
2304         struct cpsw_priv *priv = netdev_priv(ndev);
2305         struct cpsw_common *cpsw = priv->cpsw;
2306         int slave_no = cpsw_slave_index(cpsw, priv);
2307
2308         if (cpsw->slaves[slave_no].phy)
2309                 return phy_ethtool_set_wol(cpsw->slaves[slave_no].phy, wol);
2310         else
2311                 return -EOPNOTSUPP;
2312 }
2313
2314 static void cpsw_get_pauseparam(struct net_device *ndev,
2315                                 struct ethtool_pauseparam *pause)
2316 {
2317         struct cpsw_priv *priv = netdev_priv(ndev);
2318
2319         pause->autoneg = AUTONEG_DISABLE;
2320         pause->rx_pause = priv->rx_pause ? true : false;
2321         pause->tx_pause = priv->tx_pause ? true : false;
2322 }
2323
2324 static int cpsw_set_pauseparam(struct net_device *ndev,
2325                                struct ethtool_pauseparam *pause)
2326 {
2327         struct cpsw_priv *priv = netdev_priv(ndev);
2328         bool link;
2329
2330         priv->rx_pause = pause->rx_pause ? true : false;
2331         priv->tx_pause = pause->tx_pause ? true : false;
2332
2333         for_each_slave(priv, _cpsw_adjust_link, priv, &link);
2334         return 0;
2335 }
2336
2337 static int cpsw_ethtool_op_begin(struct net_device *ndev)
2338 {
2339         struct cpsw_priv *priv = netdev_priv(ndev);
2340         struct cpsw_common *cpsw = priv->cpsw;
2341         int ret;
2342
2343         ret = pm_runtime_get_sync(cpsw->dev);
2344         if (ret < 0) {
2345                 cpsw_err(priv, drv, "ethtool begin failed %d\n", ret);
2346                 pm_runtime_put_noidle(cpsw->dev);
2347         }
2348
2349         return ret;
2350 }
2351
2352 static void cpsw_ethtool_op_complete(struct net_device *ndev)
2353 {
2354         struct cpsw_priv *priv = netdev_priv(ndev);
2355         int ret;
2356
2357         ret = pm_runtime_put(priv->cpsw->dev);
2358         if (ret < 0)
2359                 cpsw_err(priv, drv, "ethtool complete failed %d\n", ret);
2360 }
2361
2362 static void cpsw_get_channels(struct net_device *ndev,
2363                               struct ethtool_channels *ch)
2364 {
2365         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2366
2367         ch->max_combined = 0;
2368         ch->max_rx = CPSW_MAX_QUEUES;
2369         ch->max_tx = CPSW_MAX_QUEUES;
2370         ch->max_other = 0;
2371         ch->other_count = 0;
2372         ch->rx_count = cpsw->rx_ch_num;
2373         ch->tx_count = cpsw->tx_ch_num;
2374         ch->combined_count = 0;
2375 }
2376
2377 static int cpsw_check_ch_settings(struct cpsw_common *cpsw,
2378                                   struct ethtool_channels *ch)
2379 {
2380         if (ch->combined_count)
2381                 return -EINVAL;
2382
2383         /* verify we have at least one channel in each direction */
2384         if (!ch->rx_count || !ch->tx_count)
2385                 return -EINVAL;
2386
2387         if (ch->rx_count > cpsw->data.channels ||
2388             ch->tx_count > cpsw->data.channels)
2389                 return -EINVAL;
2390
2391         return 0;
2392 }
2393
2394 static int cpsw_update_channels_res(struct cpsw_priv *priv, int ch_num, int rx)
2395 {
2396         struct cpsw_common *cpsw = priv->cpsw;
2397         void (*handler)(void *, int, int);
2398         struct netdev_queue *queue;
2399         struct cpsw_vector *vec;
2400         int ret, *ch;
2401
2402         if (rx) {
2403                 ch = &cpsw->rx_ch_num;
2404                 vec = cpsw->rxv;
2405                 handler = cpsw_rx_handler;
2406         } else {
2407                 ch = &cpsw->tx_ch_num;
2408                 vec = cpsw->txv;
2409                 handler = cpsw_tx_handler;
2410         }
2411
2412         while (*ch < ch_num) {
2413                 vec[*ch].ch = cpdma_chan_create(cpsw->dma, *ch, handler, rx);
2414                 queue = netdev_get_tx_queue(priv->ndev, *ch);
2415                 queue->tx_maxrate = 0;
2416
2417                 if (IS_ERR(vec[*ch].ch))
2418                         return PTR_ERR(vec[*ch].ch);
2419
2420                 if (!vec[*ch].ch)
2421                         return -EINVAL;
2422
2423                 cpsw_info(priv, ifup, "created new %d %s channel\n", *ch,
2424                           (rx ? "rx" : "tx"));
2425                 (*ch)++;
2426         }
2427
2428         while (*ch > ch_num) {
2429                 (*ch)--;
2430
2431                 ret = cpdma_chan_destroy(vec[*ch].ch);
2432                 if (ret)
2433                         return ret;
2434
2435                 cpsw_info(priv, ifup, "destroyed %d %s channel\n", *ch,
2436                           (rx ? "rx" : "tx"));
2437         }
2438
2439         return 0;
2440 }
2441
2442 static int cpsw_update_channels(struct cpsw_priv *priv,
2443                                 struct ethtool_channels *ch)
2444 {
2445         int ret;
2446
2447         ret = cpsw_update_channels_res(priv, ch->rx_count, 1);
2448         if (ret)
2449                 return ret;
2450
2451         ret = cpsw_update_channels_res(priv, ch->tx_count, 0);
2452         if (ret)
2453                 return ret;
2454
2455         return 0;
2456 }
2457
2458 static void cpsw_suspend_data_pass(struct net_device *ndev)
2459 {
2460         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2461         struct cpsw_slave *slave;
2462         int i;
2463
2464         /* Disable NAPI scheduling */
2465         cpsw_intr_disable(cpsw);
2466
2467         /* Stop all transmit queues for every network device.
