Merge tag 'pinctrl-v6.2-2' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[linux-block.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5
6         Copyright(C) 2007-2011 STMicroelectronics Ltd
7
8
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10
11   Documentation available at:
12         http://www.stlinux.com
13   Support available at:
14         https://bugzilla.stlinux.com/
15 *******************************************************************************/
16
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/prefetch.h>
33 #include <linux/pinctrl/consumer.h>
34 #ifdef CONFIG_DEBUG_FS
35 #include <linux/debugfs.h>
36 #include <linux/seq_file.h>
37 #endif /* CONFIG_DEBUG_FS */
38 #include <linux/net_tstamp.h>
39 #include <linux/phylink.h>
40 #include <linux/udp.h>
41 #include <linux/bpf_trace.h>
42 #include <net/pkt_cls.h>
43 #include <net/xdp_sock_drv.h>
44 #include "stmmac_ptp.h"
45 #include "stmmac.h"
46 #include "stmmac_xdp.h"
47 #include <linux/reset.h>
48 #include <linux/of_mdio.h>
49 #include "dwmac1000.h"
50 #include "dwxgmac2.h"
51 #include "hwif.h"
52
53 /* As long as the interface is active, we keep the timestamping counter enabled
54  * with fine resolution and binary rollover. This avoid non-monotonic behavior
55  * (clock jumps) when changing timestamping settings at runtime.
56  */
57 #define STMMAC_HWTS_ACTIVE      (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | \
58                                  PTP_TCR_TSCTRLSSR)
59
60 #define STMMAC_ALIGN(x)         ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
61 #define TSO_MAX_BUFF_SIZE       (SZ_16K - 1)
62
63 /* Module parameters */
64 #define TX_TIMEO        5000
65 static int watchdog = TX_TIMEO;
66 module_param(watchdog, int, 0644);
67 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
68
69 static int debug = -1;
70 module_param(debug, int, 0644);
71 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
72
73 static int phyaddr = -1;
74 module_param(phyaddr, int, 0444);
75 MODULE_PARM_DESC(phyaddr, "Physical device address");
76
77 #define STMMAC_TX_THRESH(x)     ((x)->dma_conf.dma_tx_size / 4)
78 #define STMMAC_RX_THRESH(x)     ((x)->dma_conf.dma_rx_size / 4)
79
80 /* Limit to make sure XDP TX and slow path can coexist */
81 #define STMMAC_XSK_TX_BUDGET_MAX        256
82 #define STMMAC_TX_XSK_AVAIL             16
83 #define STMMAC_RX_FILL_BATCH            16
84
85 #define STMMAC_XDP_PASS         0
86 #define STMMAC_XDP_CONSUMED     BIT(0)
87 #define STMMAC_XDP_TX           BIT(1)
88 #define STMMAC_XDP_REDIRECT     BIT(2)
89
90 static int flow_ctrl = FLOW_AUTO;
91 module_param(flow_ctrl, int, 0644);
92 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
93
94 static int pause = PAUSE_TIME;
95 module_param(pause, int, 0644);
96 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
97
98 #define TC_DEFAULT 64
99 static int tc = TC_DEFAULT;
100 module_param(tc, int, 0644);
101 MODULE_PARM_DESC(tc, "DMA threshold control value");
102
103 #define DEFAULT_BUFSIZE 1536
104 static int buf_sz = DEFAULT_BUFSIZE;
105 module_param(buf_sz, int, 0644);
106 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
107
108 #define STMMAC_RX_COPYBREAK     256
109
110 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
111                                       NETIF_MSG_LINK | NETIF_MSG_IFUP |
112                                       NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
113
114 #define STMMAC_DEFAULT_LPI_TIMER        1000
115 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
116 module_param(eee_timer, int, 0644);
117 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
118 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x))
119
120 /* By default the driver will use the ring mode to manage tx and rx descriptors,
121  * but allow user to force to use the chain instead of the ring
122  */
123 static unsigned int chain_mode;
124 module_param(chain_mode, int, 0444);
125 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
126
127 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
128 /* For MSI interrupts handling */
129 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id);
130 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id);
131 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data);
132 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data);
133 static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue);
134 static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue);
135 static void stmmac_reset_queues_param(struct stmmac_priv *priv);
136 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue);
137 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue);
138 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
139                                           u32 rxmode, u32 chan);
140
141 #ifdef CONFIG_DEBUG_FS
142 static const struct net_device_ops stmmac_netdev_ops;
143 static void stmmac_init_fs(struct net_device *dev);
144 static void stmmac_exit_fs(struct net_device *dev);
145 #endif
146
147 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC))
148
149 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled)
150 {
151         int ret = 0;
152
153         if (enabled) {
154                 ret = clk_prepare_enable(priv->plat->stmmac_clk);
155                 if (ret)
156                         return ret;
157                 ret = clk_prepare_enable(priv->plat->pclk);
158                 if (ret) {
159                         clk_disable_unprepare(priv->plat->stmmac_clk);
160                         return ret;
161                 }
162                 if (priv->plat->clks_config) {
163                         ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled);
164                         if (ret) {
165                                 clk_disable_unprepare(priv->plat->stmmac_clk);
166                                 clk_disable_unprepare(priv->plat->pclk);
167                                 return ret;
168                         }
169                 }
170         } else {
171                 clk_disable_unprepare(priv->plat->stmmac_clk);
172                 clk_disable_unprepare(priv->plat->pclk);
173                 if (priv->plat->clks_config)
174                         priv->plat->clks_config(priv->plat->bsp_priv, enabled);
175         }
176
177         return ret;
178 }
179 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config);
180
181 /**
182  * stmmac_verify_args - verify the driver parameters.
183  * Description: it checks the driver parameters and set a default in case of
184  * errors.
185  */
186 static void stmmac_verify_args(void)
187 {
188         if (unlikely(watchdog < 0))
189                 watchdog = TX_TIMEO;
190         if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
191                 buf_sz = DEFAULT_BUFSIZE;
192         if (unlikely(flow_ctrl > 1))
193                 flow_ctrl = FLOW_AUTO;
194         else if (likely(flow_ctrl < 0))
195                 flow_ctrl = FLOW_OFF;
196         if (unlikely((pause < 0) || (pause > 0xffff)))
197                 pause = PAUSE_TIME;
198         if (eee_timer < 0)
199                 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
200 }
201
202 static void __stmmac_disable_all_queues(struct stmmac_priv *priv)
203 {
204         u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
205         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
206         u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
207         u32 queue;
208
209         for (queue = 0; queue < maxq; queue++) {
210                 struct stmmac_channel *ch = &priv->channel[queue];
211
212                 if (stmmac_xdp_is_enabled(priv) &&
213                     test_bit(queue, priv->af_xdp_zc_qps)) {
214                         napi_disable(&ch->rxtx_napi);
215                         continue;
216                 }
217
218                 if (queue < rx_queues_cnt)
219                         napi_disable(&ch->rx_napi);
220                 if (queue < tx_queues_cnt)
221                         napi_disable(&ch->tx_napi);
222         }
223 }
224
225 /**
226  * stmmac_disable_all_queues - Disable all queues
227  * @priv: driver private structure
228  */
229 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
230 {
231         u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
232         struct stmmac_rx_queue *rx_q;
233         u32 queue;
234
235         /* synchronize_rcu() needed for pending XDP buffers to drain */
236         for (queue = 0; queue < rx_queues_cnt; queue++) {
237                 rx_q = &priv->dma_conf.rx_queue[queue];
238                 if (rx_q->xsk_pool) {
239                         synchronize_rcu();
240                         break;
241                 }
242         }
243
244         __stmmac_disable_all_queues(priv);
245 }
246
247 /**
248  * stmmac_enable_all_queues - Enable all queues
249  * @priv: driver private structure
250  */
251 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
252 {
253         u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
254         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
255         u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
256         u32 queue;
257
258         for (queue = 0; queue < maxq; queue++) {
259                 struct stmmac_channel *ch = &priv->channel[queue];
260
261                 if (stmmac_xdp_is_enabled(priv) &&
262                     test_bit(queue, priv->af_xdp_zc_qps)) {
263                         napi_enable(&ch->rxtx_napi);
264                         continue;
265                 }
266
267                 if (queue < rx_queues_cnt)
268                         napi_enable(&ch->rx_napi);
269                 if (queue < tx_queues_cnt)
270                         napi_enable(&ch->tx_napi);
271         }
272 }
273
274 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
275 {
276         if (!test_bit(STMMAC_DOWN, &priv->state) &&
277             !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
278                 queue_work(priv->wq, &priv->service_task);
279 }
280
281 static void stmmac_global_err(struct stmmac_priv *priv)
282 {
283         netif_carrier_off(priv->dev);
284         set_bit(STMMAC_RESET_REQUESTED, &priv->state);
285         stmmac_service_event_schedule(priv);
286 }
287
288 /**
289  * stmmac_clk_csr_set - dynamically set the MDC clock
290  * @priv: driver private structure
291  * Description: this is to dynamically set the MDC clock according to the csr
292  * clock input.
293  * Note:
294  *      If a specific clk_csr value is passed from the platform
295  *      this means that the CSR Clock Range selection cannot be
296  *      changed at run-time and it is fixed (as reported in the driver
297  *      documentation). Viceversa the driver will try to set the MDC
298  *      clock dynamically according to the actual clock input.
299  */
300 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
301 {
302         u32 clk_rate;
303
304         clk_rate = clk_get_rate(priv->plat->stmmac_clk);
305
306         /* Platform provided default clk_csr would be assumed valid
307          * for all other cases except for the below mentioned ones.
308          * For values higher than the IEEE 802.3 specified frequency
309          * we can not estimate the proper divider as it is not known
310          * the frequency of clk_csr_i. So we do not change the default
311          * divider.
312          */
313         if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
314                 if (clk_rate < CSR_F_35M)
315                         priv->clk_csr = STMMAC_CSR_20_35M;
316                 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
317                         priv->clk_csr = STMMAC_CSR_35_60M;
318                 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
319                         priv->clk_csr = STMMAC_CSR_60_100M;
320                 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
321                         priv->clk_csr = STMMAC_CSR_100_150M;
322                 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
323                         priv->clk_csr = STMMAC_CSR_150_250M;
324                 else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M))
325                         priv->clk_csr = STMMAC_CSR_250_300M;
326         }
327
328         if (priv->plat->has_sun8i) {
329                 if (clk_rate > 160000000)
330                         priv->clk_csr = 0x03;
331                 else if (clk_rate > 80000000)
332                         priv->clk_csr = 0x02;
333                 else if (clk_rate > 40000000)
334                         priv->clk_csr = 0x01;
335                 else
336                         priv->clk_csr = 0;
337         }
338
339         if (priv->plat->has_xgmac) {
340                 if (clk_rate > 400000000)
341                         priv->clk_csr = 0x5;
342                 else if (clk_rate > 350000000)
343                         priv->clk_csr = 0x4;
344                 else if (clk_rate > 300000000)
345                         priv->clk_csr = 0x3;
346                 else if (clk_rate > 250000000)
347                         priv->clk_csr = 0x2;
348                 else if (clk_rate > 150000000)
349                         priv->clk_csr = 0x1;
350                 else
351                         priv->clk_csr = 0x0;
352         }
353 }
354
355 static void print_pkt(unsigned char *buf, int len)
356 {
357         pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
358         print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
359 }
360
361 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
362 {
363         struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
364         u32 avail;
365
366         if (tx_q->dirty_tx > tx_q->cur_tx)
367                 avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
368         else
369                 avail = priv->dma_conf.dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1;
370
371         return avail;
372 }
373
374 /**
375  * stmmac_rx_dirty - Get RX queue dirty
376  * @priv: driver private structure
377  * @queue: RX queue index
378  */
379 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
380 {
381         struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
382         u32 dirty;
383
384         if (rx_q->dirty_rx <= rx_q->cur_rx)
385                 dirty = rx_q->cur_rx - rx_q->dirty_rx;
386         else
387                 dirty = priv->dma_conf.dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx;
388
389         return dirty;
390 }
391
392 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en)
393 {
394         int tx_lpi_timer;
395
396         /* Clear/set the SW EEE timer flag based on LPI ET enablement */
397         priv->eee_sw_timer_en = en ? 0 : 1;
398         tx_lpi_timer  = en ? priv->tx_lpi_timer : 0;
399         stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer);
400 }
401
402 /**
403  * stmmac_enable_eee_mode - check and enter in LPI mode
404  * @priv: driver private structure
405  * Description: this function is to verify and enter in LPI mode in case of
406  * EEE.
407  */
408 static int stmmac_enable_eee_mode(struct stmmac_priv *priv)
409 {
410         u32 tx_cnt = priv->plat->tx_queues_to_use;
411         u32 queue;
412
413         /* check if all TX queues have the work finished */
414         for (queue = 0; queue < tx_cnt; queue++) {
415                 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
416
417                 if (tx_q->dirty_tx != tx_q->cur_tx)
418                         return -EBUSY; /* still unfinished work */
419         }
420
421         /* Check and enter in LPI mode */
422         if (!priv->tx_path_in_lpi_mode)
423                 stmmac_set_eee_mode(priv, priv->hw,
424                                 priv->plat->en_tx_lpi_clockgating);
425         return 0;
426 }
427
428 /**
429  * stmmac_disable_eee_mode - disable and exit from LPI mode
430  * @priv: driver private structure
431  * Description: this function is to exit and disable EEE in case of
432  * LPI state is true. This is called by the xmit.
433  */
434 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
435 {
436         if (!priv->eee_sw_timer_en) {
437                 stmmac_lpi_entry_timer_config(priv, 0);
438                 return;
439         }
440
441         stmmac_reset_eee_mode(priv, priv->hw);
442         del_timer_sync(&priv->eee_ctrl_timer);
443         priv->tx_path_in_lpi_mode = false;
444 }
445
446 /**
447  * stmmac_eee_ctrl_timer - EEE TX SW timer.
448  * @t:  timer_list struct containing private info
449  * Description:
450  *  if there is no data transfer and if we are not in LPI state,
451  *  then MAC Transmitter can be moved to LPI state.
452  */
453 static void stmmac_eee_ctrl_timer(struct timer_list *t)
454 {
455         struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
456
457         if (stmmac_enable_eee_mode(priv))
458                 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
459 }
460
461 /**
462  * stmmac_eee_init - init EEE
463  * @priv: driver private structure
464  * Description:
465  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
466  *  can also manage EEE, this function enable the LPI state and start related
467  *  timer.
468  */
469 bool stmmac_eee_init(struct stmmac_priv *priv)
470 {
471         int eee_tw_timer = priv->eee_tw_timer;
472
473         /* Using PCS we cannot dial with the phy registers at this stage
474          * so we do not support extra feature like EEE.
475          */
476         if (priv->hw->pcs == STMMAC_PCS_TBI ||
477             priv->hw->pcs == STMMAC_PCS_RTBI)
478                 return false;
479
480         /* Check if MAC core supports the EEE feature. */
481         if (!priv->dma_cap.eee)
482                 return false;
483
484         mutex_lock(&priv->lock);
485
486         /* Check if it needs to be deactivated */
487         if (!priv->eee_active) {
488                 if (priv->eee_enabled) {
489                         netdev_dbg(priv->dev, "disable EEE\n");
490                         stmmac_lpi_entry_timer_config(priv, 0);
491                         del_timer_sync(&priv->eee_ctrl_timer);
492                         stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer);
493                         if (priv->hw->xpcs)
494                                 xpcs_config_eee(priv->hw->xpcs,
495                                                 priv->plat->mult_fact_100ns,
496                                                 false);
497                 }
498                 mutex_unlock(&priv->lock);
499                 return false;
500         }
501
502         if (priv->eee_active && !priv->eee_enabled) {
503                 timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
504                 stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
505                                      eee_tw_timer);
506                 if (priv->hw->xpcs)
507                         xpcs_config_eee(priv->hw->xpcs,
508                                         priv->plat->mult_fact_100ns,
509                                         true);
510         }
511
512         if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) {
513                 del_timer_sync(&priv->eee_ctrl_timer);
514                 priv->tx_path_in_lpi_mode = false;
515                 stmmac_lpi_entry_timer_config(priv, 1);
516         } else {
517                 stmmac_lpi_entry_timer_config(priv, 0);
518                 mod_timer(&priv->eee_ctrl_timer,
519                           STMMAC_LPI_T(priv->tx_lpi_timer));
520         }
521
522         mutex_unlock(&priv->lock);
523         netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
524         return true;
525 }
526
527 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
528  * @priv: driver private structure
529  * @p : descriptor pointer
530  * @skb : the socket buffer
531  * Description :
532  * This function will read timestamp from the descriptor & pass it to stack.
533  * and also perform some sanity checks.
534  */
535 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
536                                    struct dma_desc *p, struct sk_buff *skb)
537 {
538         struct skb_shared_hwtstamps shhwtstamp;
539         bool found = false;
540         u64 ns = 0;
541
542         if (!priv->hwts_tx_en)
543                 return;
544
545         /* exit if skb doesn't support hw tstamp */
546         if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
547                 return;
548
549         /* check tx tstamp status */
550         if (stmmac_get_tx_timestamp_status(priv, p)) {
551                 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
552                 found = true;
553         } else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
554                 found = true;
555         }
556
557         if (found) {
558                 ns -= priv->plat->cdc_error_adj;
559
560                 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
561                 shhwtstamp.hwtstamp = ns_to_ktime(ns);
562
563                 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
564                 /* pass tstamp to stack */
565                 skb_tstamp_tx(skb, &shhwtstamp);
566         }
567 }
568
569 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
570  * @priv: driver private structure
571  * @p : descriptor pointer
572  * @np : next descriptor pointer
573  * @skb : the socket buffer
574  * Description :
575  * This function will read received packet's timestamp from the descriptor
576  * and pass it to stack. It also perform some sanity checks.
577  */
578 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
579                                    struct dma_desc *np, struct sk_buff *skb)
580 {
581         struct skb_shared_hwtstamps *shhwtstamp = NULL;
582         struct dma_desc *desc = p;
583         u64 ns = 0;
584
585         if (!priv->hwts_rx_en)
586                 return;
587         /* For GMAC4, the valid timestamp is from CTX next desc. */
588         if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
589                 desc = np;
590
591         /* Check if timestamp is available */
592         if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
593                 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
594
595                 ns -= priv->plat->cdc_error_adj;
596
597                 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
598                 shhwtstamp = skb_hwtstamps(skb);
599                 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
600                 shhwtstamp->hwtstamp = ns_to_ktime(ns);
601         } else  {
602                 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
603         }
604 }
605
606 /**
607  *  stmmac_hwtstamp_set - control hardware timestamping.
608  *  @dev: device pointer.
609  *  @ifr: An IOCTL specific structure, that can contain a pointer to
610  *  a proprietary structure used to pass information to the driver.
611  *  Description:
612  *  This function configures the MAC to enable/disable both outgoing(TX)
613  *  and incoming(RX) packets time stamping based on user input.
614  *  Return Value:
615  *  0 on success and an appropriate -ve integer on failure.
616  */
617 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
618 {
619         struct stmmac_priv *priv = netdev_priv(dev);
620         struct hwtstamp_config config;
621         u32 ptp_v2 = 0;
622         u32 tstamp_all = 0;
623         u32 ptp_over_ipv4_udp = 0;
624         u32 ptp_over_ipv6_udp = 0;
625         u32 ptp_over_ethernet = 0;
626         u32 snap_type_sel = 0;
627         u32 ts_master_en = 0;
628         u32 ts_event_en = 0;
629
630         if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
631                 netdev_alert(priv->dev, "No support for HW time stamping\n");
632                 priv->hwts_tx_en = 0;
633                 priv->hwts_rx_en = 0;
634
635                 return -EOPNOTSUPP;
636         }
637
638         if (copy_from_user(&config, ifr->ifr_data,
639                            sizeof(config)))
640                 return -EFAULT;
641
642         netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
643                    __func__, config.flags, config.tx_type, config.rx_filter);
644
645         if (config.tx_type != HWTSTAMP_TX_OFF &&
646             config.tx_type != HWTSTAMP_TX_ON)
647                 return -ERANGE;
648
649         if (priv->adv_ts) {
650                 switch (config.rx_filter) {
651                 case HWTSTAMP_FILTER_NONE:
652                         /* time stamp no incoming packet at all */
653                         config.rx_filter = HWTSTAMP_FILTER_NONE;
654                         break;
655
656                 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
657                         /* PTP v1, UDP, any kind of event packet */
658                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
659                         /* 'xmac' hardware can support Sync, Pdelay_Req and
660                          * Pdelay_resp by setting bit14 and bits17/16 to 01
661                          * This leaves Delay_Req timestamps out.
662                          * Enable all events *and* general purpose message
663                          * timestamping
664                          */
665                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
666                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
667                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
668                         break;
669
670                 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
671                         /* PTP v1, UDP, Sync packet */
672                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
673                         /* take time stamp for SYNC messages only */
674                         ts_event_en = PTP_TCR_TSEVNTENA;
675
676                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
677                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
678                         break;
679
680                 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
681                         /* PTP v1, UDP, Delay_req packet */
682                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
683                         /* take time stamp for Delay_Req messages only */
684                         ts_master_en = PTP_TCR_TSMSTRENA;
685                         ts_event_en = PTP_TCR_TSEVNTENA;
686
687                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
688                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
689                         break;
690
691                 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
692                         /* PTP v2, UDP, any kind of event packet */
693                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
694                         ptp_v2 = PTP_TCR_TSVER2ENA;
695                         /* take time stamp for all event messages */
696                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
697
698                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
699                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
700                         break;
701
702                 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
703                         /* PTP v2, UDP, Sync packet */
704                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
705                         ptp_v2 = PTP_TCR_TSVER2ENA;
706                         /* take time stamp for SYNC messages only */
707                         ts_event_en = PTP_TCR_TSEVNTENA;
708
709                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
710                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
711                         break;
712
713                 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
714                         /* PTP v2, UDP, Delay_req packet */
715                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
716                         ptp_v2 = PTP_TCR_TSVER2ENA;
717                         /* take time stamp for Delay_Req messages only */
718                         ts_master_en = PTP_TCR_TSMSTRENA;
719                         ts_event_en = PTP_TCR_TSEVNTENA;
720
721                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
722                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
723                         break;
724
725                 case HWTSTAMP_FILTER_PTP_V2_EVENT:
726                         /* PTP v2/802.AS1 any layer, any kind of event packet */
727                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
728                         ptp_v2 = PTP_TCR_TSVER2ENA;
729                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
730                         if (priv->synopsys_id < DWMAC_CORE_4_10)
731                                 ts_event_en = PTP_TCR_TSEVNTENA;
732                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
733                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
734                         ptp_over_ethernet = PTP_TCR_TSIPENA;
735                         break;
736
737                 case HWTSTAMP_FILTER_PTP_V2_SYNC:
738                         /* PTP v2/802.AS1, any layer, Sync packet */
739                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
740                         ptp_v2 = PTP_TCR_TSVER2ENA;
741                         /* take time stamp for SYNC messages only */
742                         ts_event_en = PTP_TCR_TSEVNTENA;
743
744                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
745                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
746                         ptp_over_ethernet = PTP_TCR_TSIPENA;
747                         break;
748
749                 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
750                         /* PTP v2/802.AS1, any layer, Delay_req packet */
751                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
752                         ptp_v2 = PTP_TCR_TSVER2ENA;
753                         /* take time stamp for Delay_Req messages only */
754                         ts_master_en = PTP_TCR_TSMSTRENA;
755                         ts_event_en = PTP_TCR_TSEVNTENA;
756
757                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
758                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
759                         ptp_over_ethernet = PTP_TCR_TSIPENA;
760                         break;
761
762                 case HWTSTAMP_FILTER_NTP_ALL:
763                 case HWTSTAMP_FILTER_ALL:
764                         /* time stamp any incoming packet */
765                         config.rx_filter = HWTSTAMP_FILTER_ALL;
766                         tstamp_all = PTP_TCR_TSENALL;
767                         break;
768
769                 default:
770                         return -ERANGE;
771                 }
772         } else {
773                 switch (config.rx_filter) {
774                 case HWTSTAMP_FILTER_NONE:
775                         config.rx_filter = HWTSTAMP_FILTER_NONE;
776                         break;
777                 default:
778                         /* PTP v1, UDP, any kind of event packet */
779                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
780                         break;
781                 }
782         }
783         priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
784         priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
785
786         priv->systime_flags = STMMAC_HWTS_ACTIVE;
787
788         if (priv->hwts_tx_en || priv->hwts_rx_en) {
789                 priv->systime_flags |= tstamp_all | ptp_v2 |
790                                        ptp_over_ethernet | ptp_over_ipv6_udp |
791                                        ptp_over_ipv4_udp | ts_event_en |
792                                        ts_master_en | snap_type_sel;
793         }
794
795         stmmac_config_hw_tstamping(priv, priv->ptpaddr, priv->systime_flags);
796
797         memcpy(&priv->tstamp_config, &config, sizeof(config));
798
799         return copy_to_user(ifr->ifr_data, &config,
800                             sizeof(config)) ? -EFAULT : 0;
801 }
802
803 /**
804  *  stmmac_hwtstamp_get - read hardware timestamping.
805  *  @dev: device pointer.
806  *  @ifr: An IOCTL specific structure, that can contain a pointer to
807  *  a proprietary structure used to pass information to the driver.
808  *  Description:
809  *  This function obtain the current hardware timestamping settings
810  *  as requested.
811  */
812 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
813 {
814         struct stmmac_priv *priv = netdev_priv(dev);
815         struct hwtstamp_config *config = &priv->tstamp_config;
816
817         if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
818                 return -EOPNOTSUPP;
819
820         return copy_to_user(ifr->ifr_data, config,
821                             sizeof(*config)) ? -EFAULT : 0;
822 }
823
824 /**
825  * stmmac_init_tstamp_counter - init hardware timestamping counter
826  * @priv: driver private structure
827  * @systime_flags: timestamping flags
828  * Description:
829  * Initialize hardware counter for packet timestamping.
830  * This is valid as long as the interface is open and not suspended.
831  * Will be rerun after resuming from suspend, case in which the timestamping
832  * flags updated by stmmac_hwtstamp_set() also need to be restored.
833  */
834 int stmmac_init_tstamp_counter(struct stmmac_priv *priv, u32 systime_flags)
835 {
836         bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
837         struct timespec64 now;
838         u32 sec_inc = 0;
839         u64 temp = 0;
840
841         if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
842                 return -EOPNOTSUPP;
843
844         stmmac_config_hw_tstamping(priv, priv->ptpaddr, systime_flags);
845         priv->systime_flags = systime_flags;
846
847         /* program Sub Second Increment reg */
848         stmmac_config_sub_second_increment(priv, priv->ptpaddr,
849                                            priv->plat->clk_ptp_rate,
850                                            xmac, &sec_inc);
851         temp = div_u64(1000000000ULL, sec_inc);
852
853         /* Store sub second increment for later use */
854         priv->sub_second_inc = sec_inc;
855
856         /* calculate default added value:
857          * formula is :
858          * addend = (2^32)/freq_div_ratio;
859          * where, freq_div_ratio = 1e9ns/sec_inc
860          */
861         temp = (u64)(temp << 32);
862         priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
863         stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
864
865         /* initialize system time */
866         ktime_get_real_ts64(&now);
867
868         /* lower 32 bits of tv_sec are safe until y2106 */
869         stmmac_init_systime(priv, priv->ptpaddr, (u32)now.tv_sec, now.tv_nsec);
870
871         return 0;
872 }
873 EXPORT_SYMBOL_GPL(stmmac_init_tstamp_counter);
874
875 /**
876  * stmmac_init_ptp - init PTP
877  * @priv: driver private structure
878  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
879  * This is done by looking at the HW cap. register.
880  * This function also registers the ptp driver.
881  */
882 static int stmmac_init_ptp(struct stmmac_priv *priv)
883 {
884         bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
885         int ret;
886
887         if (priv->plat->ptp_clk_freq_config)
888                 priv->plat->ptp_clk_freq_config(priv);
889
890         ret = stmmac_init_tstamp_counter(priv, STMMAC_HWTS_ACTIVE);
891         if (ret)
892                 return ret;
893
894         priv->adv_ts = 0;
895         /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
896         if (xmac && priv->dma_cap.atime_stamp)
897                 priv->adv_ts = 1;
898         /* Dwmac 3.x core with extend_desc can support adv_ts */
899         else if (priv->extend_desc && priv->dma_cap.atime_stamp)
900                 priv->adv_ts = 1;
901
902         if (priv->dma_cap.time_stamp)
903                 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
904
905         if (priv->adv_ts)
906                 netdev_info(priv->dev,
907                             "IEEE 1588-2008 Advanced Timestamp supported\n");
908
909         priv->hwts_tx_en = 0;
910         priv->hwts_rx_en = 0;
911
912         return 0;
913 }
914
915 static void stmmac_release_ptp(struct stmmac_priv *priv)
916 {
917         clk_disable_unprepare(priv->plat->clk_ptp_ref);
918         stmmac_ptp_unregister(priv);
919 }
920
921 /**
922  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
923  *  @priv: driver private structure
924  *  @duplex: duplex passed to the next function
925  *  Description: It is used for configuring the flow control in all queues
926  */
927 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
928 {
929         u32 tx_cnt = priv->plat->tx_queues_to_use;
930
931         stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
932                         priv->pause, tx_cnt);
933 }
934
935 static struct phylink_pcs *stmmac_mac_select_pcs(struct phylink_config *config,
936                                                  phy_interface_t interface)
937 {
938         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
939
940         if (!priv->hw->xpcs)
941                 return NULL;
942
943         return &priv->hw->xpcs->pcs;
944 }
945
946 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
947                               const struct phylink_link_state *state)
948 {
949         /* Nothing to do, xpcs_config() handles everything */
950 }
951
952 static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up)
953 {
954         struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
955         enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
956         enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
957         bool *hs_enable = &fpe_cfg->hs_enable;
958
959         if (is_up && *hs_enable) {
960                 stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_VERIFY);
961         } else {
962                 *lo_state = FPE_STATE_OFF;
963                 *lp_state = FPE_STATE_OFF;
964         }
965 }
966
967 static void stmmac_mac_link_down(struct phylink_config *config,
968                                  unsigned int mode, phy_interface_t interface)
969 {
970         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
971
972         stmmac_mac_set(priv, priv->ioaddr, false);
973         priv->eee_active = false;
974         priv->tx_lpi_enabled = false;
975         priv->eee_enabled = stmmac_eee_init(priv);
976         stmmac_set_eee_pls(priv, priv->hw, false);
977
978         if (priv->dma_cap.fpesel)
979                 stmmac_fpe_link_state_handle(priv, false);
980 }
981
982 static void stmmac_mac_link_up(struct phylink_config *config,
983                                struct phy_device *phy,
984                                unsigned int mode, phy_interface_t interface,
985                                int speed, int duplex,
986                                bool tx_pause, bool rx_pause)
987 {
988         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
989         u32 old_ctrl, ctrl;
990
991         if (priv->plat->serdes_up_after_phy_linkup && priv->plat->serdes_powerup)
992                 priv->plat->serdes_powerup(priv->dev, priv->plat->bsp_priv);
993
994         old_ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
995         ctrl = old_ctrl & ~priv->hw->link.speed_mask;
996
997         if (interface == PHY_INTERFACE_MODE_USXGMII) {
998                 switch (speed) {
999                 case SPEED_10000:
1000                         ctrl |= priv->hw->link.xgmii.speed10000;
1001                         break;
1002                 case SPEED_5000:
1003                         ctrl |= priv->hw->link.xgmii.speed5000;
1004                         break;
1005                 case SPEED_2500:
1006                         ctrl |= priv->hw->link.xgmii.speed2500;
1007                         break;
1008                 default:
1009                         return;
1010                 }
1011         } else if (interface == PHY_INTERFACE_MODE_XLGMII) {
1012                 switch (speed) {
1013                 case SPEED_100000:
1014                         ctrl |= priv->hw->link.xlgmii.speed100000;
1015                         break;
1016                 case SPEED_50000:
1017                         ctrl |= priv->hw->link.xlgmii.speed50000;
1018                         break;
1019                 case SPEED_40000:
1020                         ctrl |= priv->hw->link.xlgmii.speed40000;
1021                         break;
1022                 case SPEED_25000:
1023                         ctrl |= priv->hw->link.xlgmii.speed25000;
1024                         break;
1025                 case SPEED_10000:
1026                         ctrl |= priv->hw->link.xgmii.speed10000;
1027                         break;
1028                 case SPEED_2500:
1029                         ctrl |= priv->hw->link.speed2500;
1030                         break;
1031                 case SPEED_1000:
1032                         ctrl |= priv->hw->link.speed1000;
1033                         break;
1034                 default:
1035                         return;
1036                 }
1037         } else {
1038                 switch (speed) {
1039                 case SPEED_2500:
1040                         ctrl |= priv->hw->link.speed2500;
1041                         break;
1042                 case SPEED_1000:
1043                         ctrl |= priv->hw->link.speed1000;
1044                         break;
1045                 case SPEED_100:
1046                         ctrl |= priv->hw->link.speed100;
1047                         break;
1048                 case SPEED_10:
1049                         ctrl |= priv->hw->link.speed10;
1050                         break;
1051                 default:
1052                         return;
1053                 }
1054         }
1055
1056         priv->speed = speed;
1057
1058         if (priv->plat->fix_mac_speed)
1059                 priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed);
1060
1061         if (!duplex)
1062                 ctrl &= ~priv->hw->link.duplex;
1063         else
1064                 ctrl |= priv->hw->link.duplex;
1065
1066         /* Flow Control operation */
1067         if (rx_pause && tx_pause)
1068                 priv->flow_ctrl = FLOW_AUTO;
1069         else if (rx_pause && !tx_pause)
1070                 priv->flow_ctrl = FLOW_RX;
1071         else if (!rx_pause && tx_pause)
1072                 priv->flow_ctrl = FLOW_TX;
1073         else
1074                 priv->flow_ctrl = FLOW_OFF;
1075
1076         stmmac_mac_flow_ctrl(priv, duplex);
1077
1078         if (ctrl != old_ctrl)
1079                 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
1080
1081         stmmac_mac_set(priv, priv->ioaddr, true);
1082         if (phy && priv->dma_cap.eee) {
1083                 priv->eee_active = phy_init_eee(phy, 1) >= 0;
1084                 priv->eee_enabled = stmmac_eee_init(priv);
1085                 priv->tx_lpi_enabled = priv->eee_enabled;
1086                 stmmac_set_eee_pls(priv, priv->hw, true);
1087         }
1088
1089         if (priv->dma_cap.fpesel)
1090                 stmmac_fpe_link_state_handle(priv, true);
1091 }
1092
1093 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1094         .mac_select_pcs = stmmac_mac_select_pcs,
1095         .mac_config = stmmac_mac_config,
1096         .mac_link_down = stmmac_mac_link_down,
1097         .mac_link_up = stmmac_mac_link_up,
1098 };
1099
1100 /**
1101  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1102  * @priv: driver private structure
1103  * Description: this is to verify if the HW supports the PCS.
