1a5b8dab5e9b65e0ebf634fc6d9691952c148acc
[linux-block.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5
6         Copyright(C) 2007-2011 STMicroelectronics Ltd
7
8
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10
11   Documentation available at:
12         http://www.stlinux.com
13   Support available at:
14         https://bugzilla.stlinux.com/
15 *******************************************************************************/
16
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/prefetch.h>
33 #include <linux/pinctrl/consumer.h>
34 #ifdef CONFIG_DEBUG_FS
35 #include <linux/debugfs.h>
36 #include <linux/seq_file.h>
37 #endif /* CONFIG_DEBUG_FS */
38 #include <linux/net_tstamp.h>
39 #include <linux/phylink.h>
40 #include <linux/udp.h>
41 #include <linux/bpf_trace.h>
42 #include <net/pkt_cls.h>
43 #include <net/xdp_sock_drv.h>
44 #include "stmmac_ptp.h"
45 #include "stmmac.h"
46 #include "stmmac_xdp.h"
47 #include <linux/reset.h>
48 #include <linux/of_mdio.h>
49 #include "dwmac1000.h"
50 #include "dwxgmac2.h"
51 #include "hwif.h"
52
53 /* As long as the interface is active, we keep the timestamping counter enabled
54  * with fine resolution and binary rollover. This avoid non-monotonic behavior
55  * (clock jumps) when changing timestamping settings at runtime.
56  */
57 #define STMMAC_HWTS_ACTIVE      (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | \
58                                  PTP_TCR_TSCTRLSSR)
59
60 #define STMMAC_ALIGN(x)         ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
61 #define TSO_MAX_BUFF_SIZE       (SZ_16K - 1)
62
63 /* Module parameters */
64 #define TX_TIMEO        5000
65 static int watchdog = TX_TIMEO;
66 module_param(watchdog, int, 0644);
67 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
68
69 static int debug = -1;
70 module_param(debug, int, 0644);
71 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
72
73 static int phyaddr = -1;
74 module_param(phyaddr, int, 0444);
75 MODULE_PARM_DESC(phyaddr, "Physical device address");
76
77 #define STMMAC_TX_THRESH(x)     ((x)->dma_conf.dma_tx_size / 4)
78 #define STMMAC_RX_THRESH(x)     ((x)->dma_conf.dma_rx_size / 4)
79
80 /* Limit to make sure XDP TX and slow path can coexist */
81 #define STMMAC_XSK_TX_BUDGET_MAX        256
82 #define STMMAC_TX_XSK_AVAIL             16
83 #define STMMAC_RX_FILL_BATCH            16
84
85 #define STMMAC_XDP_PASS         0
86 #define STMMAC_XDP_CONSUMED     BIT(0)
87 #define STMMAC_XDP_TX           BIT(1)
88 #define STMMAC_XDP_REDIRECT     BIT(2)
89
90 static int flow_ctrl = FLOW_AUTO;
91 module_param(flow_ctrl, int, 0644);
92 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
93
94 static int pause = PAUSE_TIME;
95 module_param(pause, int, 0644);
96 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
97
98 #define TC_DEFAULT 64
99 static int tc = TC_DEFAULT;
100 module_param(tc, int, 0644);
101 MODULE_PARM_DESC(tc, "DMA threshold control value");
102
103 #define DEFAULT_BUFSIZE 1536
104 static int buf_sz = DEFAULT_BUFSIZE;
105 module_param(buf_sz, int, 0644);
106 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
107
108 #define STMMAC_RX_COPYBREAK     256
109
110 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
111                                       NETIF_MSG_LINK | NETIF_MSG_IFUP |
112                                       NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
113
114 #define STMMAC_DEFAULT_LPI_TIMER        1000
115 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
116 module_param(eee_timer, int, 0644);
117 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
118 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x))
119
120 /* By default the driver will use the ring mode to manage tx and rx descriptors,
121  * but allow user to force to use the chain instead of the ring
122  */
123 static unsigned int chain_mode;
124 module_param(chain_mode, int, 0444);
125 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
126
127 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
128 /* For MSI interrupts handling */
129 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id);
130 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id);
131 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data);
132 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data);
133 static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue);
134 static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue);
135 static void stmmac_reset_queues_param(struct stmmac_priv *priv);
136 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue);
137 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue);
138 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
139                                           u32 rxmode, u32 chan);
140
141 #ifdef CONFIG_DEBUG_FS
142 static const struct net_device_ops stmmac_netdev_ops;
143 static void stmmac_init_fs(struct net_device *dev);
144 static void stmmac_exit_fs(struct net_device *dev);
145 #endif
146
147 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC))
148
149 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled)
150 {
151         int ret = 0;
152
153         if (enabled) {
154                 ret = clk_prepare_enable(priv->plat->stmmac_clk);
155                 if (ret)
156                         return ret;
157                 ret = clk_prepare_enable(priv->plat->pclk);
158                 if (ret) {
159                         clk_disable_unprepare(priv->plat->stmmac_clk);
160                         return ret;
161                 }
162                 if (priv->plat->clks_config) {
163                         ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled);
164                         if (ret) {
165                                 clk_disable_unprepare(priv->plat->stmmac_clk);
166                                 clk_disable_unprepare(priv->plat->pclk);
167                                 return ret;
168                         }
169                 }
170         } else {
171                 clk_disable_unprepare(priv->plat->stmmac_clk);
172                 clk_disable_unprepare(priv->plat->pclk);
173                 if (priv->plat->clks_config)
174                         priv->plat->clks_config(priv->plat->bsp_priv, enabled);
175         }
176
177         return ret;
178 }
179 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config);
180
181 /**
182  * stmmac_verify_args - verify the driver parameters.
183  * Description: it checks the driver parameters and set a default in case of
184  * errors.
185  */
186 static void stmmac_verify_args(void)
187 {
188         if (unlikely(watchdog < 0))
189                 watchdog = TX_TIMEO;
190         if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
191                 buf_sz = DEFAULT_BUFSIZE;
192         if (unlikely(flow_ctrl > 1))
193                 flow_ctrl = FLOW_AUTO;
194         else if (likely(flow_ctrl < 0))
195                 flow_ctrl = FLOW_OFF;
196         if (unlikely((pause < 0) || (pause > 0xffff)))
197                 pause = PAUSE_TIME;
198         if (eee_timer < 0)
199                 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
200 }
201
202 static void __stmmac_disable_all_queues(struct stmmac_priv *priv)
203 {
204         u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
205         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
206         u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
207         u32 queue;
208
209         for (queue = 0; queue < maxq; queue++) {
210                 struct stmmac_channel *ch = &priv->channel[queue];
211
212                 if (stmmac_xdp_is_enabled(priv) &&
213                     test_bit(queue, priv->af_xdp_zc_qps)) {
214                         napi_disable(&ch->rxtx_napi);
215                         continue;
216                 }
217
218                 if (queue < rx_queues_cnt)
219                         napi_disable(&ch->rx_napi);
220                 if (queue < tx_queues_cnt)
221                         napi_disable(&ch->tx_napi);
222         }
223 }
224
225 /**
226  * stmmac_disable_all_queues - Disable all queues
227  * @priv: driver private structure
228  */
229 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
230 {
231         u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
232         struct stmmac_rx_queue *rx_q;
233         u32 queue;
234
235         /* synchronize_rcu() needed for pending XDP buffers to drain */
236         for (queue = 0; queue < rx_queues_cnt; queue++) {
237                 rx_q = &priv->dma_conf.rx_queue[queue];
238                 if (rx_q->xsk_pool) {
239                         synchronize_rcu();
240                         break;
241                 }
242         }
243
244         __stmmac_disable_all_queues(priv);
245 }
246
247 /**
248  * stmmac_enable_all_queues - Enable all queues
249  * @priv: driver private structure
250  */
251 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
252 {
253         u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
254         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
255         u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
256         u32 queue;
257
258         for (queue = 0; queue < maxq; queue++) {
259                 struct stmmac_channel *ch = &priv->channel[queue];
260
261                 if (stmmac_xdp_is_enabled(priv) &&
262                     test_bit(queue, priv->af_xdp_zc_qps)) {
263                         napi_enable(&ch->rxtx_napi);
264                         continue;
265                 }
266
267                 if (queue < rx_queues_cnt)
268                         napi_enable(&ch->rx_napi);
269                 if (queue < tx_queues_cnt)
270                         napi_enable(&ch->tx_napi);
271         }
272 }
273
274 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
275 {
276         if (!test_bit(STMMAC_DOWN, &priv->state) &&
277             !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
278                 queue_work(priv->wq, &priv->service_task);
279 }
280
281 static void stmmac_global_err(struct stmmac_priv *priv)
282 {
283         netif_carrier_off(priv->dev);
284         set_bit(STMMAC_RESET_REQUESTED, &priv->state);
285         stmmac_service_event_schedule(priv);
286 }
287
288 /**
289  * stmmac_clk_csr_set - dynamically set the MDC clock
290  * @priv: driver private structure
291  * Description: this is to dynamically set the MDC clock according to the csr
292  * clock input.
293  * Note:
294  *      If a specific clk_csr value is passed from the platform
295  *      this means that the CSR Clock Range selection cannot be
296  *      changed at run-time and it is fixed (as reported in the driver
297  *      documentation). Viceversa the driver will try to set the MDC
298  *      clock dynamically according to the actual clock input.
299  */
300 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
301 {
302         u32 clk_rate;
303
304         clk_rate = clk_get_rate(priv->plat->stmmac_clk);
305
306         /* Platform provided default clk_csr would be assumed valid
307          * for all other cases except for the below mentioned ones.
308          * For values higher than the IEEE 802.3 specified frequency
309          * we can not estimate the proper divider as it is not known
310          * the frequency of clk_csr_i. So we do not change the default
311          * divider.
312          */
313         if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
314                 if (clk_rate < CSR_F_35M)
315                         priv->clk_csr = STMMAC_CSR_20_35M;
316                 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
317                         priv->clk_csr = STMMAC_CSR_35_60M;
318                 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
319                         priv->clk_csr = STMMAC_CSR_60_100M;
320                 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
321                         priv->clk_csr = STMMAC_CSR_100_150M;
322                 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
323                         priv->clk_csr = STMMAC_CSR_150_250M;
324                 else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M))
325                         priv->clk_csr = STMMAC_CSR_250_300M;
326         }
327
328         if (priv->plat->has_sun8i) {
329                 if (clk_rate > 160000000)
330                         priv->clk_csr = 0x03;
331                 else if (clk_rate > 80000000)
332                         priv->clk_csr = 0x02;
333                 else if (clk_rate > 40000000)
334                         priv->clk_csr = 0x01;
335                 else
336                         priv->clk_csr = 0;
337         }
338
339         if (priv->plat->has_xgmac) {
340                 if (clk_rate > 400000000)
341                         priv->clk_csr = 0x5;
342                 else if (clk_rate > 350000000)
343                         priv->clk_csr = 0x4;
344                 else if (clk_rate > 300000000)
345                         priv->clk_csr = 0x3;
346                 else if (clk_rate > 250000000)
347                         priv->clk_csr = 0x2;
348                 else if (clk_rate > 150000000)
349                         priv->clk_csr = 0x1;
350                 else
351                         priv->clk_csr = 0x0;
352         }
353 }
354
355 static void print_pkt(unsigned char *buf, int len)
356 {
357         pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
358         print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
359 }
360
361 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
362 {
363         struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
364         u32 avail;
365
366         if (tx_q->dirty_tx > tx_q->cur_tx)
367                 avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
368         else
369                 avail = priv->dma_conf.dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1;
370
371         return avail;
372 }
373
374 /**
375  * stmmac_rx_dirty - Get RX queue dirty
376  * @priv: driver private structure
377  * @queue: RX queue index
378  */
379 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
380 {
381         struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
382         u32 dirty;
383
384         if (rx_q->dirty_rx <= rx_q->cur_rx)
385                 dirty = rx_q->cur_rx - rx_q->dirty_rx;
386         else
387                 dirty = priv->dma_conf.dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx;
388
389         return dirty;
390 }
391
392 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en)
393 {
394         int tx_lpi_timer;
395
396         /* Clear/set the SW EEE timer flag based on LPI ET enablement */
397         priv->eee_sw_timer_en = en ? 0 : 1;
398         tx_lpi_timer  = en ? priv->tx_lpi_timer : 0;
399         stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer);
400 }
401
402 /**
403  * stmmac_enable_eee_mode - check and enter in LPI mode
404  * @priv: driver private structure
405  * Description: this function is to verify and enter in LPI mode in case of
406  * EEE.
407  */
408 static int stmmac_enable_eee_mode(struct stmmac_priv *priv)
409 {
410         u32 tx_cnt = priv->plat->tx_queues_to_use;
411         u32 queue;
412
413         /* check if all TX queues have the work finished */
414         for (queue = 0; queue < tx_cnt; queue++) {
415                 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
416
417                 if (tx_q->dirty_tx != tx_q->cur_tx)
418                         return -EBUSY; /* still unfinished work */
419         }
420
421         /* Check and enter in LPI mode */
422         if (!priv->tx_path_in_lpi_mode)
423                 stmmac_set_eee_mode(priv, priv->hw,
424                                 priv->plat->en_tx_lpi_clockgating);
425         return 0;
426 }
427
428 /**
429  * stmmac_disable_eee_mode - disable and exit from LPI mode
430  * @priv: driver private structure
431  * Description: this function is to exit and disable EEE in case of
432  * LPI state is true. This is called by the xmit.
433  */
434 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
435 {
436         if (!priv->eee_sw_timer_en) {
437                 stmmac_lpi_entry_timer_config(priv, 0);
438                 return;
439         }
440
441         stmmac_reset_eee_mode(priv, priv->hw);
442         del_timer_sync(&priv->eee_ctrl_timer);
443         priv->tx_path_in_lpi_mode = false;
444 }
445
446 /**
447  * stmmac_eee_ctrl_timer - EEE TX SW timer.
448  * @t:  timer_list struct containing private info
449  * Description:
450  *  if there is no data transfer and if we are not in LPI state,
451  *  then MAC Transmitter can be moved to LPI state.
452  */
453 static void stmmac_eee_ctrl_timer(struct timer_list *t)
454 {
455         struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
456
457         if (stmmac_enable_eee_mode(priv))
458                 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
459 }
460
461 /**
462  * stmmac_eee_init - init EEE
463  * @priv: driver private structure
464  * Description:
465  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
466  *  can also manage EEE, this function enable the LPI state and start related
467  *  timer.
468  */
469 bool stmmac_eee_init(struct stmmac_priv *priv)
470 {
471         int eee_tw_timer = priv->eee_tw_timer;
472
473         /* Using PCS we cannot dial with the phy registers at this stage
474          * so we do not support extra feature like EEE.
475          */
476         if (priv->hw->pcs == STMMAC_PCS_TBI ||
477             priv->hw->pcs == STMMAC_PCS_RTBI)
478                 return false;
479
480         /* Check if MAC core supports the EEE feature. */
481         if (!priv->dma_cap.eee)
482                 return false;
483
484         mutex_lock(&priv->lock);
485
486         /* Check if it needs to be deactivated */
487         if (!priv->eee_active) {
488                 if (priv->eee_enabled) {
489                         netdev_dbg(priv->dev, "disable EEE\n");
490                         stmmac_lpi_entry_timer_config(priv, 0);
491                         del_timer_sync(&priv->eee_ctrl_timer);
492                         stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer);
493                         if (priv->hw->xpcs)
494                                 xpcs_config_eee(priv->hw->xpcs,
495                                                 priv->plat->mult_fact_100ns,
496                                                 false);
497                 }
498                 mutex_unlock(&priv->lock);
499                 return false;
500         }
501
502         if (priv->eee_active && !priv->eee_enabled) {
503                 timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
504                 stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
505                                      eee_tw_timer);
506                 if (priv->hw->xpcs)
507                         xpcs_config_eee(priv->hw->xpcs,
508                                         priv->plat->mult_fact_100ns,
509                                         true);
510         }
511
512         if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) {
513                 del_timer_sync(&priv->eee_ctrl_timer);
514                 priv->tx_path_in_lpi_mode = false;
515                 stmmac_lpi_entry_timer_config(priv, 1);
516         } else {
517                 stmmac_lpi_entry_timer_config(priv, 0);
518                 mod_timer(&priv->eee_ctrl_timer,
519                           STMMAC_LPI_T(priv->tx_lpi_timer));
520         }
521
522         mutex_unlock(&priv->lock);
523         netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
524         return true;
525 }
526
527 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
528  * @priv: driver private structure
529  * @p : descriptor pointer
530  * @skb : the socket buffer
531  * Description :
532  * This function will read timestamp from the descriptor & pass it to stack.
533  * and also perform some sanity checks.
534  */
535 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
536                                    struct dma_desc *p, struct sk_buff *skb)
537 {
538         struct skb_shared_hwtstamps shhwtstamp;
539         bool found = false;
540         u64 ns = 0;
541
542         if (!priv->hwts_tx_en)
543                 return;
544
545         /* exit if skb doesn't support hw tstamp */
546         if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
547                 return;
548
549         /* check tx tstamp status */
550         if (stmmac_get_tx_timestamp_status(priv, p)) {
551                 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
552                 found = true;
553         } else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
554                 found = true;
555         }
556
557         if (found) {
558                 ns -= priv->plat->cdc_error_adj;
559
560                 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
561                 shhwtstamp.hwtstamp = ns_to_ktime(ns);
562
563                 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
564                 /* pass tstamp to stack */
565                 skb_tstamp_tx(skb, &shhwtstamp);
566         }
567 }
568
569 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
570  * @priv: driver private structure
571  * @p : descriptor pointer
572  * @np : next descriptor pointer
573  * @skb : the socket buffer
574  * Description :
575  * This function will read received packet's timestamp from the descriptor
576  * and pass it to stack. It also perform some sanity checks.
577  */
578 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
579                                    struct dma_desc *np, struct sk_buff *skb)
580 {
581         struct skb_shared_hwtstamps *shhwtstamp = NULL;
582         struct dma_desc *desc = p;
583         u64 ns = 0;
584
585         if (!priv->hwts_rx_en)
586                 return;
587         /* For GMAC4, the valid timestamp is from CTX next desc. */
588         if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
589                 desc = np;
590
591         /* Check if timestamp is available */
592         if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
593                 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
594
595                 ns -= priv->plat->cdc_error_adj;
596
597                 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
598                 shhwtstamp = skb_hwtstamps(skb);
599                 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
600                 shhwtstamp->hwtstamp = ns_to_ktime(ns);
601         } else  {
602                 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
603         }
604 }
605
606 /**
607  *  stmmac_hwtstamp_set - control hardware timestamping.
608  *  @dev: device pointer.
609  *  @ifr: An IOCTL specific structure, that can contain a pointer to
610  *  a proprietary structure used to pass information to the driver.
611  *  Description:
612  *  This function configures the MAC to enable/disable both outgoing(TX)
613  *  and incoming(RX) packets time stamping based on user input.
614  *  Return Value:
615  *  0 on success and an appropriate -ve integer on failure.
616  */
617 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
618 {
619         struct stmmac_priv *priv = netdev_priv(dev);
620         struct hwtstamp_config config;
621         u32 ptp_v2 = 0;
622         u32 tstamp_all = 0;
623         u32 ptp_over_ipv4_udp = 0;
624         u32 ptp_over_ipv6_udp = 0;
625         u32 ptp_over_ethernet = 0;
626         u32 snap_type_sel = 0;
627         u32 ts_master_en = 0;
628         u32 ts_event_en = 0;
629
630         if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
631                 netdev_alert(priv->dev, "No support for HW time stamping\n");
632                 priv->hwts_tx_en = 0;
633                 priv->hwts_rx_en = 0;
634
635                 return -EOPNOTSUPP;
636         }
637
638         if (copy_from_user(&config, ifr->ifr_data,
639                            sizeof(config)))
640                 return -EFAULT;
641
642         netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
643                    __func__, config.flags, config.tx_type, config.rx_filter);
644
645         if (config.tx_type != HWTSTAMP_TX_OFF &&
646             config.tx_type != HWTSTAMP_TX_ON)
647                 return -ERANGE;
648
649         if (priv->adv_ts) {
650                 switch (config.rx_filter) {
651                 case HWTSTAMP_FILTER_NONE:
652                         /* time stamp no incoming packet at all */
653                         config.rx_filter = HWTSTAMP_FILTER_NONE;
654                         break;
655
656                 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
657                         /* PTP v1, UDP, any kind of event packet */
658                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
659                         /* 'xmac' hardware can support Sync, Pdelay_Req and
660                          * Pdelay_resp by setting bit14 and bits17/16 to 01
661                          * This leaves Delay_Req timestamps out.
662                          * Enable all events *and* general purpose message
663                          * timestamping
664                          */
665                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
666                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
667                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
668                         break;
669
670                 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
671                         /* PTP v1, UDP, Sync packet */
672                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
673                         /* take time stamp for SYNC messages only */
674                         ts_event_en = PTP_TCR_TSEVNTENA;
675
676                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
677                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
678                         break;
679
680                 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
681                         /* PTP v1, UDP, Delay_req packet */
682                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
683                         /* take time stamp for Delay_Req messages only */
684                         ts_master_en = PTP_TCR_TSMSTRENA;
685                         ts_event_en = PTP_TCR_TSEVNTENA;
686
687                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
688                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
689                         break;
690
691                 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
692                         /* PTP v2, UDP, any kind of event packet */
693                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
694                         ptp_v2 = PTP_TCR_TSVER2ENA;
695                         /* take time stamp for all event messages */
696                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
697
698                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
699                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
700                         break;
701
702                 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
703                         /* PTP v2, UDP, Sync packet */
704                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
705                         ptp_v2 = PTP_TCR_TSVER2ENA;
706                         /* take time stamp for SYNC messages only */
707                         ts_event_en = PTP_TCR_TSEVNTENA;
708
709                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
710                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
711                         break;
712
713                 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
714                         /* PTP v2, UDP, Delay_req packet */
715                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
716                         ptp_v2 = PTP_TCR_TSVER2ENA;
717                         /* take time stamp for Delay_Req messages only */
718                         ts_master_en = PTP_TCR_TSMSTRENA;
719                         ts_event_en = PTP_TCR_TSEVNTENA;
720
721                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
722                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
723                         break;
724
725                 case HWTSTAMP_FILTER_PTP_V2_EVENT:
726                         /* PTP v2/802.AS1 any layer, any kind of event packet */
727                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
728                         ptp_v2 = PTP_TCR_TSVER2ENA;
729                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
730                         if (priv->synopsys_id < DWMAC_CORE_4_10)
731                                 ts_event_en = PTP_TCR_TSEVNTENA;
732                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
733                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
734                         ptp_over_ethernet = PTP_TCR_TSIPENA;
735                         break;
736
737                 case HWTSTAMP_FILTER_PTP_V2_SYNC:
738                         /* PTP v2/802.AS1, any layer, Sync packet */
739                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
740                         ptp_v2 = PTP_TCR_TSVER2ENA;
741                         /* take time stamp for SYNC messages only */
742                         ts_event_en = PTP_TCR_TSEVNTENA;
743
744                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
745                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
746                         ptp_over_ethernet = PTP_TCR_TSIPENA;
747                         break;
748
749                 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
750                         /* PTP v2/802.AS1, any layer, Delay_req packet */
751                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
752                         ptp_v2 = PTP_TCR_TSVER2ENA;
753                         /* take time stamp for Delay_Req messages only */
754                         ts_master_en = PTP_TCR_TSMSTRENA;
755                         ts_event_en = PTP_TCR_TSEVNTENA;
756
757                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
758                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
759                         ptp_over_ethernet = PTP_TCR_TSIPENA;
760                         break;
761
762                 case HWTSTAMP_FILTER_NTP_ALL:
763                 case HWTSTAMP_FILTER_ALL:
764                         /* time stamp any incoming packet */
765                         config.rx_filter = HWTSTAMP_FILTER_ALL;
766                         tstamp_all = PTP_TCR_TSENALL;
767                         break;
768
769                 default:
770                         return -ERANGE;
771                 }
772         } else {
773                 switch (config.rx_filter) {
774                 case HWTSTAMP_FILTER_NONE:
775                         config.rx_filter = HWTSTAMP_FILTER_NONE;
776                         break;
777                 default:
778                         /* PTP v1, UDP, any kind of event packet */
779                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
780                         break;
781                 }
782         }
783         priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
784         priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
785
786         priv->systime_flags = STMMAC_HWTS_ACTIVE;
787
788         if (priv->hwts_tx_en || priv->hwts_rx_en) {
789                 priv->systime_flags |= tstamp_all | ptp_v2 |
790                                        ptp_over_ethernet | ptp_over_ipv6_udp |
791                                        ptp_over_ipv4_udp | ts_event_en |
792                                        ts_master_en | snap_type_sel;
793         }
794
795         stmmac_config_hw_tstamping(priv, priv->ptpaddr, priv->systime_flags);
796
797         memcpy(&priv->tstamp_config, &config, sizeof(config));
798
799         return copy_to_user(ifr->ifr_data, &config,
800                             sizeof(config)) ? -EFAULT : 0;
801 }
802
803 /**
804  *  stmmac_hwtstamp_get - read hardware timestamping.
805  *  @dev: device pointer.
806  *  @ifr: An IOCTL specific structure, that can contain a pointer to
807  *  a proprietary structure used to pass information to the driver.
808  *  Description:
809  *  This function obtain the current hardware timestamping settings
810  *  as requested.
811  */
812 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
813 {
814         struct stmmac_priv *priv = netdev_priv(dev);
815         struct hwtstamp_config *config = &priv->tstamp_config;
816
817         if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
818                 return -EOPNOTSUPP;
819
820         return copy_to_user(ifr->ifr_data, config,
821                             sizeof(*config)) ? -EFAULT : 0;
822 }
823
824 /**
825  * stmmac_init_tstamp_counter - init hardware timestamping counter
826  * @priv: driver private structure
827  * @systime_flags: timestamping flags
828  * Description:
829  * Initialize hardware counter for packet timestamping.
830  * This is valid as long as the interface is open and not suspended.
831  * Will be rerun after resuming from suspend, case in which the timestamping
832  * flags updated by stmmac_hwtstamp_set() also need to be restored.
833  */
834 int stmmac_init_tstamp_counter(struct stmmac_priv *priv, u32 systime_flags)
835 {
836         bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
837         struct timespec64 now;
838         u32 sec_inc = 0;
839         u64 temp = 0;
840
841         if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
842                 return -EOPNOTSUPP;
843
844         stmmac_config_hw_tstamping(priv, priv->ptpaddr, systime_flags);
845         priv->systime_flags = systime_flags;
846
847         /* program Sub Second Increment reg */
848         stmmac_config_sub_second_increment(priv, priv->ptpaddr,
849                                            priv->plat->clk_ptp_rate,
850                                            xmac, &sec_inc);
851         temp = div_u64(1000000000ULL, sec_inc);
852
853         /* Store sub second increment for later use */
854         priv->sub_second_inc = sec_inc;
855
856         /* calculate default added value:
857          * formula is :
858          * addend = (2^32)/freq_div_ratio;
859          * where, freq_div_ratio = 1e9ns/sec_inc
860          */
861         temp = (u64)(temp << 32);
862         priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
863         stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
864
865         /* initialize system time */
866         ktime_get_real_ts64(&now);
867
868         /* lower 32 bits of tv_sec are safe until y2106 */
869         stmmac_init_systime(priv, priv->ptpaddr, (u32)now.tv_sec, now.tv_nsec);
870
871         return 0;
872 }
873 EXPORT_SYMBOL_GPL(stmmac_init_tstamp_counter);
874
875 /**
876  * stmmac_init_ptp - init PTP
877  * @priv: driver private structure
878  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
879  * This is done by looking at the HW cap. register.
880  * This function also registers the ptp driver.
881  */
882 static int stmmac_init_ptp(struct stmmac_priv *priv)
883 {
884         bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
885         int ret;
886
887         if (priv->plat->ptp_clk_freq_config)
888                 priv->plat->ptp_clk_freq_config(priv);
889
890         ret = stmmac_init_tstamp_counter(priv, STMMAC_HWTS_ACTIVE);
891         if (ret)
892                 return ret;
893
894         priv->adv_ts = 0;
895         /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
896         if (xmac && priv->dma_cap.atime_stamp)
897                 priv->adv_ts = 1;
898         /* Dwmac 3.x core with extend_desc can support adv_ts */
899         else if (priv->extend_desc && priv->dma_cap.atime_stamp)
900                 priv->adv_ts = 1;
901
902         if (priv->dma_cap.time_stamp)
903                 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
904
905         if (priv->adv_ts)
906                 netdev_info(priv->dev,
907                             "IEEE 1588-2008 Advanced Timestamp supported\n");
908
909         priv->hwts_tx_en = 0;
910         priv->hwts_rx_en = 0;
911
912         return 0;
913 }
914
915 static void stmmac_release_ptp(struct stmmac_priv *priv)
916 {
917         clk_disable_unprepare(priv->plat->clk_ptp_ref);
918         stmmac_ptp_unregister(priv);
919 }
920
921 /**
922  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
923  *  @priv: driver private structure
924  *  @duplex: duplex passed to the next function
925  *  Description: It is used for configuring the flow control in all queues
926  */
927 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
928 {
929         u32 tx_cnt = priv->plat->tx_queues_to_use;
930
931         stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
932                         priv->pause, tx_cnt);
933 }
934
935 static struct phylink_pcs *stmmac_mac_select_pcs(struct phylink_config *config,
936                                                  phy_interface_t interface)
937 {
938         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
939
940         if (!priv->hw->xpcs)
941                 return NULL;
942
943         return &priv->hw->xpcs->pcs;
944 }
945
946 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
947                               const struct phylink_link_state *state)
948 {
949         /* Nothing to do, xpcs_config() handles everything */
950 }
951
952 static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up)
953 {
954         struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
955         enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
956         enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
957         bool *hs_enable = &fpe_cfg->hs_enable;
958
959         if (is_up && *hs_enable) {
960                 stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_VERIFY);
961         } else {
962                 *lo_state = FPE_STATE_OFF;
963                 *lp_state = FPE_STATE_OFF;
964         }
965 }
966
967 static void stmmac_mac_link_down(struct phylink_config *config,
968                                  unsigned int mode, phy_interface_t interface)
969 {
970         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
971
972         stmmac_mac_set(priv, priv->ioaddr, false);
973         priv->eee_active = false;
974         priv->tx_lpi_enabled = false;
975         priv->eee_enabled = stmmac_eee_init(priv);
976         stmmac_set_eee_pls(priv, priv->hw, false);
977
978         if (priv->dma_cap.fpesel)
979                 stmmac_fpe_link_state_handle(priv, false);
980 }
981
982 static void stmmac_mac_link_up(struct phylink_config *config,
983                                struct phy_device *phy,
984                                unsigned int mode, phy_interface_t interface,
985                                int speed, int duplex,
986                                bool tx_pause, bool rx_pause)
987 {
988         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
989         u32 old_ctrl, ctrl;
990
991         if (priv->plat->serdes_up_after_phy_linkup && priv->plat->serdes_powerup)
992                 priv->plat->serdes_powerup(priv->dev, priv->plat->bsp_priv);
993
994         old_ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
995         ctrl = old_ctrl & ~priv->hw->link.speed_mask;
996
997         if (interface == PHY_INTERFACE_MODE_USXGMII) {
998                 switch (speed) {
999                 case SPEED_10000:
1000                         ctrl |= priv->hw->link.xgmii.speed10000;
1001                         break;
1002                 case SPEED_5000:
1003                         ctrl |= priv->hw->link.xgmii.speed5000;
1004                         break;
1005                 case SPEED_2500:
1006                         ctrl |= priv->hw->link.xgmii.speed2500;
1007                         break;
1008                 default:
1009                         return;
1010                 }
1011         } else if (interface == PHY_INTERFACE_MODE_XLGMII) {
1012                 switch (speed) {
1013                 case SPEED_100000:
1014                         ctrl |= priv->hw->link.xlgmii.speed100000;
1015                         break;
1016                 case SPEED_50000:
1017                         ctrl |= priv->hw->link.xlgmii.speed50000;
1018                         break;
1019                 case SPEED_40000:
1020                         ctrl |= priv->hw->link.xlgmii.speed40000;
1021                         break;
1022                 case SPEED_25000:
1023                         ctrl |= priv->hw->link.xlgmii.speed25000;
1024                         break;
1025                 case SPEED_10000:
1026                         ctrl |= priv->hw->link.xgmii.speed10000;
1027                         break;
1028                 case SPEED_2500:
1029                         ctrl |= priv->hw->link.speed2500;
1030                         break;
1031                 case SPEED_1000:
1032                         ctrl |= priv->hw->link.speed1000;
1033                         break;
1034                 default:
1035                         return;
1036                 }
1037         } else {
1038                 switch (speed) {
1039                 case SPEED_2500:
1040                         ctrl |= priv->hw->link.speed2500;
1041                         break;
1042                 case SPEED_1000:
1043                         ctrl |= priv->hw->link.speed1000;
1044                         break;
1045                 case SPEED_100:
1046                         ctrl |= priv->hw->link.speed100;
1047                         break;
1048                 case SPEED_10:
1049                         ctrl |= priv->hw->link.speed10;
1050                         break;
1051                 default:
1052                         return;
1053                 }
1054         }
1055
1056         priv->speed = speed;
1057
1058         if (priv->plat->fix_mac_speed)
1059                 priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed);
1060
1061         if (!duplex)
1062                 ctrl &= ~priv->hw->link.duplex;
1063         else
1064                 ctrl |= priv->hw->link.duplex;
1065
1066         /* Flow Control operation */
1067         if (rx_pause && tx_pause)
1068                 priv->flow_ctrl = FLOW_AUTO;
1069         else if (rx_pause && !tx_pause)
1070                 priv->flow_ctrl = FLOW_RX;
1071         else if (!rx_pause && tx_pause)
1072                 priv->flow_ctrl = FLOW_TX;
1073         else
1074                 priv->flow_ctrl = FLOW_OFF;
1075
1076         stmmac_mac_flow_ctrl(priv, duplex);
1077
1078         if (ctrl != old_ctrl)
1079                 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
1080
1081         stmmac_mac_set(priv, priv->ioaddr, true);
1082         if (phy && priv->dma_cap.eee) {
1083                 priv->eee_active =
1084                         phy_init_eee(phy, !priv->plat->rx_clk_runs_in_lpi) >= 0;
1085                 priv->eee_enabled = stmmac_eee_init(priv);
1086                 priv->tx_lpi_enabled = priv->eee_enabled;
1087                 stmmac_set_eee_pls(priv, priv->hw, true);
1088         }
1089
1090         if (priv->dma_cap.fpesel)
1091                 stmmac_fpe_link_state_handle(priv, true);
1092 }
1093
1094 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1095         .mac_select_pcs = stmmac_mac_select_pcs,
1096         .mac_config = stmmac_mac_config,
1097         .mac_link_down = stmmac_mac_link_down,
1098         .mac_link_up = stmmac_mac_link_up,
1099 };
1100
1101 /**
1102  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1103  * @priv: driver private structure
1104  * Description: this is to verify if the HW supports the PCS.