2468          * Disable re-using rx descriptors with dormant_on.
2469          */
2470         for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2471                 if (!(slave->ndev && netif_running(slave->ndev)))
2472                         continue;
2473
2474                 netif_tx_stop_all_queues(slave->ndev);
2475                 netif_dormant_on(slave->ndev);
2476         }
2477
2478         /* Handle rest of tx packets and stop cpdma channels */
2479         cpdma_ctlr_stop(cpsw->dma);
2480 }
2481
2482 static int cpsw_resume_data_pass(struct net_device *ndev)
2483 {
2484         struct cpsw_priv *priv = netdev_priv(ndev);
2485         struct cpsw_common *cpsw = priv->cpsw;
2486         struct cpsw_slave *slave;
2487         int i, ret;
2488
2489         /* Allow rx packets handling */
2490         for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
2491                 if (slave->ndev && netif_running(slave->ndev))
2492                         netif_dormant_off(slave->ndev);
2493
2494         /* After this receive is started */
2495         if (cpsw->usage_count) {
2496                 ret = cpsw_fill_rx_channels(priv);
2497                 if (ret)
2498                         return ret;
2499
2500                 cpdma_ctlr_start(cpsw->dma);
2501                 cpsw_intr_enable(cpsw);
2502         }
2503
2504         /* Resume transmit for every affected interface */
2505         for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
2506                 if (slave->ndev && netif_running(slave->ndev))
2507                         netif_tx_start_all_queues(slave->ndev);
2508
2509         return 0;
2510 }
2511
2512 static int cpsw_set_channels(struct net_device *ndev,
2513                              struct ethtool_channels *chs)
2514 {
2515         struct cpsw_priv *priv = netdev_priv(ndev);
2516         struct cpsw_common *cpsw = priv->cpsw;
2517         struct cpsw_slave *slave;
2518         int i, ret;
2519
2520         ret = cpsw_check_ch_settings(cpsw, chs);
2521         if (ret < 0)
2522                 return ret;
2523
2524         cpsw_suspend_data_pass(ndev);
2525         ret = cpsw_update_channels(priv, chs);
2526         if (ret)
2527                 goto err;
2528
2529         for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
2530                 if (!(slave->ndev && netif_running(slave->ndev)))
2531                         continue;
2532
2533                 /* Inform stack about new count of queues */
2534                 ret = netif_set_real_num_tx_queues(slave->ndev,
2535                                                    cpsw->tx_ch_num);
2536                 if (ret) {
2537                         dev_err(priv->dev, "cannot set real number of tx queues\n");
2538                         goto err;
2539                 }
2540
2541                 ret = netif_set_real_num_rx_queues(slave->ndev,
2542                                                    cpsw->rx_ch_num);
2543                 if (ret) {
2544                         dev_err(priv->dev, "cannot set real number of rx queues\n");
2545                         goto err;
2546                 }
2547         }
2548
2549         if (cpsw->usage_count)
2550                 cpsw_split_res(ndev);
2551
2552         ret = cpsw_resume_data_pass(ndev);
2553         if (!ret)
2554                 return 0;
2555 err:
2556         dev_err(priv->dev, "cannot update channels number, closing device\n");
2557         dev_close(ndev);
2558         return ret;
2559 }
2560
2561 static int cpsw_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
2562 {
2563         struct cpsw_priv *priv = netdev_priv(ndev);
2564         struct cpsw_common *cpsw = priv->cpsw;
2565         int slave_no = cpsw_slave_index(cpsw, priv);
2566
2567         if (cpsw->slaves[slave_no].phy)
2568                 return phy_ethtool_get_eee(cpsw->slaves[slave_no].phy, edata);
2569         else
2570                 return -EOPNOTSUPP;
2571 }
2572
2573 static int cpsw_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
2574 {
2575         struct cpsw_priv *priv = netdev_priv(ndev);
2576         struct cpsw_common *cpsw = priv->cpsw;
2577         int slave_no = cpsw_slave_index(cpsw, priv);
2578
2579         if (cpsw->slaves[slave_no].phy)
2580                 return phy_ethtool_set_eee(cpsw->slaves[slave_no].phy, edata);
2581         else
2582                 return -EOPNOTSUPP;
2583 }
2584
2585 static int cpsw_nway_reset(struct net_device *ndev)
2586 {
2587         struct cpsw_priv *priv = netdev_priv(ndev);
2588         struct cpsw_common *cpsw = priv->cpsw;
2589         int slave_no = cpsw_slave_index(cpsw, priv);
2590
2591         if (cpsw->slaves[slave_no].phy)
2592                 return genphy_restart_aneg(cpsw->slaves[slave_no].phy);
2593         else
2594                 return -EOPNOTSUPP;
2595 }
2596
2597 static void cpsw_get_ringparam(struct net_device *ndev,
2598                                struct ethtool_ringparam *ering)
2599 {
2600         struct cpsw_priv *priv = netdev_priv(ndev);
2601         struct cpsw_common *cpsw = priv->cpsw;
2602
2603         /* not supported */
2604         ering->tx_max_pending = 0;
2605         ering->tx_pending = cpdma_get_num_tx_descs(cpsw->dma);
2606         ering->rx_max_pending = descs_pool_size - CPSW_MAX_QUEUES;
2607         ering->rx_pending = cpdma_get_num_rx_descs(cpsw->dma);
2608 }
2609
2610 static int cpsw_set_ringparam(struct net_device *ndev,