1104  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1105  * configured for the TBI, RTBI, or SGMII PHY interface.
1106  */
1107 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1108 {
1109         int interface = priv->plat->interface;
1110
1111         if (priv->dma_cap.pcs) {
1112                 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1113                     (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1114                     (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1115                     (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1116                         netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1117                         priv->hw->pcs = STMMAC_PCS_RGMII;
1118                 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
1119                         netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1120                         priv->hw->pcs = STMMAC_PCS_SGMII;
1121                 }
1122         }
1123 }
1124
1125 /**
1126  * stmmac_init_phy - PHY initialization
1127  * @dev: net device structure
1128  * Description: it initializes the driver's PHY state, and attaches the PHY
1129  * to the mac driver.
1130  *  Return value:
1131  *  0 on success
1132  */
1133 static int stmmac_init_phy(struct net_device *dev)
1134 {
1135         struct stmmac_priv *priv = netdev_priv(dev);
1136         struct fwnode_handle *fwnode;
1137         int ret;
1138
1139         fwnode = of_fwnode_handle(priv->plat->phylink_node);
1140         if (!fwnode)
1141                 fwnode = dev_fwnode(priv->device);
1142
1143         if (fwnode)
1144                 ret = phylink_fwnode_phy_connect(priv->phylink, fwnode, 0);
1145
1146         /* Some DT bindings do not set-up the PHY handle. Let's try to
1147          * manually parse it
1148          */
1149         if (!fwnode || ret) {
1150                 int addr = priv->plat->phy_addr;
1151                 struct phy_device *phydev;
1152
1153                 if (addr < 0) {
1154                         netdev_err(priv->dev, "no phy found\n");
1155                         return -ENODEV;
1156                 }
1157
1158                 phydev = mdiobus_get_phy(priv->mii, addr);
1159                 if (!phydev) {
1160                         netdev_err(priv->dev, "no phy at addr %d\n", addr);
1161                         return -ENODEV;
1162                 }
1163
1164                 ret = phylink_connect_phy(priv->phylink, phydev);
1165         }
1166
1167         if (!priv->plat->pmt) {
1168                 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1169
1170                 phylink_ethtool_get_wol(priv->phylink, &wol);
1171                 device_set_wakeup_capable(priv->device, !!wol.supported);
1172         }
1173
1174         return ret;
1175 }
1176
1177 static int stmmac_phy_setup(struct stmmac_priv *priv)
1178 {
1179         struct stmmac_mdio_bus_data *mdio_bus_data = priv->plat->mdio_bus_data;
1180         struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1181         int max_speed = priv->plat->max_speed;
1182         int mode = priv->plat->phy_interface;
1183         struct phylink *phylink;
1184
1185         priv->phylink_config.dev = &priv->dev->dev;
1186         priv->phylink_config.type = PHYLINK_NETDEV;
1187         if (priv->plat->mdio_bus_data)
1188                 priv->phylink_config.ovr_an_inband =
1189                         mdio_bus_data->xpcs_an_inband;
1190
1191         if (!fwnode)
1192                 fwnode = dev_fwnode(priv->device);
1193
1194         /* Set the platform/firmware specified interface mode */
1195         __set_bit(mode, priv->phylink_config.supported_interfaces);
1196
1197         /* If we have an xpcs, it defines which PHY interfaces are supported. */
1198         if (priv->hw->xpcs)
1199                 xpcs_get_interfaces(priv->hw->xpcs,
1200                                     priv->phylink_config.supported_interfaces);
1201
1202         priv->phylink_config.mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1203                 MAC_10 | MAC_100;
1204
1205         if (!max_speed || max_speed >= 1000)
1206                 priv->phylink_config.mac_capabilities |= MAC_1000;
1207
1208         if (priv->plat->has_gmac4) {
1209                 if (!max_speed || max_speed >= 2500)
1210                         priv->phylink_config.mac_capabilities |= MAC_2500FD;
1211         } else if (priv->plat->has_xgmac) {
1212                 if (!max_speed || max_speed >= 2500)
1213                         priv->phylink_config.mac_capabilities |= MAC_2500FD;
1214                 if (!max_speed || max_speed >= 5000)
1215                         priv->phylink_config.mac_capabilities |= MAC_5000FD;
1216                 if (!max_speed || max_speed >= 10000)
1217                         priv->phylink_config.mac_capabilities |= MAC_10000FD;
1218                 if (!max_speed || max_speed >= 25000)
1219                         priv->phylink_config.mac_capabilities |= MAC_25000FD;
1220                 if (!max_speed || max_speed >= 40000)
1221                         priv->phylink_config.mac_capabilities |= MAC_40000FD;
1222                 if (!max_speed || max_speed >= 50000)
1223                         priv->phylink_config.mac_capabilities |= MAC_50000FD;
1224                 if (!max_speed || max_speed >= 100000)
1225                         priv->phylink_config.mac_capabilities |= MAC_100000FD;
1226         }
1227
1228         /* Half-Duplex can only work with single queue */
1229         if (priv->plat->tx_queues_to_use > 1)
1230                 priv->phylink_config.mac_capabilities &=
1231                         ~(MAC_10HD | MAC_100HD | MAC_1000HD);
1232         priv->phylink_config.mac_managed_pm = true;
1233
1234         phylink = phylink_create(&priv->phylink_config, fwnode,
1235                                  mode, &stmmac_phylink_mac_ops);
1236         if (IS_ERR(phylink))
1237                 return PTR_ERR(phylink);
1238
1239         priv->phylink = phylink;
1240         return 0;
1241 }
1242
1243 static void stmmac_display_rx_rings(struct stmmac_priv *priv,
1244                                     struct stmmac_dma_conf *dma_conf)
1245 {
1246         u32 rx_cnt = priv->plat->rx_queues_to_use;
1247         unsigned int desc_size;
1248         void *head_rx;
1249         u32 queue;
1250
1251         /* Display RX rings */
1252         for (queue = 0; queue < rx_cnt; queue++) {
1253                 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1254
1255                 pr_info("\tRX Queue %u rings\n", queue);
1256
1257                 if (priv->extend_desc) {
1258                         head_rx = (void *)rx_q->dma_erx;
1259                         desc_size = sizeof(struct dma_extended_desc);
1260                 } else {
1261                         head_rx = (void *)rx_q->dma_rx;
1262                         desc_size = sizeof(struct dma_desc);
1263                 }
1264
1265                 /* Display RX ring */
1266                 stmmac_display_ring(priv, head_rx, dma_conf->dma_rx_size, true,
1267                                     rx_q->dma_rx_phy, desc_size);
1268         }
1269 }
1270
1271 static void stmmac_display_tx_rings(struct stmmac_priv *priv,
1272                                     struct stmmac_dma_conf *dma_conf)
1273 {
1274         u32 tx_cnt = priv->plat->tx_queues_to_use;
1275         unsigned int desc_size;
1276         void *head_tx;
1277         u32 queue;
1278
1279         /* Display TX rings */
1280         for (queue = 0; queue < tx_cnt; queue++) {
1281                 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1282
1283                 pr_info("\tTX Queue %d rings\n", queue);
1284
1285                 if (priv->extend_desc) {
1286                         head_tx = (void *)tx_q->dma_etx;
1287                         desc_size = sizeof(struct dma_extended_desc);
1288                 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1289                         head_tx = (void *)tx_q->dma_entx;
1290                         desc_size = sizeof(struct dma_edesc);
1291                 } else {
1292                         head_tx = (void *)tx_q->dma_tx;
1293                         desc_size = sizeof(struct dma_desc);
1294                 }
1295
1296                 stmmac_display_ring(priv, head_tx, dma_conf->dma_tx_size, false,
1297                                     tx_q->dma_tx_phy, desc_size);
1298         }
1299 }
1300
1301 static void stmmac_display_rings(struct stmmac_priv *priv,
1302                                  struct stmmac_dma_conf *dma_conf)
1303 {
1304         /* Display RX ring */
1305         stmmac_display_rx_rings(priv, dma_conf);
1306
1307         /* Display TX ring */
1308         stmmac_display_tx_rings(priv, dma_conf);
1309 }
1310
1311 static int stmmac_set_bfsize(int mtu, int bufsize)
1312 {
1313         int ret = bufsize;
1314
1315         if (mtu >= BUF_SIZE_8KiB)
1316                 ret = BUF_SIZE_16KiB;
1317         else if (mtu >= BUF_SIZE_4KiB)
1318                 ret = BUF_SIZE_8KiB;
1319         else if (mtu >= BUF_SIZE_2KiB)
1320                 ret = BUF_SIZE_4KiB;
1321         else if (mtu > DEFAULT_BUFSIZE)
1322                 ret = BUF_SIZE_2KiB;
1323         else
1324                 ret = DEFAULT_BUFSIZE;
1325
1326         return ret;
1327 }
1328
1329 /**
1330  * stmmac_clear_rx_descriptors - clear RX descriptors
1331  * @priv: driver private structure
1332  * @dma_conf: structure to take the dma data
1333  * @queue: RX queue index
1334  * Description: this function is called to clear the RX descriptors
1335  * in case of both basic and extended descriptors are used.
1336  */
1337 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv,
1338                                         struct stmmac_dma_conf *dma_conf,
1339                                         u32 queue)
1340 {
1341         struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1342         int i;
1343
1344         /* Clear the RX descriptors */
1345         for (i = 0; i < dma_conf->dma_rx_size; i++)
1346                 if (priv->extend_desc)
1347                         stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1348                                         priv->use_riwt, priv->mode,
1349                                         (i == dma_conf->dma_rx_size - 1),
1350                                         dma_conf->dma_buf_sz);
1351                 else
1352                         stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1353                                         priv->use_riwt, priv->mode,
1354                                         (i == dma_conf->dma_rx_size - 1),
1355                                         dma_conf->dma_buf_sz);
1356 }
1357
1358 /**
1359  * stmmac_clear_tx_descriptors - clear tx descriptors
1360  * @priv: driver private structure
1361  * @dma_conf: structure to take the dma data
1362  * @queue: TX queue index.
1363  * Description: this function is called to clear the TX descriptors
1364  * in case of both basic and extended descriptors are used.
1365  */
1366 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv,
1367                                         struct stmmac_dma_conf *dma_conf,
1368                                         u32 queue)
1369 {
1370         struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1371         int i;
1372
1373         /* Clear the TX descriptors */
1374         for (i = 0; i < dma_conf->dma_tx_size; i++) {
1375                 int last = (i == (dma_conf->dma_tx_size - 1));
1376                 struct dma_desc *p;
1377
1378                 if (priv->extend_desc)
1379                         p = &tx_q->dma_etx[i].basic;
1380                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1381                         p = &tx_q->dma_entx[i].basic;
1382                 else
1383                         p = &tx_q->dma_tx[i];
1384
1385                 stmmac_init_tx_desc(priv, p, priv->mode, last);
1386         }
1387 }
1388
1389 /**
1390  * stmmac_clear_descriptors - clear descriptors
1391  * @priv: driver private structure
1392  * @dma_conf: structure to take the dma data
1393  * Description: this function is called to clear the TX and RX descriptors
1394  * in case of both basic and extended descriptors are used.
1395  */
1396 static void stmmac_clear_descriptors(struct stmmac_priv *priv,
1397                                      struct stmmac_dma_conf *dma_conf)
1398 {
1399         u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1400         u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1401         u32 queue;
1402
1403         /* Clear the RX descriptors */
1404         for (queue = 0; queue < rx_queue_cnt; queue++)
1405                 stmmac_clear_rx_descriptors(priv, dma_conf, queue);
1406
1407         /* Clear the TX descriptors */
1408         for (queue = 0; queue < tx_queue_cnt; queue++)
1409                 stmmac_clear_tx_descriptors(priv, dma_conf, queue);
1410 }
1411
1412 /**
1413  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1414  * @priv: driver private structure
1415  * @dma_conf: structure to take the dma data
1416  * @p: descriptor pointer
1417  * @i: descriptor index
1418  * @flags: gfp flag
1419  * @queue: RX queue index
1420  * Description: this function is called to allocate a receive buffer, perform
1421  * the DMA mapping and init the descriptor.
1422  */
1423 static int stmmac_init_rx_buffers(struct stmmac_priv *priv,
1424                                   struct stmmac_dma_conf *dma_conf,
1425                                   struct dma_desc *p,
1426                                   int i, gfp_t flags, u32 queue)
1427 {
1428         struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1429         struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1430         gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
1431
1432         if (priv->dma_cap.addr64 <= 32)
1433                 gfp |= GFP_DMA32;
1434
1435         if (!buf->page) {
1436                 buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1437                 if (!buf->page)
1438                         return -ENOMEM;
1439                 buf->page_offset = stmmac_rx_offset(priv);
1440         }
1441
1442         if (priv->sph && !buf->sec_page) {
1443                 buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1444                 if (!buf->sec_page)
1445                         return -ENOMEM;
1446
1447                 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1448                 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
1449         } else {
1450                 buf->sec_page = NULL;
1451                 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
1452         }
1453
1454         buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
1455
1456         stmmac_set_desc_addr(priv, p, buf->addr);
1457         if (dma_conf->dma_buf_sz == BUF_SIZE_16KiB)
1458                 stmmac_init_desc3(priv, p);
1459
1460         return 0;
1461 }
1462
1463 /**
1464  * stmmac_free_rx_buffer - free RX dma buffers
1465  * @priv: private structure
1466  * @rx_q: RX queue
1467  * @i: buffer index.
1468  */
1469 static void stmmac_free_rx_buffer(struct stmmac_priv *priv,
1470                                   struct stmmac_rx_queue *rx_q,
1471                                   int i)
1472 {
1473         struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1474
1475         if (buf->page)
1476                 page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1477         buf->page = NULL;
1478
1479         if (buf->sec_page)
1480                 page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1481         buf->sec_page = NULL;
1482 }
1483
1484 /**
1485  * stmmac_free_tx_buffer - free RX dma buffers
1486  * @priv: private structure
1487  * @dma_conf: structure to take the dma data
1488  * @queue: RX queue index
1489  * @i: buffer index.
1490  */
1491 static void stmmac_free_tx_buffer(struct stmmac_priv *priv,
1492                                   struct stmmac_dma_conf *dma_conf,
1493                                   u32 queue, int i)
1494 {
1495         struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1496
1497         if (tx_q->tx_skbuff_dma[i].buf &&
1498             tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) {
1499                 if (tx_q->tx_skbuff_dma[i].map_as_page)
1500                         dma_unmap_page(priv->device,
1501                                        tx_q->tx_skbuff_dma[i].buf,
1502                                        tx_q->tx_skbuff_dma[i].len,
1503                                        DMA_TO_DEVICE);
1504                 else
1505                         dma_unmap_single(priv->device,
1506                                          tx_q->tx_skbuff_dma[i].buf,
1507                                          tx_q->tx_skbuff_dma[i].len,
1508                                          DMA_TO_DEVICE);
1509         }
1510
1511         if (tx_q->xdpf[i] &&
1512             (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX ||
1513              tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) {
1514                 xdp_return_frame(tx_q->xdpf[i]);
1515                 tx_q->xdpf[i] = NULL;
1516         }
1517
1518         if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX)
1519                 tx_q->xsk_frames_done++;
1520
1521         if (tx_q->tx_skbuff[i] &&
1522             tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) {
1523                 dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1524                 tx_q->tx_skbuff[i] = NULL;
1525         }
1526
1527         tx_q->tx_skbuff_dma[i].buf = 0;
1528         tx_q->tx_skbuff_dma[i].map_as_page = false;
1529 }
1530
1531 /**
1532  * dma_free_rx_skbufs - free RX dma buffers
1533  * @priv: private structure
1534  * @dma_conf: structure to take the dma data
1535  * @queue: RX queue index
1536  */
1537 static void dma_free_rx_skbufs(struct stmmac_priv *priv,
1538                                struct stmmac_dma_conf *dma_conf,
1539                                u32 queue)
1540 {
1541         struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1542         int i;
1543
1544         for (i = 0; i < dma_conf->dma_rx_size; i++)
1545                 stmmac_free_rx_buffer(priv, rx_q, i);
1546 }
1547
1548 static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv,
1549                                    struct stmmac_dma_conf *dma_conf,
1550                                    u32 queue, gfp_t flags)
1551 {
1552         struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1553         int i;
1554
1555         for (i = 0; i < dma_conf->dma_rx_size; i++) {
1556                 struct dma_desc *p;
1557                 int ret;
1558
1559                 if (priv->extend_desc)
1560                         p = &((rx_q->dma_erx + i)->basic);
1561                 else
1562                         p = rx_q->dma_rx + i;
1563
1564                 ret = stmmac_init_rx_buffers(priv, dma_conf, p, i, flags,
1565                                              queue);
1566                 if (ret)
1567                         return ret;
1568
1569                 rx_q->buf_alloc_num++;
1570         }
1571
1572         return 0;
1573 }
1574
1575 /**
1576  * dma_free_rx_xskbufs - free RX dma buffers from XSK pool
1577  * @priv: private structure
1578  * @dma_conf: structure to take the dma data
1579  * @queue: RX queue index
1580  */
1581 static void dma_free_rx_xskbufs(struct stmmac_priv *priv,
1582                                 struct stmmac_dma_conf *dma_conf,
1583                                 u32 queue)
1584 {
1585         struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1586         int i;
1587
1588         for (i = 0; i < dma_conf->dma_rx_size; i++) {
1589                 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1590
1591                 if (!buf->xdp)
1592                         continue;
1593
1594                 xsk_buff_free(buf->xdp);
1595                 buf->xdp = NULL;
1596         }
1597 }
1598
1599 static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv,
1600                                       struct stmmac_dma_conf *dma_conf,
1601                                       u32 queue)
1602 {
1603         struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1604         int i;
1605
1606         for (i = 0; i < dma_conf->dma_rx_size; i++) {
1607                 struct stmmac_rx_buffer *buf;
1608                 dma_addr_t dma_addr;
1609                 struct dma_desc *p;
1610
1611                 if (priv->extend_desc)
1612                         p = (struct dma_desc *)(rx_q->dma_erx + i);
1613                 else
1614                         p = rx_q->dma_rx + i;
1615
1616                 buf = &rx_q->buf_pool[i];
1617
1618                 buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
1619                 if (!buf->xdp)
1620                         return -ENOMEM;
1621
1622                 dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
1623                 stmmac_set_desc_addr(priv, p, dma_addr);
1624                 rx_q->buf_alloc_num++;
1625         }
1626
1627         return 0;
1628 }
1629
1630 static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue)
1631 {
1632         if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps))
1633                 return NULL;
1634
1635         return xsk_get_pool_from_qid(priv->dev, queue);
1636 }
1637
1638 /**
1639  * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue)
1640  * @priv: driver private structure
1641  * @dma_conf: structure to take the dma data
1642  * @queue: RX queue index
1643  * @flags: gfp flag.
1644  * Description: this function initializes the DMA RX descriptors
1645  * and allocates the socket buffers. It supports the chained and ring
1646  * modes.
1647  */
1648 static int __init_dma_rx_desc_rings(struct stmmac_priv *priv,
1649                                     struct stmmac_dma_conf *dma_conf,
1650                                     u32 queue, gfp_t flags)
1651 {
1652         struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1653         int ret;
1654
1655         netif_dbg(priv, probe, priv->dev,
1656                   "(%s) dma_rx_phy=0x%08x\n", __func__,
1657                   (u32)rx_q->dma_rx_phy);
1658
1659         stmmac_clear_rx_descriptors(priv, dma_conf, queue);
1660
1661         xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq);
1662
1663         rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1664
1665         if (rx_q->xsk_pool) {
1666                 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1667                                                    MEM_TYPE_XSK_BUFF_POOL,
1668                                                    NULL));
1669                 netdev_info(priv->dev,
1670                             "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n",
1671                             rx_q->queue_index);
1672                 xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq);
1673         } else {
1674                 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1675                                                    MEM_TYPE_PAGE_POOL,
1676                                                    rx_q->page_pool));
1677                 netdev_info(priv->dev,
1678                             "Register MEM_TYPE_PAGE_POOL RxQ-%d\n",
1679                             rx_q->queue_index);
1680         }
1681
1682         if (rx_q->xsk_pool) {
1683                 /* RX XDP ZC buffer pool may not be populated, e.g.
1684                  * xdpsock TX-only.
1685                  */
1686                 stmmac_alloc_rx_buffers_zc(priv, dma_conf, queue);
1687         } else {
1688                 ret = stmmac_alloc_rx_buffers(priv, dma_conf, queue, flags);
1689                 if (ret < 0)
1690                         return -ENOMEM;
1691         }
1692
1693         /* Setup the chained descriptor addresses */
1694         if (priv->mode == STMMAC_CHAIN_MODE) {
1695                 if (priv->extend_desc)
1696                         stmmac_mode_init(priv, rx_q->dma_erx,
1697                                          rx_q->dma_rx_phy,
1698                                          dma_conf->dma_rx_size, 1);
1699                 else
1700                         stmmac_mode_init(priv, rx_q->dma_rx,
1701                                          rx_q->dma_rx_phy,
1702                                          dma_conf->dma_rx_size, 0);
1703         }
1704
1705         return 0;
1706 }
1707
1708 static int init_dma_rx_desc_rings(struct net_device *dev,
1709                                   struct stmmac_dma_conf *dma_conf,
1710                                   gfp_t flags)
1711 {
1712         struct stmmac_priv *priv = netdev_priv(dev);
1713         u32 rx_count = priv->plat->rx_queues_to_use;
1714         int queue;
1715         int ret;
1716
1717         /* RX INITIALIZATION */
1718         netif_dbg(priv, probe, priv->dev,
1719                   "SKB addresses:\nskb\t\tskb data\tdma data\n");
1720
1721         for (queue = 0; queue < rx_count; queue++) {
1722                 ret = __init_dma_rx_desc_rings(priv, dma_conf, queue, flags);
1723                 if (ret)
1724                         goto err_init_rx_buffers;
1725         }
1726
1727         return 0;
1728
1729 err_init_rx_buffers:
1730         while (queue >= 0) {
1731                 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1732
1733                 if (rx_q->xsk_pool)
1734                         dma_free_rx_xskbufs(priv, dma_conf, queue);
1735                 else
1736                         dma_free_rx_skbufs(priv, dma_conf, queue);
1737
1738                 rx_q->buf_alloc_num = 0;
1739                 rx_q->xsk_pool = NULL;
1740
1741                 queue--;
1742         }
1743
1744         return ret;
1745 }
1746
1747 /**
1748  * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue)
1749  * @priv: driver private structure
1750  * @dma_conf: structure to take the dma data
1751  * @queue: TX queue index
1752  * Description: this function initializes the DMA TX descriptors
1753  * and allocates the socket buffers. It supports the chained and ring
1754  * modes.
1755  */
1756 static int __init_dma_tx_desc_rings(struct stmmac_priv *priv,
1757                                     struct stmmac_dma_conf *dma_conf,
1758                                     u32 queue)
1759 {
1760         struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1761         int i;
1762
1763         netif_dbg(priv, probe, priv->dev,
1764                   "(%s) dma_tx_phy=0x%08x\n", __func__,
1765                   (u32)tx_q->dma_tx_phy);
1766
1767         /* Setup the chained descriptor addresses */
1768         if (priv->mode == STMMAC_CHAIN_MODE) {
1769                 if (priv->extend_desc)
1770                         stmmac_mode_init(priv, tx_q->dma_etx,
1771                                          tx_q->dma_tx_phy,
1772                                          dma_conf->dma_tx_size, 1);
1773                 else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1774                         stmmac_mode_init(priv, tx_q->dma_tx,
1775                                          tx_q->dma_tx_phy,
1776                                          dma_conf->dma_tx_size, 0);
1777         }
1778
1779         tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1780
1781         for (i = 0; i < dma_conf->dma_tx_size; i++) {
1782                 struct dma_desc *p;
1783
1784                 if (priv->extend_desc)
1785                         p = &((tx_q->dma_etx + i)->basic);
1786                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1787                         p = &((tx_q->dma_entx + i)->basic);
1788                 else
1789                         p = tx_q->dma_tx + i;
1790
1791                 stmmac_clear_desc(priv, p);
1792
1793                 tx_q->tx_skbuff_dma[i].buf = 0;
1794                 tx_q->tx_skbuff_dma[i].map_as_page = false;
1795                 tx_q->tx_skbuff_dma[i].len = 0;
1796                 tx_q->tx_skbuff_dma[i].last_segment = false;
1797                 tx_q->tx_skbuff[i] = NULL;
1798         }
1799
1800         return 0;
1801 }
1802
1803 static int init_dma_tx_desc_rings(struct net_device *dev,
1804                                   struct stmmac_dma_conf *dma_conf)
1805 {
1806         struct stmmac_priv *priv = netdev_priv(dev);
1807         u32 tx_queue_cnt;
1808         u32 queue;
1809
1810         tx_queue_cnt = priv->plat->tx_queues_to_use;
1811
1812         for (queue = 0; queue < tx_queue_cnt; queue++)
1813                 __init_dma_tx_desc_rings(priv, dma_conf, queue);
1814
1815         return 0;
1816 }
1817
1818 /**
1819  * init_dma_desc_rings - init the RX/TX descriptor rings
1820  * @dev: net device structure
1821  * @dma_conf: structure to take the dma data
1822  * @flags: gfp flag.
1823  * Description: this function initializes the DMA RX/TX descriptors
1824  * and allocates the socket buffers. It supports the chained and ring
1825  * modes.
1826  */
1827 static int init_dma_desc_rings(struct net_device *dev,
1828                                struct stmmac_dma_conf *dma_conf,
1829                                gfp_t flags)
1830 {
1831         struct stmmac_priv *priv = netdev_priv(dev);
1832         int ret;
1833
1834         ret = init_dma_rx_desc_rings(dev, dma_conf, flags);
1835         if (ret)
1836                 return ret;
1837
1838         ret = init_dma_tx_desc_rings(dev, dma_conf);
1839
1840         stmmac_clear_descriptors(priv, dma_conf);
1841
1842         if (netif_msg_hw(priv))
1843                 stmmac_display_rings(priv, dma_conf);
1844
1845         return ret;
1846 }
1847
1848 /**
1849  * dma_free_tx_skbufs - free TX dma buffers
1850  * @priv: private structure
1851  * @dma_conf: structure to take the dma data
1852  * @queue: TX queue index
1853  */
1854 static void dma_free_tx_skbufs(struct stmmac_priv *priv,
1855                                struct stmmac_dma_conf *dma_conf,
1856                                u32 queue)
1857 {
1858         struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1859         int i;
1860
1861         tx_q->xsk_frames_done = 0;
1862
1863         for (i = 0; i < dma_conf->dma_tx_size; i++)
1864                 stmmac_free_tx_buffer(priv, dma_conf, queue, i);
1865
1866         if (tx_q->xsk_pool && tx_q->xsk_frames_done) {
1867                 xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
1868                 tx_q->xsk_frames_done = 0;
1869                 tx_q->xsk_pool = NULL;
1870         }
1871 }
1872
1873 /**
1874  * stmmac_free_tx_skbufs - free TX skb buffers
1875  * @priv: private structure
1876  */
1877 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv)
1878 {
1879         u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1880         u32 queue;
1881
1882         for (queue = 0; queue < tx_queue_cnt; queue++)
1883                 dma_free_tx_skbufs(priv, &priv->dma_conf, queue);
1884 }
1885
1886 /**
1887  * __free_dma_rx_desc_resources - free RX dma desc resources (per queue)
1888  * @priv: private structure
1889  * @dma_conf: structure to take the dma data
1890  * @queue: RX queue index
1891  */
1892 static void __free_dma_rx_desc_resources(struct stmmac_priv *priv,
1893                                          struct stmmac_dma_conf *dma_conf,
1894                                          u32 queue)
1895 {
1896         struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1897
1898         /* Release the DMA RX socket buffers */
1899         if (rx_q->xsk_pool)
1900                 dma_free_rx_xskbufs(priv, dma_conf, queue);
1901         else
1902                 dma_free_rx_skbufs(priv, dma_conf, queue);
1903
1904         rx_q->buf_alloc_num = 0;
1905         rx_q->xsk_pool = NULL;
1906
1907         /* Free DMA regions of consistent memory previously allocated */
1908         if (!priv->extend_desc)
1909                 dma_free_coherent(priv->device, dma_conf->dma_rx_size *
1910                                   sizeof(struct dma_desc),
1911                                   rx_q->dma_rx, rx_q->dma_rx_phy);
1912         else
1913                 dma_free_coherent(priv->device, dma_conf->dma_rx_size *
1914                                   sizeof(struct dma_extended_desc),
1915                                   rx_q->dma_erx, rx_q->dma_rx_phy);
1916
1917         if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq))
1918                 xdp_rxq_info_unreg(&rx_q->xdp_rxq);
1919
1920         kfree(rx_q->buf_pool);
1921         if (rx_q->page_pool)
1922                 page_pool_destroy(rx_q->page_pool);
1923 }
1924
1925 static void free_dma_rx_desc_resources(struct stmmac_priv *priv,
1926                                        struct stmmac_dma_conf *dma_conf)
1927 {
1928         u32 rx_count = priv->plat->rx_queues_to_use;
1929         u32 queue;
1930
1931         /* Free RX queue resources */
1932         for (queue = 0; queue < rx_count; queue++)
1933                 __free_dma_rx_desc_resources(priv, dma_conf, queue);
1934 }
1935
1936 /**
1937  * __free_dma_tx_desc_resources - free TX dma desc resources (per queue)
1938  * @priv: private structure
1939  * @dma_conf: structure to take the dma data
1940  * @queue: TX queue index
1941  */
1942 static void __free_dma_tx_desc_resources(struct stmmac_priv *priv,
1943                                          struct stmmac_dma_conf *dma_conf,
1944                                          u32 queue)
1945 {
1946         struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1947         size_t size;
1948         void *addr;
1949
1950         /* Release the DMA TX socket buffers */
1951         dma_free_tx_skbufs(priv, dma_conf, queue);
1952
1953         if (priv->extend_desc) {
1954                 size = sizeof(struct dma_extended_desc);
1955                 addr = tx_q->dma_etx;
1956         } else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1957                 size = sizeof(struct dma_edesc);
1958                 addr = tx_q->dma_entx;
1959         } else {
1960                 size = sizeof(struct dma_desc);
1961                 addr = tx_q->dma_tx;
1962         }
1963
1964         size *= dma_conf->dma_tx_size;
1965
1966         dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1967
1968         kfree(tx_q->tx_skbuff_dma);
1969         kfree(tx_q->tx_skbuff);
1970 }
1971
1972 static void free_dma_tx_desc_resources(struct stmmac_priv *priv,
1973                                        struct stmmac_dma_conf *dma_conf)
1974 {
1975         u32 tx_count = priv->plat->tx_queues_to_use;
1976         u32 queue;
1977
1978         /* Free TX queue resources */
1979         for (queue = 0; queue < tx_count; queue++)
1980                 __free_dma_tx_desc_resources(priv, dma_conf, queue);
1981 }
1982
1983 /**
1984  * __alloc_dma_rx_desc_resources - alloc RX resources (per queue).
