net: introduce and use netdev_features_t for device features sets
[linux-block.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 /*******************************************************************************
2   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3   ST Ethernet IPs are built around a Synopsys IP Core.
4
5         Copyright(C) 2007-2011 STMicroelectronics Ltd
6
7   This program is free software; you can redistribute it and/or modify it
8   under the terms and conditions of the GNU General Public License,
9   version 2, as published by the Free Software Foundation.
10
11   This program is distributed in the hope it will be useful, but WITHOUT
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   more details.
15
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc.,
18   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19
20   The full GNU General Public License is included in this distribution in
21   the file called "COPYING".
22
23   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24
25   Documentation available at:
26         http://www.stlinux.com
27   Support available at:
28         https://bugzilla.stlinux.com/
29 *******************************************************************************/
30
31 #include <linux/module.h>
32 #include <linux/init.h>
33 #include <linux/kernel.h>
34 #include <linux/interrupt.h>
35 #include <linux/etherdevice.h>
36 #include <linux/platform_device.h>
37 #include <linux/ip.h>
38 #include <linux/tcp.h>
39 #include <linux/skbuff.h>
40 #include <linux/ethtool.h>
41 #include <linux/if_ether.h>
42 #include <linux/crc32.h>
43 #include <linux/mii.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/dma-mapping.h>
47 #include <linux/slab.h>
48 #include <linux/prefetch.h>
49 #ifdef CONFIG_STMMAC_DEBUG_FS
50 #include <linux/debugfs.h>
51 #include <linux/seq_file.h>
52 #endif
53 #include "stmmac.h"
54
55 #define STMMAC_RESOURCE_NAME    "stmmaceth"
56
57 #undef STMMAC_DEBUG
58 /*#define STMMAC_DEBUG*/
59 #ifdef STMMAC_DEBUG
60 #define DBG(nlevel, klevel, fmt, args...) \
61                 ((void)(netif_msg_##nlevel(priv) && \
62                 printk(KERN_##klevel fmt, ## args)))
63 #else
64 #define DBG(nlevel, klevel, fmt, args...) do { } while (0)
65 #endif
66
67 #undef STMMAC_RX_DEBUG
68 /*#define STMMAC_RX_DEBUG*/
69 #ifdef STMMAC_RX_DEBUG
70 #define RX_DBG(fmt, args...)  printk(fmt, ## args)
71 #else
72 #define RX_DBG(fmt, args...)  do { } while (0)
73 #endif
74
75 #undef STMMAC_XMIT_DEBUG
76 /*#define STMMAC_XMIT_DEBUG*/
77 #ifdef STMMAC_TX_DEBUG
78 #define TX_DBG(fmt, args...)  printk(fmt, ## args)
79 #else
80 #define TX_DBG(fmt, args...)  do { } while (0)
81 #endif
82
83 #define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
84 #define JUMBO_LEN       9000
85
86 /* Module parameters */
87 #define TX_TIMEO 5000 /* default 5 seconds */
88 static int watchdog = TX_TIMEO;
89 module_param(watchdog, int, S_IRUGO | S_IWUSR);
90 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds");
91
92 static int debug = -1;          /* -1: default, 0: no output, 16:  all */
93 module_param(debug, int, S_IRUGO | S_IWUSR);
94 MODULE_PARM_DESC(debug, "Message Level (0: no output, 16: all)");
95
96 static int phyaddr = -1;
97 module_param(phyaddr, int, S_IRUGO);
98 MODULE_PARM_DESC(phyaddr, "Physical device address");
99
100 #define DMA_TX_SIZE 256
101 static int dma_txsize = DMA_TX_SIZE;
102 module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
103 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
104
105 #define DMA_RX_SIZE 256
106 static int dma_rxsize = DMA_RX_SIZE;
107 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
108 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
109
110 static int flow_ctrl = FLOW_OFF;
111 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
112 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
113
114 static int pause = PAUSE_TIME;
115 module_param(pause, int, S_IRUGO | S_IWUSR);
116 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
117
118 #define TC_DEFAULT 64
119 static int tc = TC_DEFAULT;
120 module_param(tc, int, S_IRUGO | S_IWUSR);
121 MODULE_PARM_DESC(tc, "DMA threshold control value");
122
123 /* Pay attention to tune this parameter; take care of both
124  * hardware capability and network stabitily/performance impact.
125  * Many tests showed that ~4ms latency seems to be good enough. */
126 #ifdef CONFIG_STMMAC_TIMER
127 #define DEFAULT_PERIODIC_RATE   256
128 static int tmrate = DEFAULT_PERIODIC_RATE;
129 module_param(tmrate, int, S_IRUGO | S_IWUSR);
130 MODULE_PARM_DESC(tmrate, "External timer freq. (default: 256Hz)");
131 #endif
132
133 #define DMA_BUFFER_SIZE BUF_SIZE_2KiB
134 static int buf_sz = DMA_BUFFER_SIZE;
135 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
136 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
137
138 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
139                                       NETIF_MSG_LINK | NETIF_MSG_IFUP |
140                                       NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
141
142 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
143
144 /**
145  * stmmac_verify_args - verify the driver parameters.
146  * Description: it verifies if some wrong parameter is passed to the driver.
147  * Note that wrong parameters are replaced with the default values.
148  */
149 static void stmmac_verify_args(void)
150 {
151         if (unlikely(watchdog < 0))
152                 watchdog = TX_TIMEO;
153         if (unlikely(dma_rxsize < 0))
154                 dma_rxsize = DMA_RX_SIZE;
155         if (unlikely(dma_txsize < 0))
156                 dma_txsize = DMA_TX_SIZE;
157         if (unlikely((buf_sz < DMA_BUFFER_SIZE) || (buf_sz > BUF_SIZE_16KiB)))
158                 buf_sz = DMA_BUFFER_SIZE;
159         if (unlikely(flow_ctrl > 1))
160                 flow_ctrl = FLOW_AUTO;
161         else if (likely(flow_ctrl < 0))
162                 flow_ctrl = FLOW_OFF;
163         if (unlikely((pause < 0) || (pause > 0xffff)))
164                 pause = PAUSE_TIME;
165 }
166
167 #if defined(STMMAC_XMIT_DEBUG) || defined(STMMAC_RX_DEBUG)
168 static void print_pkt(unsigned char *buf, int len)
169 {
170         int j;
171         pr_info("len = %d byte, buf addr: 0x%p", len, buf);
172         for (j = 0; j < len; j++) {
173                 if ((j % 16) == 0)
174                         pr_info("\n %03x:", j);
175                 pr_info(" %02x", buf[j]);
176         }
177         pr_info("\n");
178 }
179 #endif
180
181 /* minimum number of free TX descriptors required to wake up TX process */
182 #define STMMAC_TX_THRESH(x)     (x->dma_tx_size/4)
183
184 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
185 {
186         return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
187 }
188
189 /* On some ST platforms, some HW system configuraton registers have to be
190  * set according to the link speed negotiated.
191  */
192 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
193 {
194         struct phy_device *phydev = priv->phydev;
195
196         if (likely(priv->plat->fix_mac_speed))
197                 priv->plat->fix_mac_speed(priv->plat->bsp_priv,
198                                           phydev->speed);
199 }
200
201 /**
202  * stmmac_adjust_link
203  * @dev: net device structure
204  * Description: it adjusts the link parameters.
205  */
206 static void stmmac_adjust_link(struct net_device *dev)
207 {
208         struct stmmac_priv *priv = netdev_priv(dev);
209         struct phy_device *phydev = priv->phydev;
210         unsigned long flags;
211         int new_state = 0;
212         unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
213
214         if (phydev == NULL)
215                 return;
216
217         DBG(probe, DEBUG, "stmmac_adjust_link: called.  address %d link %d\n",
218             phydev->addr, phydev->link);
219
220         spin_lock_irqsave(&priv->lock, flags);
221         if (phydev->link) {
222                 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
223
224                 /* Now we make sure that we can be in full duplex mode.
225                  * If not, we operate in half-duplex mode. */
226                 if (phydev->duplex != priv->oldduplex) {
227                         new_state = 1;
228                         if (!(phydev->duplex))
229                                 ctrl &= ~priv->hw->link.duplex;
230                         else
231                                 ctrl |= priv->hw->link.duplex;
232                         priv->oldduplex = phydev->duplex;
233                 }
234                 /* Flow Control operation */
235                 if (phydev->pause)
236                         priv->hw->mac->flow_ctrl(priv->ioaddr, phydev->duplex,
237                                                  fc, pause_time);
238
239                 if (phydev->speed != priv->speed) {
240                         new_state = 1;
241                         switch (phydev->speed) {
242                         case 1000:
243                                 if (likely(priv->plat->has_gmac))
244                                         ctrl &= ~priv->hw->link.port;
245                                 stmmac_hw_fix_mac_speed(priv);
246                                 break;
247                         case 100:
248                         case 10:
249                                 if (priv->plat->has_gmac) {
250                                         ctrl |= priv->hw->link.port;
251                                         if (phydev->speed == SPEED_100) {
252                                                 ctrl |= priv->hw->link.speed;
253                                         } else {
254                                                 ctrl &= ~(priv->hw->link.speed);
255                                         }
256                                 } else {
257                                         ctrl &= ~priv->hw->link.port;
258                                 }
259                                 stmmac_hw_fix_mac_speed(priv);
260                                 break;
261                         default:
262                                 if (netif_msg_link(priv))
263                                         pr_warning("%s: Speed (%d) is not 10"
264                                        " or 100!\n", dev->name, phydev->speed);
265                                 break;
266                         }
267
268                         priv->speed = phydev->speed;
269                 }
270
271                 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
272
273                 if (!priv->oldlink) {
274                         new_state = 1;
275                         priv->oldlink = 1;
276                 }
277         } else if (priv->oldlink) {
278                 new_state = 1;
279                 priv->oldlink = 0;
280                 priv->speed = 0;
281                 priv->oldduplex = -1;
282         }
283
284         if (new_state && netif_msg_link(priv))
285                 phy_print_status(phydev);
286
287         spin_unlock_irqrestore(&priv->lock, flags);
288
289         DBG(probe, DEBUG, "stmmac_adjust_link: exiting\n");
290 }
291
292 /**
293  * stmmac_init_phy - PHY initialization
294  * @dev: net device structure
295  * Description: it initializes the driver's PHY state, and attaches the PHY
296  * to the mac driver.