1105  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1106  * configured for the TBI, RTBI, or SGMII PHY interface.
1107  */
1108 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1109 {
1110         int interface = priv->plat->interface;
1111
1112         if (priv->dma_cap.pcs) {
1113                 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1114                     (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1115                     (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1116                     (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1117                         netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1118                         priv->hw->pcs = STMMAC_PCS_RGMII;
1119                 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
1120                         netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1121                         priv->hw->pcs = STMMAC_PCS_SGMII;
1122                 }
1123         }
1124 }
1125
1126 /**
1127  * stmmac_init_phy - PHY initialization
1128  * @dev: net device structure
1129  * Description: it initializes the driver's PHY state, and attaches the PHY
1130  * to the mac driver.
1131  *  Return value:
1132  *  0 on success
1133  */
1134 static int stmmac_init_phy(struct net_device *dev)
1135 {
1136         struct stmmac_priv *priv = netdev_priv(dev);
1137         struct fwnode_handle *fwnode;
1138         int ret;
1139
1140         fwnode = of_fwnode_handle(priv->plat->phylink_node);
1141         if (!fwnode)
1142                 fwnode = dev_fwnode(priv->device);
1143
1144         if (fwnode)
1145                 ret = phylink_fwnode_phy_connect(priv->phylink, fwnode, 0);
1146
1147         /* Some DT bindings do not set-up the PHY handle. Let's try to
1148          * manually parse it
1149          */
1150         if (!fwnode || ret) {
1151                 int addr = priv->plat->phy_addr;
1152                 struct phy_device *phydev;
1153
1154                 if (addr < 0) {
1155                         netdev_err(priv->dev, "no phy found\n");
1156                         return -ENODEV;
1157                 }
1158
1159                 phydev = mdiobus_get_phy(priv->mii, addr);
1160                 if (!phydev) {
1161                         netdev_err(priv->dev, "no phy at addr %d\n", addr);
1162                         return -ENODEV;
1163                 }
1164
1165                 ret = phylink_connect_phy(priv->phylink, phydev);
1166         }
1167
1168         if (!priv->plat->pmt) {
1169                 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1170
1171                 phylink_ethtool_get_wol(priv->phylink, &wol);
1172                 device_set_wakeup_capable(priv->device, !!wol.supported);
1173         }
1174
1175         return ret;
1176 }
1177
1178 static int stmmac_phy_setup(struct stmmac_priv *priv)
1179 {
1180         struct stmmac_mdio_bus_data *mdio_bus_data = priv->plat->mdio_bus_data;
1181         struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1182         int max_speed = priv->plat->max_speed;
1183         int mode = priv->plat->phy_interface;
1184         struct phylink *phylink;
1185
1186         priv->phylink_config.dev = &priv->dev->dev;
1187         priv->phylink_config.type = PHYLINK_NETDEV;
1188         if (priv->plat->mdio_bus_data)
1189                 priv->phylink_config.ovr_an_inband =
1190                         mdio_bus_data->xpcs_an_inband;
1191
1192         if (!fwnode)
1193                 fwnode = dev_fwnode(priv->device);
1194
1195         /* Set the platform/firmware specified interface mode */
1196         __set_bit(mode, priv->phylink_config.supported_interfaces);
1197
1198         /* If we have an xpcs, it defines which PHY interfaces are supported. */
1199         if (priv->hw->xpcs)
1200                 xpcs_get_interfaces(priv->hw->xpcs,
1201                                     priv->phylink_config.supported_interfaces);
1202
1203         priv->phylink_config.mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1204                 MAC_10 | MAC_100;
1205
1206         if (!max_speed || max_speed >= 1000)
1207                 priv->phylink_config.mac_capabilities |= MAC_1000;
1208
1209         if (priv->plat->has_gmac4) {
1210                 if (!max_speed || max_speed >= 2500)
1211                         priv->phylink_config.mac_capabilities |= MAC_2500FD;
1212         } else if (priv->plat->has_xgmac) {
1213                 if (!max_speed || max_speed >= 2500)
1214                         priv->phylink_config.mac_capabilities |= MAC_2500FD;
1215                 if (!max_speed || max_speed >= 5000)
1216                         priv->phylink_config.mac_capabilities |= MAC_5000FD;
1217                 if (!max_speed || max_speed >= 10000)
1218                         priv->phylink_config.mac_capabilities |= MAC_10000FD;
1219                 if (!max_speed || max_speed >= 25000)
1220                         priv->phylink_config.mac_capabilities |= MAC_25000FD;
1221                 if (!max_speed || max_speed >= 40000)
1222                         priv->phylink_config.mac_capabilities |= MAC_40000FD;
1223                 if (!max_speed || max_speed >= 50000)
1224                         priv->phylink_config.mac_capabilities |= MAC_50000FD;
1225                 if (!max_speed || max_speed >= 100000)
1226                         priv->phylink_config.mac_capabilities |= MAC_100000FD;
1227         }
1228
1229         /* Half-Duplex can only work with single queue */
1230         if (priv->plat->tx_queues_to_use > 1)
1231                 priv->phylink_config.mac_capabilities &=
1232                         ~(MAC_10HD | MAC_100HD | MAC_1000HD);
1233         priv->phylink_config.mac_managed_pm = true;
1234
1235         phylink = phylink_create(&priv->phylink_config, fwnode,
1236                                  mode, &stmmac_phylink_mac_ops);
1237         if (IS_ERR(phylink))
1238                 return PTR_ERR(phylink);
1239
1240         priv->phylink = phylink;
1241         return 0;
1242 }
1243
1244 static void stmmac_display_rx_rings(struct stmmac_priv *priv,
1245                                     struct stmmac_dma_conf *dma_conf)
1246 {
1247         u32 rx_cnt = priv->plat->rx_queues_to_use;
1248         unsigned int desc_size;
1249         void *head_rx;
1250         u32 queue;
1251
1252         /* Display RX rings */
1253         for (queue = 0; queue < rx_cnt; queue++) {
1254                 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1255
1256                 pr_info("\tRX Queue %u rings\n", queue);
1257
1258                 if (priv->extend_desc) {
1259                         head_rx = (void *)rx_q->dma_erx;
1260                         desc_size = sizeof(struct dma_extended_desc);
1261                 } else {
1262                         head_rx = (void *)rx_q->dma_rx;
1263                         desc_size = sizeof(struct dma_desc);
1264                 }
1265
1266                 /* Display RX ring */
1267                 stmmac_display_ring(priv, head_rx, dma_conf->dma_rx_size, true,
1268                                     rx_q->dma_rx_phy, desc_size);
1269         }
1270 }
1271
1272 static void stmmac_display_tx_rings(struct stmmac_priv *priv,
1273                                     struct stmmac_dma_conf *dma_conf)
1274 {
1275         u32 tx_cnt = priv->plat->tx_queues_to_use;
1276         unsigned int desc_size;
1277         void *head_tx;
1278         u32 queue;
1279
1280         /* Display TX rings */
1281         for (queue = 0; queue < tx_cnt; queue++) {
1282                 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1283
1284                 pr_info("\tTX Queue %d rings\n", queue);
1285
1286                 if (priv->extend_desc) {
1287                         head_tx = (void *)tx_q->dma_etx;
1288                         desc_size = sizeof(struct dma_extended_desc);
1289                 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1290                         head_tx = (void *)tx_q->dma_entx;
1291                         desc_size = sizeof(struct dma_edesc);
1292                 } else {
1293                         head_tx = (void *)tx_q->dma_tx;
1294                         desc_size = sizeof(struct dma_desc);
1295                 }
1296
1297                 stmmac_display_ring(priv, head_tx, dma_conf->dma_tx_size, false,
1298                                     tx_q->dma_tx_phy, desc_size);
1299         }
1300 }
1301
1302 static void stmmac_display_rings(struct stmmac_priv *priv,
1303                                  struct stmmac_dma_conf *dma_conf)
1304 {
1305         /* Display RX ring */
1306         stmmac_display_rx_rings(priv, dma_conf);
1307
1308         /* Display TX ring */
1309         stmmac_display_tx_rings(priv, dma_conf);
1310 }
1311
1312 static int stmmac_set_bfsize(int mtu, int bufsize)
1313 {
1314         int ret = bufsize;
1315
1316         if (mtu >= BUF_SIZE_8KiB)
1317                 ret = BUF_SIZE_16KiB;
1318         else if (mtu >= BUF_SIZE_4KiB)
1319                 ret = BUF_SIZE_8KiB;
1320         else if (mtu >= BUF_SIZE_2KiB)
1321                 ret = BUF_SIZE_4KiB;
1322         else if (mtu > DEFAULT_BUFSIZE)
1323                 ret = BUF_SIZE_2KiB;
1324         else
1325                 ret = DEFAULT_BUFSIZE;
1326
1327         return ret;
1328 }
1329
1330 /**
1331  * stmmac_clear_rx_descriptors - clear RX descriptors
1332  * @priv: driver private structure
1333  * @dma_conf: structure to take the dma data
1334  * @queue: RX queue index
1335  * Description: this function is called to clear the RX descriptors
1336  * in case of both basic and extended descriptors are used.
1337  */
1338 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv,
1339                                         struct stmmac_dma_conf *dma_conf,
1340                                         u32 queue)
1341 {
1342         struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1343         int i;
1344
1345         /* Clear the RX descriptors */
1346         for (i = 0; i < dma_conf->dma_rx_size; i++)
1347                 if (priv->extend_desc)
1348                         stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1349                                         priv->use_riwt, priv->mode,
1350                                         (i == dma_conf->dma_rx_size - 1),
1351                                         dma_conf->dma_buf_sz);
1352                 else
1353                         stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1354                                         priv->use_riwt, priv->mode,
1355                                         (i == dma_conf->dma_rx_size - 1),
1356                                         dma_conf->dma_buf_sz);
1357 }
1358
1359 /**
1360  * stmmac_clear_tx_descriptors - clear tx descriptors
1361  * @priv: driver private structure
1362  * @dma_conf: structure to take the dma data
1363  * @queue: TX queue index.
1364  * Description: this function is called to clear the TX descriptors
1365  * in case of both basic and extended descriptors are used.
1366  */
1367 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv,
1368                                         struct stmmac_dma_conf *dma_conf,
1369                                         u32 queue)
1370 {
1371         struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1372         int i;
1373
1374         /* Clear the TX descriptors */
1375         for (i = 0; i < dma_conf->dma_tx_size; i++) {
1376                 int last = (i == (dma_conf->dma_tx_size - 1));
1377                 struct dma_desc *p;
1378
1379                 if (priv->extend_desc)
1380                         p = &tx_q->dma_etx[i].basic;
1381                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1382                         p = &tx_q->dma_entx[i].basic;
1383                 else
1384                         p = &tx_q->dma_tx[i];
1385
1386                 stmmac_init_tx_desc(priv, p, priv->mode, last);
1387         }
1388 }
1389
1390 /**
1391  * stmmac_clear_descriptors - clear descriptors
1392  * @priv: driver private structure
1393  * @dma_conf: structure to take the dma data
1394  * Description: this function is called to clear the TX and RX descriptors
1395  * in case of both basic and extended descriptors are used.
1396  */
1397 static void stmmac_clear_descriptors(struct stmmac_priv *priv,
1398                                      struct stmmac_dma_conf *dma_conf)
1399 {
1400         u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1401         u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1402         u32 queue;
1403
1404         /* Clear the RX descriptors */
1405         for (queue = 0; queue < rx_queue_cnt; queue++)
1406                 stmmac_clear_rx_descriptors(priv, dma_conf, queue);
1407
1408         /* Clear the TX descriptors */
1409         for (queue = 0; queue < tx_queue_cnt; queue++)
1410                 stmmac_clear_tx_descriptors(priv, dma_conf, queue);
1411 }
1412
1413 /**
1414  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1415  * @priv: driver private structure
1416  * @dma_conf: structure to take the dma data
1417  * @p: descriptor pointer
1418  * @i: descriptor index
1419  * @flags: gfp flag
1420  * @queue: RX queue index
1421  * Description: this function is called to allocate a receive buffer, perform
1422  * the DMA mapping and init the descriptor.
1423  */
1424 static int stmmac_init_rx_buffers(struct stmmac_priv *priv,
1425                                   struct stmmac_dma_conf *dma_conf,
1426                                   struct dma_desc *p,
1427                                   int i, gfp_t flags, u32 queue)
1428 {
1429         struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1430         struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1431         gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
1432
1433         if (priv->dma_cap.addr64 <= 32)
1434                 gfp |= GFP_DMA32;
1435
1436         if (!buf->page) {
1437                 buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1438                 if (!buf->page)
1439                         return -ENOMEM;
1440                 buf->page_offset = stmmac_rx_offset(priv);
1441         }
1442
1443         if (priv->sph && !buf->sec_page) {
1444                 buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1445                 if (!buf->sec_page)
1446                         return -ENOMEM;
1447
1448                 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1449                 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
1450         } else {
1451                 buf->sec_page = NULL;
1452                 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
1453         }
1454
1455         buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
1456
1457         stmmac_set_desc_addr(priv, p, buf->addr);
1458         if (dma_conf->dma_buf_sz == BUF_SIZE_16KiB)
1459                 stmmac_init_desc3(priv, p);
1460
1461         return 0;
1462 }
1463
1464 /**
1465  * stmmac_free_rx_buffer - free RX dma buffers
1466  * @priv: private structure
1467  * @rx_q: RX queue
1468  * @i: buffer index.
1469  */
1470 static void stmmac_free_rx_buffer(struct stmmac_priv *priv,
1471                                   struct stmmac_rx_queue *rx_q,
1472                                   int i)
1473 {
1474         struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1475
1476         if (buf->page)
1477                 page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1478         buf->page = NULL;
1479
1480         if (buf->sec_page)
1481                 page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1482         buf->sec_page = NULL;
1483 }
1484
1485 /**
1486  * stmmac_free_tx_buffer - free RX dma buffers
1487  * @priv: private structure
1488  * @dma_conf: structure to take the dma data
1489  * @queue: RX queue index
1490  * @i: buffer index.
1491  */
1492 static void stmmac_free_tx_buffer(struct stmmac_priv *priv,
1493                                   struct stmmac_dma_conf *dma_conf,
1494                                   u32 queue, int i)
1495 {
1496         struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1497
1498         if (tx_q->tx_skbuff_dma[i].buf &&
1499             tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) {
1500                 if (tx_q->tx_skbuff_dma[i].map_as_page)
1501                         dma_unmap_page(priv->device,
1502                                        tx_q->tx_skbuff_dma[i].buf,
1503                                        tx_q->tx_skbuff_dma[i].len,
1504                                        DMA_TO_DEVICE);
1505                 else
1506                         dma_unmap_single(priv->device,
1507                                          tx_q->tx_skbuff_dma[i].buf,
1508                                          tx_q->tx_skbuff_dma[i].len,
1509                                          DMA_TO_DEVICE);
1510         }
1511
1512         if (tx_q->xdpf[i] &&
1513             (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX ||
1514              tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) {
1515                 xdp_return_frame(tx_q->xdpf[i]);
1516                 tx_q->xdpf[i] = NULL;
1517         }
1518
1519         if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX)
1520                 tx_q->xsk_frames_done++;
1521
1522         if (tx_q->tx_skbuff[i] &&
1523             tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) {
1524                 dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1525                 tx_q->tx_skbuff[i] = NULL;
1526         }
1527
1528         tx_q->tx_skbuff_dma[i].buf = 0;
1529         tx_q->tx_skbuff_dma[i].map_as_page = false;
1530 }
1531
1532 /**
1533  * dma_free_rx_skbufs - free RX dma buffers
1534  * @priv: private structure
1535  * @dma_conf: structure to take the dma data
1536  * @queue: RX queue index
1537  */
1538 static void dma_free_rx_skbufs(struct stmmac_priv *priv,
1539                                struct stmmac_dma_conf *dma_conf,
1540                                u32 queue)
1541 {
1542         struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1543         int i;
1544
1545         for (i = 0; i < dma_conf->dma_rx_size; i++)
1546                 stmmac_free_rx_buffer(priv, rx_q, i);
1547 }
1548
1549 static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv,
1550                                    struct stmmac_dma_conf *dma_conf,
1551                                    u32 queue, gfp_t flags)
1552 {
1553         struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1554         int i;
1555
1556         for (i = 0; i < dma_conf->dma_rx_size; i++) {
1557                 struct dma_desc *p;
1558                 int ret;
1559
1560                 if (priv->extend_desc)
1561                         p = &((rx_q->dma_erx + i)->basic);
1562                 else
1563                         p = rx_q->dma_rx + i;
1564
1565                 ret = stmmac_init_rx_buffers(priv, dma_conf, p, i, flags,
1566                                              queue);
1567                 if (ret)
1568                         return ret;
1569
1570                 rx_q->buf_alloc_num++;
1571         }
1572
1573         return 0;
1574 }
1575
1576 /**
1577  * dma_free_rx_xskbufs - free RX dma buffers from XSK pool
1578  * @priv: private structure
1579  * @dma_conf: structure to take the dma data
1580  * @queue: RX queue index
1581  */
1582 static void dma_free_rx_xskbufs(struct stmmac_priv *priv,
1583                                 struct stmmac_dma_conf *dma_conf,
1584                                 u32 queue)
1585 {
1586         struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1587         int i;
1588
1589         for (i = 0; i < dma_conf->dma_rx_size; i++) {
1590                 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1591
1592                 if (!buf->xdp)
1593                         continue;
1594
1595                 xsk_buff_free(buf->xdp);
1596                 buf->xdp = NULL;
1597         }
1598 }
1599
1600 static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv,
1601                                       struct stmmac_dma_conf *dma_conf,
1602                                       u32 queue)
1603 {
1604         struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1605         int i;
1606
1607         for (i = 0; i < dma_conf->dma_rx_size; i++) {
1608                 struct stmmac_rx_buffer *buf;
1609                 dma_addr_t dma_addr;
1610                 struct dma_desc *p;
1611
1612                 if (priv->extend_desc)
1613                         p = (struct dma_desc *)(rx_q->dma_erx + i);
1614                 else
1615                         p = rx_q->dma_rx + i;
1616
1617                 buf = &rx_q->buf_pool[i];
1618
1619                 buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
1620                 if (!buf->xdp)
1621                         return -ENOMEM;
1622
1623                 dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
1624                 stmmac_set_desc_addr(priv, p, dma_addr);
1625                 rx_q->buf_alloc_num++;
1626         }
1627
1628         return 0;
1629 }
1630
1631 static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue)
1632 {
1633         if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps))
1634                 return NULL;
1635
1636         return xsk_get_pool_from_qid(priv->dev, queue);
1637 }
1638
1639 /**
1640  * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue)
1641  * @priv: driver private structure
1642  * @dma_conf: structure to take the dma data
1643  * @queue: RX queue index
1644  * @flags: gfp flag.
1645  * Description: this function initializes the DMA RX descriptors
1646  * and allocates the socket buffers. It supports the chained and ring
1647  * modes.
1648  */
1649 static int __init_dma_rx_desc_rings(struct stmmac_priv *priv,
1650                                     struct stmmac_dma_conf *dma_conf,
1651                                     u32 queue, gfp_t flags)
1652 {
1653         struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1654         int ret;
1655
1656         netif_dbg(priv, probe, priv->dev,
1657                   "(%s) dma_rx_phy=0x%08x\n", __func__,
1658                   (u32)rx_q->dma_rx_phy);
1659
1660         stmmac_clear_rx_descriptors(priv, dma_conf, queue);
1661
1662         xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq);
1663
1664         rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1665
1666         if (rx_q->xsk_pool) {
1667                 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1668                                                    MEM_TYPE_XSK_BUFF_POOL,
1669                                                    NULL));
1670                 netdev_info(priv->dev,
1671                             "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n",
1672                             rx_q->queue_index);
1673                 xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq);
1674         } else {
1675                 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1676                                                    MEM_TYPE_PAGE_POOL,
1677                                                    rx_q->page_pool));
1678                 netdev_info(priv->dev,
1679                             "Register MEM_TYPE_PAGE_POOL RxQ-%d\n",
1680                             rx_q->queue_index);
1681         }
1682
1683         if (rx_q->xsk_pool) {
1684                 /* RX XDP ZC buffer pool may not be populated, e.g.
1685                  * xdpsock TX-only.
1686                  */
1687                 stmmac_alloc_rx_buffers_zc(priv, dma_conf, queue);
1688         } else {
1689                 ret = stmmac_alloc_rx_buffers(priv, dma_conf, queue, flags);
1690                 if (ret < 0)
1691                         return -ENOMEM;
1692         }
1693
1694         /* Setup the chained descriptor addresses */
1695         if (priv->mode == STMMAC_CHAIN_MODE) {
1696                 if (priv->extend_desc)
1697                         stmmac_mode_init(priv, rx_q->dma_erx,
1698                                          rx_q->dma_rx_phy,
1699                                          dma_conf->dma_rx_size, 1);
1700                 else
1701                         stmmac_mode_init(priv, rx_q->dma_rx,
1702                                          rx_q->dma_rx_phy,
1703                                          dma_conf->dma_rx_size, 0);
1704         }
1705
1706         return 0;
1707 }
1708
1709 static int init_dma_rx_desc_rings(struct net_device *dev,
1710                                   struct stmmac_dma_conf *dma_conf,
1711                                   gfp_t flags)
1712 {
1713         struct stmmac_priv *priv = netdev_priv(dev);
1714         u32 rx_count = priv->plat->rx_queues_to_use;
1715         int queue;
1716         int ret;
1717
1718         /* RX INITIALIZATION */
1719         netif_dbg(priv, probe, priv->dev,
1720                   "SKB addresses:\nskb\t\tskb data\tdma data\n");
1721
1722         for (queue = 0; queue < rx_count; queue++) {
1723                 ret = __init_dma_rx_desc_rings(priv, dma_conf, queue, flags);
1724                 if (ret)
1725                         goto err_init_rx_buffers;
1726         }
1727
1728         return 0;
1729
1730 err_init_rx_buffers:
1731         while (queue >= 0) {
1732                 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1733
1734                 if (rx_q->xsk_pool)
1735                         dma_free_rx_xskbufs(priv, dma_conf, queue);
1736                 else
1737                         dma_free_rx_skbufs(priv, dma_conf, queue);
1738
1739                 rx_q->buf_alloc_num = 0;
1740                 rx_q->xsk_pool = NULL;
1741
1742                 queue--;
1743         }
1744
1745         return ret;
1746 }
1747
1748 /**
1749  * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue)
1750  * @priv: driver private structure
1751  * @dma_conf: structure to take the dma data
1752  * @queue: TX queue index
1753  * Description: this function initializes the DMA TX descriptors
1754  * and allocates the socket buffers. It supports the chained and ring
1755  * modes.
1756  */
1757 static int __init_dma_tx_desc_rings(struct stmmac_priv *priv,
1758                                     struct stmmac_dma_conf *dma_conf,
1759                                     u32 queue)
1760 {
1761         struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1762         int i;
1763
1764         netif_dbg(priv, probe, priv->dev,
1765                   "(%s) dma_tx_phy=0x%08x\n", __func__,
1766                   (u32)tx_q->dma_tx_phy);
1767
1768         /* Setup the chained descriptor addresses */
1769         if (priv->mode == STMMAC_CHAIN_MODE) {
1770                 if (priv->extend_desc)
1771                         stmmac_mode_init(priv, tx_q->dma_etx,
1772                                          tx_q->dma_tx_phy,
1773                                          dma_conf->dma_tx_size, 1);
1774                 else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1775                         stmmac_mode_init(priv, tx_q->dma_tx,
1776                                          tx_q->dma_tx_phy,
1777                                          dma_conf->dma_tx_size, 0);
1778         }
1779
1780         tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1781
1782         for (i = 0; i < dma_conf->dma_tx_size; i++) {
1783                 struct dma_desc *p;
1784
1785                 if (priv->extend_desc)
1786                         p = &((tx_q->dma_etx + i)->basic);
1787                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1788                         p = &((tx_q->dma_entx + i)->basic);
1789                 else
1790                         p = tx_q->dma_tx + i;
1791
1792                 stmmac_clear_desc(priv, p);
1793
1794                 tx_q->tx_skbuff_dma[i].buf = 0;
1795                 tx_q->tx_skbuff_dma[i].map_as_page = false;
1796                 tx_q->tx_skbuff_dma[i].len = 0;
1797                 tx_q->tx_skbuff_dma[i].last_segment = false;
1798                 tx_q->tx_skbuff[i] = NULL;
1799         }
1800
1801         return 0;
1802 }
1803
1804 static int init_dma_tx_desc_rings(struct net_device *dev,
1805                                   struct stmmac_dma_conf *dma_conf)
1806 {
1807         struct stmmac_priv *priv = netdev_priv(dev);
1808         u32 tx_queue_cnt;
1809         u32 queue;
1810
1811         tx_queue_cnt = priv->plat->tx_queues_to_use;
1812
1813         for (queue = 0; queue < tx_queue_cnt; queue++)
1814                 __init_dma_tx_desc_rings(priv, dma_conf, queue);
1815
1816         return 0;
1817 }
1818
1819 /**
1820  * init_dma_desc_rings - init the RX/TX descriptor rings
1821  * @dev: net device structure
1822  * @dma_conf: structure to take the dma data
1823  * @flags: gfp flag.
1824  * Description: this function initializes the DMA RX/TX descriptors
1825  * and allocates the socket buffers. It supports the chained and ring
1826  * modes.
1827  */
1828 static int init_dma_desc_rings(struct net_device *dev,
1829                                struct stmmac_dma_conf *dma_conf,
1830                                gfp_t flags)
1831 {
1832         struct stmmac_priv *priv = netdev_priv(dev);
1833         int ret;
1834
1835         ret = init_dma_rx_desc_rings(dev, dma_conf, flags);
1836         if (ret)
1837                 return ret;
1838
1839         ret = init_dma_tx_desc_rings(dev, dma_conf);
1840
1841         stmmac_clear_descriptors(priv, dma_conf);
1842
1843         if (netif_msg_hw(priv))
1844                 stmmac_display_rings(priv, dma_conf);
1845
1846         return ret;
1847 }
1848
1849 /**
1850  * dma_free_tx_skbufs - free TX dma buffers
1851  * @priv: private structure
1852  * @dma_conf: structure to take the dma data
1853  * @queue: TX queue index
1854  */
1855 static void dma_free_tx_skbufs(struct stmmac_priv *priv,
1856                                struct stmmac_dma_conf *dma_conf,
1857                                u32 queue)
1858 {
1859         struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1860         int i;
1861
1862         tx_q->xsk_frames_done = 0;
1863
1864         for (i = 0; i < dma_conf->dma_tx_size; i++)
1865                 stmmac_free_tx_buffer(priv, dma_conf, queue, i);
1866
1867         if (tx_q->xsk_pool && tx_q->xsk_frames_done) {
1868                 xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
1869                 tx_q->xsk_frames_done = 0;
1870                 tx_q->xsk_pool = NULL;
1871         }
1872 }
1873
1874 /**
1875  * stmmac_free_tx_skbufs - free TX skb buffers
1876  * @priv: private structure
1877  */
1878 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv)
1879 {
1880         u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1881         u32 queue;
1882
1883         for (queue = 0; queue < tx_queue_cnt; queue++)
1884                 dma_free_tx_skbufs(priv, &priv->dma_conf, queue);
1885 }
1886
1887 /**
1888  * __free_dma_rx_desc_resources - free RX dma desc resources (per queue)
1889  * @priv: private structure
1890  * @dma_conf: structure to take the dma data
1891  * @queue: RX queue index
1892  */
1893 static void __free_dma_rx_desc_resources(struct stmmac_priv *priv,
1894                                          struct stmmac_dma_conf *dma_conf,
1895                                          u32 queue)
1896 {
1897         struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1898
1899         /* Release the DMA RX socket buffers */
1900         if (rx_q->xsk_pool)
1901                 dma_free_rx_xskbufs(priv, dma_conf, queue);
1902         else
1903                 dma_free_rx_skbufs(priv, dma_conf, queue);
1904
1905         rx_q->buf_alloc_num = 0;
1906         rx_q->xsk_pool = NULL;
1907
1908         /* Free DMA regions of consistent memory previously allocated */
1909         if (!priv->extend_desc)
1910                 dma_free_coherent(priv->device, dma_conf->dma_rx_size *
1911                                   sizeof(struct dma_desc),
1912                                   rx_q->dma_rx, rx_q->dma_rx_phy);
1913         else
1914                 dma_free_coherent(priv->device, dma_conf->dma_rx_size *
1915                                   sizeof(struct dma_extended_desc),
1916                                   rx_q->dma_erx, rx_q->dma_rx_phy);
1917
1918         if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq))
1919                 xdp_rxq_info_unreg(&rx_q->xdp_rxq);
1920
1921         kfree(rx_q->buf_pool);
1922         if (rx_q->page_pool)
1923                 page_pool_destroy(rx_q->page_pool);
1924 }
1925
1926 static void free_dma_rx_desc_resources(struct stmmac_priv *priv,
1927                                        struct stmmac_dma_conf *dma_conf)
1928 {
1929         u32 rx_count = priv->plat->rx_queues_to_use;
1930         u32 queue;
1931
1932         /* Free RX queue resources */
1933         for (queue = 0; queue < rx_count; queue++)
1934                 __free_dma_rx_desc_resources(priv, dma_conf, queue);
1935 }
1936
1937 /**
1938  * __free_dma_tx_desc_resources - free TX dma desc resources (per queue)
1939  * @priv: private structure
1940  * @dma_conf: structure to take the dma data
1941  * @queue: TX queue index
1942  */
1943 static void __free_dma_tx_desc_resources(struct stmmac_priv *priv,
1944                                          struct stmmac_dma_conf *dma_conf,
1945                                          u32 queue)
1946 {
1947         struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1948         size_t size;
1949         void *addr;
1950
1951         /* Release the DMA TX socket buffers */
1952         dma_free_tx_skbufs(priv, dma_conf, queue);
1953
1954         if (priv->extend_desc) {
1955                 size = sizeof(struct dma_extended_desc);
1956                 addr = tx_q->dma_etx;
1957         } else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1958                 size = sizeof(struct dma_edesc);
1959                 addr = tx_q->dma_entx;
1960         } else {
1961                 size = sizeof(struct dma_desc);
1962                 addr = tx_q->dma_tx;
1963         }
1964
1965         size *= dma_conf->dma_tx_size;
1966
1967         dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1968
1969         kfree(tx_q->tx_skbuff_dma);
1970         kfree(tx_q->tx_skbuff);
1971 }
1972
1973 static void free_dma_tx_desc_resources(struct stmmac_priv *priv,
1974                                        struct stmmac_dma_conf *dma_conf)
1975 {
1976         u32 tx_count = priv->plat->tx_queues_to_use;
1977         u32 queue;
1978
1979         /* Free TX queue resources */
1980         for (queue = 0; queue < tx_count; queue++)
1981                 __free_dma_tx_desc_resources(priv, dma_conf, queue);
1982 }
1983
1984 /**
1985  * __alloc_dma_rx_desc_resources - alloc RX resources (per queue).