1985  * @priv: private structure
1986  * @dma_conf: structure to take the dma data
1987  * @queue: RX queue index
1988  * Description: according to which descriptor can be used (extend or basic)
1989  * this function allocates the resources for TX and RX paths. In case of
1990  * reception, for example, it pre-allocated the RX socket buffer in order to
1991  * allow zero-copy mechanism.
1992  */
1993 static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv,
1994                                          struct stmmac_dma_conf *dma_conf,
1995                                          u32 queue)
1996 {
1997         struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1998         struct stmmac_channel *ch = &priv->channel[queue];
1999         bool xdp_prog = stmmac_xdp_is_enabled(priv);
2000         struct page_pool_params pp_params = { 0 };
2001         unsigned int num_pages;
2002         unsigned int napi_id;
2003         int ret;
2004
2005         rx_q->queue_index = queue;
2006         rx_q->priv_data = priv;
2007
2008         pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
2009         pp_params.pool_size = dma_conf->dma_rx_size;
2010         num_pages = DIV_ROUND_UP(dma_conf->dma_buf_sz, PAGE_SIZE);
2011         pp_params.order = ilog2(num_pages);
2012         pp_params.nid = dev_to_node(priv->device);
2013         pp_params.dev = priv->device;
2014         pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
2015         pp_params.offset = stmmac_rx_offset(priv);
2016         pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages);
2017
2018         rx_q->page_pool = page_pool_create(&pp_params);
2019         if (IS_ERR(rx_q->page_pool)) {
2020                 ret = PTR_ERR(rx_q->page_pool);
2021                 rx_q->page_pool = NULL;
2022                 return ret;
2023         }
2024
2025         rx_q->buf_pool = kcalloc(dma_conf->dma_rx_size,
2026                                  sizeof(*rx_q->buf_pool),
2027                                  GFP_KERNEL);
2028         if (!rx_q->buf_pool)
2029                 return -ENOMEM;
2030
2031         if (priv->extend_desc) {
2032                 rx_q->dma_erx = dma_alloc_coherent(priv->device,
2033                                                    dma_conf->dma_rx_size *
2034                                                    sizeof(struct dma_extended_desc),
2035                                                    &rx_q->dma_rx_phy,
2036                                                    GFP_KERNEL);
2037                 if (!rx_q->dma_erx)
2038                         return -ENOMEM;
2039
2040         } else {
2041                 rx_q->dma_rx = dma_alloc_coherent(priv->device,
2042                                                   dma_conf->dma_rx_size *
2043                                                   sizeof(struct dma_desc),
2044                                                   &rx_q->dma_rx_phy,
2045                                                   GFP_KERNEL);
2046                 if (!rx_q->dma_rx)
2047                         return -ENOMEM;
2048         }
2049
2050         if (stmmac_xdp_is_enabled(priv) &&
2051             test_bit(queue, priv->af_xdp_zc_qps))
2052                 napi_id = ch->rxtx_napi.napi_id;
2053         else
2054                 napi_id = ch->rx_napi.napi_id;
2055
2056         ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev,
2057                                rx_q->queue_index,
2058                                napi_id);
2059         if (ret) {
2060                 netdev_err(priv->dev, "Failed to register xdp rxq info\n");
2061                 return -EINVAL;
2062         }
2063
2064         return 0;
2065 }
2066
2067 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv,
2068                                        struct stmmac_dma_conf *dma_conf)
2069 {
2070         u32 rx_count = priv->plat->rx_queues_to_use;
2071         u32 queue;
2072         int ret;
2073
2074         /* RX queues buffers and DMA */
2075         for (queue = 0; queue < rx_count; queue++) {
2076                 ret = __alloc_dma_rx_desc_resources(priv, dma_conf, queue);
2077                 if (ret)
2078                         goto err_dma;
2079         }
2080
2081         return 0;
2082
2083 err_dma:
2084         free_dma_rx_desc_resources(priv, dma_conf);
2085
2086         return ret;
2087 }
2088
2089 /**
2090  * __alloc_dma_tx_desc_resources - alloc TX resources (per queue).
2091  * @priv: private structure
2092  * @dma_conf: structure to take the dma data
2093  * @queue: TX queue index
2094  * Description: according to which descriptor can be used (extend or basic)
2095  * this function allocates the resources for TX and RX paths. In case of
2096  * reception, for example, it pre-allocated the RX socket buffer in order to
2097  * allow zero-copy mechanism.
2098  */
2099 static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv,
2100                                          struct stmmac_dma_conf *dma_conf,
2101                                          u32 queue)
2102 {
2103         struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
2104         size_t size;
2105         void *addr;
2106
2107         tx_q->queue_index = queue;
2108         tx_q->priv_data = priv;
2109
2110         tx_q->tx_skbuff_dma = kcalloc(dma_conf->dma_tx_size,
2111                                       sizeof(*tx_q->tx_skbuff_dma),
2112                                       GFP_KERNEL);
2113         if (!tx_q->tx_skbuff_dma)
2114                 return -ENOMEM;
2115
2116         tx_q->tx_skbuff = kcalloc(dma_conf->dma_tx_size,
2117                                   sizeof(struct sk_buff *),
2118                                   GFP_KERNEL);
2119         if (!tx_q->tx_skbuff)
2120                 return -ENOMEM;
2121
2122         if (priv->extend_desc)
2123                 size = sizeof(struct dma_extended_desc);
2124         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2125                 size = sizeof(struct dma_edesc);
2126         else
2127                 size = sizeof(struct dma_desc);
2128
2129         size *= dma_conf->dma_tx_size;
2130
2131         addr = dma_alloc_coherent(priv->device, size,
2132                                   &tx_q->dma_tx_phy, GFP_KERNEL);
2133         if (!addr)
2134                 return -ENOMEM;
2135
2136         if (priv->extend_desc)
2137                 tx_q->dma_etx = addr;
2138         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2139                 tx_q->dma_entx = addr;
2140         else
2141                 tx_q->dma_tx = addr;
2142
2143         return 0;
2144 }
2145
2146 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv,
2147                                        struct stmmac_dma_conf *dma_conf)
2148 {
2149         u32 tx_count = priv->plat->tx_queues_to_use;
2150         u32 queue;
2151         int ret;
2152
2153         /* TX queues buffers and DMA */
2154         for (queue = 0; queue < tx_count; queue++) {
2155                 ret = __alloc_dma_tx_desc_resources(priv, dma_conf, queue);
2156                 if (ret)
2157                         goto err_dma;
2158         }
2159
2160         return 0;
2161
2162 err_dma:
2163         free_dma_tx_desc_resources(priv, dma_conf);
2164         return ret;
2165 }
2166
2167 /**
2168  * alloc_dma_desc_resources - alloc TX/RX resources.
2169  * @priv: private structure
2170  * @dma_conf: structure to take the dma data
2171  * Description: according to which descriptor can be used (extend or basic)
2172  * this function allocates the resources for TX and RX paths. In case of
2173  * reception, for example, it pre-allocated the RX socket buffer in order to
2174  * allow zero-copy mechanism.
2175  */
2176 static int alloc_dma_desc_resources(struct stmmac_priv *priv,
2177                                     struct stmmac_dma_conf *dma_conf)
2178 {
2179         /* RX Allocation */
2180         int ret = alloc_dma_rx_desc_resources(priv, dma_conf);
2181
2182         if (ret)
2183                 return ret;
2184
2185         ret = alloc_dma_tx_desc_resources(priv, dma_conf);
2186
2187         return ret;
2188 }
2189
2190 /**
2191  * free_dma_desc_resources - free dma desc resources
2192  * @priv: private structure
2193  * @dma_conf: structure to take the dma data
2194  */
2195 static void free_dma_desc_resources(struct stmmac_priv *priv,
2196                                     struct stmmac_dma_conf *dma_conf)
2197 {
2198         /* Release the DMA TX socket buffers */
2199         free_dma_tx_desc_resources(priv, dma_conf);
2200
2201         /* Release the DMA RX socket buffers later
2202          * to ensure all pending XDP_TX buffers are returned.
2203          */
2204         free_dma_rx_desc_resources(priv, dma_conf);
2205 }
2206
2207 /**
2208  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
2209  *  @priv: driver private structure
2210  *  Description: It is used for enabling the rx queues in the MAC
2211  */
2212 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
2213 {
2214         u32 rx_queues_count = priv->plat->rx_queues_to_use;
2215         int queue;
2216         u8 mode;
2217
2218         for (queue = 0; queue < rx_queues_count; queue++) {
2219                 mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
2220                 stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
2221         }
2222 }
2223
2224 /**
2225  * stmmac_start_rx_dma - start RX DMA channel
2226  * @priv: driver private structure
2227  * @chan: RX channel index
2228  * Description:
2229  * This starts a RX DMA channel
2230  */
2231 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
2232 {
2233         netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
2234         stmmac_start_rx(priv, priv->ioaddr, chan);
2235 }
2236
2237 /**
2238  * stmmac_start_tx_dma - start TX DMA channel
2239  * @priv: driver private structure
2240  * @chan: TX channel index
2241  * Description:
2242  * This starts a TX DMA channel
2243  */
2244 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
2245 {
2246         netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
2247         stmmac_start_tx(priv, priv->ioaddr, chan);
2248 }
2249
2250 /**
2251  * stmmac_stop_rx_dma - stop RX DMA channel
2252  * @priv: driver private structure
2253  * @chan: RX channel index
2254  * Description:
2255  * This stops a RX DMA channel
2256  */
2257 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
2258 {
2259         netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
2260         stmmac_stop_rx(priv, priv->ioaddr, chan);
2261 }
2262
2263 /**
2264  * stmmac_stop_tx_dma - stop TX DMA channel
2265  * @priv: driver private structure
2266  * @chan: TX channel index
2267  * Description:
2268  * This stops a TX DMA channel
2269  */
2270 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
2271 {
2272         netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
2273         stmmac_stop_tx(priv, priv->ioaddr, chan);
2274 }
2275
2276 static void stmmac_enable_all_dma_irq(struct stmmac_priv *priv)
2277 {
2278         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2279         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2280         u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2281         u32 chan;
2282
2283         for (chan = 0; chan < dma_csr_ch; chan++) {
2284                 struct stmmac_channel *ch = &priv->channel[chan];
2285                 unsigned long flags;
2286
2287                 spin_lock_irqsave(&ch->lock, flags);
2288                 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2289                 spin_unlock_irqrestore(&ch->lock, flags);
2290         }
2291 }
2292
2293 /**
2294  * stmmac_start_all_dma - start all RX and TX DMA channels
2295  * @priv: driver private structure
2296  * Description:
2297  * This starts all the RX and TX DMA channels
2298  */
2299 static void stmmac_start_all_dma(struct stmmac_priv *priv)
2300 {
2301         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2302         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2303         u32 chan = 0;
2304
2305         for (chan = 0; chan < rx_channels_count; chan++)
2306                 stmmac_start_rx_dma(priv, chan);
2307
2308         for (chan = 0; chan < tx_channels_count; chan++)
2309                 stmmac_start_tx_dma(priv, chan);
2310 }
2311
2312 /**
2313  * stmmac_stop_all_dma - stop all RX and TX DMA channels
2314  * @priv: driver private structure
2315  * Description:
2316  * This stops the RX and TX DMA channels
2317  */
2318 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
2319 {
2320         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2321         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2322         u32 chan = 0;
2323
2324         for (chan = 0; chan < rx_channels_count; chan++)
2325                 stmmac_stop_rx_dma(priv, chan);
2326
2327         for (chan = 0; chan < tx_channels_count; chan++)
2328                 stmmac_stop_tx_dma(priv, chan);
2329 }
2330
2331 /**
2332  *  stmmac_dma_operation_mode - HW DMA operation mode
2333  *  @priv: driver private structure
2334  *  Description: it is used for configuring the DMA operation mode register in
2335  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
2336  */
2337 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
2338 {
2339         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2340         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2341         int rxfifosz = priv->plat->rx_fifo_size;
2342         int txfifosz = priv->plat->tx_fifo_size;
2343         u32 txmode = 0;
2344         u32 rxmode = 0;
2345         u32 chan = 0;
2346         u8 qmode = 0;
2347
2348         if (rxfifosz == 0)
2349                 rxfifosz = priv->dma_cap.rx_fifo_size;
2350         if (txfifosz == 0)
2351                 txfifosz = priv->dma_cap.tx_fifo_size;
2352
2353         /* Adjust for real per queue fifo size */
2354         rxfifosz /= rx_channels_count;
2355         txfifosz /= tx_channels_count;
2356
2357         if (priv->plat->force_thresh_dma_mode) {
2358                 txmode = tc;
2359                 rxmode = tc;
2360         } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
2361                 /*
2362                  * In case of GMAC, SF mode can be enabled
2363                  * to perform the TX COE in HW. This depends on:
2364                  * 1) TX COE if actually supported
2365                  * 2) There is no bugged Jumbo frame support
2366                  *    that needs to not insert csum in the TDES.
2367                  */
2368                 txmode = SF_DMA_MODE;
2369                 rxmode = SF_DMA_MODE;
2370                 priv->xstats.threshold = SF_DMA_MODE;
2371         } else {
2372                 txmode = tc;
2373                 rxmode = SF_DMA_MODE;
2374         }
2375
2376         /* configure all channels */
2377         for (chan = 0; chan < rx_channels_count; chan++) {
2378                 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan];
2379                 u32 buf_size;
2380
2381                 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2382
2383                 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
2384                                 rxfifosz, qmode);
2385
2386                 if (rx_q->xsk_pool) {
2387                         buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
2388                         stmmac_set_dma_bfsize(priv, priv->ioaddr,
2389                                               buf_size,
2390                                               chan);
2391                 } else {
2392                         stmmac_set_dma_bfsize(priv, priv->ioaddr,
2393                                               priv->dma_conf.dma_buf_sz,
2394                                               chan);
2395                 }
2396         }
2397
2398         for (chan = 0; chan < tx_channels_count; chan++) {
2399                 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2400
2401                 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
2402                                 txfifosz, qmode);
2403         }
2404 }
2405
2406 static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
2407 {
2408         struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue);
2409         struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2410         struct xsk_buff_pool *pool = tx_q->xsk_pool;
2411         unsigned int entry = tx_q->cur_tx;
2412         struct dma_desc *tx_desc = NULL;
2413         struct xdp_desc xdp_desc;
2414         bool work_done = true;
2415
2416         /* Avoids TX time-out as we are sharing with slow path */
2417         txq_trans_cond_update(nq);
2418
2419         budget = min(budget, stmmac_tx_avail(priv, queue));
2420
2421         while (budget-- > 0) {
2422                 dma_addr_t dma_addr;
2423                 bool set_ic;
2424
2425                 /* We are sharing with slow path and stop XSK TX desc submission when
2426                  * available TX ring is less than threshold.
2427                  */
2428                 if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) ||
2429                     !netif_carrier_ok(priv->dev)) {
2430                         work_done = false;
2431                         break;
2432                 }
2433
2434                 if (!xsk_tx_peek_desc(pool, &xdp_desc))
2435                         break;
2436
2437                 if (likely(priv->extend_desc))
2438                         tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
2439                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2440                         tx_desc = &tx_q->dma_entx[entry].basic;
2441                 else
2442                         tx_desc = tx_q->dma_tx + entry;
2443
2444                 dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2445                 xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len);
2446
2447                 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX;
2448
2449                 /* To return XDP buffer to XSK pool, we simple call
2450                  * xsk_tx_completed(), so we don't need to fill up
2451                  * 'buf' and 'xdpf'.
2452                  */
2453                 tx_q->tx_skbuff_dma[entry].buf = 0;
2454                 tx_q->xdpf[entry] = NULL;
2455
2456                 tx_q->tx_skbuff_dma[entry].map_as_page = false;
2457                 tx_q->tx_skbuff_dma[entry].len = xdp_desc.len;
2458                 tx_q->tx_skbuff_dma[entry].last_segment = true;
2459                 tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2460
2461                 stmmac_set_desc_addr(priv, tx_desc, dma_addr);
2462
2463                 tx_q->tx_count_frames++;
2464
2465                 if (!priv->tx_coal_frames[queue])
2466                         set_ic = false;
2467                 else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
2468                         set_ic = true;
2469                 else
2470                         set_ic = false;
2471
2472                 if (set_ic) {
2473                         tx_q->tx_count_frames = 0;
2474                         stmmac_set_tx_ic(priv, tx_desc);
2475                         priv->xstats.tx_set_ic_bit++;
2476                 }
2477
2478                 stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len,
2479                                        true, priv->mode, true, true,
2480                                        xdp_desc.len);
2481
2482                 stmmac_enable_dma_transmission(priv, priv->ioaddr);
2483
2484                 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
2485                 entry = tx_q->cur_tx;
2486         }
2487
2488         if (tx_desc) {
2489                 stmmac_flush_tx_descriptors(priv, queue);
2490                 xsk_tx_release(pool);
2491         }
2492
2493         /* Return true if all of the 3 conditions are met
2494          *  a) TX Budget is still available
2495          *  b) work_done = true when XSK TX desc peek is empty (no more
2496          *     pending XSK TX for transmission)
2497          */
2498         return !!budget && work_done;
2499 }
2500
2501 static void stmmac_bump_dma_threshold(struct stmmac_priv *priv, u32 chan)
2502 {
2503         if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && tc <= 256) {
2504                 tc += 64;
2505
2506                 if (priv->plat->force_thresh_dma_mode)
2507                         stmmac_set_dma_operation_mode(priv, tc, tc, chan);
2508                 else
2509                         stmmac_set_dma_operation_mode(priv, tc, SF_DMA_MODE,
2510                                                       chan);
2511
2512                 priv->xstats.threshold = tc;
2513         }
2514 }
2515
2516 /**
2517  * stmmac_tx_clean - to manage the transmission completion
2518  * @priv: driver private structure
2519  * @budget: napi budget limiting this functions packet handling
2520  * @queue: TX queue index
2521  * Description: it reclaims the transmit resources after transmission completes.
2522  */
2523 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
2524 {
2525         struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2526         unsigned int bytes_compl = 0, pkts_compl = 0;
2527         unsigned int entry, xmits = 0, count = 0;
2528
2529         __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
2530
2531         priv->xstats.tx_clean++;
2532
2533         tx_q->xsk_frames_done = 0;
2534
2535         entry = tx_q->dirty_tx;
2536
2537         /* Try to clean all TX complete frame in 1 shot */
2538         while ((entry != tx_q->cur_tx) && count < priv->dma_conf.dma_tx_size) {
2539                 struct xdp_frame *xdpf;
2540                 struct sk_buff *skb;
2541                 struct dma_desc *p;
2542                 int status;
2543
2544                 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX ||
2545                     tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2546                         xdpf = tx_q->xdpf[entry];
2547                         skb = NULL;
2548                 } else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2549                         xdpf = NULL;
2550                         skb = tx_q->tx_skbuff[entry];
2551                 } else {
2552                         xdpf = NULL;
2553                         skb = NULL;
2554                 }
2555
2556                 if (priv->extend_desc)
2557                         p = (struct dma_desc *)(tx_q->dma_etx + entry);
2558                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2559                         p = &tx_q->dma_entx[entry].basic;
2560                 else
2561                         p = tx_q->dma_tx + entry;
2562
2563                 status = stmmac_tx_status(priv, &priv->dev->stats,
2564                                 &priv->xstats, p, priv->ioaddr);
2565                 /* Check if the descriptor is owned by the DMA */
2566                 if (unlikely(status & tx_dma_own))
2567                         break;
2568
2569                 count++;
2570
2571                 /* Make sure descriptor fields are read after reading
2572                  * the own bit.
2573                  */
2574                 dma_rmb();
2575
2576                 /* Just consider the last segment and ...*/
2577                 if (likely(!(status & tx_not_ls))) {
2578                         /* ... verify the status error condition */
2579                         if (unlikely(status & tx_err)) {
2580                                 priv->dev->stats.tx_errors++;
2581                                 if (unlikely(status & tx_err_bump_tc))
2582                                         stmmac_bump_dma_threshold(priv, queue);
2583                         } else {
2584                                 priv->dev->stats.tx_packets++;
2585                                 priv->xstats.tx_pkt_n++;
2586                                 priv->xstats.txq_stats[queue].tx_pkt_n++;
2587                         }
2588                         if (skb)
2589                                 stmmac_get_tx_hwtstamp(priv, p, skb);
2590                 }
2591
2592                 if (likely(tx_q->tx_skbuff_dma[entry].buf &&
2593                            tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) {
2594                         if (tx_q->tx_skbuff_dma[entry].map_as_page)
2595                                 dma_unmap_page(priv->device,
2596                                                tx_q->tx_skbuff_dma[entry].buf,
2597                                                tx_q->tx_skbuff_dma[entry].len,
2598                                                DMA_TO_DEVICE);
2599                         else
2600                                 dma_unmap_single(priv->device,
2601                                                  tx_q->tx_skbuff_dma[entry].buf,
2602                                                  tx_q->tx_skbuff_dma[entry].len,
2603                                                  DMA_TO_DEVICE);
2604                         tx_q->tx_skbuff_dma[entry].buf = 0;
2605                         tx_q->tx_skbuff_dma[entry].len = 0;
2606                         tx_q->tx_skbuff_dma[entry].map_as_page = false;
2607                 }
2608
2609                 stmmac_clean_desc3(priv, tx_q, p);
2610
2611                 tx_q->tx_skbuff_dma[entry].last_segment = false;
2612                 tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2613
2614                 if (xdpf &&
2615                     tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) {
2616                         xdp_return_frame_rx_napi(xdpf);
2617                         tx_q->xdpf[entry] = NULL;
2618                 }
2619
2620                 if (xdpf &&
2621                     tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2622                         xdp_return_frame(xdpf);
2623                         tx_q->xdpf[entry] = NULL;
2624                 }
2625
2626                 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX)
2627                         tx_q->xsk_frames_done++;
2628
2629                 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2630                         if (likely(skb)) {
2631                                 pkts_compl++;
2632                                 bytes_compl += skb->len;
2633                                 dev_consume_skb_any(skb);
2634                                 tx_q->tx_skbuff[entry] = NULL;
2635                         }
2636                 }
2637
2638                 stmmac_release_tx_desc(priv, p, priv->mode);
2639
2640                 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
2641         }
2642         tx_q->dirty_tx = entry;
2643
2644         netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2645                                   pkts_compl, bytes_compl);
2646
2647         if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2648                                                                 queue))) &&
2649             stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) {
2650
2651                 netif_dbg(priv, tx_done, priv->dev,
2652                           "%s: restart transmit\n", __func__);
2653                 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2654         }
2655
2656         if (tx_q->xsk_pool) {
2657                 bool work_done;
2658
2659                 if (tx_q->xsk_frames_done)
2660                         xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
2661
2662                 if (xsk_uses_need_wakeup(tx_q->xsk_pool))
2663                         xsk_set_tx_need_wakeup(tx_q->xsk_pool);
2664
2665                 /* For XSK TX, we try to send as many as possible.
2666                  * If XSK work done (XSK TX desc empty and budget still
2667                  * available), return "budget - 1" to reenable TX IRQ.
2668                  * Else, return "budget" to make NAPI continue polling.
2669                  */
2670                 work_done = stmmac_xdp_xmit_zc(priv, queue,
2671                                                STMMAC_XSK_TX_BUDGET_MAX);
2672                 if (work_done)
2673                         xmits = budget - 1;
2674                 else
2675                         xmits = budget;
2676         }
2677
2678         if (priv->eee_enabled && !priv->tx_path_in_lpi_mode &&
2679             priv->eee_sw_timer_en) {
2680                 if (stmmac_enable_eee_mode(priv))
2681                         mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
2682         }
2683
2684         /* We still have pending packets, let's call for a new scheduling */
2685         if (tx_q->dirty_tx != tx_q->cur_tx)
2686                 hrtimer_start(&tx_q->txtimer,
2687                               STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2688                               HRTIMER_MODE_REL);
2689
2690         __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2691
2692         /* Combine decisions from TX clean and XSK TX */
2693         return max(count, xmits);
2694 }
2695
2696 /**
2697  * stmmac_tx_err - to manage the tx error
2698  * @priv: driver private structure
2699  * @chan: channel index
2700  * Description: it cleans the descriptors and restarts the transmission
2701  * in case of transmission errors.
2702  */
2703 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2704 {
2705         struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
2706
2707         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2708
2709         stmmac_stop_tx_dma(priv, chan);
2710         dma_free_tx_skbufs(priv, &priv->dma_conf, chan);
2711         stmmac_clear_tx_descriptors(priv, &priv->dma_conf, chan);
2712         stmmac_reset_tx_queue(priv, chan);
2713         stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2714                             tx_q->dma_tx_phy, chan);
2715         stmmac_start_tx_dma(priv, chan);
2716
2717         priv->dev->stats.tx_errors++;
2718         netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2719 }
2720
2721 /**
2722  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2723  *  @priv: driver private structure
2724  *  @txmode: TX operating mode
2725  *  @rxmode: RX operating mode
2726  *  @chan: channel index
2727  *  Description: it is used for configuring of the DMA operation mode in
2728  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2729  *  mode.
2730  */
2731 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2732                                           u32 rxmode, u32 chan)
2733 {
2734         u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2735         u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2736         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2737         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2738         int rxfifosz = priv->plat->rx_fifo_size;
2739         int txfifosz = priv->plat->tx_fifo_size;
2740
2741         if (rxfifosz == 0)
2742                 rxfifosz = priv->dma_cap.rx_fifo_size;
2743         if (txfifosz == 0)
2744                 txfifosz = priv->dma_cap.tx_fifo_size;
2745
2746         /* Adjust for real per queue fifo size */
2747         rxfifosz /= rx_channels_count;
2748         txfifosz /= tx_channels_count;
2749
2750         stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2751         stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2752 }
2753
2754 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2755 {
2756         int ret;
2757
2758         ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2759                         priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2760         if (ret && (ret != -EINVAL)) {
2761                 stmmac_global_err(priv);
2762                 return true;
2763         }
2764
2765         return false;
2766 }
2767
2768 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir)
2769 {
2770         int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2771                                                  &priv->xstats, chan, dir);
2772         struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan];
2773         struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
2774         struct stmmac_channel *ch = &priv->channel[chan];
2775         struct napi_struct *rx_napi;
2776         struct napi_struct *tx_napi;
2777         unsigned long flags;
2778
2779         rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi;
2780         tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2781
2782         if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2783                 if (napi_schedule_prep(rx_napi)) {
2784                         spin_lock_irqsave(&ch->lock, flags);
2785                         stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2786                         spin_unlock_irqrestore(&ch->lock, flags);
2787                         __napi_schedule(rx_napi);
2788                 }
2789         }
2790
2791         if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2792                 if (napi_schedule_prep(tx_napi)) {
2793                         spin_lock_irqsave(&ch->lock, flags);
2794                         stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2795                         spin_unlock_irqrestore(&ch->lock, flags);
2796                         __napi_schedule(tx_napi);
2797                 }
2798         }
2799
2800         return status;
2801 }
2802
2803 /**
2804  * stmmac_dma_interrupt - DMA ISR
2805  * @priv: driver private structure
2806  * Description: this is the DMA ISR. It is called by the main ISR.
2807  * It calls the dwmac dma routine and schedule poll method in case of some
2808  * work can be done.
2809  */
2810 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2811 {
2812         u32 tx_channel_count = priv->plat->tx_queues_to_use;
2813         u32 rx_channel_count = priv->plat->rx_queues_to_use;
2814         u32 channels_to_check = tx_channel_count > rx_channel_count ?
2815                                 tx_channel_count : rx_channel_count;
2816         u32 chan;
2817         int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2818
2819         /* Make sure we never check beyond our status buffer. */
2820         if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2821                 channels_to_check = ARRAY_SIZE(status);
2822
2823         for (chan = 0; chan < channels_to_check; chan++)
2824                 status[chan] = stmmac_napi_check(priv, chan,
2825                                                  DMA_DIR_RXTX);
2826
2827         for (chan = 0; chan < tx_channel_count; chan++) {
2828                 if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2829                         /* Try to bump up the dma threshold on this failure */
2830                         stmmac_bump_dma_threshold(priv, chan);
2831                 } else if (unlikely(status[chan] == tx_hard_error)) {
2832                         stmmac_tx_err(priv, chan);
2833                 }
2834         }
2835 }
2836
2837 /**
2838  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2839  * @priv: driver private structure
2840  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2841  */
2842 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2843 {
2844         unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2845                             MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2846
2847         stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2848
2849         if (priv->dma_cap.rmon) {
2850                 stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2851                 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2852         } else
2853                 netdev_info(priv->dev, "No MAC Management Counters available\n");
2854 }
2855
2856 /**
2857  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2858  * @priv: driver private structure
2859  * Description:
2860  *  new GMAC chip generations have a new register to indicate the
2861  *  presence of the optional feature/functions.
2862  *  This can be also used to override the value passed through the
2863  *  platform and necessary for old MAC10/100 and GMAC chips.
2864  */
2865 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2866 {
2867         return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2868 }
2869
2870 /**
2871  * stmmac_check_ether_addr - check if the MAC addr is valid
2872  * @priv: driver private structure
2873  * Description:
2874  * it is to verify if the MAC address is valid, in case of failures it
2875  * generates a random MAC address
2876  */
2877 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2878 {
2879         u8 addr[ETH_ALEN];
2880
2881         if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2882                 stmmac_get_umac_addr(priv, priv->hw, addr, 0);
2883                 if (is_valid_ether_addr(addr))
2884                         eth_hw_addr_set(priv->dev, addr);
2885                 else
2886                         eth_hw_addr_random(priv->dev);
2887                 dev_info(priv->device, "device MAC address %pM\n",
2888                          priv->dev->dev_addr);
2889         }
2890 }
2891
2892 /**
2893  * stmmac_init_dma_engine - DMA init.
2894  * @priv: driver private structure
2895  * Description:
2896  * It inits the DMA invoking the specific MAC/GMAC callback.
2897  * Some DMA parameters can be passed from the platform;
2898  * in case of these are not passed a default is kept for the MAC or GMAC.