297  *  Return value:
298  *  0 on success
299  */
300 static int stmmac_init_phy(struct net_device *dev)
301 {
302         struct stmmac_priv *priv = netdev_priv(dev);
303         struct phy_device *phydev;
304         char phy_id[MII_BUS_ID_SIZE + 3];
305         char bus_id[MII_BUS_ID_SIZE];
306         int interface = priv->plat->interface;
307         priv->oldlink = 0;
308         priv->speed = 0;
309         priv->oldduplex = -1;
310
311         snprintf(bus_id, MII_BUS_ID_SIZE, "%x", priv->plat->bus_id);
312         snprintf(phy_id, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
313                  priv->plat->phy_addr);
314         pr_debug("stmmac_init_phy:  trying to attach to %s\n", phy_id);
315
316         phydev = phy_connect(dev, phy_id, &stmmac_adjust_link, 0, interface);
317
318         if (IS_ERR(phydev)) {
319                 pr_err("%s: Could not attach to PHY\n", dev->name);
320                 return PTR_ERR(phydev);
321         }
322
323         /* Stop Advertising 1000BASE Capability if interface is not GMII */
324         if ((interface) && ((interface == PHY_INTERFACE_MODE_MII) ||
325             (interface == PHY_INTERFACE_MODE_RMII))) {
326                 phydev->supported &= (PHY_BASIC_FEATURES | SUPPORTED_Pause |
327                                       SUPPORTED_Asym_Pause);
328                 phydev->advertising = phydev->supported;
329         }
330
331         /*
332          * Broken HW is sometimes missing the pull-up resistor on the
333          * MDIO line, which results in reads to non-existent devices returning
334          * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
335          * device as well.
336          * Note: phydev->phy_id is the result of reading the UID PHY registers.
337          */
338         if (phydev->phy_id == 0) {
339                 phy_disconnect(phydev);
340                 return -ENODEV;
341         }
342         pr_debug("stmmac_init_phy:  %s: attached to PHY (UID 0x%x)"
343                  " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
344
345         priv->phydev = phydev;
346
347         return 0;
348 }
349
350 static inline void stmmac_enable_mac(void __iomem *ioaddr)
351 {
352         u32 value = readl(ioaddr + MAC_CTRL_REG);
353
354         value |= MAC_RNABLE_RX | MAC_ENABLE_TX;
355         writel(value, ioaddr + MAC_CTRL_REG);
356 }
357
358 static inline void stmmac_disable_mac(void __iomem *ioaddr)
359 {
360         u32 value = readl(ioaddr + MAC_CTRL_REG);
361
362         value &= ~(MAC_ENABLE_TX | MAC_RNABLE_RX);
363         writel(value, ioaddr + MAC_CTRL_REG);
364 }
365
366 /**
367  * display_ring
368  * @p: pointer to the ring.
369  * @size: size of the ring.
370  * Description: display all the descriptors within the ring.
371  */
372 static void display_ring(struct dma_desc *p, int size)
373 {
374         struct tmp_s {
375                 u64 a;
376                 unsigned int b;
377                 unsigned int c;
378         };
379         int i;
380         for (i = 0; i < size; i++) {
381                 struct tmp_s *x = (struct tmp_s *)(p + i);
382                 pr_info("\t%d [0x%x]: DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
383                        i, (unsigned int)virt_to_phys(&p[i]),
384                        (unsigned int)(x->a), (unsigned int)((x->a) >> 32),
385                        x->b, x->c);
386                 pr_info("\n");
387         }
388 }
389
390 static int stmmac_set_bfsize(int mtu, int bufsize)
391 {
392         int ret = bufsize;
393
394         if (mtu >= BUF_SIZE_4KiB)
395                 ret = BUF_SIZE_8KiB;
396         else if (mtu >= BUF_SIZE_2KiB)
397                 ret = BUF_SIZE_4KiB;
398         else if (mtu >= DMA_BUFFER_SIZE)
399                 ret = BUF_SIZE_2KiB;
400         else
401                 ret = DMA_BUFFER_SIZE;
402
403         return ret;
404 }
405
406 /**
407  * init_dma_desc_rings - init the RX/TX descriptor rings
408  * @dev: net device structure
409  * Description:  this function initializes the DMA RX/TX descriptors
410  * and allocates the socket buffers. It suppors the chained and ring
411  * modes.
412  */
413 static void init_dma_desc_rings(struct net_device *dev)
414 {
415         int i;
416         struct stmmac_priv *priv = netdev_priv(dev);
417         struct sk_buff *skb;
418         unsigned int txsize = priv->dma_tx_size;
419         unsigned int rxsize = priv->dma_rx_size;
420         unsigned int bfsize;
421         int dis_ic = 0;
422         int des3_as_data_buf = 0;
423
424         /* Set the max buffer size according to the DESC mode
425          * and the MTU. Note that RING mode allows 16KiB bsize. */
426         bfsize = priv->hw->ring->set_16kib_bfsize(dev->mtu);
427
428         if (bfsize == BUF_SIZE_16KiB)
429                 des3_as_data_buf = 1;
430         else
431                 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
432
433 #ifdef CONFIG_STMMAC_TIMER
434         /* Disable interrupts on completion for the reception if timer is on */
435         if (likely(priv->tm->enable))
436                 dis_ic = 1;
437 #endif
438
439         DBG(probe, INFO, "stmmac: txsize %d, rxsize %d, bfsize %d\n",
440             txsize, rxsize, bfsize);
441
442         priv->rx_skbuff_dma = kmalloc(rxsize * sizeof(dma_addr_t), GFP_KERNEL);
443         priv->rx_skbuff =
444             kmalloc(sizeof(struct sk_buff *) * rxsize, GFP_KERNEL);
445         priv->dma_rx =
446             (struct dma_desc *)dma_alloc_coherent(priv->device,
447                                                   rxsize *
448                                                   sizeof(struct dma_desc),
449                                                   &priv->dma_rx_phy,
450                                                   GFP_KERNEL);
451         priv->tx_skbuff = kmalloc(sizeof(struct sk_buff *) * txsize,
452                                        GFP_KERNEL);
453         priv->dma_tx =
454             (struct dma_desc *)dma_alloc_coherent(priv->device,
455                                                   txsize *
456                                                   sizeof(struct dma_desc),
457                                                   &priv->dma_tx_phy,
458                                                   GFP_KERNEL);
459
460         if ((priv->dma_rx == NULL) || (priv->dma_tx == NULL)) {
461                 pr_err("%s:ERROR allocating the DMA Tx/Rx desc\n", __func__);
462                 return;
463         }
464
465         DBG(probe, INFO, "stmmac (%s) DMA desc: virt addr (Rx %p, "
466             "Tx %p)\n\tDMA phy addr (Rx 0x%08x, Tx 0x%08x)\n",
467             dev->name, priv->dma_rx, priv->dma_tx,
468             (unsigned int)priv->dma_rx_phy, (unsigned int)priv->dma_tx_phy);
469
470         /* RX INITIALIZATION */
471         DBG(probe, INFO, "stmmac: SKB addresses:\n"
472                          "skb\t\tskb data\tdma data\n");
473
474         for (i = 0; i < rxsize; i++) {
475                 struct dma_desc *p = priv->dma_rx + i;
476
477                 skb = __netdev_alloc_skb(dev, bfsize + NET_IP_ALIGN,
478                                          GFP_KERNEL);
479                 if (unlikely(skb == NULL)) {
480                         pr_err("%s: Rx init fails; skb is NULL\n", __func__);
481                         break;
482                 }
483                 skb_reserve(skb, NET_IP_ALIGN);
484                 priv->rx_skbuff[i] = skb;
485                 priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
486                                                 bfsize, DMA_FROM_DEVICE);
487
488                 p->des2 = priv->rx_skbuff_dma[i];
489
490                 priv->hw->ring->init_desc3(des3_as_data_buf, p);
491
492                 DBG(probe, INFO, "[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
493                         priv->rx_skbuff[i]->data, priv->rx_skbuff_dma[i]);
494         }
495         priv->cur_rx = 0;
496         priv->dirty_rx = (unsigned int)(i - rxsize);
497         priv->dma_buf_sz = bfsize;
498         buf_sz = bfsize;
499
500         /* TX INITIALIZATION */
501         for (i = 0; i < txsize; i++) {
502                 priv->tx_skbuff[i] = NULL;
503                 priv->dma_tx[i].des2 = 0;
504         }
505
506         /* In case of Chained mode this sets the des3 to the next
507          * element in the chain */
508         priv->hw->ring->init_dma_chain(priv->dma_rx, priv->dma_rx_phy, rxsize);
509         priv->hw->ring->init_dma_chain(priv->dma_tx, priv->dma_tx_phy, txsize);
510
511         priv->dirty_tx = 0;
512         priv->cur_tx = 0;
513
514         /* Clear the Rx/Tx descriptors */
515         priv->hw->desc->init_rx_desc(priv->dma_rx, rxsize, dis_ic);
516         priv->hw->desc->init_tx_desc(priv->dma_tx, txsize);
517
518         if (netif_msg_hw(priv)) {
519                 pr_info("RX descriptor ring:\n");
520                 display_ring(priv->dma_rx, rxsize);
521                 pr_info("TX descriptor ring:\n");
522                 display_ring(priv->dma_tx, txsize);
523         }
524 }
525
526 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
527 {
528         int i;
529
530         for (i = 0; i < priv->dma_rx_size; i++) {
531                 if (priv->rx_skbuff[i]) {
532                         dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
533                                          priv->dma_buf_sz, DMA_FROM_DEVICE);
534                         dev_kfree_skb_any(priv->rx_skbuff[i]);
535                 }
536                 priv->rx_skbuff[i] = NULL;
537         }
538 }
539
540 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
541 {
542         int i;
543
544         for (i = 0; i < priv->dma_tx_size; i++) {
545                 if (priv->tx_skbuff[i] != NULL) {
546                         struct dma_desc *p = priv->dma_tx + i;
547                         if (p->des2)
548                                 dma_unmap_single(priv->device, p->des2,
549                                                  priv->hw->desc->get_tx_len(p),
550                                                  DMA_TO_DEVICE);
551                         dev_kfree_skb_any(priv->tx_skbuff[i]);
552                         priv->tx_skbuff[i] = NULL;
553                 }
554         }
555 }
556
557 static void free_dma_desc_resources(struct stmmac_priv *priv)
558 {
559         /* Release the DMA TX/RX socket buffers */
560         dma_free_rx_skbufs(priv);
561         dma_free_tx_skbufs(priv);
562
563         /* Free the region of consistent memory previously allocated for
564          * the DMA */
565         dma_free_coherent(priv->device,
566                           priv->dma_tx_size * sizeof(struct dma_desc),
567                           priv->dma_tx, priv->dma_tx_phy);
568         dma_free_coherent(priv->device,
569                           priv->dma_rx_size * sizeof(struct dma_desc),
570                           priv->dma_rx, priv->dma_rx_phy);
571         kfree(priv->rx_skbuff_dma);
572         kfree(priv->rx_skbuff);
573         kfree(priv->tx_skbuff);
574 }
575
576 /**
577  *  stmmac_dma_operation_mode - HW DMA operation mode
578  *  @priv : pointer to the private device structure.
