security: declare member holding string literal const
[linux-block.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5
6         Copyright(C) 2007-2011 STMicroelectronics Ltd
7
8
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10
11   Documentation available at:
12         http://www.stlinux.com
13   Support available at:
14         https://bugzilla.stlinux.com/
15 *******************************************************************************/
16
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/prefetch.h>
33 #include <linux/pinctrl/consumer.h>
34 #ifdef CONFIG_DEBUG_FS
35 #include <linux/debugfs.h>
36 #include <linux/seq_file.h>
37 #endif /* CONFIG_DEBUG_FS */
38 #include <linux/net_tstamp.h>
39 #include <linux/phylink.h>
40 #include <linux/udp.h>
41 #include <linux/bpf_trace.h>
42 #include <net/pkt_cls.h>
43 #include <net/xdp_sock_drv.h>
44 #include "stmmac_ptp.h"
45 #include "stmmac.h"
46 #include "stmmac_xdp.h"
47 #include <linux/reset.h>
48 #include <linux/of_mdio.h>
49 #include "dwmac1000.h"
50 #include "dwxgmac2.h"
51 #include "hwif.h"
52
53 /* As long as the interface is active, we keep the timestamping counter enabled
54  * with fine resolution and binary rollover. This avoid non-monotonic behavior
55  * (clock jumps) when changing timestamping settings at runtime.
56  */
57 #define STMMAC_HWTS_ACTIVE      (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | \
58                                  PTP_TCR_TSCTRLSSR)
59
60 #define STMMAC_ALIGN(x)         ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
61 #define TSO_MAX_BUFF_SIZE       (SZ_16K - 1)
62
63 /* Module parameters */
64 #define TX_TIMEO        5000
65 static int watchdog = TX_TIMEO;
66 module_param(watchdog, int, 0644);
67 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
68
69 static int debug = -1;
70 module_param(debug, int, 0644);
71 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
72
73 static int phyaddr = -1;
74 module_param(phyaddr, int, 0444);
75 MODULE_PARM_DESC(phyaddr, "Physical device address");
76
77 #define STMMAC_TX_THRESH(x)     ((x)->dma_tx_size / 4)
78 #define STMMAC_RX_THRESH(x)     ((x)->dma_rx_size / 4)
79
80 /* Limit to make sure XDP TX and slow path can coexist */
81 #define STMMAC_XSK_TX_BUDGET_MAX        256
82 #define STMMAC_TX_XSK_AVAIL             16
83 #define STMMAC_RX_FILL_BATCH            16
84
85 #define STMMAC_XDP_PASS         0
86 #define STMMAC_XDP_CONSUMED     BIT(0)
87 #define STMMAC_XDP_TX           BIT(1)
88 #define STMMAC_XDP_REDIRECT     BIT(2)
89
90 static int flow_ctrl = FLOW_AUTO;
91 module_param(flow_ctrl, int, 0644);
92 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
93
94 static int pause = PAUSE_TIME;
95 module_param(pause, int, 0644);
96 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
97
98 #define TC_DEFAULT 64
99 static int tc = TC_DEFAULT;
100 module_param(tc, int, 0644);
101 MODULE_PARM_DESC(tc, "DMA threshold control value");
102
103 #define DEFAULT_BUFSIZE 1536
104 static int buf_sz = DEFAULT_BUFSIZE;
105 module_param(buf_sz, int, 0644);
106 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
107
108 #define STMMAC_RX_COPYBREAK     256
109
110 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
111                                       NETIF_MSG_LINK | NETIF_MSG_IFUP |
112                                       NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
113
114 #define STMMAC_DEFAULT_LPI_TIMER        1000
115 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
116 module_param(eee_timer, int, 0644);
117 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
118 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x))
119
120 /* By default the driver will use the ring mode to manage tx and rx descriptors,
121  * but allow user to force to use the chain instead of the ring
122  */
123 static unsigned int chain_mode;
124 module_param(chain_mode, int, 0444);
125 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
126
127 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
128 /* For MSI interrupts handling */
129 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id);
130 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id);
131 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data);
132 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data);
133 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue);
134 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue);
135 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
136                                           u32 rxmode, u32 chan);
137
138 #ifdef CONFIG_DEBUG_FS
139 static const struct net_device_ops stmmac_netdev_ops;
140 static void stmmac_init_fs(struct net_device *dev);
141 static void stmmac_exit_fs(struct net_device *dev);
142 #endif
143
144 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC))
145
146 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled)
147 {
148         int ret = 0;
149
150         if (enabled) {
151                 ret = clk_prepare_enable(priv->plat->stmmac_clk);
152                 if (ret)
153                         return ret;
154                 ret = clk_prepare_enable(priv->plat->pclk);
155                 if (ret) {
156                         clk_disable_unprepare(priv->plat->stmmac_clk);
157                         return ret;
158                 }
159                 if (priv->plat->clks_config) {
160                         ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled);
161                         if (ret) {
162                                 clk_disable_unprepare(priv->plat->stmmac_clk);
163                                 clk_disable_unprepare(priv->plat->pclk);
164                                 return ret;
165                         }
166                 }
167         } else {
168                 clk_disable_unprepare(priv->plat->stmmac_clk);
169                 clk_disable_unprepare(priv->plat->pclk);
170                 if (priv->plat->clks_config)
171                         priv->plat->clks_config(priv->plat->bsp_priv, enabled);
172         }
173
174         return ret;
175 }
176 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config);
177
178 /**
179  * stmmac_verify_args - verify the driver parameters.
180  * Description: it checks the driver parameters and set a default in case of
181  * errors.
182  */
183 static void stmmac_verify_args(void)
184 {
185         if (unlikely(watchdog < 0))
186                 watchdog = TX_TIMEO;
187         if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
188                 buf_sz = DEFAULT_BUFSIZE;
189         if (unlikely(flow_ctrl > 1))
190                 flow_ctrl = FLOW_AUTO;
191         else if (likely(flow_ctrl < 0))
192                 flow_ctrl = FLOW_OFF;
193         if (unlikely((pause < 0) || (pause > 0xffff)))
194                 pause = PAUSE_TIME;
195         if (eee_timer < 0)
196                 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
197 }
198
199 static void __stmmac_disable_all_queues(struct stmmac_priv *priv)
200 {
201         u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
202         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
203         u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
204         u32 queue;
205
206         for (queue = 0; queue < maxq; queue++) {
207                 struct stmmac_channel *ch = &priv->channel[queue];
208
209                 if (stmmac_xdp_is_enabled(priv) &&
210                     test_bit(queue, priv->af_xdp_zc_qps)) {
211                         napi_disable(&ch->rxtx_napi);
212                         continue;
213                 }
214
215                 if (queue < rx_queues_cnt)
216                         napi_disable(&ch->rx_napi);
217                 if (queue < tx_queues_cnt)
218                         napi_disable(&ch->tx_napi);
219         }
220 }
221
222 /**
223  * stmmac_disable_all_queues - Disable all queues
224  * @priv: driver private structure
225  */
226 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
227 {
228         u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
229         struct stmmac_rx_queue *rx_q;
230         u32 queue;
231
232         /* synchronize_rcu() needed for pending XDP buffers to drain */
233         for (queue = 0; queue < rx_queues_cnt; queue++) {
234                 rx_q = &priv->rx_queue[queue];
235                 if (rx_q->xsk_pool) {
236                         synchronize_rcu();
237                         break;
238                 }
239         }
240
241         __stmmac_disable_all_queues(priv);
242 }
243
244 /**
245  * stmmac_enable_all_queues - Enable all queues
246  * @priv: driver private structure
247  */
248 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
249 {
250         u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
251         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
252         u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
253         u32 queue;
254
255         for (queue = 0; queue < maxq; queue++) {
256                 struct stmmac_channel *ch = &priv->channel[queue];
257
258                 if (stmmac_xdp_is_enabled(priv) &&
259                     test_bit(queue, priv->af_xdp_zc_qps)) {
260                         napi_enable(&ch->rxtx_napi);
261                         continue;
262                 }
263
264                 if (queue < rx_queues_cnt)
265                         napi_enable(&ch->rx_napi);
266                 if (queue < tx_queues_cnt)
267                         napi_enable(&ch->tx_napi);
268         }
269 }
270
271 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
272 {
273         if (!test_bit(STMMAC_DOWN, &priv->state) &&
274             !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
275                 queue_work(priv->wq, &priv->service_task);
276 }
277
278 static void stmmac_global_err(struct stmmac_priv *priv)
279 {
280         netif_carrier_off(priv->dev);
281         set_bit(STMMAC_RESET_REQUESTED, &priv->state);
282         stmmac_service_event_schedule(priv);
283 }
284
285 /**
286  * stmmac_clk_csr_set - dynamically set the MDC clock
287  * @priv: driver private structure
288  * Description: this is to dynamically set the MDC clock according to the csr
289  * clock input.
290  * Note:
291  *      If a specific clk_csr value is passed from the platform
292  *      this means that the CSR Clock Range selection cannot be
293  *      changed at run-time and it is fixed (as reported in the driver
294  *      documentation). Viceversa the driver will try to set the MDC
295  *      clock dynamically according to the actual clock input.
296  */
297 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
298 {
299         u32 clk_rate;
300
301         clk_rate = clk_get_rate(priv->plat->stmmac_clk);
302
303         /* Platform provided default clk_csr would be assumed valid
304          * for all other cases except for the below mentioned ones.
305          * For values higher than the IEEE 802.3 specified frequency
306          * we can not estimate the proper divider as it is not known
307          * the frequency of clk_csr_i. So we do not change the default
308          * divider.
309          */
310         if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
311                 if (clk_rate < CSR_F_35M)
312                         priv->clk_csr = STMMAC_CSR_20_35M;
313                 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
314                         priv->clk_csr = STMMAC_CSR_35_60M;
315                 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
316                         priv->clk_csr = STMMAC_CSR_60_100M;
317                 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
318                         priv->clk_csr = STMMAC_CSR_100_150M;
319                 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
320                         priv->clk_csr = STMMAC_CSR_150_250M;
321                 else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M))
322                         priv->clk_csr = STMMAC_CSR_250_300M;
323         }
324
325         if (priv->plat->has_sun8i) {
326                 if (clk_rate > 160000000)
327                         priv->clk_csr = 0x03;
328                 else if (clk_rate > 80000000)
329                         priv->clk_csr = 0x02;
330                 else if (clk_rate > 40000000)
331                         priv->clk_csr = 0x01;
332                 else
333                         priv->clk_csr = 0;
334         }
335
336         if (priv->plat->has_xgmac) {
337                 if (clk_rate > 400000000)
338                         priv->clk_csr = 0x5;
339                 else if (clk_rate > 350000000)
340                         priv->clk_csr = 0x4;
341                 else if (clk_rate > 300000000)
342                         priv->clk_csr = 0x3;
343                 else if (clk_rate > 250000000)
344                         priv->clk_csr = 0x2;
345                 else if (clk_rate > 150000000)
346                         priv->clk_csr = 0x1;
347                 else
348                         priv->clk_csr = 0x0;
349         }
350 }
351
352 static void print_pkt(unsigned char *buf, int len)
353 {
354         pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
355         print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
356 }
357
358 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
359 {
360         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
361         u32 avail;
362
363         if (tx_q->dirty_tx > tx_q->cur_tx)
364                 avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
365         else
366                 avail = priv->dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1;
367
368         return avail;
369 }
370
371 /**
372  * stmmac_rx_dirty - Get RX queue dirty
373  * @priv: driver private structure
374  * @queue: RX queue index
375  */
376 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
377 {
378         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
379         u32 dirty;
380
381         if (rx_q->dirty_rx <= rx_q->cur_rx)
382                 dirty = rx_q->cur_rx - rx_q->dirty_rx;
383         else
384                 dirty = priv->dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx;
385
386         return dirty;
387 }
388
389 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en)
390 {
391         int tx_lpi_timer;
392
393         /* Clear/set the SW EEE timer flag based on LPI ET enablement */
394         priv->eee_sw_timer_en = en ? 0 : 1;
395         tx_lpi_timer  = en ? priv->tx_lpi_timer : 0;
396         stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer);
397 }
398
399 /**
400  * stmmac_enable_eee_mode - check and enter in LPI mode
401  * @priv: driver private structure
402  * Description: this function is to verify and enter in LPI mode in case of
403  * EEE.
404  */
405 static int stmmac_enable_eee_mode(struct stmmac_priv *priv)
406 {
407         u32 tx_cnt = priv->plat->tx_queues_to_use;
408         u32 queue;
409
410         /* check if all TX queues have the work finished */
411         for (queue = 0; queue < tx_cnt; queue++) {
412                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
413
414                 if (tx_q->dirty_tx != tx_q->cur_tx)
415                         return -EBUSY; /* still unfinished work */
416         }
417
418         /* Check and enter in LPI mode */
419         if (!priv->tx_path_in_lpi_mode)
420                 stmmac_set_eee_mode(priv, priv->hw,
421                                 priv->plat->en_tx_lpi_clockgating);
422         return 0;
423 }
424
425 /**
426  * stmmac_disable_eee_mode - disable and exit from LPI mode
427  * @priv: driver private structure
428  * Description: this function is to exit and disable EEE in case of
429  * LPI state is true. This is called by the xmit.
430  */
431 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
432 {
433         if (!priv->eee_sw_timer_en) {
434                 stmmac_lpi_entry_timer_config(priv, 0);
435                 return;
436         }
437
438         stmmac_reset_eee_mode(priv, priv->hw);
439         del_timer_sync(&priv->eee_ctrl_timer);
440         priv->tx_path_in_lpi_mode = false;
441 }
442
443 /**
444  * stmmac_eee_ctrl_timer - EEE TX SW timer.
445  * @t:  timer_list struct containing private info
446  * Description:
447  *  if there is no data transfer and if we are not in LPI state,
448  *  then MAC Transmitter can be moved to LPI state.
449  */
450 static void stmmac_eee_ctrl_timer(struct timer_list *t)
451 {
452         struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
453
454         if (stmmac_enable_eee_mode(priv))
455                 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
456 }
457
458 /**
459  * stmmac_eee_init - init EEE
460  * @priv: driver private structure
461  * Description:
462  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
463  *  can also manage EEE, this function enable the LPI state and start related
464  *  timer.
465  */
466 bool stmmac_eee_init(struct stmmac_priv *priv)
467 {
468         int eee_tw_timer = priv->eee_tw_timer;
469
470         /* Using PCS we cannot dial with the phy registers at this stage
471          * so we do not support extra feature like EEE.
472          */
473         if (priv->hw->pcs == STMMAC_PCS_TBI ||
474             priv->hw->pcs == STMMAC_PCS_RTBI)
475                 return false;
476
477         /* Check if MAC core supports the EEE feature. */
478         if (!priv->dma_cap.eee)
479                 return false;
480
481         mutex_lock(&priv->lock);
482
483         /* Check if it needs to be deactivated */
484         if (!priv->eee_active) {
485                 if (priv->eee_enabled) {
486                         netdev_dbg(priv->dev, "disable EEE\n");
487                         stmmac_lpi_entry_timer_config(priv, 0);
488                         del_timer_sync(&priv->eee_ctrl_timer);
489                         stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer);
490                         if (priv->hw->xpcs)
491                                 xpcs_config_eee(priv->hw->xpcs,
492                                                 priv->plat->mult_fact_100ns,
493                                                 false);
494                 }
495                 mutex_unlock(&priv->lock);
496                 return false;
497         }
498
499         if (priv->eee_active && !priv->eee_enabled) {
500                 timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
501                 stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
502                                      eee_tw_timer);
503                 if (priv->hw->xpcs)
504                         xpcs_config_eee(priv->hw->xpcs,
505                                         priv->plat->mult_fact_100ns,
506                                         true);
507         }
508
509         if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) {
510                 del_timer_sync(&priv->eee_ctrl_timer);
511                 priv->tx_path_in_lpi_mode = false;
512                 stmmac_lpi_entry_timer_config(priv, 1);
513         } else {
514                 stmmac_lpi_entry_timer_config(priv, 0);
515                 mod_timer(&priv->eee_ctrl_timer,
516                           STMMAC_LPI_T(priv->tx_lpi_timer));
517         }
518
519         mutex_unlock(&priv->lock);
520         netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
521         return true;
522 }
523
524 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
525  * @priv: driver private structure
526  * @p : descriptor pointer
527  * @skb : the socket buffer
528  * Description :
529  * This function will read timestamp from the descriptor & pass it to stack.
530  * and also perform some sanity checks.
531  */
532 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
533                                    struct dma_desc *p, struct sk_buff *skb)
534 {
535         struct skb_shared_hwtstamps shhwtstamp;
536         bool found = false;
537         u64 ns = 0;
538
539         if (!priv->hwts_tx_en)
540                 return;
541
542         /* exit if skb doesn't support hw tstamp */
543         if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
544                 return;
545
546         /* check tx tstamp status */
547         if (stmmac_get_tx_timestamp_status(priv, p)) {
548                 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
549                 found = true;
550         } else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
551                 found = true;
552         }
553
554         if (found) {
555                 ns -= priv->plat->cdc_error_adj;
556
557                 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
558                 shhwtstamp.hwtstamp = ns_to_ktime(ns);
559
560                 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
561                 /* pass tstamp to stack */
562                 skb_tstamp_tx(skb, &shhwtstamp);
563         }
564 }
565
566 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
567  * @priv: driver private structure
568  * @p : descriptor pointer
569  * @np : next descriptor pointer
570  * @skb : the socket buffer
571  * Description :
572  * This function will read received packet's timestamp from the descriptor
573  * and pass it to stack. It also perform some sanity checks.
574  */
575 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
576                                    struct dma_desc *np, struct sk_buff *skb)
577 {
578         struct skb_shared_hwtstamps *shhwtstamp = NULL;
579         struct dma_desc *desc = p;
580         u64 ns = 0;
581
582         if (!priv->hwts_rx_en)
583                 return;
584         /* For GMAC4, the valid timestamp is from CTX next desc. */
585         if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
586                 desc = np;
587
588         /* Check if timestamp is available */
589         if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
590                 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
591
592                 ns -= priv->plat->cdc_error_adj;
593
594                 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
595                 shhwtstamp = skb_hwtstamps(skb);
596                 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
597                 shhwtstamp->hwtstamp = ns_to_ktime(ns);
598         } else  {
599                 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
600         }
601 }
602
603 /**
604  *  stmmac_hwtstamp_set - control hardware timestamping.
605  *  @dev: device pointer.
606  *  @ifr: An IOCTL specific structure, that can contain a pointer to
607  *  a proprietary structure used to pass information to the driver.
608  *  Description:
609  *  This function configures the MAC to enable/disable both outgoing(TX)
610  *  and incoming(RX) packets time stamping based on user input.
611  *  Return Value:
612  *  0 on success and an appropriate -ve integer on failure.
613  */
614 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
615 {
616         struct stmmac_priv *priv = netdev_priv(dev);
617         struct hwtstamp_config config;
618         u32 ptp_v2 = 0;
619         u32 tstamp_all = 0;
620         u32 ptp_over_ipv4_udp = 0;
621         u32 ptp_over_ipv6_udp = 0;
622         u32 ptp_over_ethernet = 0;
623         u32 snap_type_sel = 0;
624         u32 ts_master_en = 0;
625         u32 ts_event_en = 0;
626
627         if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
628                 netdev_alert(priv->dev, "No support for HW time stamping\n");
629                 priv->hwts_tx_en = 0;
630                 priv->hwts_rx_en = 0;
631
632                 return -EOPNOTSUPP;
633         }
634
635         if (copy_from_user(&config, ifr->ifr_data,
636                            sizeof(config)))
637                 return -EFAULT;
638
639         netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
640                    __func__, config.flags, config.tx_type, config.rx_filter);
641
642         if (config.tx_type != HWTSTAMP_TX_OFF &&
643             config.tx_type != HWTSTAMP_TX_ON)
644                 return -ERANGE;
645
646         if (priv->adv_ts) {
647                 switch (config.rx_filter) {
648                 case HWTSTAMP_FILTER_NONE:
649                         /* time stamp no incoming packet at all */
650                         config.rx_filter = HWTSTAMP_FILTER_NONE;
651                         break;
652
653                 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
654                         /* PTP v1, UDP, any kind of event packet */
655                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
656                         /* 'xmac' hardware can support Sync, Pdelay_Req and
657                          * Pdelay_resp by setting bit14 and bits17/16 to 01
658                          * This leaves Delay_Req timestamps out.
659                          * Enable all events *and* general purpose message
660                          * timestamping
661                          */
662                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
663                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
664                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
665                         break;
666
667                 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
668                         /* PTP v1, UDP, Sync packet */
669                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
670                         /* take time stamp for SYNC messages only */
671                         ts_event_en = PTP_TCR_TSEVNTENA;
672
673                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
674                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
675                         break;
676
677                 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
678                         /* PTP v1, UDP, Delay_req packet */
679                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
680                         /* take time stamp for Delay_Req messages only */
681                         ts_master_en = PTP_TCR_TSMSTRENA;
682                         ts_event_en = PTP_TCR_TSEVNTENA;
683
684                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
685                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
686                         break;
687
688                 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
689                         /* PTP v2, UDP, any kind of event packet */
690                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
691                         ptp_v2 = PTP_TCR_TSVER2ENA;
692                         /* take time stamp for all event messages */
693                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
694
695                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
696                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
697                         break;
698
699                 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
700                         /* PTP v2, UDP, Sync packet */
701                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
702                         ptp_v2 = PTP_TCR_TSVER2ENA;
703                         /* take time stamp for SYNC messages only */
704                         ts_event_en = PTP_TCR_TSEVNTENA;
705
706                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
707                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
708                         break;
709
710                 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
711                         /* PTP v2, UDP, Delay_req packet */
712                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
713                         ptp_v2 = PTP_TCR_TSVER2ENA;
714                         /* take time stamp for Delay_Req messages only */
715                         ts_master_en = PTP_TCR_TSMSTRENA;
716                         ts_event_en = PTP_TCR_TSEVNTENA;
717
718                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
719                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
720                         break;
721
722                 case HWTSTAMP_FILTER_PTP_V2_EVENT:
723                         /* PTP v2/802.AS1 any layer, any kind of event packet */
724                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
725                         ptp_v2 = PTP_TCR_TSVER2ENA;
726                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
727                         if (priv->synopsys_id < DWMAC_CORE_4_10)
728                                 ts_event_en = PTP_TCR_TSEVNTENA;
729                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
730                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
731                         ptp_over_ethernet = PTP_TCR_TSIPENA;
732                         break;
733
734                 case HWTSTAMP_FILTER_PTP_V2_SYNC:
735                         /* PTP v2/802.AS1, any layer, Sync packet */
736                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
737                         ptp_v2 = PTP_TCR_TSVER2ENA;
738                         /* take time stamp for SYNC messages only */
739                         ts_event_en = PTP_TCR_TSEVNTENA;
740
741                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
742                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
743                         ptp_over_ethernet = PTP_TCR_TSIPENA;
744                         break;
745
746                 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
747                         /* PTP v2/802.AS1, any layer, Delay_req packet */
748                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
749                         ptp_v2 = PTP_TCR_TSVER2ENA;
750                         /* take time stamp for Delay_Req messages only */
751                         ts_master_en = PTP_TCR_TSMSTRENA;
752                         ts_event_en = PTP_TCR_TSEVNTENA;
753
754                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
755                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
756                         ptp_over_ethernet = PTP_TCR_TSIPENA;
757                         break;
758
759                 case HWTSTAMP_FILTER_NTP_ALL:
760                 case HWTSTAMP_FILTER_ALL:
761                         /* time stamp any incoming packet */
762                         config.rx_filter = HWTSTAMP_FILTER_ALL;
763                         tstamp_all = PTP_TCR_TSENALL;
764                         break;
765
766                 default:
767                         return -ERANGE;
768                 }
769         } else {
770                 switch (config.rx_filter) {
771                 case HWTSTAMP_FILTER_NONE:
772                         config.rx_filter = HWTSTAMP_FILTER_NONE;
773                         break;
774                 default:
775                         /* PTP v1, UDP, any kind of event packet */
776                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
777                         break;
778                 }
779         }
780         priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
781         priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
782
783         priv->systime_flags = STMMAC_HWTS_ACTIVE;
784
785         if (priv->hwts_tx_en || priv->hwts_rx_en) {
786                 priv->systime_flags |= tstamp_all | ptp_v2 |
787                                        ptp_over_ethernet | ptp_over_ipv6_udp |
788                                        ptp_over_ipv4_udp | ts_event_en |
789                                        ts_master_en | snap_type_sel;
790         }
791
792         stmmac_config_hw_tstamping(priv, priv->ptpaddr, priv->systime_flags);
793
794         memcpy(&priv->tstamp_config, &config, sizeof(config));
795
796         return copy_to_user(ifr->ifr_data, &config,
797                             sizeof(config)) ? -EFAULT : 0;
798 }
799
800 /**
801  *  stmmac_hwtstamp_get - read hardware timestamping.
802  *  @dev: device pointer.
803  *  @ifr: An IOCTL specific structure, that can contain a pointer to
804  *  a proprietary structure used to pass information to the driver.
805  *  Description:
806  *  This function obtain the current hardware timestamping settings
807  *  as requested.
808  */
809 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
810 {
811         struct stmmac_priv *priv = netdev_priv(dev);
812         struct hwtstamp_config *config = &priv->tstamp_config;
813
814         if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
815                 return -EOPNOTSUPP;
816
817         return copy_to_user(ifr->ifr_data, config,
818                             sizeof(*config)) ? -EFAULT : 0;
819 }
820
821 /**
822  * stmmac_init_tstamp_counter - init hardware timestamping counter
823  * @priv: driver private structure
824  * @systime_flags: timestamping flags
825  * Description:
826  * Initialize hardware counter for packet timestamping.
827  * This is valid as long as the interface is open and not suspended.
828  * Will be rerun after resuming from suspend, case in which the timestamping
829  * flags updated by stmmac_hwtstamp_set() also need to be restored.
830  */
831 int stmmac_init_tstamp_counter(struct stmmac_priv *priv, u32 systime_flags)
832 {
833         bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
834         struct timespec64 now;
835         u32 sec_inc = 0;
836         u64 temp = 0;
837         int ret;
838
839         if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
840                 return -EOPNOTSUPP;
841
842         ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
843         if (ret < 0) {
844                 netdev_warn(priv->dev,
845                             "failed to enable PTP reference clock: %pe\n",
846                             ERR_PTR(ret));
847                 return ret;
848         }
849
850         stmmac_config_hw_tstamping(priv, priv->ptpaddr, systime_flags);
851         priv->systime_flags = systime_flags;
852
853         /* program Sub Second Increment reg */
854         stmmac_config_sub_second_increment(priv, priv->ptpaddr,
855                                            priv->plat->clk_ptp_rate,
856                                            xmac, &sec_inc);
857         temp = div_u64(1000000000ULL, sec_inc);
858
859         /* Store sub second increment for later use */
860         priv->sub_second_inc = sec_inc;
861
862         /* calculate default added value:
863          * formula is :
864          * addend = (2^32)/freq_div_ratio;
865          * where, freq_div_ratio = 1e9ns/sec_inc
866          */
867         temp = (u64)(temp << 32);
868         priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
869         stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
870
871         /* initialize system time */
872         ktime_get_real_ts64(&now);
873
874         /* lower 32 bits of tv_sec are safe until y2106 */
875         stmmac_init_systime(priv, priv->ptpaddr, (u32)now.tv_sec, now.tv_nsec);
876
877         return 0;
878 }
879 EXPORT_SYMBOL_GPL(stmmac_init_tstamp_counter);
880
881 /**
882  * stmmac_init_ptp - init PTP
883  * @priv: driver private structure
884  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
885  * This is done by looking at the HW cap. register.
886  * This function also registers the ptp driver.