2899  */
2900 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2901 {
2902         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2903         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2904         u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2905         struct stmmac_rx_queue *rx_q;
2906         struct stmmac_tx_queue *tx_q;
2907         u32 chan = 0;
2908         int atds = 0;
2909         int ret = 0;
2910
2911         if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2912                 dev_err(priv->device, "Invalid DMA configuration\n");
2913                 return -EINVAL;
2914         }
2915
2916         if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2917                 atds = 1;
2918
2919         ret = stmmac_reset(priv, priv->ioaddr);
2920         if (ret) {
2921                 dev_err(priv->device, "Failed to reset the dma\n");
2922                 return ret;
2923         }
2924
2925         /* DMA Configuration */
2926         stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2927
2928         if (priv->plat->axi)
2929                 stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2930
2931         /* DMA CSR Channel configuration */
2932         for (chan = 0; chan < dma_csr_ch; chan++) {
2933                 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2934                 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2935         }
2936
2937         /* DMA RX Channel Configuration */
2938         for (chan = 0; chan < rx_channels_count; chan++) {
2939                 rx_q = &priv->dma_conf.rx_queue[chan];
2940
2941                 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2942                                     rx_q->dma_rx_phy, chan);
2943
2944                 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2945                                      (rx_q->buf_alloc_num *
2946                                       sizeof(struct dma_desc));
2947                 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2948                                        rx_q->rx_tail_addr, chan);
2949         }
2950
2951         /* DMA TX Channel Configuration */
2952         for (chan = 0; chan < tx_channels_count; chan++) {
2953                 tx_q = &priv->dma_conf.tx_queue[chan];
2954
2955                 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2956                                     tx_q->dma_tx_phy, chan);
2957
2958                 tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2959                 stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2960                                        tx_q->tx_tail_addr, chan);
2961         }
2962
2963         return ret;
2964 }
2965
2966 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2967 {
2968         struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2969
2970         hrtimer_start(&tx_q->txtimer,
2971                       STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2972                       HRTIMER_MODE_REL);
2973 }
2974
2975 /**
2976  * stmmac_tx_timer - mitigation sw timer for tx.
2977  * @t: data pointer
2978  * Description:
2979  * This is the timer handler to directly invoke the stmmac_tx_clean.
2980  */
2981 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t)
2982 {
2983         struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer);
2984         struct stmmac_priv *priv = tx_q->priv_data;
2985         struct stmmac_channel *ch;
2986         struct napi_struct *napi;
2987
2988         ch = &priv->channel[tx_q->queue_index];
2989         napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2990
2991         if (likely(napi_schedule_prep(napi))) {
2992                 unsigned long flags;
2993
2994                 spin_lock_irqsave(&ch->lock, flags);
2995                 stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
2996                 spin_unlock_irqrestore(&ch->lock, flags);
2997                 __napi_schedule(napi);
2998         }
2999
3000         return HRTIMER_NORESTART;
3001 }
3002
3003 /**
3004  * stmmac_init_coalesce - init mitigation options.
3005  * @priv: driver private structure
3006  * Description:
3007  * This inits the coalesce parameters: i.e. timer rate,
3008  * timer handler and default threshold used for enabling the
3009  * interrupt on completion bit.
3010  */
3011 static void stmmac_init_coalesce(struct stmmac_priv *priv)
3012 {
3013         u32 tx_channel_count = priv->plat->tx_queues_to_use;
3014         u32 rx_channel_count = priv->plat->rx_queues_to_use;
3015         u32 chan;
3016
3017         for (chan = 0; chan < tx_channel_count; chan++) {
3018                 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3019
3020                 priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES;
3021                 priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER;
3022
3023                 hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3024                 tx_q->txtimer.function = stmmac_tx_timer;
3025         }
3026
3027         for (chan = 0; chan < rx_channel_count; chan++)
3028                 priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES;
3029 }
3030
3031 static void stmmac_set_rings_length(struct stmmac_priv *priv)
3032 {
3033         u32 rx_channels_count = priv->plat->rx_queues_to_use;
3034         u32 tx_channels_count = priv->plat->tx_queues_to_use;
3035         u32 chan;
3036
3037         /* set TX ring length */
3038         for (chan = 0; chan < tx_channels_count; chan++)
3039                 stmmac_set_tx_ring_len(priv, priv->ioaddr,
3040                                        (priv->dma_conf.dma_tx_size - 1), chan);
3041
3042         /* set RX ring length */
3043         for (chan = 0; chan < rx_channels_count; chan++)
3044                 stmmac_set_rx_ring_len(priv, priv->ioaddr,
3045                                        (priv->dma_conf.dma_rx_size - 1), chan);
3046 }
3047
3048 /**
3049  *  stmmac_set_tx_queue_weight - Set TX queue weight
3050  *  @priv: driver private structure
3051  *  Description: It is used for setting TX queues weight
3052  */
3053 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
3054 {
3055         u32 tx_queues_count = priv->plat->tx_queues_to_use;
3056         u32 weight;
3057         u32 queue;
3058
3059         for (queue = 0; queue < tx_queues_count; queue++) {
3060                 weight = priv->plat->tx_queues_cfg[queue].weight;
3061                 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
3062         }
3063 }
3064
3065 /**
3066  *  stmmac_configure_cbs - Configure CBS in TX queue
3067  *  @priv: driver private structure
3068  *  Description: It is used for configuring CBS in AVB TX queues
3069  */
3070 static void stmmac_configure_cbs(struct stmmac_priv *priv)
3071 {
3072         u32 tx_queues_count = priv->plat->tx_queues_to_use;
3073         u32 mode_to_use;
3074         u32 queue;
3075
3076         /* queue 0 is reserved for legacy traffic */
3077         for (queue = 1; queue < tx_queues_count; queue++) {
3078                 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
3079                 if (mode_to_use == MTL_QUEUE_DCB)
3080                         continue;
3081
3082                 stmmac_config_cbs(priv, priv->hw,
3083                                 priv->plat->tx_queues_cfg[queue].send_slope,
3084                                 priv->plat->tx_queues_cfg[queue].idle_slope,
3085                                 priv->plat->tx_queues_cfg[queue].high_credit,
3086                                 priv->plat->tx_queues_cfg[queue].low_credit,
3087                                 queue);
3088         }
3089 }
3090
3091 /**
3092  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
3093  *  @priv: driver private structure
3094  *  Description: It is used for mapping RX queues to RX dma channels
3095  */
3096 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
3097 {
3098         u32 rx_queues_count = priv->plat->rx_queues_to_use;
3099         u32 queue;
3100         u32 chan;
3101
3102         for (queue = 0; queue < rx_queues_count; queue++) {
3103                 chan = priv->plat->rx_queues_cfg[queue].chan;
3104                 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
3105         }
3106 }
3107
3108 /**
3109  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
3110  *  @priv: driver private structure
3111  *  Description: It is used for configuring the RX Queue Priority
3112  */
3113 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
3114 {
3115         u32 rx_queues_count = priv->plat->rx_queues_to_use;
3116         u32 queue;
3117         u32 prio;
3118
3119         for (queue = 0; queue < rx_queues_count; queue++) {
3120                 if (!priv->plat->rx_queues_cfg[queue].use_prio)
3121                         continue;
3122
3123                 prio = priv->plat->rx_queues_cfg[queue].prio;
3124                 stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
3125         }
3126 }
3127
3128 /**
3129  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
3130  *  @priv: driver private structure
3131  *  Description: It is used for configuring the TX Queue Priority
3132  */
3133 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
3134 {
3135         u32 tx_queues_count = priv->plat->tx_queues_to_use;
3136         u32 queue;
3137         u32 prio;
3138
3139         for (queue = 0; queue < tx_queues_count; queue++) {
3140                 if (!priv->plat->tx_queues_cfg[queue].use_prio)
3141                         continue;
3142
3143                 prio = priv->plat->tx_queues_cfg[queue].prio;
3144                 stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
3145         }
3146 }
3147
3148 /**
3149  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
3150  *  @priv: driver private structure
3151  *  Description: It is used for configuring the RX queue routing
3152  */
3153 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
3154 {
3155         u32 rx_queues_count = priv->plat->rx_queues_to_use;
3156         u32 queue;
3157         u8 packet;
3158
3159         for (queue = 0; queue < rx_queues_count; queue++) {
3160                 /* no specific packet type routing specified for the queue */
3161                 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
3162                         continue;
3163
3164                 packet = priv->plat->rx_queues_cfg[queue].pkt_route;
3165                 stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
3166         }
3167 }
3168
3169 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
3170 {
3171         if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
3172                 priv->rss.enable = false;
3173                 return;
3174         }
3175
3176         if (priv->dev->features & NETIF_F_RXHASH)
3177                 priv->rss.enable = true;
3178         else
3179                 priv->rss.enable = false;
3180
3181         stmmac_rss_configure(priv, priv->hw, &priv->rss,
3182                              priv->plat->rx_queues_to_use);
3183 }
3184
3185 /**
3186  *  stmmac_mtl_configuration - Configure MTL
3187  *  @priv: driver private structure
3188  *  Description: It is used for configurring MTL
3189  */
3190 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
3191 {
3192         u32 rx_queues_count = priv->plat->rx_queues_to_use;
3193         u32 tx_queues_count = priv->plat->tx_queues_to_use;
3194
3195         if (tx_queues_count > 1)
3196                 stmmac_set_tx_queue_weight(priv);
3197
3198         /* Configure MTL RX algorithms */
3199         if (rx_queues_count > 1)
3200                 stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
3201                                 priv->plat->rx_sched_algorithm);
3202
3203         /* Configure MTL TX algorithms */
3204         if (tx_queues_count > 1)
3205                 stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
3206                                 priv->plat->tx_sched_algorithm);
3207
3208         /* Configure CBS in AVB TX queues */
3209         if (tx_queues_count > 1)
3210                 stmmac_configure_cbs(priv);
3211
3212         /* Map RX MTL to DMA channels */
3213         stmmac_rx_queue_dma_chan_map(priv);
3214
3215         /* Enable MAC RX Queues */
3216         stmmac_mac_enable_rx_queues(priv);
3217
3218         /* Set RX priorities */
3219         if (rx_queues_count > 1)
3220                 stmmac_mac_config_rx_queues_prio(priv);
3221
3222         /* Set TX priorities */
3223         if (tx_queues_count > 1)
3224                 stmmac_mac_config_tx_queues_prio(priv);
3225
3226         /* Set RX routing */
3227         if (rx_queues_count > 1)
3228                 stmmac_mac_config_rx_queues_routing(priv);
3229
3230         /* Receive Side Scaling */
3231         if (rx_queues_count > 1)
3232                 stmmac_mac_config_rss(priv);
3233 }
3234
3235 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
3236 {
3237         if (priv->dma_cap.asp) {
3238                 netdev_info(priv->dev, "Enabling Safety Features\n");
3239                 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp,
3240                                           priv->plat->safety_feat_cfg);
3241         } else {
3242                 netdev_info(priv->dev, "No Safety Features support found\n");
3243         }
3244 }
3245
3246 static int stmmac_fpe_start_wq(struct stmmac_priv *priv)
3247 {
3248         char *name;
3249
3250         clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
3251         clear_bit(__FPE_REMOVING,  &priv->fpe_task_state);
3252
3253         name = priv->wq_name;
3254         sprintf(name, "%s-fpe", priv->dev->name);
3255
3256         priv->fpe_wq = create_singlethread_workqueue(name);
3257         if (!priv->fpe_wq) {
3258                 netdev_err(priv->dev, "%s: Failed to create workqueue\n", name);
3259
3260                 return -ENOMEM;
3261         }
3262         netdev_info(priv->dev, "FPE workqueue start");
3263
3264         return 0;
3265 }
3266
3267 /**
3268  * stmmac_hw_setup - setup mac in a usable state.
3269  *  @dev : pointer to the device structure.
3270  *  @ptp_register: register PTP if set
3271  *  Description:
3272  *  this is the main function to setup the HW in a usable state because the
3273  *  dma engine is reset, the core registers are configured (e.g. AXI,
3274  *  Checksum features, timers). The DMA is ready to start receiving and
3275  *  transmitting.
3276  *  Return value:
3277  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3278  *  file on failure.
3279  */
3280 static int stmmac_hw_setup(struct net_device *dev, bool ptp_register)
3281 {
3282         struct stmmac_priv *priv = netdev_priv(dev);
3283         u32 rx_cnt = priv->plat->rx_queues_to_use;
3284         u32 tx_cnt = priv->plat->tx_queues_to_use;
3285         bool sph_en;
3286         u32 chan;
3287         int ret;
3288
3289         /* DMA initialization and SW reset */
3290         ret = stmmac_init_dma_engine(priv);
3291         if (ret < 0) {
3292                 netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
3293                            __func__);
3294                 return ret;
3295         }
3296
3297         /* Copy the MAC addr into the HW  */
3298         stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
3299
3300         /* PS and related bits will be programmed according to the speed */
3301         if (priv->hw->pcs) {
3302                 int speed = priv->plat->mac_port_sel_speed;
3303
3304                 if ((speed == SPEED_10) || (speed == SPEED_100) ||
3305                     (speed == SPEED_1000)) {
3306                         priv->hw->ps = speed;
3307                 } else {
3308                         dev_warn(priv->device, "invalid port speed\n");
3309                         priv->hw->ps = 0;
3310                 }
3311         }
3312
3313         /* Initialize the MAC Core */
3314         stmmac_core_init(priv, priv->hw, dev);
3315
3316         /* Initialize MTL*/
3317         stmmac_mtl_configuration(priv);
3318
3319         /* Initialize Safety Features */
3320         stmmac_safety_feat_configuration(priv);
3321
3322         ret = stmmac_rx_ipc(priv, priv->hw);
3323         if (!ret) {
3324                 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
3325                 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
3326                 priv->hw->rx_csum = 0;
3327         }
3328
3329         /* Enable the MAC Rx/Tx */
3330         stmmac_mac_set(priv, priv->ioaddr, true);
3331
3332         /* Set the HW DMA mode and the COE */
3333         stmmac_dma_operation_mode(priv);
3334
3335         stmmac_mmc_setup(priv);
3336
3337         if (ptp_register) {
3338                 ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
3339                 if (ret < 0)
3340                         netdev_warn(priv->dev,
3341                                     "failed to enable PTP reference clock: %pe\n",
3342                                     ERR_PTR(ret));
3343         }
3344
3345         ret = stmmac_init_ptp(priv);
3346         if (ret == -EOPNOTSUPP)
3347                 netdev_info(priv->dev, "PTP not supported by HW\n");
3348         else if (ret)
3349                 netdev_warn(priv->dev, "PTP init failed\n");
3350         else if (ptp_register)
3351                 stmmac_ptp_register(priv);
3352
3353         priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS;
3354
3355         /* Convert the timer from msec to usec */
3356         if (!priv->tx_lpi_timer)
3357                 priv->tx_lpi_timer = eee_timer * 1000;
3358
3359         if (priv->use_riwt) {
3360                 u32 queue;
3361
3362                 for (queue = 0; queue < rx_cnt; queue++) {
3363                         if (!priv->rx_riwt[queue])
3364                                 priv->rx_riwt[queue] = DEF_DMA_RIWT;
3365
3366                         stmmac_rx_watchdog(priv, priv->ioaddr,
3367                                            priv->rx_riwt[queue], queue);
3368                 }
3369         }
3370
3371         if (priv->hw->pcs)
3372                 stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
3373
3374         /* set TX and RX rings length */
3375         stmmac_set_rings_length(priv);
3376
3377         /* Enable TSO */
3378         if (priv->tso) {
3379                 for (chan = 0; chan < tx_cnt; chan++) {
3380                         struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3381
3382                         /* TSO and TBS cannot co-exist */
3383                         if (tx_q->tbs & STMMAC_TBS_AVAIL)
3384                                 continue;
3385
3386                         stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
3387                 }
3388         }
3389
3390         /* Enable Split Header */
3391         sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3392         for (chan = 0; chan < rx_cnt; chan++)
3393                 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3394
3395
3396         /* VLAN Tag Insertion */
3397         if (priv->dma_cap.vlins)
3398                 stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
3399
3400         /* TBS */
3401         for (chan = 0; chan < tx_cnt; chan++) {
3402                 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3403                 int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
3404
3405                 stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
3406         }
3407
3408         /* Configure real RX and TX queues */
3409         netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use);
3410         netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use);
3411
3412         /* Start the ball rolling... */
3413         stmmac_start_all_dma(priv);
3414
3415         if (priv->dma_cap.fpesel) {
3416                 stmmac_fpe_start_wq(priv);
3417
3418                 if (priv->plat->fpe_cfg->enable)
3419                         stmmac_fpe_handshake(priv, true);
3420         }
3421
3422         return 0;
3423 }
3424
3425 static void stmmac_hw_teardown(struct net_device *dev)
3426 {
3427         struct stmmac_priv *priv = netdev_priv(dev);
3428
3429         clk_disable_unprepare(priv->plat->clk_ptp_ref);
3430 }
3431
3432 static void stmmac_free_irq(struct net_device *dev,
3433                             enum request_irq_err irq_err, int irq_idx)
3434 {
3435         struct stmmac_priv *priv = netdev_priv(dev);
3436         int j;
3437
3438         switch (irq_err) {
3439         case REQ_IRQ_ERR_ALL:
3440                 irq_idx = priv->plat->tx_queues_to_use;
3441                 fallthrough;
3442         case REQ_IRQ_ERR_TX:
3443                 for (j = irq_idx - 1; j >= 0; j--) {
3444                         if (priv->tx_irq[j] > 0) {
3445                                 irq_set_affinity_hint(priv->tx_irq[j], NULL);
3446                                 free_irq(priv->tx_irq[j], &priv->dma_conf.tx_queue[j]);
3447                         }
3448                 }
3449                 irq_idx = priv->plat->rx_queues_to_use;
3450                 fallthrough;
3451         case REQ_IRQ_ERR_RX:
3452                 for (j = irq_idx - 1; j >= 0; j--) {
3453                         if (priv->rx_irq[j] > 0) {
3454                                 irq_set_affinity_hint(priv->rx_irq[j], NULL);
3455                                 free_irq(priv->rx_irq[j], &priv->dma_conf.rx_queue[j]);
3456                         }
3457                 }
3458
3459                 if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq)
3460                         free_irq(priv->sfty_ue_irq, dev);
3461                 fallthrough;
3462         case REQ_IRQ_ERR_SFTY_UE:
3463                 if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq)
3464                         free_irq(priv->sfty_ce_irq, dev);
3465                 fallthrough;
3466         case REQ_IRQ_ERR_SFTY_CE:
3467                 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq)
3468                         free_irq(priv->lpi_irq, dev);
3469                 fallthrough;
3470         case REQ_IRQ_ERR_LPI:
3471                 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq)
3472                         free_irq(priv->wol_irq, dev);
3473                 fallthrough;
3474         case REQ_IRQ_ERR_WOL:
3475                 free_irq(dev->irq, dev);
3476                 fallthrough;
3477         case REQ_IRQ_ERR_MAC:
3478         case REQ_IRQ_ERR_NO:
3479                 /* If MAC IRQ request error, no more IRQ to free */
3480                 break;
3481         }
3482 }
3483
3484 static int stmmac_request_irq_multi_msi(struct net_device *dev)
3485 {
3486         struct stmmac_priv *priv = netdev_priv(dev);
3487         enum request_irq_err irq_err;
3488         cpumask_t cpu_mask;
3489         int irq_idx = 0;
3490         char *int_name;
3491         int ret;
3492         int i;
3493
3494         /* For common interrupt */
3495         int_name = priv->int_name_mac;
3496         sprintf(int_name, "%s:%s", dev->name, "mac");
3497         ret = request_irq(dev->irq, stmmac_mac_interrupt,
3498                           0, int_name, dev);
3499         if (unlikely(ret < 0)) {
3500                 netdev_err(priv->dev,
3501                            "%s: alloc mac MSI %d (error: %d)\n",
3502                            __func__, dev->irq, ret);
3503                 irq_err = REQ_IRQ_ERR_MAC;
3504                 goto irq_error;
3505         }
3506
3507         /* Request the Wake IRQ in case of another line
3508          * is used for WoL
3509          */
3510         if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3511                 int_name = priv->int_name_wol;
3512                 sprintf(int_name, "%s:%s", dev->name, "wol");
3513                 ret = request_irq(priv->wol_irq,
3514                                   stmmac_mac_interrupt,
3515                                   0, int_name, dev);
3516                 if (unlikely(ret < 0)) {
3517                         netdev_err(priv->dev,
3518                                    "%s: alloc wol MSI %d (error: %d)\n",
3519                                    __func__, priv->wol_irq, ret);
3520                         irq_err = REQ_IRQ_ERR_WOL;
3521                         goto irq_error;
3522                 }
3523         }
3524
3525         /* Request the LPI IRQ in case of another line
3526          * is used for LPI
3527          */
3528         if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3529                 int_name = priv->int_name_lpi;
3530                 sprintf(int_name, "%s:%s", dev->name, "lpi");
3531                 ret = request_irq(priv->lpi_irq,
3532                                   stmmac_mac_interrupt,
3533                                   0, int_name, dev);
3534                 if (unlikely(ret < 0)) {
3535                         netdev_err(priv->dev,
3536                                    "%s: alloc lpi MSI %d (error: %d)\n",
3537                                    __func__, priv->lpi_irq, ret);
3538                         irq_err = REQ_IRQ_ERR_LPI;
3539                         goto irq_error;
3540                 }
3541         }
3542
3543         /* Request the Safety Feature Correctible Error line in
3544          * case of another line is used
3545          */
3546         if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) {
3547                 int_name = priv->int_name_sfty_ce;
3548                 sprintf(int_name, "%s:%s", dev->name, "safety-ce");
3549                 ret = request_irq(priv->sfty_ce_irq,
3550                                   stmmac_safety_interrupt,
3551                                   0, int_name, dev);
3552                 if (unlikely(ret < 0)) {
3553                         netdev_err(priv->dev,
3554                                    "%s: alloc sfty ce MSI %d (error: %d)\n",
3555                                    __func__, priv->sfty_ce_irq, ret);
3556                         irq_err = REQ_IRQ_ERR_SFTY_CE;
3557                         goto irq_error;
3558                 }
3559         }
3560
3561         /* Request the Safety Feature Uncorrectible Error line in
3562          * case of another line is used
3563          */
3564         if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) {
3565                 int_name = priv->int_name_sfty_ue;
3566                 sprintf(int_name, "%s:%s", dev->name, "safety-ue");
3567                 ret = request_irq(priv->sfty_ue_irq,
3568                                   stmmac_safety_interrupt,
3569                                   0, int_name, dev);
3570                 if (unlikely(ret < 0)) {
3571                         netdev_err(priv->dev,
3572                                    "%s: alloc sfty ue MSI %d (error: %d)\n",
3573                                    __func__, priv->sfty_ue_irq, ret);
3574                         irq_err = REQ_IRQ_ERR_SFTY_UE;
3575                         goto irq_error;
3576                 }
3577         }
3578
3579         /* Request Rx MSI irq */
3580         for (i = 0; i < priv->plat->rx_queues_to_use; i++) {
3581                 if (i >= MTL_MAX_RX_QUEUES)
3582                         break;
3583                 if (priv->rx_irq[i] == 0)
3584                         continue;
3585
3586                 int_name = priv->int_name_rx_irq[i];
3587                 sprintf(int_name, "%s:%s-%d", dev->name, "rx", i);
3588                 ret = request_irq(priv->rx_irq[i],
3589                                   stmmac_msi_intr_rx,
3590                                   0, int_name, &priv->dma_conf.rx_queue[i]);
3591                 if (unlikely(ret < 0)) {
3592                         netdev_err(priv->dev,
3593                                    "%s: alloc rx-%d  MSI %d (error: %d)\n",
3594                                    __func__, i, priv->rx_irq[i], ret);
3595                         irq_err = REQ_IRQ_ERR_RX;
3596                         irq_idx = i;
3597                         goto irq_error;
3598                 }
3599                 cpumask_clear(&cpu_mask);
3600                 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3601                 irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask);
3602         }
3603
3604         /* Request Tx MSI irq */
3605         for (i = 0; i < priv->plat->tx_queues_to_use; i++) {
3606                 if (i >= MTL_MAX_TX_QUEUES)
3607                         break;
3608                 if (priv->tx_irq[i] == 0)
3609                         continue;
3610
3611                 int_name = priv->int_name_tx_irq[i];
3612                 sprintf(int_name, "%s:%s-%d", dev->name, "tx", i);
3613                 ret = request_irq(priv->tx_irq[i],
3614                                   stmmac_msi_intr_tx,
3615                                   0, int_name, &priv->dma_conf.tx_queue[i]);
3616                 if (unlikely(ret < 0)) {
3617                         netdev_err(priv->dev,
3618                                    "%s: alloc tx-%d  MSI %d (error: %d)\n",
3619                                    __func__, i, priv->tx_irq[i], ret);
3620                         irq_err = REQ_IRQ_ERR_TX;
3621                         irq_idx = i;
3622                         goto irq_error;
3623                 }
3624                 cpumask_clear(&cpu_mask);
3625                 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3626                 irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask);
3627         }
3628
3629         return 0;
3630
3631 irq_error:
3632         stmmac_free_irq(dev, irq_err, irq_idx);
3633         return ret;
3634 }
3635
3636 static int stmmac_request_irq_single(struct net_device *dev)
3637 {
3638         struct stmmac_priv *priv = netdev_priv(dev);
3639         enum request_irq_err irq_err;
3640         int ret;
3641
3642         ret = request_irq(dev->irq, stmmac_interrupt,
3643                           IRQF_SHARED, dev->name, dev);
3644         if (unlikely(ret < 0)) {
3645                 netdev_err(priv->dev,
3646                            "%s: ERROR: allocating the IRQ %d (error: %d)\n",
3647                            __func__, dev->irq, ret);
3648                 irq_err = REQ_IRQ_ERR_MAC;
3649                 goto irq_error;
3650         }
3651
3652         /* Request the Wake IRQ in case of another line
3653          * is used for WoL
3654          */
3655         if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3656                 ret = request_irq(priv->wol_irq, stmmac_interrupt,
3657                                   IRQF_SHARED, dev->name, dev);
3658                 if (unlikely(ret < 0)) {
3659                         netdev_err(priv->dev,
3660                                    "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
3661                                    __func__, priv->wol_irq, ret);
3662                         irq_err = REQ_IRQ_ERR_WOL;
3663                         goto irq_error;
3664                 }
3665         }
3666
3667         /* Request the IRQ lines */
3668         if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3669                 ret = request_irq(priv->lpi_irq, stmmac_interrupt,
3670                                   IRQF_SHARED, dev->name, dev);
3671                 if (unlikely(ret < 0)) {
3672                         netdev_err(priv->dev,
3673                                    "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
3674                                    __func__, priv->lpi_irq, ret);
3675                         irq_err = REQ_IRQ_ERR_LPI;
3676                         goto irq_error;
3677                 }
3678         }
3679
3680         return 0;
3681
3682 irq_error:
3683         stmmac_free_irq(dev, irq_err, 0);
3684         return ret;
3685 }
3686
3687 static int stmmac_request_irq(struct net_device *dev)
3688 {
3689         struct stmmac_priv *priv = netdev_priv(dev);
3690         int ret;
3691
3692         /* Request the IRQ lines */
3693         if (priv->plat->multi_msi_en)
3694                 ret = stmmac_request_irq_multi_msi(dev);
3695         else
3696                 ret = stmmac_request_irq_single(dev);
3697
3698         return ret;
3699 }
3700
3701 /**
3702  *  stmmac_setup_dma_desc - Generate a dma_conf and allocate DMA queue
3703  *  @priv: driver private structure
3704  *  @mtu: MTU to setup the dma queue and buf with
3705  *  Description: Allocate and generate a dma_conf based on the provided MTU.
3706  *  Allocate the Tx/Rx DMA queue and init them.
3707  *  Return value:
3708  *  the dma_conf allocated struct on success and an appropriate ERR_PTR on failure.
3709  */
3710 static struct stmmac_dma_conf *
3711 stmmac_setup_dma_desc(struct stmmac_priv *priv, unsigned int mtu)
3712 {
3713         struct stmmac_dma_conf *dma_conf;
3714         int chan, bfsize, ret;
3715
3716         dma_conf = kzalloc(sizeof(*dma_conf), GFP_KERNEL);
3717         if (!dma_conf) {
3718                 netdev_err(priv->dev, "%s: DMA conf allocation failed\n",
3719                            __func__);
3720                 return ERR_PTR(-ENOMEM);
3721         }
3722
3723         bfsize = stmmac_set_16kib_bfsize(priv, mtu);
3724         if (bfsize < 0)
3725                 bfsize = 0;
3726
3727         if (bfsize < BUF_SIZE_16KiB)
3728                 bfsize = stmmac_set_bfsize(mtu, 0);
3729
3730         dma_conf->dma_buf_sz = bfsize;
3731         /* Chose the tx/rx size from the already defined one in the
3732          * priv struct. (if defined)
3733          */
3734         dma_conf->dma_tx_size = priv->dma_conf.dma_tx_size;
3735         dma_conf->dma_rx_size = priv->dma_conf.dma_rx_size;
3736
3737         if (!dma_conf->dma_tx_size)
3738                 dma_conf->dma_tx_size = DMA_DEFAULT_TX_SIZE;
3739         if (!dma_conf->dma_rx_size)
3740                 dma_conf->dma_rx_size = DMA_DEFAULT_RX_SIZE;
3741
3742         /* Earlier check for TBS */
3743         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
3744                 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[chan];
3745                 int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
3746
3747                 /* Setup per-TXQ tbs flag before TX descriptor alloc */
3748                 tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
3749         }
3750
3751         ret = alloc_dma_desc_resources(priv, dma_conf);
3752         if (ret < 0) {
3753                 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
3754                            __func__);
3755                 goto alloc_error;
3756         }
3757
3758         ret = init_dma_desc_rings(priv->dev, dma_conf, GFP_KERNEL);
3759         if (ret < 0) {
3760                 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
3761                            __func__);
3762                 goto init_error;
3763         }
3764
3765         return dma_conf;
3766
3767 init_error:
3768         free_dma_desc_resources(priv, dma_conf);
3769 alloc_error:
3770         kfree(dma_conf);
3771         return ERR_PTR(ret);
3772 }
3773
3774 /**
3775  *  __stmmac_open - open entry point of the driver
3776  *  @dev : pointer to the device structure.
3777  *  @dma_conf :  structure to take the dma data
3778  *  Description:
3779  *  This function is the open entry point of the driver.
3780  *  Return value:
3781  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3782  *  file on failure.
3783  */
3784 static int __stmmac_open(struct net_device *dev,
3785                          struct stmmac_dma_conf *dma_conf)
3786 {
3787         struct stmmac_priv *priv = netdev_priv(dev);
3788         int mode = priv->plat->phy_interface;
3789         u32 chan;
3790         int ret;
3791
3792         ret = pm_runtime_resume_and_get(priv->device);
3793         if (ret < 0)
3794                 return ret;
3795
3796         if (priv->hw->pcs != STMMAC_PCS_TBI &&
3797             priv->hw->pcs != STMMAC_PCS_RTBI &&
3798             (!priv->hw->xpcs ||
3799              xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73)) {
3800                 ret = stmmac_init_phy(dev);
3801                 if (ret) {
3802                         netdev_err(priv->dev,
3803                                    "%s: Cannot attach to PHY (error: %d)\n",
3804                                    __func__, ret);
3805                         goto init_phy_error;
3806                 }
3807         }
3808
3809         /* Extra statistics */
3810         memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
3811         priv->xstats.threshold = tc;
3812
3813         priv->rx_copybreak = STMMAC_RX_COPYBREAK;
3814
3815         buf_sz = dma_conf->dma_buf_sz;
3816         memcpy(&priv->dma_conf, dma_conf, sizeof(*dma_conf));
3817
3818         stmmac_reset_queues_param(priv);
3819
3820         if (!priv->plat->serdes_up_after_phy_linkup && priv->plat->serdes_powerup) {
3821                 ret = priv->plat->serdes_powerup(dev, priv->plat->bsp_priv);
3822                 if (ret < 0) {
3823                         netdev_err(priv->dev, "%s: Serdes powerup failed\n",
3824                                    __func__);
3825                         goto init_error;
3826                 }
3827         }
3828
3829         ret = stmmac_hw_setup(dev, true);
3830         if (ret < 0) {
3831                 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
3832                 goto init_error;
3833         }
3834
3835         stmmac_init_coalesce(priv);
3836
3837         phylink_start(priv->phylink);
3838         /* We may have called phylink_speed_down before */
3839         phylink_speed_up(priv->phylink);
3840
3841         ret = stmmac_request_irq(dev);
3842         if (ret)
3843                 goto irq_error;
3844
3845         stmmac_enable_all_queues(priv);
3846         netif_tx_start_all_queues(priv->dev);
3847         stmmac_enable_all_dma_irq(priv);
3848
3849         return 0;
3850
3851 irq_error:
3852         phylink_stop(priv->phylink);
3853
3854         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3855                 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
3856
3857         stmmac_hw_teardown(dev);
3858 init_error:
3859         free_dma_desc_resources(priv, &priv->dma_conf);
3860         phylink_disconnect_phy(priv->phylink);
3861 init_phy_error:
3862         pm_runtime_put(priv->device);
3863         return ret;
3864 }
3865
3866 static int stmmac_open(struct net_device *dev)
3867 {
3868         struct stmmac_priv *priv = netdev_priv(dev);
3869         struct stmmac_dma_conf *dma_conf;
3870         int ret;
3871
3872         dma_conf = stmmac_setup_dma_desc(priv, dev->mtu);
3873         if (IS_ERR(dma_conf))
3874                 return PTR_ERR(dma_conf);
3875
3876         ret = __stmmac_open(dev, dma_conf);
3877         kfree(dma_conf);
3878         return ret;
3879 }
3880
3881 static void stmmac_fpe_stop_wq(struct stmmac_priv *priv)
3882 {
3883         set_bit(__FPE_REMOVING, &priv->fpe_task_state);
3884
3885         if (priv->fpe_wq)
3886                 destroy_workqueue(priv->fpe_wq);
3887
3888         netdev_info(priv->dev, "FPE workqueue stop");
3889 }
3890
3891 /**
3892  *  stmmac_release - close entry point of the driver
3893  *  @dev : device pointer.