579  *  Description: it sets the DMA operation mode: tx/rx DMA thresholds
580  *  or Store-And-Forward capability.
581  */
582 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
583 {
584         if (likely(priv->plat->force_sf_dma_mode ||
585                 ((priv->plat->tx_coe) && (!priv->no_csum_insertion)))) {
586                 /*
587                  * In case of GMAC, SF mode can be enabled
588                  * to perform the TX COE in HW. This depends on:
589                  * 1) TX COE if actually supported
590                  * 2) There is no bugged Jumbo frame support
591                  *    that needs to not insert csum in the TDES.
592                  */
593                 priv->hw->dma->dma_mode(priv->ioaddr,
594                                         SF_DMA_MODE, SF_DMA_MODE);
595                 tc = SF_DMA_MODE;
596         } else
597                 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
598 }
599
600 /**
601  * stmmac_tx:
602  * @priv: private driver structure
603  * Description: it reclaims resources after transmission completes.
604  */
605 static void stmmac_tx(struct stmmac_priv *priv)
606 {
607         unsigned int txsize = priv->dma_tx_size;
608
609         spin_lock(&priv->tx_lock);
610
611         while (priv->dirty_tx != priv->cur_tx) {
612                 int last;
613                 unsigned int entry = priv->dirty_tx % txsize;
614                 struct sk_buff *skb = priv->tx_skbuff[entry];
615                 struct dma_desc *p = priv->dma_tx + entry;
616
617                 /* Check if the descriptor is owned by the DMA. */
618                 if (priv->hw->desc->get_tx_owner(p))
619                         break;
620
621                 /* Verify tx error by looking at the last segment */
622                 last = priv->hw->desc->get_tx_ls(p);
623                 if (likely(last)) {
624                         int tx_error =
625                                 priv->hw->desc->tx_status(&priv->dev->stats,
626                                                           &priv->xstats, p,
627                                                           priv->ioaddr);
628                         if (likely(tx_error == 0)) {
629                                 priv->dev->stats.tx_packets++;
630                                 priv->xstats.tx_pkt_n++;
631                         } else
632                                 priv->dev->stats.tx_errors++;
633                 }
634                 TX_DBG("%s: curr %d, dirty %d\n", __func__,
635                         priv->cur_tx, priv->dirty_tx);
636
637                 if (likely(p->des2))
638                         dma_unmap_single(priv->device, p->des2,
639                                          priv->hw->desc->get_tx_len(p),
640                                          DMA_TO_DEVICE);
641                 priv->hw->ring->clean_desc3(p);
642
643                 if (likely(skb != NULL)) {
644                         /*
645                          * If there's room in the queue (limit it to size)
646                          * we add this skb back into the pool,
647                          * if it's the right size.
648                          */
649                         if ((skb_queue_len(&priv->rx_recycle) <
650                                 priv->dma_rx_size) &&
651                                 skb_recycle_check(skb, priv->dma_buf_sz))
652                                 __skb_queue_head(&priv->rx_recycle, skb);
653                         else
654                                 dev_kfree_skb(skb);
655
656                         priv->tx_skbuff[entry] = NULL;
657                 }
658
659                 priv->hw->desc->release_tx_desc(p);
660
661                 entry = (++priv->dirty_tx) % txsize;
662         }
663         if (unlikely(netif_queue_stopped(priv->dev) &&
664                      stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
665                 netif_tx_lock(priv->dev);
666                 if (netif_queue_stopped(priv->dev) &&
667                      stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
668                         TX_DBG("%s: restart transmit\n", __func__);
669                         netif_wake_queue(priv->dev);
670                 }
671                 netif_tx_unlock(priv->dev);
672         }
673         spin_unlock(&priv->tx_lock);
674 }
675
676 static inline void stmmac_enable_irq(struct stmmac_priv *priv)
677 {
678 #ifdef CONFIG_STMMAC_TIMER
679         if (likely(priv->tm->enable))
680                 priv->tm->timer_start(tmrate);
681         else
682 #endif
683                 priv->hw->dma->enable_dma_irq(priv->ioaddr);
684 }
685
686 static inline void stmmac_disable_irq(struct stmmac_priv *priv)
687 {
688 #ifdef CONFIG_STMMAC_TIMER
689         if (likely(priv->tm->enable))
690                 priv->tm->timer_stop();
691         else
692 #endif
693                 priv->hw->dma->disable_dma_irq(priv->ioaddr);
694 }
695
696 static int stmmac_has_work(struct stmmac_priv *priv)
697 {
698         unsigned int has_work = 0;
699         int rxret, tx_work = 0;
700
701         rxret = priv->hw->desc->get_rx_owner(priv->dma_rx +
702                 (priv->cur_rx % priv->dma_rx_size));
703
704         if (priv->dirty_tx != priv->cur_tx)
705                 tx_work = 1;
706
707         if (likely(!rxret || tx_work))
708                 has_work = 1;
709
710         return has_work;
711 }
712
713 static inline void _stmmac_schedule(struct stmmac_priv *priv)
714 {
715         if (likely(stmmac_has_work(priv))) {
716                 stmmac_disable_irq(priv);
717                 napi_schedule(&priv->napi);
718         }
719 }
720
721 #ifdef CONFIG_STMMAC_TIMER
722 void stmmac_schedule(struct net_device *dev)
723 {
724         struct stmmac_priv *priv = netdev_priv(dev);
725
726         priv->xstats.sched_timer_n++;
727
728         _stmmac_schedule(priv);
729 }
730
731 static void stmmac_no_timer_started(unsigned int x)
732 {;
733 };
734
735 static void stmmac_no_timer_stopped(void)
736 {;
737 };
738 #endif
739
740 /**
741  * stmmac_tx_err:
742  * @priv: pointer to the private device structure
743  * Description: it cleans the descriptors and restarts the transmission
744  * in case of errors.
745  */
746 static void stmmac_tx_err(struct stmmac_priv *priv)
747 {
748         netif_stop_queue(priv->dev);
749
750         priv->hw->dma->stop_tx(priv->ioaddr);
751         dma_free_tx_skbufs(priv);
752         priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
753         priv->dirty_tx = 0;
754         priv->cur_tx = 0;
755         priv->hw->dma->start_tx(priv->ioaddr);
756
757         priv->dev->stats.tx_errors++;
758         netif_wake_queue(priv->dev);
759 }
760
761
762 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
763 {
764         int status;
765
766         status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
767         if (likely(status == handle_tx_rx))
768                 _stmmac_schedule(priv);
769
770         else if (unlikely(status == tx_hard_error_bump_tc)) {
771                 /* Try to bump up the dma threshold on this failure */
772                 if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
773                         tc += 64;
774                         priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
775                         priv->xstats.threshold = tc;
776                 }
777         } else if (unlikely(status == tx_hard_error))
778                 stmmac_tx_err(priv);
779 }
780
781 static void stmmac_mmc_setup(struct stmmac_priv *priv)
782 {
783         unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
784                             MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
785
786         /* Do not manage MMC IRQ (FIXME) */
787         dwmac_mmc_intr_all_mask(priv->ioaddr);
788         dwmac_mmc_ctrl(priv->ioaddr, mode);
789         memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
790 }
791
792 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
793 {
794         u32 hwid = priv->hw->synopsys_uid;
795
796         /* Only check valid Synopsys Id because old MAC chips
797          * have no HW registers where get the ID */
798         if (likely(hwid)) {
799                 u32 uid = ((hwid & 0x0000ff00) >> 8);
800                 u32 synid = (hwid & 0x000000ff);
801
802                 pr_info("STMMAC - user ID: 0x%x, Synopsys ID: 0x%x\n",
803                         uid, synid);
804
805                 return synid;
806         }
807         return 0;
808 }
809
810 /* New GMAC chips support a new register to indicate the
811  * presence of the optional feature/functions.