1986  * @priv: private structure
1987  * @dma_conf: structure to take the dma data
1988  * @queue: RX queue index
1989  * Description: according to which descriptor can be used (extend or basic)
1990  * this function allocates the resources for TX and RX paths. In case of
1991  * reception, for example, it pre-allocated the RX socket buffer in order to
1992  * allow zero-copy mechanism.
1993  */
1994 static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv,
1995                                          struct stmmac_dma_conf *dma_conf,
1996                                          u32 queue)
1997 {
1998         struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1999         struct stmmac_channel *ch = &priv->channel[queue];
2000         bool xdp_prog = stmmac_xdp_is_enabled(priv);
2001         struct page_pool_params pp_params = { 0 };
2002         unsigned int num_pages;
2003         unsigned int napi_id;
2004         int ret;
2005
2006         rx_q->queue_index = queue;
2007         rx_q->priv_data = priv;
2008
2009         pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
2010         pp_params.pool_size = dma_conf->dma_rx_size;
2011         num_pages = DIV_ROUND_UP(dma_conf->dma_buf_sz, PAGE_SIZE);
2012         pp_params.order = ilog2(num_pages);
2013         pp_params.nid = dev_to_node(priv->device);
2014         pp_params.dev = priv->device;
2015         pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
2016         pp_params.offset = stmmac_rx_offset(priv);
2017         pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages);
2018
2019         rx_q->page_pool = page_pool_create(&pp_params);
2020         if (IS_ERR(rx_q->page_pool)) {
2021                 ret = PTR_ERR(rx_q->page_pool);
2022                 rx_q->page_pool = NULL;
2023                 return ret;
2024         }
2025
2026         rx_q->buf_pool = kcalloc(dma_conf->dma_rx_size,
2027                                  sizeof(*rx_q->buf_pool),
2028                                  GFP_KERNEL);
2029         if (!rx_q->buf_pool)
2030                 return -ENOMEM;
2031
2032         if (priv->extend_desc) {
2033                 rx_q->dma_erx = dma_alloc_coherent(priv->device,
2034                                                    dma_conf->dma_rx_size *
2035                                                    sizeof(struct dma_extended_desc),
2036                                                    &rx_q->dma_rx_phy,
2037                                                    GFP_KERNEL);
2038                 if (!rx_q->dma_erx)
2039                         return -ENOMEM;
2040
2041         } else {
2042                 rx_q->dma_rx = dma_alloc_coherent(priv->device,
2043                                                   dma_conf->dma_rx_size *
2044                                                   sizeof(struct dma_desc),
2045                                                   &rx_q->dma_rx_phy,
2046                                                   GFP_KERNEL);
2047                 if (!rx_q->dma_rx)
2048                         return -ENOMEM;
2049         }
2050
2051         if (stmmac_xdp_is_enabled(priv) &&
2052             test_bit(queue, priv->af_xdp_zc_qps))
2053                 napi_id = ch->rxtx_napi.napi_id;
2054         else
2055                 napi_id = ch->rx_napi.napi_id;
2056
2057         ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev,
2058                                rx_q->queue_index,
2059                                napi_id);
2060         if (ret) {
2061                 netdev_err(priv->dev, "Failed to register xdp rxq info\n");
2062                 return -EINVAL;
2063         }
2064
2065         return 0;
2066 }
2067
2068 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv,
2069                                        struct stmmac_dma_conf *dma_conf)
2070 {
2071         u32 rx_count = priv->plat->rx_queues_to_use;
2072         u32 queue;
2073         int ret;
2074
2075         /* RX queues buffers and DMA */
2076         for (queue = 0; queue < rx_count; queue++) {
2077                 ret = __alloc_dma_rx_desc_resources(priv, dma_conf, queue);
2078                 if (ret)
2079                         goto err_dma;
2080         }
2081
2082         return 0;
2083
2084 err_dma:
2085         free_dma_rx_desc_resources(priv, dma_conf);
2086
2087         return ret;
2088 }
2089
2090 /**
2091  * __alloc_dma_tx_desc_resources - alloc TX resources (per queue).
2092  * @priv: private structure
2093  * @dma_conf: structure to take the dma data
2094  * @queue: TX queue index
2095  * Description: according to which descriptor can be used (extend or basic)
2096  * this function allocates the resources for TX and RX paths. In case of
2097  * reception, for example, it pre-allocated the RX socket buffer in order to
2098  * allow zero-copy mechanism.
2099  */
2100 static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv,
2101                                          struct stmmac_dma_conf *dma_conf,
2102                                          u32 queue)
2103 {
2104         struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
2105         size_t size;
2106         void *addr;
2107
2108         tx_q->queue_index = queue;
2109         tx_q->priv_data = priv;
2110
2111         tx_q->tx_skbuff_dma = kcalloc(dma_conf->dma_tx_size,
2112                                       sizeof(*tx_q->tx_skbuff_dma),
2113                                       GFP_KERNEL);
2114         if (!tx_q->tx_skbuff_dma)
2115                 return -ENOMEM;
2116
2117         tx_q->tx_skbuff = kcalloc(dma_conf->dma_tx_size,
2118                                   sizeof(struct sk_buff *),
2119                                   GFP_KERNEL);
2120         if (!tx_q->tx_skbuff)
2121                 return -ENOMEM;
2122
2123         if (priv->extend_desc)
2124                 size = sizeof(struct dma_extended_desc);
2125         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2126                 size = sizeof(struct dma_edesc);
2127         else
2128                 size = sizeof(struct dma_desc);
2129
2130         size *= dma_conf->dma_tx_size;
2131
2132         addr = dma_alloc_coherent(priv->device, size,
2133                                   &tx_q->dma_tx_phy, GFP_KERNEL);
2134         if (!addr)
2135                 return -ENOMEM;
2136
2137         if (priv->extend_desc)
2138                 tx_q->dma_etx = addr;
2139         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2140                 tx_q->dma_entx = addr;
2141         else
2142                 tx_q->dma_tx = addr;
2143
2144         return 0;
2145 }
2146
2147 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv,
2148                                        struct stmmac_dma_conf *dma_conf)
2149 {
2150         u32 tx_count = priv->plat->tx_queues_to_use;
2151         u32 queue;
2152         int ret;
2153
2154         /* TX queues buffers and DMA */
2155         for (queue = 0; queue < tx_count; queue++) {
2156                 ret = __alloc_dma_tx_desc_resources(priv, dma_conf, queue);
2157                 if (ret)
2158                         goto err_dma;
2159         }
2160
2161         return 0;
2162
2163 err_dma:
2164         free_dma_tx_desc_resources(priv, dma_conf);
2165         return ret;
2166 }
2167
2168 /**
2169  * alloc_dma_desc_resources - alloc TX/RX resources.
2170  * @priv: private structure
2171  * @dma_conf: structure to take the dma data
2172  * Description: according to which descriptor can be used (extend or basic)
2173  * this function allocates the resources for TX and RX paths. In case of
2174  * reception, for example, it pre-allocated the RX socket buffer in order to
2175  * allow zero-copy mechanism.
2176  */
2177 static int alloc_dma_desc_resources(struct stmmac_priv *priv,
2178                                     struct stmmac_dma_conf *dma_conf)
2179 {
2180         /* RX Allocation */
2181         int ret = alloc_dma_rx_desc_resources(priv, dma_conf);
2182
2183         if (ret)
2184                 return ret;
2185
2186         ret = alloc_dma_tx_desc_resources(priv, dma_conf);
2187
2188         return ret;
2189 }
2190
2191 /**
2192  * free_dma_desc_resources - free dma desc resources
2193  * @priv: private structure
2194  * @dma_conf: structure to take the dma data
2195  */
2196 static void free_dma_desc_resources(struct stmmac_priv *priv,
2197                                     struct stmmac_dma_conf *dma_conf)
2198 {
2199         /* Release the DMA TX socket buffers */
2200         free_dma_tx_desc_resources(priv, dma_conf);
2201
2202         /* Release the DMA RX socket buffers later
2203          * to ensure all pending XDP_TX buffers are returned.
2204          */
2205         free_dma_rx_desc_resources(priv, dma_conf);
2206 }
2207
2208 /**
2209  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
2210  *  @priv: driver private structure
2211  *  Description: It is used for enabling the rx queues in the MAC
2212  */
2213 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
2214 {
2215         u32 rx_queues_count = priv->plat->rx_queues_to_use;
2216         int queue;
2217         u8 mode;
2218
2219         for (queue = 0; queue < rx_queues_count; queue++) {
2220                 mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
2221                 stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
2222         }
2223 }
2224
2225 /**
2226  * stmmac_start_rx_dma - start RX DMA channel
2227  * @priv: driver private structure
2228  * @chan: RX channel index
2229  * Description:
2230  * This starts a RX DMA channel
2231  */
2232 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
2233 {
2234         netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
2235         stmmac_start_rx(priv, priv->ioaddr, chan);
2236 }
2237
2238 /**
2239  * stmmac_start_tx_dma - start TX DMA channel
2240  * @priv: driver private structure
2241  * @chan: TX channel index
2242  * Description:
2243  * This starts a TX DMA channel
2244  */
2245 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
2246 {
2247         netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
2248         stmmac_start_tx(priv, priv->ioaddr, chan);
2249 }
2250
2251 /**
2252  * stmmac_stop_rx_dma - stop RX DMA channel
2253  * @priv: driver private structure
2254  * @chan: RX channel index
2255  * Description:
2256  * This stops a RX DMA channel
2257  */
2258 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
2259 {
2260         netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
2261         stmmac_stop_rx(priv, priv->ioaddr, chan);
2262 }
2263
2264 /**
2265  * stmmac_stop_tx_dma - stop TX DMA channel
2266  * @priv: driver private structure
2267  * @chan: TX channel index
2268  * Description:
2269  * This stops a TX DMA channel
2270  */
2271 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
2272 {
2273         netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
2274         stmmac_stop_tx(priv, priv->ioaddr, chan);
2275 }
2276
2277 static void stmmac_enable_all_dma_irq(struct stmmac_priv *priv)
2278 {
2279         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2280         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2281         u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2282         u32 chan;
2283
2284         for (chan = 0; chan < dma_csr_ch; chan++) {
2285                 struct stmmac_channel *ch = &priv->channel[chan];
2286                 unsigned long flags;
2287
2288                 spin_lock_irqsave(&ch->lock, flags);
2289                 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2290                 spin_unlock_irqrestore(&ch->lock, flags);
2291         }
2292 }
2293
2294 /**
2295  * stmmac_start_all_dma - start all RX and TX DMA channels
2296  * @priv: driver private structure
2297  * Description:
2298  * This starts all the RX and TX DMA channels
2299  */
2300 static void stmmac_start_all_dma(struct stmmac_priv *priv)
2301 {
2302         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2303         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2304         u32 chan = 0;
2305
2306         for (chan = 0; chan < rx_channels_count; chan++)
2307                 stmmac_start_rx_dma(priv, chan);
2308
2309         for (chan = 0; chan < tx_channels_count; chan++)
2310                 stmmac_start_tx_dma(priv, chan);
2311 }
2312
2313 /**
2314  * stmmac_stop_all_dma - stop all RX and TX DMA channels
2315  * @priv: driver private structure
2316  * Description:
2317  * This stops the RX and TX DMA channels
2318  */
2319 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
2320 {
2321         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2322         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2323         u32 chan = 0;
2324
2325         for (chan = 0; chan < rx_channels_count; chan++)
2326                 stmmac_stop_rx_dma(priv, chan);
2327
2328         for (chan = 0; chan < tx_channels_count; chan++)
2329                 stmmac_stop_tx_dma(priv, chan);
2330 }
2331
2332 /**
2333  *  stmmac_dma_operation_mode - HW DMA operation mode
2334  *  @priv: driver private structure
2335  *  Description: it is used for configuring the DMA operation mode register in
2336  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
2337  */
2338 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
2339 {
2340         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2341         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2342         int rxfifosz = priv->plat->rx_fifo_size;
2343         int txfifosz = priv->plat->tx_fifo_size;
2344         u32 txmode = 0;
2345         u32 rxmode = 0;
2346         u32 chan = 0;
2347         u8 qmode = 0;
2348
2349         if (rxfifosz == 0)
2350                 rxfifosz = priv->dma_cap.rx_fifo_size;
2351         if (txfifosz == 0)
2352                 txfifosz = priv->dma_cap.tx_fifo_size;
2353
2354         /* Adjust for real per queue fifo size */
2355         rxfifosz /= rx_channels_count;
2356         txfifosz /= tx_channels_count;
2357
2358         if (priv->plat->force_thresh_dma_mode) {
2359                 txmode = tc;
2360                 rxmode = tc;
2361         } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
2362                 /*
2363                  * In case of GMAC, SF mode can be enabled
2364                  * to perform the TX COE in HW. This depends on:
2365                  * 1) TX COE if actually supported
2366                  * 2) There is no bugged Jumbo frame support
2367                  *    that needs to not insert csum in the TDES.
2368                  */
2369                 txmode = SF_DMA_MODE;
2370                 rxmode = SF_DMA_MODE;
2371                 priv->xstats.threshold = SF_DMA_MODE;
2372         } else {
2373                 txmode = tc;
2374                 rxmode = SF_DMA_MODE;
2375         }
2376
2377         /* configure all channels */
2378         for (chan = 0; chan < rx_channels_count; chan++) {
2379                 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan];
2380                 u32 buf_size;
2381
2382                 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2383
2384                 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
2385                                 rxfifosz, qmode);
2386
2387                 if (rx_q->xsk_pool) {
2388                         buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
2389                         stmmac_set_dma_bfsize(priv, priv->ioaddr,
2390                                               buf_size,
2391                                               chan);
2392                 } else {
2393                         stmmac_set_dma_bfsize(priv, priv->ioaddr,
2394                                               priv->dma_conf.dma_buf_sz,
2395                                               chan);
2396                 }
2397         }
2398
2399         for (chan = 0; chan < tx_channels_count; chan++) {
2400                 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2401
2402                 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
2403                                 txfifosz, qmode);
2404         }
2405 }
2406
2407 static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
2408 {
2409         struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue);
2410         struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2411         struct xsk_buff_pool *pool = tx_q->xsk_pool;
2412         unsigned int entry = tx_q->cur_tx;
2413         struct dma_desc *tx_desc = NULL;
2414         struct xdp_desc xdp_desc;
2415         bool work_done = true;
2416
2417         /* Avoids TX time-out as we are sharing with slow path */
2418         txq_trans_cond_update(nq);
2419
2420         budget = min(budget, stmmac_tx_avail(priv, queue));
2421
2422         while (budget-- > 0) {
2423                 dma_addr_t dma_addr;
2424                 bool set_ic;
2425
2426                 /* We are sharing with slow path and stop XSK TX desc submission when
2427                  * available TX ring is less than threshold.
2428                  */
2429                 if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) ||
2430                     !netif_carrier_ok(priv->dev)) {
2431                         work_done = false;
2432                         break;
2433                 }
2434
2435                 if (!xsk_tx_peek_desc(pool, &xdp_desc))
2436                         break;
2437
2438                 if (likely(priv->extend_desc))
2439                         tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
2440                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2441                         tx_desc = &tx_q->dma_entx[entry].basic;
2442                 else
2443                         tx_desc = tx_q->dma_tx + entry;
2444
2445                 dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2446                 xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len);
2447
2448                 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX;
2449
2450                 /* To return XDP buffer to XSK pool, we simple call
2451                  * xsk_tx_completed(), so we don't need to fill up
2452                  * 'buf' and 'xdpf'.
2453                  */
2454                 tx_q->tx_skbuff_dma[entry].buf = 0;
2455                 tx_q->xdpf[entry] = NULL;
2456
2457                 tx_q->tx_skbuff_dma[entry].map_as_page = false;
2458                 tx_q->tx_skbuff_dma[entry].len = xdp_desc.len;
2459                 tx_q->tx_skbuff_dma[entry].last_segment = true;
2460                 tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2461
2462                 stmmac_set_desc_addr(priv, tx_desc, dma_addr);
2463
2464                 tx_q->tx_count_frames++;
2465
2466                 if (!priv->tx_coal_frames[queue])
2467                         set_ic = false;
2468                 else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
2469                         set_ic = true;
2470                 else
2471                         set_ic = false;
2472
2473                 if (set_ic) {
2474                         tx_q->tx_count_frames = 0;
2475                         stmmac_set_tx_ic(priv, tx_desc);
2476                         priv->xstats.tx_set_ic_bit++;
2477                 }
2478
2479                 stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len,
2480                                        true, priv->mode, true, true,
2481                                        xdp_desc.len);
2482
2483                 stmmac_enable_dma_transmission(priv, priv->ioaddr);
2484
2485                 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
2486                 entry = tx_q->cur_tx;
2487         }
2488
2489         if (tx_desc) {
2490                 stmmac_flush_tx_descriptors(priv, queue);
2491                 xsk_tx_release(pool);
2492         }
2493
2494         /* Return true if all of the 3 conditions are met
2495          *  a) TX Budget is still available
2496          *  b) work_done = true when XSK TX desc peek is empty (no more
2497          *     pending XSK TX for transmission)
2498          */
2499         return !!budget && work_done;
2500 }
2501
2502 static void stmmac_bump_dma_threshold(struct stmmac_priv *priv, u32 chan)
2503 {
2504         if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && tc <= 256) {
2505                 tc += 64;
2506
2507                 if (priv->plat->force_thresh_dma_mode)
2508                         stmmac_set_dma_operation_mode(priv, tc, tc, chan);
2509                 else
2510                         stmmac_set_dma_operation_mode(priv, tc, SF_DMA_MODE,
2511                                                       chan);
2512
2513                 priv->xstats.threshold = tc;
2514         }
2515 }
2516
2517 /**
2518  * stmmac_tx_clean - to manage the transmission completion
2519  * @priv: driver private structure
2520  * @budget: napi budget limiting this functions packet handling
2521  * @queue: TX queue index
2522  * Description: it reclaims the transmit resources after transmission completes.
2523  */
2524 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
2525 {
2526         struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2527         unsigned int bytes_compl = 0, pkts_compl = 0;
2528         unsigned int entry, xmits = 0, count = 0;
2529
2530         __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
2531
2532         priv->xstats.tx_clean++;
2533
2534         tx_q->xsk_frames_done = 0;
2535
2536         entry = tx_q->dirty_tx;
2537
2538         /* Try to clean all TX complete frame in 1 shot */
2539         while ((entry != tx_q->cur_tx) && count < priv->dma_conf.dma_tx_size) {
2540                 struct xdp_frame *xdpf;
2541                 struct sk_buff *skb;
2542                 struct dma_desc *p;
2543                 int status;
2544
2545                 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX ||
2546                     tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2547                         xdpf = tx_q->xdpf[entry];
2548                         skb = NULL;
2549                 } else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2550                         xdpf = NULL;
2551                         skb = tx_q->tx_skbuff[entry];
2552                 } else {
2553                         xdpf = NULL;
2554                         skb = NULL;
2555                 }
2556
2557                 if (priv->extend_desc)
2558                         p = (struct dma_desc *)(tx_q->dma_etx + entry);
2559                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2560                         p = &tx_q->dma_entx[entry].basic;
2561                 else
2562                         p = tx_q->dma_tx + entry;
2563
2564                 status = stmmac_tx_status(priv, &priv->dev->stats,
2565                                 &priv->xstats, p, priv->ioaddr);
2566                 /* Check if the descriptor is owned by the DMA */
2567                 if (unlikely(status & tx_dma_own))
2568                         break;
2569
2570                 count++;
2571
2572                 /* Make sure descriptor fields are read after reading
2573                  * the own bit.
2574                  */
2575                 dma_rmb();
2576
2577                 /* Just consider the last segment and ...*/
2578                 if (likely(!(status & tx_not_ls))) {
2579                         /* ... verify the status error condition */
2580                         if (unlikely(status & tx_err)) {
2581                                 priv->dev->stats.tx_errors++;
2582                                 if (unlikely(status & tx_err_bump_tc))
2583                                         stmmac_bump_dma_threshold(priv, queue);
2584                         } else {
2585                                 priv->dev->stats.tx_packets++;
2586                                 priv->xstats.tx_pkt_n++;
2587                                 priv->xstats.txq_stats[queue].tx_pkt_n++;
2588                         }
2589                         if (skb)
2590                                 stmmac_get_tx_hwtstamp(priv, p, skb);
2591                 }
2592
2593                 if (likely(tx_q->tx_skbuff_dma[entry].buf &&
2594                            tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) {
2595                         if (tx_q->tx_skbuff_dma[entry].map_as_page)
2596                                 dma_unmap_page(priv->device,
2597                                                tx_q->tx_skbuff_dma[entry].buf,
2598                                                tx_q->tx_skbuff_dma[entry].len,
2599                                                DMA_TO_DEVICE);
2600                         else
2601                                 dma_unmap_single(priv->device,
2602                                                  tx_q->tx_skbuff_dma[entry].buf,
2603                                                  tx_q->tx_skbuff_dma[entry].len,
2604                                                  DMA_TO_DEVICE);
2605                         tx_q->tx_skbuff_dma[entry].buf = 0;
2606                         tx_q->tx_skbuff_dma[entry].len = 0;
2607                         tx_q->tx_skbuff_dma[entry].map_as_page = false;
2608                 }
2609
2610                 stmmac_clean_desc3(priv, tx_q, p);
2611
2612                 tx_q->tx_skbuff_dma[entry].last_segment = false;
2613                 tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2614
2615                 if (xdpf &&
2616                     tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) {
2617                         xdp_return_frame_rx_napi(xdpf);
2618                         tx_q->xdpf[entry] = NULL;
2619                 }
2620
2621                 if (xdpf &&
2622                     tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2623                         xdp_return_frame(xdpf);
2624                         tx_q->xdpf[entry] = NULL;
2625                 }
2626
2627                 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX)
2628                         tx_q->xsk_frames_done++;
2629
2630                 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2631                         if (likely(skb)) {
2632                                 pkts_compl++;
2633                                 bytes_compl += skb->len;
2634                                 dev_consume_skb_any(skb);
2635                                 tx_q->tx_skbuff[entry] = NULL;
2636                         }
2637                 }
2638
2639                 stmmac_release_tx_desc(priv, p, priv->mode);
2640
2641                 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
2642         }
2643         tx_q->dirty_tx = entry;
2644
2645         netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2646                                   pkts_compl, bytes_compl);
2647
2648         if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2649                                                                 queue))) &&
2650             stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) {
2651
2652                 netif_dbg(priv, tx_done, priv->dev,
2653                           "%s: restart transmit\n", __func__);
2654                 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2655         }
2656
2657         if (tx_q->xsk_pool) {
2658                 bool work_done;
2659
2660                 if (tx_q->xsk_frames_done)
2661                         xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
2662
2663                 if (xsk_uses_need_wakeup(tx_q->xsk_pool))
2664                         xsk_set_tx_need_wakeup(tx_q->xsk_pool);
2665
2666                 /* For XSK TX, we try to send as many as possible.
2667                  * If XSK work done (XSK TX desc empty and budget still
2668                  * available), return "budget - 1" to reenable TX IRQ.
2669                  * Else, return "budget" to make NAPI continue polling.
2670                  */
2671                 work_done = stmmac_xdp_xmit_zc(priv, queue,
2672                                                STMMAC_XSK_TX_BUDGET_MAX);
2673                 if (work_done)
2674                         xmits = budget - 1;
2675                 else
2676                         xmits = budget;
2677         }
2678
2679         if (priv->eee_enabled && !priv->tx_path_in_lpi_mode &&
2680             priv->eee_sw_timer_en) {
2681                 if (stmmac_enable_eee_mode(priv))
2682                         mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
2683         }
2684
2685         /* We still have pending packets, let's call for a new scheduling */
2686         if (tx_q->dirty_tx != tx_q->cur_tx)
2687                 hrtimer_start(&tx_q->txtimer,
2688                               STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2689                               HRTIMER_MODE_REL);
2690
2691         __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2692
2693         /* Combine decisions from TX clean and XSK TX */
2694         return max(count, xmits);
2695 }
2696
2697 /**
2698  * stmmac_tx_err - to manage the tx error
2699  * @priv: driver private structure
2700  * @chan: channel index
2701  * Description: it cleans the descriptors and restarts the transmission
2702  * in case of transmission errors.
2703  */
2704 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2705 {
2706         struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
2707
2708         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2709
2710         stmmac_stop_tx_dma(priv, chan);
2711         dma_free_tx_skbufs(priv, &priv->dma_conf, chan);
2712         stmmac_clear_tx_descriptors(priv, &priv->dma_conf, chan);
2713         stmmac_reset_tx_queue(priv, chan);
2714         stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2715                             tx_q->dma_tx_phy, chan);
2716         stmmac_start_tx_dma(priv, chan);
2717
2718         priv->dev->stats.tx_errors++;
2719         netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2720 }
2721
2722 /**
2723  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2724  *  @priv: driver private structure
2725  *  @txmode: TX operating mode
2726  *  @rxmode: RX operating mode
2727  *  @chan: channel index
2728  *  Description: it is used for configuring of the DMA operation mode in
2729  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2730  *  mode.
2731  */
2732 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2733                                           u32 rxmode, u32 chan)
2734 {
2735         u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2736         u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2737         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2738         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2739         int rxfifosz = priv->plat->rx_fifo_size;
2740         int txfifosz = priv->plat->tx_fifo_size;
2741
2742         if (rxfifosz == 0)
2743                 rxfifosz = priv->dma_cap.rx_fifo_size;
2744         if (txfifosz == 0)
2745                 txfifosz = priv->dma_cap.tx_fifo_size;
2746
2747         /* Adjust for real per queue fifo size */
2748         rxfifosz /= rx_channels_count;
2749         txfifosz /= tx_channels_count;
2750
2751         stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2752         stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2753 }
2754
2755 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2756 {
2757         int ret;
2758
2759         ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2760                         priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2761         if (ret && (ret != -EINVAL)) {
2762                 stmmac_global_err(priv);
2763                 return true;
2764         }
2765
2766         return false;
2767 }
2768
2769 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir)
2770 {
2771         int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2772                                                  &priv->xstats, chan, dir);
2773         struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan];
2774         struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
2775         struct stmmac_channel *ch = &priv->channel[chan];
2776         struct napi_struct *rx_napi;
2777         struct napi_struct *tx_napi;
2778         unsigned long flags;
2779
2780         rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi;
2781         tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2782
2783         if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2784                 if (napi_schedule_prep(rx_napi)) {
2785                         spin_lock_irqsave(&ch->lock, flags);
2786                         stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2787                         spin_unlock_irqrestore(&ch->lock, flags);
2788                         __napi_schedule(rx_napi);
2789                 }
2790         }
2791
2792         if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2793                 if (napi_schedule_prep(tx_napi)) {
2794                         spin_lock_irqsave(&ch->lock, flags);
2795                         stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2796                         spin_unlock_irqrestore(&ch->lock, flags);
2797                         __napi_schedule(tx_napi);
2798                 }
2799         }
2800
2801         return status;
2802 }
2803
2804 /**
2805  * stmmac_dma_interrupt - DMA ISR
2806  * @priv: driver private structure
2807  * Description: this is the DMA ISR. It is called by the main ISR.
2808  * It calls the dwmac dma routine and schedule poll method in case of some
2809  * work can be done.
2810  */
2811 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2812 {
2813         u32 tx_channel_count = priv->plat->tx_queues_to_use;
2814         u32 rx_channel_count = priv->plat->rx_queues_to_use;
2815         u32 channels_to_check = tx_channel_count > rx_channel_count ?
2816                                 tx_channel_count : rx_channel_count;
2817         u32 chan;
2818         int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2819
2820         /* Make sure we never check beyond our status buffer. */
2821         if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2822                 channels_to_check = ARRAY_SIZE(status);
2823
2824         for (chan = 0; chan < channels_to_check; chan++)
2825                 status[chan] = stmmac_napi_check(priv, chan,
2826                                                  DMA_DIR_RXTX);
2827
2828         for (chan = 0; chan < tx_channel_count; chan++) {
2829                 if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2830                         /* Try to bump up the dma threshold on this failure */
2831                         stmmac_bump_dma_threshold(priv, chan);
2832                 } else if (unlikely(status[chan] == tx_hard_error)) {
2833                         stmmac_tx_err(priv, chan);
2834                 }
2835         }
2836 }
2837
2838 /**
2839  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2840  * @priv: driver private structure
2841  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2842  */
2843 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2844 {
2845         unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2846                             MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2847
2848         stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2849
2850         if (priv->dma_cap.rmon) {
2851                 stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2852                 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2853         } else
2854                 netdev_info(priv->dev, "No MAC Management Counters available\n");
2855 }
2856
2857 /**
2858  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2859  * @priv: driver private structure
2860  * Description:
2861  *  new GMAC chip generations have a new register to indicate the
2862  *  presence of the optional feature/functions.
2863  *  This can be also used to override the value passed through the
2864  *  platform and necessary for old MAC10/100 and GMAC chips.
2865  */
2866 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2867 {
2868         return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2869 }
2870
2871 /**
2872  * stmmac_check_ether_addr - check if the MAC addr is valid
2873  * @priv: driver private structure
2874  * Description:
2875  * it is to verify if the MAC address is valid, in case of failures it
2876  * generates a random MAC address
2877  */
2878 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2879 {
2880         u8 addr[ETH_ALEN];
2881
2882         if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2883                 stmmac_get_umac_addr(priv, priv->hw, addr, 0);
2884                 if (is_valid_ether_addr(addr))
2885                         eth_hw_addr_set(priv->dev, addr);
2886                 else
2887                         eth_hw_addr_random(priv->dev);
2888                 dev_info(priv->device, "device MAC address %pM\n",
2889                          priv->dev->dev_addr);
2890         }
2891 }
2892
2893 /**
2894  * stmmac_init_dma_engine - DMA init.
2895  * @priv: driver private structure
2896  * Description:
2897  * It inits the DMA invoking the specific MAC/GMAC callback.
2898  * Some DMA parameters can be passed from the platform;
2899  * in case of these are not passed a default is kept for the MAC or GMAC.