3894  *  Description:
3895  *  This is the stop entry point of the driver.
3896  */
3897 static int stmmac_release(struct net_device *dev)
3898 {
3899         struct stmmac_priv *priv = netdev_priv(dev);
3900         u32 chan;
3901
3902         if (device_may_wakeup(priv->device))
3903                 phylink_speed_down(priv->phylink, false);
3904         /* Stop and disconnect the PHY */
3905         phylink_stop(priv->phylink);
3906         phylink_disconnect_phy(priv->phylink);
3907
3908         stmmac_disable_all_queues(priv);
3909
3910         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3911                 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
3912
3913         netif_tx_disable(dev);
3914
3915         /* Free the IRQ lines */
3916         stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
3917
3918         if (priv->eee_enabled) {
3919                 priv->tx_path_in_lpi_mode = false;
3920                 del_timer_sync(&priv->eee_ctrl_timer);
3921         }
3922
3923         /* Stop TX/RX DMA and clear the descriptors */
3924         stmmac_stop_all_dma(priv);
3925
3926         /* Release and free the Rx/Tx resources */
3927         free_dma_desc_resources(priv, &priv->dma_conf);
3928
3929         /* Disable the MAC Rx/Tx */
3930         stmmac_mac_set(priv, priv->ioaddr, false);
3931
3932         /* Powerdown Serdes if there is */
3933         if (priv->plat->serdes_powerdown)
3934                 priv->plat->serdes_powerdown(dev, priv->plat->bsp_priv);
3935
3936         netif_carrier_off(dev);
3937
3938         stmmac_release_ptp(priv);
3939
3940         pm_runtime_put(priv->device);
3941
3942         if (priv->dma_cap.fpesel)
3943                 stmmac_fpe_stop_wq(priv);
3944
3945         return 0;
3946 }
3947
3948 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
3949                                struct stmmac_tx_queue *tx_q)
3950 {
3951         u16 tag = 0x0, inner_tag = 0x0;
3952         u32 inner_type = 0x0;
3953         struct dma_desc *p;
3954
3955         if (!priv->dma_cap.vlins)
3956                 return false;
3957         if (!skb_vlan_tag_present(skb))
3958                 return false;
3959         if (skb->vlan_proto == htons(ETH_P_8021AD)) {
3960                 inner_tag = skb_vlan_tag_get(skb);
3961                 inner_type = STMMAC_VLAN_INSERT;
3962         }
3963
3964         tag = skb_vlan_tag_get(skb);
3965
3966         if (tx_q->tbs & STMMAC_TBS_AVAIL)
3967                 p = &tx_q->dma_entx[tx_q->cur_tx].basic;
3968         else
3969                 p = &tx_q->dma_tx[tx_q->cur_tx];
3970
3971         if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
3972                 return false;
3973
3974         stmmac_set_tx_owner(priv, p);
3975         tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
3976         return true;
3977 }
3978
3979 /**
3980  *  stmmac_tso_allocator - close entry point of the driver
3981  *  @priv: driver private structure
3982  *  @des: buffer start address
3983  *  @total_len: total length to fill in descriptors
3984  *  @last_segment: condition for the last descriptor
3985  *  @queue: TX queue index
3986  *  Description:
3987  *  This function fills descriptor and request new descriptors according to
3988  *  buffer length to fill
3989  */
3990 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
3991                                  int total_len, bool last_segment, u32 queue)
3992 {
3993         struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
3994         struct dma_desc *desc;
3995         u32 buff_size;
3996         int tmp_len;
3997
3998         tmp_len = total_len;
3999
4000         while (tmp_len > 0) {
4001                 dma_addr_t curr_addr;
4002
4003                 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
4004                                                 priv->dma_conf.dma_tx_size);
4005                 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
4006
4007                 if (tx_q->tbs & STMMAC_TBS_AVAIL)
4008                         desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4009                 else
4010                         desc = &tx_q->dma_tx[tx_q->cur_tx];
4011
4012                 curr_addr = des + (total_len - tmp_len);
4013                 if (priv->dma_cap.addr64 <= 32)
4014                         desc->des0 = cpu_to_le32(curr_addr);
4015                 else
4016                         stmmac_set_desc_addr(priv, desc, curr_addr);
4017
4018                 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
4019                             TSO_MAX_BUFF_SIZE : tmp_len;
4020
4021                 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
4022                                 0, 1,
4023                                 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
4024                                 0, 0);
4025
4026                 tmp_len -= TSO_MAX_BUFF_SIZE;
4027         }
4028 }
4029
4030 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue)
4031 {
4032         struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
4033         int desc_size;
4034
4035         if (likely(priv->extend_desc))
4036                 desc_size = sizeof(struct dma_extended_desc);
4037         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4038                 desc_size = sizeof(struct dma_edesc);
4039         else
4040                 desc_size = sizeof(struct dma_desc);
4041
4042         /* The own bit must be the latest setting done when prepare the
4043          * descriptor and then barrier is needed to make sure that
4044          * all is coherent before granting the DMA engine.
4045          */
4046         wmb();
4047
4048         tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
4049         stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
4050 }
4051
4052 /**
4053  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
4054  *  @skb : the socket buffer
4055  *  @dev : device pointer
4056  *  Description: this is the transmit function that is called on TSO frames
4057  *  (support available on GMAC4 and newer chips).
4058  *  Diagram below show the ring programming in case of TSO frames:
4059  *
4060  *  First Descriptor
4061  *   --------
4062  *   | DES0 |---> buffer1 = L2/L3/L4 header
4063  *   | DES1 |---> TCP Payload (can continue on next descr...)
4064  *   | DES2 |---> buffer 1 and 2 len
4065  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
4066  *   --------
4067  *      |
4068  *     ...
4069  *      |
4070  *   --------
4071  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
4072  *   | DES1 | --|
4073  *   | DES2 | --> buffer 1 and 2 len
4074  *   | DES3 |
4075  *   --------
4076  *
4077  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
4078  */
4079 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
4080 {
4081         struct dma_desc *desc, *first, *mss_desc = NULL;
4082         struct stmmac_priv *priv = netdev_priv(dev);
4083         int nfrags = skb_shinfo(skb)->nr_frags;
4084         u32 queue = skb_get_queue_mapping(skb);
4085         unsigned int first_entry, tx_packets;
4086         int tmp_pay_len = 0, first_tx;
4087         struct stmmac_tx_queue *tx_q;
4088         bool has_vlan, set_ic;
4089         u8 proto_hdr_len, hdr;
4090         u32 pay_len, mss;
4091         dma_addr_t des;
4092         int i;
4093
4094         tx_q = &priv->dma_conf.tx_queue[queue];
4095         first_tx = tx_q->cur_tx;
4096
4097         /* Compute header lengths */
4098         if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
4099                 proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
4100                 hdr = sizeof(struct udphdr);
4101         } else {
4102                 proto_hdr_len = skb_tcp_all_headers(skb);
4103                 hdr = tcp_hdrlen(skb);
4104         }
4105
4106         /* Desc availability based on threshold should be enough safe */
4107         if (unlikely(stmmac_tx_avail(priv, queue) <
4108                 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
4109                 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4110                         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4111                                                                 queue));
4112                         /* This is a hard error, log it. */
4113                         netdev_err(priv->dev,
4114                                    "%s: Tx Ring full when queue awake\n",
4115                                    __func__);
4116                 }
4117                 return NETDEV_TX_BUSY;
4118         }
4119
4120         pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
4121
4122         mss = skb_shinfo(skb)->gso_size;
4123
4124         /* set new MSS value if needed */
4125         if (mss != tx_q->mss) {
4126                 if (tx_q->tbs & STMMAC_TBS_AVAIL)
4127                         mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4128                 else
4129                         mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
4130
4131                 stmmac_set_mss(priv, mss_desc, mss);
4132                 tx_q->mss = mss;
4133                 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
4134                                                 priv->dma_conf.dma_tx_size);
4135                 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
4136         }
4137
4138         if (netif_msg_tx_queued(priv)) {
4139                 pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
4140                         __func__, hdr, proto_hdr_len, pay_len, mss);
4141                 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
4142                         skb->data_len);
4143         }
4144
4145         /* Check if VLAN can be inserted by HW */
4146         has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4147
4148         first_entry = tx_q->cur_tx;
4149         WARN_ON(tx_q->tx_skbuff[first_entry]);
4150
4151         if (tx_q->tbs & STMMAC_TBS_AVAIL)
4152                 desc = &tx_q->dma_entx[first_entry].basic;
4153         else
4154                 desc = &tx_q->dma_tx[first_entry];
4155         first = desc;
4156
4157         if (has_vlan)
4158                 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4159
4160         /* first descriptor: fill Headers on Buf1 */
4161         des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
4162                              DMA_TO_DEVICE);
4163         if (dma_mapping_error(priv->device, des))
4164                 goto dma_map_err;
4165
4166         tx_q->tx_skbuff_dma[first_entry].buf = des;
4167         tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
4168         tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4169         tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4170
4171         if (priv->dma_cap.addr64 <= 32) {
4172                 first->des0 = cpu_to_le32(des);
4173
4174                 /* Fill start of payload in buff2 of first descriptor */
4175                 if (pay_len)
4176                         first->des1 = cpu_to_le32(des + proto_hdr_len);
4177
4178                 /* If needed take extra descriptors to fill the remaining payload */
4179                 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
4180         } else {
4181                 stmmac_set_desc_addr(priv, first, des);
4182                 tmp_pay_len = pay_len;
4183                 des += proto_hdr_len;
4184                 pay_len = 0;
4185         }
4186
4187         stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
4188
4189         /* Prepare fragments */
4190         for (i = 0; i < nfrags; i++) {
4191                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4192
4193                 des = skb_frag_dma_map(priv->device, frag, 0,
4194                                        skb_frag_size(frag),
4195                                        DMA_TO_DEVICE);
4196                 if (dma_mapping_error(priv->device, des))
4197                         goto dma_map_err;
4198
4199                 stmmac_tso_allocator(priv, des, skb_frag_size(frag),
4200                                      (i == nfrags - 1), queue);
4201
4202                 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
4203                 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
4204                 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
4205                 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4206         }
4207
4208         tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
4209
4210         /* Only the last descriptor gets to point to the skb. */
4211         tx_q->tx_skbuff[tx_q->cur_tx] = skb;
4212         tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4213
4214         /* Manage tx mitigation */
4215         tx_packets = (tx_q->cur_tx + 1) - first_tx;
4216         tx_q->tx_count_frames += tx_packets;
4217
4218         if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4219                 set_ic = true;
4220         else if (!priv->tx_coal_frames[queue])
4221                 set_ic = false;
4222         else if (tx_packets > priv->tx_coal_frames[queue])
4223                 set_ic = true;
4224         else if ((tx_q->tx_count_frames %
4225                   priv->tx_coal_frames[queue]) < tx_packets)
4226                 set_ic = true;
4227         else
4228                 set_ic = false;
4229
4230         if (set_ic) {
4231                 if (tx_q->tbs & STMMAC_TBS_AVAIL)
4232                         desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4233                 else
4234                         desc = &tx_q->dma_tx[tx_q->cur_tx];
4235
4236                 tx_q->tx_count_frames = 0;
4237                 stmmac_set_tx_ic(priv, desc);
4238                 priv->xstats.tx_set_ic_bit++;
4239         }
4240
4241         /* We've used all descriptors we need for this skb, however,
4242          * advance cur_tx so that it references a fresh descriptor.
4243          * ndo_start_xmit will fill this descriptor the next time it's
4244          * called and stmmac_tx_clean may clean up to this descriptor.
4245          */
4246         tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
4247
4248         if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4249                 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4250                           __func__);
4251                 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4252         }
4253
4254         dev->stats.tx_bytes += skb->len;
4255         priv->xstats.tx_tso_frames++;
4256         priv->xstats.tx_tso_nfrags += nfrags;
4257
4258         if (priv->sarc_type)
4259                 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4260
4261         skb_tx_timestamp(skb);
4262
4263         if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4264                      priv->hwts_tx_en)) {
4265                 /* declare that device is doing timestamping */
4266                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4267                 stmmac_enable_tx_timestamp(priv, first);
4268         }
4269
4270         /* Complete the first descriptor before granting the DMA */
4271         stmmac_prepare_tso_tx_desc(priv, first, 1,
4272                         proto_hdr_len,
4273                         pay_len,
4274                         1, tx_q->tx_skbuff_dma[first_entry].last_segment,
4275                         hdr / 4, (skb->len - proto_hdr_len));
4276
4277         /* If context desc is used to change MSS */
4278         if (mss_desc) {
4279                 /* Make sure that first descriptor has been completely
4280                  * written, including its own bit. This is because MSS is
4281                  * actually before first descriptor, so we need to make
4282                  * sure that MSS's own bit is the last thing written.
4283                  */
4284                 dma_wmb();
4285                 stmmac_set_tx_owner(priv, mss_desc);
4286         }
4287
4288         if (netif_msg_pktdata(priv)) {
4289                 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
4290                         __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4291                         tx_q->cur_tx, first, nfrags);
4292                 pr_info(">>> frame to be transmitted: ");
4293                 print_pkt(skb->data, skb_headlen(skb));
4294         }
4295
4296         netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4297
4298         stmmac_flush_tx_descriptors(priv, queue);
4299         stmmac_tx_timer_arm(priv, queue);
4300
4301         return NETDEV_TX_OK;
4302
4303 dma_map_err:
4304         dev_err(priv->device, "Tx dma map failed\n");
4305         dev_kfree_skb(skb);
4306         priv->dev->stats.tx_dropped++;
4307         return NETDEV_TX_OK;
4308 }
4309
4310 /**
4311  *  stmmac_xmit - Tx entry point of the driver
4312  *  @skb : the socket buffer
4313  *  @dev : device pointer
4314  *  Description : this is the tx entry point of the driver.
4315  *  It programs the chain or the ring and supports oversized frames
4316  *  and SG feature.
4317  */
4318 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
4319 {
4320         unsigned int first_entry, tx_packets, enh_desc;
4321         struct stmmac_priv *priv = netdev_priv(dev);
4322         unsigned int nopaged_len = skb_headlen(skb);
4323         int i, csum_insertion = 0, is_jumbo = 0;
4324         u32 queue = skb_get_queue_mapping(skb);
4325         int nfrags = skb_shinfo(skb)->nr_frags;
4326         int gso = skb_shinfo(skb)->gso_type;
4327         struct dma_edesc *tbs_desc = NULL;
4328         struct dma_desc *desc, *first;
4329         struct stmmac_tx_queue *tx_q;
4330         bool has_vlan, set_ic;
4331         int entry, first_tx;
4332         dma_addr_t des;
4333
4334         tx_q = &priv->dma_conf.tx_queue[queue];
4335         first_tx = tx_q->cur_tx;
4336
4337         if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en)
4338                 stmmac_disable_eee_mode(priv);
4339
4340         /* Manage oversized TCP frames for GMAC4 device */
4341         if (skb_is_gso(skb) && priv->tso) {
4342                 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
4343                         return stmmac_tso_xmit(skb, dev);
4344                 if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
4345                         return stmmac_tso_xmit(skb, dev);
4346         }
4347
4348         if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
4349                 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4350                         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4351                                                                 queue));
4352                         /* This is a hard error, log it. */
4353                         netdev_err(priv->dev,
4354                                    "%s: Tx Ring full when queue awake\n",
4355                                    __func__);
4356                 }
4357                 return NETDEV_TX_BUSY;
4358         }
4359
4360         /* Check if VLAN can be inserted by HW */
4361         has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4362
4363         entry = tx_q->cur_tx;
4364         first_entry = entry;
4365         WARN_ON(tx_q->tx_skbuff[first_entry]);
4366
4367         csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
4368
4369         if (likely(priv->extend_desc))
4370                 desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4371         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4372                 desc = &tx_q->dma_entx[entry].basic;
4373         else
4374                 desc = tx_q->dma_tx + entry;
4375
4376         first = desc;
4377
4378         if (has_vlan)
4379                 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4380
4381         enh_desc = priv->plat->enh_desc;
4382         /* To program the descriptors according to the size of the frame */
4383         if (enh_desc)
4384                 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
4385
4386         if (unlikely(is_jumbo)) {
4387                 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
4388                 if (unlikely(entry < 0) && (entry != -EINVAL))
4389                         goto dma_map_err;
4390         }
4391
4392         for (i = 0; i < nfrags; i++) {
4393                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4394                 int len = skb_frag_size(frag);
4395                 bool last_segment = (i == (nfrags - 1));
4396
4397                 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4398                 WARN_ON(tx_q->tx_skbuff[entry]);
4399
4400                 if (likely(priv->extend_desc))
4401                         desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4402                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4403                         desc = &tx_q->dma_entx[entry].basic;
4404                 else
4405                         desc = tx_q->dma_tx + entry;
4406
4407                 des = skb_frag_dma_map(priv->device, frag, 0, len,
4408                                        DMA_TO_DEVICE);
4409                 if (dma_mapping_error(priv->device, des))
4410                         goto dma_map_err; /* should reuse desc w/o issues */
4411
4412                 tx_q->tx_skbuff_dma[entry].buf = des;
4413
4414                 stmmac_set_desc_addr(priv, desc, des);
4415
4416                 tx_q->tx_skbuff_dma[entry].map_as_page = true;
4417                 tx_q->tx_skbuff_dma[entry].len = len;
4418                 tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
4419                 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4420
4421                 /* Prepare the descriptor and set the own bit too */
4422                 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
4423                                 priv->mode, 1, last_segment, skb->len);
4424         }
4425
4426         /* Only the last descriptor gets to point to the skb. */
4427         tx_q->tx_skbuff[entry] = skb;
4428         tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4429
4430         /* According to the coalesce parameter the IC bit for the latest
4431          * segment is reset and the timer re-started to clean the tx status.
4432          * This approach takes care about the fragments: desc is the first
4433          * element in case of no SG.
4434          */
4435         tx_packets = (entry + 1) - first_tx;
4436         tx_q->tx_count_frames += tx_packets;
4437
4438         if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4439                 set_ic = true;
4440         else if (!priv->tx_coal_frames[queue])
4441                 set_ic = false;
4442         else if (tx_packets > priv->tx_coal_frames[queue])
4443                 set_ic = true;
4444         else if ((tx_q->tx_count_frames %
4445                   priv->tx_coal_frames[queue]) < tx_packets)
4446                 set_ic = true;
4447         else
4448                 set_ic = false;
4449
4450         if (set_ic) {
4451                 if (likely(priv->extend_desc))
4452                         desc = &tx_q->dma_etx[entry].basic;
4453                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4454                         desc = &tx_q->dma_entx[entry].basic;
4455                 else
4456                         desc = &tx_q->dma_tx[entry];
4457
4458                 tx_q->tx_count_frames = 0;
4459                 stmmac_set_tx_ic(priv, desc);
4460                 priv->xstats.tx_set_ic_bit++;
4461         }
4462
4463         /* We've used all descriptors we need for this skb, however,
4464          * advance cur_tx so that it references a fresh descriptor.
4465          * ndo_start_xmit will fill this descriptor the next time it's
4466          * called and stmmac_tx_clean may clean up to this descriptor.
4467          */
4468         entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4469         tx_q->cur_tx = entry;
4470
4471         if (netif_msg_pktdata(priv)) {
4472                 netdev_dbg(priv->dev,
4473                            "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
4474                            __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4475                            entry, first, nfrags);
4476
4477                 netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
4478                 print_pkt(skb->data, skb->len);
4479         }
4480
4481         if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4482                 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4483                           __func__);
4484                 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4485         }
4486
4487         dev->stats.tx_bytes += skb->len;
4488
4489         if (priv->sarc_type)
4490                 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4491
4492         skb_tx_timestamp(skb);
4493
4494         /* Ready to fill the first descriptor and set the OWN bit w/o any
4495          * problems because all the descriptors are actually ready to be
4496          * passed to the DMA engine.
4497          */
4498         if (likely(!is_jumbo)) {
4499                 bool last_segment = (nfrags == 0);
4500
4501                 des = dma_map_single(priv->device, skb->data,
4502                                      nopaged_len, DMA_TO_DEVICE);
4503                 if (dma_mapping_error(priv->device, des))
4504                         goto dma_map_err;
4505
4506                 tx_q->tx_skbuff_dma[first_entry].buf = des;
4507                 tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4508                 tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4509
4510                 stmmac_set_desc_addr(priv, first, des);
4511
4512                 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
4513                 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
4514
4515                 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4516                              priv->hwts_tx_en)) {
4517                         /* declare that device is doing timestamping */
4518                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4519                         stmmac_enable_tx_timestamp(priv, first);
4520                 }
4521
4522                 /* Prepare the first descriptor setting the OWN bit too */
4523                 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
4524                                 csum_insertion, priv->mode, 0, last_segment,
4525                                 skb->len);
4526         }
4527
4528         if (tx_q->tbs & STMMAC_TBS_EN) {
4529                 struct timespec64 ts = ns_to_timespec64(skb->tstamp);
4530
4531                 tbs_desc = &tx_q->dma_entx[first_entry];
4532                 stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
4533         }
4534
4535         stmmac_set_tx_owner(priv, first);
4536
4537         netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4538
4539         stmmac_enable_dma_transmission(priv, priv->ioaddr);
4540
4541         stmmac_flush_tx_descriptors(priv, queue);
4542         stmmac_tx_timer_arm(priv, queue);
4543
4544         return NETDEV_TX_OK;
4545
4546 dma_map_err:
4547         netdev_err(priv->dev, "Tx DMA map failed\n");
4548         dev_kfree_skb(skb);
4549         priv->dev->stats.tx_dropped++;
4550         return NETDEV_TX_OK;
4551 }
4552
4553 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
4554 {
4555         struct vlan_ethhdr *veth;
4556         __be16 vlan_proto;
4557         u16 vlanid;
4558
4559         veth = (struct vlan_ethhdr *)skb->data;
4560         vlan_proto = veth->h_vlan_proto;
4561
4562         if ((vlan_proto == htons(ETH_P_8021Q) &&
4563              dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
4564             (vlan_proto == htons(ETH_P_8021AD) &&
4565              dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
4566                 /* pop the vlan tag */
4567                 vlanid = ntohs(veth->h_vlan_TCI);
4568                 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
4569                 skb_pull(skb, VLAN_HLEN);
4570                 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
4571         }
4572 }
4573
4574 /**
4575  * stmmac_rx_refill - refill used skb preallocated buffers
4576  * @priv: driver private structure
4577  * @queue: RX queue index
4578  * Description : this is to reallocate the skb for the reception process
4579  * that is based on zero-copy.