812  */
813 static int stmmac_get_hw_features(struct stmmac_priv *priv)
814 {
815         u32 hw_cap = 0;
816
817         if (priv->hw->dma->get_hw_feature) {
818                 hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
819
820                 priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
821                 priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
822                 priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
823                 priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
824                 priv->dma_cap.multi_addr =
825                         (hw_cap & DMA_HW_FEAT_ADDMACADRSEL) >> 5;
826                 priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
827                 priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
828                 priv->dma_cap.pmt_remote_wake_up =
829                         (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
830                 priv->dma_cap.pmt_magic_frame =
831                         (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
832                 /*MMC*/
833                 priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
834                 /* IEEE 1588-2002*/
835                 priv->dma_cap.time_stamp =
836                         (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
837                 /* IEEE 1588-2008*/
838                 priv->dma_cap.atime_stamp =
839                         (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
840                 /* 802.3az - Energy-Efficient Ethernet (EEE) */
841                 priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
842                 priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
843                 /* TX and RX csum */
844                 priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
845                 priv->dma_cap.rx_coe_type1 =
846                         (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
847                 priv->dma_cap.rx_coe_type2 =
848                         (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
849                 priv->dma_cap.rxfifo_over_2048 =
850                         (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
851                 /* TX and RX number of channels */
852                 priv->dma_cap.number_rx_channel =
853                         (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
854                 priv->dma_cap.number_tx_channel =
855                         (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
856                 /* Alternate (enhanced) DESC mode*/
857                 priv->dma_cap.enh_desc =
858                         (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
859
860         } else
861                 pr_debug("\tNo HW DMA feature register supported");
862
863         return hw_cap;
864 }
865
866 /**
867  *  stmmac_open - open entry point of the driver
868  *  @dev : pointer to the device structure.
869  *  Description:
870  *  This function is the open entry point of the driver.
871  *  Return value:
872  *  0 on success and an appropriate (-)ve integer as defined in errno.h
873  *  file on failure.
874  */
875 static int stmmac_open(struct net_device *dev)
876 {
877         struct stmmac_priv *priv = netdev_priv(dev);
878         int ret;
879
880         /* Check that the MAC address is valid.  If its not, refuse
881          * to bring the device up. The user must specify an
882          * address using the following linux command:
883          *      ifconfig eth0 hw ether xx:xx:xx:xx:xx:xx  */
884         if (!is_valid_ether_addr(dev->dev_addr)) {
885                 random_ether_addr(dev->dev_addr);
886                 pr_warning("%s: generated random MAC address %pM\n", dev->name,
887                         dev->dev_addr);
888         }
889
890         stmmac_verify_args();
891
892 #ifdef CONFIG_STMMAC_TIMER
893         priv->tm = kzalloc(sizeof(struct stmmac_timer *), GFP_KERNEL);
894         if (unlikely(priv->tm == NULL)) {
895                 pr_err("%s: ERROR: timer memory alloc failed\n", __func__);
896                 return -ENOMEM;
897         }
898         priv->tm->freq = tmrate;
899
900         /* Test if the external timer can be actually used.
901          * In case of failure continue without timer. */
902         if (unlikely((stmmac_open_ext_timer(dev, priv->tm)) < 0)) {
903                 pr_warning("stmmaceth: cannot attach the external timer.\n");
904                 priv->tm->freq = 0;
905                 priv->tm->timer_start = stmmac_no_timer_started;
906                 priv->tm->timer_stop = stmmac_no_timer_stopped;
907         } else
908                 priv->tm->enable = 1;
909 #endif
910         ret = stmmac_init_phy(dev);
911         if (unlikely(ret)) {
912                 pr_err("%s: Cannot attach to PHY (error: %d)\n", __func__, ret);
913                 goto open_error;
914         }
915
916         /* Create and initialize the TX/RX descriptors chains. */
917         priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
918         priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
919         priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
920         init_dma_desc_rings(dev);
921
922         /* DMA initialization and SW reset */
923         ret = priv->hw->dma->init(priv->ioaddr, priv->plat->pbl,
924                                   priv->dma_tx_phy, priv->dma_rx_phy);
925         if (ret < 0) {
926                 pr_err("%s: DMA initialization failed\n", __func__);
927                 goto open_error;
928         }
929
930         /* Copy the MAC addr into the HW  */
931         priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0);
932         /* If required, perform hw setup of the bus. */
933         if (priv->plat->bus_setup)
934                 priv->plat->bus_setup(priv->ioaddr);
935         /* Initialize the MAC Core */
936         priv->hw->mac->core_init(priv->ioaddr);
937
938         stmmac_get_synopsys_id(priv);
939
940         stmmac_get_hw_features(priv);
941
942         priv->rx_coe = priv->hw->mac->rx_coe(priv->ioaddr);
943         if (priv->rx_coe)
944                 pr_info("stmmac: Rx Checksum Offload Engine supported\n");
945         if (priv->plat->tx_coe)
946                 pr_info("\tTX Checksum insertion supported\n");
947         netdev_update_features(dev);
948
949         /* Request the IRQ lines */
950         ret = request_irq(dev->irq, stmmac_interrupt,
951                          IRQF_SHARED, dev->name, dev);
952         if (unlikely(ret < 0)) {
953                 pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
954                        __func__, dev->irq, ret);
955                 goto open_error;
956         }
957
958         /* Enable the MAC Rx/Tx */
959         stmmac_enable_mac(priv->ioaddr);
960
961         /* Set the HW DMA mode and the COE */
962         stmmac_dma_operation_mode(priv);
963
964         /* Extra statistics */
965         memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
966         priv->xstats.threshold = tc;
967
968         if (priv->dma_cap.rmon)
969                 stmmac_mmc_setup(priv);
970
971         /* Start the ball rolling... */
972         DBG(probe, DEBUG, "%s: DMA RX/TX processes started...\n", dev->name);
973         priv->hw->dma->start_tx(priv->ioaddr);
974         priv->hw->dma->start_rx(priv->ioaddr);
975
976 #ifdef CONFIG_STMMAC_TIMER
977         priv->tm->timer_start(tmrate);
978 #endif
979         /* Dump DMA/MAC registers */
980         if (netif_msg_hw(priv)) {
981                 priv->hw->mac->dump_regs(priv->ioaddr);
982                 priv->hw->dma->dump_regs(priv->ioaddr);
983         }
984
985         if (priv->phydev)
986                 phy_start(priv->phydev);
987
988         napi_enable(&priv->napi);
989         skb_queue_head_init(&priv->rx_recycle);
990         netif_start_queue(dev);
991
992         return 0;
993
994 open_error:
995 #ifdef CONFIG_STMMAC_TIMER
996         kfree(priv->tm);
997 #endif
998         if (priv->phydev)
999                 phy_disconnect(priv->phydev);
1000
1001         return ret;
1002 }
1003
1004 /**
1005  *  stmmac_release - close entry point of the driver
1006  *  @dev : device pointer.
1007  *  Description:
1008  *  This is the stop entry point of the driver.
1009  */
1010 static int stmmac_release(struct net_device *dev)
1011 {
1012         struct stmmac_priv *priv = netdev_priv(dev);
1013
1014         /* Stop and disconnect the PHY */
1015         if (priv->phydev) {
1016                 phy_stop(priv->phydev);
1017                 phy_disconnect(priv->phydev);
1018                 priv->phydev = NULL;
1019         }
1020
1021         netif_stop_queue(dev);
1022
1023 #ifdef CONFIG_STMMAC_TIMER
1024         /* Stop and release the timer */
1025         stmmac_close_ext_timer();
1026         if (priv->tm != NULL)
1027                 kfree(priv->tm);
1028 #endif
1029         napi_disable(&priv->napi);
1030         skb_queue_purge(&priv->rx_recycle);
1031
1032         /* Free the IRQ lines */
1033         free_irq(dev->irq, dev);
1034
1035         /* Stop TX/RX DMA and clear the descriptors */
1036         priv->hw->dma->stop_tx(priv->ioaddr);
1037         priv->hw->dma->stop_rx(priv->ioaddr);
1038
1039         /* Release and free the Rx/Tx resources */
1040         free_dma_desc_resources(priv);
1041
1042         /* Disable the MAC Rx/Tx */
1043         stmmac_disable_mac(priv->ioaddr);
1044
1045         netif_carrier_off(dev);
1046
1047         return 0;
1048 }
1049
1050 /**
1051  *  stmmac_xmit:
1052  *  @skb : the socket buffer
1053  *  @dev : device pointer
1054  *  Description : Tx entry point of the driver.