2900  */
2901 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2902 {
2903         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2904         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2905         u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2906         struct stmmac_rx_queue *rx_q;
2907         struct stmmac_tx_queue *tx_q;
2908         u32 chan = 0;
2909         int atds = 0;
2910         int ret = 0;
2911
2912         if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2913                 dev_err(priv->device, "Invalid DMA configuration\n");
2914                 return -EINVAL;
2915         }
2916
2917         if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2918                 atds = 1;
2919
2920         ret = stmmac_reset(priv, priv->ioaddr);
2921         if (ret) {
2922                 dev_err(priv->device, "Failed to reset the dma\n");
2923                 return ret;
2924         }
2925
2926         /* DMA Configuration */
2927         stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2928
2929         if (priv->plat->axi)
2930                 stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2931
2932         /* DMA CSR Channel configuration */
2933         for (chan = 0; chan < dma_csr_ch; chan++) {
2934                 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2935                 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2936         }
2937
2938         /* DMA RX Channel Configuration */
2939         for (chan = 0; chan < rx_channels_count; chan++) {
2940                 rx_q = &priv->dma_conf.rx_queue[chan];
2941
2942                 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2943                                     rx_q->dma_rx_phy, chan);
2944
2945                 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2946                                      (rx_q->buf_alloc_num *
2947                                       sizeof(struct dma_desc));
2948                 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2949                                        rx_q->rx_tail_addr, chan);
2950         }
2951
2952         /* DMA TX Channel Configuration */
2953         for (chan = 0; chan < tx_channels_count; chan++) {
2954                 tx_q = &priv->dma_conf.tx_queue[chan];
2955
2956                 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2957                                     tx_q->dma_tx_phy, chan);
2958
2959                 tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2960                 stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2961                                        tx_q->tx_tail_addr, chan);
2962         }
2963
2964         return ret;
2965 }
2966
2967 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2968 {
2969         struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2970
2971         hrtimer_start(&tx_q->txtimer,
2972                       STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2973                       HRTIMER_MODE_REL);
2974 }
2975
2976 /**
2977  * stmmac_tx_timer - mitigation sw timer for tx.
2978  * @t: data pointer
2979  * Description:
2980  * This is the timer handler to directly invoke the stmmac_tx_clean.
2981  */
2982 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t)
2983 {
2984         struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer);
2985         struct stmmac_priv *priv = tx_q->priv_data;
2986         struct stmmac_channel *ch;
2987         struct napi_struct *napi;
2988
2989         ch = &priv->channel[tx_q->queue_index];
2990         napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2991
2992         if (likely(napi_schedule_prep(napi))) {
2993                 unsigned long flags;
2994
2995                 spin_lock_irqsave(&ch->lock, flags);
2996                 stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
2997                 spin_unlock_irqrestore(&ch->lock, flags);
2998                 __napi_schedule(napi);
2999         }
3000
3001         return HRTIMER_NORESTART;
3002 }
3003
3004 /**
3005  * stmmac_init_coalesce - init mitigation options.
3006  * @priv: driver private structure
3007  * Description:
3008  * This inits the coalesce parameters: i.e. timer rate,
3009  * timer handler and default threshold used for enabling the
3010  * interrupt on completion bit.
3011  */
3012 static void stmmac_init_coalesce(struct stmmac_priv *priv)
3013 {
3014         u32 tx_channel_count = priv->plat->tx_queues_to_use;
3015         u32 rx_channel_count = priv->plat->rx_queues_to_use;
3016         u32 chan;
3017
3018         for (chan = 0; chan < tx_channel_count; chan++) {
3019                 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3020
3021                 priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES;
3022                 priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER;
3023
3024                 hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3025                 tx_q->txtimer.function = stmmac_tx_timer;
3026         }
3027
3028         for (chan = 0; chan < rx_channel_count; chan++)
3029                 priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES;
3030 }
3031
3032 static void stmmac_set_rings_length(struct stmmac_priv *priv)
3033 {
3034         u32 rx_channels_count = priv->plat->rx_queues_to_use;
3035         u32 tx_channels_count = priv->plat->tx_queues_to_use;
3036         u32 chan;
3037
3038         /* set TX ring length */
3039         for (chan = 0; chan < tx_channels_count; chan++)
3040                 stmmac_set_tx_ring_len(priv, priv->ioaddr,
3041                                        (priv->dma_conf.dma_tx_size - 1), chan);
3042
3043         /* set RX ring length */
3044         for (chan = 0; chan < rx_channels_count; chan++)
3045                 stmmac_set_rx_ring_len(priv, priv->ioaddr,
3046                                        (priv->dma_conf.dma_rx_size - 1), chan);
3047 }
3048
3049 /**
3050  *  stmmac_set_tx_queue_weight - Set TX queue weight
3051  *  @priv: driver private structure
3052  *  Description: It is used for setting TX queues weight
3053  */
3054 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
3055 {
3056         u32 tx_queues_count = priv->plat->tx_queues_to_use;
3057         u32 weight;
3058         u32 queue;
3059
3060         for (queue = 0; queue < tx_queues_count; queue++) {
3061                 weight = priv->plat->tx_queues_cfg[queue].weight;
3062                 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
3063         }
3064 }
3065
3066 /**
3067  *  stmmac_configure_cbs - Configure CBS in TX queue
3068  *  @priv: driver private structure
3069  *  Description: It is used for configuring CBS in AVB TX queues
3070  */
3071 static void stmmac_configure_cbs(struct stmmac_priv *priv)
3072 {
3073         u32 tx_queues_count = priv->plat->tx_queues_to_use;
3074         u32 mode_to_use;
3075         u32 queue;
3076
3077         /* queue 0 is reserved for legacy traffic */
3078         for (queue = 1; queue < tx_queues_count; queue++) {
3079                 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
3080                 if (mode_to_use == MTL_QUEUE_DCB)
3081                         continue;
3082
3083                 stmmac_config_cbs(priv, priv->hw,
3084                                 priv->plat->tx_queues_cfg[queue].send_slope,
3085                                 priv->plat->tx_queues_cfg[queue].idle_slope,
3086                                 priv->plat->tx_queues_cfg[queue].high_credit,
3087                                 priv->plat->tx_queues_cfg[queue].low_credit,
3088                                 queue);
3089         }
3090 }
3091
3092 /**
3093  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
3094  *  @priv: driver private structure
3095  *  Description: It is used for mapping RX queues to RX dma channels
3096  */
3097 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
3098 {
3099         u32 rx_queues_count = priv->plat->rx_queues_to_use;
3100         u32 queue;
3101         u32 chan;
3102
3103         for (queue = 0; queue < rx_queues_count; queue++) {
3104                 chan = priv->plat->rx_queues_cfg[queue].chan;
3105                 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
3106         }
3107 }
3108
3109 /**
3110  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
3111  *  @priv: driver private structure
3112  *  Description: It is used for configuring the RX Queue Priority
3113  */
3114 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
3115 {
3116         u32 rx_queues_count = priv->plat->rx_queues_to_use;
3117         u32 queue;
3118         u32 prio;
3119
3120         for (queue = 0; queue < rx_queues_count; queue++) {
3121                 if (!priv->plat->rx_queues_cfg[queue].use_prio)
3122                         continue;
3123
3124                 prio = priv->plat->rx_queues_cfg[queue].prio;
3125                 stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
3126         }
3127 }
3128
3129 /**
3130  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
3131  *  @priv: driver private structure
3132  *  Description: It is used for configuring the TX Queue Priority
3133  */
3134 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
3135 {
3136         u32 tx_queues_count = priv->plat->tx_queues_to_use;
3137         u32 queue;
3138         u32 prio;
3139
3140         for (queue = 0; queue < tx_queues_count; queue++) {
3141                 if (!priv->plat->tx_queues_cfg[queue].use_prio)
3142                         continue;
3143
3144                 prio = priv->plat->tx_queues_cfg[queue].prio;
3145                 stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
3146         }
3147 }
3148
3149 /**
3150  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
3151  *  @priv: driver private structure
3152  *  Description: It is used for configuring the RX queue routing
3153  */
3154 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
3155 {
3156         u32 rx_queues_count = priv->plat->rx_queues_to_use;
3157         u32 queue;
3158         u8 packet;
3159
3160         for (queue = 0; queue < rx_queues_count; queue++) {
3161                 /* no specific packet type routing specified for the queue */
3162                 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
3163                         continue;
3164
3165                 packet = priv->plat->rx_queues_cfg[queue].pkt_route;
3166                 stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
3167         }
3168 }
3169
3170 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
3171 {
3172         if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
3173                 priv->rss.enable = false;
3174                 return;
3175         }
3176
3177         if (priv->dev->features & NETIF_F_RXHASH)
3178                 priv->rss.enable = true;
3179         else
3180                 priv->rss.enable = false;
3181
3182         stmmac_rss_configure(priv, priv->hw, &priv->rss,
3183                              priv->plat->rx_queues_to_use);
3184 }
3185
3186 /**
3187  *  stmmac_mtl_configuration - Configure MTL
3188  *  @priv: driver private structure
3189  *  Description: It is used for configurring MTL
3190  */
3191 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
3192 {
3193         u32 rx_queues_count = priv->plat->rx_queues_to_use;
3194         u32 tx_queues_count = priv->plat->tx_queues_to_use;
3195
3196         if (tx_queues_count > 1)
3197                 stmmac_set_tx_queue_weight(priv);
3198
3199         /* Configure MTL RX algorithms */
3200         if (rx_queues_count > 1)
3201                 stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
3202                                 priv->plat->rx_sched_algorithm);
3203
3204         /* Configure MTL TX algorithms */
3205         if (tx_queues_count > 1)
3206                 stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
3207                                 priv->plat->tx_sched_algorithm);
3208
3209         /* Configure CBS in AVB TX queues */
3210         if (tx_queues_count > 1)
3211                 stmmac_configure_cbs(priv);
3212
3213         /* Map RX MTL to DMA channels */
3214         stmmac_rx_queue_dma_chan_map(priv);
3215
3216         /* Enable MAC RX Queues */
3217         stmmac_mac_enable_rx_queues(priv);
3218
3219         /* Set RX priorities */
3220         if (rx_queues_count > 1)
3221                 stmmac_mac_config_rx_queues_prio(priv);
3222
3223         /* Set TX priorities */
3224         if (tx_queues_count > 1)
3225                 stmmac_mac_config_tx_queues_prio(priv);
3226
3227         /* Set RX routing */
3228         if (rx_queues_count > 1)
3229                 stmmac_mac_config_rx_queues_routing(priv);
3230
3231         /* Receive Side Scaling */
3232         if (rx_queues_count > 1)
3233                 stmmac_mac_config_rss(priv);
3234 }
3235
3236 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
3237 {
3238         if (priv->dma_cap.asp) {
3239                 netdev_info(priv->dev, "Enabling Safety Features\n");
3240                 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp,
3241                                           priv->plat->safety_feat_cfg);
3242         } else {
3243                 netdev_info(priv->dev, "No Safety Features support found\n");
3244         }
3245 }
3246
3247 static int stmmac_fpe_start_wq(struct stmmac_priv *priv)
3248 {
3249         char *name;
3250
3251         clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
3252         clear_bit(__FPE_REMOVING,  &priv->fpe_task_state);
3253
3254         name = priv->wq_name;
3255         sprintf(name, "%s-fpe", priv->dev->name);
3256
3257         priv->fpe_wq = create_singlethread_workqueue(name);
3258         if (!priv->fpe_wq) {
3259                 netdev_err(priv->dev, "%s: Failed to create workqueue\n", name);
3260
3261                 return -ENOMEM;
3262         }
3263         netdev_info(priv->dev, "FPE workqueue start");
3264
3265         return 0;
3266 }
3267
3268 /**
3269  * stmmac_hw_setup - setup mac in a usable state.
3270  *  @dev : pointer to the device structure.
3271  *  @ptp_register: register PTP if set
3272  *  Description:
3273  *  this is the main function to setup the HW in a usable state because the
3274  *  dma engine is reset, the core registers are configured (e.g. AXI,
3275  *  Checksum features, timers). The DMA is ready to start receiving and
3276  *  transmitting.
3277  *  Return value:
3278  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3279  *  file on failure.
3280  */
3281 static int stmmac_hw_setup(struct net_device *dev, bool ptp_register)
3282 {
3283         struct stmmac_priv *priv = netdev_priv(dev);
3284         u32 rx_cnt = priv->plat->rx_queues_to_use;
3285         u32 tx_cnt = priv->plat->tx_queues_to_use;
3286         bool sph_en;
3287         u32 chan;
3288         int ret;
3289
3290         /* DMA initialization and SW reset */
3291         ret = stmmac_init_dma_engine(priv);
3292         if (ret < 0) {
3293                 netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
3294                            __func__);
3295                 return ret;
3296         }
3297
3298         /* Copy the MAC addr into the HW  */
3299         stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
3300
3301         /* PS and related bits will be programmed according to the speed */
3302         if (priv->hw->pcs) {
3303                 int speed = priv->plat->mac_port_sel_speed;
3304
3305                 if ((speed == SPEED_10) || (speed == SPEED_100) ||
3306                     (speed == SPEED_1000)) {
3307                         priv->hw->ps = speed;
3308                 } else {
3309                         dev_warn(priv->device, "invalid port speed\n");
3310                         priv->hw->ps = 0;
3311                 }
3312         }
3313
3314         /* Initialize the MAC Core */
3315         stmmac_core_init(priv, priv->hw, dev);
3316
3317         /* Initialize MTL*/
3318         stmmac_mtl_configuration(priv);
3319
3320         /* Initialize Safety Features */
3321         stmmac_safety_feat_configuration(priv);
3322
3323         ret = stmmac_rx_ipc(priv, priv->hw);
3324         if (!ret) {
3325                 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
3326                 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
3327                 priv->hw->rx_csum = 0;
3328         }
3329
3330         /* Enable the MAC Rx/Tx */
3331         stmmac_mac_set(priv, priv->ioaddr, true);
3332
3333         /* Set the HW DMA mode and the COE */
3334         stmmac_dma_operation_mode(priv);
3335
3336         stmmac_mmc_setup(priv);
3337
3338         if (ptp_register) {
3339                 ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
3340                 if (ret < 0)
3341                         netdev_warn(priv->dev,
3342                                     "failed to enable PTP reference clock: %pe\n",
3343                                     ERR_PTR(ret));
3344         }
3345
3346         ret = stmmac_init_ptp(priv);
3347         if (ret == -EOPNOTSUPP)
3348                 netdev_info(priv->dev, "PTP not supported by HW\n");
3349         else if (ret)
3350                 netdev_warn(priv->dev, "PTP init failed\n");
3351         else if (ptp_register)
3352                 stmmac_ptp_register(priv);
3353
3354         priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS;
3355
3356         /* Convert the timer from msec to usec */
3357         if (!priv->tx_lpi_timer)
3358                 priv->tx_lpi_timer = eee_timer * 1000;
3359
3360         if (priv->use_riwt) {
3361                 u32 queue;
3362
3363                 for (queue = 0; queue < rx_cnt; queue++) {
3364                         if (!priv->rx_riwt[queue])
3365                                 priv->rx_riwt[queue] = DEF_DMA_RIWT;
3366
3367                         stmmac_rx_watchdog(priv, priv->ioaddr,
3368                                            priv->rx_riwt[queue], queue);
3369                 }
3370         }
3371
3372         if (priv->hw->pcs)
3373                 stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
3374
3375         /* set TX and RX rings length */
3376         stmmac_set_rings_length(priv);
3377
3378         /* Enable TSO */
3379         if (priv->tso) {
3380                 for (chan = 0; chan < tx_cnt; chan++) {
3381                         struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3382
3383                         /* TSO and TBS cannot co-exist */
3384                         if (tx_q->tbs & STMMAC_TBS_AVAIL)
3385                                 continue;
3386
3387                         stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
3388                 }
3389         }
3390
3391         /* Enable Split Header */
3392         sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3393         for (chan = 0; chan < rx_cnt; chan++)
3394                 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3395
3396
3397         /* VLAN Tag Insertion */
3398         if (priv->dma_cap.vlins)
3399                 stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
3400
3401         /* TBS */
3402         for (chan = 0; chan < tx_cnt; chan++) {
3403                 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3404                 int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
3405
3406                 stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
3407         }
3408
3409         /* Configure real RX and TX queues */
3410         netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use);
3411         netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use);
3412
3413         /* Start the ball rolling... */
3414         stmmac_start_all_dma(priv);
3415
3416         if (priv->dma_cap.fpesel) {
3417                 stmmac_fpe_start_wq(priv);
3418
3419                 if (priv->plat->fpe_cfg->enable)
3420                         stmmac_fpe_handshake(priv, true);
3421         }
3422
3423         return 0;
3424 }
3425
3426 static void stmmac_hw_teardown(struct net_device *dev)
3427 {
3428         struct stmmac_priv *priv = netdev_priv(dev);
3429
3430         clk_disable_unprepare(priv->plat->clk_ptp_ref);
3431 }
3432
3433 static void stmmac_free_irq(struct net_device *dev,
3434                             enum request_irq_err irq_err, int irq_idx)
3435 {
3436         struct stmmac_priv *priv = netdev_priv(dev);
3437         int j;
3438
3439         switch (irq_err) {
3440         case REQ_IRQ_ERR_ALL:
3441                 irq_idx = priv->plat->tx_queues_to_use;
3442                 fallthrough;
3443         case REQ_IRQ_ERR_TX:
3444                 for (j = irq_idx - 1; j >= 0; j--) {
3445                         if (priv->tx_irq[j] > 0) {
3446                                 irq_set_affinity_hint(priv->tx_irq[j], NULL);
3447                                 free_irq(priv->tx_irq[j], &priv->dma_conf.tx_queue[j]);
3448                         }
3449                 }
3450                 irq_idx = priv->plat->rx_queues_to_use;
3451                 fallthrough;
3452         case REQ_IRQ_ERR_RX:
3453                 for (j = irq_idx - 1; j >= 0; j--) {
3454                         if (priv->rx_irq[j] > 0) {
3455                                 irq_set_affinity_hint(priv->rx_irq[j], NULL);
3456                                 free_irq(priv->rx_irq[j], &priv->dma_conf.rx_queue[j]);
3457                         }
3458                 }
3459
3460                 if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq)
3461                         free_irq(priv->sfty_ue_irq, dev);
3462                 fallthrough;
3463         case REQ_IRQ_ERR_SFTY_UE:
3464                 if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq)
3465                         free_irq(priv->sfty_ce_irq, dev);
3466                 fallthrough;
3467         case REQ_IRQ_ERR_SFTY_CE:
3468                 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq)
3469                         free_irq(priv->lpi_irq, dev);
3470                 fallthrough;
3471         case REQ_IRQ_ERR_LPI:
3472                 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq)
3473                         free_irq(priv->wol_irq, dev);
3474                 fallthrough;
3475         case REQ_IRQ_ERR_WOL:
3476                 free_irq(dev->irq, dev);
3477                 fallthrough;
3478         case REQ_IRQ_ERR_MAC:
3479         case REQ_IRQ_ERR_NO:
3480                 /* If MAC IRQ request error, no more IRQ to free */
3481                 break;
3482         }
3483 }
3484
3485 static int stmmac_request_irq_multi_msi(struct net_device *dev)
3486 {
3487         struct stmmac_priv *priv = netdev_priv(dev);
3488         enum request_irq_err irq_err;
3489         cpumask_t cpu_mask;
3490         int irq_idx = 0;
3491         char *int_name;
3492         int ret;
3493         int i;
3494
3495         /* For common interrupt */
3496         int_name = priv->int_name_mac;
3497         sprintf(int_name, "%s:%s", dev->name, "mac");
3498         ret = request_irq(dev->irq, stmmac_mac_interrupt,
3499                           0, int_name, dev);
3500         if (unlikely(ret < 0)) {
3501                 netdev_err(priv->dev,
3502                            "%s: alloc mac MSI %d (error: %d)\n",
3503                            __func__, dev->irq, ret);
3504                 irq_err = REQ_IRQ_ERR_MAC;
3505                 goto irq_error;
3506         }
3507
3508         /* Request the Wake IRQ in case of another line
3509          * is used for WoL
3510          */
3511         if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3512                 int_name = priv->int_name_wol;
3513                 sprintf(int_name, "%s:%s", dev->name, "wol");
3514                 ret = request_irq(priv->wol_irq,
3515                                   stmmac_mac_interrupt,
3516                                   0, int_name, dev);
3517                 if (unlikely(ret < 0)) {
3518                         netdev_err(priv->dev,
3519                                    "%s: alloc wol MSI %d (error: %d)\n",
3520                                    __func__, priv->wol_irq, ret);
3521                         irq_err = REQ_IRQ_ERR_WOL;
3522                         goto irq_error;
3523                 }
3524         }
3525
3526         /* Request the LPI IRQ in case of another line
3527          * is used for LPI
3528          */
3529         if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3530                 int_name = priv->int_name_lpi;
3531                 sprintf(int_name, "%s:%s", dev->name, "lpi");
3532                 ret = request_irq(priv->lpi_irq,
3533                                   stmmac_mac_interrupt,
3534                                   0, int_name, dev);
3535                 if (unlikely(ret < 0)) {
3536                         netdev_err(priv->dev,
3537                                    "%s: alloc lpi MSI %d (error: %d)\n",
3538                                    __func__, priv->lpi_irq, ret);
3539                         irq_err = REQ_IRQ_ERR_LPI;
3540                         goto irq_error;
3541                 }
3542         }
3543
3544         /* Request the Safety Feature Correctible Error line in
3545          * case of another line is used
3546          */
3547         if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) {
3548                 int_name = priv->int_name_sfty_ce;
3549                 sprintf(int_name, "%s:%s", dev->name, "safety-ce");
3550                 ret = request_irq(priv->sfty_ce_irq,
3551                                   stmmac_safety_interrupt,
3552                                   0, int_name, dev);
3553                 if (unlikely(ret < 0)) {
3554                         netdev_err(priv->dev,
3555                                    "%s: alloc sfty ce MSI %d (error: %d)\n",
3556                                    __func__, priv->sfty_ce_irq, ret);
3557                         irq_err = REQ_IRQ_ERR_SFTY_CE;
3558                         goto irq_error;
3559                 }
3560         }
3561
3562         /* Request the Safety Feature Uncorrectible Error line in
3563          * case of another line is used
3564          */
3565         if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) {
3566                 int_name = priv->int_name_sfty_ue;
3567                 sprintf(int_name, "%s:%s", dev->name, "safety-ue");
3568                 ret = request_irq(priv->sfty_ue_irq,
3569                                   stmmac_safety_interrupt,
3570                                   0, int_name, dev);
3571                 if (unlikely(ret < 0)) {
3572                         netdev_err(priv->dev,
3573                                    "%s: alloc sfty ue MSI %d (error: %d)\n",
3574                                    __func__, priv->sfty_ue_irq, ret);
3575                         irq_err = REQ_IRQ_ERR_SFTY_UE;
3576                         goto irq_error;
3577                 }
3578         }
3579
3580         /* Request Rx MSI irq */
3581         for (i = 0; i < priv->plat->rx_queues_to_use; i++) {
3582                 if (i >= MTL_MAX_RX_QUEUES)
3583                         break;
3584                 if (priv->rx_irq[i] == 0)
3585                         continue;
3586
3587                 int_name = priv->int_name_rx_irq[i];
3588                 sprintf(int_name, "%s:%s-%d", dev->name, "rx", i);
3589                 ret = request_irq(priv->rx_irq[i],
3590                                   stmmac_msi_intr_rx,
3591                                   0, int_name, &priv->dma_conf.rx_queue[i]);
3592                 if (unlikely(ret < 0)) {
3593                         netdev_err(priv->dev,
3594                                    "%s: alloc rx-%d  MSI %d (error: %d)\n",
3595                                    __func__, i, priv->rx_irq[i], ret);
3596                         irq_err = REQ_IRQ_ERR_RX;
3597                         irq_idx = i;
3598                         goto irq_error;
3599                 }
3600                 cpumask_clear(&cpu_mask);
3601                 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3602                 irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask);
3603         }
3604
3605         /* Request Tx MSI irq */
3606         for (i = 0; i < priv->plat->tx_queues_to_use; i++) {
3607                 if (i >= MTL_MAX_TX_QUEUES)
3608                         break;
3609                 if (priv->tx_irq[i] == 0)
3610                         continue;
3611
3612                 int_name = priv->int_name_tx_irq[i];
3613                 sprintf(int_name, "%s:%s-%d", dev->name, "tx", i);
3614                 ret = request_irq(priv->tx_irq[i],
3615                                   stmmac_msi_intr_tx,
3616                                   0, int_name, &priv->dma_conf.tx_queue[i]);
3617                 if (unlikely(ret < 0)) {
3618                         netdev_err(priv->dev,
3619                                    "%s: alloc tx-%d  MSI %d (error: %d)\n",
3620                                    __func__, i, priv->tx_irq[i], ret);
3621                         irq_err = REQ_IRQ_ERR_TX;
3622                         irq_idx = i;
3623                         goto irq_error;
3624                 }
3625                 cpumask_clear(&cpu_mask);
3626                 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3627                 irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask);
3628         }
3629
3630         return 0;
3631
3632 irq_error:
3633         stmmac_free_irq(dev, irq_err, irq_idx);
3634         return ret;
3635 }
3636
3637 static int stmmac_request_irq_single(struct net_device *dev)
3638 {
3639         struct stmmac_priv *priv = netdev_priv(dev);
3640         enum request_irq_err irq_err;
3641         int ret;
3642
3643         ret = request_irq(dev->irq, stmmac_interrupt,
3644                           IRQF_SHARED, dev->name, dev);
3645         if (unlikely(ret < 0)) {
3646                 netdev_err(priv->dev,
3647                            "%s: ERROR: allocating the IRQ %d (error: %d)\n",
3648                            __func__, dev->irq, ret);
3649                 irq_err = REQ_IRQ_ERR_MAC;
3650                 goto irq_error;
3651         }
3652
3653         /* Request the Wake IRQ in case of another line
3654          * is used for WoL
3655          */
3656         if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3657                 ret = request_irq(priv->wol_irq, stmmac_interrupt,
3658                                   IRQF_SHARED, dev->name, dev);
3659                 if (unlikely(ret < 0)) {
3660                         netdev_err(priv->dev,
3661                                    "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
3662                                    __func__, priv->wol_irq, ret);
3663                         irq_err = REQ_IRQ_ERR_WOL;
3664                         goto irq_error;
3665                 }
3666         }
3667
3668         /* Request the IRQ lines */
3669         if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3670                 ret = request_irq(priv->lpi_irq, stmmac_interrupt,
3671                                   IRQF_SHARED, dev->name, dev);
3672                 if (unlikely(ret < 0)) {
3673                         netdev_err(priv->dev,
3674                                    "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
3675                                    __func__, priv->lpi_irq, ret);
3676                         irq_err = REQ_IRQ_ERR_LPI;
3677                         goto irq_error;
3678                 }
3679         }
3680
3681         return 0;
3682
3683 irq_error:
3684         stmmac_free_irq(dev, irq_err, 0);
3685         return ret;
3686 }
3687
3688 static int stmmac_request_irq(struct net_device *dev)
3689 {
3690         struct stmmac_priv *priv = netdev_priv(dev);
3691         int ret;
3692
3693         /* Request the IRQ lines */
3694         if (priv->plat->multi_msi_en)
3695                 ret = stmmac_request_irq_multi_msi(dev);
3696         else
3697                 ret = stmmac_request_irq_single(dev);
3698
3699         return ret;
3700 }
3701
3702 /**
3703  *  stmmac_setup_dma_desc - Generate a dma_conf and allocate DMA queue
3704  *  @priv: driver private structure
3705  *  @mtu: MTU to setup the dma queue and buf with
3706  *  Description: Allocate and generate a dma_conf based on the provided MTU.
3707  *  Allocate the Tx/Rx DMA queue and init them.
3708  *  Return value:
3709  *  the dma_conf allocated struct on success and an appropriate ERR_PTR on failure.
3710  */
3711 static struct stmmac_dma_conf *
3712 stmmac_setup_dma_desc(struct stmmac_priv *priv, unsigned int mtu)
3713 {
3714         struct stmmac_dma_conf *dma_conf;
3715         int chan, bfsize, ret;
3716
3717         dma_conf = kzalloc(sizeof(*dma_conf), GFP_KERNEL);
3718         if (!dma_conf) {
3719                 netdev_err(priv->dev, "%s: DMA conf allocation failed\n",
3720                            __func__);
3721                 return ERR_PTR(-ENOMEM);
3722         }
3723
3724         bfsize = stmmac_set_16kib_bfsize(priv, mtu);
3725         if (bfsize < 0)
3726                 bfsize = 0;
3727
3728         if (bfsize < BUF_SIZE_16KiB)
3729                 bfsize = stmmac_set_bfsize(mtu, 0);
3730
3731         dma_conf->dma_buf_sz = bfsize;
3732         /* Chose the tx/rx size from the already defined one in the
3733          * priv struct. (if defined)
3734          */
3735         dma_conf->dma_tx_size = priv->dma_conf.dma_tx_size;
3736         dma_conf->dma_rx_size = priv->dma_conf.dma_rx_size;
3737
3738         if (!dma_conf->dma_tx_size)
3739                 dma_conf->dma_tx_size = DMA_DEFAULT_TX_SIZE;
3740         if (!dma_conf->dma_rx_size)
3741                 dma_conf->dma_rx_size = DMA_DEFAULT_RX_SIZE;
3742
3743         /* Earlier check for TBS */
3744         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
3745                 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[chan];
3746                 int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
3747
3748                 /* Setup per-TXQ tbs flag before TX descriptor alloc */
3749                 tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
3750         }
3751
3752         ret = alloc_dma_desc_resources(priv, dma_conf);
3753         if (ret < 0) {
3754                 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
3755                            __func__);
3756                 goto alloc_error;
3757         }
3758
3759         ret = init_dma_desc_rings(priv->dev, dma_conf, GFP_KERNEL);
3760         if (ret < 0) {
3761                 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
3762                            __func__);
3763                 goto init_error;
3764         }
3765
3766         return dma_conf;
3767
3768 init_error:
3769         free_dma_desc_resources(priv, dma_conf);
3770 alloc_error:
3771         kfree(dma_conf);
3772         return ERR_PTR(ret);
3773 }
3774
3775 /**
3776  *  __stmmac_open - open entry point of the driver
3777  *  @dev : pointer to the device structure.
3778  *  @dma_conf :  structure to take the dma data
3779  *  Description:
3780  *  This function is the open entry point of the driver.
3781  *  Return value:
3782  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3783  *  file on failure.
3784  */
3785 static int __stmmac_open(struct net_device *dev,
3786                          struct stmmac_dma_conf *dma_conf)
3787 {
3788         struct stmmac_priv *priv = netdev_priv(dev);
3789         int mode = priv->plat->phy_interface;
3790         u32 chan;
3791         int ret;
3792
3793         ret = pm_runtime_resume_and_get(priv->device);
3794         if (ret < 0)
3795                 return ret;
3796
3797         if (priv->hw->pcs != STMMAC_PCS_TBI &&
3798             priv->hw->pcs != STMMAC_PCS_RTBI &&
3799             (!priv->hw->xpcs ||
3800              xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73)) {
3801                 ret = stmmac_init_phy(dev);
3802                 if (ret) {
3803                         netdev_err(priv->dev,
3804                                    "%s: Cannot attach to PHY (error: %d)\n",
3805                                    __func__, ret);
3806                         goto init_phy_error;
3807                 }
3808         }
3809
3810         /* Extra statistics */
3811         memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
3812         priv->xstats.threshold = tc;
3813
3814         priv->rx_copybreak = STMMAC_RX_COPYBREAK;
3815
3816         buf_sz = dma_conf->dma_buf_sz;
3817         memcpy(&priv->dma_conf, dma_conf, sizeof(*dma_conf));
3818
3819         stmmac_reset_queues_param(priv);
3820
3821         if (!priv->plat->serdes_up_after_phy_linkup && priv->plat->serdes_powerup) {
3822                 ret = priv->plat->serdes_powerup(dev, priv->plat->bsp_priv);
3823                 if (ret < 0) {
3824                         netdev_err(priv->dev, "%s: Serdes powerup failed\n",
3825                                    __func__);
3826                         goto init_error;
3827                 }
3828         }
3829
3830         ret = stmmac_hw_setup(dev, true);
3831         if (ret < 0) {
3832                 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
3833                 goto init_error;
3834         }
3835
3836         stmmac_init_coalesce(priv);
3837
3838         phylink_start(priv->phylink);
3839         /* We may have called phylink_speed_down before */
3840         phylink_speed_up(priv->phylink);
3841
3842         ret = stmmac_request_irq(dev);
3843         if (ret)
3844                 goto irq_error;
3845
3846         stmmac_enable_all_queues(priv);
3847         netif_tx_start_all_queues(priv->dev);
3848         stmmac_enable_all_dma_irq(priv);
3849
3850         return 0;
3851
3852 irq_error:
3853         phylink_stop(priv->phylink);
3854
3855         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3856                 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
3857
3858         stmmac_hw_teardown(dev);
3859 init_error:
3860         free_dma_desc_resources(priv, &priv->dma_conf);
3861         phylink_disconnect_phy(priv->phylink);
3862 init_phy_error:
3863         pm_runtime_put(priv->device);
3864         return ret;
3865 }
3866
3867 static int stmmac_open(struct net_device *dev)
3868 {
3869         struct stmmac_priv *priv = netdev_priv(dev);
3870         struct stmmac_dma_conf *dma_conf;
3871         int ret;
3872
3873         dma_conf = stmmac_setup_dma_desc(priv, dev->mtu);
3874         if (IS_ERR(dma_conf))
3875                 return PTR_ERR(dma_conf);
3876
3877         ret = __stmmac_open(dev, dma_conf);
3878         kfree(dma_conf);
3879         return ret;
3880 }
3881
3882 static void stmmac_fpe_stop_wq(struct stmmac_priv *priv)
3883 {
3884         set_bit(__FPE_REMOVING, &priv->fpe_task_state);
3885
3886         if (priv->fpe_wq)
3887                 destroy_workqueue(priv->fpe_wq);
3888
3889         netdev_info(priv->dev, "FPE workqueue stop");
3890 }
3891
3892 /**
3893  *  stmmac_release - close entry point of the driver
3894  *  @dev : device pointer.