4580  */
4581 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
4582 {
4583         struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4584         int dirty = stmmac_rx_dirty(priv, queue);
4585         unsigned int entry = rx_q->dirty_rx;
4586         gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
4587
4588         if (priv->dma_cap.addr64 <= 32)
4589                 gfp |= GFP_DMA32;
4590
4591         while (dirty-- > 0) {
4592                 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4593                 struct dma_desc *p;
4594                 bool use_rx_wd;
4595
4596                 if (priv->extend_desc)
4597                         p = (struct dma_desc *)(rx_q->dma_erx + entry);
4598                 else
4599                         p = rx_q->dma_rx + entry;
4600
4601                 if (!buf->page) {
4602                         buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4603                         if (!buf->page)
4604                                 break;
4605                 }
4606
4607                 if (priv->sph && !buf->sec_page) {
4608                         buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4609                         if (!buf->sec_page)
4610                                 break;
4611
4612                         buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
4613                 }
4614
4615                 buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
4616
4617                 stmmac_set_desc_addr(priv, p, buf->addr);
4618                 if (priv->sph)
4619                         stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
4620                 else
4621                         stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
4622                 stmmac_refill_desc3(priv, rx_q, p);
4623
4624                 rx_q->rx_count_frames++;
4625                 rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4626                 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4627                         rx_q->rx_count_frames = 0;
4628
4629                 use_rx_wd = !priv->rx_coal_frames[queue];
4630                 use_rx_wd |= rx_q->rx_count_frames > 0;
4631                 if (!priv->use_riwt)
4632                         use_rx_wd = false;
4633
4634                 dma_wmb();
4635                 stmmac_set_rx_owner(priv, p, use_rx_wd);
4636
4637                 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size);
4638         }
4639         rx_q->dirty_rx = entry;
4640         rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4641                             (rx_q->dirty_rx * sizeof(struct dma_desc));
4642         stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4643 }
4644
4645 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
4646                                        struct dma_desc *p,
4647                                        int status, unsigned int len)
4648 {
4649         unsigned int plen = 0, hlen = 0;
4650         int coe = priv->hw->rx_csum;
4651
4652         /* Not first descriptor, buffer is always zero */
4653         if (priv->sph && len)
4654                 return 0;
4655
4656         /* First descriptor, get split header length */
4657         stmmac_get_rx_header_len(priv, p, &hlen);
4658         if (priv->sph && hlen) {
4659                 priv->xstats.rx_split_hdr_pkt_n++;
4660                 return hlen;
4661         }
4662
4663         /* First descriptor, not last descriptor and not split header */
4664         if (status & rx_not_ls)
4665                 return priv->dma_conf.dma_buf_sz;
4666
4667         plen = stmmac_get_rx_frame_len(priv, p, coe);
4668
4669         /* First descriptor and last descriptor and not split header */
4670         return min_t(unsigned int, priv->dma_conf.dma_buf_sz, plen);
4671 }
4672
4673 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
4674                                        struct dma_desc *p,
4675                                        int status, unsigned int len)
4676 {
4677         int coe = priv->hw->rx_csum;
4678         unsigned int plen = 0;
4679
4680         /* Not split header, buffer is not available */
4681         if (!priv->sph)
4682                 return 0;
4683
4684         /* Not last descriptor */
4685         if (status & rx_not_ls)
4686                 return priv->dma_conf.dma_buf_sz;
4687
4688         plen = stmmac_get_rx_frame_len(priv, p, coe);
4689
4690         /* Last descriptor */
4691         return plen - len;
4692 }
4693
4694 static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue,
4695                                 struct xdp_frame *xdpf, bool dma_map)
4696 {
4697         struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
4698         unsigned int entry = tx_q->cur_tx;
4699         struct dma_desc *tx_desc;
4700         dma_addr_t dma_addr;
4701         bool set_ic;
4702
4703         if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv))
4704                 return STMMAC_XDP_CONSUMED;
4705
4706         if (likely(priv->extend_desc))
4707                 tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4708         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4709                 tx_desc = &tx_q->dma_entx[entry].basic;
4710         else
4711                 tx_desc = tx_q->dma_tx + entry;
4712
4713         if (dma_map) {
4714                 dma_addr = dma_map_single(priv->device, xdpf->data,
4715                                           xdpf->len, DMA_TO_DEVICE);
4716                 if (dma_mapping_error(priv->device, dma_addr))
4717                         return STMMAC_XDP_CONSUMED;
4718
4719                 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO;
4720         } else {
4721                 struct page *page = virt_to_page(xdpf->data);
4722
4723                 dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) +
4724                            xdpf->headroom;
4725                 dma_sync_single_for_device(priv->device, dma_addr,
4726                                            xdpf->len, DMA_BIDIRECTIONAL);
4727
4728                 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX;
4729         }
4730
4731         tx_q->tx_skbuff_dma[entry].buf = dma_addr;
4732         tx_q->tx_skbuff_dma[entry].map_as_page = false;
4733         tx_q->tx_skbuff_dma[entry].len = xdpf->len;
4734         tx_q->tx_skbuff_dma[entry].last_segment = true;
4735         tx_q->tx_skbuff_dma[entry].is_jumbo = false;
4736
4737         tx_q->xdpf[entry] = xdpf;
4738
4739         stmmac_set_desc_addr(priv, tx_desc, dma_addr);
4740
4741         stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len,
4742                                true, priv->mode, true, true,
4743                                xdpf->len);
4744
4745         tx_q->tx_count_frames++;
4746
4747         if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
4748                 set_ic = true;
4749         else
4750                 set_ic = false;
4751
4752         if (set_ic) {
4753                 tx_q->tx_count_frames = 0;
4754                 stmmac_set_tx_ic(priv, tx_desc);
4755                 priv->xstats.tx_set_ic_bit++;
4756         }
4757
4758         stmmac_enable_dma_transmission(priv, priv->ioaddr);
4759
4760         entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4761         tx_q->cur_tx = entry;
4762
4763         return STMMAC_XDP_TX;
4764 }
4765
4766 static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv,
4767                                    int cpu)
4768 {
4769         int index = cpu;
4770
4771         if (unlikely(index < 0))
4772                 index = 0;
4773
4774         while (index >= priv->plat->tx_queues_to_use)
4775                 index -= priv->plat->tx_queues_to_use;
4776
4777         return index;
4778 }
4779
4780 static int stmmac_xdp_xmit_back(struct stmmac_priv *priv,
4781                                 struct xdp_buff *xdp)
4782 {
4783         struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
4784         int cpu = smp_processor_id();
4785         struct netdev_queue *nq;
4786         int queue;
4787         int res;
4788
4789         if (unlikely(!xdpf))
4790                 return STMMAC_XDP_CONSUMED;
4791
4792         queue = stmmac_xdp_get_tx_queue(priv, cpu);
4793         nq = netdev_get_tx_queue(priv->dev, queue);
4794
4795         __netif_tx_lock(nq, cpu);
4796         /* Avoids TX time-out as we are sharing with slow path */
4797         txq_trans_cond_update(nq);
4798
4799         res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false);
4800         if (res == STMMAC_XDP_TX)
4801                 stmmac_flush_tx_descriptors(priv, queue);
4802
4803         __netif_tx_unlock(nq);
4804
4805         return res;
4806 }
4807
4808 static int __stmmac_xdp_run_prog(struct stmmac_priv *priv,
4809                                  struct bpf_prog *prog,
4810                                  struct xdp_buff *xdp)
4811 {
4812         u32 act;
4813         int res;
4814
4815         act = bpf_prog_run_xdp(prog, xdp);
4816         switch (act) {
4817         case XDP_PASS:
4818                 res = STMMAC_XDP_PASS;
4819                 break;
4820         case XDP_TX:
4821                 res = stmmac_xdp_xmit_back(priv, xdp);
4822                 break;
4823         case XDP_REDIRECT:
4824                 if (xdp_do_redirect(priv->dev, xdp, prog) < 0)
4825                         res = STMMAC_XDP_CONSUMED;
4826                 else
4827                         res = STMMAC_XDP_REDIRECT;
4828                 break;
4829         default:
4830                 bpf_warn_invalid_xdp_action(priv->dev, prog, act);
4831                 fallthrough;
4832         case XDP_ABORTED:
4833                 trace_xdp_exception(priv->dev, prog, act);
4834                 fallthrough;
4835         case XDP_DROP:
4836                 res = STMMAC_XDP_CONSUMED;
4837                 break;
4838         }
4839
4840         return res;
4841 }
4842
4843 static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv,
4844                                            struct xdp_buff *xdp)
4845 {
4846         struct bpf_prog *prog;
4847         int res;
4848
4849         prog = READ_ONCE(priv->xdp_prog);
4850         if (!prog) {
4851                 res = STMMAC_XDP_PASS;
4852                 goto out;
4853         }
4854
4855         res = __stmmac_xdp_run_prog(priv, prog, xdp);
4856 out:
4857         return ERR_PTR(-res);
4858 }
4859
4860 static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv,
4861                                    int xdp_status)
4862 {
4863         int cpu = smp_processor_id();
4864         int queue;
4865
4866         queue = stmmac_xdp_get_tx_queue(priv, cpu);
4867
4868         if (xdp_status & STMMAC_XDP_TX)
4869                 stmmac_tx_timer_arm(priv, queue);
4870
4871         if (xdp_status & STMMAC_XDP_REDIRECT)
4872                 xdp_do_flush();
4873 }
4874
4875 static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch,
4876                                                struct xdp_buff *xdp)
4877 {
4878         unsigned int metasize = xdp->data - xdp->data_meta;
4879         unsigned int datasize = xdp->data_end - xdp->data;
4880         struct sk_buff *skb;
4881
4882         skb = __napi_alloc_skb(&ch->rxtx_napi,
4883                                xdp->data_end - xdp->data_hard_start,
4884                                GFP_ATOMIC | __GFP_NOWARN);
4885         if (unlikely(!skb))
4886                 return NULL;
4887
4888         skb_reserve(skb, xdp->data - xdp->data_hard_start);
4889         memcpy(__skb_put(skb, datasize), xdp->data, datasize);
4890         if (metasize)
4891                 skb_metadata_set(skb, metasize);
4892
4893         return skb;
4894 }
4895
4896 static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue,
4897                                    struct dma_desc *p, struct dma_desc *np,
4898                                    struct xdp_buff *xdp)
4899 {
4900         struct stmmac_channel *ch = &priv->channel[queue];
4901         unsigned int len = xdp->data_end - xdp->data;
4902         enum pkt_hash_types hash_type;
4903         int coe = priv->hw->rx_csum;
4904         struct sk_buff *skb;
4905         u32 hash;
4906
4907         skb = stmmac_construct_skb_zc(ch, xdp);
4908         if (!skb) {
4909                 priv->dev->stats.rx_dropped++;
4910                 return;
4911         }
4912
4913         stmmac_get_rx_hwtstamp(priv, p, np, skb);
4914         stmmac_rx_vlan(priv->dev, skb);
4915         skb->protocol = eth_type_trans(skb, priv->dev);
4916
4917         if (unlikely(!coe))
4918                 skb_checksum_none_assert(skb);
4919         else
4920                 skb->ip_summed = CHECKSUM_UNNECESSARY;
4921
4922         if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
4923                 skb_set_hash(skb, hash, hash_type);
4924
4925         skb_record_rx_queue(skb, queue);
4926         napi_gro_receive(&ch->rxtx_napi, skb);
4927
4928         priv->dev->stats.rx_packets++;
4929         priv->dev->stats.rx_bytes += len;
4930 }
4931
4932 static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
4933 {
4934         struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4935         unsigned int entry = rx_q->dirty_rx;
4936         struct dma_desc *rx_desc = NULL;
4937         bool ret = true;
4938
4939         budget = min(budget, stmmac_rx_dirty(priv, queue));
4940
4941         while (budget-- > 0 && entry != rx_q->cur_rx) {
4942                 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4943                 dma_addr_t dma_addr;
4944                 bool use_rx_wd;
4945
4946                 if (!buf->xdp) {
4947                         buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
4948                         if (!buf->xdp) {
4949                                 ret = false;
4950                                 break;
4951                         }
4952                 }
4953
4954                 if (priv->extend_desc)
4955                         rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry);
4956                 else
4957                         rx_desc = rx_q->dma_rx + entry;
4958
4959                 dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
4960                 stmmac_set_desc_addr(priv, rx_desc, dma_addr);
4961                 stmmac_set_desc_sec_addr(priv, rx_desc, 0, false);
4962                 stmmac_refill_desc3(priv, rx_q, rx_desc);
4963
4964                 rx_q->rx_count_frames++;
4965                 rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4966                 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4967                         rx_q->rx_count_frames = 0;
4968
4969                 use_rx_wd = !priv->rx_coal_frames[queue];
4970                 use_rx_wd |= rx_q->rx_count_frames > 0;
4971                 if (!priv->use_riwt)
4972                         use_rx_wd = false;
4973
4974                 dma_wmb();
4975                 stmmac_set_rx_owner(priv, rx_desc, use_rx_wd);
4976
4977                 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size);
4978         }
4979
4980         if (rx_desc) {
4981                 rx_q->dirty_rx = entry;
4982                 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4983                                      (rx_q->dirty_rx * sizeof(struct dma_desc));
4984                 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4985         }
4986
4987         return ret;
4988 }
4989
4990 static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue)
4991 {
4992         struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4993         unsigned int count = 0, error = 0, len = 0;
4994         int dirty = stmmac_rx_dirty(priv, queue);
4995         unsigned int next_entry = rx_q->cur_rx;
4996         unsigned int desc_size;
4997         struct bpf_prog *prog;
4998         bool failure = false;
4999         int xdp_status = 0;
5000         int status = 0;
5001
5002         if (netif_msg_rx_status(priv)) {
5003                 void *rx_head;
5004
5005                 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5006                 if (priv->extend_desc) {
5007                         rx_head = (void *)rx_q->dma_erx;
5008                         desc_size = sizeof(struct dma_extended_desc);
5009                 } else {
5010                         rx_head = (void *)rx_q->dma_rx;
5011                         desc_size = sizeof(struct dma_desc);
5012                 }
5013
5014                 stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true,
5015                                     rx_q->dma_rx_phy, desc_size);
5016         }
5017         while (count < limit) {
5018                 struct stmmac_rx_buffer *buf;
5019                 unsigned int buf1_len = 0;
5020                 struct dma_desc *np, *p;
5021                 int entry;
5022                 int res;
5023
5024                 if (!count && rx_q->state_saved) {
5025                         error = rx_q->state.error;
5026                         len = rx_q->state.len;
5027                 } else {
5028                         rx_q->state_saved = false;
5029                         error = 0;
5030                         len = 0;
5031                 }
5032
5033                 if (count >= limit)
5034                         break;
5035
5036 read_again:
5037                 buf1_len = 0;
5038                 entry = next_entry;
5039                 buf = &rx_q->buf_pool[entry];
5040
5041                 if (dirty >= STMMAC_RX_FILL_BATCH) {
5042                         failure = failure ||
5043                                   !stmmac_rx_refill_zc(priv, queue, dirty);
5044                         dirty = 0;
5045                 }
5046
5047                 if (priv->extend_desc)
5048                         p = (struct dma_desc *)(rx_q->dma_erx + entry);
5049                 else
5050                         p = rx_q->dma_rx + entry;
5051
5052                 /* read the status of the incoming frame */
5053                 status = stmmac_rx_status(priv, &priv->dev->stats,
5054                                           &priv->xstats, p);
5055                 /* check if managed by the DMA otherwise go ahead */
5056                 if (unlikely(status & dma_own))
5057                         break;
5058
5059                 /* Prefetch the next RX descriptor */
5060                 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5061                                                 priv->dma_conf.dma_rx_size);
5062                 next_entry = rx_q->cur_rx;
5063
5064                 if (priv->extend_desc)
5065                         np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5066                 else
5067                         np = rx_q->dma_rx + next_entry;
5068
5069                 prefetch(np);
5070
5071                 /* Ensure a valid XSK buffer before proceed */
5072                 if (!buf->xdp)
5073                         break;
5074
5075                 if (priv->extend_desc)
5076                         stmmac_rx_extended_status(priv, &priv->dev->stats,
5077                                                   &priv->xstats,
5078                                                   rx_q->dma_erx + entry);
5079                 if (unlikely(status == discard_frame)) {
5080                         xsk_buff_free(buf->xdp);
5081                         buf->xdp = NULL;
5082                         dirty++;
5083                         error = 1;
5084                         if (!priv->hwts_rx_en)
5085                                 priv->dev->stats.rx_errors++;
5086                 }
5087
5088                 if (unlikely(error && (status & rx_not_ls)))
5089                         goto read_again;
5090                 if (unlikely(error)) {
5091                         count++;
5092                         continue;
5093                 }
5094
5095                 /* XSK pool expects RX frame 1:1 mapped to XSK buffer */
5096                 if (likely(status & rx_not_ls)) {
5097                         xsk_buff_free(buf->xdp);
5098                         buf->xdp = NULL;
5099                         dirty++;
5100                         count++;
5101                         goto read_again;
5102                 }
5103
5104                 /* XDP ZC Frame only support primary buffers for now */
5105                 buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5106                 len += buf1_len;
5107
5108                 /* ACS is disabled; strip manually. */
5109                 if (likely(!(status & rx_not_ls))) {
5110                         buf1_len -= ETH_FCS_LEN;
5111                         len -= ETH_FCS_LEN;
5112                 }
5113
5114                 /* RX buffer is good and fit into a XSK pool buffer */
5115                 buf->xdp->data_end = buf->xdp->data + buf1_len;
5116                 xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool);
5117
5118                 prog = READ_ONCE(priv->xdp_prog);
5119                 res = __stmmac_xdp_run_prog(priv, prog, buf->xdp);
5120
5121                 switch (res) {
5122                 case STMMAC_XDP_PASS:
5123                         stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp);
5124                         xsk_buff_free(buf->xdp);
5125                         break;
5126                 case STMMAC_XDP_CONSUMED:
5127                         xsk_buff_free(buf->xdp);
5128                         priv->dev->stats.rx_dropped++;
5129                         break;
5130                 case STMMAC_XDP_TX:
5131                 case STMMAC_XDP_REDIRECT:
5132                         xdp_status |= res;
5133                         break;
5134                 }
5135
5136                 buf->xdp = NULL;
5137                 dirty++;
5138                 count++;
5139         }
5140
5141         if (status & rx_not_ls) {
5142                 rx_q->state_saved = true;
5143                 rx_q->state.error = error;
5144                 rx_q->state.len = len;
5145         }
5146
5147         stmmac_finalize_xdp_rx(priv, xdp_status);
5148
5149         priv->xstats.rx_pkt_n += count;
5150         priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5151
5152         if (xsk_uses_need_wakeup(rx_q->xsk_pool)) {
5153                 if (failure || stmmac_rx_dirty(priv, queue) > 0)
5154                         xsk_set_rx_need_wakeup(rx_q->xsk_pool);
5155                 else
5156                         xsk_clear_rx_need_wakeup(rx_q->xsk_pool);
5157
5158                 return (int)count;
5159         }
5160
5161         return failure ? limit : (int)count;
5162 }
5163
5164 /**
5165  * stmmac_rx - manage the receive process
5166  * @priv: driver private structure
5167  * @limit: napi bugget
5168  * @queue: RX queue index.
5169  * Description :  this the function called by the napi poll method.
5170  * It gets all the frames inside the ring.
5171  */
5172 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
5173 {
5174         struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
5175         struct stmmac_channel *ch = &priv->channel[queue];
5176         unsigned int count = 0, error = 0, len = 0;
5177         int status = 0, coe = priv->hw->rx_csum;
5178         unsigned int next_entry = rx_q->cur_rx;
5179         enum dma_data_direction dma_dir;
5180         unsigned int desc_size;
5181         struct sk_buff *skb = NULL;
5182         struct xdp_buff xdp;
5183         int xdp_status = 0;
5184         int buf_sz;
5185
5186         dma_dir = page_pool_get_dma_dir(rx_q->page_pool);
5187         buf_sz = DIV_ROUND_UP(priv->dma_conf.dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
5188
5189         if (netif_msg_rx_status(priv)) {
5190                 void *rx_head;
5191
5192                 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5193                 if (priv->extend_desc) {
5194                         rx_head = (void *)rx_q->dma_erx;
5195                         desc_size = sizeof(struct dma_extended_desc);
5196                 } else {
5197                         rx_head = (void *)rx_q->dma_rx;
5198                         desc_size = sizeof(struct dma_desc);
5199                 }
5200
5201                 stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true,
5202                                     rx_q->dma_rx_phy, desc_size);
5203         }
5204         while (count < limit) {
5205                 unsigned int buf1_len = 0, buf2_len = 0;
5206                 enum pkt_hash_types hash_type;
5207                 struct stmmac_rx_buffer *buf;
5208                 struct dma_desc *np, *p;
5209                 int entry;
5210                 u32 hash;
5211
5212                 if (!count && rx_q->state_saved) {
5213                         skb = rx_q->state.skb;
5214                         error = rx_q->state.error;
5215                         len = rx_q->state.len;
5216                 } else {
5217                         rx_q->state_saved = false;
5218                         skb = NULL;
5219                         error = 0;
5220                         len = 0;
5221                 }
5222
5223                 if (count >= limit)
5224                         break;
5225
5226 read_again:
5227                 buf1_len = 0;
5228                 buf2_len = 0;
5229                 entry = next_entry;
5230                 buf = &rx_q->buf_pool[entry];
5231
5232                 if (priv->extend_desc)
5233                         p = (struct dma_desc *)(rx_q->dma_erx + entry);
5234                 else
5235                         p = rx_q->dma_rx + entry;
5236
5237                 /* read the status of the incoming frame */
5238                 status = stmmac_rx_status(priv, &priv->dev->stats,
5239                                 &priv->xstats, p);
5240                 /* check if managed by the DMA otherwise go ahead */
5241                 if (unlikely(status & dma_own))
5242                         break;
5243
5244                 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5245                                                 priv->dma_conf.dma_rx_size);
5246                 next_entry = rx_q->cur_rx;
5247
5248                 if (priv->extend_desc)
5249                         np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5250                 else
5251                         np = rx_q->dma_rx + next_entry;
5252
5253                 prefetch(np);
5254
5255                 if (priv->extend_desc)
5256                         stmmac_rx_extended_status(priv, &priv->dev->stats,
5257                                         &priv->xstats, rx_q->dma_erx + entry);
5258                 if (unlikely(status == discard_frame)) {
5259                         page_pool_recycle_direct(rx_q->page_pool, buf->page);
5260                         buf->page = NULL;
5261                         error = 1;
5262                         if (!priv->hwts_rx_en)
5263                                 priv->dev->stats.rx_errors++;
5264                 }
5265
5266                 if (unlikely(error && (status & rx_not_ls)))
5267                         goto read_again;
5268                 if (unlikely(error)) {
5269                         dev_kfree_skb(skb);
5270                         skb = NULL;
5271                         count++;
5272                         continue;
5273                 }
5274
5275                 /* Buffer is good. Go on. */
5276
5277                 prefetch(page_address(buf->page) + buf->page_offset);
5278                 if (buf->sec_page)
5279                         prefetch(page_address(buf->sec_page));
5280
5281                 buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5282                 len += buf1_len;
5283                 buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
5284                 len += buf2_len;
5285
5286                 /* ACS is disabled; strip manually. */
5287                 if (likely(!(status & rx_not_ls))) {
5288                         if (buf2_len) {
5289                                 buf2_len -= ETH_FCS_LEN;
5290                                 len -= ETH_FCS_LEN;
5291                         } else if (buf1_len) {
5292                                 buf1_len -= ETH_FCS_LEN;
5293                                 len -= ETH_FCS_LEN;
5294                         }
5295                 }
5296
5297                 if (!skb) {
5298                         unsigned int pre_len, sync_len;
5299
5300                         dma_sync_single_for_cpu(priv->device, buf->addr,
5301                                                 buf1_len, dma_dir);
5302
5303                         xdp_init_buff(&xdp, buf_sz, &rx_q->xdp_rxq);
5304                         xdp_prepare_buff(&xdp, page_address(buf->page),
5305                                          buf->page_offset, buf1_len, false);
5306
5307                         pre_len = xdp.data_end - xdp.data_hard_start -
5308                                   buf->page_offset;
5309                         skb = stmmac_xdp_run_prog(priv, &xdp);
5310                         /* Due xdp_adjust_tail: DMA sync for_device
5311                          * cover max len CPU touch
5312                          */
5313                         sync_len = xdp.data_end - xdp.data_hard_start -
5314                                    buf->page_offset;
5315                         sync_len = max(sync_len, pre_len);
5316
5317                         /* For Not XDP_PASS verdict */
5318                         if (IS_ERR(skb)) {
5319                                 unsigned int xdp_res = -PTR_ERR(skb);
5320
5321                                 if (xdp_res & STMMAC_XDP_CONSUMED) {
5322                                         page_pool_put_page(rx_q->page_pool,
5323                                                            virt_to_head_page(xdp.data),
5324                                                            sync_len, true);
5325                                         buf->page = NULL;
5326                                         priv->dev->stats.rx_dropped++;
5327
5328                                         /* Clear skb as it was set as
5329                                          * status by XDP program.
5330                                          */
5331                                         skb = NULL;
5332
5333                                         if (unlikely((status & rx_not_ls)))
5334                                                 goto read_again;
5335
5336                                         count++;
5337                                         continue;
5338                                 } else if (xdp_res & (STMMAC_XDP_TX |
5339                                                       STMMAC_XDP_REDIRECT)) {
5340                                         xdp_status |= xdp_res;
5341                                         buf->page = NULL;
5342                                         skb = NULL;
5343                                         count++;
5344                                         continue;
5345                                 }
5346                         }
5347                 }
5348
5349                 if (!skb) {
5350                         /* XDP program may expand or reduce tail */
5351                         buf1_len = xdp.data_end - xdp.data;
5352
5353                         skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
5354                         if (!skb) {
5355                                 priv->dev->stats.rx_dropped++;
5356                                 count++;
5357                                 goto drain_data;
5358                         }
5359
5360                         /* XDP program may adjust header */
5361                         skb_copy_to_linear_data(skb, xdp.data, buf1_len);
5362                         skb_put(skb, buf1_len);
5363
5364                         /* Data payload copied into SKB, page ready for recycle */
5365                         page_pool_recycle_direct(rx_q->page_pool, buf->page);
5366                         buf->page = NULL;
5367                 } else if (buf1_len) {
5368                         dma_sync_single_for_cpu(priv->device, buf->addr,
5369                                                 buf1_len, dma_dir);
5370                         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5371                                         buf->page, buf->page_offset, buf1_len,
5372                                         priv->dma_conf.dma_buf_sz);
5373
5374                         /* Data payload appended into SKB */
5375                         page_pool_release_page(rx_q->page_pool, buf->page);
5376                         buf->page = NULL;
5377                 }
5378
5379                 if (buf2_len) {
5380                         dma_sync_single_for_cpu(priv->device, buf->sec_addr,
5381                                                 buf2_len, dma_dir);
5382                         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5383                                         buf->sec_page, 0, buf2_len,
5384                                         priv->dma_conf.dma_buf_sz);
5385
5386                         /* Data payload appended into SKB */
5387                         page_pool_release_page(rx_q->page_pool, buf->sec_page);
5388                         buf->sec_page = NULL;
5389                 }
5390
5391 drain_data:
5392                 if (likely(status & rx_not_ls))
5393                         goto read_again;
5394                 if (!skb)
5395                         continue;
5396
5397                 /* Got entire packet into SKB. Finish it. */
5398
5399                 stmmac_get_rx_hwtstamp(priv, p, np, skb);
5400                 stmmac_rx_vlan(priv->dev, skb);
5401                 skb->protocol = eth_type_trans(skb, priv->dev);
5402
5403                 if (unlikely(!coe))
5404                         skb_checksum_none_assert(skb);
5405                 else
5406                         skb->ip_summed = CHECKSUM_UNNECESSARY;
5407
5408                 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
5409                         skb_set_hash(skb, hash, hash_type);
5410
5411                 skb_record_rx_queue(skb, queue);
5412                 napi_gro_receive(&ch->rx_napi, skb);
5413                 skb = NULL;
5414
5415                 priv->dev->stats.rx_packets++;
5416                 priv->dev->stats.rx_bytes += len;
5417                 count++;
5418         }
5419
5420         if (status & rx_not_ls || skb) {
5421                 rx_q->state_saved = true;
5422                 rx_q->state.skb = skb;
5423                 rx_q->state.error = error;
5424                 rx_q->state.len = len;
5425         }
5426
5427         stmmac_finalize_xdp_rx(priv, xdp_status);
5428
5429         stmmac_rx_refill(priv, queue);
5430
5431         priv->xstats.rx_pkt_n += count;
5432         priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5433
5434         return count;
5435 }
5436
5437 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
5438 {
5439         struct stmmac_channel *ch =
5440                 container_of(napi, struct stmmac_channel, rx_napi);
5441         struct stmmac_priv *priv = ch->priv_data;
5442         u32 chan = ch->index;
5443         int work_done;
5444
5445         priv->xstats.napi_poll++;
5446
5447         work_done = stmmac_rx(priv, budget, chan);
5448         if (work_done < budget && napi_complete_done(napi, work_done)) {
5449                 unsigned long flags;
5450
5451                 spin_lock_irqsave(&ch->lock, flags);
5452                 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
5453                 spin_unlock_irqrestore(&ch->lock, flags);
5454         }
5455
5456         return work_done;
5457 }
5458
5459 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
5460 {
5461         struct stmmac_channel *ch =
5462                 container_of(napi, struct stmmac_channel, tx_napi);
5463         struct stmmac_priv *priv = ch->priv_data;
5464         u32 chan = ch->index;
5465         int work_done;
5466
5467         priv->xstats.napi_poll++;
5468
5469         work_done = stmmac_tx_clean(priv, budget, chan);
5470         work_done = min(work_done, budget);
5471
5472         if (work_done < budget && napi_complete_done(napi, work_done)) {
5473                 unsigned long flags;
5474
5475                 spin_lock_irqsave(&ch->lock, flags);
5476                 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
5477                 spin_unlock_irqrestore(&ch->lock, flags);
5478         }
5479
5480         return work_done;
5481 }
5482
5483 static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget)
5484 {
5485         struct stmmac_channel *ch =
5486                 container_of(napi, struct stmmac_channel, rxtx_napi);
5487         struct stmmac_priv *priv = ch->priv_data;
5488         int rx_done, tx_done, rxtx_done;
5489         u32 chan = ch->index;
5490
5491         priv->xstats.napi_poll++;
5492
5493         tx_done = stmmac_tx_clean(priv, budget, chan);
5494         tx_done = min(tx_done, budget);
5495
5496         rx_done = stmmac_rx_zc(priv, budget, chan);
5497
5498         rxtx_done = max(tx_done, rx_done);
5499
5500         /* If either TX or RX work is not complete, return budget
5501          * and keep pooling
5502          */
5503         if (rxtx_done >= budget)
5504                 return budget;
5505
5506         /* all work done, exit the polling mode */
5507         if (napi_complete_done(napi, rxtx_done)) {
5508                 unsigned long flags;
5509
5510                 spin_lock_irqsave(&ch->lock, flags);
5511                 /* Both RX and TX work done are compelte,
5512                  * so enable both RX & TX IRQs.
5513                  */
5514                 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
5515                 spin_unlock_irqrestore(&ch->lock, flags);
5516         }
5517
5518         return min(rxtx_done, budget - 1);
5519 }
5520
5521 /**
5522  *  stmmac_tx_timeout
5523  *  @dev : Pointer to net device structure
5524  *  @txqueue: the index of the hanging transmit queue
5525  *  Description: this function is called when a packet transmission fails to
5526  *   complete within a reasonable time. The driver will mark the error in the
5527  *   netdev structure and arrange for the device to be reset to a sane state
5528  *   in order to transmit a new packet.
5529  */
5530 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
5531 {
5532         struct stmmac_priv *priv = netdev_priv(dev);
5533
5534         stmmac_global_err(priv);
5535 }
5536
5537 /**
5538  *  stmmac_set_rx_mode - entry point for multicast addressing
5539  *  @dev : pointer to the device structure
5540  *  Description:
5541  *  This function is a driver entry point which gets called by the kernel
5542  *  whenever multicast addresses must be enabled/disabled.
5543  *  Return value:
5544  *  void.
5545  */
5546 static void stmmac_set_rx_mode(struct net_device *dev)
5547 {
5548         struct stmmac_priv *priv = netdev_priv(dev);
5549
5550         stmmac_set_filter(priv, priv->hw, dev);
5551 }
5552
5553 /**
5554  *  stmmac_change_mtu - entry point to change MTU size for the device.
5555  *  @dev : device pointer.
5556  *  @new_mtu : the new MTU size for the device.
5557  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
5558  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
5559  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
5560  *  Return value:
5561  *  0 on success and an appropriate (-)ve integer as defined in errno.h
5562  *  file on failure.
5563  */
5564 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
5565 {
5566         struct stmmac_priv *priv = netdev_priv(dev);
5567         int txfifosz = priv->plat->tx_fifo_size;
5568         struct stmmac_dma_conf *dma_conf;
5569         const int mtu = new_mtu;
5570         int ret;
5571
5572         if (txfifosz == 0)
5573                 txfifosz = priv->dma_cap.tx_fifo_size;
5574
5575         txfifosz /= priv->plat->tx_queues_to_use;
5576
5577         if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) {
5578                 netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n");
5579                 return -EINVAL;
5580         }
5581
5582         new_mtu = STMMAC_ALIGN(new_mtu);
5583
5584         /* If condition true, FIFO is too small or MTU too large */
5585         if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
5586                 return -EINVAL;
5587
5588         if (netif_running(dev)) {
5589                 netdev_dbg(priv->dev, "restarting interface to change its MTU\n");
5590                 /* Try to allocate the new DMA conf with the new mtu */
5591                 dma_conf = stmmac_setup_dma_desc(priv, mtu);
5592                 if (IS_ERR(dma_conf)) {
5593                         netdev_err(priv->dev, "failed allocating new dma conf for new MTU %d\n",
5594                                    mtu);
5595                         return PTR_ERR(dma_conf);
5596                 }
5597
5598                 stmmac_release(dev);
5599
5600                 ret = __stmmac_open(dev, dma_conf);
5601                 kfree(dma_conf);
5602                 if (ret) {
5603                         netdev_err(priv->dev, "failed reopening the interface after MTU change\n");
5604                         return ret;
5605                 }
5606
5607                 stmmac_set_rx_mode(dev);
5608         }
5609
5610         dev->mtu = mtu;
5611         netdev_update_features(dev);
5612
5613         return 0;
5614 }
5615
5616 static netdev_features_t stmmac_fix_features(struct net_device *dev,
5617                                              netdev_features_t features)
5618 {
5619         struct stmmac_priv *priv = netdev_priv(dev);
5620
5621         if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
5622                 features &= ~NETIF_F_RXCSUM;
5623
5624         if (!priv->plat->tx_coe)
5625                 features &= ~NETIF_F_CSUM_MASK;
5626
5627         /* Some GMAC devices have a bugged Jumbo frame support that
5628          * needs to have the Tx COE disabled for oversized frames
5629          * (due to limited buffer sizes). In this case we disable
5630          * the TX csum insertion in the TDES and not use SF.
5631          */
5632         if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
5633                 features &= ~NETIF_F_CSUM_MASK;
5634
5635         /* Disable tso if asked by ethtool */
5636         if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
5637                 if (features & NETIF_F_TSO)
5638                         priv->tso = true;
5639                 else
5640                         priv->tso = false;
5641         }
5642
5643         return features;
5644 }
5645
5646 static int stmmac_set_features(struct net_device *netdev,
5647                                netdev_features_t features)
5648 {
5649         struct stmmac_priv *priv = netdev_priv(netdev);
5650
5651         /* Keep the COE Type in case of csum is supporting */
5652         if (features & NETIF_F_RXCSUM)
5653                 priv->hw->rx_csum = priv->plat->rx_coe;
5654         else
5655                 priv->hw->rx_csum = 0;
5656         /* No check needed because rx_coe has been set before and it will be
5657          * fixed in case of issue.
5658          */
5659         stmmac_rx_ipc(priv, priv->hw);
5660
5661         if (priv->sph_cap) {
5662                 bool sph_en = (priv->hw->rx_csum > 0) && priv->sph;
5663                 u32 chan;
5664
5665                 for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
5666                         stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
5667         }
5668
5669         return 0;
5670 }
5671
5672 static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status)
5673 {
5674         struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
5675         enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
5676         enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
5677         bool *hs_enable = &fpe_cfg->hs_enable;
5678
5679         if (status == FPE_EVENT_UNKNOWN || !*hs_enable)
5680                 return;
5681
5682         /* If LP has sent verify mPacket, LP is FPE capable */
5683         if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) {
5684                 if (*lp_state < FPE_STATE_CAPABLE)
5685                         *lp_state = FPE_STATE_CAPABLE;
5686
5687                 /* If user has requested FPE enable, quickly response */
5688                 if (*hs_enable)
5689                         stmmac_fpe_send_mpacket(priv, priv->ioaddr,
5690                                                 MPACKET_RESPONSE);
5691         }
5692
5693         /* If Local has sent verify mPacket, Local is FPE capable */
5694         if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) {
5695                 if (*lo_state < FPE_STATE_CAPABLE)
5696                         *lo_state = FPE_STATE_CAPABLE;
5697         }
5698
5699         /* If LP has sent response mPacket, LP is entering FPE ON */
5700         if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP)
5701                 *lp_state = FPE_STATE_ENTERING_ON;
5702
5703         /* If Local has sent response mPacket, Local is entering FPE ON */
5704         if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP)
5705                 *lo_state = FPE_STATE_ENTERING_ON;
5706
5707         if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) &&
5708             !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) &&
5709             priv->fpe_wq) {
5710                 queue_work(priv->fpe_wq, &priv->fpe_task);
5711         }
5712 }
5713
5714 static void stmmac_common_interrupt(struct stmmac_priv *priv)
5715 {
5716         u32 rx_cnt = priv->plat->rx_queues_to_use;
5717         u32 tx_cnt = priv->plat->tx_queues_to_use;
5718         u32 queues_count;
5719         u32 queue;
5720         bool xmac;
5721
5722         xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
5723         queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
5724
5725         if (priv->irq_wake)
5726                 pm_wakeup_event(priv->device, 0);
5727
5728         if (priv->dma_cap.estsel)
5729                 stmmac_est_irq_status(priv, priv->ioaddr, priv->dev,
5730                                       &priv->xstats, tx_cnt);
5731
5732         if (priv->dma_cap.fpesel) {
5733                 int status = stmmac_fpe_irq_status(priv, priv->ioaddr,
5734                                                    priv->dev);
5735
5736                 stmmac_fpe_event_status(priv, status);
5737         }
5738
5739         /* To handle GMAC own interrupts */
5740         if ((priv->plat->has_gmac) || xmac) {
5741                 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
5742
5743                 if (unlikely(status)) {
5744                         /* For LPI we need to save the tx status */
5745                         if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
5746                                 priv->tx_path_in_lpi_mode = true;
5747                         if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
5748                                 priv->tx_path_in_lpi_mode = false;
5749                 }
5750
5751                 for (queue = 0; queue < queues_count; queue++) {
5752                         status = stmmac_host_mtl_irq_status(priv, priv->hw,
5753                                                             queue);
5754                 }
5755
5756                 /* PCS link status */
5757                 if (priv->hw->pcs) {
5758                         if (priv->xstats.pcs_link)
5759                                 netif_carrier_on(priv->dev);
5760                         else
5761                                 netif_carrier_off(priv->dev);
5762                 }
5763
5764                 stmmac_timestamp_interrupt(priv, priv);
5765         }
5766 }
5767
5768 /**
5769  *  stmmac_interrupt - main ISR
5770  *  @irq: interrupt number.
5771  *  @dev_id: to pass the net device pointer.
5772  *  Description: this is the main driver interrupt service routine.
5773  *  It can call:
5774  *  o DMA service routine (to manage incoming frame reception and transmission
5775  *    status)
5776  *  o Core interrupts to manage: remote wake-up, management counter, LPI
5777  *    interrupts.