2611                               struct ethtool_ringparam *ering)
2612 {
2613         struct cpsw_priv *priv = netdev_priv(ndev);
2614         struct cpsw_common *cpsw = priv->cpsw;
2615         int ret;
2616
2617         /* ignore ering->tx_pending - only rx_pending adjustment is supported */
2618
2619         if (ering->rx_mini_pending || ering->rx_jumbo_pending ||
2620             ering->rx_pending < CPSW_MAX_QUEUES ||
2621             ering->rx_pending > (descs_pool_size - CPSW_MAX_QUEUES))
2622                 return -EINVAL;
2623
2624         if (ering->rx_pending == cpdma_get_num_rx_descs(cpsw->dma))
2625                 return 0;
2626
2627         cpsw_suspend_data_pass(ndev);
2628
2629         cpdma_set_num_rx_descs(cpsw->dma, ering->rx_pending);
2630
2631         if (cpsw->usage_count)
2632                 cpdma_chan_split_pool(cpsw->dma);
2633
2634         ret = cpsw_resume_data_pass(ndev);
2635         if (!ret)
2636                 return 0;
2637
2638         dev_err(&ndev->dev, "cannot set ring params, closing device\n");
2639         dev_close(ndev);
2640         return ret;
2641 }
2642
2643 static const struct ethtool_ops cpsw_ethtool_ops = {
2644         .get_drvinfo    = cpsw_get_drvinfo,
2645         .get_msglevel   = cpsw_get_msglevel,
2646         .set_msglevel   = cpsw_set_msglevel,
2647         .get_link       = ethtool_op_get_link,
2648         .get_ts_info    = cpsw_get_ts_info,
2649         .get_coalesce   = cpsw_get_coalesce,
2650         .set_coalesce   = cpsw_set_coalesce,
2651         .get_sset_count         = cpsw_get_sset_count,
2652         .get_strings            = cpsw_get_strings,
2653         .get_ethtool_stats      = cpsw_get_ethtool_stats,
2654         .get_pauseparam         = cpsw_get_pauseparam,
2655         .set_pauseparam         = cpsw_set_pauseparam,
2656         .get_wol        = cpsw_get_wol,
2657         .set_wol        = cpsw_set_wol,
2658         .get_regs_len   = cpsw_get_regs_len,
2659         .get_regs       = cpsw_get_regs,
2660         .begin          = cpsw_ethtool_op_begin,
2661         .complete       = cpsw_ethtool_op_complete,
2662         .get_channels   = cpsw_get_channels,
2663         .set_channels   = cpsw_set_channels,
2664         .get_link_ksettings     = cpsw_get_link_ksettings,
2665         .set_link_ksettings     = cpsw_set_link_ksettings,
2666         .get_eee        = cpsw_get_eee,
2667         .set_eee        = cpsw_set_eee,
2668         .nway_reset     = cpsw_nway_reset,
2669         .get_ringparam = cpsw_get_ringparam,
2670         .set_ringparam = cpsw_set_ringparam,
2671 };
2672
2673 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_common *cpsw,
2674                             u32 slave_reg_ofs, u32 sliver_reg_ofs)
2675 {
2676         void __iomem            *regs = cpsw->regs;
2677         int                     slave_num = slave->slave_num;
2678         struct cpsw_slave_data  *data = cpsw->data.slave_data + slave_num;
2679
2680         slave->data     = data;
2681         slave->regs     = regs + slave_reg_ofs;
2682         slave->sliver   = regs + sliver_reg_ofs;
2683         slave->port_vlan = data->dual_emac_res_vlan;
2684 }
2685
2686 static int cpsw_probe_dt(struct cpsw_platform_data *data,
2687                          struct platform_device *pdev)
2688 {
2689         struct device_node *node = pdev->dev.of_node;
2690         struct device_node *slave_node;
2691         int i = 0, ret;
2692         u32 prop;
2693
2694         if (!node)
2695                 return -EINVAL;
2696
2697         if (of_property_read_u32(node, "slaves", &prop)) {
2698                 dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
2699                 return -EINVAL;
2700         }
2701         data->slaves = prop;
2702
2703         if (of_property_read_u32(node, "active_slave", &prop)) {
2704                 dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
2705                 return -EINVAL;
2706         }
2707         data->active_slave = prop;
2708
2709         data->slave_data = devm_kzalloc(&pdev->dev, data->slaves
2710                                         * sizeof(struct cpsw_slave_data),
2711                                         GFP_KERNEL);
2712         if (!data->slave_data)
2713                 return -ENOMEM;
2714
2715         if (of_property_read_u32(node, "cpdma_channels", &prop)) {
2716                 dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
2717                 return -EINVAL;
2718         }
2719         data->channels = prop;
2720
2721         if (of_property_read_u32(node, "ale_entries", &prop)) {
2722                 dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
2723                 return -EINVAL;
2724         }
2725         data->ale_entries = prop;
2726
2727         if (of_property_read_u32(node, "bd_ram_size", &prop)) {
2728                 dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
2729                 return -EINVAL;
2730         }
2731         data->bd_ram_size = prop;
2732
2733         if (of_property_read_u32(node, "mac_control", &prop)) {
2734                 dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
2735                 return -EINVAL;
2736         }
2737         data->mac_control = prop;
2738
2739         if (of_property_read_bool(node, "dual_emac"))
2740                 data->dual_emac = 1;
2741
2742         /*
2743          * Populate all the child nodes here...