3895  *  Description:
3896  *  This is the stop entry point of the driver.
3897  */
3898 static int stmmac_release(struct net_device *dev)
3899 {
3900         struct stmmac_priv *priv = netdev_priv(dev);
3901         u32 chan;
3902
3903         if (device_may_wakeup(priv->device))
3904                 phylink_speed_down(priv->phylink, false);
3905         /* Stop and disconnect the PHY */
3906         phylink_stop(priv->phylink);
3907         phylink_disconnect_phy(priv->phylink);
3908
3909         stmmac_disable_all_queues(priv);
3910
3911         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3912                 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
3913
3914         netif_tx_disable(dev);
3915
3916         /* Free the IRQ lines */
3917         stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
3918
3919         if (priv->eee_enabled) {
3920                 priv->tx_path_in_lpi_mode = false;
3921                 del_timer_sync(&priv->eee_ctrl_timer);
3922         }
3923
3924         /* Stop TX/RX DMA and clear the descriptors */
3925         stmmac_stop_all_dma(priv);
3926
3927         /* Release and free the Rx/Tx resources */
3928         free_dma_desc_resources(priv, &priv->dma_conf);
3929
3930         /* Disable the MAC Rx/Tx */
3931         stmmac_mac_set(priv, priv->ioaddr, false);
3932
3933         /* Powerdown Serdes if there is */
3934         if (priv->plat->serdes_powerdown)
3935                 priv->plat->serdes_powerdown(dev, priv->plat->bsp_priv);
3936
3937         netif_carrier_off(dev);
3938
3939         stmmac_release_ptp(priv);
3940
3941         pm_runtime_put(priv->device);
3942
3943         if (priv->dma_cap.fpesel)
3944                 stmmac_fpe_stop_wq(priv);
3945
3946         return 0;
3947 }
3948
3949 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
3950                                struct stmmac_tx_queue *tx_q)
3951 {
3952         u16 tag = 0x0, inner_tag = 0x0;
3953         u32 inner_type = 0x0;
3954         struct dma_desc *p;
3955
3956         if (!priv->dma_cap.vlins)
3957                 return false;
3958         if (!skb_vlan_tag_present(skb))
3959                 return false;
3960         if (skb->vlan_proto == htons(ETH_P_8021AD)) {
3961                 inner_tag = skb_vlan_tag_get(skb);
3962                 inner_type = STMMAC_VLAN_INSERT;
3963         }
3964
3965         tag = skb_vlan_tag_get(skb);
3966
3967         if (tx_q->tbs & STMMAC_TBS_AVAIL)
3968                 p = &tx_q->dma_entx[tx_q->cur_tx].basic;
3969         else
3970                 p = &tx_q->dma_tx[tx_q->cur_tx];
3971
3972         if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
3973                 return false;
3974
3975         stmmac_set_tx_owner(priv, p);
3976         tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
3977         return true;
3978 }
3979
3980 /**
3981  *  stmmac_tso_allocator - close entry point of the driver
3982  *  @priv: driver private structure
3983  *  @des: buffer start address
3984  *  @total_len: total length to fill in descriptors
3985  *  @last_segment: condition for the last descriptor
3986  *  @queue: TX queue index
3987  *  Description:
3988  *  This function fills descriptor and request new descriptors according to
3989  *  buffer length to fill
3990  */
3991 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
3992                                  int total_len, bool last_segment, u32 queue)
3993 {
3994         struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
3995         struct dma_desc *desc;
3996         u32 buff_size;
3997         int tmp_len;
3998
3999         tmp_len = total_len;
4000
4001         while (tmp_len > 0) {
4002                 dma_addr_t curr_addr;
4003
4004                 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
4005                                                 priv->dma_conf.dma_tx_size);
4006                 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
4007
4008                 if (tx_q->tbs & STMMAC_TBS_AVAIL)
4009                         desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4010                 else
4011                         desc = &tx_q->dma_tx[tx_q->cur_tx];
4012
4013                 curr_addr = des + (total_len - tmp_len);
4014                 if (priv->dma_cap.addr64 <= 32)
4015                         desc->des0 = cpu_to_le32(curr_addr);
4016                 else
4017                         stmmac_set_desc_addr(priv, desc, curr_addr);
4018
4019                 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
4020                             TSO_MAX_BUFF_SIZE : tmp_len;
4021
4022                 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
4023                                 0, 1,
4024                                 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
4025                                 0, 0);
4026
4027                 tmp_len -= TSO_MAX_BUFF_SIZE;
4028         }
4029 }
4030
4031 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue)
4032 {
4033         struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
4034         int desc_size;
4035
4036         if (likely(priv->extend_desc))
4037                 desc_size = sizeof(struct dma_extended_desc);
4038         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4039                 desc_size = sizeof(struct dma_edesc);
4040         else
4041                 desc_size = sizeof(struct dma_desc);
4042
4043         /* The own bit must be the latest setting done when prepare the
4044          * descriptor and then barrier is needed to make sure that
4045          * all is coherent before granting the DMA engine.
4046          */
4047         wmb();
4048
4049         tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
4050         stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
4051 }
4052
4053 /**
4054  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
4055  *  @skb : the socket buffer
4056  *  @dev : device pointer
4057  *  Description: this is the transmit function that is called on TSO frames
4058  *  (support available on GMAC4 and newer chips).
4059  *  Diagram below show the ring programming in case of TSO frames:
4060  *
4061  *  First Descriptor
4062  *   --------
4063  *   | DES0 |---> buffer1 = L2/L3/L4 header
4064  *   | DES1 |---> TCP Payload (can continue on next descr...)
4065  *   | DES2 |---> buffer 1 and 2 len
4066  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
4067  *   --------
4068  *      |
4069  *     ...
4070  *      |
4071  *   --------
4072  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
4073  *   | DES1 | --|
4074  *   | DES2 | --> buffer 1 and 2 len
4075  *   | DES3 |
4076  *   --------
4077  *
4078  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
4079  */
4080 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
4081 {
4082         struct dma_desc *desc, *first, *mss_desc = NULL;
4083         struct stmmac_priv *priv = netdev_priv(dev);
4084         int nfrags = skb_shinfo(skb)->nr_frags;
4085         u32 queue = skb_get_queue_mapping(skb);
4086         unsigned int first_entry, tx_packets;
4087         int tmp_pay_len = 0, first_tx;
4088         struct stmmac_tx_queue *tx_q;
4089         bool has_vlan, set_ic;
4090         u8 proto_hdr_len, hdr;
4091         u32 pay_len, mss;
4092         dma_addr_t des;
4093         int i;
4094
4095         tx_q = &priv->dma_conf.tx_queue[queue];
4096         first_tx = tx_q->cur_tx;
4097
4098         /* Compute header lengths */
4099         if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
4100                 proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
4101                 hdr = sizeof(struct udphdr);
4102         } else {
4103                 proto_hdr_len = skb_tcp_all_headers(skb);
4104                 hdr = tcp_hdrlen(skb);
4105         }
4106
4107         /* Desc availability based on threshold should be enough safe */
4108         if (unlikely(stmmac_tx_avail(priv, queue) <
4109                 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
4110                 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4111                         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4112                                                                 queue));
4113                         /* This is a hard error, log it. */
4114                         netdev_err(priv->dev,
4115                                    "%s: Tx Ring full when queue awake\n",
4116                                    __func__);
4117                 }
4118                 return NETDEV_TX_BUSY;
4119         }
4120
4121         pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
4122
4123         mss = skb_shinfo(skb)->gso_size;
4124
4125         /* set new MSS value if needed */
4126         if (mss != tx_q->mss) {
4127                 if (tx_q->tbs & STMMAC_TBS_AVAIL)
4128                         mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4129                 else
4130                         mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
4131
4132                 stmmac_set_mss(priv, mss_desc, mss);
4133                 tx_q->mss = mss;
4134                 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
4135                                                 priv->dma_conf.dma_tx_size);
4136                 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
4137         }
4138
4139         if (netif_msg_tx_queued(priv)) {
4140                 pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
4141                         __func__, hdr, proto_hdr_len, pay_len, mss);
4142                 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
4143                         skb->data_len);
4144         }
4145
4146         /* Check if VLAN can be inserted by HW */
4147         has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4148
4149         first_entry = tx_q->cur_tx;
4150         WARN_ON(tx_q->tx_skbuff[first_entry]);
4151
4152         if (tx_q->tbs & STMMAC_TBS_AVAIL)
4153                 desc = &tx_q->dma_entx[first_entry].basic;
4154         else
4155                 desc = &tx_q->dma_tx[first_entry];
4156         first = desc;
4157
4158         if (has_vlan)
4159                 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4160
4161         /* first descriptor: fill Headers on Buf1 */
4162         des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
4163                              DMA_TO_DEVICE);
4164         if (dma_mapping_error(priv->device, des))
4165                 goto dma_map_err;
4166
4167         tx_q->tx_skbuff_dma[first_entry].buf = des;
4168         tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
4169         tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4170         tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4171
4172         if (priv->dma_cap.addr64 <= 32) {
4173                 first->des0 = cpu_to_le32(des);
4174
4175                 /* Fill start of payload in buff2 of first descriptor */
4176                 if (pay_len)
4177                         first->des1 = cpu_to_le32(des + proto_hdr_len);
4178
4179                 /* If needed take extra descriptors to fill the remaining payload */
4180                 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
4181         } else {
4182                 stmmac_set_desc_addr(priv, first, des);
4183                 tmp_pay_len = pay_len;
4184                 des += proto_hdr_len;
4185                 pay_len = 0;
4186         }
4187
4188         stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
4189
4190         /* Prepare fragments */
4191         for (i = 0; i < nfrags; i++) {
4192                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4193
4194                 des = skb_frag_dma_map(priv->device, frag, 0,
4195                                        skb_frag_size(frag),
4196                                        DMA_TO_DEVICE);
4197                 if (dma_mapping_error(priv->device, des))
4198                         goto dma_map_err;
4199
4200                 stmmac_tso_allocator(priv, des, skb_frag_size(frag),
4201                                      (i == nfrags - 1), queue);
4202
4203                 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
4204                 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
4205                 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
4206                 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4207         }
4208
4209         tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
4210
4211         /* Only the last descriptor gets to point to the skb. */
4212         tx_q->tx_skbuff[tx_q->cur_tx] = skb;
4213         tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4214
4215         /* Manage tx mitigation */
4216         tx_packets = (tx_q->cur_tx + 1) - first_tx;
4217         tx_q->tx_count_frames += tx_packets;
4218
4219         if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4220                 set_ic = true;
4221         else if (!priv->tx_coal_frames[queue])
4222                 set_ic = false;
4223         else if (tx_packets > priv->tx_coal_frames[queue])
4224                 set_ic = true;
4225         else if ((tx_q->tx_count_frames %
4226                   priv->tx_coal_frames[queue]) < tx_packets)
4227                 set_ic = true;
4228         else
4229                 set_ic = false;
4230
4231         if (set_ic) {
4232                 if (tx_q->tbs & STMMAC_TBS_AVAIL)
4233                         desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4234                 else
4235                         desc = &tx_q->dma_tx[tx_q->cur_tx];
4236
4237                 tx_q->tx_count_frames = 0;
4238                 stmmac_set_tx_ic(priv, desc);
4239                 priv->xstats.tx_set_ic_bit++;
4240         }
4241
4242         /* We've used all descriptors we need for this skb, however,
4243          * advance cur_tx so that it references a fresh descriptor.
4244          * ndo_start_xmit will fill this descriptor the next time it's
4245          * called and stmmac_tx_clean may clean up to this descriptor.
4246          */
4247         tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
4248
4249         if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4250                 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4251                           __func__);
4252                 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4253         }
4254
4255         dev->stats.tx_bytes += skb->len;
4256         priv->xstats.tx_tso_frames++;
4257         priv->xstats.tx_tso_nfrags += nfrags;
4258
4259         if (priv->sarc_type)
4260                 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4261
4262         skb_tx_timestamp(skb);
4263
4264         if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4265                      priv->hwts_tx_en)) {
4266                 /* declare that device is doing timestamping */
4267                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4268                 stmmac_enable_tx_timestamp(priv, first);
4269         }
4270
4271         /* Complete the first descriptor before granting the DMA */
4272         stmmac_prepare_tso_tx_desc(priv, first, 1,
4273                         proto_hdr_len,
4274                         pay_len,
4275                         1, tx_q->tx_skbuff_dma[first_entry].last_segment,
4276                         hdr / 4, (skb->len - proto_hdr_len));
4277
4278         /* If context desc is used to change MSS */
4279         if (mss_desc) {
4280                 /* Make sure that first descriptor has been completely
4281                  * written, including its own bit. This is because MSS is
4282                  * actually before first descriptor, so we need to make
4283                  * sure that MSS's own bit is the last thing written.
4284                  */
4285                 dma_wmb();
4286                 stmmac_set_tx_owner(priv, mss_desc);
4287         }
4288
4289         if (netif_msg_pktdata(priv)) {
4290                 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
4291                         __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4292                         tx_q->cur_tx, first, nfrags);
4293                 pr_info(">>> frame to be transmitted: ");
4294                 print_pkt(skb->data, skb_headlen(skb));
4295         }
4296
4297         netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4298
4299         stmmac_flush_tx_descriptors(priv, queue);
4300         stmmac_tx_timer_arm(priv, queue);
4301
4302         return NETDEV_TX_OK;
4303
4304 dma_map_err:
4305         dev_err(priv->device, "Tx dma map failed\n");
4306         dev_kfree_skb(skb);
4307         priv->dev->stats.tx_dropped++;
4308         return NETDEV_TX_OK;
4309 }
4310
4311 /**
4312  *  stmmac_xmit - Tx entry point of the driver
4313  *  @skb : the socket buffer
4314  *  @dev : device pointer
4315  *  Description : this is the tx entry point of the driver.
4316  *  It programs the chain or the ring and supports oversized frames
4317  *  and SG feature.
4318  */
4319 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
4320 {
4321         unsigned int first_entry, tx_packets, enh_desc;
4322         struct stmmac_priv *priv = netdev_priv(dev);
4323         unsigned int nopaged_len = skb_headlen(skb);
4324         int i, csum_insertion = 0, is_jumbo = 0;
4325         u32 queue = skb_get_queue_mapping(skb);
4326         int nfrags = skb_shinfo(skb)->nr_frags;
4327         int gso = skb_shinfo(skb)->gso_type;
4328         struct dma_edesc *tbs_desc = NULL;
4329         struct dma_desc *desc, *first;
4330         struct stmmac_tx_queue *tx_q;
4331         bool has_vlan, set_ic;
4332         int entry, first_tx;
4333         dma_addr_t des;
4334
4335         tx_q = &priv->dma_conf.tx_queue[queue];
4336         first_tx = tx_q->cur_tx;
4337
4338         if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en)
4339                 stmmac_disable_eee_mode(priv);
4340
4341         /* Manage oversized TCP frames for GMAC4 device */
4342         if (skb_is_gso(skb) && priv->tso) {
4343                 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
4344                         return stmmac_tso_xmit(skb, dev);
4345                 if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
4346                         return stmmac_tso_xmit(skb, dev);
4347         }
4348
4349         if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
4350                 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4351                         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4352                                                                 queue));
4353                         /* This is a hard error, log it. */
4354                         netdev_err(priv->dev,
4355                                    "%s: Tx Ring full when queue awake\n",
4356                                    __func__);
4357                 }
4358                 return NETDEV_TX_BUSY;
4359         }
4360
4361         /* Check if VLAN can be inserted by HW */
4362         has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4363
4364         entry = tx_q->cur_tx;
4365         first_entry = entry;
4366         WARN_ON(tx_q->tx_skbuff[first_entry]);
4367
4368         csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
4369
4370         if (likely(priv->extend_desc))
4371                 desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4372         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4373                 desc = &tx_q->dma_entx[entry].basic;
4374         else
4375                 desc = tx_q->dma_tx + entry;
4376
4377         first = desc;
4378
4379         if (has_vlan)
4380                 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4381
4382         enh_desc = priv->plat->enh_desc;
4383         /* To program the descriptors according to the size of the frame */
4384         if (enh_desc)
4385                 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
4386
4387         if (unlikely(is_jumbo)) {
4388                 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
4389                 if (unlikely(entry < 0) && (entry != -EINVAL))
4390                         goto dma_map_err;
4391         }
4392
4393         for (i = 0; i < nfrags; i++) {
4394                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4395                 int len = skb_frag_size(frag);
4396                 bool last_segment = (i == (nfrags - 1));
4397
4398                 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4399                 WARN_ON(tx_q->tx_skbuff[entry]);
4400
4401                 if (likely(priv->extend_desc))
4402                         desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4403                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4404                         desc = &tx_q->dma_entx[entry].basic;
4405                 else
4406                         desc = tx_q->dma_tx + entry;
4407
4408                 des = skb_frag_dma_map(priv->device, frag, 0, len,
4409                                        DMA_TO_DEVICE);
4410                 if (dma_mapping_error(priv->device, des))
4411                         goto dma_map_err; /* should reuse desc w/o issues */
4412
4413                 tx_q->tx_skbuff_dma[entry].buf = des;
4414
4415                 stmmac_set_desc_addr(priv, desc, des);
4416
4417                 tx_q->tx_skbuff_dma[entry].map_as_page = true;
4418                 tx_q->tx_skbuff_dma[entry].len = len;
4419                 tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
4420                 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4421
4422                 /* Prepare the descriptor and set the own bit too */
4423                 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
4424                                 priv->mode, 1, last_segment, skb->len);
4425         }
4426
4427         /* Only the last descriptor gets to point to the skb. */
4428         tx_q->tx_skbuff[entry] = skb;
4429         tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4430
4431         /* According to the coalesce parameter the IC bit for the latest
4432          * segment is reset and the timer re-started to clean the tx status.
4433          * This approach takes care about the fragments: desc is the first
4434          * element in case of no SG.
4435          */
4436         tx_packets = (entry + 1) - first_tx;
4437         tx_q->tx_count_frames += tx_packets;
4438
4439         if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4440                 set_ic = true;
4441         else if (!priv->tx_coal_frames[queue])
4442                 set_ic = false;
4443         else if (tx_packets > priv->tx_coal_frames[queue])
4444                 set_ic = true;
4445         else if ((tx_q->tx_count_frames %
4446                   priv->tx_coal_frames[queue]) < tx_packets)
4447                 set_ic = true;
4448         else
4449                 set_ic = false;
4450
4451         if (set_ic) {
4452                 if (likely(priv->extend_desc))
4453                         desc = &tx_q->dma_etx[entry].basic;
4454                 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4455                         desc = &tx_q->dma_entx[entry].basic;
4456                 else
4457                         desc = &tx_q->dma_tx[entry];
4458
4459                 tx_q->tx_count_frames = 0;
4460                 stmmac_set_tx_ic(priv, desc);
4461                 priv->xstats.tx_set_ic_bit++;
4462         }
4463
4464         /* We've used all descriptors we need for this skb, however,
4465          * advance cur_tx so that it references a fresh descriptor.
4466          * ndo_start_xmit will fill this descriptor the next time it's
4467          * called and stmmac_tx_clean may clean up to this descriptor.
4468          */
4469         entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4470         tx_q->cur_tx = entry;
4471
4472         if (netif_msg_pktdata(priv)) {
4473                 netdev_dbg(priv->dev,
4474                            "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
4475                            __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4476                            entry, first, nfrags);
4477
4478                 netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
4479                 print_pkt(skb->data, skb->len);
4480         }
4481
4482         if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4483                 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4484                           __func__);
4485                 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4486         }
4487
4488         dev->stats.tx_bytes += skb->len;
4489
4490         if (priv->sarc_type)
4491                 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4492
4493         skb_tx_timestamp(skb);
4494
4495         /* Ready to fill the first descriptor and set the OWN bit w/o any
4496          * problems because all the descriptors are actually ready to be
4497          * passed to the DMA engine.
4498          */
4499         if (likely(!is_jumbo)) {
4500                 bool last_segment = (nfrags == 0);
4501
4502                 des = dma_map_single(priv->device, skb->data,
4503                                      nopaged_len, DMA_TO_DEVICE);
4504                 if (dma_mapping_error(priv->device, des))
4505                         goto dma_map_err;
4506
4507                 tx_q->tx_skbuff_dma[first_entry].buf = des;
4508                 tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4509                 tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4510
4511                 stmmac_set_desc_addr(priv, first, des);
4512
4513                 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
4514                 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
4515
4516                 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4517                              priv->hwts_tx_en)) {
4518                         /* declare that device is doing timestamping */
4519                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4520                         stmmac_enable_tx_timestamp(priv, first);
4521                 }
4522
4523                 /* Prepare the first descriptor setting the OWN bit too */
4524                 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
4525                                 csum_insertion, priv->mode, 0, last_segment,
4526                                 skb->len);
4527         }
4528
4529         if (tx_q->tbs & STMMAC_TBS_EN) {
4530                 struct timespec64 ts = ns_to_timespec64(skb->tstamp);
4531
4532                 tbs_desc = &tx_q->dma_entx[first_entry];
4533                 stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
4534         }
4535
4536         stmmac_set_tx_owner(priv, first);
4537
4538         netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4539
4540         stmmac_enable_dma_transmission(priv, priv->ioaddr);
4541
4542         stmmac_flush_tx_descriptors(priv, queue);
4543         stmmac_tx_timer_arm(priv, queue);
4544
4545         return NETDEV_TX_OK;
4546
4547 dma_map_err:
4548         netdev_err(priv->dev, "Tx DMA map failed\n");
4549         dev_kfree_skb(skb);
4550         priv->dev->stats.tx_dropped++;
4551         return NETDEV_TX_OK;
4552 }
4553
4554 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
4555 {
4556         struct vlan_ethhdr *veth;
4557         __be16 vlan_proto;
4558         u16 vlanid;
4559
4560         veth = (struct vlan_ethhdr *)skb->data;
4561         vlan_proto = veth->h_vlan_proto;
4562
4563         if ((vlan_proto == htons(ETH_P_8021Q) &&
4564              dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
4565             (vlan_proto == htons(ETH_P_8021AD) &&
4566              dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
4567                 /* pop the vlan tag */
4568                 vlanid = ntohs(veth->h_vlan_TCI);
4569                 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
4570                 skb_pull(skb, VLAN_HLEN);
4571                 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
4572         }
4573 }
4574
4575 /**
4576  * stmmac_rx_refill - refill used skb preallocated buffers
4577  * @priv: driver private structure
4578  * @queue: RX queue index
4579  * Description : this is to reallocate the skb for the reception process
4580  * that is based on zero-copy.