887  */
888 static int stmmac_init_ptp(struct stmmac_priv *priv)
889 {
890         bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
891         int ret;
892
893         if (priv->plat->ptp_clk_freq_config)
894                 priv->plat->ptp_clk_freq_config(priv);
895
896         ret = stmmac_init_tstamp_counter(priv, STMMAC_HWTS_ACTIVE);
897         if (ret)
898                 return ret;
899
900         priv->adv_ts = 0;
901         /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
902         if (xmac && priv->dma_cap.atime_stamp)
903                 priv->adv_ts = 1;
904         /* Dwmac 3.x core with extend_desc can support adv_ts */
905         else if (priv->extend_desc && priv->dma_cap.atime_stamp)
906                 priv->adv_ts = 1;
907
908         if (priv->dma_cap.time_stamp)
909                 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
910
911         if (priv->adv_ts)
912                 netdev_info(priv->dev,
913                             "IEEE 1588-2008 Advanced Timestamp supported\n");
914
915         priv->hwts_tx_en = 0;
916         priv->hwts_rx_en = 0;
917
918         return 0;
919 }
920
921 static void stmmac_release_ptp(struct stmmac_priv *priv)
922 {
923         clk_disable_unprepare(priv->plat->clk_ptp_ref);
924         stmmac_ptp_unregister(priv);
925 }
926
927 /**
928  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
929  *  @priv: driver private structure
930  *  @duplex: duplex passed to the next function
931  *  Description: It is used for configuring the flow control in all queues
932  */
933 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
934 {
935         u32 tx_cnt = priv->plat->tx_queues_to_use;
936
937         stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
938                         priv->pause, tx_cnt);
939 }
940
941 static struct phylink_pcs *stmmac_mac_select_pcs(struct phylink_config *config,
942                                                  phy_interface_t interface)
943 {
944         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
945
946         if (!priv->hw->xpcs)
947                 return NULL;
948
949         return &priv->hw->xpcs->pcs;
950 }
951
952 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
953                               const struct phylink_link_state *state)
954 {
955         /* Nothing to do, xpcs_config() handles everything */
956 }
957
958 static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up)
959 {
960         struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
961         enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
962         enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
963         bool *hs_enable = &fpe_cfg->hs_enable;
964
965         if (is_up && *hs_enable) {
966                 stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_VERIFY);
967         } else {
968                 *lo_state = FPE_STATE_OFF;
969                 *lp_state = FPE_STATE_OFF;
970         }
971 }
972
973 static void stmmac_mac_link_down(struct phylink_config *config,
974                                  unsigned int mode, phy_interface_t interface)
975 {
976         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
977
978         stmmac_mac_set(priv, priv->ioaddr, false);
979         priv->eee_active = false;
980         priv->tx_lpi_enabled = false;
981         priv->eee_enabled = stmmac_eee_init(priv);
982         stmmac_set_eee_pls(priv, priv->hw, false);
983
984         if (priv->dma_cap.fpesel)
985                 stmmac_fpe_link_state_handle(priv, false);
986 }
987
988 static void stmmac_mac_link_up(struct phylink_config *config,
989                                struct phy_device *phy,
990                                unsigned int mode, phy_interface_t interface,
991                                int speed, int duplex,
992                                bool tx_pause, bool rx_pause)
993 {
994         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
995         u32 ctrl;
996
997         ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
998         ctrl &= ~priv->hw->link.speed_mask;
999
1000         if (interface == PHY_INTERFACE_MODE_USXGMII) {
1001                 switch (speed) {
1002                 case SPEED_10000:
1003                         ctrl |= priv->hw->link.xgmii.speed10000;
1004                         break;
1005                 case SPEED_5000:
1006                         ctrl |= priv->hw->link.xgmii.speed5000;
1007                         break;
1008                 case SPEED_2500:
1009                         ctrl |= priv->hw->link.xgmii.speed2500;
1010                         break;
1011                 default:
1012                         return;
1013                 }
1014         } else if (interface == PHY_INTERFACE_MODE_XLGMII) {
1015                 switch (speed) {
1016                 case SPEED_100000:
1017                         ctrl |= priv->hw->link.xlgmii.speed100000;
1018                         break;
1019                 case SPEED_50000:
1020                         ctrl |= priv->hw->link.xlgmii.speed50000;
1021                         break;
1022                 case SPEED_40000:
1023                         ctrl |= priv->hw->link.xlgmii.speed40000;
1024                         break;
1025                 case SPEED_25000:
1026                         ctrl |= priv->hw->link.xlgmii.speed25000;
1027                         break;
1028                 case SPEED_10000:
1029                         ctrl |= priv->hw->link.xgmii.speed10000;
1030                         break;
1031                 case SPEED_2500:
1032                         ctrl |= priv->hw->link.speed2500;
1033                         break;
1034                 case SPEED_1000:
1035                         ctrl |= priv->hw->link.speed1000;
1036                         break;
1037                 default:
1038                         return;
1039                 }
1040         } else {
1041                 switch (speed) {
1042                 case SPEED_2500:
1043                         ctrl |= priv->hw->link.speed2500;
1044                         break;
1045                 case SPEED_1000:
1046                         ctrl |= priv->hw->link.speed1000;
1047                         break;
1048                 case SPEED_100:
1049                         ctrl |= priv->hw->link.speed100;
1050                         break;
1051                 case SPEED_10:
1052                         ctrl |= priv->hw->link.speed10;
1053                         break;
1054                 default:
1055                         return;
1056                 }
1057         }
1058
1059         priv->speed = speed;
1060
1061         if (priv->plat->fix_mac_speed)
1062                 priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed);
1063
1064         if (!duplex)
1065                 ctrl &= ~priv->hw->link.duplex;
1066         else
1067                 ctrl |= priv->hw->link.duplex;
1068
1069         /* Flow Control operation */
1070         if (tx_pause && rx_pause)
1071                 stmmac_mac_flow_ctrl(priv, duplex);
1072
1073         writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
1074
1075         stmmac_mac_set(priv, priv->ioaddr, true);
1076         if (phy && priv->dma_cap.eee) {
1077                 priv->eee_active = phy_init_eee(phy, 1) >= 0;
1078                 priv->eee_enabled = stmmac_eee_init(priv);
1079                 priv->tx_lpi_enabled = priv->eee_enabled;
1080                 stmmac_set_eee_pls(priv, priv->hw, true);
1081         }
1082
1083         if (priv->dma_cap.fpesel)
1084                 stmmac_fpe_link_state_handle(priv, true);
1085 }
1086
1087 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1088         .validate = phylink_generic_validate,
1089         .mac_select_pcs = stmmac_mac_select_pcs,
1090         .mac_config = stmmac_mac_config,
1091         .mac_link_down = stmmac_mac_link_down,
1092         .mac_link_up = stmmac_mac_link_up,
1093 };
1094
1095 /**
1096  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1097  * @priv: driver private structure
1098  * Description: this is to verify if the HW supports the PCS.
1099  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1100  * configured for the TBI, RTBI, or SGMII PHY interface.
1101  */
1102 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1103 {
1104         int interface = priv->plat->interface;
1105
1106         if (priv->dma_cap.pcs) {
1107                 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1108                     (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1109                     (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1110                     (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1111                         netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1112                         priv->hw->pcs = STMMAC_PCS_RGMII;
1113                 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
1114                         netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1115                         priv->hw->pcs = STMMAC_PCS_SGMII;
1116                 }
1117         }
1118 }
1119
1120 /**
1121  * stmmac_init_phy - PHY initialization
1122  * @dev: net device structure
1123  * Description: it initializes the driver's PHY state, and attaches the PHY
1124  * to the mac driver.
1125  *  Return value:
1126  *  0 on success
1127  */
1128 static int stmmac_init_phy(struct net_device *dev)
1129 {
1130         struct stmmac_priv *priv = netdev_priv(dev);
1131         struct device_node *node;
1132         int ret;
1133
1134         node = priv->plat->phylink_node;
1135
1136         if (node)
1137                 ret = phylink_of_phy_connect(priv->phylink, node, 0);
1138
1139         /* Some DT bindings do not set-up the PHY handle. Let's try to
1140          * manually parse it
1141          */
1142         if (!node || ret) {
1143                 int addr = priv->plat->phy_addr;
1144                 struct phy_device *phydev;
1145
1146                 phydev = mdiobus_get_phy(priv->mii, addr);
1147                 if (!phydev) {
1148                         netdev_err(priv->dev, "no phy at addr %d\n", addr);
1149                         return -ENODEV;
1150                 }
1151
1152                 ret = phylink_connect_phy(priv->phylink, phydev);
1153         }
1154
1155         if (!priv->plat->pmt) {
1156                 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1157
1158                 phylink_ethtool_get_wol(priv->phylink, &wol);
1159                 device_set_wakeup_capable(priv->device, !!wol.supported);
1160         }
1161
1162         return ret;
1163 }
1164
1165 static int stmmac_phy_setup(struct stmmac_priv *priv)
1166 {
1167         struct stmmac_mdio_bus_data *mdio_bus_data = priv->plat->mdio_bus_data;
1168         struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1169         int max_speed = priv->plat->max_speed;
1170         int mode = priv->plat->phy_interface;
1171         struct phylink *phylink;
1172
1173         priv->phylink_config.dev = &priv->dev->dev;
1174         priv->phylink_config.type = PHYLINK_NETDEV;
1175         if (priv->plat->mdio_bus_data)
1176                 priv->phylink_config.ovr_an_inband =
1177                         mdio_bus_data->xpcs_an_inband;
1178
1179         if (!fwnode)
1180                 fwnode = dev_fwnode(priv->device);
1181
1182         /* Set the platform/firmware specified interface mode */
1183         __set_bit(mode, priv->phylink_config.supported_interfaces);
1184
1185         /* If we have an xpcs, it defines which PHY interfaces are supported. */
1186         if (priv->hw->xpcs)
1187                 xpcs_get_interfaces(priv->hw->xpcs,
1188                                     priv->phylink_config.supported_interfaces);
1189
1190         priv->phylink_config.mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1191                 MAC_10 | MAC_100;
1192
1193         if (!max_speed || max_speed >= 1000)
1194                 priv->phylink_config.mac_capabilities |= MAC_1000;
1195
1196         if (priv->plat->has_gmac4) {
1197                 if (!max_speed || max_speed >= 2500)
1198                         priv->phylink_config.mac_capabilities |= MAC_2500FD;
1199         } else if (priv->plat->has_xgmac) {
1200                 if (!max_speed || max_speed >= 2500)
1201                         priv->phylink_config.mac_capabilities |= MAC_2500FD;
1202                 if (!max_speed || max_speed >= 5000)
1203                         priv->phylink_config.mac_capabilities |= MAC_5000FD;
1204                 if (!max_speed || max_speed >= 10000)
1205                         priv->phylink_config.mac_capabilities |= MAC_10000FD;
1206                 if (!max_speed || max_speed >= 25000)
1207                         priv->phylink_config.mac_capabilities |= MAC_25000FD;
1208                 if (!max_speed || max_speed >= 40000)
1209                         priv->phylink_config.mac_capabilities |= MAC_40000FD;
1210                 if (!max_speed || max_speed >= 50000)
1211                         priv->phylink_config.mac_capabilities |= MAC_50000FD;
1212                 if (!max_speed || max_speed >= 100000)
1213                         priv->phylink_config.mac_capabilities |= MAC_100000FD;
1214         }
1215
1216         /* Half-Duplex can only work with single queue */
1217         if (priv->plat->tx_queues_to_use > 1)
1218                 priv->phylink_config.mac_capabilities &=
1219                         ~(MAC_10HD | MAC_100HD | MAC_1000HD);
1220
1221         phylink = phylink_create(&priv->phylink_config, fwnode,
1222                                  mode, &stmmac_phylink_mac_ops);
1223         if (IS_ERR(phylink))
1224                 return PTR_ERR(phylink);
1225
1226         priv->phylink = phylink;
1227         return 0;
1228 }
1229
1230 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1231 {
1232         u32 rx_cnt = priv->plat->rx_queues_to_use;
1233         unsigned int desc_size;
1234         void *head_rx;
1235         u32 queue;
1236
1237         /* Display RX rings */
1238         for (queue = 0; queue < rx_cnt; queue++) {
1239                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1240
1241                 pr_info("\tRX Queue %u rings\n", queue);
1242
1243                 if (priv->extend_desc) {
1244                         head_rx = (void *)rx_q->dma_erx;
1245                         desc_size = sizeof(struct dma_extended_desc);
1246                 } else {
1247                         head_rx = (void *)rx_q->dma_rx;
1248                         desc_size = sizeof(struct dma_desc);
1249                 }
1250
1251                 /* Display RX ring */
1252                 stmmac_display_ring(priv, head_rx, priv->dma_rx_size, true,
1253                                     rx_q->dma_rx_phy, desc_size);
1254         }
1255 }
1256
1257 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1258 {
1259         u32 tx_cnt = priv->plat->tx_queues_to_use;
1260         unsigned int desc_size;
1261         void *head_tx;
1262         u32 queue;
1263
1264         /* Display TX rings */
1265         for (queue = 0; queue < tx_cnt; queue++) {
1266                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1267
1268                 pr_info("\tTX Queue %d rings\n", queue);
1269
1270                 if (priv->extend_desc) {
1271                         head_tx = (void *)tx_q->dma_etx;
1272                         desc_size = sizeof(struct dma_extended_desc);
1273                 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1274                         head_tx = (void *)tx_q->dma_entx;
1275                         desc_size = sizeof(struct dma_edesc);
1276                 } else {
1277                         head_tx = (void *)tx_q->dma_tx;
1278                         desc_size = sizeof(struct dma_desc);
1279                 }
1280
1281                 stmmac_display_ring(priv, head_tx, priv->dma_tx_size, false,
1282                                     tx_q->dma_tx_phy, desc_size);
1283         }
1284 }
1285
1286 static void stmmac_display_rings(struct stmmac_priv *priv)
1287 {
1288         /* Display RX ring */
1289         stmmac_display_rx_rings(priv);
1290
1291         /* Display TX ring */
1292         stmmac_display_tx_rings(priv);
1293 }
1294
1295 static int stmmac_set_bfsize(int mtu, int bufsize)
1296 {
1297         int ret = bufsize;
1298
1299         if (mtu >= BUF_SIZE_8KiB)
1300                 ret = BUF_SIZE_16KiB;
1301         else if (mtu >= BUF_SIZE_4KiB)
1302                 ret = BUF_SIZE_8KiB;
1303         else if (mtu >= BUF_SIZE_2KiB)
1304                 ret = BUF_SIZE_4KiB;
1305         else if (mtu > DEFAULT_BUFSIZE)
1306                 ret = BUF_SIZE_2KiB;
1307         else
1308                 ret = DEFAULT_BUFSIZE;
1309
1310         return ret;
1311 }
1312
1313 /**
1314  * stmmac_clear_rx_descriptors - clear RX descriptors
1315  * @priv: driver private structure
1316  * @queue: RX queue index
1317  * Description: this function is called to clear the RX descriptors
1318  * in case of both basic and extended descriptors are used.
1319  */
1320 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1321 {
1322         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1323         int i;
1324
1325         /* Clear the RX descriptors */
1326         for (i = 0; i < priv->dma_rx_size; i++)
1327                 if (priv->extend_desc)
1328                         stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1329                                         priv->use_riwt, priv->mode,
1330                                         (i == priv->dma_rx_size - 1),
1331                                         priv->dma_buf_sz);
1332                 else
1333                         stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1334                                         priv->use_riwt, priv->mode,
1335                                         (i == priv->dma_rx_size - 1),
1336                                         priv->dma_buf_sz);
1337 }
1338
1339 /**
1340  * stmmac_clear_tx_descriptors - clear tx descriptors
1341  * @priv: driver private structure
1342  * @queue: TX queue index.
1343  * Description: this function is called to clear the TX descriptors
1344  * in case of both basic and extended descriptors are used.
1345  */
1346 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1347 {
1348         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1349         int i;
1350
1351         /* Clear the TX descriptors */
1352         for (i = 0; i < priv->dma_tx_size; i++) {
1353                 int last = (i == (priv->dma_tx_size - 1));
1354                 struct dma_desc *p;
1355
1356                 if (priv->extend_desc)
1357                         p = &tx_q->dma_etx[i].basic;
1358                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1359                         p = &tx_q->dma_entx[i].basic;
1360                 else
1361                         p = &tx_q->dma_tx[i];
1362
1363                 stmmac_init_tx_desc(priv, p, priv->mode, last);
1364         }
1365 }
1366
1367 /**
1368  * stmmac_clear_descriptors - clear descriptors
1369  * @priv: driver private structure
1370  * Description: this function is called to clear the TX and RX descriptors
1371  * in case of both basic and extended descriptors are used.
1372  */
1373 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1374 {
1375         u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1376         u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1377         u32 queue;
1378
1379         /* Clear the RX descriptors */
1380         for (queue = 0; queue < rx_queue_cnt; queue++)
1381                 stmmac_clear_rx_descriptors(priv, queue);
1382
1383         /* Clear the TX descriptors */
1384         for (queue = 0; queue < tx_queue_cnt; queue++)
1385                 stmmac_clear_tx_descriptors(priv, queue);
1386 }
1387
1388 /**
1389  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1390  * @priv: driver private structure
1391  * @p: descriptor pointer
1392  * @i: descriptor index
1393  * @flags: gfp flag
1394  * @queue: RX queue index
1395  * Description: this function is called to allocate a receive buffer, perform
1396  * the DMA mapping and init the descriptor.
1397  */
1398 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1399                                   int i, gfp_t flags, u32 queue)
1400 {
1401         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1402         struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1403         gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
1404
1405         if (priv->dma_cap.addr64 <= 32)
1406                 gfp |= GFP_DMA32;
1407
1408         if (!buf->page) {
1409                 buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1410                 if (!buf->page)
1411                         return -ENOMEM;
1412                 buf->page_offset = stmmac_rx_offset(priv);
1413         }
1414
1415         if (priv->sph && !buf->sec_page) {
1416                 buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1417                 if (!buf->sec_page)
1418                         return -ENOMEM;
1419
1420                 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1421                 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
1422         } else {
1423                 buf->sec_page = NULL;
1424                 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
1425         }
1426
1427         buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
1428
1429         stmmac_set_desc_addr(priv, p, buf->addr);
1430         if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1431                 stmmac_init_desc3(priv, p);
1432
1433         return 0;
1434 }
1435
1436 /**
1437  * stmmac_free_rx_buffer - free RX dma buffers
1438  * @priv: private structure
1439  * @queue: RX queue index
1440  * @i: buffer index.
1441  */
1442 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1443 {
1444         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1445         struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1446
1447         if (buf->page)
1448                 page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1449         buf->page = NULL;
1450
1451         if (buf->sec_page)
1452                 page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1453         buf->sec_page = NULL;
1454 }
1455
1456 /**
1457  * stmmac_free_tx_buffer - free RX dma buffers
1458  * @priv: private structure
1459  * @queue: RX queue index
1460  * @i: buffer index.
1461  */
1462 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1463 {
1464         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1465
1466         if (tx_q->tx_skbuff_dma[i].buf &&
1467             tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) {
1468                 if (tx_q->tx_skbuff_dma[i].map_as_page)
1469                         dma_unmap_page(priv->device,
1470                                        tx_q->tx_skbuff_dma[i].buf,
1471                                        tx_q->tx_skbuff_dma[i].len,
1472                                        DMA_TO_DEVICE);
1473                 else
1474                         dma_unmap_single(priv->device,
1475                                          tx_q->tx_skbuff_dma[i].buf,
1476                                          tx_q->tx_skbuff_dma[i].len,
1477                                          DMA_TO_DEVICE);
1478         }
1479
1480         if (tx_q->xdpf[i] &&
1481             (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX ||
1482              tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) {
1483                 xdp_return_frame(tx_q->xdpf[i]);
1484                 tx_q->xdpf[i] = NULL;
1485         }
1486
1487         if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX)
1488                 tx_q->xsk_frames_done++;
1489
1490         if (tx_q->tx_skbuff[i] &&
1491             tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) {
1492                 dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1493                 tx_q->tx_skbuff[i] = NULL;
1494         }
1495
1496         tx_q->tx_skbuff_dma[i].buf = 0;
1497         tx_q->tx_skbuff_dma[i].map_as_page = false;
1498 }
1499
1500 /**
1501  * dma_free_rx_skbufs - free RX dma buffers
1502  * @priv: private structure
1503  * @queue: RX queue index
1504  */
1505 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1506 {
1507         int i;
1508
1509         for (i = 0; i < priv->dma_rx_size; i++)
1510                 stmmac_free_rx_buffer(priv, queue, i);
1511 }
1512
1513 static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv, u32 queue,
1514                                    gfp_t flags)
1515 {
1516         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1517         int i;
1518
1519         for (i = 0; i < priv->dma_rx_size; i++) {
1520                 struct dma_desc *p;
1521                 int ret;
1522
1523                 if (priv->extend_desc)
1524                         p = &((rx_q->dma_erx + i)->basic);
1525                 else
1526                         p = rx_q->dma_rx + i;
1527
1528                 ret = stmmac_init_rx_buffers(priv, p, i, flags,
1529                                              queue);
1530                 if (ret)
1531                         return ret;
1532
1533                 rx_q->buf_alloc_num++;
1534         }
1535
1536         return 0;
1537 }
1538
1539 /**
1540  * dma_free_rx_xskbufs - free RX dma buffers from XSK pool
1541  * @priv: private structure
1542  * @queue: RX queue index
1543  */
1544 static void dma_free_rx_xskbufs(struct stmmac_priv *priv, u32 queue)
1545 {
1546         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1547         int i;
1548
1549         for (i = 0; i < priv->dma_rx_size; i++) {
1550                 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1551
1552                 if (!buf->xdp)
1553                         continue;
1554
1555                 xsk_buff_free(buf->xdp);
1556                 buf->xdp = NULL;
1557         }
1558 }
1559
1560 static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv, u32 queue)
1561 {
1562         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1563         int i;
1564
1565         for (i = 0; i < priv->dma_rx_size; i++) {
1566                 struct stmmac_rx_buffer *buf;
1567                 dma_addr_t dma_addr;
1568                 struct dma_desc *p;
1569
1570                 if (priv->extend_desc)
1571                         p = (struct dma_desc *)(rx_q->dma_erx + i);
1572                 else
1573                         p = rx_q->dma_rx + i;
1574
1575                 buf = &rx_q->buf_pool[i];
1576
1577                 buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
1578                 if (!buf->xdp)
1579                         return -ENOMEM;
1580
1581                 dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
1582                 stmmac_set_desc_addr(priv, p, dma_addr);
1583                 rx_q->buf_alloc_num++;
1584         }
1585
1586         return 0;
1587 }
1588
1589 static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue)
1590 {
1591         if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps))
1592                 return NULL;
1593
1594         return xsk_get_pool_from_qid(priv->dev, queue);
1595 }
1596
1597 /**
1598  * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue)
1599  * @priv: driver private structure
1600  * @queue: RX queue index
1601  * @flags: gfp flag.
1602  * Description: this function initializes the DMA RX descriptors
1603  * and allocates the socket buffers. It supports the chained and ring
1604  * modes.
1605  */
1606 static int __init_dma_rx_desc_rings(struct stmmac_priv *priv, u32 queue, gfp_t flags)
1607 {
1608         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1609         int ret;
1610
1611         netif_dbg(priv, probe, priv->dev,
1612                   "(%s) dma_rx_phy=0x%08x\n", __func__,
1613                   (u32)rx_q->dma_rx_phy);
1614
1615         stmmac_clear_rx_descriptors(priv, queue);
1616
1617         xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq);
1618
1619         rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1620
1621         if (rx_q->xsk_pool) {
1622                 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1623                                                    MEM_TYPE_XSK_BUFF_POOL,
1624                                                    NULL));
1625                 netdev_info(priv->dev,
1626                             "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n",
1627                             rx_q->queue_index);
1628                 xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq);
1629         } else {
1630                 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1631                                                    MEM_TYPE_PAGE_POOL,
1632                                                    rx_q->page_pool));
1633                 netdev_info(priv->dev,
1634                             "Register MEM_TYPE_PAGE_POOL RxQ-%d\n",
1635                             rx_q->queue_index);
1636         }
1637
1638         if (rx_q->xsk_pool) {
1639                 /* RX XDP ZC buffer pool may not be populated, e.g.
1640                  * xdpsock TX-only.
1641                  */
1642                 stmmac_alloc_rx_buffers_zc(priv, queue);
1643         } else {
1644                 ret = stmmac_alloc_rx_buffers(priv, queue, flags);
1645                 if (ret < 0)
1646                         return -ENOMEM;
1647         }
1648
1649         rx_q->cur_rx = 0;
1650         rx_q->dirty_rx = 0;
1651
1652         /* Setup the chained descriptor addresses */
1653         if (priv->mode == STMMAC_CHAIN_MODE) {
1654                 if (priv->extend_desc)
1655                         stmmac_mode_init(priv, rx_q->dma_erx,
1656                                          rx_q->dma_rx_phy,
1657                                          priv->dma_rx_size, 1);
1658                 else
1659                         stmmac_mode_init(priv, rx_q->dma_rx,
1660                                          rx_q->dma_rx_phy,
1661                                          priv->dma_rx_size, 0);
1662         }
1663
1664         return 0;
1665 }
1666
1667 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1668 {
1669         struct stmmac_priv *priv = netdev_priv(dev);
1670         u32 rx_count = priv->plat->rx_queues_to_use;
1671         int queue;
1672         int ret;
1673
1674         /* RX INITIALIZATION */
1675         netif_dbg(priv, probe, priv->dev,
1676                   "SKB addresses:\nskb\t\tskb data\tdma data\n");
1677
1678         for (queue = 0; queue < rx_count; queue++) {
1679                 ret = __init_dma_rx_desc_rings(priv, queue, flags);
1680                 if (ret)
1681                         goto err_init_rx_buffers;
1682         }
1683
1684         return 0;
1685
1686 err_init_rx_buffers:
1687         while (queue >= 0) {
1688                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1689
1690                 if (rx_q->xsk_pool)
1691                         dma_free_rx_xskbufs(priv, queue);
1692                 else
1693                         dma_free_rx_skbufs(priv, queue);
1694
1695                 rx_q->buf_alloc_num = 0;
1696                 rx_q->xsk_pool = NULL;
1697
1698                 queue--;
1699         }
1700
1701         return ret;
1702 }
1703
1704 /**
1705  * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue)
1706  * @priv: driver private structure
1707  * @queue : TX queue index
1708  * Description: this function initializes the DMA TX descriptors
1709  * and allocates the socket buffers. It supports the chained and ring
1710  * modes.
1711  */
1712 static int __init_dma_tx_desc_rings(struct stmmac_priv *priv, u32 queue)
1713 {
1714         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1715         int i;
1716
1717         netif_dbg(priv, probe, priv->dev,
1718                   "(%s) dma_tx_phy=0x%08x\n", __func__,
1719                   (u32)tx_q->dma_tx_phy);
1720
1721         /* Setup the chained descriptor addresses */
1722         if (priv->mode == STMMAC_CHAIN_MODE) {
1723                 if (priv->extend_desc)
1724                         stmmac_mode_init(priv, tx_q->dma_etx,
1725                                          tx_q->dma_tx_phy,
1726                                          priv->dma_tx_size, 1);
1727                 else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1728                         stmmac_mode_init(priv, tx_q->dma_tx,
1729                                          tx_q->dma_tx_phy,
1730                                          priv->dma_tx_size, 0);
1731         }
1732
1733         tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1734
1735         for (i = 0; i < priv->dma_tx_size; i++) {
1736                 struct dma_desc *p;
1737
1738                 if (priv->extend_desc)
1739                         p = &((tx_q->dma_etx + i)->basic);
1740                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1741                         p = &((tx_q->dma_entx + i)->basic);
1742                 else
1743                         p = tx_q->dma_tx + i;
1744
1745                 stmmac_clear_desc(priv, p);
1746
1747                 tx_q->tx_skbuff_dma[i].buf = 0;
1748                 tx_q->tx_skbuff_dma[i].map_as_page = false;
1749                 tx_q->tx_skbuff_dma[i].len = 0;
1750                 tx_q->tx_skbuff_dma[i].last_segment = false;
1751                 tx_q->tx_skbuff[i] = NULL;
1752         }
1753
1754         tx_q->dirty_tx = 0;
1755         tx_q->cur_tx = 0;
1756         tx_q->mss = 0;
1757
1758         netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1759
1760         return 0;
1761 }
1762
1763 static int init_dma_tx_desc_rings(struct net_device *dev)
1764 {
1765         struct stmmac_priv *priv = netdev_priv(dev);
1766         u32 tx_queue_cnt;
1767         u32 queue;
1768
1769         tx_queue_cnt = priv->plat->tx_queues_to_use;
1770
1771         for (queue = 0; queue < tx_queue_cnt; queue++)
1772                 __init_dma_tx_desc_rings(priv, queue);
1773
1774         return 0;
1775 }
1776
1777 /**
1778  * init_dma_desc_rings - init the RX/TX descriptor rings
1779  * @dev: net device structure
1780  * @flags: gfp flag.
1781  * Description: this function initializes the DMA RX/TX descriptors
1782  * and allocates the socket buffers. It supports the chained and ring
1783  * modes.
1784  */
1785 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1786 {
1787         struct stmmac_priv *priv = netdev_priv(dev);
1788         int ret;
1789
1790         ret = init_dma_rx_desc_rings(dev, flags);
1791         if (ret)
1792                 return ret;
1793
1794         ret = init_dma_tx_desc_rings(dev);
1795
1796         stmmac_clear_descriptors(priv);
1797
1798         if (netif_msg_hw(priv))
1799                 stmmac_display_rings(priv);
1800
1801         return ret;
1802 }
1803
1804 /**
1805  * dma_free_tx_skbufs - free TX dma buffers
1806  * @priv: private structure
1807  * @queue: TX queue index
1808  */
1809 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1810 {
1811         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1812         int i;
1813
1814         tx_q->xsk_frames_done = 0;
1815
1816         for (i = 0; i < priv->dma_tx_size; i++)
1817                 stmmac_free_tx_buffer(priv, queue, i);
1818
1819         if (tx_q->xsk_pool && tx_q->xsk_frames_done) {
1820                 xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
1821                 tx_q->xsk_frames_done = 0;
1822                 tx_q->xsk_pool = NULL;
1823         }
1824 }
1825
1826 /**
1827  * stmmac_free_tx_skbufs - free TX skb buffers
1828  * @priv: private structure
1829  */
1830 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv)
1831 {
1832         u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1833         u32 queue;
1834
1835         for (queue = 0; queue < tx_queue_cnt; queue++)
1836                 dma_free_tx_skbufs(priv, queue);
1837 }
1838
1839 /**
1840  * __free_dma_rx_desc_resources - free RX dma desc resources (per queue)
1841  * @priv: private structure
1842  * @queue: RX queue index
1843  */
1844 static void __free_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue)
1845 {
1846         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1847
1848         /* Release the DMA RX socket buffers */
1849         if (rx_q->xsk_pool)
1850                 dma_free_rx_xskbufs(priv, queue);
1851         else
1852                 dma_free_rx_skbufs(priv, queue);
1853
1854         rx_q->buf_alloc_num = 0;
1855         rx_q->xsk_pool = NULL;
1856
1857         /* Free DMA regions of consistent memory previously allocated */
1858         if (!priv->extend_desc)
1859                 dma_free_coherent(priv->device, priv->dma_rx_size *
1860                                   sizeof(struct dma_desc),
1861                                   rx_q->dma_rx, rx_q->dma_rx_phy);
1862         else
1863                 dma_free_coherent(priv->device, priv->dma_rx_size *
1864                                   sizeof(struct dma_extended_desc),
1865                                   rx_q->dma_erx, rx_q->dma_rx_phy);
1866
1867         if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq))
1868                 xdp_rxq_info_unreg(&rx_q->xdp_rxq);
1869
1870         kfree(rx_q->buf_pool);
1871         if (rx_q->page_pool)
1872                 page_pool_destroy(rx_q->page_pool);
1873 }
1874
1875 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1876 {
1877         u32 rx_count = priv->plat->rx_queues_to_use;
1878         u32 queue;
1879
1880         /* Free RX queue resources */
1881         for (queue = 0; queue < rx_count; queue++)
1882                 __free_dma_rx_desc_resources(priv, queue);
1883 }
1884
1885 /**
1886  * __free_dma_tx_desc_resources - free TX dma desc resources (per queue)
1887  * @priv: private structure
1888  * @queue: TX queue index
1889  */
1890 static void __free_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue)
1891 {
1892         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1893         size_t size;
1894         void *addr;
1895
1896         /* Release the DMA TX socket buffers */
1897         dma_free_tx_skbufs(priv, queue);
1898
1899         if (priv->extend_desc) {
1900                 size = sizeof(struct dma_extended_desc);
1901                 addr = tx_q->dma_etx;
1902         } else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1903                 size = sizeof(struct dma_edesc);
1904                 addr = tx_q->dma_entx;
1905         } else {
1906                 size = sizeof(struct dma_desc);
1907                 addr = tx_q->dma_tx;
1908         }
1909
1910         size *= priv->dma_tx_size;
1911
1912         dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1913
1914         kfree(tx_q->tx_skbuff_dma);
1915         kfree(tx_q->tx_skbuff);
1916 }
1917
1918 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1919 {
1920         u32 tx_count = priv->plat->tx_queues_to_use;
1921         u32 queue;
1922
1923         /* Free TX queue resources */
1924         for (queue = 0; queue < tx_count; queue++)
1925                 __free_dma_tx_desc_resources(priv, queue);
1926 }
1927
1928 /**
1929  * __alloc_dma_rx_desc_resources - alloc RX resources (per queue).
1930  * @priv: private structure
1931  * @queue: RX queue index
1932  * Description: according to which descriptor can be used (extend or basic)
1933  * this function allocates the resources for TX and RX paths. In case of
1934  * reception, for example, it pre-allocated the RX socket buffer in order to
1935  * allow zero-copy mechanism.