1055  */
1056 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1057 {
1058         struct stmmac_priv *priv = netdev_priv(dev);
1059         unsigned int txsize = priv->dma_tx_size;
1060         unsigned int entry;
1061         int i, csum_insertion = 0;
1062         int nfrags = skb_shinfo(skb)->nr_frags;
1063         struct dma_desc *desc, *first;
1064         unsigned int nopaged_len = skb_headlen(skb);
1065
1066         if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1067                 if (!netif_queue_stopped(dev)) {
1068                         netif_stop_queue(dev);
1069                         /* This is a hard error, log it. */
1070                         pr_err("%s: BUG! Tx Ring full when queue awake\n",
1071                                 __func__);
1072                 }
1073                 return NETDEV_TX_BUSY;
1074         }
1075
1076         spin_lock(&priv->tx_lock);
1077
1078         entry = priv->cur_tx % txsize;
1079
1080 #ifdef STMMAC_XMIT_DEBUG
1081         if ((skb->len > ETH_FRAME_LEN) || nfrags)
1082                 pr_info("stmmac xmit:\n"
1083                        "\tskb addr %p - len: %d - nopaged_len: %d\n"
1084                        "\tn_frags: %d - ip_summed: %d - %s gso\n",
1085                        skb, skb->len, nopaged_len, nfrags, skb->ip_summed,
1086                        !skb_is_gso(skb) ? "isn't" : "is");
1087 #endif
1088
1089         csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1090
1091         desc = priv->dma_tx + entry;
1092         first = desc;
1093
1094 #ifdef STMMAC_XMIT_DEBUG
1095         if ((nfrags > 0) || (skb->len > ETH_FRAME_LEN))
1096                 pr_debug("stmmac xmit: skb len: %d, nopaged_len: %d,\n"
1097                        "\t\tn_frags: %d, ip_summed: %d\n",
1098                        skb->len, nopaged_len, nfrags, skb->ip_summed);
1099 #endif
1100         priv->tx_skbuff[entry] = skb;
1101
1102         if (priv->hw->ring->is_jumbo_frm(skb->len, priv->plat->enh_desc)) {
1103                 entry = priv->hw->ring->jumbo_frm(priv, skb, csum_insertion);
1104                 desc = priv->dma_tx + entry;
1105         } else {
1106                 desc->des2 = dma_map_single(priv->device, skb->data,
1107                                         nopaged_len, DMA_TO_DEVICE);
1108                 priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1109                                                 csum_insertion);
1110         }
1111
1112         for (i = 0; i < nfrags; i++) {
1113                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1114                 int len = skb_frag_size(frag);
1115
1116                 entry = (++priv->cur_tx) % txsize;
1117                 desc = priv->dma_tx + entry;
1118
1119                 TX_DBG("\t[entry %d] segment len: %d\n", entry, len);
1120                 desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
1121                                               DMA_TO_DEVICE);
1122                 priv->tx_skbuff[entry] = NULL;
1123                 priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion);
1124                 wmb();
1125                 priv->hw->desc->set_tx_owner(desc);
1126         }
1127
1128         /* Interrupt on completition only for the latest segment */
1129         priv->hw->desc->close_tx_desc(desc);
1130
1131 #ifdef CONFIG_STMMAC_TIMER
1132         /* Clean IC while using timer */
1133         if (likely(priv->tm->enable))
1134                 priv->hw->desc->clear_tx_ic(desc);
1135 #endif
1136
1137         wmb();
1138
1139         /* To avoid raise condition */
1140         priv->hw->desc->set_tx_owner(first);
1141
1142         priv->cur_tx++;
1143
1144 #ifdef STMMAC_XMIT_DEBUG
1145         if (netif_msg_pktdata(priv)) {
1146                 pr_info("stmmac xmit: current=%d, dirty=%d, entry=%d, "
1147                        "first=%p, nfrags=%d\n",
1148                        (priv->cur_tx % txsize), (priv->dirty_tx % txsize),
1149                        entry, first, nfrags);
1150                 display_ring(priv->dma_tx, txsize);
1151                 pr_info(">>> frame to be transmitted: ");
1152                 print_pkt(skb->data, skb->len);
1153         }
1154 #endif
1155         if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
1156                 TX_DBG("%s: stop transmitted packets\n", __func__);
1157                 netif_stop_queue(dev);
1158         }
1159
1160         dev->stats.tx_bytes += skb->len;
1161
1162         skb_tx_timestamp(skb);
1163
1164         priv->hw->dma->enable_dma_transmission(priv->ioaddr);
1165
1166         spin_unlock(&priv->tx_lock);
1167
1168         return NETDEV_TX_OK;
1169 }
1170
1171 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
1172 {
1173         unsigned int rxsize = priv->dma_rx_size;
1174         int bfsize = priv->dma_buf_sz;
1175         struct dma_desc *p = priv->dma_rx;
1176
1177         for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
1178                 unsigned int entry = priv->dirty_rx % rxsize;
1179                 if (likely(priv->rx_skbuff[entry] == NULL)) {
1180                         struct sk_buff *skb;
1181
1182                         skb = __skb_dequeue(&priv->rx_recycle);
1183                         if (skb == NULL)
1184                                 skb = netdev_alloc_skb_ip_align(priv->dev,
1185                                                                 bfsize);
1186
1187                         if (unlikely(skb == NULL))
1188                                 break;
1189
1190                         priv->rx_skbuff[entry] = skb;
1191                         priv->rx_skbuff_dma[entry] =
1192                             dma_map_single(priv->device, skb->data, bfsize,
1193                                            DMA_FROM_DEVICE);
1194
1195                         (p + entry)->des2 = priv->rx_skbuff_dma[entry];
1196
1197                         if (unlikely(priv->plat->has_gmac))
1198                                 priv->hw->ring->refill_desc3(bfsize, p + entry);
1199
1200                         RX_DBG(KERN_INFO "\trefill entry #%d\n", entry);
1201                 }
1202                 wmb();
1203                 priv->hw->desc->set_rx_owner(p + entry);
1204         }
1205 }
1206
1207 static int stmmac_rx(struct stmmac_priv *priv, int limit)
1208 {
1209         unsigned int rxsize = priv->dma_rx_size;
1210         unsigned int entry = priv->cur_rx % rxsize;
1211         unsigned int next_entry;
1212         unsigned int count = 0;
1213         struct dma_desc *p = priv->dma_rx + entry;
1214         struct dma_desc *p_next;
1215
1216 #ifdef STMMAC_RX_DEBUG
1217         if (netif_msg_hw(priv)) {
1218                 pr_debug(">>> stmmac_rx: descriptor ring:\n");
1219                 display_ring(priv->dma_rx, rxsize);
1220         }
1221 #endif
1222         count = 0;
1223         while (!priv->hw->desc->get_rx_owner(p)) {
1224                 int status;
1225
1226                 if (count >= limit)
1227                         break;
1228
1229                 count++;
1230
1231                 next_entry = (++priv->cur_rx) % rxsize;
1232                 p_next = priv->dma_rx + next_entry;
1233                 prefetch(p_next);
1234
1235                 /* read the status of the incoming frame */
1236                 status = (priv->hw->desc->rx_status(&priv->dev->stats,
1237                                                     &priv->xstats, p));
1238                 if (unlikely(status == discard_frame))
1239                         priv->dev->stats.rx_errors++;
1240                 else {
1241                         struct sk_buff *skb;
1242                         int frame_len;
1243
1244                         frame_len = priv->hw->desc->get_rx_frame_len(p);
1245                         /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
1246                          * Type frames (LLC/LLC-SNAP) */
1247                         if (unlikely(status != llc_snap))
1248                                 frame_len -= ETH_FCS_LEN;
1249 #ifdef STMMAC_RX_DEBUG
1250                         if (frame_len > ETH_FRAME_LEN)
1251                                 pr_debug("\tRX frame size %d, COE status: %d\n",
1252                                         frame_len, status);
1253
1254                         if (netif_msg_hw(priv))
1255                                 pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
1256                                         p, entry, p->des2);
1257 #endif
1258                         skb = priv->rx_skbuff[entry];
1259                         if (unlikely(!skb)) {
1260                                 pr_err("%s: Inconsistent Rx descriptor chain\n",
1261                                         priv->dev->name);
1262                                 priv->dev->stats.rx_dropped++;
1263                                 break;
1264                         }
1265                         prefetch(skb->data - NET_IP_ALIGN);
1266                         priv->rx_skbuff[entry] = NULL;
1267
1268                         skb_put(skb, frame_len);
1269                         dma_unmap_single(priv->device,
1270                                          priv->rx_skbuff_dma[entry],
1271                                          priv->dma_buf_sz, DMA_FROM_DEVICE);
1272 #ifdef STMMAC_RX_DEBUG
1273                         if (netif_msg_pktdata(priv)) {
1274                                 pr_info(" frame received (%dbytes)", frame_len);
1275                                 print_pkt(skb->data, frame_len);
1276                         }
1277 #endif
1278                         skb->protocol = eth_type_trans(skb, priv->dev);
1279
1280                         if (unlikely(!priv->rx_coe)) {
1281                                 /* No RX COE for old mac10/100 devices */
1282                                 skb_checksum_none_assert(skb);
1283                                 netif_receive_skb(skb);
1284                         } else {
1285                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1286                                 napi_gro_receive(&priv->napi, skb);
1287                         }
1288
1289                         priv->dev->stats.rx_packets++;
1290                         priv->dev->stats.rx_bytes += frame_len;
1291                 }
1292                 entry = next_entry;
1293                 p = p_next;     /* use prefetched values */
1294         }
1295
1296         stmmac_rx_refill(priv);
1297
1298         priv->xstats.rx_pkt_n += count;
1299
1300         return count;
1301 }
1302
1303 /**
1304  *  stmmac_poll - stmmac poll method (NAPI)
1305  *  @napi : pointer to the napi structure.
1306  *  @budget : maximum number of packets that the current CPU can receive from
1307  *            all interfaces.
1308  *  Description :
1309  *   This function implements the the reception process.
1310  *   Also it runs the TX completion thread
1311  */
1312 static int stmmac_poll(struct napi_struct *napi, int budget)
1313 {
1314         struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
1315         int work_done = 0;
1316
1317         priv->xstats.poll_n++;
1318         stmmac_tx(priv);
1319         work_done = stmmac_rx(priv, budget);
1320
1321         if (work_done < budget) {
1322                 napi_complete(napi);
1323                 stmmac_enable_irq(priv);
1324         }
1325         return work_done;
1326 }
1327
1328 /**
1329  *  stmmac_tx_timeout
1330  *  @dev : Pointer to net device structure
1331  *  Description: this function is called when a packet transmission fails to
1332  *   complete within a reasonable tmrate. The driver will mark the error in the
1333  *   netdev structure and arrange for the device to be reset to a sane state
1334  *   in order to transmit a new packet.
1335  */
1336 static void stmmac_tx_timeout(struct net_device *dev)
1337 {
1338         struct stmmac_priv *priv = netdev_priv(dev);
1339
1340         /* Clear Tx resources and restart transmitting again */
1341         stmmac_tx_err(priv);
1342 }
1343
1344 /* Configuration changes (passed on by ifconfig) */
1345 static int stmmac_config(struct net_device *dev, struct ifmap *map)
1346 {
1347         if (dev->flags & IFF_UP)        /* can't act on a running interface */
1348                 return -EBUSY;
1349
1350         /* Don't allow changing the I/O address */
1351         if (map->base_addr != dev->base_addr) {
1352                 pr_warning("%s: can't change I/O address\n", dev->name);
1353                 return -EOPNOTSUPP;
1354         }
1355
1356         /* Don't allow changing the IRQ */
1357         if (map->irq != dev->irq) {
1358                 pr_warning("%s: can't change IRQ number %d\n",
1359                        dev->name, dev->irq);
1360                 return -EOPNOTSUPP;
1361         }
1362
1363         /* ignore other fields */
1364         return 0;
1365 }
1366
1367 /**
1368  *  stmmac_set_rx_mode - entry point for multicast addressing
1369  *  @dev : pointer to the device structure
1370  *  Description:
1371  *  This function is a driver entry point which gets called by the kernel
1372  *  whenever multicast addresses must be enabled/disabled.