4581  */
4582 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
4583 {
4584         struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4585         int dirty = stmmac_rx_dirty(priv, queue);
4586         unsigned int entry = rx_q->dirty_rx;
4587         gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
4588
4589         if (priv->dma_cap.addr64 <= 32)
4590                 gfp |= GFP_DMA32;
4591
4592         while (dirty-- > 0) {
4593                 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4594                 struct dma_desc *p;
4595                 bool use_rx_wd;
4596
4597                 if (priv->extend_desc)
4598                         p = (struct dma_desc *)(rx_q->dma_erx + entry);
4599                 else
4600                         p = rx_q->dma_rx + entry;
4601
4602                 if (!buf->page) {
4603                         buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4604                         if (!buf->page)
4605                                 break;
4606                 }
4607
4608                 if (priv->sph && !buf->sec_page) {
4609                         buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4610                         if (!buf->sec_page)
4611                                 break;
4612
4613                         buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
4614                 }
4615
4616                 buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
4617
4618                 stmmac_set_desc_addr(priv, p, buf->addr);
4619                 if (priv->sph)
4620                         stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
4621                 else
4622                         stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
4623                 stmmac_refill_desc3(priv, rx_q, p);
4624
4625                 rx_q->rx_count_frames++;
4626                 rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4627                 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4628                         rx_q->rx_count_frames = 0;
4629
4630                 use_rx_wd = !priv->rx_coal_frames[queue];
4631                 use_rx_wd |= rx_q->rx_count_frames > 0;
4632                 if (!priv->use_riwt)
4633                         use_rx_wd = false;
4634
4635                 dma_wmb();
4636                 stmmac_set_rx_owner(priv, p, use_rx_wd);
4637
4638                 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size);
4639         }
4640         rx_q->dirty_rx = entry;
4641         rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4642                             (rx_q->dirty_rx * sizeof(struct dma_desc));
4643         stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4644 }
4645
4646 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
4647                                        struct dma_desc *p,
4648                                        int status, unsigned int len)
4649 {
4650         unsigned int plen = 0, hlen = 0;
4651         int coe = priv->hw->rx_csum;
4652
4653         /* Not first descriptor, buffer is always zero */
4654         if (priv->sph && len)
4655                 return 0;
4656
4657         /* First descriptor, get split header length */
4658         stmmac_get_rx_header_len(priv, p, &hlen);
4659         if (priv->sph && hlen) {
4660                 priv->xstats.rx_split_hdr_pkt_n++;
4661                 return hlen;
4662         }
4663
4664         /* First descriptor, not last descriptor and not split header */
4665         if (status & rx_not_ls)
4666                 return priv->dma_conf.dma_buf_sz;
4667
4668         plen = stmmac_get_rx_frame_len(priv, p, coe);
4669
4670         /* First descriptor and last descriptor and not split header */
4671         return min_t(unsigned int, priv->dma_conf.dma_buf_sz, plen);
4672 }
4673
4674 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
4675                                        struct dma_desc *p,
4676                                        int status, unsigned int len)
4677 {
4678         int coe = priv->hw->rx_csum;
4679         unsigned int plen = 0;
4680
4681         /* Not split header, buffer is not available */
4682         if (!priv->sph)
4683                 return 0;
4684
4685         /* Not last descriptor */
4686         if (status & rx_not_ls)
4687                 return priv->dma_conf.dma_buf_sz;
4688
4689         plen = stmmac_get_rx_frame_len(priv, p, coe);
4690
4691         /* Last descriptor */
4692         return plen - len;
4693 }
4694
4695 static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue,
4696                                 struct xdp_frame *xdpf, bool dma_map)
4697 {
4698         struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
4699         unsigned int entry = tx_q->cur_tx;
4700         struct dma_desc *tx_desc;
4701         dma_addr_t dma_addr;
4702         bool set_ic;
4703
4704         if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv))
4705                 return STMMAC_XDP_CONSUMED;
4706
4707         if (likely(priv->extend_desc))
4708                 tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4709         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4710                 tx_desc = &tx_q->dma_entx[entry].basic;
4711         else
4712                 tx_desc = tx_q->dma_tx + entry;
4713
4714         if (dma_map) {
4715                 dma_addr = dma_map_single(priv->device, xdpf->data,
4716                                           xdpf->len, DMA_TO_DEVICE);
4717                 if (dma_mapping_error(priv->device, dma_addr))
4718                         return STMMAC_XDP_CONSUMED;
4719
4720                 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO;
4721         } else {
4722                 struct page *page = virt_to_page(xdpf->data);
4723
4724                 dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) +
4725                            xdpf->headroom;
4726                 dma_sync_single_for_device(priv->device, dma_addr,
4727                                            xdpf->len, DMA_BIDIRECTIONAL);
4728
4729                 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX;
4730         }
4731
4732         tx_q->tx_skbuff_dma[entry].buf = dma_addr;
4733         tx_q->tx_skbuff_dma[entry].map_as_page = false;
4734         tx_q->tx_skbuff_dma[entry].len = xdpf->len;
4735         tx_q->tx_skbuff_dma[entry].last_segment = true;
4736         tx_q->tx_skbuff_dma[entry].is_jumbo = false;
4737
4738         tx_q->xdpf[entry] = xdpf;
4739
4740         stmmac_set_desc_addr(priv, tx_desc, dma_addr);
4741
4742         stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len,
4743                                true, priv->mode, true, true,
4744                                xdpf->len);
4745
4746         tx_q->tx_count_frames++;
4747
4748         if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
4749                 set_ic = true;
4750         else
4751                 set_ic = false;
4752
4753         if (set_ic) {
4754                 tx_q->tx_count_frames = 0;
4755                 stmmac_set_tx_ic(priv, tx_desc);
4756                 priv->xstats.tx_set_ic_bit++;
4757         }
4758
4759         stmmac_enable_dma_transmission(priv, priv->ioaddr);
4760
4761         entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4762         tx_q->cur_tx = entry;
4763
4764         return STMMAC_XDP_TX;
4765 }
4766
4767 static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv,
4768                                    int cpu)
4769 {
4770         int index = cpu;
4771
4772         if (unlikely(index < 0))
4773                 index = 0;
4774
4775         while (index >= priv->plat->tx_queues_to_use)
4776                 index -= priv->plat->tx_queues_to_use;
4777
4778         return index;
4779 }
4780
4781 static int stmmac_xdp_xmit_back(struct stmmac_priv *priv,
4782                                 struct xdp_buff *xdp)
4783 {
4784         struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
4785         int cpu = smp_processor_id();
4786         struct netdev_queue *nq;
4787         int queue;
4788         int res;
4789
4790         if (unlikely(!xdpf))
4791                 return STMMAC_XDP_CONSUMED;
4792
4793         queue = stmmac_xdp_get_tx_queue(priv, cpu);
4794         nq = netdev_get_tx_queue(priv->dev, queue);
4795
4796         __netif_tx_lock(nq, cpu);
4797         /* Avoids TX time-out as we are sharing with slow path */
4798         txq_trans_cond_update(nq);
4799
4800         res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false);
4801         if (res == STMMAC_XDP_TX)
4802                 stmmac_flush_tx_descriptors(priv, queue);
4803
4804         __netif_tx_unlock(nq);
4805
4806         return res;
4807 }
4808
4809 static int __stmmac_xdp_run_prog(struct stmmac_priv *priv,
4810                                  struct bpf_prog *prog,
4811                                  struct xdp_buff *xdp)
4812 {
4813         u32 act;
4814         int res;
4815
4816         act = bpf_prog_run_xdp(prog, xdp);
4817         switch (act) {
4818         case XDP_PASS:
4819                 res = STMMAC_XDP_PASS;
4820                 break;
4821         case XDP_TX:
4822                 res = stmmac_xdp_xmit_back(priv, xdp);
4823                 break;
4824         case XDP_REDIRECT:
4825                 if (xdp_do_redirect(priv->dev, xdp, prog) < 0)
4826                         res = STMMAC_XDP_CONSUMED;
4827                 else
4828                         res = STMMAC_XDP_REDIRECT;
4829                 break;
4830         default:
4831                 bpf_warn_invalid_xdp_action(priv->dev, prog, act);
4832                 fallthrough;
4833         case XDP_ABORTED:
4834                 trace_xdp_exception(priv->dev, prog, act);
4835                 fallthrough;
4836         case XDP_DROP:
4837                 res = STMMAC_XDP_CONSUMED;
4838                 break;
4839         }
4840
4841         return res;
4842 }
4843
4844 static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv,
4845                                            struct xdp_buff *xdp)
4846 {
4847         struct bpf_prog *prog;
4848         int res;
4849
4850         prog = READ_ONCE(priv->xdp_prog);
4851         if (!prog) {
4852                 res = STMMAC_XDP_PASS;
4853                 goto out;
4854         }
4855
4856         res = __stmmac_xdp_run_prog(priv, prog, xdp);
4857 out:
4858         return ERR_PTR(-res);
4859 }
4860
4861 static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv,
4862                                    int xdp_status)
4863 {
4864         int cpu = smp_processor_id();
4865         int queue;
4866
4867         queue = stmmac_xdp_get_tx_queue(priv, cpu);
4868
4869         if (xdp_status & STMMAC_XDP_TX)
4870                 stmmac_tx_timer_arm(priv, queue);
4871
4872         if (xdp_status & STMMAC_XDP_REDIRECT)
4873                 xdp_do_flush();
4874 }
4875
4876 static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch,
4877                                                struct xdp_buff *xdp)
4878 {
4879         unsigned int metasize = xdp->data - xdp->data_meta;
4880         unsigned int datasize = xdp->data_end - xdp->data;
4881         struct sk_buff *skb;
4882
4883         skb = __napi_alloc_skb(&ch->rxtx_napi,
4884                                xdp->data_end - xdp->data_hard_start,
4885                                GFP_ATOMIC | __GFP_NOWARN);
4886         if (unlikely(!skb))
4887                 return NULL;
4888
4889         skb_reserve(skb, xdp->data - xdp->data_hard_start);
4890         memcpy(__skb_put(skb, datasize), xdp->data, datasize);
4891         if (metasize)
4892                 skb_metadata_set(skb, metasize);
4893
4894         return skb;
4895 }
4896
4897 static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue,
4898                                    struct dma_desc *p, struct dma_desc *np,
4899                                    struct xdp_buff *xdp)
4900 {
4901         struct stmmac_channel *ch = &priv->channel[queue];
4902         unsigned int len = xdp->data_end - xdp->data;
4903         enum pkt_hash_types hash_type;
4904         int coe = priv->hw->rx_csum;
4905         struct sk_buff *skb;
4906         u32 hash;
4907
4908         skb = stmmac_construct_skb_zc(ch, xdp);
4909         if (!skb) {
4910                 priv->dev->stats.rx_dropped++;
4911                 return;
4912         }
4913
4914         stmmac_get_rx_hwtstamp(priv, p, np, skb);
4915         stmmac_rx_vlan(priv->dev, skb);
4916         skb->protocol = eth_type_trans(skb, priv->dev);
4917
4918         if (unlikely(!coe))
4919                 skb_checksum_none_assert(skb);
4920         else
4921                 skb->ip_summed = CHECKSUM_UNNECESSARY;
4922
4923         if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
4924                 skb_set_hash(skb, hash, hash_type);
4925
4926         skb_record_rx_queue(skb, queue);
4927         napi_gro_receive(&ch->rxtx_napi, skb);
4928
4929         priv->dev->stats.rx_packets++;
4930         priv->dev->stats.rx_bytes += len;
4931 }
4932
4933 static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
4934 {
4935         struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4936         unsigned int entry = rx_q->dirty_rx;
4937         struct dma_desc *rx_desc = NULL;
4938         bool ret = true;
4939
4940         budget = min(budget, stmmac_rx_dirty(priv, queue));
4941
4942         while (budget-- > 0 && entry != rx_q->cur_rx) {
4943                 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4944                 dma_addr_t dma_addr;
4945                 bool use_rx_wd;
4946
4947                 if (!buf->xdp) {
4948                         buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
4949                         if (!buf->xdp) {
4950                                 ret = false;
4951                                 break;
4952                         }
4953                 }
4954
4955                 if (priv->extend_desc)
4956                         rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry);
4957                 else
4958                         rx_desc = rx_q->dma_rx + entry;
4959
4960                 dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
4961                 stmmac_set_desc_addr(priv, rx_desc, dma_addr);
4962                 stmmac_set_desc_sec_addr(priv, rx_desc, 0, false);
4963                 stmmac_refill_desc3(priv, rx_q, rx_desc);
4964
4965                 rx_q->rx_count_frames++;
4966                 rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4967                 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4968                         rx_q->rx_count_frames = 0;
4969
4970                 use_rx_wd = !priv->rx_coal_frames[queue];
4971                 use_rx_wd |= rx_q->rx_count_frames > 0;
4972                 if (!priv->use_riwt)
4973                         use_rx_wd = false;
4974
4975                 dma_wmb();
4976                 stmmac_set_rx_owner(priv, rx_desc, use_rx_wd);
4977
4978                 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size);
4979         }
4980
4981         if (rx_desc) {
4982                 rx_q->dirty_rx = entry;
4983                 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4984                                      (rx_q->dirty_rx * sizeof(struct dma_desc));
4985                 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4986         }
4987
4988         return ret;
4989 }
4990
4991 static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue)
4992 {
4993         struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4994         unsigned int count = 0, error = 0, len = 0;
4995         int dirty = stmmac_rx_dirty(priv, queue);
4996         unsigned int next_entry = rx_q->cur_rx;
4997         unsigned int desc_size;
4998         struct bpf_prog *prog;
4999         bool failure = false;
5000         int xdp_status = 0;
5001         int status = 0;
5002
5003         if (netif_msg_rx_status(priv)) {
5004                 void *rx_head;
5005
5006                 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5007                 if (priv->extend_desc) {
5008                         rx_head = (void *)rx_q->dma_erx;
5009                         desc_size = sizeof(struct dma_extended_desc);
5010                 } else {
5011                         rx_head = (void *)rx_q->dma_rx;
5012                         desc_size = sizeof(struct dma_desc);
5013                 }
5014
5015                 stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true,
5016                                     rx_q->dma_rx_phy, desc_size);
5017         }
5018         while (count < limit) {
5019                 struct stmmac_rx_buffer *buf;
5020                 unsigned int buf1_len = 0;
5021                 struct dma_desc *np, *p;
5022                 int entry;
5023                 int res;
5024
5025                 if (!count && rx_q->state_saved) {
5026                         error = rx_q->state.error;
5027                         len = rx_q->state.len;
5028                 } else {
5029                         rx_q->state_saved = false;
5030                         error = 0;
5031                         len = 0;
5032                 }
5033
5034                 if (count >= limit)
5035                         break;
5036
5037 read_again:
5038                 buf1_len = 0;
5039                 entry = next_entry;
5040                 buf = &rx_q->buf_pool[entry];
5041
5042                 if (dirty >= STMMAC_RX_FILL_BATCH) {
5043                         failure = failure ||
5044                                   !stmmac_rx_refill_zc(priv, queue, dirty);
5045                         dirty = 0;
5046                 }
5047
5048                 if (priv->extend_desc)
5049                         p = (struct dma_desc *)(rx_q->dma_erx + entry);
5050                 else
5051                         p = rx_q->dma_rx + entry;
5052
5053                 /* read the status of the incoming frame */
5054                 status = stmmac_rx_status(priv, &priv->dev->stats,
5055                                           &priv->xstats, p);
5056                 /* check if managed by the DMA otherwise go ahead */
5057                 if (unlikely(status & dma_own))
5058                         break;
5059
5060                 /* Prefetch the next RX descriptor */
5061                 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5062                                                 priv->dma_conf.dma_rx_size);
5063                 next_entry = rx_q->cur_rx;
5064
5065                 if (priv->extend_desc)
5066                         np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5067                 else
5068                         np = rx_q->dma_rx + next_entry;
5069
5070                 prefetch(np);
5071
5072                 /* Ensure a valid XSK buffer before proceed */
5073                 if (!buf->xdp)
5074                         break;
5075
5076                 if (priv->extend_desc)
5077                         stmmac_rx_extended_status(priv, &priv->dev->stats,
5078                                                   &priv->xstats,
5079                                                   rx_q->dma_erx + entry);
5080                 if (unlikely(status == discard_frame)) {
5081                         xsk_buff_free(buf->xdp);
5082                         buf->xdp = NULL;
5083                         dirty++;
5084                         error = 1;
5085                         if (!priv->hwts_rx_en)
5086                                 priv->dev->stats.rx_errors++;
5087                 }
5088
5089                 if (unlikely(error && (status & rx_not_ls)))
5090                         goto read_again;
5091                 if (unlikely(error)) {
5092                         count++;
5093                         continue;
5094                 }
5095
5096                 /* XSK pool expects RX frame 1:1 mapped to XSK buffer */
5097                 if (likely(status & rx_not_ls)) {
5098                         xsk_buff_free(buf->xdp);
5099                         buf->xdp = NULL;
5100                         dirty++;
5101                         count++;
5102                         goto read_again;
5103                 }
5104
5105                 /* XDP ZC Frame only support primary buffers for now */
5106                 buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5107                 len += buf1_len;
5108
5109                 /* ACS is disabled; strip manually. */
5110                 if (likely(!(status & rx_not_ls))) {
5111                         buf1_len -= ETH_FCS_LEN;
5112                         len -= ETH_FCS_LEN;
5113                 }
5114
5115                 /* RX buffer is good and fit into a XSK pool buffer */
5116                 buf->xdp->data_end = buf->xdp->data + buf1_len;
5117                 xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool);
5118
5119                 prog = READ_ONCE(priv->xdp_prog);
5120                 res = __stmmac_xdp_run_prog(priv, prog, buf->xdp);
5121
5122                 switch (res) {
5123                 case STMMAC_XDP_PASS:
5124                         stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp);
5125                         xsk_buff_free(buf->xdp);
5126                         break;
5127                 case STMMAC_XDP_CONSUMED:
5128                         xsk_buff_free(buf->xdp);
5129                         priv->dev->stats.rx_dropped++;
5130                         break;
5131                 case STMMAC_XDP_TX:
5132                 case STMMAC_XDP_REDIRECT:
5133                         xdp_status |= res;
5134                         break;
5135                 }
5136
5137                 buf->xdp = NULL;
5138                 dirty++;
5139                 count++;
5140         }
5141
5142         if (status & rx_not_ls) {
5143                 rx_q->state_saved = true;
5144                 rx_q->state.error = error;
5145                 rx_q->state.len = len;
5146         }
5147
5148         stmmac_finalize_xdp_rx(priv, xdp_status);
5149
5150         priv->xstats.rx_pkt_n += count;
5151         priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5152
5153         if (xsk_uses_need_wakeup(rx_q->xsk_pool)) {
5154                 if (failure || stmmac_rx_dirty(priv, queue) > 0)
5155                         xsk_set_rx_need_wakeup(rx_q->xsk_pool);
5156                 else
5157                         xsk_clear_rx_need_wakeup(rx_q->xsk_pool);
5158
5159                 return (int)count;
5160         }
5161
5162         return failure ? limit : (int)count;
5163 }
5164
5165 /**
5166  * stmmac_rx - manage the receive process
5167  * @priv: driver private structure
5168  * @limit: napi bugget
5169  * @queue: RX queue index.
5170  * Description :  this the function called by the napi poll method.
5171  * It gets all the frames inside the ring.
5172  */
5173 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
5174 {
5175         struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
5176         struct stmmac_channel *ch = &priv->channel[queue];
5177         unsigned int count = 0, error = 0, len = 0;
5178         int status = 0, coe = priv->hw->rx_csum;
5179         unsigned int next_entry = rx_q->cur_rx;
5180         enum dma_data_direction dma_dir;
5181         unsigned int desc_size;
5182         struct sk_buff *skb = NULL;
5183         struct xdp_buff xdp;
5184         int xdp_status = 0;
5185         int buf_sz;
5186
5187         dma_dir = page_pool_get_dma_dir(rx_q->page_pool);
5188         buf_sz = DIV_ROUND_UP(priv->dma_conf.dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
5189
5190         if (netif_msg_rx_status(priv)) {
5191                 void *rx_head;
5192
5193                 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5194                 if (priv->extend_desc) {
5195                         rx_head = (void *)rx_q->dma_erx;
5196                         desc_size = sizeof(struct dma_extended_desc);
5197                 } else {
5198                         rx_head = (void *)rx_q->dma_rx;
5199                         desc_size = sizeof(struct dma_desc);
5200                 }
5201
5202                 stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true,
5203                                     rx_q->dma_rx_phy, desc_size);
5204         }
5205         while (count < limit) {
5206                 unsigned int buf1_len = 0, buf2_len = 0;
5207                 enum pkt_hash_types hash_type;
5208                 struct stmmac_rx_buffer *buf;
5209                 struct dma_desc *np, *p;
5210                 int entry;
5211                 u32 hash;
5212
5213                 if (!count && rx_q->state_saved) {
5214                         skb = rx_q->state.skb;
5215                         error = rx_q->state.error;
5216                         len = rx_q->state.len;
5217                 } else {
5218                         rx_q->state_saved = false;
5219                         skb = NULL;
5220                         error = 0;
5221                         len = 0;
5222                 }
5223
5224                 if (count >= limit)
5225                         break;
5226
5227 read_again:
5228                 buf1_len = 0;
5229                 buf2_len = 0;
5230                 entry = next_entry;
5231                 buf = &rx_q->buf_pool[entry];
5232
5233                 if (priv->extend_desc)
5234                         p = (struct dma_desc *)(rx_q->dma_erx + entry);
5235                 else
5236                         p = rx_q->dma_rx + entry;
5237
5238                 /* read the status of the incoming frame */
5239                 status = stmmac_rx_status(priv, &priv->dev->stats,
5240                                 &priv->xstats, p);
5241                 /* check if managed by the DMA otherwise go ahead */
5242                 if (unlikely(status & dma_own))
5243                         break;
5244
5245                 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5246                                                 priv->dma_conf.dma_rx_size);
5247                 next_entry = rx_q->cur_rx;
5248
5249                 if (priv->extend_desc)
5250                         np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5251                 else
5252                         np = rx_q->dma_rx + next_entry;
5253
5254                 prefetch(np);
5255
5256                 if (priv->extend_desc)
5257                         stmmac_rx_extended_status(priv, &priv->dev->stats,
5258                                         &priv->xstats, rx_q->dma_erx + entry);
5259                 if (unlikely(status == discard_frame)) {
5260                         page_pool_recycle_direct(rx_q->page_pool, buf->page);
5261                         buf->page = NULL;
5262                         error = 1;
5263                         if (!priv->hwts_rx_en)
5264                                 priv->dev->stats.rx_errors++;
5265                 }
5266
5267                 if (unlikely(error && (status & rx_not_ls)))
5268                         goto read_again;
5269                 if (unlikely(error)) {
5270                         dev_kfree_skb(skb);
5271                         skb = NULL;
5272                         count++;
5273                         continue;
5274                 }
5275
5276                 /* Buffer is good. Go on. */
5277
5278                 prefetch(page_address(buf->page) + buf->page_offset);
5279                 if (buf->sec_page)
5280                         prefetch(page_address(buf->sec_page));
5281
5282                 buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5283                 len += buf1_len;
5284                 buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
5285                 len += buf2_len;
5286
5287                 /* ACS is disabled; strip manually. */
5288                 if (likely(!(status & rx_not_ls))) {
5289                         if (buf2_len) {
5290                                 buf2_len -= ETH_FCS_LEN;
5291                                 len -= ETH_FCS_LEN;
5292                         } else if (buf1_len) {
5293                                 buf1_len -= ETH_FCS_LEN;
5294                                 len -= ETH_FCS_LEN;
5295                         }
5296                 }
5297
5298                 if (!skb) {
5299                         unsigned int pre_len, sync_len;
5300
5301                         dma_sync_single_for_cpu(priv->device, buf->addr,
5302                                                 buf1_len, dma_dir);
5303
5304                         xdp_init_buff(&xdp, buf_sz, &rx_q->xdp_rxq);
5305                         xdp_prepare_buff(&xdp, page_address(buf->page),
5306                                          buf->page_offset, buf1_len, false);
5307
5308                         pre_len = xdp.data_end - xdp.data_hard_start -
5309                                   buf->page_offset;
5310                         skb = stmmac_xdp_run_prog(priv, &xdp);
5311                         /* Due xdp_adjust_tail: DMA sync for_device
5312                          * cover max len CPU touch
5313                          */
5314                         sync_len = xdp.data_end - xdp.data_hard_start -
5315                                    buf->page_offset;
5316                         sync_len = max(sync_len, pre_len);
5317
5318                         /* For Not XDP_PASS verdict */
5319                         if (IS_ERR(skb)) {
5320                                 unsigned int xdp_res = -PTR_ERR(skb);
5321
5322                                 if (xdp_res & STMMAC_XDP_CONSUMED) {
5323                                         page_pool_put_page(rx_q->page_pool,
5324                                                            virt_to_head_page(xdp.data),
5325                                                            sync_len, true);
5326                                         buf->page = NULL;
5327                                         priv->dev->stats.rx_dropped++;
5328
5329                                         /* Clear skb as it was set as
5330                                          * status by XDP program.
5331                                          */
5332                                         skb = NULL;
5333
5334                                         if (unlikely((status & rx_not_ls)))
5335                                                 goto read_again;
5336
5337                                         count++;
5338                                         continue;
5339                                 } else if (xdp_res & (STMMAC_XDP_TX |
5340                                                       STMMAC_XDP_REDIRECT)) {
5341                                         xdp_status |= xdp_res;
5342                                         buf->page = NULL;
5343                                         skb = NULL;
5344                                         count++;
5345                                         continue;
5346                                 }
5347                         }
5348                 }
5349
5350                 if (!skb) {
5351                         /* XDP program may expand or reduce tail */
5352                         buf1_len = xdp.data_end - xdp.data;
5353
5354                         skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
5355                         if (!skb) {
5356                                 priv->dev->stats.rx_dropped++;
5357                                 count++;
5358                                 goto drain_data;
5359                         }
5360
5361                         /* XDP program may adjust header */
5362                         skb_copy_to_linear_data(skb, xdp.data, buf1_len);
5363                         skb_put(skb, buf1_len);
5364
5365                         /* Data payload copied into SKB, page ready for recycle */
5366                         page_pool_recycle_direct(rx_q->page_pool, buf->page);
5367                         buf->page = NULL;
5368                 } else if (buf1_len) {
5369                         dma_sync_single_for_cpu(priv->device, buf->addr,
5370                                                 buf1_len, dma_dir);
5371                         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5372                                         buf->page, buf->page_offset, buf1_len,
5373                                         priv->dma_conf.dma_buf_sz);
5374
5375                         /* Data payload appended into SKB */
5376                         page_pool_release_page(rx_q->page_pool, buf->page);
5377                         buf->page = NULL;
5378                 }
5379
5380                 if (buf2_len) {
5381                         dma_sync_single_for_cpu(priv->device, buf->sec_addr,
5382                                                 buf2_len, dma_dir);
5383                         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5384                                         buf->sec_page, 0, buf2_len,
5385                                         priv->dma_conf.dma_buf_sz);
5386
5387                         /* Data payload appended into SKB */
5388                         page_pool_release_page(rx_q->page_pool, buf->sec_page);
5389                         buf->sec_page = NULL;
5390                 }
5391
5392 drain_data:
5393                 if (likely(status & rx_not_ls))
5394                         goto read_again;
5395                 if (!skb)
5396                         continue;
5397
5398                 /* Got entire packet into SKB. Finish it. */
5399
5400                 stmmac_get_rx_hwtstamp(priv, p, np, skb);
5401                 stmmac_rx_vlan(priv->dev, skb);
5402                 skb->protocol = eth_type_trans(skb, priv->dev);
5403
5404                 if (unlikely(!coe))
5405                         skb_checksum_none_assert(skb);
5406                 else
5407                         skb->ip_summed = CHECKSUM_UNNECESSARY;
5408
5409                 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
5410                         skb_set_hash(skb, hash, hash_type);
5411
5412                 skb_record_rx_queue(skb, queue);
5413                 napi_gro_receive(&ch->rx_napi, skb);
5414                 skb = NULL;
5415
5416                 priv->dev->stats.rx_packets++;
5417                 priv->dev->stats.rx_bytes += len;
5418                 count++;
5419         }
5420
5421         if (status & rx_not_ls || skb) {
5422                 rx_q->state_saved = true;
5423                 rx_q->state.skb = skb;
5424                 rx_q->state.error = error;
5425                 rx_q->state.len = len;
5426         }
5427
5428         stmmac_finalize_xdp_rx(priv, xdp_status);
5429
5430         stmmac_rx_refill(priv, queue);
5431
5432         priv->xstats.rx_pkt_n += count;
5433         priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5434
5435         return count;
5436 }
5437
5438 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
5439 {
5440         struct stmmac_channel *ch =
5441                 container_of(napi, struct stmmac_channel, rx_napi);
5442         struct stmmac_priv *priv = ch->priv_data;
5443         u32 chan = ch->index;
5444         int work_done;
5445
5446         priv->xstats.napi_poll++;
5447
5448         work_done = stmmac_rx(priv, budget, chan);
5449         if (work_done < budget && napi_complete_done(napi, work_done)) {
5450                 unsigned long flags;
5451
5452                 spin_lock_irqsave(&ch->lock, flags);
5453                 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
5454                 spin_unlock_irqrestore(&ch->lock, flags);
5455         }
5456
5457         return work_done;
5458 }
5459
5460 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
5461 {
5462         struct stmmac_channel *ch =
5463                 container_of(napi, struct stmmac_channel, tx_napi);
5464         struct stmmac_priv *priv = ch->priv_data;
5465         u32 chan = ch->index;
5466         int work_done;
5467
5468         priv->xstats.napi_poll++;
5469
5470         work_done = stmmac_tx_clean(priv, budget, chan);
5471         work_done = min(work_done, budget);
5472
5473         if (work_done < budget && napi_complete_done(napi, work_done)) {
5474                 unsigned long flags;
5475
5476                 spin_lock_irqsave(&ch->lock, flags);
5477                 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
5478                 spin_unlock_irqrestore(&ch->lock, flags);
5479         }
5480
5481         return work_done;
5482 }
5483
5484 static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget)
5485 {
5486         struct stmmac_channel *ch =
5487                 container_of(napi, struct stmmac_channel, rxtx_napi);
5488         struct stmmac_priv *priv = ch->priv_data;
5489         int rx_done, tx_done, rxtx_done;
5490         u32 chan = ch->index;
5491
5492         priv->xstats.napi_poll++;
5493
5494         tx_done = stmmac_tx_clean(priv, budget, chan);
5495         tx_done = min(tx_done, budget);
5496
5497         rx_done = stmmac_rx_zc(priv, budget, chan);
5498
5499         rxtx_done = max(tx_done, rx_done);
5500
5501         /* If either TX or RX work is not complete, return budget
5502          * and keep pooling
5503          */
5504         if (rxtx_done >= budget)
5505                 return budget;
5506
5507         /* all work done, exit the polling mode */
5508         if (napi_complete_done(napi, rxtx_done)) {
5509                 unsigned long flags;
5510
5511                 spin_lock_irqsave(&ch->lock, flags);
5512                 /* Both RX and TX work done are compelte,
5513                  * so enable both RX & TX IRQs.
5514                  */
5515                 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
5516                 spin_unlock_irqrestore(&ch->lock, flags);
5517         }
5518
5519         return min(rxtx_done, budget - 1);
5520 }
5521
5522 /**
5523  *  stmmac_tx_timeout
5524  *  @dev : Pointer to net device structure
5525  *  @txqueue: the index of the hanging transmit queue
5526  *  Description: this function is called when a packet transmission fails to
5527  *   complete within a reasonable time. The driver will mark the error in the
5528  *   netdev structure and arrange for the device to be reset to a sane state
5529  *   in order to transmit a new packet.
5530  */
5531 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
5532 {
5533         struct stmmac_priv *priv = netdev_priv(dev);
5534
5535         stmmac_global_err(priv);
5536 }
5537
5538 /**
5539  *  stmmac_set_rx_mode - entry point for multicast addressing
5540  *  @dev : pointer to the device structure
5541  *  Description:
5542  *  This function is a driver entry point which gets called by the kernel
5543  *  whenever multicast addresses must be enabled/disabled.
5544  *  Return value:
5545  *  void.
5546  */
5547 static void stmmac_set_rx_mode(struct net_device *dev)
5548 {
5549         struct stmmac_priv *priv = netdev_priv(dev);
5550
5551         stmmac_set_filter(priv, priv->hw, dev);
5552 }
5553
5554 /**
5555  *  stmmac_change_mtu - entry point to change MTU size for the device.
5556  *  @dev : device pointer.
5557  *  @new_mtu : the new MTU size for the device.
5558  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
5559  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
5560  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
5561  *  Return value:
5562  *  0 on success and an appropriate (-)ve integer as defined in errno.h
5563  *  file on failure.
5564  */
5565 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
5566 {
5567         struct stmmac_priv *priv = netdev_priv(dev);
5568         int txfifosz = priv->plat->tx_fifo_size;
5569         struct stmmac_dma_conf *dma_conf;
5570         const int mtu = new_mtu;
5571         int ret;
5572
5573         if (txfifosz == 0)
5574                 txfifosz = priv->dma_cap.tx_fifo_size;
5575
5576         txfifosz /= priv->plat->tx_queues_to_use;
5577
5578         if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) {
5579                 netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n");
5580                 return -EINVAL;
5581         }
5582
5583         new_mtu = STMMAC_ALIGN(new_mtu);
5584
5585         /* If condition true, FIFO is too small or MTU too large */
5586         if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
5587                 return -EINVAL;
5588
5589         if (netif_running(dev)) {
5590                 netdev_dbg(priv->dev, "restarting interface to change its MTU\n");
5591                 /* Try to allocate the new DMA conf with the new mtu */
5592                 dma_conf = stmmac_setup_dma_desc(priv, mtu);
5593                 if (IS_ERR(dma_conf)) {
5594                         netdev_err(priv->dev, "failed allocating new dma conf for new MTU %d\n",
5595                                    mtu);
5596                         return PTR_ERR(dma_conf);
5597                 }
5598
5599                 stmmac_release(dev);
5600
5601                 ret = __stmmac_open(dev, dma_conf);
5602                 kfree(dma_conf);
5603                 if (ret) {
5604                         netdev_err(priv->dev, "failed reopening the interface after MTU change\n");
5605                         return ret;
5606                 }
5607
5608                 stmmac_set_rx_mode(dev);
5609         }
5610
5611         dev->mtu = mtu;
5612         netdev_update_features(dev);
5613
5614         return 0;
5615 }
5616
5617 static netdev_features_t stmmac_fix_features(struct net_device *dev,
5618                                              netdev_features_t features)
5619 {
5620         struct stmmac_priv *priv = netdev_priv(dev);
5621
5622         if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
5623                 features &= ~NETIF_F_RXCSUM;
5624
5625         if (!priv->plat->tx_coe)
5626                 features &= ~NETIF_F_CSUM_MASK;
5627
5628         /* Some GMAC devices have a bugged Jumbo frame support that
5629          * needs to have the Tx COE disabled for oversized frames
5630          * (due to limited buffer sizes). In this case we disable
5631          * the TX csum insertion in the TDES and not use SF.
5632          */
5633         if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
5634                 features &= ~NETIF_F_CSUM_MASK;
5635
5636         /* Disable tso if asked by ethtool */
5637         if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
5638                 if (features & NETIF_F_TSO)
5639                         priv->tso = true;
5640                 else
5641                         priv->tso = false;
5642         }
5643
5644         return features;
5645 }
5646
5647 static int stmmac_set_features(struct net_device *netdev,
5648                                netdev_features_t features)
5649 {
5650         struct stmmac_priv *priv = netdev_priv(netdev);
5651
5652         /* Keep the COE Type in case of csum is supporting */
5653         if (features & NETIF_F_RXCSUM)
5654                 priv->hw->rx_csum = priv->plat->rx_coe;
5655         else
5656                 priv->hw->rx_csum = 0;
5657         /* No check needed because rx_coe has been set before and it will be
5658          * fixed in case of issue.
5659          */
5660         stmmac_rx_ipc(priv, priv->hw);
5661
5662         if (priv->sph_cap) {
5663                 bool sph_en = (priv->hw->rx_csum > 0) && priv->sph;
5664                 u32 chan;
5665
5666                 for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
5667                         stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
5668         }
5669
5670         return 0;
5671 }
5672
5673 static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status)
5674 {
5675         struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
5676         enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
5677         enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
5678         bool *hs_enable = &fpe_cfg->hs_enable;
5679
5680         if (status == FPE_EVENT_UNKNOWN || !*hs_enable)
5681                 return;
5682
5683         /* If LP has sent verify mPacket, LP is FPE capable */
5684         if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) {
5685                 if (*lp_state < FPE_STATE_CAPABLE)
5686                         *lp_state = FPE_STATE_CAPABLE;
5687
5688                 /* If user has requested FPE enable, quickly response */
5689                 if (*hs_enable)
5690                         stmmac_fpe_send_mpacket(priv, priv->ioaddr,
5691                                                 MPACKET_RESPONSE);
5692         }
5693
5694         /* If Local has sent verify mPacket, Local is FPE capable */
5695         if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) {
5696                 if (*lo_state < FPE_STATE_CAPABLE)
5697                         *lo_state = FPE_STATE_CAPABLE;
5698         }
5699
5700         /* If LP has sent response mPacket, LP is entering FPE ON */
5701         if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP)
5702                 *lp_state = FPE_STATE_ENTERING_ON;
5703
5704         /* If Local has sent response mPacket, Local is entering FPE ON */
5705         if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP)
5706                 *lo_state = FPE_STATE_ENTERING_ON;
5707
5708         if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) &&
5709             !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) &&
5710             priv->fpe_wq) {
5711                 queue_work(priv->fpe_wq, &priv->fpe_task);
5712         }
5713 }
5714
5715 static void stmmac_common_interrupt(struct stmmac_priv *priv)
5716 {
5717         u32 rx_cnt = priv->plat->rx_queues_to_use;
5718         u32 tx_cnt = priv->plat->tx_queues_to_use;
5719         u32 queues_count;
5720         u32 queue;
5721         bool xmac;
5722
5723         xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
5724         queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
5725
5726         if (priv->irq_wake)
5727                 pm_wakeup_event(priv->device, 0);
5728
5729         if (priv->dma_cap.estsel)
5730                 stmmac_est_irq_status(priv, priv->ioaddr, priv->dev,
5731                                       &priv->xstats, tx_cnt);
5732
5733         if (priv->dma_cap.fpesel) {
5734                 int status = stmmac_fpe_irq_status(priv, priv->ioaddr,
5735                                                    priv->dev);
5736
5737                 stmmac_fpe_event_status(priv, status);
5738         }
5739
5740         /* To handle GMAC own interrupts */
5741         if ((priv->plat->has_gmac) || xmac) {
5742                 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
5743
5744                 if (unlikely(status)) {
5745                         /* For LPI we need to save the tx status */
5746                         if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
5747                                 priv->tx_path_in_lpi_mode = true;
5748                         if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
5749                                 priv->tx_path_in_lpi_mode = false;
5750                 }
5751
5752                 for (queue = 0; queue < queues_count; queue++) {
5753                         status = stmmac_host_mtl_irq_status(priv, priv->hw,
5754                                                             queue);
5755                 }
5756
5757                 /* PCS link status */
5758                 if (priv->hw->pcs) {
5759                         if (priv->xstats.pcs_link)
5760                                 netif_carrier_on(priv->dev);
5761                         else
5762                                 netif_carrier_off(priv->dev);
5763                 }
5764
5765                 stmmac_timestamp_interrupt(priv, priv);
5766         }
5767 }
5768
5769 /**
5770  *  stmmac_interrupt - main ISR
5771  *  @irq: interrupt number.
5772  *  @dev_id: to pass the net device pointer.
5773  *  Description: this is the main driver interrupt service routine.
5774  *  It can call:
5775  *  o DMA service routine (to manage incoming frame reception and transmission
5776  *    status)
5777  *  o Core interrupts to manage: remote wake-up, management counter, LPI
5778  *    interrupts.