1936  */
1937 static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue)
1938 {
1939         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1940         struct stmmac_channel *ch = &priv->channel[queue];
1941         bool xdp_prog = stmmac_xdp_is_enabled(priv);
1942         struct page_pool_params pp_params = { 0 };
1943         unsigned int num_pages;
1944         unsigned int napi_id;
1945         int ret;
1946
1947         rx_q->queue_index = queue;
1948         rx_q->priv_data = priv;
1949
1950         pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
1951         pp_params.pool_size = priv->dma_rx_size;
1952         num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE);
1953         pp_params.order = ilog2(num_pages);
1954         pp_params.nid = dev_to_node(priv->device);
1955         pp_params.dev = priv->device;
1956         pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
1957         pp_params.offset = stmmac_rx_offset(priv);
1958         pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages);
1959
1960         rx_q->page_pool = page_pool_create(&pp_params);
1961         if (IS_ERR(rx_q->page_pool)) {
1962                 ret = PTR_ERR(rx_q->page_pool);
1963                 rx_q->page_pool = NULL;
1964                 return ret;
1965         }
1966
1967         rx_q->buf_pool = kcalloc(priv->dma_rx_size,
1968                                  sizeof(*rx_q->buf_pool),
1969                                  GFP_KERNEL);
1970         if (!rx_q->buf_pool)
1971                 return -ENOMEM;
1972
1973         if (priv->extend_desc) {
1974                 rx_q->dma_erx = dma_alloc_coherent(priv->device,
1975                                                    priv->dma_rx_size *
1976                                                    sizeof(struct dma_extended_desc),
1977                                                    &rx_q->dma_rx_phy,
1978                                                    GFP_KERNEL);
1979                 if (!rx_q->dma_erx)
1980                         return -ENOMEM;
1981
1982         } else {
1983                 rx_q->dma_rx = dma_alloc_coherent(priv->device,
1984                                                   priv->dma_rx_size *
1985                                                   sizeof(struct dma_desc),
1986                                                   &rx_q->dma_rx_phy,
1987                                                   GFP_KERNEL);
1988                 if (!rx_q->dma_rx)
1989                         return -ENOMEM;
1990         }
1991
1992         if (stmmac_xdp_is_enabled(priv) &&
1993             test_bit(queue, priv->af_xdp_zc_qps))
1994                 napi_id = ch->rxtx_napi.napi_id;
1995         else
1996                 napi_id = ch->rx_napi.napi_id;
1997
1998         ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev,
1999                                rx_q->queue_index,
2000                                napi_id);
2001         if (ret) {
2002                 netdev_err(priv->dev, "Failed to register xdp rxq info\n");
2003                 return -EINVAL;
2004         }
2005
2006         return 0;
2007 }
2008
2009 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
2010 {
2011         u32 rx_count = priv->plat->rx_queues_to_use;
2012         u32 queue;
2013         int ret;
2014
2015         /* RX queues buffers and DMA */
2016         for (queue = 0; queue < rx_count; queue++) {
2017                 ret = __alloc_dma_rx_desc_resources(priv, queue);
2018                 if (ret)
2019                         goto err_dma;
2020         }
2021
2022         return 0;
2023
2024 err_dma:
2025         free_dma_rx_desc_resources(priv);
2026
2027         return ret;
2028 }
2029
2030 /**
2031  * __alloc_dma_tx_desc_resources - alloc TX resources (per queue).
2032  * @priv: private structure
2033  * @queue: TX queue index
2034  * Description: according to which descriptor can be used (extend or basic)
2035  * this function allocates the resources for TX and RX paths. In case of
2036  * reception, for example, it pre-allocated the RX socket buffer in order to
2037  * allow zero-copy mechanism.
2038  */
2039 static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue)
2040 {
2041         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2042         size_t size;
2043         void *addr;
2044
2045         tx_q->queue_index = queue;
2046         tx_q->priv_data = priv;
2047
2048         tx_q->tx_skbuff_dma = kcalloc(priv->dma_tx_size,
2049                                       sizeof(*tx_q->tx_skbuff_dma),
2050                                       GFP_KERNEL);
2051         if (!tx_q->tx_skbuff_dma)
2052                 return -ENOMEM;
2053
2054         tx_q->tx_skbuff = kcalloc(priv->dma_tx_size,
2055                                   sizeof(struct sk_buff *),
2056                                   GFP_KERNEL);
2057         if (!tx_q->tx_skbuff)
2058                 return -ENOMEM;
2059
2060         if (priv->extend_desc)
2061                 size = sizeof(struct dma_extended_desc);
2062         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2063                 size = sizeof(struct dma_edesc);
2064         else
2065                 size = sizeof(struct dma_desc);
2066
2067         size *= priv->dma_tx_size;
2068
2069         addr = dma_alloc_coherent(priv->device, size,
2070                                   &tx_q->dma_tx_phy, GFP_KERNEL);
2071         if (!addr)
2072                 return -ENOMEM;
2073
2074         if (priv->extend_desc)
2075                 tx_q->dma_etx = addr;
2076         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2077                 tx_q->dma_entx = addr;
2078         else
2079                 tx_q->dma_tx = addr;
2080
2081         return 0;
2082 }
2083
2084 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
2085 {
2086         u32 tx_count = priv->plat->tx_queues_to_use;
2087         u32 queue;
2088         int ret;
2089
2090         /* TX queues buffers and DMA */
2091         for (queue = 0; queue < tx_count; queue++) {
2092                 ret = __alloc_dma_tx_desc_resources(priv, queue);
2093                 if (ret)
2094                         goto err_dma;
2095         }
2096
2097         return 0;
2098
2099 err_dma:
2100         free_dma_tx_desc_resources(priv);
2101         return ret;
2102 }
2103
2104 /**
2105  * alloc_dma_desc_resources - alloc TX/RX resources.
2106  * @priv: private structure
2107  * Description: according to which descriptor can be used (extend or basic)
2108  * this function allocates the resources for TX and RX paths. In case of
2109  * reception, for example, it pre-allocated the RX socket buffer in order to
2110  * allow zero-copy mechanism.
2111  */
2112 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
2113 {
2114         /* RX Allocation */
2115         int ret = alloc_dma_rx_desc_resources(priv);
2116
2117         if (ret)
2118                 return ret;
2119
2120         ret = alloc_dma_tx_desc_resources(priv);
2121
2122         return ret;
2123 }
2124
2125 /**
2126  * free_dma_desc_resources - free dma desc resources
2127  * @priv: private structure
2128  */
2129 static void free_dma_desc_resources(struct stmmac_priv *priv)
2130 {
2131         /* Release the DMA TX socket buffers */
2132         free_dma_tx_desc_resources(priv);
2133
2134         /* Release the DMA RX socket buffers later
2135          * to ensure all pending XDP_TX buffers are returned.
2136          */
2137         free_dma_rx_desc_resources(priv);
2138 }
2139
2140 /**
2141  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
2142  *  @priv: driver private structure
2143  *  Description: It is used for enabling the rx queues in the MAC
2144  */
2145 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
2146 {
2147         u32 rx_queues_count = priv->plat->rx_queues_to_use;
2148         int queue;
2149         u8 mode;
2150
2151         for (queue = 0; queue < rx_queues_count; queue++) {
2152                 mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
2153                 stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
2154         }
2155 }
2156
2157 /**
2158  * stmmac_start_rx_dma - start RX DMA channel
2159  * @priv: driver private structure
2160  * @chan: RX channel index
2161  * Description:
2162  * This starts a RX DMA channel
2163  */
2164 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
2165 {
2166         netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
2167         stmmac_start_rx(priv, priv->ioaddr, chan);
2168 }
2169
2170 /**
2171  * stmmac_start_tx_dma - start TX DMA channel
2172  * @priv: driver private structure
2173  * @chan: TX channel index
2174  * Description:
2175  * This starts a TX DMA channel
2176  */
2177 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
2178 {
2179         netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
2180         stmmac_start_tx(priv, priv->ioaddr, chan);
2181 }
2182
2183 /**
2184  * stmmac_stop_rx_dma - stop RX DMA channel
2185  * @priv: driver private structure
2186  * @chan: RX channel index
2187  * Description:
2188  * This stops a RX DMA channel
2189  */
2190 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
2191 {
2192         netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
2193         stmmac_stop_rx(priv, priv->ioaddr, chan);
2194 }
2195
2196 /**
2197  * stmmac_stop_tx_dma - stop TX DMA channel
2198  * @priv: driver private structure
2199  * @chan: TX channel index
2200  * Description:
2201  * This stops a TX DMA channel
2202  */
2203 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
2204 {
2205         netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
2206         stmmac_stop_tx(priv, priv->ioaddr, chan);
2207 }
2208
2209 static void stmmac_enable_all_dma_irq(struct stmmac_priv *priv)
2210 {
2211         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2212         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2213         u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2214         u32 chan;
2215
2216         for (chan = 0; chan < dma_csr_ch; chan++) {
2217                 struct stmmac_channel *ch = &priv->channel[chan];
2218                 unsigned long flags;
2219
2220                 spin_lock_irqsave(&ch->lock, flags);
2221                 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2222                 spin_unlock_irqrestore(&ch->lock, flags);
2223         }
2224 }
2225
2226 /**
2227  * stmmac_start_all_dma - start all RX and TX DMA channels
2228  * @priv: driver private structure
2229  * Description:
2230  * This starts all the RX and TX DMA channels
2231  */
2232 static void stmmac_start_all_dma(struct stmmac_priv *priv)
2233 {
2234         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2235         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2236         u32 chan = 0;
2237
2238         for (chan = 0; chan < rx_channels_count; chan++)
2239                 stmmac_start_rx_dma(priv, chan);
2240
2241         for (chan = 0; chan < tx_channels_count; chan++)
2242                 stmmac_start_tx_dma(priv, chan);
2243 }
2244
2245 /**
2246  * stmmac_stop_all_dma - stop all RX and TX DMA channels
2247  * @priv: driver private structure
2248  * Description:
2249  * This stops the RX and TX DMA channels
2250  */
2251 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
2252 {
2253         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2254         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2255         u32 chan = 0;
2256
2257         for (chan = 0; chan < rx_channels_count; chan++)
2258                 stmmac_stop_rx_dma(priv, chan);
2259
2260         for (chan = 0; chan < tx_channels_count; chan++)
2261                 stmmac_stop_tx_dma(priv, chan);
2262 }
2263
2264 /**
2265  *  stmmac_dma_operation_mode - HW DMA operation mode
2266  *  @priv: driver private structure
2267  *  Description: it is used for configuring the DMA operation mode register in
2268  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
2269  */
2270 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
2271 {
2272         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2273         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2274         int rxfifosz = priv->plat->rx_fifo_size;
2275         int txfifosz = priv->plat->tx_fifo_size;
2276         u32 txmode = 0;
2277         u32 rxmode = 0;
2278         u32 chan = 0;
2279         u8 qmode = 0;
2280
2281         if (rxfifosz == 0)
2282                 rxfifosz = priv->dma_cap.rx_fifo_size;
2283         if (txfifosz == 0)
2284                 txfifosz = priv->dma_cap.tx_fifo_size;
2285
2286         /* Adjust for real per queue fifo size */
2287         rxfifosz /= rx_channels_count;
2288         txfifosz /= tx_channels_count;
2289
2290         if (priv->plat->force_thresh_dma_mode) {
2291                 txmode = tc;
2292                 rxmode = tc;
2293         } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
2294                 /*
2295                  * In case of GMAC, SF mode can be enabled
2296                  * to perform the TX COE in HW. This depends on:
2297                  * 1) TX COE if actually supported
2298                  * 2) There is no bugged Jumbo frame support
2299                  *    that needs to not insert csum in the TDES.
2300                  */
2301                 txmode = SF_DMA_MODE;
2302                 rxmode = SF_DMA_MODE;
2303                 priv->xstats.threshold = SF_DMA_MODE;
2304         } else {
2305                 txmode = tc;
2306                 rxmode = SF_DMA_MODE;
2307         }
2308
2309         /* configure all channels */
2310         for (chan = 0; chan < rx_channels_count; chan++) {
2311                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan];
2312                 u32 buf_size;
2313
2314                 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2315
2316                 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
2317                                 rxfifosz, qmode);
2318
2319                 if (rx_q->xsk_pool) {
2320                         buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
2321                         stmmac_set_dma_bfsize(priv, priv->ioaddr,
2322                                               buf_size,
2323                                               chan);
2324                 } else {
2325                         stmmac_set_dma_bfsize(priv, priv->ioaddr,
2326                                               priv->dma_buf_sz,
2327                                               chan);
2328                 }
2329         }
2330
2331         for (chan = 0; chan < tx_channels_count; chan++) {
2332                 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2333
2334                 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
2335                                 txfifosz, qmode);
2336         }
2337 }
2338
2339 static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
2340 {
2341         struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue);
2342         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2343         struct xsk_buff_pool *pool = tx_q->xsk_pool;
2344         unsigned int entry = tx_q->cur_tx;
2345         struct dma_desc *tx_desc = NULL;
2346         struct xdp_desc xdp_desc;
2347         bool work_done = true;
2348
2349         /* Avoids TX time-out as we are sharing with slow path */
2350         txq_trans_cond_update(nq);
2351
2352         budget = min(budget, stmmac_tx_avail(priv, queue));
2353
2354         while (budget-- > 0) {
2355                 dma_addr_t dma_addr;
2356                 bool set_ic;
2357
2358                 /* We are sharing with slow path and stop XSK TX desc submission when
2359                  * available TX ring is less than threshold.
2360                  */
2361                 if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) ||
2362                     !netif_carrier_ok(priv->dev)) {
2363                         work_done = false;
2364                         break;
2365                 }
2366
2367                 if (!xsk_tx_peek_desc(pool, &xdp_desc))
2368                         break;
2369
2370                 if (likely(priv->extend_desc))
2371                         tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
2372                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2373                         tx_desc = &tx_q->dma_entx[entry].basic;
2374                 else
2375                         tx_desc = tx_q->dma_tx + entry;
2376
2377                 dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2378                 xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len);
2379
2380                 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX;
2381
2382                 /* To return XDP buffer to XSK pool, we simple call
2383                  * xsk_tx_completed(), so we don't need to fill up
2384                  * 'buf' and 'xdpf'.
2385                  */
2386                 tx_q->tx_skbuff_dma[entry].buf = 0;
2387                 tx_q->xdpf[entry] = NULL;
2388
2389                 tx_q->tx_skbuff_dma[entry].map_as_page = false;
2390                 tx_q->tx_skbuff_dma[entry].len = xdp_desc.len;
2391                 tx_q->tx_skbuff_dma[entry].last_segment = true;
2392                 tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2393
2394                 stmmac_set_desc_addr(priv, tx_desc, dma_addr);
2395
2396                 tx_q->tx_count_frames++;
2397
2398                 if (!priv->tx_coal_frames[queue])
2399                         set_ic = false;
2400                 else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
2401                         set_ic = true;
2402                 else
2403                         set_ic = false;
2404
2405                 if (set_ic) {
2406                         tx_q->tx_count_frames = 0;
2407                         stmmac_set_tx_ic(priv, tx_desc);
2408                         priv->xstats.tx_set_ic_bit++;
2409                 }
2410
2411                 stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len,
2412                                        true, priv->mode, true, true,
2413                                        xdp_desc.len);
2414
2415                 stmmac_enable_dma_transmission(priv, priv->ioaddr);
2416
2417                 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
2418                 entry = tx_q->cur_tx;
2419         }
2420
2421         if (tx_desc) {
2422                 stmmac_flush_tx_descriptors(priv, queue);
2423                 xsk_tx_release(pool);
2424         }
2425
2426         /* Return true if all of the 3 conditions are met
2427          *  a) TX Budget is still available
2428          *  b) work_done = true when XSK TX desc peek is empty (no more
2429          *     pending XSK TX for transmission)
2430          */
2431         return !!budget && work_done;
2432 }
2433
2434 static void stmmac_bump_dma_threshold(struct stmmac_priv *priv, u32 chan)
2435 {
2436         if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && tc <= 256) {
2437                 tc += 64;
2438
2439                 if (priv->plat->force_thresh_dma_mode)
2440                         stmmac_set_dma_operation_mode(priv, tc, tc, chan);
2441                 else
2442                         stmmac_set_dma_operation_mode(priv, tc, SF_DMA_MODE,
2443                                                       chan);
2444
2445                 priv->xstats.threshold = tc;
2446         }
2447 }
2448
2449 /**
2450  * stmmac_tx_clean - to manage the transmission completion
2451  * @priv: driver private structure
2452  * @budget: napi budget limiting this functions packet handling
2453  * @queue: TX queue index
2454  * Description: it reclaims the transmit resources after transmission completes.
2455  */
2456 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
2457 {
2458         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2459         unsigned int bytes_compl = 0, pkts_compl = 0;
2460         unsigned int entry, xmits = 0, count = 0;
2461
2462         __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
2463
2464         priv->xstats.tx_clean++;
2465
2466         tx_q->xsk_frames_done = 0;
2467
2468         entry = tx_q->dirty_tx;
2469
2470         /* Try to clean all TX complete frame in 1 shot */
2471         while ((entry != tx_q->cur_tx) && count < priv->dma_tx_size) {
2472                 struct xdp_frame *xdpf;
2473                 struct sk_buff *skb;
2474                 struct dma_desc *p;
2475                 int status;
2476
2477                 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX ||
2478                     tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2479                         xdpf = tx_q->xdpf[entry];
2480                         skb = NULL;
2481                 } else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2482                         xdpf = NULL;
2483                         skb = tx_q->tx_skbuff[entry];
2484                 } else {
2485                         xdpf = NULL;
2486                         skb = NULL;
2487                 }
2488
2489                 if (priv->extend_desc)
2490                         p = (struct dma_desc *)(tx_q->dma_etx + entry);
2491                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2492                         p = &tx_q->dma_entx[entry].basic;
2493                 else
2494                         p = tx_q->dma_tx + entry;
2495
2496                 status = stmmac_tx_status(priv, &priv->dev->stats,
2497                                 &priv->xstats, p, priv->ioaddr);
2498                 /* Check if the descriptor is owned by the DMA */
2499                 if (unlikely(status & tx_dma_own))
2500                         break;
2501
2502                 count++;
2503
2504                 /* Make sure descriptor fields are read after reading
2505                  * the own bit.
2506                  */
2507                 dma_rmb();
2508
2509                 /* Just consider the last segment and ...*/
2510                 if (likely(!(status & tx_not_ls))) {
2511                         /* ... verify the status error condition */
2512                         if (unlikely(status & tx_err)) {
2513                                 priv->dev->stats.tx_errors++;
2514                                 if (unlikely(status & tx_err_bump_tc))
2515                                         stmmac_bump_dma_threshold(priv, queue);
2516                         } else {
2517                                 priv->dev->stats.tx_packets++;
2518                                 priv->xstats.tx_pkt_n++;
2519                                 priv->xstats.txq_stats[queue].tx_pkt_n++;
2520                         }
2521                         if (skb)
2522                                 stmmac_get_tx_hwtstamp(priv, p, skb);
2523                 }
2524
2525                 if (likely(tx_q->tx_skbuff_dma[entry].buf &&
2526                            tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) {
2527                         if (tx_q->tx_skbuff_dma[entry].map_as_page)
2528                                 dma_unmap_page(priv->device,
2529                                                tx_q->tx_skbuff_dma[entry].buf,
2530                                                tx_q->tx_skbuff_dma[entry].len,
2531                                                DMA_TO_DEVICE);
2532                         else
2533                                 dma_unmap_single(priv->device,
2534                                                  tx_q->tx_skbuff_dma[entry].buf,
2535                                                  tx_q->tx_skbuff_dma[entry].len,
2536                                                  DMA_TO_DEVICE);
2537                         tx_q->tx_skbuff_dma[entry].buf = 0;
2538                         tx_q->tx_skbuff_dma[entry].len = 0;
2539                         tx_q->tx_skbuff_dma[entry].map_as_page = false;
2540                 }
2541
2542                 stmmac_clean_desc3(priv, tx_q, p);
2543
2544                 tx_q->tx_skbuff_dma[entry].last_segment = false;
2545                 tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2546
2547                 if (xdpf &&
2548                     tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) {
2549                         xdp_return_frame_rx_napi(xdpf);
2550                         tx_q->xdpf[entry] = NULL;
2551                 }
2552
2553                 if (xdpf &&
2554                     tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2555                         xdp_return_frame(xdpf);
2556                         tx_q->xdpf[entry] = NULL;
2557                 }
2558
2559                 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX)
2560                         tx_q->xsk_frames_done++;
2561
2562                 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2563                         if (likely(skb)) {
2564                                 pkts_compl++;
2565                                 bytes_compl += skb->len;
2566                                 dev_consume_skb_any(skb);
2567                                 tx_q->tx_skbuff[entry] = NULL;
2568                         }
2569                 }
2570
2571                 stmmac_release_tx_desc(priv, p, priv->mode);
2572
2573                 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
2574         }
2575         tx_q->dirty_tx = entry;
2576
2577         netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2578                                   pkts_compl, bytes_compl);
2579
2580         if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2581                                                                 queue))) &&
2582             stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) {
2583
2584                 netif_dbg(priv, tx_done, priv->dev,
2585                           "%s: restart transmit\n", __func__);
2586                 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2587         }
2588
2589         if (tx_q->xsk_pool) {
2590                 bool work_done;
2591
2592                 if (tx_q->xsk_frames_done)
2593                         xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
2594
2595                 if (xsk_uses_need_wakeup(tx_q->xsk_pool))
2596                         xsk_set_tx_need_wakeup(tx_q->xsk_pool);
2597
2598                 /* For XSK TX, we try to send as many as possible.
2599                  * If XSK work done (XSK TX desc empty and budget still
2600                  * available), return "budget - 1" to reenable TX IRQ.
2601                  * Else, return "budget" to make NAPI continue polling.
2602                  */
2603                 work_done = stmmac_xdp_xmit_zc(priv, queue,
2604                                                STMMAC_XSK_TX_BUDGET_MAX);
2605                 if (work_done)
2606                         xmits = budget - 1;
2607                 else
2608                         xmits = budget;
2609         }
2610
2611         if (priv->eee_enabled && !priv->tx_path_in_lpi_mode &&
2612             priv->eee_sw_timer_en) {
2613                 if (stmmac_enable_eee_mode(priv))
2614                         mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
2615         }
2616
2617         /* We still have pending packets, let's call for a new scheduling */
2618         if (tx_q->dirty_tx != tx_q->cur_tx)
2619                 hrtimer_start(&tx_q->txtimer,
2620                               STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2621                               HRTIMER_MODE_REL);
2622
2623         __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2624
2625         /* Combine decisions from TX clean and XSK TX */
2626         return max(count, xmits);
2627 }
2628
2629 /**
2630  * stmmac_tx_err - to manage the tx error
2631  * @priv: driver private structure
2632  * @chan: channel index
2633  * Description: it cleans the descriptors and restarts the transmission
2634  * in case of transmission errors.
2635  */
2636 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2637 {
2638         struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2639
2640         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2641
2642         stmmac_stop_tx_dma(priv, chan);
2643         dma_free_tx_skbufs(priv, chan);
2644         stmmac_clear_tx_descriptors(priv, chan);
2645         tx_q->dirty_tx = 0;
2646         tx_q->cur_tx = 0;
2647         tx_q->mss = 0;
2648         netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
2649         stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2650                             tx_q->dma_tx_phy, chan);
2651         stmmac_start_tx_dma(priv, chan);
2652
2653         priv->dev->stats.tx_errors++;
2654         netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2655 }
2656
2657 /**
2658  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2659  *  @priv: driver private structure
2660  *  @txmode: TX operating mode
2661  *  @rxmode: RX operating mode
2662  *  @chan: channel index
2663  *  Description: it is used for configuring of the DMA operation mode in
2664  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2665  *  mode.
2666  */
2667 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2668                                           u32 rxmode, u32 chan)
2669 {
2670         u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2671         u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2672         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2673         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2674         int rxfifosz = priv->plat->rx_fifo_size;
2675         int txfifosz = priv->plat->tx_fifo_size;
2676
2677         if (rxfifosz == 0)
2678                 rxfifosz = priv->dma_cap.rx_fifo_size;
2679         if (txfifosz == 0)
2680                 txfifosz = priv->dma_cap.tx_fifo_size;
2681
2682         /* Adjust for real per queue fifo size */
2683         rxfifosz /= rx_channels_count;
2684         txfifosz /= tx_channels_count;
2685
2686         stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2687         stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2688 }
2689
2690 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2691 {
2692         int ret;
2693
2694         ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2695                         priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2696         if (ret && (ret != -EINVAL)) {
2697                 stmmac_global_err(priv);
2698                 return true;
2699         }
2700
2701         return false;
2702 }
2703
2704 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir)
2705 {
2706         int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2707                                                  &priv->xstats, chan, dir);
2708         struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan];
2709         struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2710         struct stmmac_channel *ch = &priv->channel[chan];
2711         struct napi_struct *rx_napi;
2712         struct napi_struct *tx_napi;
2713         unsigned long flags;
2714
2715         rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi;
2716         tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2717
2718         if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2719                 if (napi_schedule_prep(rx_napi)) {
2720                         spin_lock_irqsave(&ch->lock, flags);
2721                         stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2722                         spin_unlock_irqrestore(&ch->lock, flags);
2723                         __napi_schedule(rx_napi);
2724                 }
2725         }
2726
2727         if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2728                 if (napi_schedule_prep(tx_napi)) {
2729                         spin_lock_irqsave(&ch->lock, flags);
2730                         stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2731                         spin_unlock_irqrestore(&ch->lock, flags);
2732                         __napi_schedule(tx_napi);
2733                 }
2734         }
2735
2736         return status;
2737 }
2738
2739 /**
2740  * stmmac_dma_interrupt - DMA ISR
2741  * @priv: driver private structure
2742  * Description: this is the DMA ISR. It is called by the main ISR.
2743  * It calls the dwmac dma routine and schedule poll method in case of some
2744  * work can be done.
2745  */
2746 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2747 {
2748         u32 tx_channel_count = priv->plat->tx_queues_to_use;
2749         u32 rx_channel_count = priv->plat->rx_queues_to_use;
2750         u32 channels_to_check = tx_channel_count > rx_channel_count ?
2751                                 tx_channel_count : rx_channel_count;
2752         u32 chan;
2753         int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2754
2755         /* Make sure we never check beyond our status buffer. */
2756         if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2757                 channels_to_check = ARRAY_SIZE(status);
2758
2759         for (chan = 0; chan < channels_to_check; chan++)
2760                 status[chan] = stmmac_napi_check(priv, chan,
2761                                                  DMA_DIR_RXTX);
2762
2763         for (chan = 0; chan < tx_channel_count; chan++) {
2764                 if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2765                         /* Try to bump up the dma threshold on this failure */
2766                         stmmac_bump_dma_threshold(priv, chan);
2767                 } else if (unlikely(status[chan] == tx_hard_error)) {
2768                         stmmac_tx_err(priv, chan);
2769                 }
2770         }
2771 }
2772
2773 /**
2774  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2775  * @priv: driver private structure
2776  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2777  */
2778 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2779 {
2780         unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2781                             MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2782
2783         stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2784
2785         if (priv->dma_cap.rmon) {
2786                 stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2787                 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2788         } else
2789                 netdev_info(priv->dev, "No MAC Management Counters available\n");
2790 }
2791
2792 /**
2793  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2794  * @priv: driver private structure
2795  * Description:
2796  *  new GMAC chip generations have a new register to indicate the
2797  *  presence of the optional feature/functions.
2798  *  This can be also used to override the value passed through the
2799  *  platform and necessary for old MAC10/100 and GMAC chips.
2800  */
2801 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2802 {
2803         return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2804 }
2805
2806 /**
2807  * stmmac_check_ether_addr - check if the MAC addr is valid
2808  * @priv: driver private structure
2809  * Description:
2810  * it is to verify if the MAC address is valid, in case of failures it
2811  * generates a random MAC address
2812  */
2813 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2814 {
2815         u8 addr[ETH_ALEN];
2816
2817         if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2818                 stmmac_get_umac_addr(priv, priv->hw, addr, 0);
2819                 if (is_valid_ether_addr(addr))
2820                         eth_hw_addr_set(priv->dev, addr);
2821                 else
2822                         eth_hw_addr_random(priv->dev);
2823                 dev_info(priv->device, "device MAC address %pM\n",
2824                          priv->dev->dev_addr);
2825         }
2826 }
2827
2828 /**
2829  * stmmac_init_dma_engine - DMA init.
2830  * @priv: driver private structure
2831  * Description:
2832  * It inits the DMA invoking the specific MAC/GMAC callback.
2833  * Some DMA parameters can be passed from the platform;
2834  * in case of these are not passed a default is kept for the MAC or GMAC.
2835  */
2836 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2837 {
2838         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2839         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2840         u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2841         struct stmmac_rx_queue *rx_q;
2842         struct stmmac_tx_queue *tx_q;
2843         u32 chan = 0;
2844         int atds = 0;
2845         int ret = 0;
2846
2847         if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2848                 dev_err(priv->device, "Invalid DMA configuration\n");
2849                 return -EINVAL;
2850         }
2851
2852         if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2853                 atds = 1;
2854
2855         ret = stmmac_reset(priv, priv->ioaddr);
2856         if (ret) {
2857                 dev_err(priv->device, "Failed to reset the dma\n");
2858                 return ret;
2859         }
2860
2861         /* DMA Configuration */
2862         stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2863
2864         if (priv->plat->axi)
2865                 stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2866
2867         /* DMA CSR Channel configuration */
2868         for (chan = 0; chan < dma_csr_ch; chan++) {
2869                 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2870                 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2871         }
2872
2873         /* DMA RX Channel Configuration */
2874         for (chan = 0; chan < rx_channels_count; chan++) {
2875                 rx_q = &priv->rx_queue[chan];
2876
2877                 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2878                                     rx_q->dma_rx_phy, chan);
2879
2880                 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2881                                      (rx_q->buf_alloc_num *
2882                                       sizeof(struct dma_desc));
2883                 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2884                                        rx_q->rx_tail_addr, chan);
2885         }
2886
2887         /* DMA TX Channel Configuration */
2888         for (chan = 0; chan < tx_channels_count; chan++) {
2889                 tx_q = &priv->tx_queue[chan];
2890
2891                 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2892                                     tx_q->dma_tx_phy, chan);
2893
2894                 tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2895                 stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2896                                        tx_q->tx_tail_addr, chan);
2897         }
2898
2899         return ret;
2900 }
2901
2902 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2903 {
2904         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2905
2906         hrtimer_start(&tx_q->txtimer,
2907                       STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2908                       HRTIMER_MODE_REL);
2909 }
2910
2911 /**
2912  * stmmac_tx_timer - mitigation sw timer for tx.
2913  * @t: data pointer
2914  * Description:
2915  * This is the timer handler to directly invoke the stmmac_tx_clean.
2916  */
2917 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t)
2918 {
2919         struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer);
2920         struct stmmac_priv *priv = tx_q->priv_data;
2921         struct stmmac_channel *ch;
2922         struct napi_struct *napi;
2923
2924         ch = &priv->channel[tx_q->queue_index];
2925         napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2926
2927         if (likely(napi_schedule_prep(napi))) {
2928                 unsigned long flags;
2929
2930                 spin_lock_irqsave(&ch->lock, flags);
2931                 stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
2932                 spin_unlock_irqrestore(&ch->lock, flags);
2933                 __napi_schedule(napi);
2934         }
2935
2936         return HRTIMER_NORESTART;
2937 }
2938
2939 /**
2940  * stmmac_init_coalesce - init mitigation options.