2744          */
2745         ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
2746         /* We do not want to force this, as in some cases may not have child */
2747         if (ret)
2748                 dev_warn(&pdev->dev, "Doesn't have any child node\n");
2749
2750         for_each_available_child_of_node(node, slave_node) {
2751                 struct cpsw_slave_data *slave_data = data->slave_data + i;
2752                 const void *mac_addr = NULL;
2753                 int lenp;
2754                 const __be32 *parp;
2755
2756                 /* This is no slave child node, continue */
2757                 if (strcmp(slave_node->name, "slave"))
2758                         continue;
2759
2760                 slave_data->phy_node = of_parse_phandle(slave_node,
2761                                                         "phy-handle", 0);
2762                 parp = of_get_property(slave_node, "phy_id", &lenp);
2763                 if (slave_data->phy_node) {
2764                         dev_dbg(&pdev->dev,
2765                                 "slave[%d] using phy-handle=\"%pOF\"\n",
2766                                 i, slave_data->phy_node);
2767                 } else if (of_phy_is_fixed_link(slave_node)) {
2768                         /* In the case of a fixed PHY, the DT node associated
2769                          * to the PHY is the Ethernet MAC DT node.
2770                          */
2771                         ret = of_phy_register_fixed_link(slave_node);
2772                         if (ret) {
2773                                 if (ret != -EPROBE_DEFER)
2774                                         dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret);
2775                                 return ret;
2776                         }
2777                         slave_data->phy_node = of_node_get(slave_node);
2778                 } else if (parp) {
2779                         u32 phyid;
2780                         struct device_node *mdio_node;
2781                         struct platform_device *mdio;
2782
2783                         if (lenp != (sizeof(__be32) * 2)) {
2784                                 dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i);
2785                                 goto no_phy_slave;
2786                         }
2787                         mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
2788                         phyid = be32_to_cpup(parp+1);
2789                         mdio = of_find_device_by_node(mdio_node);
2790                         of_node_put(mdio_node);
2791                         if (!mdio) {
2792                                 dev_err(&pdev->dev, "Missing mdio platform device\n");
2793                                 return -EINVAL;
2794                         }
2795                         snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
2796                                  PHY_ID_FMT, mdio->name, phyid);
2797                         put_device(&mdio->dev);
2798                 } else {
2799                         dev_err(&pdev->dev,
2800                                 "No slave[%d] phy_id, phy-handle, or fixed-link property\n",
2801                                 i);
2802                         goto no_phy_slave;
2803                 }
2804                 slave_data->phy_if = of_get_phy_mode(slave_node);
2805                 if (slave_data->phy_if < 0) {
2806                         dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
2807                                 i);
2808                         return slave_data->phy_if;
2809                 }
2810
2811 no_phy_slave:
2812                 mac_addr = of_get_mac_address(slave_node);
2813                 if (mac_addr) {
2814                         memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN);
2815                 } else {
2816                         ret = ti_cm_get_macid(&pdev->dev, i,
2817                                               slave_data->mac_addr);
2818                         if (ret)
2819                                 return ret;
2820                 }
2821                 if (data->dual_emac) {
2822                         if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
2823                                                  &prop)) {
2824                                 dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
2825                                 slave_data->dual_emac_res_vlan = i+1;
2826                                 dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
2827                                         slave_data->dual_emac_res_vlan, i);
2828                         } else {
2829                                 slave_data->dual_emac_res_vlan = prop;
2830                         }
2831                 }
2832
2833                 i++;
2834                 if (i == data->slaves)
2835                         break;
2836         }
2837
2838         return 0;
2839 }
2840
2841 static void cpsw_remove_dt(struct platform_device *pdev)
2842 {
2843         struct net_device *ndev = platform_get_drvdata(pdev);
2844         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2845         struct cpsw_platform_data *data = &cpsw->data;
2846         struct device_node *node = pdev->dev.of_node;
2847         struct device_node *slave_node;
2848         int i = 0;
2849
2850         for_each_available_child_of_node(node, slave_node) {
2851                 struct cpsw_slave_data *slave_data = &data->slave_data[i];
2852
2853                 if (strcmp(slave_node->name, "slave"))
2854                         continue;
2855