5779  */
5780 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
5781 {
5782         struct net_device *dev = (struct net_device *)dev_id;
5783         struct stmmac_priv *priv = netdev_priv(dev);
5784
5785         /* Check if adapter is up */
5786         if (test_bit(STMMAC_DOWN, &priv->state))
5787                 return IRQ_HANDLED;
5788
5789         /* Check if a fatal error happened */
5790         if (stmmac_safety_feat_interrupt(priv))
5791                 return IRQ_HANDLED;
5792
5793         /* To handle Common interrupts */
5794         stmmac_common_interrupt(priv);
5795
5796         /* To handle DMA interrupts */
5797         stmmac_dma_interrupt(priv);
5798
5799         return IRQ_HANDLED;
5800 }
5801
5802 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id)
5803 {
5804         struct net_device *dev = (struct net_device *)dev_id;
5805         struct stmmac_priv *priv = netdev_priv(dev);
5806
5807         if (unlikely(!dev)) {
5808                 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5809                 return IRQ_NONE;
5810         }
5811
5812         /* Check if adapter is up */
5813         if (test_bit(STMMAC_DOWN, &priv->state))
5814                 return IRQ_HANDLED;
5815
5816         /* To handle Common interrupts */
5817         stmmac_common_interrupt(priv);
5818
5819         return IRQ_HANDLED;
5820 }
5821
5822 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id)
5823 {
5824         struct net_device *dev = (struct net_device *)dev_id;
5825         struct stmmac_priv *priv = netdev_priv(dev);
5826
5827         if (unlikely(!dev)) {
5828                 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5829                 return IRQ_NONE;
5830         }
5831
5832         /* Check if adapter is up */
5833         if (test_bit(STMMAC_DOWN, &priv->state))
5834                 return IRQ_HANDLED;
5835
5836         /* Check if a fatal error happened */
5837         stmmac_safety_feat_interrupt(priv);
5838
5839         return IRQ_HANDLED;
5840 }
5841
5842 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data)
5843 {
5844         struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data;
5845         struct stmmac_dma_conf *dma_conf;
5846         int chan = tx_q->queue_index;
5847         struct stmmac_priv *priv;
5848         int status;
5849
5850         dma_conf = container_of(tx_q, struct stmmac_dma_conf, tx_queue[chan]);
5851         priv = container_of(dma_conf, struct stmmac_priv, dma_conf);
5852
5853         if (unlikely(!data)) {
5854                 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5855                 return IRQ_NONE;
5856         }
5857
5858         /* Check if adapter is up */
5859         if (test_bit(STMMAC_DOWN, &priv->state))
5860                 return IRQ_HANDLED;
5861
5862         status = stmmac_napi_check(priv, chan, DMA_DIR_TX);
5863
5864         if (unlikely(status & tx_hard_error_bump_tc)) {
5865                 /* Try to bump up the dma threshold on this failure */
5866                 stmmac_bump_dma_threshold(priv, chan);
5867         } else if (unlikely(status == tx_hard_error)) {
5868                 stmmac_tx_err(priv, chan);
5869         }
5870
5871         return IRQ_HANDLED;
5872 }
5873
5874 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data)
5875 {
5876         struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data;
5877         struct stmmac_dma_conf *dma_conf;
5878         int chan = rx_q->queue_index;
5879         struct stmmac_priv *priv;
5880
5881         dma_conf = container_of(rx_q, struct stmmac_dma_conf, rx_queue[chan]);
5882         priv = container_of(dma_conf, struct stmmac_priv, dma_conf);
5883
5884         if (unlikely(!data)) {
5885                 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5886                 return IRQ_NONE;
5887         }
5888
5889         /* Check if adapter is up */
5890         if (test_bit(STMMAC_DOWN, &priv->state))
5891                 return IRQ_HANDLED;
5892
5893         stmmac_napi_check(priv, chan, DMA_DIR_RX);
5894
5895         return IRQ_HANDLED;
5896 }
5897
5898 #ifdef CONFIG_NET_POLL_CONTROLLER
5899 /* Polling receive - used by NETCONSOLE and other diagnostic tools
5900  * to allow network I/O with interrupts disabled.
5901  */
5902 static void stmmac_poll_controller(struct net_device *dev)
5903 {
5904         struct stmmac_priv *priv = netdev_priv(dev);
5905         int i;
5906
5907         /* If adapter is down, do nothing */
5908         if (test_bit(STMMAC_DOWN, &priv->state))
5909                 return;
5910
5911         if (priv->plat->multi_msi_en) {
5912                 for (i = 0; i < priv->plat->rx_queues_to_use; i++)
5913                         stmmac_msi_intr_rx(0, &priv->dma_conf.rx_queue[i]);
5914
5915                 for (i = 0; i < priv->plat->tx_queues_to_use; i++)
5916                         stmmac_msi_intr_tx(0, &priv->dma_conf.tx_queue[i]);
5917         } else {
5918                 disable_irq(dev->irq);
5919                 stmmac_interrupt(dev->irq, dev);
5920                 enable_irq(dev->irq);
5921         }
5922 }
5923 #endif
5924
5925 /**
5926  *  stmmac_ioctl - Entry point for the Ioctl
5927  *  @dev: Device pointer.
5928  *  @rq: An IOCTL specefic structure, that can contain a pointer to
5929  *  a proprietary structure used to pass information to the driver.
5930  *  @cmd: IOCTL command
5931  *  Description:
5932  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
5933  */
5934 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5935 {
5936         struct stmmac_priv *priv = netdev_priv (dev);
5937         int ret = -EOPNOTSUPP;
5938
5939         if (!netif_running(dev))
5940                 return -EINVAL;
5941
5942         switch (cmd) {
5943         case SIOCGMIIPHY:
5944         case SIOCGMIIREG:
5945         case SIOCSMIIREG:
5946                 ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
5947                 break;
5948         case SIOCSHWTSTAMP:
5949                 ret = stmmac_hwtstamp_set(dev, rq);
5950                 break;
5951         case SIOCGHWTSTAMP:
5952                 ret = stmmac_hwtstamp_get(dev, rq);
5953                 break;
5954         default:
5955                 break;
5956         }
5957
5958         return ret;
5959 }
5960
5961 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
5962                                     void *cb_priv)
5963 {
5964         struct stmmac_priv *priv = cb_priv;
5965         int ret = -EOPNOTSUPP;
5966
5967         if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
5968                 return ret;
5969
5970         __stmmac_disable_all_queues(priv);
5971
5972         switch (type) {
5973         case TC_SETUP_CLSU32:
5974                 ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
5975                 break;
5976         case TC_SETUP_CLSFLOWER:
5977                 ret = stmmac_tc_setup_cls(priv, priv, type_data);
5978                 break;
5979         default:
5980                 break;
5981         }
5982
5983         stmmac_enable_all_queues(priv);
5984         return ret;
5985 }
5986
5987 static LIST_HEAD(stmmac_block_cb_list);
5988
5989 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
5990                            void *type_data)
5991 {
5992         struct stmmac_priv *priv = netdev_priv(ndev);
5993
5994         switch (type) {
5995         case TC_SETUP_BLOCK:
5996                 return flow_block_cb_setup_simple(type_data,
5997                                                   &stmmac_block_cb_list,
5998                                                   stmmac_setup_tc_block_cb,
5999                                                   priv, priv, true);
6000         case TC_SETUP_QDISC_CBS:
6001                 return stmmac_tc_setup_cbs(priv, priv, type_data);
6002         case TC_SETUP_QDISC_TAPRIO:
6003                 return stmmac_tc_setup_taprio(priv, priv, type_data);
6004         case TC_SETUP_QDISC_ETF:
6005                 return stmmac_tc_setup_etf(priv, priv, type_data);
6006         default:
6007                 return -EOPNOTSUPP;
6008         }
6009 }
6010
6011 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
6012                                struct net_device *sb_dev)
6013 {
6014         int gso = skb_shinfo(skb)->gso_type;
6015
6016         if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
6017                 /*
6018                  * There is no way to determine the number of TSO/USO
6019                  * capable Queues. Let's use always the Queue 0
6020                  * because if TSO/USO is supported then at least this
6021                  * one will be capable.
6022                  */
6023                 return 0;
6024         }
6025
6026         return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
6027 }
6028
6029 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
6030 {
6031         struct stmmac_priv *priv = netdev_priv(ndev);
6032         int ret = 0;
6033
6034         ret = pm_runtime_resume_and_get(priv->device);
6035         if (ret < 0)
6036                 return ret;
6037
6038         ret = eth_mac_addr(ndev, addr);
6039         if (ret)
6040                 goto set_mac_error;
6041
6042         stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
6043
6044 set_mac_error:
6045         pm_runtime_put(priv->device);
6046
6047         return ret;
6048 }
6049
6050 #ifdef CONFIG_DEBUG_FS
6051 static struct dentry *stmmac_fs_dir;
6052
6053 static void sysfs_display_ring(void *head, int size, int extend_desc,
6054                                struct seq_file *seq, dma_addr_t dma_phy_addr)
6055 {
6056         int i;
6057         struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
6058         struct dma_desc *p = (struct dma_desc *)head;
6059         dma_addr_t dma_addr;
6060
6061         for (i = 0; i < size; i++) {
6062                 if (extend_desc) {
6063                         dma_addr = dma_phy_addr + i * sizeof(*ep);
6064                         seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
6065                                    i, &dma_addr,
6066                                    le32_to_cpu(ep->basic.des0),
6067                                    le32_to_cpu(ep->basic.des1),
6068                                    le32_to_cpu(ep->basic.des2),
6069                                    le32_to_cpu(ep->basic.des3));
6070                         ep++;
6071                 } else {
6072                         dma_addr = dma_phy_addr + i * sizeof(*p);
6073                         seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
6074                                    i, &dma_addr,
6075                                    le32_to_cpu(p->des0), le32_to_cpu(p->des1),
6076                                    le32_to_cpu(p->des2), le32_to_cpu(p->des3));
6077                         p++;
6078                 }
6079                 seq_printf(seq, "\n");
6080         }
6081 }
6082
6083 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
6084 {
6085         struct net_device *dev = seq->private;
6086         struct stmmac_priv *priv = netdev_priv(dev);
6087         u32 rx_count = priv->plat->rx_queues_to_use;
6088         u32 tx_count = priv->plat->tx_queues_to_use;
6089         u32 queue;
6090
6091         if ((dev->flags & IFF_UP) == 0)
6092                 return 0;
6093
6094         for (queue = 0; queue < rx_count; queue++) {
6095                 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
6096
6097                 seq_printf(seq, "RX Queue %d:\n", queue);
6098
6099                 if (priv->extend_desc) {
6100                         seq_printf(seq, "Extended descriptor ring:\n");
6101                         sysfs_display_ring((void *)rx_q->dma_erx,
6102                                            priv->dma_conf.dma_rx_size, 1, seq, rx_q->dma_rx_phy);
6103                 } else {
6104                         seq_printf(seq, "Descriptor ring:\n");
6105                         sysfs_display_ring((void *)rx_q->dma_rx,
6106                                            priv->dma_conf.dma_rx_size, 0, seq, rx_q->dma_rx_phy);
6107                 }
6108         }
6109
6110         for (queue = 0; queue < tx_count; queue++) {
6111                 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
6112
6113                 seq_printf(seq, "TX Queue %d:\n", queue);
6114
6115                 if (priv->extend_desc) {
6116                         seq_printf(seq, "Extended descriptor ring:\n");
6117                         sysfs_display_ring((void *)tx_q->dma_etx,
6118                                            priv->dma_conf.dma_tx_size, 1, seq, tx_q->dma_tx_phy);
6119                 } else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
6120                         seq_printf(seq, "Descriptor ring:\n");
6121                         sysfs_display_ring((void *)tx_q->dma_tx,
6122                                            priv->dma_conf.dma_tx_size, 0, seq, tx_q->dma_tx_phy);
6123                 }
6124         }
6125
6126         return 0;
6127 }
6128 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
6129
6130 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
6131 {
6132         struct net_device *dev = seq->private;
6133         struct stmmac_priv *priv = netdev_priv(dev);
6134
6135         if (!priv->hw_cap_support) {
6136                 seq_printf(seq, "DMA HW features not supported\n");
6137                 return 0;
6138         }
6139
6140         seq_printf(seq, "==============================\n");
6141         seq_printf(seq, "\tDMA HW features\n");
6142         seq_printf(seq, "==============================\n");
6143
6144         seq_printf(seq, "\t10/100 Mbps: %s\n",
6145                    (priv->dma_cap.mbps_10_100) ? "Y" : "N");
6146         seq_printf(seq, "\t1000 Mbps: %s\n",
6147                    (priv->dma_cap.mbps_1000) ? "Y" : "N");
6148         seq_printf(seq, "\tHalf duplex: %s\n",
6149                    (priv->dma_cap.half_duplex) ? "Y" : "N");
6150         seq_printf(seq, "\tHash Filter: %s\n",
6151                    (priv->dma_cap.hash_filter) ? "Y" : "N");
6152         seq_printf(seq, "\tMultiple MAC address registers: %s\n",
6153                    (priv->dma_cap.multi_addr) ? "Y" : "N");
6154         seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
6155                    (priv->dma_cap.pcs) ? "Y" : "N");
6156         seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
6157                    (priv->dma_cap.sma_mdio) ? "Y" : "N");
6158         seq_printf(seq, "\tPMT Remote wake up: %s\n",
6159                    (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
6160         seq_printf(seq, "\tPMT Magic Frame: %s\n",
6161                    (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
6162         seq_printf(seq, "\tRMON module: %s\n",
6163                    (priv->dma_cap.rmon) ? "Y" : "N");
6164         seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
6165                    (priv->dma_cap.time_stamp) ? "Y" : "N");
6166         seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
6167                    (priv->dma_cap.atime_stamp) ? "Y" : "N");
6168         seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
6169                    (priv->dma_cap.eee) ? "Y" : "N");
6170         seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
6171         seq_printf(seq, "\tChecksum Offload in TX: %s\n",
6172                    (priv->dma_cap.tx_coe) ? "Y" : "N");
6173         if (priv->synopsys_id >= DWMAC_CORE_4_00) {
6174                 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
6175                            (priv->dma_cap.rx_coe) ? "Y" : "N");
6176         } else {
6177                 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
6178                            (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
6179                 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
6180                            (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
6181         }
6182         seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
6183                    (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
6184         seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
6185                    priv->dma_cap.number_rx_channel);
6186         seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
6187                    priv->dma_cap.number_tx_channel);
6188         seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
6189                    priv->dma_cap.number_rx_queues);
6190         seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
6191                    priv->dma_cap.number_tx_queues);
6192         seq_printf(seq, "\tEnhanced descriptors: %s\n",
6193                    (priv->dma_cap.enh_desc) ? "Y" : "N");
6194         seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
6195         seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
6196         seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
6197         seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
6198         seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
6199                    priv->dma_cap.pps_out_num);
6200         seq_printf(seq, "\tSafety Features: %s\n",
6201                    priv->dma_cap.asp ? "Y" : "N");
6202         seq_printf(seq, "\tFlexible RX Parser: %s\n",
6203                    priv->dma_cap.frpsel ? "Y" : "N");
6204         seq_printf(seq, "\tEnhanced Addressing: %d\n",
6205                    priv->dma_cap.addr64);
6206         seq_printf(seq, "\tReceive Side Scaling: %s\n",
6207                    priv->dma_cap.rssen ? "Y" : "N");
6208         seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
6209                    priv->dma_cap.vlhash ? "Y" : "N");
6210         seq_printf(seq, "\tSplit Header: %s\n",
6211                    priv->dma_cap.sphen ? "Y" : "N");
6212         seq_printf(seq, "\tVLAN TX Insertion: %s\n",
6213                    priv->dma_cap.vlins ? "Y" : "N");
6214         seq_printf(seq, "\tDouble VLAN: %s\n",
6215                    priv->dma_cap.dvlan ? "Y" : "N");
6216         seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
6217                    priv->dma_cap.l3l4fnum);
6218         seq_printf(seq, "\tARP Offloading: %s\n",
6219                    priv->dma_cap.arpoffsel ? "Y" : "N");
6220         seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
6221                    priv->dma_cap.estsel ? "Y" : "N");
6222         seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
6223                    priv->dma_cap.fpesel ? "Y" : "N");
6224         seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
6225                    priv->dma_cap.tbssel ? "Y" : "N");
6226         return 0;
6227 }
6228 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
6229
6230 /* Use network device events to rename debugfs file entries.
6231  */
6232 static int stmmac_device_event(struct notifier_block *unused,
6233                                unsigned long event, void *ptr)
6234 {
6235         struct net_device *dev = netdev_notifier_info_to_dev(ptr);
6236         struct stmmac_priv *priv = netdev_priv(dev);
6237
6238         if (dev->netdev_ops != &stmmac_netdev_ops)
6239                 goto done;
6240
6241         switch (event) {
6242         case NETDEV_CHANGENAME:
6243                 if (priv->dbgfs_dir)
6244                         priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
6245                                                          priv->dbgfs_dir,
6246                                                          stmmac_fs_dir,
6247                                                          dev->name);
6248                 break;
6249         }
6250 done:
6251         return NOTIFY_DONE;
6252 }
6253
6254 static struct notifier_block stmmac_notifier = {
6255         .notifier_call = stmmac_device_event,
6256 };
6257
6258 static void stmmac_init_fs(struct net_device *dev)
6259 {
6260         struct stmmac_priv *priv = netdev_priv(dev);
6261
6262         rtnl_lock();
6263
6264         /* Create per netdev entries */
6265         priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
6266
6267         /* Entry to report DMA RX/TX rings */
6268         debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
6269                             &stmmac_rings_status_fops);
6270
6271         /* Entry to report the DMA HW features */
6272         debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
6273                             &stmmac_dma_cap_fops);
6274
6275         rtnl_unlock();
6276 }
6277
6278 static void stmmac_exit_fs(struct net_device *dev)
6279 {
6280         struct stmmac_priv *priv = netdev_priv(dev);
6281
6282         debugfs_remove_recursive(priv->dbgfs_dir);
6283 }
6284 #endif /* CONFIG_DEBUG_FS */
6285
6286 static u32 stmmac_vid_crc32_le(__le16 vid_le)
6287 {
6288         unsigned char *data = (unsigned char *)&vid_le;
6289         unsigned char data_byte = 0;
6290         u32 crc = ~0x0;
6291         u32 temp = 0;
6292         int i, bits;
6293
6294         bits = get_bitmask_order(VLAN_VID_MASK);
6295         for (i = 0; i < bits; i++) {
6296                 if ((i % 8) == 0)
6297                         data_byte = data[i / 8];
6298
6299                 temp = ((crc & 1) ^ data_byte) & 1;
6300                 crc >>= 1;
6301                 data_byte >>= 1;
6302
6303                 if (temp)
6304                         crc ^= 0xedb88320;
6305         }
6306
6307         return crc;
6308 }
6309
6310 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
6311 {
6312         u32 crc, hash = 0;
6313         __le16 pmatch = 0;
6314         int count = 0;
6315         u16 vid = 0;
6316
6317         for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
6318                 __le16 vid_le = cpu_to_le16(vid);
6319                 crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
6320                 hash |= (1 << crc);
6321                 count++;
6322         }
6323
6324         if (!priv->dma_cap.vlhash) {
6325                 if (count > 2) /* VID = 0 always passes filter */
6326                         return -EOPNOTSUPP;
6327
6328                 pmatch = cpu_to_le16(vid);
6329                 hash = 0;
6330         }
6331
6332         return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
6333 }
6334
6335 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
6336 {
6337         struct stmmac_priv *priv = netdev_priv(ndev);
6338         bool is_double = false;
6339         int ret;
6340
6341         if (be16_to_cpu(proto) == ETH_P_8021AD)
6342                 is_double = true;
6343
6344         set_bit(vid, priv->active_vlans);
6345         ret = stmmac_vlan_update(priv, is_double);
6346         if (ret) {
6347                 clear_bit(vid, priv->active_vlans);
6348                 return ret;
6349         }
6350
6351         if (priv->hw->num_vlan) {
6352                 ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6353                 if (ret)
6354                         return ret;
6355         }
6356
6357         return 0;
6358 }
6359
6360 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
6361 {
6362         struct stmmac_priv *priv = netdev_priv(ndev);
6363         bool is_double = false;
6364         int ret;
6365
6366         ret = pm_runtime_resume_and_get(priv->device);
6367         if (ret < 0)
6368                 return ret;
6369
6370         if (be16_to_cpu(proto) == ETH_P_8021AD)
6371                 is_double = true;
6372
6373         clear_bit(vid, priv->active_vlans);
6374
6375         if (priv->hw->num_vlan) {
6376                 ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6377                 if (ret)
6378                         goto del_vlan_error;
6379         }
6380
6381         ret = stmmac_vlan_update(priv, is_double);
6382
6383 del_vlan_error:
6384         pm_runtime_put(priv->device);
6385
6386         return ret;
6387 }
6388
6389 static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6390 {
6391         struct stmmac_priv *priv = netdev_priv(dev);
6392
6393         switch (bpf->command) {
6394         case XDP_SETUP_PROG:
6395                 return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack);
6396         case XDP_SETUP_XSK_POOL:
6397                 return stmmac_xdp_setup_pool(priv, bpf->xsk.pool,
6398                                              bpf->xsk.queue_id);
6399         default:
6400                 return -EOPNOTSUPP;
6401         }
6402 }
6403
6404 static int stmmac_xdp_xmit(struct net_device *dev, int num_frames,
6405                            struct xdp_frame **frames, u32 flags)
6406 {
6407         struct stmmac_priv *priv = netdev_priv(dev);
6408         int cpu = smp_processor_id();
6409         struct netdev_queue *nq;
6410         int i, nxmit = 0;
6411         int queue;
6412
6413         if (unlikely(test_bit(STMMAC_DOWN, &priv->state)))
6414                 return -ENETDOWN;
6415
6416         if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6417                 return -EINVAL;
6418
6419         queue = stmmac_xdp_get_tx_queue(priv, cpu);
6420         nq = netdev_get_tx_queue(priv->dev, queue);
6421
6422         __netif_tx_lock(nq, cpu);
6423         /* Avoids TX time-out as we are sharing with slow path */
6424         txq_trans_cond_update(nq);
6425
6426         for (i = 0; i < num_frames; i++) {
6427                 int res;
6428
6429                 res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true);
6430                 if (res == STMMAC_XDP_CONSUMED)
6431                         break;
6432
6433                 nxmit++;
6434         }
6435
6436         if (flags & XDP_XMIT_FLUSH) {
6437                 stmmac_flush_tx_descriptors(priv, queue);
6438                 stmmac_tx_timer_arm(priv, queue);
6439         }
6440
6441         __netif_tx_unlock(nq);
6442
6443         return nxmit;
6444 }
6445
6446 void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue)
6447 {
6448         struct stmmac_channel *ch = &priv->channel[queue];
6449         unsigned long flags;
6450
6451         spin_lock_irqsave(&ch->lock, flags);
6452         stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6453         spin_unlock_irqrestore(&ch->lock, flags);
6454
6455         stmmac_stop_rx_dma(priv, queue);
6456         __free_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6457 }
6458
6459 void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue)
6460 {
6461         struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
6462         struct stmmac_channel *ch = &priv->channel[queue];
6463         unsigned long flags;
6464         u32 buf_size;
6465         int ret;
6466
6467         ret = __alloc_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6468         if (ret) {
6469                 netdev_err(priv->dev, "Failed to alloc RX desc.\n");
6470                 return;
6471         }
6472
6473         ret = __init_dma_rx_desc_rings(priv, &priv->dma_conf, queue, GFP_KERNEL);
6474         if (ret) {
6475                 __free_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6476                 netdev_err(priv->dev, "Failed to init RX desc.\n");
6477                 return;
6478         }
6479
6480         stmmac_reset_rx_queue(priv, queue);
6481         stmmac_clear_rx_descriptors(priv, &priv->dma_conf, queue);
6482
6483         stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6484                             rx_q->dma_rx_phy, rx_q->queue_index);
6485
6486         rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num *
6487                              sizeof(struct dma_desc));
6488         stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6489                                rx_q->rx_tail_addr, rx_q->queue_index);
6490
6491         if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6492                 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6493                 stmmac_set_dma_bfsize(priv, priv->ioaddr,
6494                                       buf_size,
6495                                       rx_q->queue_index);
6496         } else {
6497                 stmmac_set_dma_bfsize(priv, priv->ioaddr,
6498                                       priv->dma_conf.dma_buf_sz,
6499                                       rx_q->queue_index);
6500         }
6501
6502         stmmac_start_rx_dma(priv, queue);
6503
6504         spin_lock_irqsave(&ch->lock, flags);
6505         stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6506         spin_unlock_irqrestore(&ch->lock, flags);
6507 }
6508
6509 void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue)
6510 {
6511         struct stmmac_channel *ch = &priv->channel[queue];
6512         unsigned long flags;
6513
6514         spin_lock_irqsave(&ch->lock, flags);
6515         stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6516         spin_unlock_irqrestore(&ch->lock, flags);
6517
6518         stmmac_stop_tx_dma(priv, queue);
6519         __free_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6520 }
6521
6522 void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue)
6523 {
6524         struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
6525         struct stmmac_channel *ch = &priv->channel[queue];
6526         unsigned long flags;
6527         int ret;
6528
6529         ret = __alloc_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6530         if (ret) {
6531                 netdev_err(priv->dev, "Failed to alloc TX desc.\n");
6532                 return;
6533         }
6534
6535         ret = __init_dma_tx_desc_rings(priv,  &priv->dma_conf, queue);
6536         if (ret) {
6537                 __free_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6538                 netdev_err(priv->dev, "Failed to init TX desc.\n");
6539                 return;
6540         }
6541
6542         stmmac_reset_tx_queue(priv, queue);
6543         stmmac_clear_tx_descriptors(priv, &priv->dma_conf, queue);
6544
6545         stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6546                             tx_q->dma_tx_phy, tx_q->queue_index);
6547
6548         if (tx_q->tbs & STMMAC_TBS_AVAIL)
6549                 stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index);
6550
6551         tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6552         stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6553                                tx_q->tx_tail_addr, tx_q->queue_index);
6554
6555         stmmac_start_tx_dma(priv, queue);
6556
6557         spin_lock_irqsave(&ch->lock, flags);
6558         stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6559         spin_unlock_irqrestore(&ch->lock, flags);
6560 }
6561
6562 void stmmac_xdp_release(struct net_device *dev)
6563 {
6564         struct stmmac_priv *priv = netdev_priv(dev);
6565         u32 chan;
6566
6567         /* Ensure tx function is not running */
6568         netif_tx_disable(dev);
6569
6570         /* Disable NAPI process */
6571         stmmac_disable_all_queues(priv);
6572
6573         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6574                 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
6575
6576         /* Free the IRQ lines */
6577         stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
6578
6579         /* Stop TX/RX DMA channels */
6580         stmmac_stop_all_dma(priv);
6581
6582         /* Release and free the Rx/Tx resources */
6583         free_dma_desc_resources(priv, &priv->dma_conf);
6584
6585         /* Disable the MAC Rx/Tx */
6586         stmmac_mac_set(priv, priv->ioaddr, false);
6587
6588         /* set trans_start so we don't get spurious
6589          * watchdogs during reset
6590          */
6591         netif_trans_update(dev);
6592         netif_carrier_off(dev);
6593 }
6594
6595 int stmmac_xdp_open(struct net_device *dev)
6596 {
6597         struct stmmac_priv *priv = netdev_priv(dev);
6598         u32 rx_cnt = priv->plat->rx_queues_to_use;
6599         u32 tx_cnt = priv->plat->tx_queues_to_use;
6600         u32 dma_csr_ch = max(rx_cnt, tx_cnt);
6601         struct stmmac_rx_queue *rx_q;
6602         struct stmmac_tx_queue *tx_q;
6603         u32 buf_size;
6604         bool sph_en;
6605         u32 chan;
6606         int ret;
6607
6608         ret = alloc_dma_desc_resources(priv, &priv->dma_conf);
6609         if (ret < 0) {
6610                 netdev_err(dev, "%s: DMA descriptors allocation failed\n",
6611                            __func__);
6612                 goto dma_desc_error;
6613         }
6614
6615         ret = init_dma_desc_rings(dev, &priv->dma_conf, GFP_KERNEL);
6616         if (ret < 0) {
6617                 netdev_err(dev, "%s: DMA descriptors initialization failed\n",
6618                            __func__);
6619                 goto init_error;
6620         }
6621
6622         /* DMA CSR Channel configuration */
6623         for (chan = 0; chan < dma_csr_ch; chan++) {
6624                 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
6625                 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
6626         }
6627
6628         /* Adjust Split header */
6629         sph_en = (priv->hw->rx_csum > 0) && priv->sph;
6630
6631         /* DMA RX Channel Configuration */
6632         for (chan = 0; chan < rx_cnt; chan++) {
6633                 rx_q = &priv->dma_conf.rx_queue[chan];
6634
6635                 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6636                                     rx_q->dma_rx_phy, chan);
6637
6638                 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
6639                                      (rx_q->buf_alloc_num *
6640                                       sizeof(struct dma_desc));
6641                 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6642                                        rx_q->rx_tail_addr, chan);
6643
6644                 if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6645                         buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6646                         stmmac_set_dma_bfsize(priv, priv->ioaddr,
6647                                               buf_size,
6648                                               rx_q->queue_index);
6649                 } else {
6650                         stmmac_set_dma_bfsize(priv, priv->ioaddr,
6651                                               priv->dma_conf.dma_buf_sz,
6652                                               rx_q->queue_index);
6653                 }
6654
6655                 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
6656         }
6657
6658         /* DMA TX Channel Configuration */
6659         for (chan = 0; chan < tx_cnt; chan++) {
6660                 tx_q = &priv->dma_conf.tx_queue[chan];
6661
6662                 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6663                                     tx_q->dma_tx_phy, chan);
6664
6665                 tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6666                 stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6667                                        tx_q->tx_tail_addr, chan);
6668
6669                 hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6670                 tx_q->txtimer.function = stmmac_tx_timer;
6671         }
6672
6673         /* Enable the MAC Rx/Tx */
6674         stmmac_mac_set(priv, priv->ioaddr, true);
6675
6676         /* Start Rx & Tx DMA Channels */
6677         stmmac_start_all_dma(priv);
6678
6679         ret = stmmac_request_irq(dev);
6680         if (ret)
6681                 goto irq_error;
6682
6683         /* Enable NAPI process*/
6684         stmmac_enable_all_queues(priv);
6685         netif_carrier_on(dev);
6686         netif_tx_start_all_queues(dev);
6687         stmmac_enable_all_dma_irq(priv);
6688
6689         return 0;
6690
6691 irq_error:
6692         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6693                 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
6694
6695         stmmac_hw_teardown(dev);
6696 init_error:
6697         free_dma_desc_resources(priv, &priv->dma_conf);
6698 dma_desc_error:
6699         return ret;
6700 }
6701
6702 int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags)
6703 {
6704         struct stmmac_priv *priv = netdev_priv(dev);
6705         struct stmmac_rx_queue *rx_q;
6706         struct stmmac_tx_queue *tx_q;
6707         struct stmmac_channel *ch;
6708
6709         if (test_bit(STMMAC_DOWN, &priv->state) ||
6710             !netif_carrier_ok(priv->dev))
6711                 return -ENETDOWN;
6712
6713         if (!stmmac_xdp_is_enabled(priv))
6714                 return -EINVAL;
6715
6716         if (queue >= priv->plat->rx_queues_to_use ||
6717             queue >= priv->plat->tx_queues_to_use)
6718                 return -EINVAL;
6719
6720         rx_q = &priv->dma_conf.rx_queue[queue];
6721         tx_q = &priv->dma_conf.tx_queue[queue];
6722         ch = &priv->channel[queue];
6723
6724         if (!rx_q->xsk_pool && !tx_q->xsk_pool)
6725                 return -EINVAL;
6726
6727         if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) {
6728                 /* EQoS does not have per-DMA channel SW interrupt,
6729                  * so we schedule RX Napi straight-away.