2941  * @priv: driver private structure
2942  * Description:
2943  * This inits the coalesce parameters: i.e. timer rate,
2944  * timer handler and default threshold used for enabling the
2945  * interrupt on completion bit.
2946  */
2947 static void stmmac_init_coalesce(struct stmmac_priv *priv)
2948 {
2949         u32 tx_channel_count = priv->plat->tx_queues_to_use;
2950         u32 rx_channel_count = priv->plat->rx_queues_to_use;
2951         u32 chan;
2952
2953         for (chan = 0; chan < tx_channel_count; chan++) {
2954                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2955
2956                 priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES;
2957                 priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER;
2958
2959                 hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2960                 tx_q->txtimer.function = stmmac_tx_timer;
2961         }
2962
2963         for (chan = 0; chan < rx_channel_count; chan++)
2964                 priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES;
2965 }
2966
2967 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2968 {
2969         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2970         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2971         u32 chan;
2972
2973         /* set TX ring length */
2974         for (chan = 0; chan < tx_channels_count; chan++)
2975                 stmmac_set_tx_ring_len(priv, priv->ioaddr,
2976                                        (priv->dma_tx_size - 1), chan);
2977
2978         /* set RX ring length */
2979         for (chan = 0; chan < rx_channels_count; chan++)
2980                 stmmac_set_rx_ring_len(priv, priv->ioaddr,
2981                                        (priv->dma_rx_size - 1), chan);
2982 }
2983
2984 /**
2985  *  stmmac_set_tx_queue_weight - Set TX queue weight
2986  *  @priv: driver private structure
2987  *  Description: It is used for setting TX queues weight
2988  */
2989 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2990 {
2991         u32 tx_queues_count = priv->plat->tx_queues_to_use;
2992         u32 weight;
2993         u32 queue;
2994
2995         for (queue = 0; queue < tx_queues_count; queue++) {
2996                 weight = priv->plat->tx_queues_cfg[queue].weight;
2997                 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2998         }
2999 }
3000
3001 /**
3002  *  stmmac_configure_cbs - Configure CBS in TX queue
3003  *  @priv: driver private structure
3004  *  Description: It is used for configuring CBS in AVB TX queues
3005  */
3006 static void stmmac_configure_cbs(struct stmmac_priv *priv)
3007 {
3008         u32 tx_queues_count = priv->plat->tx_queues_to_use;
3009         u32 mode_to_use;
3010         u32 queue;
3011
3012         /* queue 0 is reserved for legacy traffic */
3013         for (queue = 1; queue < tx_queues_count; queue++) {
3014                 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
3015                 if (mode_to_use == MTL_QUEUE_DCB)
3016                         continue;
3017
3018                 stmmac_config_cbs(priv, priv->hw,
3019                                 priv->plat->tx_queues_cfg[queue].send_slope,
3020                                 priv->plat->tx_queues_cfg[queue].idle_slope,
3021                                 priv->plat->tx_queues_cfg[queue].high_credit,
3022                                 priv->plat->tx_queues_cfg[queue].low_credit,
3023                                 queue);
3024         }
3025 }
3026
3027 /**
3028  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
3029  *  @priv: driver private structure
3030  *  Description: It is used for mapping RX queues to RX dma channels
3031  */
3032 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
3033 {
3034         u32 rx_queues_count = priv->plat->rx_queues_to_use;
3035         u32 queue;
3036         u32 chan;
3037
3038         for (queue = 0; queue < rx_queues_count; queue++) {
3039                 chan = priv->plat->rx_queues_cfg[queue].chan;
3040                 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
3041         }
3042 }
3043
3044 /**
3045  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
3046  *  @priv: driver private structure
3047  *  Description: It is used for configuring the RX Queue Priority
3048  */
3049 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
3050 {
3051         u32 rx_queues_count = priv->plat->rx_queues_to_use;
3052         u32 queue;
3053         u32 prio;
3054
3055         for (queue = 0; queue < rx_queues_count; queue++) {
3056                 if (!priv->plat->rx_queues_cfg[queue].use_prio)
3057                         continue;
3058
3059                 prio = priv->plat->rx_queues_cfg[queue].prio;
3060                 stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
3061         }
3062 }
3063
3064 /**
3065  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
3066  *  @priv: driver private structure
3067  *  Description: It is used for configuring the TX Queue Priority
3068  */
3069 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
3070 {
3071         u32 tx_queues_count = priv->plat->tx_queues_to_use;
3072         u32 queue;
3073         u32 prio;
3074
3075         for (queue = 0; queue < tx_queues_count; queue++) {
3076                 if (!priv->plat->tx_queues_cfg[queue].use_prio)
3077                         continue;
3078
3079                 prio = priv->plat->tx_queues_cfg[queue].prio;
3080                 stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
3081         }
3082 }
3083
3084 /**
3085  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
3086  *  @priv: driver private structure
3087  *  Description: It is used for configuring the RX queue routing
3088  */
3089 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
3090 {
3091         u32 rx_queues_count = priv->plat->rx_queues_to_use;
3092         u32 queue;
3093         u8 packet;
3094
3095         for (queue = 0; queue < rx_queues_count; queue++) {
3096                 /* no specific packet type routing specified for the queue */
3097                 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
3098                         continue;
3099
3100                 packet = priv->plat->rx_queues_cfg[queue].pkt_route;
3101                 stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
3102         }
3103 }
3104
3105 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
3106 {
3107         if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
3108                 priv->rss.enable = false;
3109                 return;
3110         }
3111
3112         if (priv->dev->features & NETIF_F_RXHASH)
3113                 priv->rss.enable = true;
3114         else
3115                 priv->rss.enable = false;
3116
3117         stmmac_rss_configure(priv, priv->hw, &priv->rss,
3118                              priv->plat->rx_queues_to_use);
3119 }
3120
3121 /**
3122  *  stmmac_mtl_configuration - Configure MTL
3123  *  @priv: driver private structure
3124  *  Description: It is used for configurring MTL
3125  */
3126 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
3127 {
3128         u32 rx_queues_count = priv->plat->rx_queues_to_use;
3129         u32 tx_queues_count = priv->plat->tx_queues_to_use;
3130
3131         if (tx_queues_count > 1)
3132                 stmmac_set_tx_queue_weight(priv);
3133
3134         /* Configure MTL RX algorithms */
3135         if (rx_queues_count > 1)
3136                 stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
3137                                 priv->plat->rx_sched_algorithm);
3138
3139         /* Configure MTL TX algorithms */
3140         if (tx_queues_count > 1)
3141                 stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
3142                                 priv->plat->tx_sched_algorithm);
3143
3144         /* Configure CBS in AVB TX queues */
3145         if (tx_queues_count > 1)
3146                 stmmac_configure_cbs(priv);
3147
3148         /* Map RX MTL to DMA channels */
3149         stmmac_rx_queue_dma_chan_map(priv);
3150
3151         /* Enable MAC RX Queues */
3152         stmmac_mac_enable_rx_queues(priv);
3153
3154         /* Set RX priorities */
3155         if (rx_queues_count > 1)
3156                 stmmac_mac_config_rx_queues_prio(priv);
3157
3158         /* Set TX priorities */
3159         if (tx_queues_count > 1)
3160                 stmmac_mac_config_tx_queues_prio(priv);
3161
3162         /* Set RX routing */
3163         if (rx_queues_count > 1)
3164                 stmmac_mac_config_rx_queues_routing(priv);
3165
3166         /* Receive Side Scaling */
3167         if (rx_queues_count > 1)
3168                 stmmac_mac_config_rss(priv);
3169 }
3170
3171 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
3172 {
3173         if (priv->dma_cap.asp) {
3174                 netdev_info(priv->dev, "Enabling Safety Features\n");
3175                 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp,
3176                                           priv->plat->safety_feat_cfg);
3177         } else {
3178                 netdev_info(priv->dev, "No Safety Features support found\n");
3179         }
3180 }
3181
3182 static int stmmac_fpe_start_wq(struct stmmac_priv *priv)
3183 {
3184         char *name;
3185
3186         clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
3187         clear_bit(__FPE_REMOVING,  &priv->fpe_task_state);
3188
3189         name = priv->wq_name;
3190         sprintf(name, "%s-fpe", priv->dev->name);
3191
3192         priv->fpe_wq = create_singlethread_workqueue(name);
3193         if (!priv->fpe_wq) {
3194                 netdev_err(priv->dev, "%s: Failed to create workqueue\n", name);
3195
3196                 return -ENOMEM;
3197         }
3198         netdev_info(priv->dev, "FPE workqueue start");
3199
3200         return 0;
3201 }
3202
3203 /**
3204  * stmmac_hw_setup - setup mac in a usable state.
3205  *  @dev : pointer to the device structure.
3206  *  @ptp_register: register PTP if set
3207  *  Description:
3208  *  this is the main function to setup the HW in a usable state because the
3209  *  dma engine is reset, the core registers are configured (e.g. AXI,
3210  *  Checksum features, timers). The DMA is ready to start receiving and
3211  *  transmitting.
3212  *  Return value:
3213  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3214  *  file on failure.
3215  */
3216 static int stmmac_hw_setup(struct net_device *dev, bool ptp_register)
3217 {
3218         struct stmmac_priv *priv = netdev_priv(dev);
3219         u32 rx_cnt = priv->plat->rx_queues_to_use;
3220         u32 tx_cnt = priv->plat->tx_queues_to_use;
3221         bool sph_en;
3222         u32 chan;
3223         int ret;
3224
3225         /* DMA initialization and SW reset */
3226         ret = stmmac_init_dma_engine(priv);
3227         if (ret < 0) {
3228                 netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
3229                            __func__);
3230                 return ret;
3231         }
3232
3233         /* Copy the MAC addr into the HW  */
3234         stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
3235
3236         /* PS and related bits will be programmed according to the speed */
3237         if (priv->hw->pcs) {
3238                 int speed = priv->plat->mac_port_sel_speed;
3239
3240                 if ((speed == SPEED_10) || (speed == SPEED_100) ||
3241                     (speed == SPEED_1000)) {
3242                         priv->hw->ps = speed;
3243                 } else {
3244                         dev_warn(priv->device, "invalid port speed\n");
3245                         priv->hw->ps = 0;
3246                 }
3247         }
3248
3249         /* Initialize the MAC Core */
3250         stmmac_core_init(priv, priv->hw, dev);
3251
3252         /* Initialize MTL*/
3253         stmmac_mtl_configuration(priv);
3254
3255         /* Initialize Safety Features */
3256         stmmac_safety_feat_configuration(priv);
3257
3258         ret = stmmac_rx_ipc(priv, priv->hw);
3259         if (!ret) {
3260                 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
3261                 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
3262                 priv->hw->rx_csum = 0;
3263         }
3264
3265         /* Enable the MAC Rx/Tx */
3266         stmmac_mac_set(priv, priv->ioaddr, true);
3267
3268         /* Set the HW DMA mode and the COE */
3269         stmmac_dma_operation_mode(priv);
3270
3271         stmmac_mmc_setup(priv);
3272
3273         ret = stmmac_init_ptp(priv);
3274         if (ret == -EOPNOTSUPP)
3275                 netdev_info(priv->dev, "PTP not supported by HW\n");
3276         else if (ret)
3277                 netdev_warn(priv->dev, "PTP init failed\n");
3278         else if (ptp_register)
3279                 stmmac_ptp_register(priv);
3280
3281         priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS;
3282
3283         /* Convert the timer from msec to usec */
3284         if (!priv->tx_lpi_timer)
3285                 priv->tx_lpi_timer = eee_timer * 1000;
3286
3287         if (priv->use_riwt) {
3288                 u32 queue;
3289
3290                 for (queue = 0; queue < rx_cnt; queue++) {
3291                         if (!priv->rx_riwt[queue])
3292                                 priv->rx_riwt[queue] = DEF_DMA_RIWT;
3293
3294                         stmmac_rx_watchdog(priv, priv->ioaddr,
3295                                            priv->rx_riwt[queue], queue);
3296                 }
3297         }
3298
3299         if (priv->hw->pcs)
3300                 stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
3301
3302         /* set TX and RX rings length */
3303         stmmac_set_rings_length(priv);
3304
3305         /* Enable TSO */
3306         if (priv->tso) {
3307                 for (chan = 0; chan < tx_cnt; chan++) {
3308                         struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
3309
3310                         /* TSO and TBS cannot co-exist */
3311                         if (tx_q->tbs & STMMAC_TBS_AVAIL)
3312                                 continue;
3313
3314                         stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
3315                 }
3316         }
3317
3318         /* Enable Split Header */
3319         sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3320         for (chan = 0; chan < rx_cnt; chan++)
3321                 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3322
3323
3324         /* VLAN Tag Insertion */
3325         if (priv->dma_cap.vlins)
3326                 stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
3327
3328         /* TBS */
3329         for (chan = 0; chan < tx_cnt; chan++) {
3330                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
3331                 int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
3332
3333                 stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
3334         }
3335
3336         /* Configure real RX and TX queues */
3337         netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use);
3338         netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use);
3339
3340         /* Start the ball rolling... */
3341         stmmac_start_all_dma(priv);
3342
3343         if (priv->dma_cap.fpesel) {
3344                 stmmac_fpe_start_wq(priv);
3345
3346                 if (priv->plat->fpe_cfg->enable)
3347                         stmmac_fpe_handshake(priv, true);
3348         }
3349
3350         return 0;
3351 }
3352
3353 static void stmmac_hw_teardown(struct net_device *dev)
3354 {
3355         struct stmmac_priv *priv = netdev_priv(dev);
3356
3357         clk_disable_unprepare(priv->plat->clk_ptp_ref);
3358 }
3359
3360 static void stmmac_free_irq(struct net_device *dev,
3361                             enum request_irq_err irq_err, int irq_idx)
3362 {
3363         struct stmmac_priv *priv = netdev_priv(dev);
3364         int j;
3365
3366         switch (irq_err) {
3367         case REQ_IRQ_ERR_ALL:
3368                 irq_idx = priv->plat->tx_queues_to_use;
3369                 fallthrough;
3370         case REQ_IRQ_ERR_TX:
3371                 for (j = irq_idx - 1; j >= 0; j--) {
3372                         if (priv->tx_irq[j] > 0) {
3373                                 irq_set_affinity_hint(priv->tx_irq[j], NULL);
3374                                 free_irq(priv->tx_irq[j], &priv->tx_queue[j]);
3375                         }
3376                 }
3377                 irq_idx = priv->plat->rx_queues_to_use;
3378                 fallthrough;
3379         case REQ_IRQ_ERR_RX:
3380                 for (j = irq_idx - 1; j >= 0; j--) {
3381                         if (priv->rx_irq[j] > 0) {
3382                                 irq_set_affinity_hint(priv->rx_irq[j], NULL);
3383                                 free_irq(priv->rx_irq[j], &priv->rx_queue[j]);
3384                         }
3385                 }
3386
3387                 if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq)
3388                         free_irq(priv->sfty_ue_irq, dev);
3389                 fallthrough;
3390         case REQ_IRQ_ERR_SFTY_UE:
3391                 if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq)
3392                         free_irq(priv->sfty_ce_irq, dev);
3393                 fallthrough;
3394         case REQ_IRQ_ERR_SFTY_CE:
3395                 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq)
3396                         free_irq(priv->lpi_irq, dev);
3397                 fallthrough;
3398         case REQ_IRQ_ERR_LPI:
3399                 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq)
3400                         free_irq(priv->wol_irq, dev);
3401                 fallthrough;
3402         case REQ_IRQ_ERR_WOL:
3403                 free_irq(dev->irq, dev);
3404                 fallthrough;
3405         case REQ_IRQ_ERR_MAC:
3406         case REQ_IRQ_ERR_NO:
3407                 /* If MAC IRQ request error, no more IRQ to free */
3408                 break;
3409         }
3410 }
3411
3412 static int stmmac_request_irq_multi_msi(struct net_device *dev)
3413 {
3414         struct stmmac_priv *priv = netdev_priv(dev);
3415         enum request_irq_err irq_err;
3416         cpumask_t cpu_mask;
3417         int irq_idx = 0;
3418         char *int_name;
3419         int ret;
3420         int i;
3421
3422         /* For common interrupt */
3423         int_name = priv->int_name_mac;
3424         sprintf(int_name, "%s:%s", dev->name, "mac");
3425         ret = request_irq(dev->irq, stmmac_mac_interrupt,
3426                           0, int_name, dev);
3427         if (unlikely(ret < 0)) {
3428                 netdev_err(priv->dev,
3429                            "%s: alloc mac MSI %d (error: %d)\n",
3430                            __func__, dev->irq, ret);
3431                 irq_err = REQ_IRQ_ERR_MAC;
3432                 goto irq_error;
3433         }
3434
3435         /* Request the Wake IRQ in case of another line
3436          * is used for WoL
3437          */
3438         if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3439                 int_name = priv->int_name_wol;
3440                 sprintf(int_name, "%s:%s", dev->name, "wol");
3441                 ret = request_irq(priv->wol_irq,
3442                                   stmmac_mac_interrupt,
3443                                   0, int_name, dev);
3444                 if (unlikely(ret < 0)) {
3445                         netdev_err(priv->dev,
3446                                    "%s: alloc wol MSI %d (error: %d)\n",
3447                                    __func__, priv->wol_irq, ret);
3448                         irq_err = REQ_IRQ_ERR_WOL;
3449                         goto irq_error;
3450                 }
3451         }
3452
3453         /* Request the LPI IRQ in case of another line
3454          * is used for LPI
3455          */
3456         if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3457                 int_name = priv->int_name_lpi;
3458                 sprintf(int_name, "%s:%s", dev->name, "lpi");
3459                 ret = request_irq(priv->lpi_irq,
3460                                   stmmac_mac_interrupt,
3461                                   0, int_name, dev);
3462                 if (unlikely(ret < 0)) {
3463                         netdev_err(priv->dev,
3464                                    "%s: alloc lpi MSI %d (error: %d)\n",
3465                                    __func__, priv->lpi_irq, ret);
3466                         irq_err = REQ_IRQ_ERR_LPI;
3467                         goto irq_error;
3468                 }
3469         }
3470
3471         /* Request the Safety Feature Correctible Error line in
3472          * case of another line is used
3473          */
3474         if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) {
3475                 int_name = priv->int_name_sfty_ce;
3476                 sprintf(int_name, "%s:%s", dev->name, "safety-ce");
3477                 ret = request_irq(priv->sfty_ce_irq,
3478                                   stmmac_safety_interrupt,
3479                                   0, int_name, dev);
3480                 if (unlikely(ret < 0)) {
3481                         netdev_err(priv->dev,
3482                                    "%s: alloc sfty ce MSI %d (error: %d)\n",
3483                                    __func__, priv->sfty_ce_irq, ret);
3484                         irq_err = REQ_IRQ_ERR_SFTY_CE;
3485                         goto irq_error;
3486                 }
3487         }
3488
3489         /* Request the Safety Feature Uncorrectible Error line in
3490          * case of another line is used
3491          */
3492         if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) {
3493                 int_name = priv->int_name_sfty_ue;
3494                 sprintf(int_name, "%s:%s", dev->name, "safety-ue");
3495                 ret = request_irq(priv->sfty_ue_irq,
3496                                   stmmac_safety_interrupt,
3497                                   0, int_name, dev);
3498                 if (unlikely(ret < 0)) {
3499                         netdev_err(priv->dev,
3500                                    "%s: alloc sfty ue MSI %d (error: %d)\n",
3501                                    __func__, priv->sfty_ue_irq, ret);
3502                         irq_err = REQ_IRQ_ERR_SFTY_UE;
3503                         goto irq_error;
3504                 }
3505         }
3506
3507         /* Request Rx MSI irq */
3508         for (i = 0; i < priv->plat->rx_queues_to_use; i++) {
3509                 if (i >= MTL_MAX_RX_QUEUES)
3510                         break;
3511                 if (priv->rx_irq[i] == 0)
3512                         continue;
3513
3514                 int_name = priv->int_name_rx_irq[i];
3515                 sprintf(int_name, "%s:%s-%d", dev->name, "rx", i);
3516                 ret = request_irq(priv->rx_irq[i],
3517                                   stmmac_msi_intr_rx,
3518                                   0, int_name, &priv->rx_queue[i]);
3519                 if (unlikely(ret < 0)) {
3520                         netdev_err(priv->dev,
3521                                    "%s: alloc rx-%d  MSI %d (error: %d)\n",
3522                                    __func__, i, priv->rx_irq[i], ret);
3523                         irq_err = REQ_IRQ_ERR_RX;
3524                         irq_idx = i;
3525                         goto irq_error;
3526                 }
3527                 cpumask_clear(&cpu_mask);
3528                 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3529                 irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask);
3530         }
3531
3532         /* Request Tx MSI irq */
3533         for (i = 0; i < priv->plat->tx_queues_to_use; i++) {
3534                 if (i >= MTL_MAX_TX_QUEUES)
3535                         break;
3536                 if (priv->tx_irq[i] == 0)
3537                         continue;
3538
3539                 int_name = priv->int_name_tx_irq[i];
3540                 sprintf(int_name, "%s:%s-%d", dev->name, "tx", i);
3541                 ret = request_irq(priv->tx_irq[i],
3542                                   stmmac_msi_intr_tx,
3543                                   0, int_name, &priv->tx_queue[i]);
3544                 if (unlikely(ret < 0)) {
3545                         netdev_err(priv->dev,
3546                                    "%s: alloc tx-%d  MSI %d (error: %d)\n",
3547                                    __func__, i, priv->tx_irq[i], ret);
3548                         irq_err = REQ_IRQ_ERR_TX;
3549                         irq_idx = i;
3550                         goto irq_error;
3551                 }
3552                 cpumask_clear(&cpu_mask);
3553                 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3554                 irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask);
3555         }
3556
3557         return 0;
3558
3559 irq_error:
3560         stmmac_free_irq(dev, irq_err, irq_idx);
3561         return ret;
3562 }
3563
3564 static int stmmac_request_irq_single(struct net_device *dev)
3565 {
3566         struct stmmac_priv *priv = netdev_priv(dev);
3567         enum request_irq_err irq_err;
3568         int ret;
3569
3570         ret = request_irq(dev->irq, stmmac_interrupt,
3571                           IRQF_SHARED, dev->name, dev);
3572         if (unlikely(ret < 0)) {
3573                 netdev_err(priv->dev,
3574                            "%s: ERROR: allocating the IRQ %d (error: %d)\n",
3575                            __func__, dev->irq, ret);
3576                 irq_err = REQ_IRQ_ERR_MAC;
3577                 goto irq_error;
3578         }
3579
3580         /* Request the Wake IRQ in case of another line
3581          * is used for WoL
3582          */
3583         if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3584                 ret = request_irq(priv->wol_irq, stmmac_interrupt,
3585                                   IRQF_SHARED, dev->name, dev);
3586                 if (unlikely(ret < 0)) {
3587                         netdev_err(priv->dev,
3588                                    "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
3589                                    __func__, priv->wol_irq, ret);
3590                         irq_err = REQ_IRQ_ERR_WOL;
3591                         goto irq_error;
3592                 }
3593         }
3594
3595         /* Request the IRQ lines */
3596         if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3597                 ret = request_irq(priv->lpi_irq, stmmac_interrupt,
3598                                   IRQF_SHARED, dev->name, dev);
3599                 if (unlikely(ret < 0)) {
3600                         netdev_err(priv->dev,
3601                                    "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
3602                                    __func__, priv->lpi_irq, ret);
3603                         irq_err = REQ_IRQ_ERR_LPI;
3604                         goto irq_error;
3605                 }
3606         }
3607
3608         return 0;
3609
3610 irq_error:
3611         stmmac_free_irq(dev, irq_err, 0);
3612         return ret;
3613 }
3614
3615 static int stmmac_request_irq(struct net_device *dev)
3616 {
3617         struct stmmac_priv *priv = netdev_priv(dev);
3618         int ret;
3619
3620         /* Request the IRQ lines */
3621         if (priv->plat->multi_msi_en)
3622                 ret = stmmac_request_irq_multi_msi(dev);
3623         else
3624                 ret = stmmac_request_irq_single(dev);
3625
3626         return ret;
3627 }
3628
3629 /**
3630  *  stmmac_open - open entry point of the driver
3631  *  @dev : pointer to the device structure.
3632  *  Description:
3633  *  This function is the open entry point of the driver.
3634  *  Return value:
3635  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3636  *  file on failure.
3637  */
3638 static int stmmac_open(struct net_device *dev)
3639 {
3640         struct stmmac_priv *priv = netdev_priv(dev);
3641         int mode = priv->plat->phy_interface;
3642         int bfsize = 0;
3643         u32 chan;
3644         int ret;
3645
3646         ret = pm_runtime_get_sync(priv->device);
3647         if (ret < 0) {
3648                 pm_runtime_put_noidle(priv->device);
3649                 return ret;
3650         }
3651
3652         if (priv->hw->pcs != STMMAC_PCS_TBI &&
3653             priv->hw->pcs != STMMAC_PCS_RTBI &&
3654             (!priv->hw->xpcs ||
3655              xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73)) {
3656                 ret = stmmac_init_phy(dev);
3657                 if (ret) {
3658                         netdev_err(priv->dev,
3659                                    "%s: Cannot attach to PHY (error: %d)\n",
3660                                    __func__, ret);
3661                         goto init_phy_error;
3662                 }
3663         }
3664
3665         /* Extra statistics */
3666         memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
3667         priv->xstats.threshold = tc;
3668
3669         bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
3670         if (bfsize < 0)
3671                 bfsize = 0;
3672
3673         if (bfsize < BUF_SIZE_16KiB)
3674                 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
3675
3676         priv->dma_buf_sz = bfsize;
3677         buf_sz = bfsize;
3678
3679         priv->rx_copybreak = STMMAC_RX_COPYBREAK;
3680
3681         if (!priv->dma_tx_size)
3682                 priv->dma_tx_size = DMA_DEFAULT_TX_SIZE;
3683         if (!priv->dma_rx_size)
3684                 priv->dma_rx_size = DMA_DEFAULT_RX_SIZE;
3685
3686         /* Earlier check for TBS */
3687         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
3688                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
3689                 int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
3690
3691                 /* Setup per-TXQ tbs flag before TX descriptor alloc */
3692                 tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
3693         }
3694
3695         ret = alloc_dma_desc_resources(priv);
3696         if (ret < 0) {
3697                 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
3698                            __func__);
3699                 goto dma_desc_error;
3700         }
3701
3702         ret = init_dma_desc_rings(dev, GFP_KERNEL);
3703         if (ret < 0) {
3704                 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
3705                            __func__);
3706                 goto init_error;
3707         }
3708
3709         ret = stmmac_hw_setup(dev, true);
3710         if (ret < 0) {
3711                 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
3712                 goto init_error;
3713         }
3714
3715         stmmac_init_coalesce(priv);
3716
3717         phylink_start(priv->phylink);
3718         /* We may have called phylink_speed_down before */
3719         phylink_speed_up(priv->phylink);
3720
3721         ret = stmmac_request_irq(dev);
3722         if (ret)
3723                 goto irq_error;
3724
3725         stmmac_enable_all_queues(priv);
3726         netif_tx_start_all_queues(priv->dev);
3727         stmmac_enable_all_dma_irq(priv);
3728
3729         return 0;
3730
3731 irq_error:
3732         phylink_stop(priv->phylink);
3733
3734         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3735                 hrtimer_cancel(&priv->tx_queue[chan].txtimer);
3736
3737         stmmac_hw_teardown(dev);
3738 init_error:
3739         free_dma_desc_resources(priv);
3740 dma_desc_error:
3741         phylink_disconnect_phy(priv->phylink);
3742 init_phy_error:
3743         pm_runtime_put(priv->device);
3744         return ret;
3745 }
3746
3747 static void stmmac_fpe_stop_wq(struct stmmac_priv *priv)
3748 {
3749         set_bit(__FPE_REMOVING, &priv->fpe_task_state);
3750
3751         if (priv->fpe_wq)
3752                 destroy_workqueue(priv->fpe_wq);
3753
3754         netdev_info(priv->dev, "FPE workqueue stop");
3755 }
3756
3757 /**
3758  *  stmmac_release - close entry point of the driver
3759  *  @dev : device pointer.
3760  *  Description:
3761  *  This is the stop entry point of the driver.
3762  */
3763 static int stmmac_release(struct net_device *dev)
3764 {
3765         struct stmmac_priv *priv = netdev_priv(dev);
3766         u32 chan;
3767
3768         netif_tx_disable(dev);
3769
3770         if (device_may_wakeup(priv->device))
3771                 phylink_speed_down(priv->phylink, false);
3772         /* Stop and disconnect the PHY */
3773         phylink_stop(priv->phylink);
3774         phylink_disconnect_phy(priv->phylink);
3775
3776         stmmac_disable_all_queues(priv);
3777
3778         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3779                 hrtimer_cancel(&priv->tx_queue[chan].txtimer);
3780
3781         /* Free the IRQ lines */
3782         stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
3783
3784         if (priv->eee_enabled) {
3785                 priv->tx_path_in_lpi_mode = false;
3786                 del_timer_sync(&priv->eee_ctrl_timer);
3787         }
3788
3789         /* Stop TX/RX DMA and clear the descriptors */
3790         stmmac_stop_all_dma(priv);
3791
3792         /* Release and free the Rx/Tx resources */
3793         free_dma_desc_resources(priv);
3794
3795         /* Disable the MAC Rx/Tx */
3796         stmmac_mac_set(priv, priv->ioaddr, false);
3797
3798         netif_carrier_off(dev);
3799
3800         stmmac_release_ptp(priv);
3801
3802         pm_runtime_put(priv->device);
3803
3804         if (priv->dma_cap.fpesel)
3805                 stmmac_fpe_stop_wq(priv);
3806
3807         return 0;
3808 }
3809
3810 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
3811                                struct stmmac_tx_queue *tx_q)
3812 {
3813         u16 tag = 0x0, inner_tag = 0x0;
3814         u32 inner_type = 0x0;
3815         struct dma_desc *p;
3816
3817         if (!priv->dma_cap.vlins)
3818                 return false;
3819         if (!skb_vlan_tag_present(skb))
3820                 return false;
3821         if (skb->vlan_proto == htons(ETH_P_8021AD)) {
3822                 inner_tag = skb_vlan_tag_get(skb);
3823                 inner_type = STMMAC_VLAN_INSERT;
3824         }
3825
3826         tag = skb_vlan_tag_get(skb);
3827
3828         if (tx_q->tbs & STMMAC_TBS_AVAIL)
3829                 p = &tx_q->dma_entx[tx_q->cur_tx].basic;
3830         else
3831                 p = &tx_q->dma_tx[tx_q->cur_tx];
3832
3833         if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
3834                 return false;
3835
3836         stmmac_set_tx_owner(priv, p);
3837         tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
3838         return true;
3839 }
3840
3841 /**
3842  *  stmmac_tso_allocator - close entry point of the driver
3843  *  @priv: driver private structure
3844  *  @des: buffer start address
3845  *  @total_len: total length to fill in descriptors
3846  *  @last_segment: condition for the last descriptor
3847  *  @queue: TX queue index
3848  *  Description:
3849  *  This function fills descriptor and request new descriptors according to
3850  *  buffer length to fill
3851  */
3852 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
3853                                  int total_len, bool last_segment, u32 queue)
3854 {
3855         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3856         struct dma_desc *desc;
3857         u32 buff_size;
3858         int tmp_len;
3859
3860         tmp_len = total_len;
3861
3862         while (tmp_len > 0) {
3863                 dma_addr_t curr_addr;
3864
3865                 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3866                                                 priv->dma_tx_size);
3867                 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3868
3869                 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3870                         desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3871                 else
3872                         desc = &tx_q->dma_tx[tx_q->cur_tx];
3873
3874                 curr_addr = des + (total_len - tmp_len);
3875                 if (priv->dma_cap.addr64 <= 32)
3876                         desc->des0 = cpu_to_le32(curr_addr);
3877                 else
3878                         stmmac_set_desc_addr(priv, desc, curr_addr);
3879
3880                 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
3881                             TSO_MAX_BUFF_SIZE : tmp_len;
3882
3883                 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
3884                                 0, 1,
3885                                 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
3886                                 0, 0);
3887
3888                 tmp_len -= TSO_MAX_BUFF_SIZE;
3889         }
3890 }
3891
3892 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue)
3893 {
3894         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3895         int desc_size;
3896
3897         if (likely(priv->extend_desc))
3898                 desc_size = sizeof(struct dma_extended_desc);
3899         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3900                 desc_size = sizeof(struct dma_edesc);
3901         else
3902                 desc_size = sizeof(struct dma_desc);
3903
3904         /* The own bit must be the latest setting done when prepare the
3905          * descriptor and then barrier is needed to make sure that
3906          * all is coherent before granting the DMA engine.