2856                 if (of_phy_is_fixed_link(slave_node))
2857                         of_phy_deregister_fixed_link(slave_node);
2858
2859                 of_node_put(slave_data->phy_node);
2860
2861                 i++;
2862                 if (i == data->slaves)
2863                         break;
2864         }
2865
2866         of_platform_depopulate(&pdev->dev);
2867 }
2868
2869 static int cpsw_probe_dual_emac(struct cpsw_priv *priv)
2870 {
2871         struct cpsw_common              *cpsw = priv->cpsw;
2872         struct cpsw_platform_data       *data = &cpsw->data;
2873         struct net_device               *ndev;
2874         struct cpsw_priv                *priv_sl2;
2875         int ret = 0;
2876
2877         ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2878         if (!ndev) {
2879                 dev_err(cpsw->dev, "cpsw: error allocating net_device\n");
2880                 return -ENOMEM;
2881         }
2882
2883         priv_sl2 = netdev_priv(ndev);
2884         priv_sl2->cpsw = cpsw;
2885         priv_sl2->ndev = ndev;
2886         priv_sl2->dev  = &ndev->dev;
2887         priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2888
2889         if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
2890                 memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
2891                         ETH_ALEN);
2892                 dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n",
2893                          priv_sl2->mac_addr);
2894         } else {
2895                 random_ether_addr(priv_sl2->mac_addr);
2896                 dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n",
2897                          priv_sl2->mac_addr);
2898         }
2899         memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);
2900
2901         priv_sl2->emac_port = 1;
2902         cpsw->slaves[1].ndev = ndev;
2903         ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2904
2905         ndev->netdev_ops = &cpsw_netdev_ops;
2906         ndev->ethtool_ops = &cpsw_ethtool_ops;
2907
2908         /* register the network device */
2909         SET_NETDEV_DEV(ndev, cpsw->dev);
2910         ret = register_netdev(ndev);
2911         if (ret) {
2912                 dev_err(cpsw->dev, "cpsw: error registering net device\n");
2913                 free_netdev(ndev);
2914                 ret = -ENODEV;
2915         }
2916
2917         return ret;
2918 }
2919
2920 #define CPSW_QUIRK_IRQ          BIT(0)
2921
2922 static const struct platform_device_id cpsw_devtype[] = {
2923         {
2924                 /* keep it for existing comaptibles */
2925                 .name = "cpsw",
2926                 .driver_data = CPSW_QUIRK_IRQ,
2927         }, {
2928                 .name = "am335x-cpsw",
2929                 .driver_data = CPSW_QUIRK_IRQ,
2930         }, {
2931                 .name = "am4372-cpsw",
2932                 .driver_data = 0,
2933         }, {
2934                 .name = "dra7-cpsw",
2935                 .driver_data = 0,
2936         }, {
2937                 /* sentinel */
2938         }
2939 };
2940 MODULE_DEVICE_TABLE(platform, cpsw_devtype);
2941
2942 enum ti_cpsw_type {
2943         CPSW = 0,
2944         AM335X_CPSW,
2945         AM4372_CPSW,
2946         DRA7_CPSW,
2947 };
2948
2949 static const struct of_device_id cpsw_of_mtable[] = {
2950         { .compatible = "ti,cpsw", .data = &cpsw_devtype[CPSW], },
2951         { .compatible = "ti,am335x-cpsw", .data = &cpsw_devtype[AM335X_CPSW], },
2952         { .compatible = "ti,am4372-cpsw", .data = &cpsw_devtype[AM4372_CPSW], },
2953         { .compatible = "ti,dra7-cpsw", .data = &cpsw_devtype[DRA7_CPSW], },
2954         { /* sentinel */ },
2955 };
2956 MODULE_DEVICE_TABLE(of, cpsw_of_mtable);
2957
2958 static int cpsw_probe(struct platform_device *pdev)
2959 {
2960         struct clk                      *clk;
2961         struct cpsw_platform_data       *data;
2962         struct net_device               *ndev;
2963         struct cpsw_priv                *priv;
2964         struct cpdma_params             dma_params;
2965         struct cpsw_ale_params          ale_params;
2966         void __iomem                    *ss_regs;
2967         void __iomem                    *cpts_regs;
2968         struct resource                 *res, *ss_res;
2969         const struct of_device_id       *of_id;
2970         struct gpio_descs               *mode;
2971         u32 slave_offset, sliver_offset, slave_size;
2972         struct cpsw_common              *cpsw;
2973         int ret = 0, i;
2974         int irq;
2975
2976         cpsw = devm_kzalloc(&pdev->dev, sizeof(struct cpsw_common), GFP_KERNEL);
2977         if (!cpsw)
2978                 return -ENOMEM;
2979
2980         cpsw->dev = &pdev->dev;
2981
2982         ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2983         if (!ndev) {
2984                 dev_err(&pdev->dev, "error allocating net_device\n");
2985                 return -ENOMEM;
2986         }
2987
2988         platform_set_drvdata(pdev, ndev);
2989         priv = netdev_priv(ndev);
2990         priv->cpsw = cpsw;
2991         priv->ndev = ndev;
2992         priv->dev  = &ndev->dev;
2993         priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2994         cpsw->rx_packet_max = max(rx_packet_max, 128);
2995
2996         mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW);
2997         if (IS_ERR(mode)) {
2998                 ret = PTR_ERR(mode);
2999                 dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret);
3000                 goto clean_ndev_ret;
3001         }
3002
3003         /*
3004          * This may be required here for child devices.