6730                  */
6731                 if (likely(napi_schedule_prep(&ch->rxtx_napi)))
6732                         __napi_schedule(&ch->rxtx_napi);
6733         }
6734
6735         return 0;
6736 }
6737
6738 static const struct net_device_ops stmmac_netdev_ops = {
6739         .ndo_open = stmmac_open,
6740         .ndo_start_xmit = stmmac_xmit,
6741         .ndo_stop = stmmac_release,
6742         .ndo_change_mtu = stmmac_change_mtu,
6743         .ndo_fix_features = stmmac_fix_features,
6744         .ndo_set_features = stmmac_set_features,
6745         .ndo_set_rx_mode = stmmac_set_rx_mode,
6746         .ndo_tx_timeout = stmmac_tx_timeout,
6747         .ndo_eth_ioctl = stmmac_ioctl,
6748         .ndo_setup_tc = stmmac_setup_tc,
6749         .ndo_select_queue = stmmac_select_queue,
6750 #ifdef CONFIG_NET_POLL_CONTROLLER
6751         .ndo_poll_controller = stmmac_poll_controller,
6752 #endif
6753         .ndo_set_mac_address = stmmac_set_mac_address,
6754         .ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
6755         .ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
6756         .ndo_bpf = stmmac_bpf,
6757         .ndo_xdp_xmit = stmmac_xdp_xmit,
6758         .ndo_xsk_wakeup = stmmac_xsk_wakeup,
6759 };
6760
6761 static void stmmac_reset_subtask(struct stmmac_priv *priv)
6762 {
6763         if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
6764                 return;
6765         if (test_bit(STMMAC_DOWN, &priv->state))
6766                 return;
6767
6768         netdev_err(priv->dev, "Reset adapter.\n");
6769
6770         rtnl_lock();
6771         netif_trans_update(priv->dev);
6772         while (test_and_set_bit(STMMAC_RESETING, &priv->state))
6773                 usleep_range(1000, 2000);
6774
6775         set_bit(STMMAC_DOWN, &priv->state);
6776         dev_close(priv->dev);
6777         dev_open(priv->dev, NULL);
6778         clear_bit(STMMAC_DOWN, &priv->state);
6779         clear_bit(STMMAC_RESETING, &priv->state);
6780         rtnl_unlock();
6781 }
6782
6783 static void stmmac_service_task(struct work_struct *work)
6784 {
6785         struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6786                         service_task);
6787
6788         stmmac_reset_subtask(priv);
6789         clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
6790 }
6791
6792 /**
6793  *  stmmac_hw_init - Init the MAC device
6794  *  @priv: driver private structure
6795  *  Description: this function is to configure the MAC device according to
6796  *  some platform parameters or the HW capability register. It prepares the
6797  *  driver to use either ring or chain modes and to setup either enhanced or
6798  *  normal descriptors.
6799  */
6800 static int stmmac_hw_init(struct stmmac_priv *priv)
6801 {
6802         int ret;
6803
6804         /* dwmac-sun8i only work in chain mode */
6805         if (priv->plat->has_sun8i)
6806                 chain_mode = 1;
6807         priv->chain_mode = chain_mode;
6808
6809         /* Initialize HW Interface */
6810         ret = stmmac_hwif_init(priv);
6811         if (ret)
6812                 return ret;
6813
6814         /* Get the HW capability (new GMAC newer than 3.50a) */
6815         priv->hw_cap_support = stmmac_get_hw_features(priv);
6816         if (priv->hw_cap_support) {
6817                 dev_info(priv->device, "DMA HW capability register supported\n");
6818
6819                 /* We can override some gmac/dma configuration fields: e.g.
6820                  * enh_desc, tx_coe (e.g. that are passed through the
6821                  * platform) with the values from the HW capability
6822                  * register (if supported).
6823                  */
6824                 priv->plat->enh_desc = priv->dma_cap.enh_desc;
6825                 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up &&
6826                                 !priv->plat->use_phy_wol;
6827                 priv->hw->pmt = priv->plat->pmt;
6828                 if (priv->dma_cap.hash_tb_sz) {
6829                         priv->hw->multicast_filter_bins =
6830                                         (BIT(priv->dma_cap.hash_tb_sz) << 5);
6831                         priv->hw->mcast_bits_log2 =
6832                                         ilog2(priv->hw->multicast_filter_bins);
6833                 }
6834
6835                 /* TXCOE doesn't work in thresh DMA mode */
6836                 if (priv->plat->force_thresh_dma_mode)
6837                         priv->plat->tx_coe = 0;
6838                 else
6839                         priv->plat->tx_coe = priv->dma_cap.tx_coe;
6840
6841                 /* In case of GMAC4 rx_coe is from HW cap register. */
6842                 priv->plat->rx_coe = priv->dma_cap.rx_coe;
6843
6844                 if (priv->dma_cap.rx_coe_type2)
6845                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
6846                 else if (priv->dma_cap.rx_coe_type1)
6847                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
6848
6849         } else {
6850                 dev_info(priv->device, "No HW DMA feature register supported\n");
6851         }
6852
6853         if (priv->plat->rx_coe) {
6854                 priv->hw->rx_csum = priv->plat->rx_coe;
6855                 dev_info(priv->device, "RX Checksum Offload Engine supported\n");
6856                 if (priv->synopsys_id < DWMAC_CORE_4_00)
6857                         dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
6858         }
6859         if (priv->plat->tx_coe)
6860                 dev_info(priv->device, "TX Checksum insertion supported\n");
6861
6862         if (priv->plat->pmt) {
6863                 dev_info(priv->device, "Wake-Up On Lan supported\n");
6864                 device_set_wakeup_capable(priv->device, 1);
6865         }
6866
6867         if (priv->dma_cap.tsoen)
6868                 dev_info(priv->device, "TSO supported\n");
6869
6870         priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en;
6871         priv->hw->vlan_fail_q = priv->plat->vlan_fail_q;
6872
6873         /* Run HW quirks, if any */
6874         if (priv->hwif_quirks) {
6875                 ret = priv->hwif_quirks(priv);
6876                 if (ret)
6877                         return ret;
6878         }
6879
6880         /* Rx Watchdog is available in the COREs newer than the 3.40.
6881          * In some case, for example on bugged HW this feature
6882          * has to be disable and this can be done by passing the
6883          * riwt_off field from the platform.
6884          */
6885         if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
6886             (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
6887                 priv->use_riwt = 1;
6888                 dev_info(priv->device,
6889                          "Enable RX Mitigation via HW Watchdog Timer\n");
6890         }
6891
6892         return 0;
6893 }
6894
6895 static void stmmac_napi_add(struct net_device *dev)
6896 {
6897         struct stmmac_priv *priv = netdev_priv(dev);
6898         u32 queue, maxq;
6899
6900         maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6901
6902         for (queue = 0; queue < maxq; queue++) {
6903                 struct stmmac_channel *ch = &priv->channel[queue];
6904
6905                 ch->priv_data = priv;
6906                 ch->index = queue;
6907                 spin_lock_init(&ch->lock);
6908
6909                 if (queue < priv->plat->rx_queues_to_use) {
6910                         netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx);
6911                 }
6912                 if (queue < priv->plat->tx_queues_to_use) {
6913                         netif_napi_add_tx(dev, &ch->tx_napi,
6914                                           stmmac_napi_poll_tx);
6915                 }
6916                 if (queue < priv->plat->rx_queues_to_use &&
6917                     queue < priv->plat->tx_queues_to_use) {
6918                         netif_napi_add(dev, &ch->rxtx_napi,
6919                                        stmmac_napi_poll_rxtx);
6920                 }
6921         }
6922 }
6923
6924 static void stmmac_napi_del(struct net_device *dev)
6925 {
6926         struct stmmac_priv *priv = netdev_priv(dev);
6927         u32 queue, maxq;
6928
6929         maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6930
6931         for (queue = 0; queue < maxq; queue++) {
6932                 struct stmmac_channel *ch = &priv->channel[queue];
6933
6934                 if (queue < priv->plat->rx_queues_to_use)
6935                         netif_napi_del(&ch->rx_napi);
6936                 if (queue < priv->plat->tx_queues_to_use)
6937                         netif_napi_del(&ch->tx_napi);
6938                 if (queue < priv->plat->rx_queues_to_use &&
6939                     queue < priv->plat->tx_queues_to_use) {
6940                         netif_napi_del(&ch->rxtx_napi);
6941                 }
6942         }
6943 }
6944
6945 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt)
6946 {
6947         struct stmmac_priv *priv = netdev_priv(dev);
6948         int ret = 0;
6949
6950         if (netif_running(dev))
6951                 stmmac_release(dev);
6952
6953         stmmac_napi_del(dev);
6954
6955         priv->plat->rx_queues_to_use = rx_cnt;
6956         priv->plat->tx_queues_to_use = tx_cnt;
6957
6958         stmmac_napi_add(dev);
6959
6960         if (netif_running(dev))
6961                 ret = stmmac_open(dev);
6962
6963         return ret;
6964 }
6965
6966 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size)
6967 {
6968         struct stmmac_priv *priv = netdev_priv(dev);
6969         int ret = 0;
6970
6971         if (netif_running(dev))
6972                 stmmac_release(dev);
6973
6974         priv->dma_conf.dma_rx_size = rx_size;
6975         priv->dma_conf.dma_tx_size = tx_size;
6976
6977         if (netif_running(dev))
6978                 ret = stmmac_open(dev);
6979
6980         return ret;
6981 }
6982
6983 #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n"
6984 static void stmmac_fpe_lp_task(struct work_struct *work)
6985 {
6986         struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6987                                                 fpe_task);
6988         struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
6989         enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
6990         enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
6991         bool *hs_enable = &fpe_cfg->hs_enable;
6992         bool *enable = &fpe_cfg->enable;
6993         int retries = 20;
6994
6995         while (retries-- > 0) {
6996                 /* Bail out immediately if FPE handshake is OFF */
6997                 if (*lo_state == FPE_STATE_OFF || !*hs_enable)
6998                         break;
6999
7000                 if (*lo_state == FPE_STATE_ENTERING_ON &&
7001                     *lp_state == FPE_STATE_ENTERING_ON) {
7002                         stmmac_fpe_configure(priv, priv->ioaddr,
7003                                              priv->plat->tx_queues_to_use,
7004                                              priv->plat->rx_queues_to_use,
7005                                              *enable);
7006
7007                         netdev_info(priv->dev, "configured FPE\n");
7008
7009                         *lo_state = FPE_STATE_ON;
7010                         *lp_state = FPE_STATE_ON;
7011                         netdev_info(priv->dev, "!!! BOTH FPE stations ON\n");
7012                         break;
7013                 }
7014
7015                 if ((*lo_state == FPE_STATE_CAPABLE ||
7016                      *lo_state == FPE_STATE_ENTERING_ON) &&
7017                      *lp_state != FPE_STATE_ON) {
7018                         netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT,
7019                                     *lo_state, *lp_state);
7020                         stmmac_fpe_send_mpacket(priv, priv->ioaddr,
7021                                                 MPACKET_VERIFY);
7022                 }
7023                 /* Sleep then retry */
7024                 msleep(500);
7025         }
7026
7027         clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
7028 }
7029
7030 void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable)
7031 {
7032         if (priv->plat->fpe_cfg->hs_enable != enable) {
7033                 if (enable) {
7034                         stmmac_fpe_send_mpacket(priv, priv->ioaddr,
7035                                                 MPACKET_VERIFY);
7036                 } else {
7037                         priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF;
7038                         priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF;
7039                 }
7040
7041                 priv->plat->fpe_cfg->hs_enable = enable;
7042         }
7043 }
7044
7045 /**
7046  * stmmac_dvr_probe
7047  * @device: device pointer
7048  * @plat_dat: platform data pointer
7049  * @res: stmmac resource pointer
7050  * Description: this is the main probe function used to
7051  * call the alloc_etherdev, allocate the priv structure.
7052  * Return:
7053  * returns 0 on success, otherwise errno.
7054  */
7055 int stmmac_dvr_probe(struct device *device,
7056                      struct plat_stmmacenet_data *plat_dat,
7057                      struct stmmac_resources *res)
7058 {
7059         struct net_device *ndev = NULL;
7060         struct stmmac_priv *priv;
7061         u32 rxq;
7062         int i, ret = 0;
7063
7064         ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
7065                                        MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
7066         if (!ndev)
7067                 return -ENOMEM;
7068
7069         SET_NETDEV_DEV(ndev, device);
7070
7071         priv = netdev_priv(ndev);
7072         priv->device = device;
7073         priv->dev = ndev;
7074
7075         stmmac_set_ethtool_ops(ndev);
7076         priv->pause = pause;
7077         priv->plat = plat_dat;
7078         priv->ioaddr = res->addr;
7079         priv->dev->base_addr = (unsigned long)res->addr;
7080         priv->plat->dma_cfg->multi_msi_en = priv->plat->multi_msi_en;
7081
7082         priv->dev->irq = res->irq;
7083         priv->wol_irq = res->wol_irq;
7084         priv->lpi_irq = res->lpi_irq;
7085         priv->sfty_ce_irq = res->sfty_ce_irq;
7086         priv->sfty_ue_irq = res->sfty_ue_irq;
7087         for (i = 0; i < MTL_MAX_RX_QUEUES; i++)
7088                 priv->rx_irq[i] = res->rx_irq[i];
7089         for (i = 0; i < MTL_MAX_TX_QUEUES; i++)
7090                 priv->tx_irq[i] = res->tx_irq[i];
7091
7092         if (!is_zero_ether_addr(res->mac))
7093                 eth_hw_addr_set(priv->dev, res->mac);
7094
7095         dev_set_drvdata(device, priv->dev);
7096
7097         /* Verify driver arguments */
7098         stmmac_verify_args();
7099
7100         priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL);
7101         if (!priv->af_xdp_zc_qps)
7102                 return -ENOMEM;
7103
7104         /* Allocate workqueue */
7105         priv->wq = create_singlethread_workqueue("stmmac_wq");
7106         if (!priv->wq) {
7107                 dev_err(priv->device, "failed to create workqueue\n");
7108                 ret = -ENOMEM;
7109                 goto error_wq_init;
7110         }
7111
7112         INIT_WORK(&priv->service_task, stmmac_service_task);
7113
7114         /* Initialize Link Partner FPE workqueue */
7115         INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task);
7116
7117         /* Override with kernel parameters if supplied XXX CRS XXX
7118          * this needs to have multiple instances
7119          */
7120         if ((phyaddr >= 0) && (phyaddr <= 31))
7121                 priv->plat->phy_addr = phyaddr;
7122
7123         if (priv->plat->stmmac_rst) {
7124                 ret = reset_control_assert(priv->plat->stmmac_rst);
7125                 reset_control_deassert(priv->plat->stmmac_rst);
7126                 /* Some reset controllers have only reset callback instead of
7127                  * assert + deassert callbacks pair.
7128                  */
7129                 if (ret == -ENOTSUPP)
7130                         reset_control_reset(priv->plat->stmmac_rst);
7131         }
7132
7133         ret = reset_control_deassert(priv->plat->stmmac_ahb_rst);
7134         if (ret == -ENOTSUPP)
7135                 dev_err(priv->device, "unable to bring out of ahb reset: %pe\n",
7136                         ERR_PTR(ret));
7137
7138         /* Init MAC and get the capabilities */
7139         ret = stmmac_hw_init(priv);
7140         if (ret)
7141                 goto error_hw_init;
7142
7143         /* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch.
7144          */
7145         if (priv->synopsys_id < DWMAC_CORE_5_20)
7146                 priv->plat->dma_cfg->dche = false;
7147
7148         stmmac_check_ether_addr(priv);
7149
7150         ndev->netdev_ops = &stmmac_netdev_ops;
7151
7152         ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
7153                             NETIF_F_RXCSUM;
7154
7155         ret = stmmac_tc_init(priv, priv);
7156         if (!ret) {
7157                 ndev->hw_features |= NETIF_F_HW_TC;
7158         }
7159
7160         if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
7161                 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
7162                 if (priv->plat->has_gmac4)
7163                         ndev->hw_features |= NETIF_F_GSO_UDP_L4;
7164                 priv->tso = true;
7165                 dev_info(priv->device, "TSO feature enabled\n");
7166         }
7167
7168         if (priv->dma_cap.sphen && !priv->plat->sph_disable) {
7169                 ndev->hw_features |= NETIF_F_GRO;
7170                 priv->sph_cap = true;
7171                 priv->sph = priv->sph_cap;
7172                 dev_info(priv->device, "SPH feature enabled\n");
7173         }
7174
7175         /* The current IP register MAC_HW_Feature1[ADDR64] only define
7176          * 32/40/64 bit width, but some SOC support others like i.MX8MP
7177          * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64].
7178          * So overwrite dma_cap.addr64 according to HW real design.
7179          */
7180         if (priv->plat->addr64)
7181                 priv->dma_cap.addr64 = priv->plat->addr64;
7182
7183         if (priv->dma_cap.addr64) {
7184                 ret = dma_set_mask_and_coherent(device,
7185                                 DMA_BIT_MASK(priv->dma_cap.addr64));
7186                 if (!ret) {
7187                         dev_info(priv->device, "Using %d bits DMA width\n",
7188                                  priv->dma_cap.addr64);
7189
7190                         /*
7191                          * If more than 32 bits can be addressed, make sure to
7192                          * enable enhanced addressing mode.
7193                          */
7194                         if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
7195                                 priv->plat->dma_cfg->eame = true;
7196                 } else {
7197                         ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
7198                         if (ret) {
7199                                 dev_err(priv->device, "Failed to set DMA Mask\n");
7200                                 goto error_hw_init;
7201                         }
7202
7203                         priv->dma_cap.addr64 = 32;
7204                 }
7205         }
7206
7207         ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
7208         ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
7209 #ifdef STMMAC_VLAN_TAG_USED
7210         /* Both mac100 and gmac support receive VLAN tag detection */
7211         ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
7212         if (priv->dma_cap.vlhash) {
7213                 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7214                 ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
7215         }
7216         if (priv->dma_cap.vlins) {
7217                 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
7218                 if (priv->dma_cap.dvlan)
7219                         ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
7220         }
7221 #endif
7222         priv->msg_enable = netif_msg_init(debug, default_msg_level);
7223
7224         /* Initialize RSS */
7225         rxq = priv->plat->rx_queues_to_use;
7226         netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
7227         for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
7228                 priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
7229
7230         if (priv->dma_cap.rssen && priv->plat->rss_en)
7231                 ndev->features |= NETIF_F_RXHASH;
7232
7233         /* MTU range: 46 - hw-specific max */
7234         ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
7235         if (priv->plat->has_xgmac)
7236                 ndev->max_mtu = XGMAC_JUMBO_LEN;
7237         else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
7238                 ndev->max_mtu = JUMBO_LEN;
7239         else
7240                 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
7241         /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
7242          * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
7243          */
7244         if ((priv->plat->maxmtu < ndev->max_mtu) &&
7245             (priv->plat->maxmtu >= ndev->min_mtu))
7246                 ndev->max_mtu = priv->plat->maxmtu;
7247         else if (priv->plat->maxmtu < ndev->min_mtu)
7248                 dev_warn(priv->device,
7249                          "%s: warning: maxmtu having invalid value (%d)\n",
7250                          __func__, priv->plat->maxmtu);
7251
7252         if (flow_ctrl)
7253                 priv->flow_ctrl = FLOW_AUTO;    /* RX/TX pause on */
7254
7255         /* Setup channels NAPI */
7256         stmmac_napi_add(ndev);
7257
7258         mutex_init(&priv->lock);
7259
7260         /* If a specific clk_csr value is passed from the platform
7261          * this means that the CSR Clock Range selection cannot be
7262          * changed at run-time and it is fixed. Viceversa the driver'll try to
7263          * set the MDC clock dynamically according to the csr actual
7264          * clock input.
7265          */
7266         if (priv->plat->clk_csr >= 0)
7267                 priv->clk_csr = priv->plat->clk_csr;
7268         else
7269                 stmmac_clk_csr_set(priv);
7270
7271         stmmac_check_pcs_mode(priv);
7272
7273         pm_runtime_get_noresume(device);
7274         pm_runtime_set_active(device);
7275         if (!pm_runtime_enabled(device))
7276                 pm_runtime_enable(device);
7277
7278         if (priv->hw->pcs != STMMAC_PCS_TBI &&
7279             priv->hw->pcs != STMMAC_PCS_RTBI) {
7280                 /* MDIO bus Registration */
7281                 ret = stmmac_mdio_register(ndev);
7282                 if (ret < 0) {
7283                         dev_err_probe(priv->device, ret,
7284                                       "%s: MDIO bus (id: %d) registration failed\n",
7285                                       __func__, priv->plat->bus_id);
7286                         goto error_mdio_register;
7287                 }
7288         }
7289
7290         if (priv->plat->speed_mode_2500)
7291                 priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv);
7292
7293         if (priv->plat->mdio_bus_data && priv->plat->mdio_bus_data->has_xpcs) {
7294                 ret = stmmac_xpcs_setup(priv->mii);
7295                 if (ret)
7296                         goto error_xpcs_setup;
7297         }
7298
7299         ret = stmmac_phy_setup(priv);
7300         if (ret) {
7301                 netdev_err(ndev, "failed to setup phy (%d)\n", ret);
7302                 goto error_phy_setup;
7303         }
7304
7305         ret = register_netdev(ndev);
7306         if (ret) {
7307                 dev_err(priv->device, "%s: ERROR %i registering the device\n",
7308                         __func__, ret);
7309                 goto error_netdev_register;
7310         }
7311
7312 #ifdef CONFIG_DEBUG_FS
7313         stmmac_init_fs(ndev);
7314 #endif
7315
7316         if (priv->plat->dump_debug_regs)
7317                 priv->plat->dump_debug_regs(priv->plat->bsp_priv);
7318
7319         /* Let pm_runtime_put() disable the clocks.
7320          * If CONFIG_PM is not enabled, the clocks will stay powered.
7321          */
7322         pm_runtime_put(device);
7323
7324         return ret;
7325
7326 error_netdev_register:
7327         phylink_destroy(priv->phylink);
7328 error_xpcs_setup:
7329 error_phy_setup:
7330         if (priv->hw->pcs != STMMAC_PCS_TBI &&
7331             priv->hw->pcs != STMMAC_PCS_RTBI)
7332                 stmmac_mdio_unregister(ndev);
7333 error_mdio_register:
7334         stmmac_napi_del(ndev);
7335 error_hw_init:
7336         destroy_workqueue(priv->wq);
7337 error_wq_init:
7338         bitmap_free(priv->af_xdp_zc_qps);
7339
7340         return ret;
7341 }
7342 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
7343
7344 /**
7345  * stmmac_dvr_remove
7346  * @dev: device pointer
7347  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
7348  * changes the link status, releases the DMA descriptor rings.
7349  */
7350 int stmmac_dvr_remove(struct device *dev)
7351 {
7352         struct net_device *ndev = dev_get_drvdata(dev);
7353         struct stmmac_priv *priv = netdev_priv(ndev);
7354
7355         netdev_info(priv->dev, "%s: removing driver", __func__);
7356
7357         pm_runtime_get_sync(dev);
7358
7359         stmmac_stop_all_dma(priv);
7360         stmmac_mac_set(priv, priv->ioaddr, false);
7361         netif_carrier_off(ndev);
7362         unregister_netdev(ndev);
7363
7364         /* Serdes power down needs to happen after VLAN filter
7365          * is deleted that is triggered by unregister_netdev().
7366          */
7367         if (priv->plat->serdes_powerdown)
7368                 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7369
7370 #ifdef CONFIG_DEBUG_FS
7371         stmmac_exit_fs(ndev);
7372 #endif
7373         phylink_destroy(priv->phylink);
7374         if (priv->plat->stmmac_rst)
7375                 reset_control_assert(priv->plat->stmmac_rst);
7376         reset_control_assert(priv->plat->stmmac_ahb_rst);
7377         if (priv->hw->pcs != STMMAC_PCS_TBI &&
7378             priv->hw->pcs != STMMAC_PCS_RTBI)
7379                 stmmac_mdio_unregister(ndev);
7380         destroy_workqueue(priv->wq);
7381         mutex_destroy(&priv->lock);
7382         bitmap_free(priv->af_xdp_zc_qps);
7383
7384         pm_runtime_disable(dev);
7385         pm_runtime_put_noidle(dev);
7386
7387         return 0;
7388 }
7389 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
7390
7391 /**
7392  * stmmac_suspend - suspend callback
7393  * @dev: device pointer
7394  * Description: this is the function to suspend the device and it is called
7395  * by the platform driver to stop the network queue, release the resources,
7396  * program the PMT register (for WoL), clean and release driver resources.
7397  */
7398 int stmmac_suspend(struct device *dev)
7399 {
7400         struct net_device *ndev = dev_get_drvdata(dev);
7401         struct stmmac_priv *priv = netdev_priv(ndev);
7402         u32 chan;
7403
7404         if (!ndev || !netif_running(ndev))
7405                 return 0;
7406
7407         mutex_lock(&priv->lock);
7408
7409         netif_device_detach(ndev);
7410
7411         stmmac_disable_all_queues(priv);
7412
7413         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
7414                 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
7415
7416         if (priv->eee_enabled) {
7417                 priv->tx_path_in_lpi_mode = false;
7418                 del_timer_sync(&priv->eee_ctrl_timer);
7419         }
7420
7421         /* Stop TX/RX DMA */
7422         stmmac_stop_all_dma(priv);
7423
7424         if (priv->plat->serdes_powerdown)
7425                 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7426
7427         /* Enable Power down mode by programming the PMT regs */
7428         if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7429                 stmmac_pmt(priv, priv->hw, priv->wolopts);
7430                 priv->irq_wake = 1;
7431         } else {
7432                 stmmac_mac_set(priv, priv->ioaddr, false);
7433                 pinctrl_pm_select_sleep_state(priv->device);
7434         }
7435
7436         mutex_unlock(&priv->lock);
7437
7438         rtnl_lock();
7439         if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7440                 phylink_suspend(priv->phylink, true);
7441         } else {
7442                 if (device_may_wakeup(priv->device))
7443                         phylink_speed_down(priv->phylink, false);
7444                 phylink_suspend(priv->phylink, false);
7445         }
7446         rtnl_unlock();
7447
7448         if (priv->dma_cap.fpesel) {
7449                 /* Disable FPE */
7450                 stmmac_fpe_configure(priv, priv->ioaddr,
7451                                      priv->plat->tx_queues_to_use,
7452                                      priv->plat->rx_queues_to_use, false);
7453
7454                 stmmac_fpe_handshake(priv, false);
7455                 stmmac_fpe_stop_wq(priv);
7456         }
7457
7458         priv->speed = SPEED_UNKNOWN;
7459         return 0;
7460 }
7461 EXPORT_SYMBOL_GPL(stmmac_suspend);
7462
7463 static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue)
7464 {
7465         struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
7466
7467         rx_q->cur_rx = 0;
7468         rx_q->dirty_rx = 0;
7469 }
7470
7471 static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue)
7472 {
7473         struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
7474
7475         tx_q->cur_tx = 0;
7476         tx_q->dirty_tx = 0;
7477         tx_q->mss = 0;
7478
7479         netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
7480 }
7481
7482 /**
7483  * stmmac_reset_queues_param - reset queue parameters
7484  * @priv: device pointer
7485  */
7486 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
7487 {
7488         u32 rx_cnt = priv->plat->rx_queues_to_use;
7489         u32 tx_cnt = priv->plat->tx_queues_to_use;
7490         u32 queue;
7491
7492         for (queue = 0; queue < rx_cnt; queue++)
7493                 stmmac_reset_rx_queue(priv, queue);
7494
7495         for (queue = 0; queue < tx_cnt; queue++)
7496                 stmmac_reset_tx_queue(priv, queue);
7497 }
7498
7499 /**
7500  * stmmac_resume - resume callback
7501  * @dev: device pointer
7502  * Description: when resume this function is invoked to setup the DMA and CORE
7503  * in a usable state.
7504  */
7505 int stmmac_resume(struct device *dev)
7506 {
7507         struct net_device *ndev = dev_get_drvdata(dev);
7508         struct stmmac_priv *priv = netdev_priv(ndev);
7509         int ret;
7510
7511         if (!netif_running(ndev))
7512                 return 0;
7513
7514         /* Power Down bit, into the PM register, is cleared
7515          * automatically as soon as a magic packet or a Wake-up frame
7516          * is received. Anyway, it's better to manually clear
7517          * this bit because it can generate problems while resuming
7518          * from another devices (e.g. serial console).
7519          */
7520         if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7521                 mutex_lock(&priv->lock);
7522                 stmmac_pmt(priv, priv->hw, 0);
7523                 mutex_unlock(&priv->lock);
7524                 priv->irq_wake = 0;
7525         } else {
7526                 pinctrl_pm_select_default_state(priv->device);
7527                 /* reset the phy so that it's ready */
7528                 if (priv->mii)
7529                         stmmac_mdio_reset(priv->mii);
7530         }
7531
7532         if (!priv->plat->serdes_up_after_phy_linkup && priv->plat->serdes_powerup) {
7533                 ret = priv->plat->serdes_powerup(ndev,
7534                                                  priv->plat->bsp_priv);
7535
7536                 if (ret < 0)
7537                         return ret;
7538         }
7539
7540         rtnl_lock();
7541         if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7542                 phylink_resume(priv->phylink);
7543         } else {
7544                 phylink_resume(priv->phylink);
7545                 if (device_may_wakeup(priv->device))
7546                         phylink_speed_up(priv->phylink);
7547         }
7548         rtnl_unlock();
7549
7550         rtnl_lock();
7551         mutex_lock(&priv->lock);
7552
7553         stmmac_reset_queues_param(priv);
7554
7555         stmmac_free_tx_skbufs(priv);
7556         stmmac_clear_descriptors(priv, &priv->dma_conf);
7557
7558         stmmac_hw_setup(ndev, false);
7559         stmmac_init_coalesce(priv);
7560         stmmac_set_rx_mode(ndev);
7561
7562         stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
7563
7564         stmmac_enable_all_queues(priv);
7565         stmmac_enable_all_dma_irq(priv);
7566
7567         mutex_unlock(&priv->lock);
7568         rtnl_unlock();
7569
7570         netif_device_attach(ndev);
7571
7572         return 0;
7573 }
7574 EXPORT_SYMBOL_GPL(stmmac_resume);
7575
7576 #ifndef MODULE
7577 static int __init stmmac_cmdline_opt(char *str)
7578 {
7579         char *opt;
7580
7581         if (!str || !*str)
7582                 return 1;
7583         while ((opt = strsep(&str, ",")) != NULL) {
7584                 if (!strncmp(opt, "debug:", 6)) {
7585                         if (kstrtoint(opt + 6, 0, &debug))
7586                                 goto err;
7587                 } else if (!strncmp(opt, "phyaddr:", 8)) {
7588                         if (kstrtoint(opt + 8, 0, &phyaddr))
7589                                 goto err;
7590                 } else if (!strncmp(opt, "buf_sz:", 7)) {
7591                         if (kstrtoint(opt + 7, 0, &buf_sz))
7592                                 goto err;
7593                 } else if (!strncmp(opt, "tc:", 3)) {
7594                         if (kstrtoint(opt + 3, 0, &tc))
7595                                 goto err;
7596                 } else if (!strncmp(opt, "watchdog:", 9)) {
7597                         if (kstrtoint(opt + 9, 0, &watchdog))
7598                                 goto err;
7599                 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
7600                         if (kstrtoint(opt + 10, 0, &flow_ctrl))
7601                                 goto err;
7602                 } else if (!strncmp(opt, "pause:", 6)) {
7603                         if (kstrtoint(opt + 6, 0, &pause))
7604                                 goto err;
7605                 } else if (!strncmp(opt, "eee_timer:", 10)) {
7606                         if (kstrtoint(opt + 10, 0, &eee_timer))
7607                                 goto err;
7608                 } else if (!strncmp(opt, "chain_mode:", 11)) {
7609                         if (kstrtoint(opt + 11, 0, &chain_mode))
7610                                 goto err;
7611                 }
7612         }
7613         return 1;
7614
7615 err:
7616         pr_err("%s: ERROR broken module parameter conversion", __func__);
7617         return 1;
7618 }
7619
7620 __setup("stmmaceth=", stmmac_cmdline_opt);
7621 #endif /* MODULE */
7622
7623 static int __init stmmac_init(void)
7624 {
7625 #ifdef CONFIG_DEBUG_FS
7626         /* Create debugfs main directory if it doesn't exist yet */
7627         if (!stmmac_fs_dir)
7628                 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
7629         register_netdevice_notifier(&stmmac_notifier);
7630 #endif
7631
7632         return 0;
7633 }
7634
7635 static void __exit stmmac_exit(void)
7636 {
7637 #ifdef CONFIG_DEBUG_FS
7638         unregister_netdevice_notifier(&stmmac_notifier);
7639         debugfs_remove_recursive(stmmac_fs_dir);
7640 #endif
7641 }
7642
7643 module_init(stmmac_init)
7644 module_exit(stmmac_exit)
7645
7646 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
7647 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
7648 MODULE_LICENSE("GPL");