3907          */
3908         wmb();
3909
3910         tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
3911         stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3912 }
3913
3914 /**
3915  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
3916  *  @skb : the socket buffer
3917  *  @dev : device pointer
3918  *  Description: this is the transmit function that is called on TSO frames
3919  *  (support available on GMAC4 and newer chips).
3920  *  Diagram below show the ring programming in case of TSO frames:
3921  *
3922  *  First Descriptor
3923  *   --------
3924  *   | DES0 |---> buffer1 = L2/L3/L4 header
3925  *   | DES1 |---> TCP Payload (can continue on next descr...)
3926  *   | DES2 |---> buffer 1 and 2 len
3927  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
3928  *   --------
3929  *      |
3930  *     ...
3931  *      |
3932  *   --------
3933  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
3934  *   | DES1 | --|
3935  *   | DES2 | --> buffer 1 and 2 len
3936  *   | DES3 |
3937  *   --------
3938  *
3939  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
3940  */
3941 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
3942 {
3943         struct dma_desc *desc, *first, *mss_desc = NULL;
3944         struct stmmac_priv *priv = netdev_priv(dev);
3945         int nfrags = skb_shinfo(skb)->nr_frags;
3946         u32 queue = skb_get_queue_mapping(skb);
3947         unsigned int first_entry, tx_packets;
3948         int tmp_pay_len = 0, first_tx;
3949         struct stmmac_tx_queue *tx_q;
3950         bool has_vlan, set_ic;
3951         u8 proto_hdr_len, hdr;
3952         u32 pay_len, mss;
3953         dma_addr_t des;
3954         int i;
3955
3956         tx_q = &priv->tx_queue[queue];
3957         first_tx = tx_q->cur_tx;
3958
3959         /* Compute header lengths */
3960         if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3961                 proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
3962                 hdr = sizeof(struct udphdr);
3963         } else {
3964                 proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3965                 hdr = tcp_hdrlen(skb);
3966         }
3967
3968         /* Desc availability based on threshold should be enough safe */
3969         if (unlikely(stmmac_tx_avail(priv, queue) <
3970                 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
3971                 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3972                         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3973                                                                 queue));
3974                         /* This is a hard error, log it. */
3975                         netdev_err(priv->dev,
3976                                    "%s: Tx Ring full when queue awake\n",
3977                                    __func__);
3978                 }
3979                 return NETDEV_TX_BUSY;
3980         }
3981
3982         pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
3983
3984         mss = skb_shinfo(skb)->gso_size;
3985
3986         /* set new MSS value if needed */
3987         if (mss != tx_q->mss) {
3988                 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3989                         mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3990                 else
3991                         mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
3992
3993                 stmmac_set_mss(priv, mss_desc, mss);
3994                 tx_q->mss = mss;
3995                 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3996                                                 priv->dma_tx_size);
3997                 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3998         }
3999
4000         if (netif_msg_tx_queued(priv)) {
4001                 pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
4002                         __func__, hdr, proto_hdr_len, pay_len, mss);
4003                 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
4004                         skb->data_len);
4005         }
4006
4007         /* Check if VLAN can be inserted by HW */
4008         has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4009
4010         first_entry = tx_q->cur_tx;
4011         WARN_ON(tx_q->tx_skbuff[first_entry]);
4012
4013         if (tx_q->tbs & STMMAC_TBS_AVAIL)
4014                 desc = &tx_q->dma_entx[first_entry].basic;
4015         else
4016                 desc = &tx_q->dma_tx[first_entry];
4017         first = desc;
4018
4019         if (has_vlan)
4020                 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4021
4022         /* first descriptor: fill Headers on Buf1 */
4023         des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
4024                              DMA_TO_DEVICE);
4025         if (dma_mapping_error(priv->device, des))
4026                 goto dma_map_err;
4027
4028         tx_q->tx_skbuff_dma[first_entry].buf = des;
4029         tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
4030         tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4031         tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4032
4033         if (priv->dma_cap.addr64 <= 32) {
4034                 first->des0 = cpu_to_le32(des);
4035
4036                 /* Fill start of payload in buff2 of first descriptor */
4037                 if (pay_len)
4038                         first->des1 = cpu_to_le32(des + proto_hdr_len);
4039
4040                 /* If needed take extra descriptors to fill the remaining payload */
4041                 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
4042         } else {
4043                 stmmac_set_desc_addr(priv, first, des);
4044                 tmp_pay_len = pay_len;
4045                 des += proto_hdr_len;
4046                 pay_len = 0;
4047         }
4048
4049         stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
4050
4051         /* Prepare fragments */
4052         for (i = 0; i < nfrags; i++) {
4053                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4054
4055                 des = skb_frag_dma_map(priv->device, frag, 0,
4056                                        skb_frag_size(frag),
4057                                        DMA_TO_DEVICE);
4058                 if (dma_mapping_error(priv->device, des))
4059                         goto dma_map_err;
4060
4061                 stmmac_tso_allocator(priv, des, skb_frag_size(frag),
4062                                      (i == nfrags - 1), queue);
4063
4064                 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
4065                 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
4066                 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
4067                 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4068         }
4069
4070         tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
4071
4072         /* Only the last descriptor gets to point to the skb. */
4073         tx_q->tx_skbuff[tx_q->cur_tx] = skb;
4074         tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4075
4076         /* Manage tx mitigation */
4077         tx_packets = (tx_q->cur_tx + 1) - first_tx;
4078         tx_q->tx_count_frames += tx_packets;
4079
4080         if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4081                 set_ic = true;
4082         else if (!priv->tx_coal_frames[queue])
4083                 set_ic = false;
4084         else if (tx_packets > priv->tx_coal_frames[queue])
4085                 set_ic = true;
4086         else if ((tx_q->tx_count_frames %
4087                   priv->tx_coal_frames[queue]) < tx_packets)
4088                 set_ic = true;
4089         else
4090                 set_ic = false;
4091
4092         if (set_ic) {
4093                 if (tx_q->tbs & STMMAC_TBS_AVAIL)
4094                         desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4095                 else
4096                         desc = &tx_q->dma_tx[tx_q->cur_tx];
4097
4098                 tx_q->tx_count_frames = 0;
4099                 stmmac_set_tx_ic(priv, desc);
4100                 priv->xstats.tx_set_ic_bit++;
4101         }
4102
4103         /* We've used all descriptors we need for this skb, however,
4104          * advance cur_tx so that it references a fresh descriptor.
4105          * ndo_start_xmit will fill this descriptor the next time it's
4106          * called and stmmac_tx_clean may clean up to this descriptor.
4107          */
4108         tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
4109
4110         if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4111                 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4112                           __func__);
4113                 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4114         }
4115
4116         dev->stats.tx_bytes += skb->len;
4117         priv->xstats.tx_tso_frames++;
4118         priv->xstats.tx_tso_nfrags += nfrags;
4119
4120         if (priv->sarc_type)
4121                 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4122
4123         skb_tx_timestamp(skb);
4124
4125         if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4126                      priv->hwts_tx_en)) {
4127                 /* declare that device is doing timestamping */
4128                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4129                 stmmac_enable_tx_timestamp(priv, first);
4130         }
4131
4132         /* Complete the first descriptor before granting the DMA */
4133         stmmac_prepare_tso_tx_desc(priv, first, 1,
4134                         proto_hdr_len,
4135                         pay_len,
4136                         1, tx_q->tx_skbuff_dma[first_entry].last_segment,
4137                         hdr / 4, (skb->len - proto_hdr_len));
4138
4139         /* If context desc is used to change MSS */
4140         if (mss_desc) {
4141                 /* Make sure that first descriptor has been completely
4142                  * written, including its own bit. This is because MSS is
4143                  * actually before first descriptor, so we need to make
4144                  * sure that MSS's own bit is the last thing written.
4145                  */
4146                 dma_wmb();
4147                 stmmac_set_tx_owner(priv, mss_desc);
4148         }
4149
4150         if (netif_msg_pktdata(priv)) {
4151                 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
4152                         __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4153                         tx_q->cur_tx, first, nfrags);
4154                 pr_info(">>> frame to be transmitted: ");
4155                 print_pkt(skb->data, skb_headlen(skb));
4156         }
4157
4158         netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4159
4160         stmmac_flush_tx_descriptors(priv, queue);
4161         stmmac_tx_timer_arm(priv, queue);
4162
4163         return NETDEV_TX_OK;
4164
4165 dma_map_err:
4166         dev_err(priv->device, "Tx dma map failed\n");
4167         dev_kfree_skb(skb);
4168         priv->dev->stats.tx_dropped++;
4169         return NETDEV_TX_OK;
4170 }
4171
4172 /**
4173  *  stmmac_xmit - Tx entry point of the driver
4174  *  @skb : the socket buffer
4175  *  @dev : device pointer
4176  *  Description : this is the tx entry point of the driver.
4177  *  It programs the chain or the ring and supports oversized frames
4178  *  and SG feature.
4179  */
4180 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
4181 {
4182         unsigned int first_entry, tx_packets, enh_desc;
4183         struct stmmac_priv *priv = netdev_priv(dev);
4184         unsigned int nopaged_len = skb_headlen(skb);
4185         int i, csum_insertion = 0, is_jumbo = 0;
4186         u32 queue = skb_get_queue_mapping(skb);
4187         int nfrags = skb_shinfo(skb)->nr_frags;
4188         int gso = skb_shinfo(skb)->gso_type;
4189         struct dma_edesc *tbs_desc = NULL;
4190         struct dma_desc *desc, *first;
4191         struct stmmac_tx_queue *tx_q;
4192         bool has_vlan, set_ic;
4193         int entry, first_tx;
4194         dma_addr_t des;
4195
4196         tx_q = &priv->tx_queue[queue];
4197         first_tx = tx_q->cur_tx;
4198
4199         if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en)
4200                 stmmac_disable_eee_mode(priv);
4201
4202         /* Manage oversized TCP frames for GMAC4 device */
4203         if (skb_is_gso(skb) && priv->tso) {
4204                 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
4205                         return stmmac_tso_xmit(skb, dev);
4206                 if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
4207                         return stmmac_tso_xmit(skb, dev);
4208         }
4209
4210         if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
4211                 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4212                         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4213                                                                 queue));
4214                         /* This is a hard error, log it. */
4215                         netdev_err(priv->dev,
4216                                    "%s: Tx Ring full when queue awake\n",
4217                                    __func__);
4218                 }
4219                 return NETDEV_TX_BUSY;
4220         }
4221
4222         /* Check if VLAN can be inserted by HW */
4223         has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4224
4225         entry = tx_q->cur_tx;
4226         first_entry = entry;
4227         WARN_ON(tx_q->tx_skbuff[first_entry]);
4228
4229         csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
4230
4231         if (likely(priv->extend_desc))
4232                 desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4233         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4234                 desc = &tx_q->dma_entx[entry].basic;
4235         else
4236                 desc = tx_q->dma_tx + entry;
4237
4238         first = desc;
4239
4240         if (has_vlan)
4241                 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4242
4243         enh_desc = priv->plat->enh_desc;
4244         /* To program the descriptors according to the size of the frame */
4245         if (enh_desc)
4246                 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
4247
4248         if (unlikely(is_jumbo)) {
4249                 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
4250                 if (unlikely(entry < 0) && (entry != -EINVAL))
4251                         goto dma_map_err;
4252         }
4253
4254         for (i = 0; i < nfrags; i++) {
4255                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4256                 int len = skb_frag_size(frag);
4257                 bool last_segment = (i == (nfrags - 1));
4258
4259                 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
4260                 WARN_ON(tx_q->tx_skbuff[entry]);
4261
4262                 if (likely(priv->extend_desc))
4263                         desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4264                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4265                         desc = &tx_q->dma_entx[entry].basic;
4266                 else
4267                         desc = tx_q->dma_tx + entry;
4268
4269                 des = skb_frag_dma_map(priv->device, frag, 0, len,
4270                                        DMA_TO_DEVICE);
4271                 if (dma_mapping_error(priv->device, des))
4272                         goto dma_map_err; /* should reuse desc w/o issues */
4273
4274                 tx_q->tx_skbuff_dma[entry].buf = des;
4275
4276                 stmmac_set_desc_addr(priv, desc, des);
4277
4278                 tx_q->tx_skbuff_dma[entry].map_as_page = true;
4279                 tx_q->tx_skbuff_dma[entry].len = len;
4280                 tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
4281                 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4282
4283                 /* Prepare the descriptor and set the own bit too */
4284                 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
4285                                 priv->mode, 1, last_segment, skb->len);
4286         }
4287
4288         /* Only the last descriptor gets to point to the skb. */
4289         tx_q->tx_skbuff[entry] = skb;
4290         tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4291
4292         /* According to the coalesce parameter the IC bit for the latest
4293          * segment is reset and the timer re-started to clean the tx status.
4294          * This approach takes care about the fragments: desc is the first
4295          * element in case of no SG.
4296          */
4297         tx_packets = (entry + 1) - first_tx;
4298         tx_q->tx_count_frames += tx_packets;
4299
4300         if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4301                 set_ic = true;
4302         else if (!priv->tx_coal_frames[queue])
4303                 set_ic = false;
4304         else if (tx_packets > priv->tx_coal_frames[queue])
4305                 set_ic = true;
4306         else if ((tx_q->tx_count_frames %
4307                   priv->tx_coal_frames[queue]) < tx_packets)
4308                 set_ic = true;
4309         else
4310                 set_ic = false;
4311
4312         if (set_ic) {
4313                 if (likely(priv->extend_desc))
4314                         desc = &tx_q->dma_etx[entry].basic;
4315                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4316                         desc = &tx_q->dma_entx[entry].basic;
4317                 else
4318                         desc = &tx_q->dma_tx[entry];
4319
4320                 tx_q->tx_count_frames = 0;
4321                 stmmac_set_tx_ic(priv, desc);
4322                 priv->xstats.tx_set_ic_bit++;
4323         }
4324
4325         /* We've used all descriptors we need for this skb, however,
4326          * advance cur_tx so that it references a fresh descriptor.
4327          * ndo_start_xmit will fill this descriptor the next time it's
4328          * called and stmmac_tx_clean may clean up to this descriptor.
4329          */
4330         entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
4331         tx_q->cur_tx = entry;
4332
4333         if (netif_msg_pktdata(priv)) {
4334                 netdev_dbg(priv->dev,
4335                            "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
4336                            __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4337                            entry, first, nfrags);
4338
4339                 netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
4340                 print_pkt(skb->data, skb->len);
4341         }
4342
4343         if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4344                 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4345                           __func__);
4346                 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4347         }
4348
4349         dev->stats.tx_bytes += skb->len;
4350
4351         if (priv->sarc_type)
4352                 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4353
4354         skb_tx_timestamp(skb);
4355
4356         /* Ready to fill the first descriptor and set the OWN bit w/o any
4357          * problems because all the descriptors are actually ready to be
4358          * passed to the DMA engine.
4359          */
4360         if (likely(!is_jumbo)) {
4361                 bool last_segment = (nfrags == 0);
4362
4363                 des = dma_map_single(priv->device, skb->data,
4364                                      nopaged_len, DMA_TO_DEVICE);
4365                 if (dma_mapping_error(priv->device, des))
4366                         goto dma_map_err;
4367
4368                 tx_q->tx_skbuff_dma[first_entry].buf = des;
4369                 tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4370                 tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4371
4372                 stmmac_set_desc_addr(priv, first, des);
4373
4374                 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
4375                 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
4376
4377                 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4378                              priv->hwts_tx_en)) {
4379                         /* declare that device is doing timestamping */
4380                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4381                         stmmac_enable_tx_timestamp(priv, first);
4382                 }
4383
4384                 /* Prepare the first descriptor setting the OWN bit too */
4385                 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
4386                                 csum_insertion, priv->mode, 0, last_segment,
4387                                 skb->len);
4388         }
4389
4390         if (tx_q->tbs & STMMAC_TBS_EN) {
4391                 struct timespec64 ts = ns_to_timespec64(skb->tstamp);
4392
4393                 tbs_desc = &tx_q->dma_entx[first_entry];
4394                 stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
4395         }
4396
4397         stmmac_set_tx_owner(priv, first);
4398
4399         netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4400
4401         stmmac_enable_dma_transmission(priv, priv->ioaddr);
4402
4403         stmmac_flush_tx_descriptors(priv, queue);
4404         stmmac_tx_timer_arm(priv, queue);
4405
4406         return NETDEV_TX_OK;
4407
4408 dma_map_err:
4409         netdev_err(priv->dev, "Tx DMA map failed\n");
4410         dev_kfree_skb(skb);
4411         priv->dev->stats.tx_dropped++;
4412         return NETDEV_TX_OK;
4413 }
4414
4415 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
4416 {
4417         struct vlan_ethhdr *veth;
4418         __be16 vlan_proto;
4419         u16 vlanid;
4420
4421         veth = (struct vlan_ethhdr *)skb->data;
4422         vlan_proto = veth->h_vlan_proto;
4423
4424         if ((vlan_proto == htons(ETH_P_8021Q) &&
4425              dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
4426             (vlan_proto == htons(ETH_P_8021AD) &&
4427              dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
4428                 /* pop the vlan tag */
4429                 vlanid = ntohs(veth->h_vlan_TCI);
4430                 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
4431                 skb_pull(skb, VLAN_HLEN);
4432                 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
4433         }
4434 }
4435
4436 /**
4437  * stmmac_rx_refill - refill used skb preallocated buffers
4438  * @priv: driver private structure
4439  * @queue: RX queue index
4440  * Description : this is to reallocate the skb for the reception process
4441  * that is based on zero-copy.
4442  */
4443 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
4444 {
4445         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4446         int dirty = stmmac_rx_dirty(priv, queue);
4447         unsigned int entry = rx_q->dirty_rx;
4448         gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
4449
4450         if (priv->dma_cap.addr64 <= 32)
4451                 gfp |= GFP_DMA32;
4452
4453         while (dirty-- > 0) {
4454                 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4455                 struct dma_desc *p;
4456                 bool use_rx_wd;
4457
4458                 if (priv->extend_desc)
4459                         p = (struct dma_desc *)(rx_q->dma_erx + entry);
4460                 else
4461                         p = rx_q->dma_rx + entry;
4462
4463                 if (!buf->page) {
4464                         buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4465                         if (!buf->page)
4466                                 break;
4467                 }
4468
4469                 if (priv->sph && !buf->sec_page) {
4470                         buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4471                         if (!buf->sec_page)
4472                                 break;
4473
4474                         buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
4475                 }
4476
4477                 buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
4478
4479                 stmmac_set_desc_addr(priv, p, buf->addr);
4480                 if (priv->sph)
4481                         stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
4482                 else
4483                         stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
4484                 stmmac_refill_desc3(priv, rx_q, p);
4485
4486                 rx_q->rx_count_frames++;
4487                 rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4488                 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4489                         rx_q->rx_count_frames = 0;
4490
4491                 use_rx_wd = !priv->rx_coal_frames[queue];
4492                 use_rx_wd |= rx_q->rx_count_frames > 0;
4493                 if (!priv->use_riwt)
4494                         use_rx_wd = false;
4495
4496                 dma_wmb();
4497                 stmmac_set_rx_owner(priv, p, use_rx_wd);
4498
4499                 entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size);
4500         }
4501         rx_q->dirty_rx = entry;
4502         rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4503                             (rx_q->dirty_rx * sizeof(struct dma_desc));
4504         stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4505 }
4506
4507 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
4508                                        struct dma_desc *p,
4509                                        int status, unsigned int len)
4510 {
4511         unsigned int plen = 0, hlen = 0;
4512         int coe = priv->hw->rx_csum;
4513
4514         /* Not first descriptor, buffer is always zero */
4515         if (priv->sph && len)
4516                 return 0;
4517
4518         /* First descriptor, get split header length */
4519         stmmac_get_rx_header_len(priv, p, &hlen);
4520         if (priv->sph && hlen) {
4521                 priv->xstats.rx_split_hdr_pkt_n++;
4522                 return hlen;
4523         }
4524
4525         /* First descriptor, not last descriptor and not split header */
4526         if (status & rx_not_ls)
4527                 return priv->dma_buf_sz;
4528
4529         plen = stmmac_get_rx_frame_len(priv, p, coe);
4530
4531         /* First descriptor and last descriptor and not split header */
4532         return min_t(unsigned int, priv->dma_buf_sz, plen);
4533 }
4534
4535 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
4536                                        struct dma_desc *p,
4537                                        int status, unsigned int len)
4538 {
4539         int coe = priv->hw->rx_csum;
4540         unsigned int plen = 0;
4541
4542         /* Not split header, buffer is not available */
4543         if (!priv->sph)
4544                 return 0;
4545
4546         /* Not last descriptor */
4547         if (status & rx_not_ls)
4548                 return priv->dma_buf_sz;
4549
4550         plen = stmmac_get_rx_frame_len(priv, p, coe);
4551
4552         /* Last descriptor */
4553         return plen - len;
4554 }
4555
4556 static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue,
4557                                 struct xdp_frame *xdpf, bool dma_map)
4558 {
4559         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4560         unsigned int entry = tx_q->cur_tx;
4561         struct dma_desc *tx_desc;
4562         dma_addr_t dma_addr;
4563         bool set_ic;
4564
4565         if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv))
4566                 return STMMAC_XDP_CONSUMED;
4567
4568         if (likely(priv->extend_desc))
4569                 tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4570         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4571                 tx_desc = &tx_q->dma_entx[entry].basic;
4572         else
4573                 tx_desc = tx_q->dma_tx + entry;
4574
4575         if (dma_map) {
4576                 dma_addr = dma_map_single(priv->device, xdpf->data,
4577                                           xdpf->len, DMA_TO_DEVICE);
4578                 if (dma_mapping_error(priv->device, dma_addr))
4579                         return STMMAC_XDP_CONSUMED;
4580
4581                 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO;
4582         } else {
4583                 struct page *page = virt_to_page(xdpf->data);
4584
4585                 dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) +
4586                            xdpf->headroom;
4587                 dma_sync_single_for_device(priv->device, dma_addr,
4588                                            xdpf->len, DMA_BIDIRECTIONAL);
4589
4590                 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX;
4591         }
4592
4593         tx_q->tx_skbuff_dma[entry].buf = dma_addr;
4594         tx_q->tx_skbuff_dma[entry].map_as_page = false;
4595         tx_q->tx_skbuff_dma[entry].len = xdpf->len;
4596         tx_q->tx_skbuff_dma[entry].last_segment = true;
4597         tx_q->tx_skbuff_dma[entry].is_jumbo = false;
4598
4599         tx_q->xdpf[entry] = xdpf;
4600
4601         stmmac_set_desc_addr(priv, tx_desc, dma_addr);
4602
4603         stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len,
4604                                true, priv->mode, true, true,
4605                                xdpf->len);
4606
4607         tx_q->tx_count_frames++;
4608
4609         if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
4610                 set_ic = true;
4611         else
4612                 set_ic = false;
4613
4614         if (set_ic) {
4615                 tx_q->tx_count_frames = 0;
4616                 stmmac_set_tx_ic(priv, tx_desc);
4617                 priv->xstats.tx_set_ic_bit++;
4618         }
4619
4620         stmmac_enable_dma_transmission(priv, priv->ioaddr);
4621
4622         entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
4623         tx_q->cur_tx = entry;
4624
4625         return STMMAC_XDP_TX;
4626 }
4627
4628 static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv,
4629                                    int cpu)
4630 {
4631         int index = cpu;
4632
4633         if (unlikely(index < 0))
4634                 index = 0;
4635
4636         while (index >= priv->plat->tx_queues_to_use)
4637                 index -= priv->plat->tx_queues_to_use;
4638
4639         return index;
4640 }
4641
4642 static int stmmac_xdp_xmit_back(struct stmmac_priv *priv,
4643                                 struct xdp_buff *xdp)
4644 {
4645         struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
4646         int cpu = smp_processor_id();
4647         struct netdev_queue *nq;
4648         int queue;
4649         int res;
4650
4651         if (unlikely(!xdpf))
4652                 return STMMAC_XDP_CONSUMED;
4653
4654         queue = stmmac_xdp_get_tx_queue(priv, cpu);
4655         nq = netdev_get_tx_queue(priv->dev, queue);
4656
4657         __netif_tx_lock(nq, cpu);
4658         /* Avoids TX time-out as we are sharing with slow path */
4659         txq_trans_cond_update(nq);
4660
4661         res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false);
4662         if (res == STMMAC_XDP_TX)
4663                 stmmac_flush_tx_descriptors(priv, queue);
4664
4665         __netif_tx_unlock(nq);
4666
4667         return res;
4668 }
4669
4670 static int __stmmac_xdp_run_prog(struct stmmac_priv *priv,
4671                                  struct bpf_prog *prog,
4672                                  struct xdp_buff *xdp)
4673 {
4674         u32 act;
4675         int res;
4676
4677         act = bpf_prog_run_xdp(prog, xdp);
4678         switch (act) {
4679         case XDP_PASS:
4680                 res = STMMAC_XDP_PASS;
4681                 break;
4682         case XDP_TX:
4683                 res = stmmac_xdp_xmit_back(priv, xdp);
4684                 break;
4685         case XDP_REDIRECT:
4686                 if (xdp_do_redirect(priv->dev, xdp, prog) < 0)
4687                         res = STMMAC_XDP_CONSUMED;
4688                 else
4689                         res = STMMAC_XDP_REDIRECT;
4690                 break;
4691         default:
4692                 bpf_warn_invalid_xdp_action(priv->dev, prog, act);
4693                 fallthrough;
4694         case XDP_ABORTED:
4695                 trace_xdp_exception(priv->dev, prog, act);
4696                 fallthrough;
4697         case XDP_DROP:
4698                 res = STMMAC_XDP_CONSUMED;
4699                 break;
4700         }
4701
4702         return res;
4703 }
4704
4705 static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv,
4706                                            struct xdp_buff *xdp)
4707 {
4708         struct bpf_prog *prog;
4709         int res;
4710
4711         prog = READ_ONCE(priv->xdp_prog);
4712         if (!prog) {
4713                 res = STMMAC_XDP_PASS;
4714                 goto out;
4715         }
4716
4717         res = __stmmac_xdp_run_prog(priv, prog, xdp);
4718 out:
4719         return ERR_PTR(-res);
4720 }
4721
4722 static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv,
4723                                    int xdp_status)
4724 {
4725         int cpu = smp_processor_id();
4726         int queue;
4727
4728         queue = stmmac_xdp_get_tx_queue(priv, cpu);
4729
4730         if (xdp_status & STMMAC_XDP_TX)
4731                 stmmac_tx_timer_arm(priv, queue);
4732
4733         if (xdp_status & STMMAC_XDP_REDIRECT)
4734                 xdp_do_flush();
4735 }
4736
4737 static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch,
4738                                                struct xdp_buff *xdp)
4739 {
4740         unsigned int metasize = xdp->data - xdp->data_meta;
4741         unsigned int datasize = xdp->data_end - xdp->data;
4742         struct sk_buff *skb;
4743
4744         skb = __napi_alloc_skb(&ch->rxtx_napi,
4745                                xdp->data_end - xdp->data_hard_start,
4746                                GFP_ATOMIC | __GFP_NOWARN);
4747         if (unlikely(!skb))
4748                 return NULL;
4749
4750         skb_reserve(skb, xdp->data - xdp->data_hard_start);
4751         memcpy(__skb_put(skb, datasize), xdp->data, datasize);
4752         if (metasize)
4753                 skb_metadata_set(skb, metasize);
4754
4755         return skb;
4756 }
4757
4758 static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue,
4759                                    struct dma_desc *p, struct dma_desc *np,
4760                                    struct xdp_buff *xdp)
4761 {
4762         struct stmmac_channel *ch = &priv->channel[queue];
4763         unsigned int len = xdp->data_end - xdp->data;
4764         enum pkt_hash_types hash_type;
4765         int coe = priv->hw->rx_csum;
4766         struct sk_buff *skb;
4767         u32 hash;
4768
4769         skb = stmmac_construct_skb_zc(ch, xdp);
4770         if (!skb) {
4771                 priv->dev->stats.rx_dropped++;
4772                 return;
4773         }
4774
4775         stmmac_get_rx_hwtstamp(priv, p, np, skb);
4776         stmmac_rx_vlan(priv->dev, skb);
4777         skb->protocol = eth_type_trans(skb, priv->dev);
4778
4779         if (unlikely(!coe))
4780                 skb_checksum_none_assert(skb);
4781         else
4782                 skb->ip_summed = CHECKSUM_UNNECESSARY;
4783
4784         if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
4785                 skb_set_hash(skb, hash, hash_type);
4786
4787         skb_record_rx_queue(skb, queue);
4788         napi_gro_receive(&ch->rxtx_napi, skb);
4789
4790         priv->dev->stats.rx_packets++;
4791         priv->dev->stats.rx_bytes += len;
4792 }
4793
4794 static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
4795 {
4796         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4797         unsigned int entry = rx_q->dirty_rx;
4798         struct dma_desc *rx_desc = NULL;
4799         bool ret = true;
4800
4801         budget = min(budget, stmmac_rx_dirty(priv, queue));
4802
4803         while (budget-- > 0 && entry != rx_q->cur_rx) {
4804                 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4805                 dma_addr_t dma_addr;
4806                 bool use_rx_wd;
4807
4808                 if (!buf->xdp) {
4809                         buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
4810                         if (!buf->xdp) {
4811                                 ret = false;
4812                                 break;
4813                         }
4814                 }
4815
4816                 if (priv->extend_desc)
4817                         rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry);
4818                 else
4819                         rx_desc = rx_q->dma_rx + entry;
4820
4821                 dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
4822                 stmmac_set_desc_addr(priv, rx_desc, dma_addr);
4823                 stmmac_set_desc_sec_addr(priv, rx_desc, 0, false);
4824                 stmmac_refill_desc3(priv, rx_q, rx_desc);
4825
4826                 rx_q->rx_count_frames++;
4827                 rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4828                 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4829                         rx_q->rx_count_frames = 0;
4830
4831                 use_rx_wd = !priv->rx_coal_frames[queue];
4832                 use_rx_wd |= rx_q->rx_count_frames > 0;
4833                 if (!priv->use_riwt)
4834                         use_rx_wd = false;
4835
4836                 dma_wmb();
4837                 stmmac_set_rx_owner(priv, rx_desc, use_rx_wd);
4838
4839                 entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size);
4840         }
4841
4842         if (rx_desc) {
4843                 rx_q->dirty_rx = entry;
4844                 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4845                                      (rx_q->dirty_rx * sizeof(struct dma_desc));
4846                 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4847         }
4848
4849         return ret;
4850 }
4851
4852 static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue)
4853 {
4854         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4855         unsigned int count = 0, error = 0, len = 0;
4856         int dirty = stmmac_rx_dirty(priv, queue);
4857         unsigned int next_entry = rx_q->cur_rx;
4858         unsigned int desc_size;
4859         struct bpf_prog *prog;
4860         bool failure = false;
4861         int xdp_status = 0;
4862         int status = 0;
4863
4864         if (netif_msg_rx_status(priv)) {
4865                 void *rx_head;
4866
4867                 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
4868                 if (priv->extend_desc) {
4869                         rx_head = (void *)rx_q->dma_erx;
4870                         desc_size = sizeof(struct dma_extended_desc);
4871                 } else {
4872                         rx_head = (void *)rx_q->dma_rx;
4873                         desc_size = sizeof(struct dma_desc);
4874                 }
4875
4876                 stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true,
4877                                     rx_q->dma_rx_phy, desc_size);
4878         }
4879         while (count < limit) {
4880                 struct stmmac_rx_buffer *buf;
4881                 unsigned int buf1_len = 0;
4882                 struct dma_desc *np, *p;
4883                 int entry;
4884                 int res;
4885
4886                 if (!count && rx_q->state_saved) {
4887                         error = rx_q->state.error;
4888                         len = rx_q->state.len;
4889                 } else {
4890                         rx_q->state_saved = false;
4891                         error = 0;
4892                         len = 0;
4893                 }
4894
4895                 if (count >= limit)
4896                         break;
4897
4898 read_again:
4899                 buf1_len = 0;
4900                 entry = next_entry;
4901                 buf = &rx_q->buf_pool[entry];
4902
4903                 if (dirty >= STMMAC_RX_FILL_BATCH) {
4904                         failure = failure ||
4905                                   !stmmac_rx_refill_zc(priv, queue, dirty);
4906                         dirty = 0;
4907                 }
4908
4909                 if (priv->extend_desc)
4910                         p = (struct dma_desc *)(rx_q->dma_erx + entry);
4911                 else
4912                         p = rx_q->dma_rx + entry;
4913
4914                 /* read the status of the incoming frame */
4915                 status = stmmac_rx_status(priv, &priv->dev->stats,
4916                                           &priv->xstats, p);
4917                 /* check if managed by the DMA otherwise go ahead */
4918                 if (unlikely(status & dma_own))
4919                         break;
4920
4921                 /* Prefetch the next RX descriptor */
4922                 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
4923                                                 priv->dma_rx_size);
4924                 next_entry = rx_q->cur_rx;
4925
4926                 if (priv->extend_desc)
4927                         np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
4928                 else
4929                         np = rx_q->dma_rx + next_entry;
4930
4931                 prefetch(np);
4932
4933                 /* Ensure a valid XSK buffer before proceed */
4934                 if (!buf->xdp)
4935                         break;
4936
4937                 if (priv->extend_desc)
4938                         stmmac_rx_extended_status(priv, &priv->dev->stats,
4939                                                   &priv->xstats,
4940                                                   rx_q->dma_erx + entry);
4941                 if (unlikely(status == discard_frame)) {
4942                         xsk_buff_free(buf->xdp);
4943                         buf->xdp = NULL;
4944                         dirty++;
4945                         error = 1;
4946                         if (!priv->hwts_rx_en)
4947                                 priv->dev->stats.rx_errors++;
4948                 }
4949
4950                 if (unlikely(error && (status & rx_not_ls)))
4951                         goto read_again;
4952                 if (unlikely(error)) {
4953                         count++;
4954                         continue;
4955                 }
4956
4957                 /* XSK pool expects RX frame 1:1 mapped to XSK buffer */
4958                 if (likely(status & rx_not_ls)) {
4959                         xsk_buff_free(buf->xdp);
4960                         buf->xdp = NULL;
4961                         dirty++;
4962                         count++;
4963                         goto read_again;
4964                 }
4965
4966                 /* XDP ZC Frame only support primary buffers for now */
4967                 buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
4968                 len += buf1_len;
4969
4970                 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
4971                  * Type frames (LLC/LLC-SNAP)
4972                  *
4973                  * llc_snap is never checked in GMAC >= 4, so this ACS
4974                  * feature is always disabled and packets need to be
4975                  * stripped manually.