5778  */
5779 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
5780 {
5781         struct net_device *dev = (struct net_device *)dev_id;
5782         struct stmmac_priv *priv = netdev_priv(dev);
5783
5784         /* Check if adapter is up */
5785         if (test_bit(STMMAC_DOWN, &priv->state))
5786                 return IRQ_HANDLED;
5787
5788         /* Check if a fatal error happened */
5789         if (stmmac_safety_feat_interrupt(priv))
5790                 return IRQ_HANDLED;
5791
5792         /* To handle Common interrupts */
5793         stmmac_common_interrupt(priv);
5794
5795         /* To handle DMA interrupts */
5796         stmmac_dma_interrupt(priv);
5797
5798         return IRQ_HANDLED;
5799 }
5800
5801 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id)
5802 {
5803         struct net_device *dev = (struct net_device *)dev_id;
5804         struct stmmac_priv *priv = netdev_priv(dev);
5805
5806         if (unlikely(!dev)) {
5807                 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5808                 return IRQ_NONE;
5809         }
5810
5811         /* Check if adapter is up */
5812         if (test_bit(STMMAC_DOWN, &priv->state))
5813                 return IRQ_HANDLED;
5814
5815         /* To handle Common interrupts */
5816         stmmac_common_interrupt(priv);
5817
5818         return IRQ_HANDLED;
5819 }
5820
5821 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id)
5822 {
5823         struct net_device *dev = (struct net_device *)dev_id;
5824         struct stmmac_priv *priv = netdev_priv(dev);
5825
5826         if (unlikely(!dev)) {
5827                 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5828                 return IRQ_NONE;
5829         }
5830
5831         /* Check if adapter is up */
5832         if (test_bit(STMMAC_DOWN, &priv->state))
5833                 return IRQ_HANDLED;
5834
5835         /* Check if a fatal error happened */
5836         stmmac_safety_feat_interrupt(priv);
5837
5838         return IRQ_HANDLED;
5839 }
5840
5841 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data)
5842 {
5843         struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data;
5844         struct stmmac_dma_conf *dma_conf;
5845         int chan = tx_q->queue_index;
5846         struct stmmac_priv *priv;
5847         int status;
5848
5849         dma_conf = container_of(tx_q, struct stmmac_dma_conf, tx_queue[chan]);
5850         priv = container_of(dma_conf, struct stmmac_priv, dma_conf);
5851
5852         if (unlikely(!data)) {
5853                 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5854                 return IRQ_NONE;
5855         }
5856
5857         /* Check if adapter is up */
5858         if (test_bit(STMMAC_DOWN, &priv->state))
5859                 return IRQ_HANDLED;
5860
5861         status = stmmac_napi_check(priv, chan, DMA_DIR_TX);
5862
5863         if (unlikely(status & tx_hard_error_bump_tc)) {
5864                 /* Try to bump up the dma threshold on this failure */
5865                 stmmac_bump_dma_threshold(priv, chan);
5866         } else if (unlikely(status == tx_hard_error)) {
5867                 stmmac_tx_err(priv, chan);
5868         }
5869
5870         return IRQ_HANDLED;
5871 }
5872
5873 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data)
5874 {
5875         struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data;
5876         struct stmmac_dma_conf *dma_conf;
5877         int chan = rx_q->queue_index;
5878         struct stmmac_priv *priv;
5879
5880         dma_conf = container_of(rx_q, struct stmmac_dma_conf, rx_queue[chan]);
5881         priv = container_of(dma_conf, struct stmmac_priv, dma_conf);
5882
5883         if (unlikely(!data)) {
5884                 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5885                 return IRQ_NONE;
5886         }
5887
5888         /* Check if adapter is up */
5889         if (test_bit(STMMAC_DOWN, &priv->state))
5890                 return IRQ_HANDLED;
5891
5892         stmmac_napi_check(priv, chan, DMA_DIR_RX);
5893
5894         return IRQ_HANDLED;
5895 }
5896
5897 #ifdef CONFIG_NET_POLL_CONTROLLER
5898 /* Polling receive - used by NETCONSOLE and other diagnostic tools
5899  * to allow network I/O with interrupts disabled.
5900  */
5901 static void stmmac_poll_controller(struct net_device *dev)
5902 {
5903         struct stmmac_priv *priv = netdev_priv(dev);
5904         int i;
5905
5906         /* If adapter is down, do nothing */
5907         if (test_bit(STMMAC_DOWN, &priv->state))
5908                 return;
5909
5910         if (priv->plat->multi_msi_en) {
5911                 for (i = 0; i < priv->plat->rx_queues_to_use; i++)
5912                         stmmac_msi_intr_rx(0, &priv->dma_conf.rx_queue[i]);
5913
5914                 for (i = 0; i < priv->plat->tx_queues_to_use; i++)
5915                         stmmac_msi_intr_tx(0, &priv->dma_conf.tx_queue[i]);
5916         } else {
5917                 disable_irq(dev->irq);
5918                 stmmac_interrupt(dev->irq, dev);
5919                 enable_irq(dev->irq);
5920         }
5921 }
5922 #endif
5923
5924 /**
5925  *  stmmac_ioctl - Entry point for the Ioctl
5926  *  @dev: Device pointer.
5927  *  @rq: An IOCTL specefic structure, that can contain a pointer to
5928  *  a proprietary structure used to pass information to the driver.
5929  *  @cmd: IOCTL command
5930  *  Description:
5931  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
5932  */
5933 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5934 {
5935         struct stmmac_priv *priv = netdev_priv (dev);
5936         int ret = -EOPNOTSUPP;
5937
5938         if (!netif_running(dev))
5939                 return -EINVAL;
5940
5941         switch (cmd) {
5942         case SIOCGMIIPHY:
5943         case SIOCGMIIREG:
5944         case SIOCSMIIREG:
5945                 ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
5946                 break;
5947         case SIOCSHWTSTAMP:
5948                 ret = stmmac_hwtstamp_set(dev, rq);
5949                 break;
5950         case SIOCGHWTSTAMP:
5951                 ret = stmmac_hwtstamp_get(dev, rq);
5952                 break;
5953         default:
5954                 break;
5955         }
5956
5957         return ret;
5958 }
5959
5960 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
5961                                     void *cb_priv)
5962 {
5963         struct stmmac_priv *priv = cb_priv;
5964         int ret = -EOPNOTSUPP;
5965
5966         if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
5967                 return ret;
5968
5969         __stmmac_disable_all_queues(priv);
5970
5971         switch (type) {
5972         case TC_SETUP_CLSU32:
5973                 ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
5974                 break;
5975         case TC_SETUP_CLSFLOWER:
5976                 ret = stmmac_tc_setup_cls(priv, priv, type_data);
5977                 break;
5978         default:
5979                 break;
5980         }
5981
5982         stmmac_enable_all_queues(priv);
5983         return ret;
5984 }
5985
5986 static LIST_HEAD(stmmac_block_cb_list);
5987
5988 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
5989                            void *type_data)
5990 {
5991         struct stmmac_priv *priv = netdev_priv(ndev);
5992
5993         switch (type) {
5994         case TC_SETUP_BLOCK:
5995                 return flow_block_cb_setup_simple(type_data,
5996                                                   &stmmac_block_cb_list,
5997                                                   stmmac_setup_tc_block_cb,
5998                                                   priv, priv, true);
5999         case TC_SETUP_QDISC_CBS:
6000                 return stmmac_tc_setup_cbs(priv, priv, type_data);
6001         case TC_SETUP_QDISC_TAPRIO:
6002                 return stmmac_tc_setup_taprio(priv, priv, type_data);
6003         case TC_SETUP_QDISC_ETF:
6004                 return stmmac_tc_setup_etf(priv, priv, type_data);
6005         default:
6006                 return -EOPNOTSUPP;
6007         }
6008 }
6009
6010 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
6011                                struct net_device *sb_dev)
6012 {
6013         int gso = skb_shinfo(skb)->gso_type;
6014
6015         if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
6016                 /*
6017                  * There is no way to determine the number of TSO/USO
6018                  * capable Queues. Let's use always the Queue 0
6019                  * because if TSO/USO is supported then at least this
6020                  * one will be capable.
6021                  */
6022                 return 0;
6023         }
6024
6025         return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
6026 }
6027
6028 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
6029 {
6030         struct stmmac_priv *priv = netdev_priv(ndev);
6031         int ret = 0;
6032
6033         ret = pm_runtime_resume_and_get(priv->device);
6034         if (ret < 0)
6035                 return ret;
6036
6037         ret = eth_mac_addr(ndev, addr);
6038         if (ret)
6039                 goto set_mac_error;
6040
6041         stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
6042
6043 set_mac_error:
6044         pm_runtime_put(priv->device);
6045
6046         return ret;
6047 }
6048
6049 #ifdef CONFIG_DEBUG_FS
6050 static struct dentry *stmmac_fs_dir;
6051
6052 static void sysfs_display_ring(void *head, int size, int extend_desc,
6053                                struct seq_file *seq, dma_addr_t dma_phy_addr)
6054 {
6055         int i;
6056         struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
6057         struct dma_desc *p = (struct dma_desc *)head;
6058         dma_addr_t dma_addr;
6059
6060         for (i = 0; i < size; i++) {
6061                 if (extend_desc) {
6062                         dma_addr = dma_phy_addr + i * sizeof(*ep);
6063                         seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
6064                                    i, &dma_addr,
6065                                    le32_to_cpu(ep->basic.des0),
6066                                    le32_to_cpu(ep->basic.des1),
6067                                    le32_to_cpu(ep->basic.des2),
6068                                    le32_to_cpu(ep->basic.des3));
6069                         ep++;
6070                 } else {
6071                         dma_addr = dma_phy_addr + i * sizeof(*p);
6072                         seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
6073                                    i, &dma_addr,
6074                                    le32_to_cpu(p->des0), le32_to_cpu(p->des1),
6075                                    le32_to_cpu(p->des2), le32_to_cpu(p->des3));
6076                         p++;
6077                 }
6078                 seq_printf(seq, "\n");
6079         }
6080 }
6081
6082 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
6083 {
6084         struct net_device *dev = seq->private;
6085         struct stmmac_priv *priv = netdev_priv(dev);
6086         u32 rx_count = priv->plat->rx_queues_to_use;
6087         u32 tx_count = priv->plat->tx_queues_to_use;
6088         u32 queue;
6089
6090         if ((dev->flags & IFF_UP) == 0)
6091                 return 0;
6092
6093         for (queue = 0; queue < rx_count; queue++) {
6094                 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
6095
6096                 seq_printf(seq, "RX Queue %d:\n", queue);
6097
6098                 if (priv->extend_desc) {
6099                         seq_printf(seq, "Extended descriptor ring:\n");
6100                         sysfs_display_ring((void *)rx_q->dma_erx,
6101                                            priv->dma_conf.dma_rx_size, 1, seq, rx_q->dma_rx_phy);
6102                 } else {
6103                         seq_printf(seq, "Descriptor ring:\n");
6104                         sysfs_display_ring((void *)rx_q->dma_rx,
6105                                            priv->dma_conf.dma_rx_size, 0, seq, rx_q->dma_rx_phy);
6106                 }
6107         }
6108
6109         for (queue = 0; queue < tx_count; queue++) {
6110                 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
6111
6112                 seq_printf(seq, "TX Queue %d:\n", queue);
6113
6114                 if (priv->extend_desc) {
6115                         seq_printf(seq, "Extended descriptor ring:\n");
6116                         sysfs_display_ring((void *)tx_q->dma_etx,
6117                                            priv->dma_conf.dma_tx_size, 1, seq, tx_q->dma_tx_phy);
6118                 } else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
6119                         seq_printf(seq, "Descriptor ring:\n");
6120                         sysfs_display_ring((void *)tx_q->dma_tx,
6121                                            priv->dma_conf.dma_tx_size, 0, seq, tx_q->dma_tx_phy);
6122                 }
6123         }
6124
6125         return 0;
6126 }
6127 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
6128
6129 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
6130 {
6131         struct net_device *dev = seq->private;
6132         struct stmmac_priv *priv = netdev_priv(dev);
6133
6134         if (!priv->hw_cap_support) {
6135                 seq_printf(seq, "DMA HW features not supported\n");
6136                 return 0;
6137         }
6138
6139         seq_printf(seq, "==============================\n");
6140         seq_printf(seq, "\tDMA HW features\n");
6141         seq_printf(seq, "==============================\n");
6142
6143         seq_printf(seq, "\t10/100 Mbps: %s\n",
6144                    (priv->dma_cap.mbps_10_100) ? "Y" : "N");
6145         seq_printf(seq, "\t1000 Mbps: %s\n",
6146                    (priv->dma_cap.mbps_1000) ? "Y" : "N");
6147         seq_printf(seq, "\tHalf duplex: %s\n",
6148                    (priv->dma_cap.half_duplex) ? "Y" : "N");
6149         seq_printf(seq, "\tHash Filter: %s\n",
6150                    (priv->dma_cap.hash_filter) ? "Y" : "N");
6151         seq_printf(seq, "\tMultiple MAC address registers: %s\n",
6152                    (priv->dma_cap.multi_addr) ? "Y" : "N");
6153         seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
6154                    (priv->dma_cap.pcs) ? "Y" : "N");
6155         seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
6156                    (priv->dma_cap.sma_mdio) ? "Y" : "N");
6157         seq_printf(seq, "\tPMT Remote wake up: %s\n",
6158                    (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
6159         seq_printf(seq, "\tPMT Magic Frame: %s\n",
6160                    (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
6161         seq_printf(seq, "\tRMON module: %s\n",
6162                    (priv->dma_cap.rmon) ? "Y" : "N");
6163         seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
6164                    (priv->dma_cap.time_stamp) ? "Y" : "N");
6165         seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
6166                    (priv->dma_cap.atime_stamp) ? "Y" : "N");
6167         seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
6168                    (priv->dma_cap.eee) ? "Y" : "N");
6169         seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
6170         seq_printf(seq, "\tChecksum Offload in TX: %s\n",
6171                    (priv->dma_cap.tx_coe) ? "Y" : "N");
6172         if (priv->synopsys_id >= DWMAC_CORE_4_00) {
6173                 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
6174                            (priv->dma_cap.rx_coe) ? "Y" : "N");
6175         } else {
6176                 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
6177                            (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
6178                 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
6179                            (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
6180         }
6181         seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
6182                    (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
6183         seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
6184                    priv->dma_cap.number_rx_channel);
6185         seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
6186                    priv->dma_cap.number_tx_channel);
6187         seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
6188                    priv->dma_cap.number_rx_queues);
6189         seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
6190                    priv->dma_cap.number_tx_queues);
6191         seq_printf(seq, "\tEnhanced descriptors: %s\n",
6192                    (priv->dma_cap.enh_desc) ? "Y" : "N");
6193         seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
6194         seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
6195         seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
6196         seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
6197         seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
6198                    priv->dma_cap.pps_out_num);
6199         seq_printf(seq, "\tSafety Features: %s\n",
6200                    priv->dma_cap.asp ? "Y" : "N");
6201         seq_printf(seq, "\tFlexible RX Parser: %s\n",
6202                    priv->dma_cap.frpsel ? "Y" : "N");
6203         seq_printf(seq, "\tEnhanced Addressing: %d\n",
6204                    priv->dma_cap.addr64);
6205         seq_printf(seq, "\tReceive Side Scaling: %s\n",
6206                    priv->dma_cap.rssen ? "Y" : "N");
6207         seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
6208                    priv->dma_cap.vlhash ? "Y" : "N");
6209         seq_printf(seq, "\tSplit Header: %s\n",
6210                    priv->dma_cap.sphen ? "Y" : "N");
6211         seq_printf(seq, "\tVLAN TX Insertion: %s\n",
6212                    priv->dma_cap.vlins ? "Y" : "N");
6213         seq_printf(seq, "\tDouble VLAN: %s\n",
6214                    priv->dma_cap.dvlan ? "Y" : "N");
6215         seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
6216                    priv->dma_cap.l3l4fnum);
6217         seq_printf(seq, "\tARP Offloading: %s\n",
6218                    priv->dma_cap.arpoffsel ? "Y" : "N");
6219         seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
6220                    priv->dma_cap.estsel ? "Y" : "N");
6221         seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
6222                    priv->dma_cap.fpesel ? "Y" : "N");
6223         seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
6224                    priv->dma_cap.tbssel ? "Y" : "N");
6225         return 0;
6226 }
6227 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
6228
6229 /* Use network device events to rename debugfs file entries.
6230  */
6231 static int stmmac_device_event(struct notifier_block *unused,
6232                                unsigned long event, void *ptr)
6233 {
6234         struct net_device *dev = netdev_notifier_info_to_dev(ptr);
6235         struct stmmac_priv *priv = netdev_priv(dev);
6236
6237         if (dev->netdev_ops != &stmmac_netdev_ops)
6238                 goto done;
6239
6240         switch (event) {
6241         case NETDEV_CHANGENAME:
6242                 if (priv->dbgfs_dir)
6243                         priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
6244                                                          priv->dbgfs_dir,
6245                                                          stmmac_fs_dir,
6246                                                          dev->name);
6247                 break;
6248         }
6249 done:
6250         return NOTIFY_DONE;
6251 }
6252
6253 static struct notifier_block stmmac_notifier = {
6254         .notifier_call = stmmac_device_event,
6255 };
6256
6257 static void stmmac_init_fs(struct net_device *dev)
6258 {
6259         struct stmmac_priv *priv = netdev_priv(dev);
6260
6261         rtnl_lock();
6262
6263         /* Create per netdev entries */
6264         priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
6265
6266         /* Entry to report DMA RX/TX rings */
6267         debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
6268                             &stmmac_rings_status_fops);
6269
6270         /* Entry to report the DMA HW features */
6271         debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
6272                             &stmmac_dma_cap_fops);
6273
6274         rtnl_unlock();
6275 }
6276
6277 static void stmmac_exit_fs(struct net_device *dev)
6278 {
6279         struct stmmac_priv *priv = netdev_priv(dev);
6280
6281         debugfs_remove_recursive(priv->dbgfs_dir);
6282 }
6283 #endif /* CONFIG_DEBUG_FS */
6284
6285 static u32 stmmac_vid_crc32_le(__le16 vid_le)
6286 {
6287         unsigned char *data = (unsigned char *)&vid_le;
6288         unsigned char data_byte = 0;
6289         u32 crc = ~0x0;
6290         u32 temp = 0;
6291         int i, bits;
6292
6293         bits = get_bitmask_order(VLAN_VID_MASK);
6294         for (i = 0; i < bits; i++) {
6295                 if ((i % 8) == 0)
6296                         data_byte = data[i / 8];
6297
6298                 temp = ((crc & 1) ^ data_byte) & 1;
6299                 crc >>= 1;
6300                 data_byte >>= 1;
6301
6302                 if (temp)
6303                         crc ^= 0xedb88320;
6304         }
6305
6306         return crc;
6307 }
6308
6309 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
6310 {
6311         u32 crc, hash = 0;
6312         __le16 pmatch = 0;
6313         int count = 0;
6314         u16 vid = 0;
6315
6316         for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
6317                 __le16 vid_le = cpu_to_le16(vid);
6318                 crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
6319                 hash |= (1 << crc);
6320                 count++;
6321         }
6322
6323         if (!priv->dma_cap.vlhash) {
6324                 if (count > 2) /* VID = 0 always passes filter */
6325                         return -EOPNOTSUPP;
6326
6327                 pmatch = cpu_to_le16(vid);
6328                 hash = 0;
6329         }
6330
6331         return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
6332 }
6333
6334 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
6335 {
6336         struct stmmac_priv *priv = netdev_priv(ndev);
6337         bool is_double = false;
6338         int ret;
6339
6340         if (be16_to_cpu(proto) == ETH_P_8021AD)
6341                 is_double = true;
6342
6343         set_bit(vid, priv->active_vlans);
6344         ret = stmmac_vlan_update(priv, is_double);
6345         if (ret) {
6346                 clear_bit(vid, priv->active_vlans);
6347                 return ret;
6348         }
6349
6350         if (priv->hw->num_vlan) {
6351                 ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6352                 if (ret)
6353                         return ret;
6354         }
6355
6356         return 0;
6357 }
6358
6359 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
6360 {
6361         struct stmmac_priv *priv = netdev_priv(ndev);
6362         bool is_double = false;
6363         int ret;
6364
6365         ret = pm_runtime_resume_and_get(priv->device);
6366         if (ret < 0)
6367                 return ret;
6368
6369         if (be16_to_cpu(proto) == ETH_P_8021AD)
6370                 is_double = true;
6371
6372         clear_bit(vid, priv->active_vlans);
6373
6374         if (priv->hw->num_vlan) {
6375                 ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6376                 if (ret)
6377                         goto del_vlan_error;
6378         }
6379
6380         ret = stmmac_vlan_update(priv, is_double);
6381
6382 del_vlan_error:
6383         pm_runtime_put(priv->device);
6384
6385         return ret;
6386 }
6387
6388 static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6389 {
6390         struct stmmac_priv *priv = netdev_priv(dev);
6391
6392         switch (bpf->command) {
6393         case XDP_SETUP_PROG:
6394                 return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack);
6395         case XDP_SETUP_XSK_POOL:
6396                 return stmmac_xdp_setup_pool(priv, bpf->xsk.pool,
6397                                              bpf->xsk.queue_id);
6398         default:
6399                 return -EOPNOTSUPP;
6400         }
6401 }
6402
6403 static int stmmac_xdp_xmit(struct net_device *dev, int num_frames,
6404                            struct xdp_frame **frames, u32 flags)
6405 {
6406         struct stmmac_priv *priv = netdev_priv(dev);
6407         int cpu = smp_processor_id();
6408         struct netdev_queue *nq;
6409         int i, nxmit = 0;
6410         int queue;
6411
6412         if (unlikely(test_bit(STMMAC_DOWN, &priv->state)))
6413                 return -ENETDOWN;
6414
6415         if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6416                 return -EINVAL;
6417
6418         queue = stmmac_xdp_get_tx_queue(priv, cpu);
6419         nq = netdev_get_tx_queue(priv->dev, queue);
6420
6421         __netif_tx_lock(nq, cpu);
6422         /* Avoids TX time-out as we are sharing with slow path */
6423         txq_trans_cond_update(nq);
6424
6425         for (i = 0; i < num_frames; i++) {
6426                 int res;
6427
6428                 res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true);
6429                 if (res == STMMAC_XDP_CONSUMED)
6430                         break;
6431
6432                 nxmit++;
6433         }
6434
6435         if (flags & XDP_XMIT_FLUSH) {
6436                 stmmac_flush_tx_descriptors(priv, queue);
6437                 stmmac_tx_timer_arm(priv, queue);
6438         }
6439
6440         __netif_tx_unlock(nq);
6441
6442         return nxmit;
6443 }
6444
6445 void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue)
6446 {
6447         struct stmmac_channel *ch = &priv->channel[queue];
6448         unsigned long flags;
6449
6450         spin_lock_irqsave(&ch->lock, flags);
6451         stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6452         spin_unlock_irqrestore(&ch->lock, flags);
6453
6454         stmmac_stop_rx_dma(priv, queue);
6455         __free_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6456 }
6457
6458 void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue)
6459 {
6460         struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
6461         struct stmmac_channel *ch = &priv->channel[queue];
6462         unsigned long flags;
6463         u32 buf_size;
6464         int ret;
6465
6466         ret = __alloc_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6467         if (ret) {
6468                 netdev_err(priv->dev, "Failed to alloc RX desc.\n");
6469                 return;
6470         }
6471
6472         ret = __init_dma_rx_desc_rings(priv, &priv->dma_conf, queue, GFP_KERNEL);
6473         if (ret) {
6474                 __free_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6475                 netdev_err(priv->dev, "Failed to init RX desc.\n");
6476                 return;
6477         }
6478
6479         stmmac_reset_rx_queue(priv, queue);
6480         stmmac_clear_rx_descriptors(priv, &priv->dma_conf, queue);
6481
6482         stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6483                             rx_q->dma_rx_phy, rx_q->queue_index);
6484
6485         rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num *
6486                              sizeof(struct dma_desc));
6487         stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6488                                rx_q->rx_tail_addr, rx_q->queue_index);
6489
6490         if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6491                 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6492                 stmmac_set_dma_bfsize(priv, priv->ioaddr,
6493                                       buf_size,
6494                                       rx_q->queue_index);
6495         } else {
6496                 stmmac_set_dma_bfsize(priv, priv->ioaddr,
6497                                       priv->dma_conf.dma_buf_sz,
6498                                       rx_q->queue_index);
6499         }
6500
6501         stmmac_start_rx_dma(priv, queue);
6502
6503         spin_lock_irqsave(&ch->lock, flags);
6504         stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6505         spin_unlock_irqrestore(&ch->lock, flags);
6506 }
6507
6508 void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue)
6509 {
6510         struct stmmac_channel *ch = &priv->channel[queue];
6511         unsigned long flags;
6512
6513         spin_lock_irqsave(&ch->lock, flags);
6514         stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6515         spin_unlock_irqrestore(&ch->lock, flags);
6516
6517         stmmac_stop_tx_dma(priv, queue);
6518         __free_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6519 }
6520
6521 void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue)
6522 {
6523         struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
6524         struct stmmac_channel *ch = &priv->channel[queue];
6525         unsigned long flags;
6526         int ret;
6527
6528         ret = __alloc_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6529         if (ret) {
6530                 netdev_err(priv->dev, "Failed to alloc TX desc.\n");
6531                 return;
6532         }
6533
6534         ret = __init_dma_tx_desc_rings(priv,  &priv->dma_conf, queue);
6535         if (ret) {
6536                 __free_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6537                 netdev_err(priv->dev, "Failed to init TX desc.\n");
6538                 return;
6539         }
6540
6541         stmmac_reset_tx_queue(priv, queue);
6542         stmmac_clear_tx_descriptors(priv, &priv->dma_conf, queue);
6543
6544         stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6545                             tx_q->dma_tx_phy, tx_q->queue_index);
6546
6547         if (tx_q->tbs & STMMAC_TBS_AVAIL)
6548                 stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index);
6549
6550         tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6551         stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6552                                tx_q->tx_tail_addr, tx_q->queue_index);
6553
6554         stmmac_start_tx_dma(priv, queue);
6555
6556         spin_lock_irqsave(&ch->lock, flags);
6557         stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6558         spin_unlock_irqrestore(&ch->lock, flags);
6559 }
6560
6561 void stmmac_xdp_release(struct net_device *dev)
6562 {
6563         struct stmmac_priv *priv = netdev_priv(dev);
6564         u32 chan;
6565
6566         /* Ensure tx function is not running */
6567         netif_tx_disable(dev);
6568
6569         /* Disable NAPI process */
6570         stmmac_disable_all_queues(priv);
6571
6572         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6573                 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
6574
6575         /* Free the IRQ lines */
6576         stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
6577
6578         /* Stop TX/RX DMA channels */
6579         stmmac_stop_all_dma(priv);
6580
6581         /* Release and free the Rx/Tx resources */
6582         free_dma_desc_resources(priv, &priv->dma_conf);
6583
6584         /* Disable the MAC Rx/Tx */
6585         stmmac_mac_set(priv, priv->ioaddr, false);
6586
6587         /* set trans_start so we don't get spurious
6588          * watchdogs during reset
6589          */
6590         netif_trans_update(dev);
6591         netif_carrier_off(dev);
6592 }
6593
6594 int stmmac_xdp_open(struct net_device *dev)
6595 {
6596         struct stmmac_priv *priv = netdev_priv(dev);
6597         u32 rx_cnt = priv->plat->rx_queues_to_use;
6598         u32 tx_cnt = priv->plat->tx_queues_to_use;
6599         u32 dma_csr_ch = max(rx_cnt, tx_cnt);
6600         struct stmmac_rx_queue *rx_q;
6601         struct stmmac_tx_queue *tx_q;
6602         u32 buf_size;
6603         bool sph_en;
6604         u32 chan;
6605         int ret;
6606
6607         ret = alloc_dma_desc_resources(priv, &priv->dma_conf);
6608         if (ret < 0) {
6609                 netdev_err(dev, "%s: DMA descriptors allocation failed\n",
6610                            __func__);
6611                 goto dma_desc_error;
6612         }
6613
6614         ret = init_dma_desc_rings(dev, &priv->dma_conf, GFP_KERNEL);
6615         if (ret < 0) {
6616                 netdev_err(dev, "%s: DMA descriptors initialization failed\n",
6617                            __func__);
6618                 goto init_error;
6619         }
6620
6621         /* DMA CSR Channel configuration */
6622         for (chan = 0; chan < dma_csr_ch; chan++) {
6623                 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
6624                 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
6625         }
6626
6627         /* Adjust Split header */
6628         sph_en = (priv->hw->rx_csum > 0) && priv->sph;
6629
6630         /* DMA RX Channel Configuration */
6631         for (chan = 0; chan < rx_cnt; chan++) {
6632                 rx_q = &priv->dma_conf.rx_queue[chan];
6633
6634                 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6635                                     rx_q->dma_rx_phy, chan);
6636
6637                 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
6638                                      (rx_q->buf_alloc_num *
6639                                       sizeof(struct dma_desc));
6640                 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6641                                        rx_q->rx_tail_addr, chan);
6642
6643                 if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6644                         buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6645                         stmmac_set_dma_bfsize(priv, priv->ioaddr,
6646                                               buf_size,
6647                                               rx_q->queue_index);
6648                 } else {
6649                         stmmac_set_dma_bfsize(priv, priv->ioaddr,
6650                                               priv->dma_conf.dma_buf_sz,
6651                                               rx_q->queue_index);
6652                 }
6653
6654                 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
6655         }
6656
6657         /* DMA TX Channel Configuration */
6658         for (chan = 0; chan < tx_cnt; chan++) {
6659                 tx_q = &priv->dma_conf.tx_queue[chan];
6660
6661                 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6662                                     tx_q->dma_tx_phy, chan);
6663
6664                 tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6665                 stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6666                                        tx_q->tx_tail_addr, chan);
6667
6668                 hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6669                 tx_q->txtimer.function = stmmac_tx_timer;
6670         }
6671
6672         /* Enable the MAC Rx/Tx */
6673         stmmac_mac_set(priv, priv->ioaddr, true);
6674
6675         /* Start Rx & Tx DMA Channels */
6676         stmmac_start_all_dma(priv);
6677
6678         ret = stmmac_request_irq(dev);
6679         if (ret)
6680                 goto irq_error;
6681
6682         /* Enable NAPI process*/
6683         stmmac_enable_all_queues(priv);
6684         netif_carrier_on(dev);
6685         netif_tx_start_all_queues(dev);
6686         stmmac_enable_all_dma_irq(priv);
6687
6688         return 0;
6689
6690 irq_error:
6691         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6692                 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
6693
6694         stmmac_hw_teardown(dev);
6695 init_error:
6696         free_dma_desc_resources(priv, &priv->dma_conf);
6697 dma_desc_error:
6698         return ret;
6699 }
6700
6701 int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags)
6702 {
6703         struct stmmac_priv *priv = netdev_priv(dev);
6704         struct stmmac_rx_queue *rx_q;
6705         struct stmmac_tx_queue *tx_q;
6706         struct stmmac_channel *ch;
6707
6708         if (test_bit(STMMAC_DOWN, &priv->state) ||
6709             !netif_carrier_ok(priv->dev))
6710                 return -ENETDOWN;
6711
6712         if (!stmmac_xdp_is_enabled(priv))
6713                 return -EINVAL;
6714
6715         if (queue >= priv->plat->rx_queues_to_use ||
6716             queue >= priv->plat->tx_queues_to_use)
6717                 return -EINVAL;
6718
6719         rx_q = &priv->dma_conf.rx_queue[queue];
6720         tx_q = &priv->dma_conf.tx_queue[queue];
6721         ch = &priv->channel[queue];
6722
6723         if (!rx_q->xsk_pool && !tx_q->xsk_pool)
6724                 return -EINVAL;
6725
6726         if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) {
6727                 /* EQoS does not have per-DMA channel SW interrupt,
6728                  * so we schedule RX Napi straight-away.