1373  *  Return value:
1374  *  void.
1375  */
1376 static void stmmac_set_rx_mode(struct net_device *dev)
1377 {
1378         struct stmmac_priv *priv = netdev_priv(dev);
1379
1380         spin_lock(&priv->lock);
1381         priv->hw->mac->set_filter(dev);
1382         spin_unlock(&priv->lock);
1383 }
1384
1385 /**
1386  *  stmmac_change_mtu - entry point to change MTU size for the device.
1387  *  @dev : device pointer.
1388  *  @new_mtu : the new MTU size for the device.
1389  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
1390  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
1391  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
1392  *  Return value:
1393  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1394  *  file on failure.
1395  */
1396 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
1397 {
1398         struct stmmac_priv *priv = netdev_priv(dev);
1399         int max_mtu;
1400
1401         if (netif_running(dev)) {
1402                 pr_err("%s: must be stopped to change its MTU\n", dev->name);
1403                 return -EBUSY;
1404         }
1405
1406         if (priv->plat->enh_desc)
1407                 max_mtu = JUMBO_LEN;
1408         else
1409                 max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
1410
1411         if ((new_mtu < 46) || (new_mtu > max_mtu)) {
1412                 pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
1413                 return -EINVAL;
1414         }
1415
1416         dev->mtu = new_mtu;
1417         netdev_update_features(dev);
1418
1419         return 0;
1420 }
1421
1422 static netdev_features_t stmmac_fix_features(struct net_device *dev,
1423         netdev_features_t features)
1424 {
1425         struct stmmac_priv *priv = netdev_priv(dev);
1426
1427         if (!priv->rx_coe)
1428                 features &= ~NETIF_F_RXCSUM;
1429         if (!priv->plat->tx_coe)
1430                 features &= ~NETIF_F_ALL_CSUM;
1431
1432         /* Some GMAC devices have a bugged Jumbo frame support that
1433          * needs to have the Tx COE disabled for oversized frames
1434          * (due to limited buffer sizes). In this case we disable
1435          * the TX csum insertionin the TDES and not use SF. */
1436         if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
1437                 features &= ~NETIF_F_ALL_CSUM;
1438
1439         return features;
1440 }
1441
1442 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
1443 {
1444         struct net_device *dev = (struct net_device *)dev_id;
1445         struct stmmac_priv *priv = netdev_priv(dev);
1446
1447         if (unlikely(!dev)) {
1448                 pr_err("%s: invalid dev pointer\n", __func__);
1449                 return IRQ_NONE;
1450         }
1451
1452         if (priv->plat->has_gmac)
1453                 /* To handle GMAC own interrupts */
1454                 priv->hw->mac->host_irq_status((void __iomem *) dev->base_addr);
1455
1456         stmmac_dma_interrupt(priv);
1457
1458         return IRQ_HANDLED;
1459 }
1460
1461 #ifdef CONFIG_NET_POLL_CONTROLLER
1462 /* Polling receive - used by NETCONSOLE and other diagnostic tools
1463  * to allow network I/O with interrupts disabled. */
1464 static void stmmac_poll_controller(struct net_device *dev)
1465 {
1466         disable_irq(dev->irq);
1467         stmmac_interrupt(dev->irq, dev);
1468         enable_irq(dev->irq);
1469 }
1470 #endif
1471
1472 /**
1473  *  stmmac_ioctl - Entry point for the Ioctl
1474  *  @dev: Device pointer.
1475  *  @rq: An IOCTL specefic structure, that can contain a pointer to
1476  *  a proprietary structure used to pass information to the driver.
1477  *  @cmd: IOCTL command
1478  *  Description:
1479  *  Currently there are no special functionality supported in IOCTL, just the
1480  *  phy_mii_ioctl(...) can be invoked.
1481  */
1482 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1483 {
1484         struct stmmac_priv *priv = netdev_priv(dev);
1485         int ret;
1486
1487         if (!netif_running(dev))
1488                 return -EINVAL;
1489
1490         if (!priv->phydev)
1491                 return -EINVAL;
1492
1493         spin_lock(&priv->lock);
1494         ret = phy_mii_ioctl(priv->phydev, rq, cmd);
1495         spin_unlock(&priv->lock);
1496
1497         return ret;
1498 }
1499
1500 #ifdef CONFIG_STMMAC_DEBUG_FS
1501 static struct dentry *stmmac_fs_dir;
1502 static struct dentry *stmmac_rings_status;
1503 static struct dentry *stmmac_dma_cap;
1504
1505 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
1506 {
1507         struct tmp_s {
1508                 u64 a;
1509                 unsigned int b;
1510                 unsigned int c;
1511         };
1512         int i;
1513         struct net_device *dev = seq->private;
1514         struct stmmac_priv *priv = netdev_priv(dev);
1515
1516         seq_printf(seq, "=======================\n");
1517         seq_printf(seq, " RX descriptor ring\n");
1518         seq_printf(seq, "=======================\n");
1519
1520         for (i = 0; i < priv->dma_rx_size; i++) {
1521                 struct tmp_s *x = (struct tmp_s *)(priv->dma_rx + i);
1522                 seq_printf(seq, "[%d] DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
1523                            i, (unsigned int)(x->a),
1524                            (unsigned int)((x->a) >> 32), x->b, x->c);
1525                 seq_printf(seq, "\n");
1526         }
1527
1528         seq_printf(seq, "\n");
1529         seq_printf(seq, "=======================\n");
1530         seq_printf(seq, "  TX descriptor ring\n");
1531         seq_printf(seq, "=======================\n");
1532
1533         for (i = 0; i < priv->dma_tx_size; i++) {
1534                 struct tmp_s *x = (struct tmp_s *)(priv->dma_tx + i);
1535                 seq_printf(seq, "[%d] DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
1536                            i, (unsigned int)(x->a),
1537                            (unsigned int)((x->a) >> 32), x->b, x->c);
1538                 seq_printf(seq, "\n");
1539         }
1540
1541         return 0;
1542 }
1543
1544 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
1545 {
1546         return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
1547 }
1548
1549 static const struct file_operations stmmac_rings_status_fops = {
1550         .owner = THIS_MODULE,
1551         .open = stmmac_sysfs_ring_open,
1552         .read = seq_read,
1553         .llseek = seq_lseek,
1554         .release = seq_release,
1555 };
1556
1557 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
1558 {
1559         struct net_device *dev = seq->private;
1560         struct stmmac_priv *priv = netdev_priv(dev);
1561
1562         if (!stmmac_get_hw_features(priv)) {
1563                 seq_printf(seq, "DMA HW features not supported\n");
1564                 return 0;
1565         }
1566
1567         seq_printf(seq, "==============================\n");
1568         seq_printf(seq, "\tDMA HW features\n");
1569         seq_printf(seq, "==============================\n");
1570
1571         seq_printf(seq, "\t10/100 Mbps %s\n",
1572                    (priv->dma_cap.mbps_10_100) ? "Y" : "N");
1573         seq_printf(seq, "\t1000 Mbps %s\n",
1574                    (priv->dma_cap.mbps_1000) ? "Y" : "N");
1575         seq_printf(seq, "\tHalf duple %s\n",
1576                    (priv->dma_cap.half_duplex) ? "Y" : "N");
1577         seq_printf(seq, "\tHash Filter: %s\n",
1578                    (priv->dma_cap.hash_filter) ? "Y" : "N");
1579         seq_printf(seq, "\tMultiple MAC address registers: %s\n",
1580                    (priv->dma_cap.multi_addr) ? "Y" : "N");
1581         seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
1582                    (priv->dma_cap.pcs) ? "Y" : "N");
1583         seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
1584                    (priv->dma_cap.sma_mdio) ? "Y" : "N");
1585         seq_printf(seq, "\tPMT Remote wake up: %s\n",
1586                    (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
1587         seq_printf(seq, "\tPMT Magic Frame: %s\n",
1588                    (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
1589         seq_printf(seq, "\tRMON module: %s\n",
1590                    (priv->dma_cap.rmon) ? "Y" : "N");
1591         seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
1592                    (priv->dma_cap.time_stamp) ? "Y" : "N");
1593         seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
1594                    (priv->dma_cap.atime_stamp) ? "Y" : "N");
1595         seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
1596                    (priv->dma_cap.eee) ? "Y" : "N");
1597         seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
1598         seq_printf(seq, "\tChecksum Offload in TX: %s\n",
1599                    (priv->dma_cap.tx_coe) ? "Y" : "N");
1600         seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
1601                    (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
1602         seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
1603                    (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
1604         seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
1605                    (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
1606         seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
1607                    priv->dma_cap.number_rx_channel);
1608         seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
1609                    priv->dma_cap.number_tx_channel);
1610         seq_printf(seq, "\tEnhanced descriptors: %s\n",
1611                    (priv->dma_cap.enh_desc) ? "Y" : "N");
1612
1613         return 0;
1614 }
1615
1616 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
1617 {
1618         return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
1619 }
1620
1621 static const struct file_operations stmmac_dma_cap_fops = {
1622         .owner = THIS_MODULE,
1623         .open = stmmac_sysfs_dma_cap_open,
1624         .read = seq_read,
1625         .llseek = seq_lseek,
1626         .release = seq_release,
1627 };
1628
1629 static int stmmac_init_fs(struct net_device *dev)
1630 {
1631         /* Create debugfs entries */
1632         stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
1633
1634         if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
1635                 pr_err("ERROR %s, debugfs create directory failed\n",
1636                        STMMAC_RESOURCE_NAME);
1637
1638                 return -ENOMEM;
1639         }
1640
1641         /* Entry to report DMA RX/TX rings */
1642         stmmac_rings_status = debugfs_create_file("descriptors_status",
1643                                            S_IRUGO, stmmac_fs_dir, dev,
1644                                            &stmmac_rings_status_fops);
1645
1646         if (!stmmac_rings_status || IS_ERR(stmmac_rings_status)) {
1647                 pr_info("ERROR creating stmmac ring debugfs file\n");
1648                 debugfs_remove(stmmac_fs_dir);
1649
1650                 return -ENOMEM;
1651         }
1652
1653         /* Entry to report the DMA HW features */
1654         stmmac_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, stmmac_fs_dir,
1655                                              dev, &stmmac_dma_cap_fops);
1656
1657         if (!stmmac_dma_cap || IS_ERR(stmmac_dma_cap)) {
1658                 pr_info("ERROR creating stmmac MMC debugfs file\n");
1659                 debugfs_remove(stmmac_rings_status);
1660                 debugfs_remove(stmmac_fs_dir);
1661
1662                 return -ENOMEM;
1663         }
1664
1665         return 0;
1666 }
1667
1668 static void stmmac_exit_fs(void)
1669 {
1670         debugfs_remove(stmmac_rings_status);
1671         debugfs_remove(stmmac_dma_cap);
1672         debugfs_remove(stmmac_fs_dir);
1673 }
1674 #endif /* CONFIG_STMMAC_DEBUG_FS */
1675
1676 static const struct net_device_ops stmmac_netdev_ops = {
1677         .ndo_open = stmmac_open,
1678         .ndo_start_xmit = stmmac_xmit,
1679         .ndo_stop = stmmac_release,
1680         .ndo_change_mtu = stmmac_change_mtu,
1681         .ndo_fix_features = stmmac_fix_features,
1682         .ndo_set_rx_mode = stmmac_set_rx_mode,
1683         .ndo_tx_timeout = stmmac_tx_timeout,
1684         .ndo_do_ioctl = stmmac_ioctl,
1685         .ndo_set_config = stmmac_config,
1686 #ifdef CONFIG_NET_POLL_CONTROLLER
1687         .ndo_poll_controller = stmmac_poll_controller,
1688 #endif
1689         .ndo_set_mac_address = eth_mac_addr,
1690 };
1691
1692 /**
1693  * stmmac_probe - Initialization of the adapter .