3005          */
3006         pm_runtime_enable(&pdev->dev);
3007
3008         /* Select default pin state */
3009         pinctrl_pm_select_default_state(&pdev->dev);
3010
3011         /* Need to enable clocks with runtime PM api to access module
3012          * registers
3013          */
3014         ret = pm_runtime_get_sync(&pdev->dev);
3015         if (ret < 0) {
3016                 pm_runtime_put_noidle(&pdev->dev);
3017                 goto clean_runtime_disable_ret;
3018         }
3019
3020         ret = cpsw_probe_dt(&cpsw->data, pdev);
3021         if (ret)
3022                 goto clean_dt_ret;
3023
3024         data = &cpsw->data;
3025         cpsw->rx_ch_num = 1;
3026         cpsw->tx_ch_num = 1;
3027
3028         if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
3029                 memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
3030                 dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr);
3031         } else {
3032                 eth_random_addr(priv->mac_addr);
3033                 dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr);
3034         }
3035
3036         memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
3037
3038         cpsw->slaves = devm_kzalloc(&pdev->dev,
3039                                     sizeof(struct cpsw_slave) * data->slaves,
3040                                     GFP_KERNEL);
3041         if (!cpsw->slaves) {
3042                 ret = -ENOMEM;
3043                 goto clean_dt_ret;
3044         }
3045         for (i = 0; i < data->slaves; i++)
3046                 cpsw->slaves[i].slave_num = i;
3047
3048         cpsw->slaves[0].ndev = ndev;
3049         priv->emac_port = 0;
3050
3051         clk = devm_clk_get(&pdev->dev, "fck");
3052         if (IS_ERR(clk)) {
3053                 dev_err(priv->dev, "fck is not found\n");
3054                 ret = -ENODEV;
3055                 goto clean_dt_ret;
3056         }
3057         cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000;
3058
3059         ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3060         ss_regs = devm_ioremap_resource(&pdev->dev, ss_res);
3061         if (IS_ERR(ss_regs)) {
3062                 ret = PTR_ERR(ss_regs);
3063                 goto clean_dt_ret;
3064         }
3065         cpsw->regs = ss_regs;
3066
3067         cpsw->version = readl(&cpsw->regs->id_ver);
3068
3069         res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3070         cpsw->wr_regs = devm_ioremap_resource(&pdev->dev, res);
3071         if (IS_ERR(cpsw->wr_regs)) {
3072                 ret = PTR_ERR(cpsw->wr_regs);
3073                 goto clean_dt_ret;
3074         }
3075
3076         memset(&dma_params, 0, sizeof(dma_params));
3077         memset(&ale_params, 0, sizeof(ale_params));
3078
3079         switch (cpsw->version) {
3080         case CPSW_VERSION_1:
3081                 cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
3082                 cpts_regs               = ss_regs + CPSW1_CPTS_OFFSET;
3083                 cpsw->hw_stats       = ss_regs + CPSW1_HW_STATS;
3084                 dma_params.dmaregs   = ss_regs + CPSW1_CPDMA_OFFSET;
3085                 dma_params.txhdp     = ss_regs + CPSW1_STATERAM_OFFSET;
3086                 ale_params.ale_regs  = ss_regs + CPSW1_ALE_OFFSET;
3087                 slave_offset         = CPSW1_SLAVE_OFFSET;
3088                 slave_size           = CPSW1_SLAVE_SIZE;
3089                 sliver_offset        = CPSW1_SLIVER_OFFSET;
3090                 dma_params.desc_mem_phys = 0;
3091                 break;
3092         case CPSW_VERSION_2:
3093         case CPSW_VERSION_3:
3094         case CPSW_VERSION_4:
3095                 cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
3096                 cpts_regs               = ss_regs + CPSW2_CPTS_OFFSET;
3097                 cpsw->hw_stats       = ss_regs + CPSW2_HW_STATS;
3098                 dma_params.dmaregs   = ss_regs + CPSW2_CPDMA_OFFSET;
3099                 dma_params.txhdp     = ss_regs + CPSW2_STATERAM_OFFSET;
3100                 ale_params.ale_regs  = ss_regs + CPSW2_ALE_OFFSET;
3101                 slave_offset         = CPSW2_SLAVE_OFFSET;
3102                 slave_size           = CPSW2_SLAVE_SIZE;
3103                 sliver_offset        = CPSW2_SLIVER_OFFSET;
3104                 dma_params.desc_mem_phys =
3105                         (u32 __force) ss_res->start + CPSW2_BD_OFFSET;
3106                 break;
3107         default:
3108                 dev_err(priv->dev, "unknown version 0x%08x\n", cpsw->version);
3109                 ret = -ENODEV;
3110                 goto clean_dt_ret;
3111         }
3112         for (i = 0; i < cpsw->data.slaves; i++) {