4976                  */
4977                 if (likely(!(status & rx_not_ls)) &&
4978                     (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
4979                      unlikely(status != llc_snap))) {
4980                         buf1_len -= ETH_FCS_LEN;
4981                         len -= ETH_FCS_LEN;
4982                 }
4983
4984                 /* RX buffer is good and fit into a XSK pool buffer */
4985                 buf->xdp->data_end = buf->xdp->data + buf1_len;
4986                 xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool);
4987
4988                 prog = READ_ONCE(priv->xdp_prog);
4989                 res = __stmmac_xdp_run_prog(priv, prog, buf->xdp);
4990
4991                 switch (res) {
4992                 case STMMAC_XDP_PASS:
4993                         stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp);
4994                         xsk_buff_free(buf->xdp);
4995                         break;
4996                 case STMMAC_XDP_CONSUMED:
4997                         xsk_buff_free(buf->xdp);
4998                         priv->dev->stats.rx_dropped++;
4999                         break;
5000                 case STMMAC_XDP_TX:
5001                 case STMMAC_XDP_REDIRECT:
5002                         xdp_status |= res;
5003                         break;
5004                 }
5005
5006                 buf->xdp = NULL;
5007                 dirty++;
5008                 count++;
5009         }
5010
5011         if (status & rx_not_ls) {
5012                 rx_q->state_saved = true;
5013                 rx_q->state.error = error;
5014                 rx_q->state.len = len;
5015         }
5016
5017         stmmac_finalize_xdp_rx(priv, xdp_status);
5018
5019         priv->xstats.rx_pkt_n += count;
5020         priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5021
5022         if (xsk_uses_need_wakeup(rx_q->xsk_pool)) {
5023                 if (failure || stmmac_rx_dirty(priv, queue) > 0)
5024                         xsk_set_rx_need_wakeup(rx_q->xsk_pool);
5025                 else
5026                         xsk_clear_rx_need_wakeup(rx_q->xsk_pool);
5027
5028                 return (int)count;
5029         }
5030
5031         return failure ? limit : (int)count;
5032 }
5033
5034 /**
5035  * stmmac_rx - manage the receive process
5036  * @priv: driver private structure
5037  * @limit: napi bugget
5038  * @queue: RX queue index.
5039  * Description :  this the function called by the napi poll method.
5040  * It gets all the frames inside the ring.
5041  */
5042 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
5043 {
5044         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
5045         struct stmmac_channel *ch = &priv->channel[queue];
5046         unsigned int count = 0, error = 0, len = 0;
5047         int status = 0, coe = priv->hw->rx_csum;
5048         unsigned int next_entry = rx_q->cur_rx;
5049         enum dma_data_direction dma_dir;
5050         unsigned int desc_size;
5051         struct sk_buff *skb = NULL;
5052         struct xdp_buff xdp;
5053         int xdp_status = 0;
5054         int buf_sz;
5055
5056         dma_dir = page_pool_get_dma_dir(rx_q->page_pool);
5057         buf_sz = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
5058
5059         if (netif_msg_rx_status(priv)) {
5060                 void *rx_head;
5061
5062                 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5063                 if (priv->extend_desc) {
5064                         rx_head = (void *)rx_q->dma_erx;
5065                         desc_size = sizeof(struct dma_extended_desc);
5066                 } else {
5067                         rx_head = (void *)rx_q->dma_rx;
5068                         desc_size = sizeof(struct dma_desc);
5069                 }
5070
5071                 stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true,
5072                                     rx_q->dma_rx_phy, desc_size);
5073         }
5074         while (count < limit) {
5075                 unsigned int buf1_len = 0, buf2_len = 0;
5076                 enum pkt_hash_types hash_type;
5077                 struct stmmac_rx_buffer *buf;
5078                 struct dma_desc *np, *p;
5079                 int entry;
5080                 u32 hash;
5081
5082                 if (!count && rx_q->state_saved) {
5083                         skb = rx_q->state.skb;
5084                         error = rx_q->state.error;
5085                         len = rx_q->state.len;
5086                 } else {
5087                         rx_q->state_saved = false;
5088                         skb = NULL;
5089                         error = 0;
5090                         len = 0;
5091                 }
5092
5093                 if (count >= limit)
5094                         break;
5095
5096 read_again:
5097                 buf1_len = 0;
5098                 buf2_len = 0;
5099                 entry = next_entry;
5100                 buf = &rx_q->buf_pool[entry];
5101
5102                 if (priv->extend_desc)
5103                         p = (struct dma_desc *)(rx_q->dma_erx + entry);
5104                 else
5105                         p = rx_q->dma_rx + entry;
5106
5107                 /* read the status of the incoming frame */
5108                 status = stmmac_rx_status(priv, &priv->dev->stats,
5109                                 &priv->xstats, p);
5110                 /* check if managed by the DMA otherwise go ahead */
5111                 if (unlikely(status & dma_own))
5112                         break;
5113
5114                 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5115                                                 priv->dma_rx_size);
5116                 next_entry = rx_q->cur_rx;
5117
5118                 if (priv->extend_desc)
5119                         np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5120                 else
5121                         np = rx_q->dma_rx + next_entry;
5122
5123                 prefetch(np);
5124
5125                 if (priv->extend_desc)
5126                         stmmac_rx_extended_status(priv, &priv->dev->stats,
5127                                         &priv->xstats, rx_q->dma_erx + entry);
5128                 if (unlikely(status == discard_frame)) {
5129                         page_pool_recycle_direct(rx_q->page_pool, buf->page);
5130                         buf->page = NULL;
5131                         error = 1;
5132                         if (!priv->hwts_rx_en)
5133                                 priv->dev->stats.rx_errors++;
5134                 }
5135
5136                 if (unlikely(error && (status & rx_not_ls)))
5137                         goto read_again;
5138                 if (unlikely(error)) {
5139                         dev_kfree_skb(skb);
5140                         skb = NULL;
5141                         count++;
5142                         continue;
5143                 }
5144
5145                 /* Buffer is good. Go on. */
5146
5147                 prefetch(page_address(buf->page) + buf->page_offset);
5148                 if (buf->sec_page)
5149                         prefetch(page_address(buf->sec_page));
5150
5151                 buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5152                 len += buf1_len;
5153                 buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
5154                 len += buf2_len;
5155
5156                 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
5157                  * Type frames (LLC/LLC-SNAP)
5158                  *
5159                  * llc_snap is never checked in GMAC >= 4, so this ACS
5160                  * feature is always disabled and packets need to be
5161                  * stripped manually.
5162                  */
5163                 if (likely(!(status & rx_not_ls)) &&
5164                     (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
5165                      unlikely(status != llc_snap))) {
5166                         if (buf2_len) {
5167                                 buf2_len -= ETH_FCS_LEN;
5168                                 len -= ETH_FCS_LEN;
5169                         } else if (buf1_len) {
5170                                 buf1_len -= ETH_FCS_LEN;
5171                                 len -= ETH_FCS_LEN;
5172                         }
5173                 }
5174
5175                 if (!skb) {
5176                         unsigned int pre_len, sync_len;
5177
5178                         dma_sync_single_for_cpu(priv->device, buf->addr,
5179                                                 buf1_len, dma_dir);
5180
5181                         xdp_init_buff(&xdp, buf_sz, &rx_q->xdp_rxq);
5182                         xdp_prepare_buff(&xdp, page_address(buf->page),
5183                                          buf->page_offset, buf1_len, false);
5184
5185                         pre_len = xdp.data_end - xdp.data_hard_start -
5186                                   buf->page_offset;
5187                         skb = stmmac_xdp_run_prog(priv, &xdp);
5188                         /* Due xdp_adjust_tail: DMA sync for_device
5189                          * cover max len CPU touch
5190                          */
5191                         sync_len = xdp.data_end - xdp.data_hard_start -
5192                                    buf->page_offset;
5193                         sync_len = max(sync_len, pre_len);
5194
5195                         /* For Not XDP_PASS verdict */
5196                         if (IS_ERR(skb)) {
5197                                 unsigned int xdp_res = -PTR_ERR(skb);
5198
5199                                 if (xdp_res & STMMAC_XDP_CONSUMED) {
5200                                         page_pool_put_page(rx_q->page_pool,
5201                                                            virt_to_head_page(xdp.data),
5202                                                            sync_len, true);
5203                                         buf->page = NULL;
5204                                         priv->dev->stats.rx_dropped++;
5205
5206                                         /* Clear skb as it was set as
5207                                          * status by XDP program.
5208                                          */
5209                                         skb = NULL;
5210
5211                                         if (unlikely((status & rx_not_ls)))
5212                                                 goto read_again;
5213
5214                                         count++;
5215                                         continue;
5216                                 } else if (xdp_res & (STMMAC_XDP_TX |
5217                                                       STMMAC_XDP_REDIRECT)) {
5218                                         xdp_status |= xdp_res;
5219                                         buf->page = NULL;
5220                                         skb = NULL;
5221                                         count++;
5222                                         continue;
5223                                 }
5224                         }
5225                 }
5226
5227                 if (!skb) {
5228                         /* XDP program may expand or reduce tail */
5229                         buf1_len = xdp.data_end - xdp.data;
5230
5231                         skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
5232                         if (!skb) {
5233                                 priv->dev->stats.rx_dropped++;
5234                                 count++;
5235                                 goto drain_data;
5236                         }
5237
5238                         /* XDP program may adjust header */
5239                         skb_copy_to_linear_data(skb, xdp.data, buf1_len);
5240                         skb_put(skb, buf1_len);
5241
5242                         /* Data payload copied into SKB, page ready for recycle */
5243                         page_pool_recycle_direct(rx_q->page_pool, buf->page);
5244                         buf->page = NULL;
5245                 } else if (buf1_len) {
5246                         dma_sync_single_for_cpu(priv->device, buf->addr,
5247                                                 buf1_len, dma_dir);
5248                         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5249                                         buf->page, buf->page_offset, buf1_len,
5250                                         priv->dma_buf_sz);
5251
5252                         /* Data payload appended into SKB */
5253                         page_pool_release_page(rx_q->page_pool, buf->page);
5254                         buf->page = NULL;
5255                 }
5256
5257                 if (buf2_len) {
5258                         dma_sync_single_for_cpu(priv->device, buf->sec_addr,
5259                                                 buf2_len, dma_dir);
5260                         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5261                                         buf->sec_page, 0, buf2_len,
5262                                         priv->dma_buf_sz);
5263
5264                         /* Data payload appended into SKB */
5265                         page_pool_release_page(rx_q->page_pool, buf->sec_page);
5266                         buf->sec_page = NULL;
5267                 }
5268
5269 drain_data:
5270                 if (likely(status & rx_not_ls))
5271                         goto read_again;
5272                 if (!skb)
5273                         continue;
5274
5275                 /* Got entire packet into SKB. Finish it. */
5276
5277                 stmmac_get_rx_hwtstamp(priv, p, np, skb);
5278                 stmmac_rx_vlan(priv->dev, skb);
5279                 skb->protocol = eth_type_trans(skb, priv->dev);
5280
5281                 if (unlikely(!coe))
5282                         skb_checksum_none_assert(skb);
5283                 else
5284                         skb->ip_summed = CHECKSUM_UNNECESSARY;
5285
5286                 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
5287                         skb_set_hash(skb, hash, hash_type);
5288
5289                 skb_record_rx_queue(skb, queue);
5290                 napi_gro_receive(&ch->rx_napi, skb);
5291                 skb = NULL;
5292
5293                 priv->dev->stats.rx_packets++;
5294                 priv->dev->stats.rx_bytes += len;
5295                 count++;
5296         }
5297
5298         if (status & rx_not_ls || skb) {
5299                 rx_q->state_saved = true;
5300                 rx_q->state.skb = skb;
5301                 rx_q->state.error = error;
5302                 rx_q->state.len = len;
5303         }
5304
5305         stmmac_finalize_xdp_rx(priv, xdp_status);
5306
5307         stmmac_rx_refill(priv, queue);
5308
5309         priv->xstats.rx_pkt_n += count;
5310         priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5311
5312         return count;
5313 }
5314
5315 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
5316 {
5317         struct stmmac_channel *ch =
5318                 container_of(napi, struct stmmac_channel, rx_napi);
5319         struct stmmac_priv *priv = ch->priv_data;
5320         u32 chan = ch->index;
5321         int work_done;
5322
5323         priv->xstats.napi_poll++;
5324
5325         work_done = stmmac_rx(priv, budget, chan);
5326         if (work_done < budget && napi_complete_done(napi, work_done)) {
5327                 unsigned long flags;
5328
5329                 spin_lock_irqsave(&ch->lock, flags);
5330                 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
5331                 spin_unlock_irqrestore(&ch->lock, flags);
5332         }
5333
5334         return work_done;
5335 }
5336
5337 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
5338 {
5339         struct stmmac_channel *ch =
5340                 container_of(napi, struct stmmac_channel, tx_napi);
5341         struct stmmac_priv *priv = ch->priv_data;
5342         u32 chan = ch->index;
5343         int work_done;
5344
5345         priv->xstats.napi_poll++;
5346
5347         work_done = stmmac_tx_clean(priv, budget, chan);
5348         work_done = min(work_done, budget);
5349
5350         if (work_done < budget && napi_complete_done(napi, work_done)) {
5351                 unsigned long flags;
5352
5353                 spin_lock_irqsave(&ch->lock, flags);
5354                 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
5355                 spin_unlock_irqrestore(&ch->lock, flags);
5356         }
5357
5358         return work_done;
5359 }
5360
5361 static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget)
5362 {
5363         struct stmmac_channel *ch =
5364                 container_of(napi, struct stmmac_channel, rxtx_napi);
5365         struct stmmac_priv *priv = ch->priv_data;
5366         int rx_done, tx_done, rxtx_done;
5367         u32 chan = ch->index;
5368
5369         priv->xstats.napi_poll++;
5370
5371         tx_done = stmmac_tx_clean(priv, budget, chan);
5372         tx_done = min(tx_done, budget);
5373
5374         rx_done = stmmac_rx_zc(priv, budget, chan);
5375
5376         rxtx_done = max(tx_done, rx_done);
5377
5378         /* If either TX or RX work is not complete, return budget
5379          * and keep pooling
5380          */
5381         if (rxtx_done >= budget)
5382                 return budget;
5383
5384         /* all work done, exit the polling mode */
5385         if (napi_complete_done(napi, rxtx_done)) {
5386                 unsigned long flags;
5387
5388                 spin_lock_irqsave(&ch->lock, flags);
5389                 /* Both RX and TX work done are compelte,
5390                  * so enable both RX & TX IRQs.
5391                  */
5392                 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
5393                 spin_unlock_irqrestore(&ch->lock, flags);
5394         }
5395
5396         return min(rxtx_done, budget - 1);
5397 }
5398
5399 /**
5400  *  stmmac_tx_timeout
5401  *  @dev : Pointer to net device structure
5402  *  @txqueue: the index of the hanging transmit queue
5403  *  Description: this function is called when a packet transmission fails to
5404  *   complete within a reasonable time. The driver will mark the error in the
5405  *   netdev structure and arrange for the device to be reset to a sane state
5406  *   in order to transmit a new packet.
5407  */
5408 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
5409 {
5410         struct stmmac_priv *priv = netdev_priv(dev);
5411
5412         stmmac_global_err(priv);
5413 }
5414
5415 /**
5416  *  stmmac_set_rx_mode - entry point for multicast addressing
5417  *  @dev : pointer to the device structure
5418  *  Description:
5419  *  This function is a driver entry point which gets called by the kernel
5420  *  whenever multicast addresses must be enabled/disabled.
5421  *  Return value:
5422  *  void.
5423  */
5424 static void stmmac_set_rx_mode(struct net_device *dev)
5425 {
5426         struct stmmac_priv *priv = netdev_priv(dev);
5427
5428         stmmac_set_filter(priv, priv->hw, dev);
5429 }
5430
5431 /**
5432  *  stmmac_change_mtu - entry point to change MTU size for the device.
5433  *  @dev : device pointer.
5434  *  @new_mtu : the new MTU size for the device.
5435  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
5436  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
5437  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
5438  *  Return value:
5439  *  0 on success and an appropriate (-)ve integer as defined in errno.h
5440  *  file on failure.
5441  */
5442 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
5443 {
5444         struct stmmac_priv *priv = netdev_priv(dev);
5445         int txfifosz = priv->plat->tx_fifo_size;
5446         const int mtu = new_mtu;
5447
5448         if (txfifosz == 0)
5449                 txfifosz = priv->dma_cap.tx_fifo_size;
5450
5451         txfifosz /= priv->plat->tx_queues_to_use;
5452
5453         if (netif_running(dev)) {
5454                 netdev_err(priv->dev, "must be stopped to change its MTU\n");
5455                 return -EBUSY;
5456         }
5457
5458         if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) {
5459                 netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n");
5460                 return -EINVAL;
5461         }
5462
5463         new_mtu = STMMAC_ALIGN(new_mtu);
5464
5465         /* If condition true, FIFO is too small or MTU too large */
5466         if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
5467                 return -EINVAL;
5468
5469         dev->mtu = mtu;
5470
5471         netdev_update_features(dev);
5472
5473         return 0;
5474 }
5475
5476 static netdev_features_t stmmac_fix_features(struct net_device *dev,
5477                                              netdev_features_t features)
5478 {
5479         struct stmmac_priv *priv = netdev_priv(dev);
5480
5481         if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
5482                 features &= ~NETIF_F_RXCSUM;
5483
5484         if (!priv->plat->tx_coe)
5485                 features &= ~NETIF_F_CSUM_MASK;
5486
5487         /* Some GMAC devices have a bugged Jumbo frame support that
5488          * needs to have the Tx COE disabled for oversized frames
5489          * (due to limited buffer sizes). In this case we disable
5490          * the TX csum insertion in the TDES and not use SF.
5491          */
5492         if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
5493                 features &= ~NETIF_F_CSUM_MASK;
5494
5495         /* Disable tso if asked by ethtool */
5496         if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
5497                 if (features & NETIF_F_TSO)
5498                         priv->tso = true;
5499                 else
5500                         priv->tso = false;
5501         }
5502
5503         return features;
5504 }
5505
5506 static int stmmac_set_features(struct net_device *netdev,
5507                                netdev_features_t features)
5508 {
5509         struct stmmac_priv *priv = netdev_priv(netdev);
5510
5511         /* Keep the COE Type in case of csum is supporting */
5512         if (features & NETIF_F_RXCSUM)
5513                 priv->hw->rx_csum = priv->plat->rx_coe;
5514         else
5515                 priv->hw->rx_csum = 0;
5516         /* No check needed because rx_coe has been set before and it will be
5517          * fixed in case of issue.
5518          */
5519         stmmac_rx_ipc(priv, priv->hw);
5520
5521         if (priv->sph_cap) {
5522                 bool sph_en = (priv->hw->rx_csum > 0) && priv->sph;
5523                 u32 chan;
5524
5525                 for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
5526                         stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
5527         }
5528
5529         return 0;
5530 }
5531
5532 static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status)
5533 {
5534         struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
5535         enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
5536         enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
5537         bool *hs_enable = &fpe_cfg->hs_enable;
5538
5539         if (status == FPE_EVENT_UNKNOWN || !*hs_enable)
5540                 return;
5541
5542         /* If LP has sent verify mPacket, LP is FPE capable */
5543         if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) {
5544                 if (*lp_state < FPE_STATE_CAPABLE)
5545                         *lp_state = FPE_STATE_CAPABLE;
5546
5547                 /* If user has requested FPE enable, quickly response */
5548                 if (*hs_enable)
5549                         stmmac_fpe_send_mpacket(priv, priv->ioaddr,
5550                                                 MPACKET_RESPONSE);
5551         }
5552
5553         /* If Local has sent verify mPacket, Local is FPE capable */
5554         if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) {
5555                 if (*lo_state < FPE_STATE_CAPABLE)
5556                         *lo_state = FPE_STATE_CAPABLE;
5557         }
5558
5559         /* If LP has sent response mPacket, LP is entering FPE ON */
5560         if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP)
5561                 *lp_state = FPE_STATE_ENTERING_ON;
5562
5563         /* If Local has sent response mPacket, Local is entering FPE ON */
5564         if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP)
5565                 *lo_state = FPE_STATE_ENTERING_ON;
5566
5567         if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) &&
5568             !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) &&
5569             priv->fpe_wq) {
5570                 queue_work(priv->fpe_wq, &priv->fpe_task);
5571         }
5572 }
5573
5574 static void stmmac_common_interrupt(struct stmmac_priv *priv)
5575 {
5576         u32 rx_cnt = priv->plat->rx_queues_to_use;
5577         u32 tx_cnt = priv->plat->tx_queues_to_use;
5578         u32 queues_count;
5579         u32 queue;
5580         bool xmac;
5581
5582         xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
5583         queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
5584
5585         if (priv->irq_wake)
5586                 pm_wakeup_event(priv->device, 0);
5587
5588         if (priv->dma_cap.estsel)
5589                 stmmac_est_irq_status(priv, priv->ioaddr, priv->dev,
5590                                       &priv->xstats, tx_cnt);
5591
5592         if (priv->dma_cap.fpesel) {
5593                 int status = stmmac_fpe_irq_status(priv, priv->ioaddr,
5594                                                    priv->dev);
5595
5596                 stmmac_fpe_event_status(priv, status);
5597         }
5598
5599         /* To handle GMAC own interrupts */
5600         if ((priv->plat->has_gmac) || xmac) {
5601                 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
5602
5603                 if (unlikely(status)) {
5604                         /* For LPI we need to save the tx status */
5605                         if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
5606                                 priv->tx_path_in_lpi_mode = true;
5607                         if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
5608                                 priv->tx_path_in_lpi_mode = false;
5609                 }
5610
5611                 for (queue = 0; queue < queues_count; queue++) {
5612                         status = stmmac_host_mtl_irq_status(priv, priv->hw,
5613                                                             queue);
5614                 }
5615
5616                 /* PCS link status */
5617                 if (priv->hw->pcs) {
5618                         if (priv->xstats.pcs_link)
5619                                 netif_carrier_on(priv->dev);
5620                         else
5621                                 netif_carrier_off(priv->dev);
5622                 }
5623
5624                 stmmac_timestamp_interrupt(priv, priv);
5625         }
5626 }
5627
5628 /**
5629  *  stmmac_interrupt - main ISR
5630  *  @irq: interrupt number.
5631  *  @dev_id: to pass the net device pointer.
5632  *  Description: this is the main driver interrupt service routine.
5633  *  It can call:
5634  *  o DMA service routine (to manage incoming frame reception and transmission
5635  *    status)
5636  *  o Core interrupts to manage: remote wake-up, management counter, LPI
5637  *    interrupts.
5638  */
5639 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
5640 {
5641         struct net_device *dev = (struct net_device *)dev_id;
5642         struct stmmac_priv *priv = netdev_priv(dev);
5643
5644         /* Check if adapter is up */
5645         if (test_bit(STMMAC_DOWN, &priv->state))
5646                 return IRQ_HANDLED;
5647
5648         /* Check if a fatal error happened */
5649         if (stmmac_safety_feat_interrupt(priv))
5650                 return IRQ_HANDLED;
5651
5652         /* To handle Common interrupts */
5653         stmmac_common_interrupt(priv);
5654
5655         /* To handle DMA interrupts */
5656         stmmac_dma_interrupt(priv);
5657
5658         return IRQ_HANDLED;
5659 }
5660
5661 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id)
5662 {
5663         struct net_device *dev = (struct net_device *)dev_id;
5664         struct stmmac_priv *priv = netdev_priv(dev);
5665
5666         if (unlikely(!dev)) {
5667                 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5668                 return IRQ_NONE;
5669         }
5670
5671         /* Check if adapter is up */
5672         if (test_bit(STMMAC_DOWN, &priv->state))
5673                 return IRQ_HANDLED;
5674
5675         /* To handle Common interrupts */
5676         stmmac_common_interrupt(priv);
5677
5678         return IRQ_HANDLED;
5679 }
5680
5681 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id)
5682 {
5683         struct net_device *dev = (struct net_device *)dev_id;
5684         struct stmmac_priv *priv = netdev_priv(dev);
5685
5686         if (unlikely(!dev)) {
5687                 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5688                 return IRQ_NONE;
5689         }
5690
5691         /* Check if adapter is up */
5692         if (test_bit(STMMAC_DOWN, &priv->state))
5693                 return IRQ_HANDLED;
5694
5695         /* Check if a fatal error happened */
5696         stmmac_safety_feat_interrupt(priv);
5697
5698         return IRQ_HANDLED;
5699 }
5700
5701 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data)
5702 {
5703         struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data;
5704         int chan = tx_q->queue_index;
5705         struct stmmac_priv *priv;
5706         int status;
5707
5708         priv = container_of(tx_q, struct stmmac_priv, tx_queue[chan]);
5709
5710         if (unlikely(!data)) {
5711                 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5712                 return IRQ_NONE;
5713         }
5714
5715         /* Check if adapter is up */
5716         if (test_bit(STMMAC_DOWN, &priv->state))
5717                 return IRQ_HANDLED;
5718
5719         status = stmmac_napi_check(priv, chan, DMA_DIR_TX);
5720
5721         if (unlikely(status & tx_hard_error_bump_tc)) {
5722                 /* Try to bump up the dma threshold on this failure */
5723                 stmmac_bump_dma_threshold(priv, chan);
5724         } else if (unlikely(status == tx_hard_error)) {
5725                 stmmac_tx_err(priv, chan);
5726         }
5727
5728         return IRQ_HANDLED;
5729 }
5730
5731 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data)
5732 {
5733         struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data;
5734         int chan = rx_q->queue_index;
5735         struct stmmac_priv *priv;
5736
5737         priv = container_of(rx_q, struct stmmac_priv, rx_queue[chan]);
5738
5739         if (unlikely(!data)) {
5740                 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5741                 return IRQ_NONE;
5742         }
5743
5744         /* Check if adapter is up */
5745         if (test_bit(STMMAC_DOWN, &priv->state))
5746                 return IRQ_HANDLED;
5747
5748         stmmac_napi_check(priv, chan, DMA_DIR_RX);
5749
5750         return IRQ_HANDLED;
5751 }
5752
5753 #ifdef CONFIG_NET_POLL_CONTROLLER
5754 /* Polling receive - used by NETCONSOLE and other diagnostic tools
5755  * to allow network I/O with interrupts disabled.