6729                  */
6730                 if (likely(napi_schedule_prep(&ch->rxtx_napi)))
6731                         __napi_schedule(&ch->rxtx_napi);
6732         }
6733
6734         return 0;
6735 }
6736
6737 static const struct net_device_ops stmmac_netdev_ops = {
6738         .ndo_open = stmmac_open,
6739         .ndo_start_xmit = stmmac_xmit,
6740         .ndo_stop = stmmac_release,
6741         .ndo_change_mtu = stmmac_change_mtu,
6742         .ndo_fix_features = stmmac_fix_features,
6743         .ndo_set_features = stmmac_set_features,
6744         .ndo_set_rx_mode = stmmac_set_rx_mode,
6745         .ndo_tx_timeout = stmmac_tx_timeout,
6746         .ndo_eth_ioctl = stmmac_ioctl,
6747         .ndo_setup_tc = stmmac_setup_tc,
6748         .ndo_select_queue = stmmac_select_queue,
6749 #ifdef CONFIG_NET_POLL_CONTROLLER
6750         .ndo_poll_controller = stmmac_poll_controller,
6751 #endif
6752         .ndo_set_mac_address = stmmac_set_mac_address,
6753         .ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
6754         .ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
6755         .ndo_bpf = stmmac_bpf,
6756         .ndo_xdp_xmit = stmmac_xdp_xmit,
6757         .ndo_xsk_wakeup = stmmac_xsk_wakeup,
6758 };
6759
6760 static void stmmac_reset_subtask(struct stmmac_priv *priv)
6761 {
6762         if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
6763                 return;
6764         if (test_bit(STMMAC_DOWN, &priv->state))
6765                 return;
6766
6767         netdev_err(priv->dev, "Reset adapter.\n");
6768
6769         rtnl_lock();
6770         netif_trans_update(priv->dev);
6771         while (test_and_set_bit(STMMAC_RESETING, &priv->state))
6772                 usleep_range(1000, 2000);
6773
6774         set_bit(STMMAC_DOWN, &priv->state);
6775         dev_close(priv->dev);
6776         dev_open(priv->dev, NULL);
6777         clear_bit(STMMAC_DOWN, &priv->state);
6778         clear_bit(STMMAC_RESETING, &priv->state);
6779         rtnl_unlock();
6780 }
6781
6782 static void stmmac_service_task(struct work_struct *work)
6783 {
6784         struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6785                         service_task);
6786
6787         stmmac_reset_subtask(priv);
6788         clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
6789 }
6790
6791 /**
6792  *  stmmac_hw_init - Init the MAC device
6793  *  @priv: driver private structure
6794  *  Description: this function is to configure the MAC device according to
6795  *  some platform parameters or the HW capability register. It prepares the
6796  *  driver to use either ring or chain modes and to setup either enhanced or
6797  *  normal descriptors.
6798  */
6799 static int stmmac_hw_init(struct stmmac_priv *priv)
6800 {
6801         int ret;
6802
6803         /* dwmac-sun8i only work in chain mode */
6804         if (priv->plat->has_sun8i)
6805                 chain_mode = 1;
6806         priv->chain_mode = chain_mode;
6807
6808         /* Initialize HW Interface */
6809         ret = stmmac_hwif_init(priv);
6810         if (ret)
6811                 return ret;
6812
6813         /* Get the HW capability (new GMAC newer than 3.50a) */
6814         priv->hw_cap_support = stmmac_get_hw_features(priv);
6815         if (priv->hw_cap_support) {
6816                 dev_info(priv->device, "DMA HW capability register supported\n");
6817
6818                 /* We can override some gmac/dma configuration fields: e.g.
6819                  * enh_desc, tx_coe (e.g. that are passed through the
6820                  * platform) with the values from the HW capability
6821                  * register (if supported).
6822                  */
6823                 priv->plat->enh_desc = priv->dma_cap.enh_desc;
6824                 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up &&
6825                                 !priv->plat->use_phy_wol;
6826                 priv->hw->pmt = priv->plat->pmt;
6827                 if (priv->dma_cap.hash_tb_sz) {
6828                         priv->hw->multicast_filter_bins =
6829                                         (BIT(priv->dma_cap.hash_tb_sz) << 5);
6830                         priv->hw->mcast_bits_log2 =
6831                                         ilog2(priv->hw->multicast_filter_bins);
6832                 }
6833
6834                 /* TXCOE doesn't work in thresh DMA mode */
6835                 if (priv->plat->force_thresh_dma_mode)
6836                         priv->plat->tx_coe = 0;
6837                 else
6838                         priv->plat->tx_coe = priv->dma_cap.tx_coe;
6839
6840                 /* In case of GMAC4 rx_coe is from HW cap register. */
6841                 priv->plat->rx_coe = priv->dma_cap.rx_coe;
6842
6843                 if (priv->dma_cap.rx_coe_type2)
6844                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
6845                 else if (priv->dma_cap.rx_coe_type1)
6846                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
6847
6848         } else {
6849                 dev_info(priv->device, "No HW DMA feature register supported\n");
6850         }
6851
6852         if (priv->plat->rx_coe) {
6853                 priv->hw->rx_csum = priv->plat->rx_coe;
6854                 dev_info(priv->device, "RX Checksum Offload Engine supported\n");
6855                 if (priv->synopsys_id < DWMAC_CORE_4_00)
6856                         dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
6857         }
6858         if (priv->plat->tx_coe)
6859                 dev_info(priv->device, "TX Checksum insertion supported\n");
6860
6861         if (priv->plat->pmt) {
6862                 dev_info(priv->device, "Wake-Up On Lan supported\n");
6863                 device_set_wakeup_capable(priv->device, 1);
6864         }
6865
6866         if (priv->dma_cap.tsoen)
6867                 dev_info(priv->device, "TSO supported\n");
6868
6869         priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en;
6870         priv->hw->vlan_fail_q = priv->plat->vlan_fail_q;
6871
6872         /* Run HW quirks, if any */
6873         if (priv->hwif_quirks) {
6874                 ret = priv->hwif_quirks(priv);
6875                 if (ret)
6876                         return ret;
6877         }
6878
6879         /* Rx Watchdog is available in the COREs newer than the 3.40.
6880          * In some case, for example on bugged HW this feature
6881          * has to be disable and this can be done by passing the
6882          * riwt_off field from the platform.
6883          */
6884         if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
6885             (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
6886                 priv->use_riwt = 1;
6887                 dev_info(priv->device,
6888                          "Enable RX Mitigation via HW Watchdog Timer\n");
6889         }
6890
6891         return 0;
6892 }
6893
6894 static void stmmac_napi_add(struct net_device *dev)
6895 {
6896         struct stmmac_priv *priv = netdev_priv(dev);
6897         u32 queue, maxq;
6898
6899         maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6900
6901         for (queue = 0; queue < maxq; queue++) {
6902                 struct stmmac_channel *ch = &priv->channel[queue];
6903
6904                 ch->priv_data = priv;
6905                 ch->index = queue;
6906                 spin_lock_init(&ch->lock);
6907
6908                 if (queue < priv->plat->rx_queues_to_use) {
6909                         netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx);
6910                 }
6911                 if (queue < priv->plat->tx_queues_to_use) {
6912                         netif_napi_add_tx(dev, &ch->tx_napi,
6913                                           stmmac_napi_poll_tx);
6914                 }
6915                 if (queue < priv->plat->rx_queues_to_use &&
6916                     queue < priv->plat->tx_queues_to_use) {
6917                         netif_napi_add(dev, &ch->rxtx_napi,
6918                                        stmmac_napi_poll_rxtx);
6919                 }
6920         }
6921 }
6922
6923 static void stmmac_napi_del(struct net_device *dev)
6924 {
6925         struct stmmac_priv *priv = netdev_priv(dev);
6926         u32 queue, maxq;
6927
6928         maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6929
6930         for (queue = 0; queue < maxq; queue++) {
6931                 struct stmmac_channel *ch = &priv->channel[queue];
6932
6933                 if (queue < priv->plat->rx_queues_to_use)
6934                         netif_napi_del(&ch->rx_napi);
6935                 if (queue < priv->plat->tx_queues_to_use)
6936                         netif_napi_del(&ch->tx_napi);
6937                 if (queue < priv->plat->rx_queues_to_use &&
6938                     queue < priv->plat->tx_queues_to_use) {
6939                         netif_napi_del(&ch->rxtx_napi);
6940                 }
6941         }
6942 }
6943
6944 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt)
6945 {
6946         struct stmmac_priv *priv = netdev_priv(dev);
6947         int ret = 0;
6948
6949         if (netif_running(dev))
6950                 stmmac_release(dev);
6951
6952         stmmac_napi_del(dev);
6953
6954         priv->plat->rx_queues_to_use = rx_cnt;
6955         priv->plat->tx_queues_to_use = tx_cnt;
6956
6957         stmmac_napi_add(dev);
6958
6959         if (netif_running(dev))
6960                 ret = stmmac_open(dev);
6961
6962         return ret;
6963 }
6964
6965 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size)
6966 {
6967         struct stmmac_priv *priv = netdev_priv(dev);
6968         int ret = 0;
6969
6970         if (netif_running(dev))
6971                 stmmac_release(dev);
6972
6973         priv->dma_conf.dma_rx_size = rx_size;
6974         priv->dma_conf.dma_tx_size = tx_size;
6975
6976         if (netif_running(dev))
6977                 ret = stmmac_open(dev);
6978
6979         return ret;
6980 }
6981
6982 #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n"
6983 static void stmmac_fpe_lp_task(struct work_struct *work)
6984 {
6985         struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6986                                                 fpe_task);
6987         struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
6988         enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
6989         enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
6990         bool *hs_enable = &fpe_cfg->hs_enable;
6991         bool *enable = &fpe_cfg->enable;
6992         int retries = 20;
6993
6994         while (retries-- > 0) {
6995                 /* Bail out immediately if FPE handshake is OFF */
6996                 if (*lo_state == FPE_STATE_OFF || !*hs_enable)
6997                         break;
6998
6999                 if (*lo_state == FPE_STATE_ENTERING_ON &&
7000                     *lp_state == FPE_STATE_ENTERING_ON) {
7001                         stmmac_fpe_configure(priv, priv->ioaddr,
7002                                              priv->plat->tx_queues_to_use,
7003                                              priv->plat->rx_queues_to_use,
7004                                              *enable);
7005
7006                         netdev_info(priv->dev, "configured FPE\n");
7007
7008                         *lo_state = FPE_STATE_ON;
7009                         *lp_state = FPE_STATE_ON;
7010                         netdev_info(priv->dev, "!!! BOTH FPE stations ON\n");
7011                         break;
7012                 }
7013
7014                 if ((*lo_state == FPE_STATE_CAPABLE ||
7015                      *lo_state == FPE_STATE_ENTERING_ON) &&
7016                      *lp_state != FPE_STATE_ON) {
7017                         netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT,
7018                                     *lo_state, *lp_state);
7019                         stmmac_fpe_send_mpacket(priv, priv->ioaddr,
7020                                                 MPACKET_VERIFY);
7021                 }
7022                 /* Sleep then retry */
7023                 msleep(500);
7024         }
7025
7026         clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
7027 }
7028
7029 void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable)
7030 {
7031         if (priv->plat->fpe_cfg->hs_enable != enable) {
7032                 if (enable) {
7033                         stmmac_fpe_send_mpacket(priv, priv->ioaddr,
7034                                                 MPACKET_VERIFY);
7035                 } else {
7036                         priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF;
7037                         priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF;
7038                 }
7039
7040                 priv->plat->fpe_cfg->hs_enable = enable;
7041         }
7042 }
7043
7044 /**
7045  * stmmac_dvr_probe
7046  * @device: device pointer
7047  * @plat_dat: platform data pointer
7048  * @res: stmmac resource pointer
7049  * Description: this is the main probe function used to
7050  * call the alloc_etherdev, allocate the priv structure.
7051  * Return:
7052  * returns 0 on success, otherwise errno.
7053  */
7054 int stmmac_dvr_probe(struct device *device,
7055                      struct plat_stmmacenet_data *plat_dat,
7056                      struct stmmac_resources *res)
7057 {
7058         struct net_device *ndev = NULL;
7059         struct stmmac_priv *priv;
7060         u32 rxq;
7061         int i, ret = 0;
7062
7063         ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
7064                                        MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
7065         if (!ndev)
7066                 return -ENOMEM;
7067
7068         SET_NETDEV_DEV(ndev, device);
7069
7070         priv = netdev_priv(ndev);
7071         priv->device = device;
7072         priv->dev = ndev;
7073
7074         stmmac_set_ethtool_ops(ndev);
7075         priv->pause = pause;
7076         priv->plat = plat_dat;
7077         priv->ioaddr = res->addr;
7078         priv->dev->base_addr = (unsigned long)res->addr;
7079         priv->plat->dma_cfg->multi_msi_en = priv->plat->multi_msi_en;
7080
7081         priv->dev->irq = res->irq;
7082         priv->wol_irq = res->wol_irq;
7083         priv->lpi_irq = res->lpi_irq;
7084         priv->sfty_ce_irq = res->sfty_ce_irq;
7085         priv->sfty_ue_irq = res->sfty_ue_irq;
7086         for (i = 0; i < MTL_MAX_RX_QUEUES; i++)
7087                 priv->rx_irq[i] = res->rx_irq[i];
7088         for (i = 0; i < MTL_MAX_TX_QUEUES; i++)
7089                 priv->tx_irq[i] = res->tx_irq[i];
7090
7091         if (!is_zero_ether_addr(res->mac))
7092                 eth_hw_addr_set(priv->dev, res->mac);
7093
7094         dev_set_drvdata(device, priv->dev);
7095
7096         /* Verify driver arguments */
7097         stmmac_verify_args();
7098
7099         priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL);
7100         if (!priv->af_xdp_zc_qps)
7101                 return -ENOMEM;
7102
7103         /* Allocate workqueue */
7104         priv->wq = create_singlethread_workqueue("stmmac_wq");
7105         if (!priv->wq) {
7106                 dev_err(priv->device, "failed to create workqueue\n");
7107                 ret = -ENOMEM;
7108                 goto error_wq_init;
7109         }
7110
7111         INIT_WORK(&priv->service_task, stmmac_service_task);
7112
7113         /* Initialize Link Partner FPE workqueue */
7114         INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task);
7115
7116         /* Override with kernel parameters if supplied XXX CRS XXX
7117          * this needs to have multiple instances
7118          */
7119         if ((phyaddr >= 0) && (phyaddr <= 31))
7120                 priv->plat->phy_addr = phyaddr;
7121
7122         if (priv->plat->stmmac_rst) {
7123                 ret = reset_control_assert(priv->plat->stmmac_rst);
7124                 reset_control_deassert(priv->plat->stmmac_rst);
7125                 /* Some reset controllers have only reset callback instead of
7126                  * assert + deassert callbacks pair.
7127                  */
7128                 if (ret == -ENOTSUPP)
7129                         reset_control_reset(priv->plat->stmmac_rst);
7130         }
7131
7132         ret = reset_control_deassert(priv->plat->stmmac_ahb_rst);
7133         if (ret == -ENOTSUPP)
7134                 dev_err(priv->device, "unable to bring out of ahb reset: %pe\n",
7135                         ERR_PTR(ret));
7136
7137         /* Init MAC and get the capabilities */
7138         ret = stmmac_hw_init(priv);
7139         if (ret)
7140                 goto error_hw_init;
7141
7142         /* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch.
7143          */
7144         if (priv->synopsys_id < DWMAC_CORE_5_20)
7145                 priv->plat->dma_cfg->dche = false;
7146
7147         stmmac_check_ether_addr(priv);
7148
7149         ndev->netdev_ops = &stmmac_netdev_ops;
7150
7151         ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
7152                             NETIF_F_RXCSUM;
7153
7154         ret = stmmac_tc_init(priv, priv);
7155         if (!ret) {
7156                 ndev->hw_features |= NETIF_F_HW_TC;
7157         }
7158
7159         if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
7160                 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
7161                 if (priv->plat->has_gmac4)
7162                         ndev->hw_features |= NETIF_F_GSO_UDP_L4;
7163                 priv->tso = true;
7164                 dev_info(priv->device, "TSO feature enabled\n");
7165         }
7166
7167         if (priv->dma_cap.sphen && !priv->plat->sph_disable) {
7168                 ndev->hw_features |= NETIF_F_GRO;
7169                 priv->sph_cap = true;
7170                 priv->sph = priv->sph_cap;
7171                 dev_info(priv->device, "SPH feature enabled\n");
7172         }
7173
7174         /* The current IP register MAC_HW_Feature1[ADDR64] only define
7175          * 32/40/64 bit width, but some SOC support others like i.MX8MP
7176          * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64].
7177          * So overwrite dma_cap.addr64 according to HW real design.
7178          */
7179         if (priv->plat->addr64)
7180                 priv->dma_cap.addr64 = priv->plat->addr64;
7181
7182         if (priv->dma_cap.addr64) {
7183                 ret = dma_set_mask_and_coherent(device,
7184                                 DMA_BIT_MASK(priv->dma_cap.addr64));
7185                 if (!ret) {
7186                         dev_info(priv->device, "Using %d bits DMA width\n",
7187                                  priv->dma_cap.addr64);
7188
7189                         /*
7190                          * If more than 32 bits can be addressed, make sure to
7191                          * enable enhanced addressing mode.
7192                          */
7193                         if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
7194                                 priv->plat->dma_cfg->eame = true;
7195                 } else {
7196                         ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
7197                         if (ret) {
7198                                 dev_err(priv->device, "Failed to set DMA Mask\n");
7199                                 goto error_hw_init;
7200                         }
7201
7202                         priv->dma_cap.addr64 = 32;
7203                 }
7204         }
7205
7206         ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
7207         ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
7208 #ifdef STMMAC_VLAN_TAG_USED
7209         /* Both mac100 and gmac support receive VLAN tag detection */
7210         ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
7211         if (priv->dma_cap.vlhash) {
7212                 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7213                 ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
7214         }
7215         if (priv->dma_cap.vlins) {
7216                 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
7217                 if (priv->dma_cap.dvlan)
7218                         ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
7219         }
7220 #endif
7221         priv->msg_enable = netif_msg_init(debug, default_msg_level);
7222
7223         /* Initialize RSS */
7224         rxq = priv->plat->rx_queues_to_use;
7225         netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
7226         for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
7227                 priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
7228
7229         if (priv->dma_cap.rssen && priv->plat->rss_en)
7230                 ndev->features |= NETIF_F_RXHASH;
7231
7232         /* MTU range: 46 - hw-specific max */
7233         ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
7234         if (priv->plat->has_xgmac)
7235                 ndev->max_mtu = XGMAC_JUMBO_LEN;
7236         else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
7237                 ndev->max_mtu = JUMBO_LEN;
7238         else
7239                 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
7240         /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
7241          * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
7242          */
7243         if ((priv->plat->maxmtu < ndev->max_mtu) &&
7244             (priv->plat->maxmtu >= ndev->min_mtu))
7245                 ndev->max_mtu = priv->plat->maxmtu;
7246         else if (priv->plat->maxmtu < ndev->min_mtu)
7247                 dev_warn(priv->device,
7248                          "%s: warning: maxmtu having invalid value (%d)\n",
7249                          __func__, priv->plat->maxmtu);
7250
7251         if (flow_ctrl)
7252                 priv->flow_ctrl = FLOW_AUTO;    /* RX/TX pause on */
7253
7254         /* Setup channels NAPI */
7255         stmmac_napi_add(ndev);
7256
7257         mutex_init(&priv->lock);
7258
7259         /* If a specific clk_csr value is passed from the platform
7260          * this means that the CSR Clock Range selection cannot be
7261          * changed at run-time and it is fixed. Viceversa the driver'll try to
7262          * set the MDC clock dynamically according to the csr actual
7263          * clock input.
7264          */
7265         if (priv->plat->clk_csr >= 0)
7266                 priv->clk_csr = priv->plat->clk_csr;
7267         else
7268                 stmmac_clk_csr_set(priv);
7269
7270         stmmac_check_pcs_mode(priv);
7271
7272         pm_runtime_get_noresume(device);
7273         pm_runtime_set_active(device);
7274         if (!pm_runtime_enabled(device))
7275                 pm_runtime_enable(device);
7276
7277         if (priv->hw->pcs != STMMAC_PCS_TBI &&
7278             priv->hw->pcs != STMMAC_PCS_RTBI) {
7279                 /* MDIO bus Registration */
7280                 ret = stmmac_mdio_register(ndev);
7281                 if (ret < 0) {
7282                         dev_err_probe(priv->device, ret,
7283                                       "%s: MDIO bus (id: %d) registration failed\n",
7284                                       __func__, priv->plat->bus_id);
7285                         goto error_mdio_register;
7286                 }
7287         }
7288
7289         if (priv->plat->speed_mode_2500)
7290                 priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv);
7291
7292         if (priv->plat->mdio_bus_data && priv->plat->mdio_bus_data->has_xpcs) {
7293                 ret = stmmac_xpcs_setup(priv->mii);
7294                 if (ret)
7295                         goto error_xpcs_setup;
7296         }
7297
7298         ret = stmmac_phy_setup(priv);
7299         if (ret) {
7300                 netdev_err(ndev, "failed to setup phy (%d)\n", ret);
7301                 goto error_phy_setup;
7302         }
7303
7304         ret = register_netdev(ndev);
7305         if (ret) {
7306                 dev_err(priv->device, "%s: ERROR %i registering the device\n",
7307                         __func__, ret);
7308                 goto error_netdev_register;
7309         }
7310
7311 #ifdef CONFIG_DEBUG_FS
7312         stmmac_init_fs(ndev);
7313 #endif
7314
7315         if (priv->plat->dump_debug_regs)
7316                 priv->plat->dump_debug_regs(priv->plat->bsp_priv);
7317
7318         /* Let pm_runtime_put() disable the clocks.
7319          * If CONFIG_PM is not enabled, the clocks will stay powered.
7320          */
7321         pm_runtime_put(device);
7322
7323         return ret;
7324
7325 error_netdev_register:
7326         phylink_destroy(priv->phylink);
7327 error_xpcs_setup:
7328 error_phy_setup:
7329         if (priv->hw->pcs != STMMAC_PCS_TBI &&
7330             priv->hw->pcs != STMMAC_PCS_RTBI)
7331                 stmmac_mdio_unregister(ndev);
7332 error_mdio_register:
7333         stmmac_napi_del(ndev);
7334 error_hw_init:
7335         destroy_workqueue(priv->wq);
7336 error_wq_init:
7337         bitmap_free(priv->af_xdp_zc_qps);
7338
7339         return ret;
7340 }
7341 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
7342
7343 /**
7344  * stmmac_dvr_remove
7345  * @dev: device pointer
7346  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
7347  * changes the link status, releases the DMA descriptor rings.
7348  */
7349 int stmmac_dvr_remove(struct device *dev)
7350 {
7351         struct net_device *ndev = dev_get_drvdata(dev);
7352         struct stmmac_priv *priv = netdev_priv(ndev);
7353
7354         netdev_info(priv->dev, "%s: removing driver", __func__);
7355
7356         pm_runtime_get_sync(dev);
7357
7358         stmmac_stop_all_dma(priv);
7359         stmmac_mac_set(priv, priv->ioaddr, false);
7360         netif_carrier_off(ndev);
7361         unregister_netdev(ndev);
7362
7363         /* Serdes power down needs to happen after VLAN filter
7364          * is deleted that is triggered by unregister_netdev().
7365          */
7366         if (priv->plat->serdes_powerdown)
7367                 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7368
7369 #ifdef CONFIG_DEBUG_FS
7370         stmmac_exit_fs(ndev);
7371 #endif
7372         phylink_destroy(priv->phylink);
7373         if (priv->plat->stmmac_rst)
7374                 reset_control_assert(priv->plat->stmmac_rst);
7375         reset_control_assert(priv->plat->stmmac_ahb_rst);
7376         if (priv->hw->pcs != STMMAC_PCS_TBI &&
7377             priv->hw->pcs != STMMAC_PCS_RTBI)
7378                 stmmac_mdio_unregister(ndev);
7379         destroy_workqueue(priv->wq);
7380         mutex_destroy(&priv->lock);
7381         bitmap_free(priv->af_xdp_zc_qps);
7382
7383         pm_runtime_disable(dev);
7384         pm_runtime_put_noidle(dev);
7385
7386         return 0;
7387 }
7388 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
7389
7390 /**
7391  * stmmac_suspend - suspend callback
7392  * @dev: device pointer
7393  * Description: this is the function to suspend the device and it is called
7394  * by the platform driver to stop the network queue, release the resources,
7395  * program the PMT register (for WoL), clean and release driver resources.
7396  */
7397 int stmmac_suspend(struct device *dev)
7398 {
7399         struct net_device *ndev = dev_get_drvdata(dev);
7400         struct stmmac_priv *priv = netdev_priv(ndev);
7401         u32 chan;
7402
7403         if (!ndev || !netif_running(ndev))
7404                 return 0;
7405
7406         mutex_lock(&priv->lock);
7407
7408         netif_device_detach(ndev);
7409
7410         stmmac_disable_all_queues(priv);
7411
7412         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
7413                 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
7414
7415         if (priv->eee_enabled) {
7416                 priv->tx_path_in_lpi_mode = false;
7417                 del_timer_sync(&priv->eee_ctrl_timer);
7418         }
7419
7420         /* Stop TX/RX DMA */
7421         stmmac_stop_all_dma(priv);
7422
7423         if (priv->plat->serdes_powerdown)
7424                 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7425
7426         /* Enable Power down mode by programming the PMT regs */
7427         if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7428                 stmmac_pmt(priv, priv->hw, priv->wolopts);
7429                 priv->irq_wake = 1;
7430         } else {
7431                 stmmac_mac_set(priv, priv->ioaddr, false);
7432                 pinctrl_pm_select_sleep_state(priv->device);
7433         }
7434
7435         mutex_unlock(&priv->lock);
7436
7437         rtnl_lock();
7438         if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7439                 phylink_suspend(priv->phylink, true);
7440         } else {
7441                 if (device_may_wakeup(priv->device))
7442                         phylink_speed_down(priv->phylink, false);
7443                 phylink_suspend(priv->phylink, false);
7444         }
7445         rtnl_unlock();
7446
7447         if (priv->dma_cap.fpesel) {
7448                 /* Disable FPE */
7449                 stmmac_fpe_configure(priv, priv->ioaddr,
7450                                      priv->plat->tx_queues_to_use,
7451                                      priv->plat->rx_queues_to_use, false);
7452
7453                 stmmac_fpe_handshake(priv, false);
7454                 stmmac_fpe_stop_wq(priv);
7455         }
7456
7457         priv->speed = SPEED_UNKNOWN;
7458         return 0;
7459 }
7460 EXPORT_SYMBOL_GPL(stmmac_suspend);
7461
7462 static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue)
7463 {
7464         struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
7465
7466         rx_q->cur_rx = 0;
7467         rx_q->dirty_rx = 0;
7468 }
7469
7470 static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue)
7471 {
7472         struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
7473
7474         tx_q->cur_tx = 0;
7475         tx_q->dirty_tx = 0;
7476         tx_q->mss = 0;
7477
7478         netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
7479 }
7480
7481 /**
7482  * stmmac_reset_queues_param - reset queue parameters
7483  * @priv: device pointer
7484  */
7485 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
7486 {
7487         u32 rx_cnt = priv->plat->rx_queues_to_use;
7488         u32 tx_cnt = priv->plat->tx_queues_to_use;
7489         u32 queue;
7490
7491         for (queue = 0; queue < rx_cnt; queue++)
7492                 stmmac_reset_rx_queue(priv, queue);
7493
7494         for (queue = 0; queue < tx_cnt; queue++)
7495                 stmmac_reset_tx_queue(priv, queue);
7496 }
7497
7498 /**
7499  * stmmac_resume - resume callback
7500  * @dev: device pointer
7501  * Description: when resume this function is invoked to setup the DMA and CORE
7502  * in a usable state.
7503  */
7504 int stmmac_resume(struct device *dev)
7505 {
7506         struct net_device *ndev = dev_get_drvdata(dev);
7507         struct stmmac_priv *priv = netdev_priv(ndev);
7508         int ret;
7509
7510         if (!netif_running(ndev))
7511                 return 0;
7512
7513         /* Power Down bit, into the PM register, is cleared
7514          * automatically as soon as a magic packet or a Wake-up frame
7515          * is received. Anyway, it's better to manually clear
7516          * this bit because it can generate problems while resuming
7517          * from another devices (e.g. serial console).
7518          */
7519         if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7520                 mutex_lock(&priv->lock);
7521                 stmmac_pmt(priv, priv->hw, 0);
7522                 mutex_unlock(&priv->lock);
7523                 priv->irq_wake = 0;
7524         } else {
7525                 pinctrl_pm_select_default_state(priv->device);
7526                 /* reset the phy so that it's ready */
7527                 if (priv->mii)
7528                         stmmac_mdio_reset(priv->mii);
7529         }
7530
7531         if (!priv->plat->serdes_up_after_phy_linkup && priv->plat->serdes_powerup) {
7532                 ret = priv->plat->serdes_powerup(ndev,
7533                                                  priv->plat->bsp_priv);
7534
7535                 if (ret < 0)
7536                         return ret;
7537         }
7538
7539         rtnl_lock();
7540         if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7541                 phylink_resume(priv->phylink);
7542         } else {
7543                 phylink_resume(priv->phylink);
7544                 if (device_may_wakeup(priv->device))
7545                         phylink_speed_up(priv->phylink);
7546         }
7547         rtnl_unlock();
7548
7549         rtnl_lock();
7550         mutex_lock(&priv->lock);
7551
7552         stmmac_reset_queues_param(priv);
7553
7554         stmmac_free_tx_skbufs(priv);
7555         stmmac_clear_descriptors(priv, &priv->dma_conf);
7556
7557         stmmac_hw_setup(ndev, false);
7558         stmmac_init_coalesce(priv);
7559         stmmac_set_rx_mode(ndev);
7560
7561         stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
7562
7563         stmmac_enable_all_queues(priv);
7564         stmmac_enable_all_dma_irq(priv);
7565
7566         mutex_unlock(&priv->lock);
7567         rtnl_unlock();
7568
7569         netif_device_attach(ndev);
7570
7571         return 0;
7572 }
7573 EXPORT_SYMBOL_GPL(stmmac_resume);
7574
7575 #ifndef MODULE
7576 static int __init stmmac_cmdline_opt(char *str)
7577 {
7578         char *opt;
7579
7580         if (!str || !*str)
7581                 return 1;
7582         while ((opt = strsep(&str, ",")) != NULL) {
7583                 if (!strncmp(opt, "debug:", 6)) {
7584                         if (kstrtoint(opt + 6, 0, &debug))
7585                                 goto err;
7586                 } else if (!strncmp(opt, "phyaddr:", 8)) {
7587                         if (kstrtoint(opt + 8, 0, &phyaddr))
7588                                 goto err;
7589                 } else if (!strncmp(opt, "buf_sz:", 7)) {
7590                         if (kstrtoint(opt + 7, 0, &buf_sz))
7591                                 goto err;
7592                 } else if (!strncmp(opt, "tc:", 3)) {
7593                         if (kstrtoint(opt + 3, 0, &tc))
7594                                 goto err;
7595                 } else if (!strncmp(opt, "watchdog:", 9)) {
7596                         if (kstrtoint(opt + 9, 0, &watchdog))
7597                                 goto err;
7598                 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
7599                         if (kstrtoint(opt + 10, 0, &flow_ctrl))
7600                                 goto err;
7601                 } else if (!strncmp(opt, "pause:", 6)) {
7602                         if (kstrtoint(opt + 6, 0, &pause))
7603                                 goto err;
7604                 } else if (!strncmp(opt, "eee_timer:", 10)) {
7605                         if (kstrtoint(opt + 10, 0, &eee_timer))
7606                                 goto err;
7607                 } else if (!strncmp(opt, "chain_mode:", 11)) {
7608                         if (kstrtoint(opt + 11, 0, &chain_mode))
7609                                 goto err;
7610                 }
7611         }
7612         return 1;
7613
7614 err:
7615         pr_err("%s: ERROR broken module parameter conversion", __func__);
7616         return 1;
7617 }
7618
7619 __setup("stmmaceth=", stmmac_cmdline_opt);
7620 #endif /* MODULE */
7621
7622 static int __init stmmac_init(void)
7623 {
7624 #ifdef CONFIG_DEBUG_FS
7625         /* Create debugfs main directory if it doesn't exist yet */
7626         if (!stmmac_fs_dir)
7627                 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
7628         register_netdevice_notifier(&stmmac_notifier);
7629 #endif
7630
7631         return 0;
7632 }
7633
7634 static void __exit stmmac_exit(void)
7635 {
7636 #ifdef CONFIG_DEBUG_FS
7637         unregister_netdevice_notifier(&stmmac_notifier);
7638         debugfs_remove_recursive(stmmac_fs_dir);
7639 #endif
7640 }
7641
7642 module_init(stmmac_init)
7643 module_exit(stmmac_exit)
7644
7645 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
7646 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
7647 MODULE_LICENSE("GPL");