3113                 struct cpsw_slave *slave = &cpsw->slaves[i];
3114
3115                 cpsw_slave_init(slave, cpsw, slave_offset, sliver_offset);
3116                 slave_offset  += slave_size;
3117                 sliver_offset += SLIVER_SIZE;
3118         }
3119
3120         dma_params.dev          = &pdev->dev;
3121         dma_params.rxthresh     = dma_params.dmaregs + CPDMA_RXTHRESH;
3122         dma_params.rxfree       = dma_params.dmaregs + CPDMA_RXFREE;
3123         dma_params.rxhdp        = dma_params.txhdp + CPDMA_RXHDP;
3124         dma_params.txcp         = dma_params.txhdp + CPDMA_TXCP;
3125         dma_params.rxcp         = dma_params.txhdp + CPDMA_RXCP;
3126
3127         dma_params.num_chan             = data->channels;
3128         dma_params.has_soft_reset       = true;
3129         dma_params.min_packet_size      = CPSW_MIN_PACKET_SIZE;
3130         dma_params.desc_mem_size        = data->bd_ram_size;
3131         dma_params.desc_align           = 16;
3132         dma_params.has_ext_regs         = true;
3133         dma_params.desc_hw_addr         = dma_params.desc_mem_phys;
3134         dma_params.bus_freq_mhz         = cpsw->bus_freq_mhz;
3135         dma_params.descs_pool_size      = descs_pool_size;
3136
3137         cpsw->dma = cpdma_ctlr_create(&dma_params);
3138         if (!cpsw->dma) {
3139                 dev_err(priv->dev, "error initializing dma\n");
3140                 ret = -ENOMEM;
3141                 goto clean_dt_ret;
3142         }
3143
3144         cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_tx_handler, 0);
3145         if (IS_ERR(cpsw->txv[0].ch)) {
3146                 dev_err(priv->dev, "error initializing tx dma channel\n");
3147                 ret = PTR_ERR(cpsw->txv[0].ch);
3148                 goto clean_dma_ret;
3149         }
3150
3151         cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1);
3152         if (IS_ERR(cpsw->rxv[0].ch)) {
3153                 dev_err(priv->dev, "error initializing rx dma channel\n");
3154                 ret = PTR_ERR(cpsw->rxv[0].ch);
3155                 goto clean_dma_ret;
3156         }
3157
3158         ale_params.dev                  = &pdev->dev;
3159         ale_params.ale_ageout           = ale_ageout;
3160         ale_params.ale_entries          = data->ale_entries;
3161         ale_params.ale_ports            = CPSW_ALE_PORTS_NUM;
3162
3163         cpsw->ale = cpsw_ale_create(&ale_params);
3164         if (!cpsw->ale) {
3165                 dev_err(priv->dev, "error initializing ale engine\n");
3166                 ret = -ENODEV;
3167                 goto clean_dma_ret;
3168         }
3169
3170         cpsw->cpts = cpts_create(cpsw->dev, cpts_regs, cpsw->dev->of_node);
3171         if (IS_ERR(cpsw->cpts)) {
3172                 ret = PTR_ERR(cpsw->cpts);
3173                 goto clean_dma_ret;
3174         }
3175
3176         ndev->irq = platform_get_irq(pdev, 1);
3177         if (ndev->irq < 0) {
3178                 dev_err(priv->dev, "error getting irq resource\n");
3179                 ret = ndev->irq;
3180                 goto clean_dma_ret;
3181         }
3182
3183         of_id = of_match_device(cpsw_of_mtable, &pdev->dev);
3184         if (of_id) {
3185                 pdev->id_entry = of_id->data;
3186                 if (pdev->id_entry->driver_data)
3187                         cpsw->quirk_irq = true;
3188         }
3189
3190         ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX;
3191
3192         ndev->netdev_ops = &cpsw_netdev_ops;
3193         ndev->ethtool_ops = &cpsw_ethtool_ops;
3194         netif_napi_add(ndev, &cpsw->napi_rx, cpsw_rx_poll, CPSW_POLL_WEIGHT);
3195         netif_tx_napi_add(ndev, &cpsw->napi_tx, cpsw_tx_poll, CPSW_POLL_WEIGHT);
3196         cpsw_split_res(ndev);
3197
3198         /* register the network device */
3199         SET_NETDEV_DEV(ndev, &pdev->dev);
3200         ret = register_netdev(ndev);
3201         if (ret) {
3202                 dev_err(priv->dev, "error registering net device\n");
3203                 ret = -ENODEV;
3204                 goto clean_dma_ret;
3205         }
3206
3207         if (cpsw->data.dual_emac) {
3208                 ret = cpsw_probe_dual_emac(priv);
3209                 if (ret) {
3210                         cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
3211                         goto clean_unregister_netdev_ret;
3212                 }
3213         }
3214
3215         /* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
3216          * MISC IRQs which are always kept disabled with this driver so
3217          * we will not request them.
3218          *
3219          * If anyone wants to implement support for those, make sure to
3220          * first request and append them to irqs_table array.