5756  */
5757 static void stmmac_poll_controller(struct net_device *dev)
5758 {
5759         struct stmmac_priv *priv = netdev_priv(dev);
5760         int i;
5761
5762         /* If adapter is down, do nothing */
5763         if (test_bit(STMMAC_DOWN, &priv->state))
5764                 return;
5765
5766         if (priv->plat->multi_msi_en) {
5767                 for (i = 0; i < priv->plat->rx_queues_to_use; i++)
5768                         stmmac_msi_intr_rx(0, &priv->rx_queue[i]);
5769
5770                 for (i = 0; i < priv->plat->tx_queues_to_use; i++)
5771                         stmmac_msi_intr_tx(0, &priv->tx_queue[i]);
5772         } else {
5773                 disable_irq(dev->irq);
5774                 stmmac_interrupt(dev->irq, dev);
5775                 enable_irq(dev->irq);
5776         }
5777 }
5778 #endif
5779
5780 /**
5781  *  stmmac_ioctl - Entry point for the Ioctl
5782  *  @dev: Device pointer.
5783  *  @rq: An IOCTL specefic structure, that can contain a pointer to
5784  *  a proprietary structure used to pass information to the driver.
5785  *  @cmd: IOCTL command
5786  *  Description:
5787  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
5788  */
5789 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5790 {
5791         struct stmmac_priv *priv = netdev_priv (dev);
5792         int ret = -EOPNOTSUPP;
5793
5794         if (!netif_running(dev))
5795                 return -EINVAL;
5796
5797         switch (cmd) {
5798         case SIOCGMIIPHY:
5799         case SIOCGMIIREG:
5800         case SIOCSMIIREG:
5801                 ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
5802                 break;
5803         case SIOCSHWTSTAMP:
5804                 ret = stmmac_hwtstamp_set(dev, rq);
5805                 break;
5806         case SIOCGHWTSTAMP:
5807                 ret = stmmac_hwtstamp_get(dev, rq);
5808                 break;
5809         default:
5810                 break;
5811         }
5812
5813         return ret;
5814 }
5815
5816 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
5817                                     void *cb_priv)
5818 {
5819         struct stmmac_priv *priv = cb_priv;
5820         int ret = -EOPNOTSUPP;
5821
5822         if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
5823                 return ret;
5824
5825         __stmmac_disable_all_queues(priv);
5826
5827         switch (type) {
5828         case TC_SETUP_CLSU32:
5829                 ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
5830                 break;
5831         case TC_SETUP_CLSFLOWER:
5832                 ret = stmmac_tc_setup_cls(priv, priv, type_data);
5833                 break;
5834         default:
5835                 break;
5836         }
5837
5838         stmmac_enable_all_queues(priv);
5839         return ret;
5840 }
5841
5842 static LIST_HEAD(stmmac_block_cb_list);
5843
5844 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
5845                            void *type_data)
5846 {
5847         struct stmmac_priv *priv = netdev_priv(ndev);
5848
5849         switch (type) {
5850         case TC_SETUP_BLOCK:
5851                 return flow_block_cb_setup_simple(type_data,
5852                                                   &stmmac_block_cb_list,
5853                                                   stmmac_setup_tc_block_cb,
5854                                                   priv, priv, true);
5855         case TC_SETUP_QDISC_CBS:
5856                 return stmmac_tc_setup_cbs(priv, priv, type_data);
5857         case TC_SETUP_QDISC_TAPRIO:
5858                 return stmmac_tc_setup_taprio(priv, priv, type_data);
5859         case TC_SETUP_QDISC_ETF:
5860                 return stmmac_tc_setup_etf(priv, priv, type_data);
5861         default:
5862                 return -EOPNOTSUPP;
5863         }
5864 }
5865
5866 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
5867                                struct net_device *sb_dev)
5868 {
5869         int gso = skb_shinfo(skb)->gso_type;
5870
5871         if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
5872                 /*
5873                  * There is no way to determine the number of TSO/USO
5874                  * capable Queues. Let's use always the Queue 0
5875                  * because if TSO/USO is supported then at least this
5876                  * one will be capable.
5877                  */
5878                 return 0;
5879         }
5880
5881         return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
5882 }
5883
5884 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
5885 {
5886         struct stmmac_priv *priv = netdev_priv(ndev);
5887         int ret = 0;
5888
5889         ret = pm_runtime_get_sync(priv->device);
5890         if (ret < 0) {
5891                 pm_runtime_put_noidle(priv->device);
5892                 return ret;
5893         }
5894
5895         ret = eth_mac_addr(ndev, addr);
5896         if (ret)
5897                 goto set_mac_error;
5898
5899         stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
5900
5901 set_mac_error:
5902         pm_runtime_put(priv->device);
5903
5904         return ret;
5905 }
5906
5907 #ifdef CONFIG_DEBUG_FS
5908 static struct dentry *stmmac_fs_dir;
5909
5910 static void sysfs_display_ring(void *head, int size, int extend_desc,
5911                                struct seq_file *seq, dma_addr_t dma_phy_addr)
5912 {
5913         int i;
5914         struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
5915         struct dma_desc *p = (struct dma_desc *)head;
5916         dma_addr_t dma_addr;
5917
5918         for (i = 0; i < size; i++) {
5919                 if (extend_desc) {
5920                         dma_addr = dma_phy_addr + i * sizeof(*ep);
5921                         seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
5922                                    i, &dma_addr,
5923                                    le32_to_cpu(ep->basic.des0),
5924                                    le32_to_cpu(ep->basic.des1),
5925                                    le32_to_cpu(ep->basic.des2),
5926                                    le32_to_cpu(ep->basic.des3));
5927                         ep++;
5928                 } else {
5929                         dma_addr = dma_phy_addr + i * sizeof(*p);
5930                         seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
5931                                    i, &dma_addr,
5932                                    le32_to_cpu(p->des0), le32_to_cpu(p->des1),
5933                                    le32_to_cpu(p->des2), le32_to_cpu(p->des3));
5934                         p++;
5935                 }
5936                 seq_printf(seq, "\n");
5937         }
5938 }
5939
5940 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
5941 {
5942         struct net_device *dev = seq->private;
5943         struct stmmac_priv *priv = netdev_priv(dev);
5944         u32 rx_count = priv->plat->rx_queues_to_use;
5945         u32 tx_count = priv->plat->tx_queues_to_use;
5946         u32 queue;
5947
5948         if ((dev->flags & IFF_UP) == 0)
5949                 return 0;
5950
5951         for (queue = 0; queue < rx_count; queue++) {
5952                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
5953
5954                 seq_printf(seq, "RX Queue %d:\n", queue);
5955
5956                 if (priv->extend_desc) {
5957                         seq_printf(seq, "Extended descriptor ring:\n");
5958                         sysfs_display_ring((void *)rx_q->dma_erx,
5959                                            priv->dma_rx_size, 1, seq, rx_q->dma_rx_phy);
5960                 } else {
5961                         seq_printf(seq, "Descriptor ring:\n");
5962                         sysfs_display_ring((void *)rx_q->dma_rx,
5963                                            priv->dma_rx_size, 0, seq, rx_q->dma_rx_phy);
5964                 }
5965         }
5966
5967         for (queue = 0; queue < tx_count; queue++) {
5968                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
5969
5970                 seq_printf(seq, "TX Queue %d:\n", queue);
5971
5972                 if (priv->extend_desc) {
5973                         seq_printf(seq, "Extended descriptor ring:\n");
5974                         sysfs_display_ring((void *)tx_q->dma_etx,
5975                                            priv->dma_tx_size, 1, seq, tx_q->dma_tx_phy);
5976                 } else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
5977                         seq_printf(seq, "Descriptor ring:\n");
5978                         sysfs_display_ring((void *)tx_q->dma_tx,
5979                                            priv->dma_tx_size, 0, seq, tx_q->dma_tx_phy);
5980                 }
5981         }
5982
5983         return 0;
5984 }
5985 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
5986
5987 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
5988 {
5989         struct net_device *dev = seq->private;
5990         struct stmmac_priv *priv = netdev_priv(dev);
5991
5992         if (!priv->hw_cap_support) {
5993                 seq_printf(seq, "DMA HW features not supported\n");
5994                 return 0;
5995         }
5996
5997         seq_printf(seq, "==============================\n");
5998         seq_printf(seq, "\tDMA HW features\n");
5999         seq_printf(seq, "==============================\n");
6000
6001         seq_printf(seq, "\t10/100 Mbps: %s\n",
6002                    (priv->dma_cap.mbps_10_100) ? "Y" : "N");
6003         seq_printf(seq, "\t1000 Mbps: %s\n",
6004                    (priv->dma_cap.mbps_1000) ? "Y" : "N");
6005         seq_printf(seq, "\tHalf duplex: %s\n",
6006                    (priv->dma_cap.half_duplex) ? "Y" : "N");
6007         seq_printf(seq, "\tHash Filter: %s\n",
6008                    (priv->dma_cap.hash_filter) ? "Y" : "N");
6009         seq_printf(seq, "\tMultiple MAC address registers: %s\n",
6010                    (priv->dma_cap.multi_addr) ? "Y" : "N");
6011         seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
6012                    (priv->dma_cap.pcs) ? "Y" : "N");
6013         seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
6014                    (priv->dma_cap.sma_mdio) ? "Y" : "N");
6015         seq_printf(seq, "\tPMT Remote wake up: %s\n",
6016                    (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
6017         seq_printf(seq, "\tPMT Magic Frame: %s\n",
6018                    (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
6019         seq_printf(seq, "\tRMON module: %s\n",
6020                    (priv->dma_cap.rmon) ? "Y" : "N");
6021         seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
6022                    (priv->dma_cap.time_stamp) ? "Y" : "N");
6023         seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
6024                    (priv->dma_cap.atime_stamp) ? "Y" : "N");
6025         seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
6026                    (priv->dma_cap.eee) ? "Y" : "N");
6027         seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
6028         seq_printf(seq, "\tChecksum Offload in TX: %s\n",
6029                    (priv->dma_cap.tx_coe) ? "Y" : "N");
6030         if (priv->synopsys_id >= DWMAC_CORE_4_00) {
6031                 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
6032                            (priv->dma_cap.rx_coe) ? "Y" : "N");
6033         } else {
6034                 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
6035                            (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
6036                 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
6037                            (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
6038         }
6039         seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
6040                    (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
6041         seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
6042                    priv->dma_cap.number_rx_channel);
6043         seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
6044                    priv->dma_cap.number_tx_channel);
6045         seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
6046                    priv->dma_cap.number_rx_queues);
6047         seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
6048                    priv->dma_cap.number_tx_queues);
6049         seq_printf(seq, "\tEnhanced descriptors: %s\n",
6050                    (priv->dma_cap.enh_desc) ? "Y" : "N");
6051         seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
6052         seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
6053         seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
6054         seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
6055         seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
6056                    priv->dma_cap.pps_out_num);
6057         seq_printf(seq, "\tSafety Features: %s\n",
6058                    priv->dma_cap.asp ? "Y" : "N");
6059         seq_printf(seq, "\tFlexible RX Parser: %s\n",
6060                    priv->dma_cap.frpsel ? "Y" : "N");
6061         seq_printf(seq, "\tEnhanced Addressing: %d\n",
6062                    priv->dma_cap.addr64);
6063         seq_printf(seq, "\tReceive Side Scaling: %s\n",
6064                    priv->dma_cap.rssen ? "Y" : "N");
6065         seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
6066                    priv->dma_cap.vlhash ? "Y" : "N");
6067         seq_printf(seq, "\tSplit Header: %s\n",
6068                    priv->dma_cap.sphen ? "Y" : "N");
6069         seq_printf(seq, "\tVLAN TX Insertion: %s\n",
6070                    priv->dma_cap.vlins ? "Y" : "N");
6071         seq_printf(seq, "\tDouble VLAN: %s\n",
6072                    priv->dma_cap.dvlan ? "Y" : "N");
6073         seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
6074                    priv->dma_cap.l3l4fnum);
6075         seq_printf(seq, "\tARP Offloading: %s\n",
6076                    priv->dma_cap.arpoffsel ? "Y" : "N");
6077         seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
6078                    priv->dma_cap.estsel ? "Y" : "N");
6079         seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
6080                    priv->dma_cap.fpesel ? "Y" : "N");
6081         seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
6082                    priv->dma_cap.tbssel ? "Y" : "N");
6083         return 0;
6084 }
6085 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
6086
6087 /* Use network device events to rename debugfs file entries.
6088  */
6089 static int stmmac_device_event(struct notifier_block *unused,
6090                                unsigned long event, void *ptr)
6091 {
6092         struct net_device *dev = netdev_notifier_info_to_dev(ptr);
6093         struct stmmac_priv *priv = netdev_priv(dev);
6094
6095         if (dev->netdev_ops != &stmmac_netdev_ops)
6096                 goto done;
6097
6098         switch (event) {
6099         case NETDEV_CHANGENAME:
6100                 if (priv->dbgfs_dir)
6101                         priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
6102                                                          priv->dbgfs_dir,
6103                                                          stmmac_fs_dir,
6104                                                          dev->name);
6105                 break;
6106         }
6107 done:
6108         return NOTIFY_DONE;
6109 }
6110
6111 static struct notifier_block stmmac_notifier = {
6112         .notifier_call = stmmac_device_event,
6113 };
6114
6115 static void stmmac_init_fs(struct net_device *dev)
6116 {
6117         struct stmmac_priv *priv = netdev_priv(dev);
6118
6119         rtnl_lock();
6120
6121         /* Create per netdev entries */
6122         priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
6123
6124         /* Entry to report DMA RX/TX rings */
6125         debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
6126                             &stmmac_rings_status_fops);
6127
6128         /* Entry to report the DMA HW features */
6129         debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
6130                             &stmmac_dma_cap_fops);
6131
6132         rtnl_unlock();
6133 }
6134
6135 static void stmmac_exit_fs(struct net_device *dev)
6136 {
6137         struct stmmac_priv *priv = netdev_priv(dev);
6138
6139         debugfs_remove_recursive(priv->dbgfs_dir);
6140 }
6141 #endif /* CONFIG_DEBUG_FS */
6142
6143 static u32 stmmac_vid_crc32_le(__le16 vid_le)
6144 {
6145         unsigned char *data = (unsigned char *)&vid_le;
6146         unsigned char data_byte = 0;
6147         u32 crc = ~0x0;
6148         u32 temp = 0;
6149         int i, bits;
6150
6151         bits = get_bitmask_order(VLAN_VID_MASK);
6152         for (i = 0; i < bits; i++) {
6153                 if ((i % 8) == 0)
6154                         data_byte = data[i / 8];
6155
6156                 temp = ((crc & 1) ^ data_byte) & 1;
6157                 crc >>= 1;
6158                 data_byte >>= 1;
6159
6160                 if (temp)
6161                         crc ^= 0xedb88320;
6162         }
6163
6164         return crc;
6165 }
6166
6167 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
6168 {
6169         u32 crc, hash = 0;
6170         __le16 pmatch = 0;
6171         int count = 0;
6172         u16 vid = 0;
6173
6174         for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
6175                 __le16 vid_le = cpu_to_le16(vid);
6176                 crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
6177                 hash |= (1 << crc);
6178                 count++;
6179         }
6180
6181         if (!priv->dma_cap.vlhash) {
6182                 if (count > 2) /* VID = 0 always passes filter */
6183                         return -EOPNOTSUPP;
6184
6185                 pmatch = cpu_to_le16(vid);
6186                 hash = 0;
6187         }
6188
6189         return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
6190 }
6191
6192 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
6193 {
6194         struct stmmac_priv *priv = netdev_priv(ndev);
6195         bool is_double = false;
6196         int ret;
6197
6198         if (be16_to_cpu(proto) == ETH_P_8021AD)
6199                 is_double = true;
6200
6201         set_bit(vid, priv->active_vlans);
6202         ret = stmmac_vlan_update(priv, is_double);
6203         if (ret) {
6204                 clear_bit(vid, priv->active_vlans);
6205                 return ret;
6206         }
6207
6208         if (priv->hw->num_vlan) {
6209                 ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6210                 if (ret)
6211                         return ret;
6212         }
6213
6214         return 0;
6215 }
6216
6217 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
6218 {
6219         struct stmmac_priv *priv = netdev_priv(ndev);
6220         bool is_double = false;
6221         int ret;
6222
6223         ret = pm_runtime_get_sync(priv->device);
6224         if (ret < 0) {
6225                 pm_runtime_put_noidle(priv->device);
6226                 return ret;
6227         }
6228
6229         if (be16_to_cpu(proto) == ETH_P_8021AD)
6230                 is_double = true;
6231
6232         clear_bit(vid, priv->active_vlans);
6233
6234         if (priv->hw->num_vlan) {
6235                 ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6236                 if (ret)
6237                         goto del_vlan_error;
6238         }
6239
6240         ret = stmmac_vlan_update(priv, is_double);
6241
6242 del_vlan_error:
6243         pm_runtime_put(priv->device);
6244
6245         return ret;
6246 }
6247
6248 static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6249 {
6250         struct stmmac_priv *priv = netdev_priv(dev);
6251
6252         switch (bpf->command) {
6253         case XDP_SETUP_PROG:
6254                 return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack);
6255         case XDP_SETUP_XSK_POOL:
6256                 return stmmac_xdp_setup_pool(priv, bpf->xsk.pool,
6257                                              bpf->xsk.queue_id);
6258         default:
6259                 return -EOPNOTSUPP;
6260         }
6261 }
6262
6263 static int stmmac_xdp_xmit(struct net_device *dev, int num_frames,
6264                            struct xdp_frame **frames, u32 flags)
6265 {
6266         struct stmmac_priv *priv = netdev_priv(dev);
6267         int cpu = smp_processor_id();
6268         struct netdev_queue *nq;
6269         int i, nxmit = 0;
6270         int queue;
6271
6272         if (unlikely(test_bit(STMMAC_DOWN, &priv->state)))
6273                 return -ENETDOWN;
6274
6275         if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6276                 return -EINVAL;
6277
6278         queue = stmmac_xdp_get_tx_queue(priv, cpu);
6279         nq = netdev_get_tx_queue(priv->dev, queue);
6280
6281         __netif_tx_lock(nq, cpu);
6282         /* Avoids TX time-out as we are sharing with slow path */
6283         txq_trans_cond_update(nq);
6284
6285         for (i = 0; i < num_frames; i++) {
6286                 int res;
6287
6288                 res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true);
6289                 if (res == STMMAC_XDP_CONSUMED)
6290                         break;
6291
6292                 nxmit++;
6293         }
6294
6295         if (flags & XDP_XMIT_FLUSH) {
6296                 stmmac_flush_tx_descriptors(priv, queue);
6297                 stmmac_tx_timer_arm(priv, queue);
6298         }
6299
6300         __netif_tx_unlock(nq);
6301
6302         return nxmit;
6303 }
6304
6305 void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue)
6306 {
6307         struct stmmac_channel *ch = &priv->channel[queue];
6308         unsigned long flags;
6309
6310         spin_lock_irqsave(&ch->lock, flags);
6311         stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6312         spin_unlock_irqrestore(&ch->lock, flags);
6313
6314         stmmac_stop_rx_dma(priv, queue);
6315         __free_dma_rx_desc_resources(priv, queue);
6316 }
6317
6318 void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue)
6319 {
6320         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
6321         struct stmmac_channel *ch = &priv->channel[queue];
6322         unsigned long flags;
6323         u32 buf_size;
6324         int ret;
6325
6326         ret = __alloc_dma_rx_desc_resources(priv, queue);
6327         if (ret) {
6328                 netdev_err(priv->dev, "Failed to alloc RX desc.\n");
6329                 return;
6330         }
6331
6332         ret = __init_dma_rx_desc_rings(priv, queue, GFP_KERNEL);
6333         if (ret) {
6334                 __free_dma_rx_desc_resources(priv, queue);
6335                 netdev_err(priv->dev, "Failed to init RX desc.\n");
6336                 return;
6337         }
6338
6339         stmmac_clear_rx_descriptors(priv, queue);
6340
6341         stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6342                             rx_q->dma_rx_phy, rx_q->queue_index);
6343
6344         rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num *
6345                              sizeof(struct dma_desc));
6346         stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6347                                rx_q->rx_tail_addr, rx_q->queue_index);
6348
6349         if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6350                 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6351                 stmmac_set_dma_bfsize(priv, priv->ioaddr,
6352                                       buf_size,
6353                                       rx_q->queue_index);
6354         } else {
6355                 stmmac_set_dma_bfsize(priv, priv->ioaddr,
6356                                       priv->dma_buf_sz,
6357                                       rx_q->queue_index);
6358         }
6359
6360         stmmac_start_rx_dma(priv, queue);
6361
6362         spin_lock_irqsave(&ch->lock, flags);
6363         stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6364         spin_unlock_irqrestore(&ch->lock, flags);
6365 }
6366
6367 void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue)
6368 {
6369         struct stmmac_channel *ch = &priv->channel[queue];
6370         unsigned long flags;
6371
6372         spin_lock_irqsave(&ch->lock, flags);
6373         stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6374         spin_unlock_irqrestore(&ch->lock, flags);
6375
6376         stmmac_stop_tx_dma(priv, queue);
6377         __free_dma_tx_desc_resources(priv, queue);
6378 }
6379
6380 void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue)
6381 {
6382         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
6383         struct stmmac_channel *ch = &priv->channel[queue];
6384         unsigned long flags;
6385         int ret;
6386
6387         ret = __alloc_dma_tx_desc_resources(priv, queue);
6388         if (ret) {
6389                 netdev_err(priv->dev, "Failed to alloc TX desc.\n");
6390                 return;
6391         }
6392
6393         ret = __init_dma_tx_desc_rings(priv, queue);
6394         if (ret) {
6395                 __free_dma_tx_desc_resources(priv, queue);
6396                 netdev_err(priv->dev, "Failed to init TX desc.\n");
6397                 return;
6398         }
6399
6400         stmmac_clear_tx_descriptors(priv, queue);
6401
6402         stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6403                             tx_q->dma_tx_phy, tx_q->queue_index);
6404
6405         if (tx_q->tbs & STMMAC_TBS_AVAIL)
6406                 stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index);
6407
6408         tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6409         stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6410                                tx_q->tx_tail_addr, tx_q->queue_index);
6411
6412         stmmac_start_tx_dma(priv, queue);
6413
6414         spin_lock_irqsave(&ch->lock, flags);
6415         stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6416         spin_unlock_irqrestore(&ch->lock, flags);
6417 }
6418
6419 void stmmac_xdp_release(struct net_device *dev)
6420 {
6421         struct stmmac_priv *priv = netdev_priv(dev);
6422         u32 chan;
6423
6424         /* Disable NAPI process */
6425         stmmac_disable_all_queues(priv);
6426
6427         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6428                 hrtimer_cancel(&priv->tx_queue[chan].txtimer);
6429
6430         /* Free the IRQ lines */
6431         stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
6432
6433         /* Stop TX/RX DMA channels */
6434         stmmac_stop_all_dma(priv);
6435
6436         /* Release and free the Rx/Tx resources */
6437         free_dma_desc_resources(priv);
6438
6439         /* Disable the MAC Rx/Tx */
6440         stmmac_mac_set(priv, priv->ioaddr, false);
6441
6442         /* set trans_start so we don't get spurious
6443          * watchdogs during reset
6444          */
6445         netif_trans_update(dev);
6446         netif_carrier_off(dev);
6447 }
6448
6449 int stmmac_xdp_open(struct net_device *dev)
6450 {
6451         struct stmmac_priv *priv = netdev_priv(dev);
6452         u32 rx_cnt = priv->plat->rx_queues_to_use;
6453         u32 tx_cnt = priv->plat->tx_queues_to_use;
6454         u32 dma_csr_ch = max(rx_cnt, tx_cnt);
6455         struct stmmac_rx_queue *rx_q;
6456         struct stmmac_tx_queue *tx_q;
6457         u32 buf_size;
6458         bool sph_en;
6459         u32 chan;
6460         int ret;
6461
6462         ret = alloc_dma_desc_resources(priv);
6463         if (ret < 0) {
6464                 netdev_err(dev, "%s: DMA descriptors allocation failed\n",
6465                            __func__);
6466                 goto dma_desc_error;
6467         }
6468
6469         ret = init_dma_desc_rings(dev, GFP_KERNEL);
6470         if (ret < 0) {
6471                 netdev_err(dev, "%s: DMA descriptors initialization failed\n",
6472                            __func__);
6473                 goto init_error;
6474         }
6475
6476         /* DMA CSR Channel configuration */
6477         for (chan = 0; chan < dma_csr_ch; chan++) {
6478                 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
6479                 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
6480         }
6481
6482         /* Adjust Split header */
6483         sph_en = (priv->hw->rx_csum > 0) && priv->sph;
6484
6485         /* DMA RX Channel Configuration */
6486         for (chan = 0; chan < rx_cnt; chan++) {
6487                 rx_q = &priv->rx_queue[chan];
6488
6489                 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6490                                     rx_q->dma_rx_phy, chan);
6491
6492                 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
6493                                      (rx_q->buf_alloc_num *
6494                                       sizeof(struct dma_desc));
6495                 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6496                                        rx_q->rx_tail_addr, chan);
6497
6498                 if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6499                         buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6500                         stmmac_set_dma_bfsize(priv, priv->ioaddr,
6501                                               buf_size,
6502                                               rx_q->queue_index);
6503                 } else {
6504                         stmmac_set_dma_bfsize(priv, priv->ioaddr,
6505                                               priv->dma_buf_sz,
6506                                               rx_q->queue_index);
6507                 }
6508
6509                 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
6510         }
6511
6512         /* DMA TX Channel Configuration */
6513         for (chan = 0; chan < tx_cnt; chan++) {
6514                 tx_q = &priv->tx_queue[chan];
6515
6516                 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6517                                     tx_q->dma_tx_phy, chan);
6518
6519                 tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6520                 stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6521                                        tx_q->tx_tail_addr, chan);
6522
6523                 hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6524                 tx_q->txtimer.function = stmmac_tx_timer;
6525         }
6526
6527         /* Enable the MAC Rx/Tx */
6528         stmmac_mac_set(priv, priv->ioaddr, true);
6529
6530         /* Start Rx & Tx DMA Channels */
6531         stmmac_start_all_dma(priv);
6532
6533         ret = stmmac_request_irq(dev);
6534         if (ret)
6535                 goto irq_error;
6536
6537         /* Enable NAPI process*/
6538         stmmac_enable_all_queues(priv);
6539         netif_carrier_on(dev);
6540         netif_tx_start_all_queues(dev);
6541         stmmac_enable_all_dma_irq(priv);
6542
6543         return 0;
6544
6545 irq_error:
6546         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6547                 hrtimer_cancel(&priv->tx_queue[chan].txtimer);
6548
6549         stmmac_hw_teardown(dev);
6550 init_error:
6551         free_dma_desc_resources(priv);
6552 dma_desc_error:
6553         return ret;
6554 }
6555
6556 int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags)
6557 {
6558         struct stmmac_priv *priv = netdev_priv(dev);
6559         struct stmmac_rx_queue *rx_q;
6560         struct stmmac_tx_queue *tx_q;
6561         struct stmmac_channel *ch;
6562
6563         if (test_bit(STMMAC_DOWN, &priv->state) ||
6564             !netif_carrier_ok(priv->dev))
6565                 return -ENETDOWN;
6566
6567         if (!stmmac_xdp_is_enabled(priv))
6568                 return -ENXIO;
6569
6570         if (queue >= priv->plat->rx_queues_to_use ||
6571             queue >= priv->plat->tx_queues_to_use)
6572                 return -EINVAL;
6573
6574         rx_q = &priv->rx_queue[queue];
6575         tx_q = &priv->tx_queue[queue];
6576         ch = &priv->channel[queue];
6577
6578         if (!rx_q->xsk_pool && !tx_q->xsk_pool)
6579                 return -ENXIO;
6580
6581         if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) {
6582                 /* EQoS does not have per-DMA channel SW interrupt,
6583                  * so we schedule RX Napi straight-away.
6584                  */
6585                 if (likely(napi_schedule_prep(&ch->rxtx_napi)))
6586                         __napi_schedule(&ch->rxtx_napi);
6587         }
6588
6589         return 0;
6590 }
6591
6592 static const struct net_device_ops stmmac_netdev_ops = {
6593         .ndo_open = stmmac_open,
6594         .ndo_start_xmit = stmmac_xmit,
6595         .ndo_stop = stmmac_release,
6596         .ndo_change_mtu = stmmac_change_mtu,
6597         .ndo_fix_features = stmmac_fix_features,
6598         .ndo_set_features = stmmac_set_features,
6599         .ndo_set_rx_mode = stmmac_set_rx_mode,
6600         .ndo_tx_timeout = stmmac_tx_timeout,
6601         .ndo_eth_ioctl = stmmac_ioctl,
6602         .ndo_setup_tc = stmmac_setup_tc,
6603         .ndo_select_queue = stmmac_select_queue,
6604 #ifdef CONFIG_NET_POLL_CONTROLLER
6605         .ndo_poll_controller = stmmac_poll_controller,
6606 #endif
6607         .ndo_set_mac_address = stmmac_set_mac_address,
6608         .ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
6609         .ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
6610         .ndo_bpf = stmmac_bpf,
6611         .ndo_xdp_xmit = stmmac_xdp_xmit,
6612         .ndo_xsk_wakeup = stmmac_xsk_wakeup,
6613 };
6614
6615 static void stmmac_reset_subtask(struct stmmac_priv *priv)
6616 {
6617         if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
6618                 return;
6619         if (test_bit(STMMAC_DOWN, &priv->state))
6620                 return;
6621
6622         netdev_err(priv->dev, "Reset adapter.\n");
6623
6624         rtnl_lock();
6625         netif_trans_update(priv->dev);
6626         while (test_and_set_bit(STMMAC_RESETING, &priv->state))
6627                 usleep_range(1000, 2000);
6628
6629         set_bit(STMMAC_DOWN, &priv->state);
6630         dev_close(priv->dev);
6631         dev_open(priv->dev, NULL);
6632         clear_bit(STMMAC_DOWN, &priv->state);
6633         clear_bit(STMMAC_RESETING, &priv->state);
6634         rtnl_unlock();
6635 }
6636
6637 static void stmmac_service_task(struct work_struct *work)
6638 {
6639         struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6640                         service_task);
6641
6642         stmmac_reset_subtask(priv);
6643         clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
6644 }
6645
6646 /**
6647  *  stmmac_hw_init - Init the MAC device
6648  *  @priv: driver private structure
6649  *  Description: this function is to configure the MAC device according to
6650  *  some platform parameters or the HW capability register. It prepares the
6651  *  driver to use either ring or chain modes and to setup either enhanced or
6652  *  normal descriptors.