1694  * @dev : device pointer
1695  * Description: The function initializes the network device structure for
1696  * the STMMAC driver. It also calls the low level routines
1697  * in order to init the HW (i.e. the DMA engine)
1698  */
1699 static int stmmac_probe(struct net_device *dev)
1700 {
1701         int ret = 0;
1702         struct stmmac_priv *priv = netdev_priv(dev);
1703
1704         ether_setup(dev);
1705
1706         dev->netdev_ops = &stmmac_netdev_ops;
1707         stmmac_set_ethtool_ops(dev);
1708
1709         dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
1710         dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
1711         dev->watchdog_timeo = msecs_to_jiffies(watchdog);
1712 #ifdef STMMAC_VLAN_TAG_USED
1713         /* Both mac100 and gmac support receive VLAN tag detection */
1714         dev->features |= NETIF_F_HW_VLAN_RX;
1715 #endif
1716         priv->msg_enable = netif_msg_init(debug, default_msg_level);
1717
1718         if (flow_ctrl)
1719                 priv->flow_ctrl = FLOW_AUTO;    /* RX/TX pause on */
1720
1721         priv->pause = pause;
1722         netif_napi_add(dev, &priv->napi, stmmac_poll, 64);
1723
1724         /* Get the MAC address */
1725         priv->hw->mac->get_umac_addr((void __iomem *) dev->base_addr,
1726                                      dev->dev_addr, 0);
1727
1728         if (!is_valid_ether_addr(dev->dev_addr))
1729                 pr_warning("\tno valid MAC address;"
1730                         "please, use ifconfig or nwhwconfig!\n");
1731
1732         spin_lock_init(&priv->lock);
1733         spin_lock_init(&priv->tx_lock);
1734
1735         ret = register_netdev(dev);
1736         if (ret) {
1737                 pr_err("%s: ERROR %i registering the device\n",
1738                        __func__, ret);
1739                 return -ENODEV;
1740         }
1741
1742         DBG(probe, DEBUG, "%s: Scatter/Gather: %s - HW checksums: %s\n",
1743             dev->name, (dev->features & NETIF_F_SG) ? "on" : "off",
1744             (dev->features & NETIF_F_IP_CSUM) ? "on" : "off");
1745
1746         return ret;
1747 }
1748
1749 /**
1750  * stmmac_mac_device_setup
1751  * @dev : device pointer
1752  * Description: select and initialise the mac device (mac100 or Gmac).
1753  */
1754 static int stmmac_mac_device_setup(struct net_device *dev)
1755 {
1756         struct stmmac_priv *priv = netdev_priv(dev);
1757
1758         struct mac_device_info *device;
1759
1760         if (priv->plat->has_gmac) {
1761                 dev->priv_flags |= IFF_UNICAST_FLT;
1762                 device = dwmac1000_setup(priv->ioaddr);
1763         } else {
1764                 device = dwmac100_setup(priv->ioaddr);
1765         }
1766
1767         if (!device)
1768                 return -ENOMEM;
1769
1770         if (priv->plat->enh_desc) {
1771                 device->desc = &enh_desc_ops;
1772                 pr_info("\tEnhanced descriptor structure\n");
1773         } else
1774                 device->desc = &ndesc_ops;
1775
1776         priv->hw = device;
1777         priv->hw->ring = &ring_mode_ops;
1778
1779         if (device_can_wakeup(priv->device)) {
1780                 priv->wolopts = WAKE_MAGIC; /* Magic Frame as default */
1781                 enable_irq_wake(priv->wol_irq);
1782         }
1783
1784         return 0;
1785 }
1786
1787 /**
1788  * stmmac_dvr_probe
1789  * @pdev: platform device pointer
1790  * Description: the driver is initialized through platform_device.
1791  */
1792 static int stmmac_dvr_probe(struct platform_device *pdev)
1793 {
1794         int ret = 0;
1795         struct resource *res;
1796         void __iomem *addr = NULL;
1797         struct net_device *ndev = NULL;
1798         struct stmmac_priv *priv = NULL;
1799         struct plat_stmmacenet_data *plat_dat;
1800
1801         pr_info("STMMAC driver:\n\tplatform registration... ");
1802         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1803         if (!res)
1804                 return -ENODEV;
1805         pr_info("\tdone!\n");
1806
1807         if (!request_mem_region(res->start, resource_size(res),
1808                                 pdev->name)) {
1809                 pr_err("%s: ERROR: memory allocation failed"
1810                        "cannot get the I/O addr 0x%x\n",
1811                        __func__, (unsigned int)res->start);
1812                 return -EBUSY;
1813         }
1814
1815         addr = ioremap(res->start, resource_size(res));
1816         if (!addr) {
1817                 pr_err("%s: ERROR: memory mapping failed\n", __func__);
1818                 ret = -ENOMEM;
1819                 goto out_release_region;
1820         }
1821
1822         ndev = alloc_etherdev(sizeof(struct stmmac_priv));
1823         if (!ndev) {
1824                 pr_err("%s: ERROR: allocating the device\n", __func__);
1825                 ret = -ENOMEM;
1826                 goto out_unmap;
1827         }
1828
1829         SET_NETDEV_DEV(ndev, &pdev->dev);
1830
1831         /* Get the MAC information */
1832         ndev->irq = platform_get_irq_byname(pdev, "macirq");
1833         if (ndev->irq == -ENXIO) {
1834                 pr_err("%s: ERROR: MAC IRQ configuration "
1835                        "information not found\n", __func__);
1836                 ret = -ENXIO;
1837                 goto out_free_ndev;
1838         }
1839
1840         priv = netdev_priv(ndev);
1841         priv->device = &(pdev->dev);
1842         priv->dev = ndev;
1843         plat_dat = pdev->dev.platform_data;
1844
1845         priv->plat = plat_dat;
1846
1847         priv->ioaddr = addr;
1848
1849         /* PMT module is not integrated in all the MAC devices. */
1850         if (plat_dat->pmt) {
1851                 pr_info("\tPMT module supported\n");
1852                 device_set_wakeup_capable(&pdev->dev, 1);
1853         }
1854         /*
1855          * On some platforms e.g. SPEAr the wake up irq differs from the mac irq
1856          * The external wake up irq can be passed through the platform code
1857          * named as "eth_wake_irq"
1858          *
1859          * In case the wake up interrupt is not passed from the platform
1860          * so the driver will continue to use the mac irq (ndev->irq)
1861          */
1862         priv->wol_irq = platform_get_irq_byname(pdev, "eth_wake_irq");
1863         if (priv->wol_irq == -ENXIO)
1864                 priv->wol_irq = ndev->irq;
1865
1866
1867         platform_set_drvdata(pdev, ndev);
1868
1869         /* Set the I/O base addr */
1870         ndev->base_addr = (unsigned long)addr;
1871
1872         /* Custom initialisation */
1873         if (priv->plat->init) {
1874                 ret = priv->plat->init(pdev);
1875                 if (unlikely(ret))
1876                         goto out_free_ndev;
1877         }
1878
1879         /* MAC HW revice detection */
1880         ret = stmmac_mac_device_setup(ndev);
1881         if (ret < 0)
1882                 goto out_plat_exit;
1883
1884         /* Network Device Registration */
1885         ret = stmmac_probe(ndev);
1886         if (ret < 0)
1887                 goto out_plat_exit;
1888
1889         /* Override with kernel parameters if supplied XXX CRS XXX
1890          * this needs to have multiple instances */
1891         if ((phyaddr >= 0) && (phyaddr <= 31))
1892                 priv->plat->phy_addr = phyaddr;
1893
1894         pr_info("\t%s - (dev. name: %s - id: %d, IRQ #%d\n"
1895                "\tIO base addr: 0x%p)\n", ndev->name, pdev->name,
1896                pdev->id, ndev->irq, addr);
1897
1898         /* MDIO bus Registration */
1899         pr_debug("\tMDIO bus (id: %d)...", priv->plat->bus_id);
1900         ret = stmmac_mdio_register(ndev);
1901         if (ret < 0)
1902                 goto out_unregister;
1903         pr_debug("registered!\n");
1904
1905 #ifdef CONFIG_STMMAC_DEBUG_FS
1906         ret = stmmac_init_fs(ndev);
1907         if (ret < 0)
1908                 pr_warning("\tFailed debugFS registration");
1909 #endif
1910
1911         return 0;
1912
1913 out_unregister:
1914         unregister_netdev(ndev);
1915 out_plat_exit:
1916         if (priv->plat->exit)
1917                 priv->plat->exit(pdev);
1918 out_free_ndev:
1919         free_netdev(ndev);
1920         platform_set_drvdata(pdev, NULL);
1921 out_unmap:
1922         iounmap(addr);
1923 out_release_region:
1924         release_mem_region(res->start, resource_size(res));
1925
1926         return ret;
1927 }
1928
1929 /**
1930  * stmmac_dvr_remove
1931  * @pdev: platform device pointer
1932  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
1933  * changes the link status, releases the DMA descriptor rings,
1934  * unregisters the MDIO bus and unmaps the allocated memory.