3221          */
3222
3223         /* RX IRQ */
3224         irq = platform_get_irq(pdev, 1);
3225         if (irq < 0) {
3226                 ret = irq;
3227                 goto clean_dma_ret;
3228         }
3229
3230         cpsw->irqs_table[0] = irq;
3231         ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt,
3232                                0, dev_name(&pdev->dev), cpsw);
3233         if (ret < 0) {
3234                 dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3235                 goto clean_dma_ret;
3236         }
3237
3238         /* TX IRQ */
3239         irq = platform_get_irq(pdev, 2);
3240         if (irq < 0) {
3241                 ret = irq;
3242                 goto clean_dma_ret;
3243         }
3244
3245         cpsw->irqs_table[1] = irq;
3246         ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt,
3247                                0, dev_name(&pdev->dev), cpsw);
3248         if (ret < 0) {
3249                 dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3250                 goto clean_dma_ret;
3251         }
3252
3253         cpsw_notice(priv, probe,
3254                     "initialized device (regs %pa, irq %d, pool size %d)\n",
3255                     &ss_res->start, ndev->irq, dma_params.descs_pool_size);
3256
3257         pm_runtime_put(&pdev->dev);
3258
3259         return 0;
3260
3261 clean_unregister_netdev_ret:
3262         unregister_netdev(ndev);
3263 clean_dma_ret:
3264         cpdma_ctlr_destroy(cpsw->dma);
3265 clean_dt_ret:
3266         cpsw_remove_dt(pdev);
3267         pm_runtime_put_sync(&pdev->dev);
3268 clean_runtime_disable_ret:
3269         pm_runtime_disable(&pdev->dev);
3270 clean_ndev_ret:
3271         free_netdev(priv->ndev);
3272         return ret;
3273 }
3274
3275 static int cpsw_remove(struct platform_device *pdev)
3276 {
3277         struct net_device *ndev = platform_get_drvdata(pdev);
3278         struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3279         int ret;
3280
3281         ret = pm_runtime_get_sync(&pdev->dev);
3282         if (ret < 0) {
3283                 pm_runtime_put_noidle(&pdev->dev);
3284                 return ret;
3285         }
3286
3287         if (cpsw->data.dual_emac)
3288                 unregister_netdev(cpsw->slaves[1].ndev);
3289         unregister_netdev(ndev);
3290
3291         cpts_release(cpsw->cpts);
3292         cpdma_ctlr_destroy(cpsw->dma);
3293         cpsw_remove_dt(pdev);
3294         pm_runtime_put_sync(&pdev->dev);
3295         pm_runtime_disable(&pdev->dev);
3296         if (cpsw->data.dual_emac)
3297                 free_netdev(cpsw->slaves[1].ndev);
3298         free_netdev(ndev);
3299         return 0;
3300 }
3301
3302 #ifdef CONFIG_PM_SLEEP
3303 static int cpsw_suspend(struct device *dev)
3304 {
3305         struct platform_device  *pdev = to_platform_device(dev);
3306         struct net_device       *ndev = platform_get_drvdata(pdev);
3307         struct cpsw_common      *cpsw = ndev_to_cpsw(ndev);
3308
3309         if (cpsw->data.dual_emac) {
3310                 int i;
3311
3312                 for (i = 0; i < cpsw->data.slaves; i++) {
3313                         if (netif_running(cpsw->slaves[i].ndev))
3314                                 cpsw_ndo_stop(cpsw->slaves[i].ndev);
3315                 }
3316         } else {
3317                 if (netif_running(ndev))
3318                         cpsw_ndo_stop(ndev);
3319         }
3320
3321         /* Select sleep pin state */
3322         pinctrl_pm_select_sleep_state(dev);
3323
3324         return 0;
3325 }
3326
3327 static int cpsw_resume(struct device *dev)
3328 {
3329         struct platform_device  *pdev = to_platform_device(dev);
3330         struct net_device       *ndev = platform_get_drvdata(pdev);
3331         struct cpsw_common      *cpsw = ndev_to_cpsw(ndev);
3332
3333         /* Select default pin state */
3334         pinctrl_pm_select_default_state(dev);
3335
3336         /* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */
3337         rtnl_lock();
3338         if (cpsw->data.dual_emac) {
3339                 int i;
3340
3341                 for (i = 0; i < cpsw->data.slaves; i++) {
3342                         if (netif_running(cpsw->slaves[i].ndev))
3343                                 cpsw_ndo_open(cpsw->slaves[i].ndev);
3344                 }
3345         } else {
3346                 if (netif_running(ndev))
3347                         cpsw_ndo_open(ndev);
3348         }
3349         rtnl_unlock();
3350
3351         return 0;
3352 }
3353 #endif
3354
3355 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
3356
3357 static struct platform_driver cpsw_driver = {
3358         .driver = {
3359                 .name    = "cpsw",
3360                 .pm      = &cpsw_pm_ops,
3361                 .of_match_table = cpsw_of_mtable,
3362         },
3363         .probe = cpsw_probe,
3364         .remove = cpsw_remove,
3365 };
3366
3367 module_platform_driver(cpsw_driver);
3368
3369 MODULE_LICENSE("GPL");
3370 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
3371 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
3372 MODULE_DESCRIPTION("TI CPSW Ethernet driver");