6653  */
6654 static int stmmac_hw_init(struct stmmac_priv *priv)
6655 {
6656         int ret;
6657
6658         /* dwmac-sun8i only work in chain mode */
6659         if (priv->plat->has_sun8i)
6660                 chain_mode = 1;
6661         priv->chain_mode = chain_mode;
6662
6663         /* Initialize HW Interface */
6664         ret = stmmac_hwif_init(priv);
6665         if (ret)
6666                 return ret;
6667
6668         /* Get the HW capability (new GMAC newer than 3.50a) */
6669         priv->hw_cap_support = stmmac_get_hw_features(priv);
6670         if (priv->hw_cap_support) {
6671                 dev_info(priv->device, "DMA HW capability register supported\n");
6672
6673                 /* We can override some gmac/dma configuration fields: e.g.
6674                  * enh_desc, tx_coe (e.g. that are passed through the
6675                  * platform) with the values from the HW capability
6676                  * register (if supported).
6677                  */
6678                 priv->plat->enh_desc = priv->dma_cap.enh_desc;
6679                 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up &&
6680                                 !priv->plat->use_phy_wol;
6681                 priv->hw->pmt = priv->plat->pmt;
6682                 if (priv->dma_cap.hash_tb_sz) {
6683                         priv->hw->multicast_filter_bins =
6684                                         (BIT(priv->dma_cap.hash_tb_sz) << 5);
6685                         priv->hw->mcast_bits_log2 =
6686                                         ilog2(priv->hw->multicast_filter_bins);
6687                 }
6688
6689                 /* TXCOE doesn't work in thresh DMA mode */
6690                 if (priv->plat->force_thresh_dma_mode)
6691                         priv->plat->tx_coe = 0;
6692                 else
6693                         priv->plat->tx_coe = priv->dma_cap.tx_coe;
6694
6695                 /* In case of GMAC4 rx_coe is from HW cap register. */
6696                 priv->plat->rx_coe = priv->dma_cap.rx_coe;
6697
6698                 if (priv->dma_cap.rx_coe_type2)
6699                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
6700                 else if (priv->dma_cap.rx_coe_type1)
6701                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
6702
6703         } else {
6704                 dev_info(priv->device, "No HW DMA feature register supported\n");
6705         }
6706
6707         if (priv->plat->rx_coe) {
6708                 priv->hw->rx_csum = priv->plat->rx_coe;
6709                 dev_info(priv->device, "RX Checksum Offload Engine supported\n");
6710                 if (priv->synopsys_id < DWMAC_CORE_4_00)
6711                         dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
6712         }
6713         if (priv->plat->tx_coe)
6714                 dev_info(priv->device, "TX Checksum insertion supported\n");
6715
6716         if (priv->plat->pmt) {
6717                 dev_info(priv->device, "Wake-Up On Lan supported\n");
6718                 device_set_wakeup_capable(priv->device, 1);
6719         }
6720
6721         if (priv->dma_cap.tsoen)
6722                 dev_info(priv->device, "TSO supported\n");
6723
6724         priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en;
6725         priv->hw->vlan_fail_q = priv->plat->vlan_fail_q;
6726
6727         /* Run HW quirks, if any */
6728         if (priv->hwif_quirks) {
6729                 ret = priv->hwif_quirks(priv);
6730                 if (ret)
6731                         return ret;
6732         }
6733
6734         /* Rx Watchdog is available in the COREs newer than the 3.40.
6735          * In some case, for example on bugged HW this feature
6736          * has to be disable and this can be done by passing the
6737          * riwt_off field from the platform.
6738          */
6739         if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
6740             (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
6741                 priv->use_riwt = 1;
6742                 dev_info(priv->device,
6743                          "Enable RX Mitigation via HW Watchdog Timer\n");
6744         }
6745
6746         return 0;
6747 }
6748
6749 static void stmmac_napi_add(struct net_device *dev)
6750 {
6751         struct stmmac_priv *priv = netdev_priv(dev);
6752         u32 queue, maxq;
6753
6754         maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6755
6756         for (queue = 0; queue < maxq; queue++) {
6757                 struct stmmac_channel *ch = &priv->channel[queue];
6758
6759                 ch->priv_data = priv;
6760                 ch->index = queue;
6761                 spin_lock_init(&ch->lock);
6762
6763                 if (queue < priv->plat->rx_queues_to_use) {
6764                         netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx,
6765                                        NAPI_POLL_WEIGHT);
6766                 }
6767                 if (queue < priv->plat->tx_queues_to_use) {
6768                         netif_tx_napi_add(dev, &ch->tx_napi,
6769                                           stmmac_napi_poll_tx,
6770                                           NAPI_POLL_WEIGHT);
6771                 }
6772                 if (queue < priv->plat->rx_queues_to_use &&
6773                     queue < priv->plat->tx_queues_to_use) {
6774                         netif_napi_add(dev, &ch->rxtx_napi,
6775                                        stmmac_napi_poll_rxtx,
6776                                        NAPI_POLL_WEIGHT);
6777                 }
6778         }
6779 }
6780
6781 static void stmmac_napi_del(struct net_device *dev)
6782 {
6783         struct stmmac_priv *priv = netdev_priv(dev);
6784         u32 queue, maxq;
6785
6786         maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6787
6788         for (queue = 0; queue < maxq; queue++) {
6789                 struct stmmac_channel *ch = &priv->channel[queue];
6790
6791                 if (queue < priv->plat->rx_queues_to_use)
6792                         netif_napi_del(&ch->rx_napi);
6793                 if (queue < priv->plat->tx_queues_to_use)
6794                         netif_napi_del(&ch->tx_napi);
6795                 if (queue < priv->plat->rx_queues_to_use &&
6796                     queue < priv->plat->tx_queues_to_use) {
6797                         netif_napi_del(&ch->rxtx_napi);
6798                 }
6799         }
6800 }
6801
6802 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt)
6803 {
6804         struct stmmac_priv *priv = netdev_priv(dev);
6805         int ret = 0;
6806
6807         if (netif_running(dev))
6808                 stmmac_release(dev);
6809
6810         stmmac_napi_del(dev);
6811
6812         priv->plat->rx_queues_to_use = rx_cnt;
6813         priv->plat->tx_queues_to_use = tx_cnt;
6814
6815         stmmac_napi_add(dev);
6816
6817         if (netif_running(dev))
6818                 ret = stmmac_open(dev);
6819
6820         return ret;
6821 }
6822
6823 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size)
6824 {
6825         struct stmmac_priv *priv = netdev_priv(dev);
6826         int ret = 0;
6827
6828         if (netif_running(dev))
6829                 stmmac_release(dev);
6830
6831         priv->dma_rx_size = rx_size;
6832         priv->dma_tx_size = tx_size;
6833
6834         if (netif_running(dev))
6835                 ret = stmmac_open(dev);
6836
6837         return ret;
6838 }
6839
6840 #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n"
6841 static void stmmac_fpe_lp_task(struct work_struct *work)
6842 {
6843         struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6844                                                 fpe_task);
6845         struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
6846         enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
6847         enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
6848         bool *hs_enable = &fpe_cfg->hs_enable;
6849         bool *enable = &fpe_cfg->enable;
6850         int retries = 20;
6851
6852         while (retries-- > 0) {
6853                 /* Bail out immediately if FPE handshake is OFF */
6854                 if (*lo_state == FPE_STATE_OFF || !*hs_enable)
6855                         break;
6856
6857                 if (*lo_state == FPE_STATE_ENTERING_ON &&
6858                     *lp_state == FPE_STATE_ENTERING_ON) {
6859                         stmmac_fpe_configure(priv, priv->ioaddr,
6860                                              priv->plat->tx_queues_to_use,
6861                                              priv->plat->rx_queues_to_use,
6862                                              *enable);
6863
6864                         netdev_info(priv->dev, "configured FPE\n");
6865
6866                         *lo_state = FPE_STATE_ON;
6867                         *lp_state = FPE_STATE_ON;
6868                         netdev_info(priv->dev, "!!! BOTH FPE stations ON\n");
6869                         break;
6870                 }
6871
6872                 if ((*lo_state == FPE_STATE_CAPABLE ||
6873                      *lo_state == FPE_STATE_ENTERING_ON) &&
6874                      *lp_state != FPE_STATE_ON) {
6875                         netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT,
6876                                     *lo_state, *lp_state);
6877                         stmmac_fpe_send_mpacket(priv, priv->ioaddr,
6878                                                 MPACKET_VERIFY);
6879                 }
6880                 /* Sleep then retry */
6881                 msleep(500);
6882         }
6883
6884         clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
6885 }
6886
6887 void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable)
6888 {
6889         if (priv->plat->fpe_cfg->hs_enable != enable) {
6890                 if (enable) {
6891                         stmmac_fpe_send_mpacket(priv, priv->ioaddr,
6892                                                 MPACKET_VERIFY);
6893                 } else {
6894                         priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF;
6895                         priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF;
6896                 }
6897
6898                 priv->plat->fpe_cfg->hs_enable = enable;
6899         }
6900 }
6901
6902 /**
6903  * stmmac_dvr_probe
6904  * @device: device pointer
6905  * @plat_dat: platform data pointer
6906  * @res: stmmac resource pointer
6907  * Description: this is the main probe function used to
6908  * call the alloc_etherdev, allocate the priv structure.
6909  * Return:
6910  * returns 0 on success, otherwise errno.
6911  */
6912 int stmmac_dvr_probe(struct device *device,
6913                      struct plat_stmmacenet_data *plat_dat,
6914                      struct stmmac_resources *res)
6915 {
6916         struct net_device *ndev = NULL;
6917         struct stmmac_priv *priv;
6918         u32 rxq;
6919         int i, ret = 0;
6920
6921         ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
6922                                        MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
6923         if (!ndev)
6924                 return -ENOMEM;
6925
6926         SET_NETDEV_DEV(ndev, device);
6927
6928         priv = netdev_priv(ndev);
6929         priv->device = device;
6930         priv->dev = ndev;
6931
6932         stmmac_set_ethtool_ops(ndev);
6933         priv->pause = pause;
6934         priv->plat = plat_dat;
6935         priv->ioaddr = res->addr;
6936         priv->dev->base_addr = (unsigned long)res->addr;
6937         priv->plat->dma_cfg->multi_msi_en = priv->plat->multi_msi_en;
6938
6939         priv->dev->irq = res->irq;
6940         priv->wol_irq = res->wol_irq;
6941         priv->lpi_irq = res->lpi_irq;
6942         priv->sfty_ce_irq = res->sfty_ce_irq;
6943         priv->sfty_ue_irq = res->sfty_ue_irq;
6944         for (i = 0; i < MTL_MAX_RX_QUEUES; i++)
6945                 priv->rx_irq[i] = res->rx_irq[i];
6946         for (i = 0; i < MTL_MAX_TX_QUEUES; i++)
6947                 priv->tx_irq[i] = res->tx_irq[i];
6948
6949         if (!is_zero_ether_addr(res->mac))
6950                 eth_hw_addr_set(priv->dev, res->mac);
6951
6952         dev_set_drvdata(device, priv->dev);
6953
6954         /* Verify driver arguments */
6955         stmmac_verify_args();
6956
6957         priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL);
6958         if (!priv->af_xdp_zc_qps)
6959                 return -ENOMEM;
6960
6961         /* Allocate workqueue */
6962         priv->wq = create_singlethread_workqueue("stmmac_wq");
6963         if (!priv->wq) {
6964                 dev_err(priv->device, "failed to create workqueue\n");
6965                 return -ENOMEM;
6966         }
6967
6968         INIT_WORK(&priv->service_task, stmmac_service_task);
6969
6970         /* Initialize Link Partner FPE workqueue */
6971         INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task);
6972
6973         /* Override with kernel parameters if supplied XXX CRS XXX
6974          * this needs to have multiple instances
6975          */
6976         if ((phyaddr >= 0) && (phyaddr <= 31))
6977                 priv->plat->phy_addr = phyaddr;
6978
6979         if (priv->plat->stmmac_rst) {
6980                 ret = reset_control_assert(priv->plat->stmmac_rst);
6981                 reset_control_deassert(priv->plat->stmmac_rst);
6982                 /* Some reset controllers have only reset callback instead of
6983                  * assert + deassert callbacks pair.
6984                  */
6985                 if (ret == -ENOTSUPP)
6986                         reset_control_reset(priv->plat->stmmac_rst);
6987         }
6988
6989         ret = reset_control_deassert(priv->plat->stmmac_ahb_rst);
6990         if (ret == -ENOTSUPP)
6991                 dev_err(priv->device, "unable to bring out of ahb reset: %pe\n",
6992                         ERR_PTR(ret));
6993
6994         /* Init MAC and get the capabilities */
6995         ret = stmmac_hw_init(priv);
6996         if (ret)
6997                 goto error_hw_init;
6998
6999         /* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch.
7000          */
7001         if (priv->synopsys_id < DWMAC_CORE_5_20)
7002                 priv->plat->dma_cfg->dche = false;
7003
7004         stmmac_check_ether_addr(priv);
7005
7006         ndev->netdev_ops = &stmmac_netdev_ops;
7007
7008         ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
7009                             NETIF_F_RXCSUM;
7010
7011         ret = stmmac_tc_init(priv, priv);
7012         if (!ret) {
7013                 ndev->hw_features |= NETIF_F_HW_TC;
7014         }
7015
7016         if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
7017                 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
7018                 if (priv->plat->has_gmac4)
7019                         ndev->hw_features |= NETIF_F_GSO_UDP_L4;
7020                 priv->tso = true;
7021                 dev_info(priv->device, "TSO feature enabled\n");
7022         }
7023
7024         if (priv->dma_cap.sphen) {
7025                 ndev->hw_features |= NETIF_F_GRO;
7026                 priv->sph_cap = true;
7027                 priv->sph = priv->sph_cap;
7028                 dev_info(priv->device, "SPH feature enabled\n");
7029         }
7030
7031         /* The current IP register MAC_HW_Feature1[ADDR64] only define
7032          * 32/40/64 bit width, but some SOC support others like i.MX8MP
7033          * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64].
7034          * So overwrite dma_cap.addr64 according to HW real design.
7035          */
7036         if (priv->plat->addr64)
7037                 priv->dma_cap.addr64 = priv->plat->addr64;
7038
7039         if (priv->dma_cap.addr64) {
7040                 ret = dma_set_mask_and_coherent(device,
7041                                 DMA_BIT_MASK(priv->dma_cap.addr64));
7042                 if (!ret) {
7043                         dev_info(priv->device, "Using %d bits DMA width\n",
7044                                  priv->dma_cap.addr64);
7045
7046                         /*
7047                          * If more than 32 bits can be addressed, make sure to
7048                          * enable enhanced addressing mode.
7049                          */
7050                         if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
7051                                 priv->plat->dma_cfg->eame = true;
7052                 } else {
7053                         ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
7054                         if (ret) {
7055                                 dev_err(priv->device, "Failed to set DMA Mask\n");
7056                                 goto error_hw_init;
7057                         }
7058
7059                         priv->dma_cap.addr64 = 32;
7060                 }
7061         }
7062
7063         ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
7064         ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
7065 #ifdef STMMAC_VLAN_TAG_USED
7066         /* Both mac100 and gmac support receive VLAN tag detection */
7067         ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
7068         if (priv->dma_cap.vlhash) {
7069                 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7070                 ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
7071         }
7072         if (priv->dma_cap.vlins) {
7073                 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
7074                 if (priv->dma_cap.dvlan)
7075                         ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
7076         }
7077 #endif
7078         priv->msg_enable = netif_msg_init(debug, default_msg_level);
7079
7080         /* Initialize RSS */
7081         rxq = priv->plat->rx_queues_to_use;
7082         netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
7083         for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
7084                 priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
7085
7086         if (priv->dma_cap.rssen && priv->plat->rss_en)
7087                 ndev->features |= NETIF_F_RXHASH;
7088
7089         /* MTU range: 46 - hw-specific max */
7090         ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
7091         if (priv->plat->has_xgmac)
7092                 ndev->max_mtu = XGMAC_JUMBO_LEN;
7093         else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
7094                 ndev->max_mtu = JUMBO_LEN;
7095         else
7096                 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
7097         /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
7098          * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
7099          */
7100         if ((priv->plat->maxmtu < ndev->max_mtu) &&
7101             (priv->plat->maxmtu >= ndev->min_mtu))
7102                 ndev->max_mtu = priv->plat->maxmtu;
7103         else if (priv->plat->maxmtu < ndev->min_mtu)
7104                 dev_warn(priv->device,
7105                          "%s: warning: maxmtu having invalid value (%d)\n",
7106                          __func__, priv->plat->maxmtu);
7107
7108         if (flow_ctrl)
7109                 priv->flow_ctrl = FLOW_AUTO;    /* RX/TX pause on */
7110
7111         /* Setup channels NAPI */
7112         stmmac_napi_add(ndev);
7113
7114         mutex_init(&priv->lock);
7115
7116         /* If a specific clk_csr value is passed from the platform
7117          * this means that the CSR Clock Range selection cannot be
7118          * changed at run-time and it is fixed. Viceversa the driver'll try to
7119          * set the MDC clock dynamically according to the csr actual
7120          * clock input.
7121          */
7122         if (priv->plat->clk_csr >= 0)
7123                 priv->clk_csr = priv->plat->clk_csr;
7124         else
7125                 stmmac_clk_csr_set(priv);
7126
7127         stmmac_check_pcs_mode(priv);
7128
7129         pm_runtime_get_noresume(device);
7130         pm_runtime_set_active(device);
7131         if (!pm_runtime_enabled(device))
7132                 pm_runtime_enable(device);
7133
7134         if (priv->hw->pcs != STMMAC_PCS_TBI &&
7135             priv->hw->pcs != STMMAC_PCS_RTBI) {
7136                 /* MDIO bus Registration */
7137                 ret = stmmac_mdio_register(ndev);
7138                 if (ret < 0) {
7139                         dev_err(priv->device,
7140                                 "%s: MDIO bus (id: %d) registration failed",
7141                                 __func__, priv->plat->bus_id);
7142                         goto error_mdio_register;
7143                 }
7144         }
7145
7146         if (priv->plat->speed_mode_2500)
7147                 priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv);
7148
7149         if (priv->plat->mdio_bus_data && priv->plat->mdio_bus_data->has_xpcs) {
7150                 ret = stmmac_xpcs_setup(priv->mii);
7151                 if (ret)
7152                         goto error_xpcs_setup;
7153         }
7154
7155         ret = stmmac_phy_setup(priv);
7156         if (ret) {
7157                 netdev_err(ndev, "failed to setup phy (%d)\n", ret);
7158                 goto error_phy_setup;
7159         }
7160
7161         ret = register_netdev(ndev);
7162         if (ret) {
7163                 dev_err(priv->device, "%s: ERROR %i registering the device\n",
7164                         __func__, ret);
7165                 goto error_netdev_register;
7166         }
7167
7168         if (priv->plat->serdes_powerup) {
7169                 ret = priv->plat->serdes_powerup(ndev,
7170                                                  priv->plat->bsp_priv);
7171
7172                 if (ret < 0)
7173                         goto error_serdes_powerup;
7174         }
7175
7176 #ifdef CONFIG_DEBUG_FS
7177         stmmac_init_fs(ndev);
7178 #endif
7179
7180         if (priv->plat->dump_debug_regs)
7181                 priv->plat->dump_debug_regs(priv->plat->bsp_priv);
7182
7183         /* Let pm_runtime_put() disable the clocks.
7184          * If CONFIG_PM is not enabled, the clocks will stay powered.
7185          */
7186         pm_runtime_put(device);
7187
7188         return ret;
7189
7190 error_serdes_powerup:
7191         unregister_netdev(ndev);
7192 error_netdev_register:
7193         phylink_destroy(priv->phylink);
7194 error_xpcs_setup:
7195 error_phy_setup:
7196         if (priv->hw->pcs != STMMAC_PCS_TBI &&
7197             priv->hw->pcs != STMMAC_PCS_RTBI)
7198                 stmmac_mdio_unregister(ndev);
7199 error_mdio_register:
7200         stmmac_napi_del(ndev);
7201 error_hw_init:
7202         destroy_workqueue(priv->wq);
7203         bitmap_free(priv->af_xdp_zc_qps);
7204
7205         return ret;
7206 }
7207 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
7208
7209 /**
7210  * stmmac_dvr_remove
7211  * @dev: device pointer
7212  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
7213  * changes the link status, releases the DMA descriptor rings.
7214  */
7215 int stmmac_dvr_remove(struct device *dev)
7216 {
7217         struct net_device *ndev = dev_get_drvdata(dev);
7218         struct stmmac_priv *priv = netdev_priv(ndev);
7219
7220         netdev_info(priv->dev, "%s: removing driver", __func__);
7221
7222         pm_runtime_get_sync(dev);
7223         pm_runtime_disable(dev);
7224         pm_runtime_put_noidle(dev);
7225
7226         stmmac_stop_all_dma(priv);
7227         stmmac_mac_set(priv, priv->ioaddr, false);
7228         netif_carrier_off(ndev);
7229         unregister_netdev(ndev);
7230
7231         /* Serdes power down needs to happen after VLAN filter
7232          * is deleted that is triggered by unregister_netdev().
7233          */
7234         if (priv->plat->serdes_powerdown)
7235                 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7236
7237 #ifdef CONFIG_DEBUG_FS
7238         stmmac_exit_fs(ndev);
7239 #endif
7240         phylink_destroy(priv->phylink);
7241         if (priv->plat->stmmac_rst)
7242                 reset_control_assert(priv->plat->stmmac_rst);
7243         reset_control_assert(priv->plat->stmmac_ahb_rst);
7244         if (priv->hw->pcs != STMMAC_PCS_TBI &&
7245             priv->hw->pcs != STMMAC_PCS_RTBI)
7246                 stmmac_mdio_unregister(ndev);
7247         destroy_workqueue(priv->wq);
7248         mutex_destroy(&priv->lock);
7249         bitmap_free(priv->af_xdp_zc_qps);
7250
7251         return 0;
7252 }
7253 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
7254
7255 /**
7256  * stmmac_suspend - suspend callback
7257  * @dev: device pointer
7258  * Description: this is the function to suspend the device and it is called
7259  * by the platform driver to stop the network queue, release the resources,
7260  * program the PMT register (for WoL), clean and release driver resources.
7261  */
7262 int stmmac_suspend(struct device *dev)
7263 {
7264         struct net_device *ndev = dev_get_drvdata(dev);
7265         struct stmmac_priv *priv = netdev_priv(ndev);
7266         u32 chan;
7267
7268         if (!ndev || !netif_running(ndev))
7269                 return 0;
7270
7271         mutex_lock(&priv->lock);
7272
7273         netif_device_detach(ndev);
7274
7275         stmmac_disable_all_queues(priv);
7276
7277         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
7278                 hrtimer_cancel(&priv->tx_queue[chan].txtimer);
7279
7280         if (priv->eee_enabled) {
7281                 priv->tx_path_in_lpi_mode = false;
7282                 del_timer_sync(&priv->eee_ctrl_timer);
7283         }
7284
7285         /* Stop TX/RX DMA */
7286         stmmac_stop_all_dma(priv);
7287
7288         if (priv->plat->serdes_powerdown)
7289                 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7290
7291         /* Enable Power down mode by programming the PMT regs */
7292         if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7293                 stmmac_pmt(priv, priv->hw, priv->wolopts);
7294                 priv->irq_wake = 1;
7295         } else {
7296                 stmmac_mac_set(priv, priv->ioaddr, false);
7297                 pinctrl_pm_select_sleep_state(priv->device);
7298         }
7299
7300         mutex_unlock(&priv->lock);
7301
7302         rtnl_lock();
7303         if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7304                 phylink_suspend(priv->phylink, true);
7305         } else {
7306                 if (device_may_wakeup(priv->device))
7307                         phylink_speed_down(priv->phylink, false);
7308                 phylink_suspend(priv->phylink, false);
7309         }
7310         rtnl_unlock();
7311
7312         if (priv->dma_cap.fpesel) {
7313                 /* Disable FPE */
7314                 stmmac_fpe_configure(priv, priv->ioaddr,
7315                                      priv->plat->tx_queues_to_use,
7316                                      priv->plat->rx_queues_to_use, false);
7317
7318                 stmmac_fpe_handshake(priv, false);
7319                 stmmac_fpe_stop_wq(priv);
7320         }
7321
7322         priv->speed = SPEED_UNKNOWN;
7323         return 0;
7324 }
7325 EXPORT_SYMBOL_GPL(stmmac_suspend);
7326
7327 /**
7328  * stmmac_reset_queues_param - reset queue parameters
7329  * @priv: device pointer
7330  */
7331 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
7332 {
7333         u32 rx_cnt = priv->plat->rx_queues_to_use;
7334         u32 tx_cnt = priv->plat->tx_queues_to_use;
7335         u32 queue;
7336
7337         for (queue = 0; queue < rx_cnt; queue++) {
7338                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
7339
7340                 rx_q->cur_rx = 0;
7341                 rx_q->dirty_rx = 0;
7342         }
7343
7344         for (queue = 0; queue < tx_cnt; queue++) {
7345                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
7346
7347                 tx_q->cur_tx = 0;
7348                 tx_q->dirty_tx = 0;
7349                 tx_q->mss = 0;
7350
7351                 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
7352         }
7353 }
7354
7355 /**
7356  * stmmac_resume - resume callback
7357  * @dev: device pointer
7358  * Description: when resume this function is invoked to setup the DMA and CORE
7359  * in a usable state.
7360  */
7361 int stmmac_resume(struct device *dev)
7362 {
7363         struct net_device *ndev = dev_get_drvdata(dev);
7364         struct stmmac_priv *priv = netdev_priv(ndev);
7365         int ret;
7366
7367         if (!netif_running(ndev))
7368                 return 0;
7369
7370         /* Power Down bit, into the PM register, is cleared
7371          * automatically as soon as a magic packet or a Wake-up frame
7372          * is received. Anyway, it's better to manually clear
7373          * this bit because it can generate problems while resuming
7374          * from another devices (e.g. serial console).
7375          */
7376         if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7377                 mutex_lock(&priv->lock);
7378                 stmmac_pmt(priv, priv->hw, 0);
7379                 mutex_unlock(&priv->lock);
7380                 priv->irq_wake = 0;
7381         } else {
7382                 pinctrl_pm_select_default_state(priv->device);
7383                 /* reset the phy so that it's ready */
7384                 if (priv->mii)
7385                         stmmac_mdio_reset(priv->mii);
7386         }
7387
7388         if (priv->plat->serdes_powerup) {
7389                 ret = priv->plat->serdes_powerup(ndev,
7390                                                  priv->plat->bsp_priv);
7391
7392                 if (ret < 0)
7393                         return ret;
7394         }
7395
7396         rtnl_lock();
7397         if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7398                 phylink_resume(priv->phylink);
7399         } else {
7400                 phylink_resume(priv->phylink);
7401                 if (device_may_wakeup(priv->device))
7402                         phylink_speed_up(priv->phylink);
7403         }
7404         rtnl_unlock();
7405
7406         rtnl_lock();
7407         mutex_lock(&priv->lock);
7408
7409         stmmac_reset_queues_param(priv);
7410
7411         stmmac_free_tx_skbufs(priv);
7412         stmmac_clear_descriptors(priv);
7413
7414         stmmac_hw_setup(ndev, false);
7415         stmmac_init_coalesce(priv);
7416         stmmac_set_rx_mode(ndev);
7417
7418         stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
7419
7420         stmmac_enable_all_queues(priv);
7421         stmmac_enable_all_dma_irq(priv);
7422
7423         mutex_unlock(&priv->lock);
7424         rtnl_unlock();
7425
7426         netif_device_attach(ndev);
7427
7428         return 0;
7429 }
7430 EXPORT_SYMBOL_GPL(stmmac_resume);
7431
7432 #ifndef MODULE
7433 static int __init stmmac_cmdline_opt(char *str)
7434 {
7435         char *opt;
7436
7437         if (!str || !*str)
7438                 return 1;
7439         while ((opt = strsep(&str, ",")) != NULL) {
7440                 if (!strncmp(opt, "debug:", 6)) {
7441                         if (kstrtoint(opt + 6, 0, &debug))
7442                                 goto err;
7443                 } else if (!strncmp(opt, "phyaddr:", 8)) {
7444                         if (kstrtoint(opt + 8, 0, &phyaddr))
7445                                 goto err;
7446                 } else if (!strncmp(opt, "buf_sz:", 7)) {
7447                         if (kstrtoint(opt + 7, 0, &buf_sz))
7448                                 goto err;
7449                 } else if (!strncmp(opt, "tc:", 3)) {
7450                         if (kstrtoint(opt + 3, 0, &tc))
7451                                 goto err;
7452                 } else if (!strncmp(opt, "watchdog:", 9)) {
7453                         if (kstrtoint(opt + 9, 0, &watchdog))
7454                                 goto err;
7455                 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
7456                         if (kstrtoint(opt + 10, 0, &flow_ctrl))
7457                                 goto err;
7458                 } else if (!strncmp(opt, "pause:", 6)) {
7459                         if (kstrtoint(opt + 6, 0, &pause))
7460                                 goto err;
7461                 } else if (!strncmp(opt, "eee_timer:", 10)) {
7462                         if (kstrtoint(opt + 10, 0, &eee_timer))
7463                                 goto err;
7464                 } else if (!strncmp(opt, "chain_mode:", 11)) {
7465                         if (kstrtoint(opt + 11, 0, &chain_mode))
7466                                 goto err;
7467                 }
7468         }
7469         return 1;
7470
7471 err:
7472         pr_err("%s: ERROR broken module parameter conversion", __func__);
7473         return 1;
7474 }
7475
7476 __setup("stmmaceth=", stmmac_cmdline_opt);
7477 #endif /* MODULE */
7478
7479 static int __init stmmac_init(void)
7480 {
7481 #ifdef CONFIG_DEBUG_FS
7482         /* Create debugfs main directory if it doesn't exist yet */
7483         if (!stmmac_fs_dir)
7484                 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
7485         register_netdevice_notifier(&stmmac_notifier);
7486 #endif
7487
7488         return 0;
7489 }
7490
7491 static void __exit stmmac_exit(void)
7492 {
7493 #ifdef CONFIG_DEBUG_FS
7494         unregister_netdevice_notifier(&stmmac_notifier);
7495         debugfs_remove_recursive(stmmac_fs_dir);
7496 #endif
7497 }
7498
7499 module_init(stmmac_init)
7500 module_exit(stmmac_exit)
7501
7502 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
7503 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
7504 MODULE_LICENSE("GPL");