1935  */
1936 static int stmmac_dvr_remove(struct platform_device *pdev)
1937 {
1938         struct net_device *ndev = platform_get_drvdata(pdev);
1939         struct stmmac_priv *priv = netdev_priv(ndev);
1940         struct resource *res;
1941
1942         pr_info("%s:\n\tremoving driver", __func__);
1943
1944         priv->hw->dma->stop_rx(priv->ioaddr);
1945         priv->hw->dma->stop_tx(priv->ioaddr);
1946
1947         stmmac_disable_mac(priv->ioaddr);
1948
1949         netif_carrier_off(ndev);
1950
1951         stmmac_mdio_unregister(ndev);
1952
1953         if (priv->plat->exit)
1954                 priv->plat->exit(pdev);
1955
1956         platform_set_drvdata(pdev, NULL);
1957         unregister_netdev(ndev);
1958
1959         iounmap((void *)priv->ioaddr);
1960         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1961         release_mem_region(res->start, resource_size(res));
1962
1963 #ifdef CONFIG_STMMAC_DEBUG_FS
1964         stmmac_exit_fs();
1965 #endif
1966
1967         free_netdev(ndev);
1968
1969         return 0;
1970 }
1971
1972 #ifdef CONFIG_PM
1973 static int stmmac_suspend(struct device *dev)
1974 {
1975         struct net_device *ndev = dev_get_drvdata(dev);
1976         struct stmmac_priv *priv = netdev_priv(ndev);
1977         int dis_ic = 0;
1978
1979         if (!ndev || !netif_running(ndev))
1980                 return 0;
1981
1982         spin_lock(&priv->lock);
1983
1984         netif_device_detach(ndev);
1985         netif_stop_queue(ndev);
1986         if (priv->phydev)
1987                 phy_stop(priv->phydev);
1988
1989 #ifdef CONFIG_STMMAC_TIMER
1990         priv->tm->timer_stop();
1991         if (likely(priv->tm->enable))
1992                 dis_ic = 1;
1993 #endif
1994         napi_disable(&priv->napi);
1995
1996         /* Stop TX/RX DMA */
1997         priv->hw->dma->stop_tx(priv->ioaddr);
1998         priv->hw->dma->stop_rx(priv->ioaddr);
1999         /* Clear the Rx/Tx descriptors */
2000         priv->hw->desc->init_rx_desc(priv->dma_rx, priv->dma_rx_size,
2001                                      dis_ic);
2002         priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
2003
2004         /* Enable Power down mode by programming the PMT regs */
2005         if (device_may_wakeup(priv->device))
2006                 priv->hw->mac->pmt(priv->ioaddr, priv->wolopts);
2007         else
2008                 stmmac_disable_mac(priv->ioaddr);
2009
2010         spin_unlock(&priv->lock);
2011         return 0;
2012 }
2013
2014 static int stmmac_resume(struct device *dev)
2015 {
2016         struct net_device *ndev = dev_get_drvdata(dev);
2017         struct stmmac_priv *priv = netdev_priv(ndev);
2018
2019         if (!netif_running(ndev))
2020                 return 0;
2021
2022         spin_lock(&priv->lock);
2023
2024         /* Power Down bit, into the PM register, is cleared
2025          * automatically as soon as a magic packet or a Wake-up frame
2026          * is received. Anyway, it's better to manually clear
2027          * this bit because it can generate problems while resuming
2028          * from another devices (e.g. serial console). */
2029         if (device_may_wakeup(priv->device))
2030                 priv->hw->mac->pmt(priv->ioaddr, 0);
2031
2032         netif_device_attach(ndev);
2033
2034         /* Enable the MAC and DMA */
2035         stmmac_enable_mac(priv->ioaddr);
2036         priv->hw->dma->start_tx(priv->ioaddr);
2037         priv->hw->dma->start_rx(priv->ioaddr);
2038
2039 #ifdef CONFIG_STMMAC_TIMER
2040         if (likely(priv->tm->enable))
2041                 priv->tm->timer_start(tmrate);
2042 #endif
2043         napi_enable(&priv->napi);
2044
2045         if (priv->phydev)
2046                 phy_start(priv->phydev);
2047
2048         netif_start_queue(ndev);
2049
2050         spin_unlock(&priv->lock);
2051         return 0;
2052 }
2053
2054 static int stmmac_freeze(struct device *dev)
2055 {
2056         struct net_device *ndev = dev_get_drvdata(dev);
2057
2058         if (!ndev || !netif_running(ndev))
2059                 return 0;
2060
2061         return stmmac_release(ndev);
2062 }
2063
2064 static int stmmac_restore(struct device *dev)
2065 {
2066         struct net_device *ndev = dev_get_drvdata(dev);
2067
2068         if (!ndev || !netif_running(ndev))
2069                 return 0;
2070
2071         return stmmac_open(ndev);
2072 }
2073
2074 static const struct dev_pm_ops stmmac_pm_ops = {
2075         .suspend = stmmac_suspend,
2076         .resume = stmmac_resume,
2077         .freeze = stmmac_freeze,
2078         .thaw = stmmac_restore,
2079         .restore = stmmac_restore,
2080 };
2081 #else
2082 static const struct dev_pm_ops stmmac_pm_ops;
2083 #endif /* CONFIG_PM */
2084
2085 static struct platform_driver stmmac_driver = {
2086         .probe = stmmac_dvr_probe,
2087         .remove = stmmac_dvr_remove,
2088         .driver = {
2089                 .name = STMMAC_RESOURCE_NAME,
2090                 .owner = THIS_MODULE,
2091                 .pm = &stmmac_pm_ops,
2092         },
2093 };
2094
2095 /**
2096  * stmmac_init_module - Entry point for the driver
2097  * Description: This function is the entry point for the driver.
2098  */
2099 static int __init stmmac_init_module(void)
2100 {
2101         int ret;
2102
2103         ret = platform_driver_register(&stmmac_driver);
2104         return ret;
2105 }
2106
2107 /**
2108  * stmmac_cleanup_module - Cleanup routine for the driver
2109  * Description: This function is the cleanup routine for the driver.
2110  */
2111 static void __exit stmmac_cleanup_module(void)
2112 {
2113         platform_driver_unregister(&stmmac_driver);
2114 }
2115
2116 #ifndef MODULE
2117 static int __init stmmac_cmdline_opt(char *str)
2118 {
2119         char *opt;
2120
2121         if (!str || !*str)
2122                 return -EINVAL;
2123         while ((opt = strsep(&str, ",")) != NULL) {
2124                 if (!strncmp(opt, "debug:", 6)) {
2125                         if (strict_strtoul(opt + 6, 0, (unsigned long *)&debug))
2126                                 goto err;
2127                 } else if (!strncmp(opt, "phyaddr:", 8)) {
2128                         if (strict_strtoul(opt + 8, 0,
2129                                            (unsigned long *)&phyaddr))
2130                                 goto err;
2131                 } else if (!strncmp(opt, "dma_txsize:", 11)) {
2132                         if (strict_strtoul(opt + 11, 0,
2133                                            (unsigned long *)&dma_txsize))
2134                                 goto err;
2135                 } else if (!strncmp(opt, "dma_rxsize:", 11)) {
2136                         if (strict_strtoul(opt + 11, 0,
2137                                            (unsigned long *)&dma_rxsize))
2138                                 goto err;
2139                 } else if (!strncmp(opt, "buf_sz:", 7)) {
2140                         if (strict_strtoul(opt + 7, 0,
2141                                            (unsigned long *)&buf_sz))
2142                                 goto err;
2143                 } else if (!strncmp(opt, "tc:", 3)) {
2144                         if (strict_strtoul(opt + 3, 0, (unsigned long *)&tc))
2145                                 goto err;
2146                 } else if (!strncmp(opt, "watchdog:", 9)) {
2147                         if (strict_strtoul(opt + 9, 0,
2148                                            (unsigned long *)&watchdog))
2149                                 goto err;
2150                 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
2151                         if (strict_strtoul(opt + 10, 0,
2152                                            (unsigned long *)&flow_ctrl))
2153                                 goto err;
2154                 } else if (!strncmp(opt, "pause:", 6)) {
2155                         if (strict_strtoul(opt + 6, 0, (unsigned long *)&pause))
2156                                 goto err;
2157 #ifdef CONFIG_STMMAC_TIMER
2158                 } else if (!strncmp(opt, "tmrate:", 7)) {
2159                         if (strict_strtoul(opt + 7, 0,
2160                                            (unsigned long *)&tmrate))
2161                                 goto err;
2162 #endif
2163                 }
2164         }
2165         return 0;
2166
2167 err:
2168         pr_err("%s: ERROR broken module parameter conversion", __func__);
2169         return -EINVAL;
2170 }
2171
2172 __setup("stmmaceth=", stmmac_cmdline_opt);
2173 #endif
2174
2175 module_init(stmmac_init_module);
2176 module_exit(stmmac_cleanup_module);
2177
2178 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet driver");
2179 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
2180 MODULE_LICENSE("GPL");