Merge tag 'dma-mapping-6.5-2023-06-28' of git://git.infradead.org/users/hch/dma-mapping
[linux-block.git] / drivers / net / ethernet / sfc / tx_tso.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2005-2006 Fen Systems Ltd.
5  * Copyright 2005-2015 Solarflare Communications Inc.
6  */
7
8 #include <linux/pci.h>
9 #include <linux/tcp.h>
10 #include <linux/ip.h>
11 #include <linux/in.h>
12 #include <linux/ipv6.h>
13 #include <linux/slab.h>
14 #include <net/ipv6.h>
15 #include <linux/if_ether.h>
16 #include <linux/highmem.h>
17 #include <linux/moduleparam.h>
18 #include <linux/cache.h>
19 #include "net_driver.h"
20 #include "efx.h"
21 #include "io.h"
22 #include "nic.h"
23 #include "tx.h"
24 #include "workarounds.h"
25 #include "ef10_regs.h"
26
27 /* Efx legacy TCP segmentation acceleration.
28  *
29  * Utilises firmware support to go faster than GSO (but not as fast as TSOv2).
30  *
31  * Requires TX checksum offload support.
32  */
33
34 #define PTR_DIFF(p1, p2)  ((u8 *)(p1) - (u8 *)(p2))
35
36 /**
37  * struct tso_state - TSO state for an SKB
38  * @out_len: Remaining length in current segment
39  * @seqnum: Current sequence number
40  * @ipv4_id: Current IPv4 ID, host endian
41  * @packet_space: Remaining space in current packet
42  * @dma_addr: DMA address of current position
43  * @in_len: Remaining length in current SKB fragment
44  * @unmap_len: Length of SKB fragment
45  * @unmap_addr: DMA address of SKB fragment
46  * @protocol: Network protocol (after any VLAN header)
47  * @ip_off: Offset of IP header
48  * @tcp_off: Offset of TCP header
49  * @header_len: Number of bytes of header
50  * @ip_base_len: IPv4 tot_len or IPv6 payload_len, before TCP payload
51  * @header_dma_addr: Header DMA address
52  * @header_unmap_len: Header DMA mapped length
53  *
54  * The state used during segmentation.  It is put into this data structure
55  * just to make it easy to pass into inline functions.
56  */
57 struct tso_state {
58         /* Output position */
59         unsigned int out_len;
60         unsigned int seqnum;
61         u16 ipv4_id;
62         unsigned int packet_space;
63
64         /* Input position */
65         dma_addr_t dma_addr;
66         unsigned int in_len;
67         unsigned int unmap_len;
68         dma_addr_t unmap_addr;
69
70         __be16 protocol;
71         unsigned int ip_off;
72         unsigned int tcp_off;
73         unsigned int header_len;
74         unsigned int ip_base_len;
75         dma_addr_t header_dma_addr;
76         unsigned int header_unmap_len;
77 };
78
79 static inline void prefetch_ptr(struct efx_tx_queue *tx_queue)
80 {
81         unsigned int insert_ptr = efx_tx_queue_get_insert_index(tx_queue);
82         char *ptr;
83
84         ptr = (char *) (tx_queue->buffer + insert_ptr);
85         prefetch(ptr);
86         prefetch(ptr + 0x80);
87
88         ptr = (char *) (((efx_qword_t *)tx_queue->txd.buf.addr) + insert_ptr);
89         prefetch(ptr);
90         prefetch(ptr + 0x80);
91 }
92
93 /**
94  * efx_tx_queue_insert - push descriptors onto the TX queue
95  * @tx_queue:           Efx TX queue
96  * @dma_addr:           DMA address of fragment
97  * @len:                Length of fragment
98  * @final_buffer:       The final buffer inserted into the queue
99  *
100  * Push descriptors onto the TX queue.
101  */
102 static void efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
103                                 dma_addr_t dma_addr, unsigned int len,
104                                 struct efx_tx_buffer **final_buffer)
105 {
106         struct efx_tx_buffer *buffer;
107         unsigned int dma_len;
108
109         EFX_WARN_ON_ONCE_PARANOID(len <= 0);
110
111         while (1) {
112                 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
113                 ++tx_queue->insert_count;
114
115                 EFX_WARN_ON_ONCE_PARANOID(tx_queue->insert_count -
116                                           tx_queue->read_count >=
117                                           tx_queue->efx->txq_entries);
118
119                 buffer->dma_addr = dma_addr;
120
121                 dma_len = tx_queue->efx->type->tx_limit_len(tx_queue,
122                                 dma_addr, len);
123
124                 /* If there's space for everything this is our last buffer. */
125                 if (dma_len >= len)
126                         break;
127
128                 buffer->len = dma_len;
129                 buffer->flags = EFX_TX_BUF_CONT;
130                 dma_addr += dma_len;
131                 len -= dma_len;
132         }
133
134         EFX_WARN_ON_ONCE_PARANOID(!len);
135         buffer->len = len;
136         *final_buffer = buffer;
137 }
138
139 /*
140  * Verify that our various assumptions about sk_buffs and the conditions
141  * under which TSO will be attempted hold true.  Return the protocol number.
142  */
143 static __be16 efx_tso_check_protocol(struct sk_buff *skb)
144 {
145         __be16 protocol = skb->protocol;
146
147         EFX_WARN_ON_ONCE_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
148                                   protocol);
149         if (protocol == htons(ETH_P_8021Q)) {
150                 struct vlan_ethhdr *veh = skb_vlan_eth_hdr(skb);
151
152                 protocol = veh->h_vlan_encapsulated_proto;
153         }
154
155         if (protocol == htons(ETH_P_IP)) {
156                 EFX_WARN_ON_ONCE_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
157         } else {
158                 EFX_WARN_ON_ONCE_PARANOID(protocol != htons(ETH_P_IPV6));
159                 EFX_WARN_ON_ONCE_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
160         }
161         EFX_WARN_ON_ONCE_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data) +
162                                    (tcp_hdr(skb)->doff << 2u)) >
163                                   skb_headlen(skb));
164
165         return protocol;
166 }
167
168 /* Parse the SKB header and initialise state. */
169 static int tso_start(struct tso_state *st, struct efx_nic *efx,
170                      struct efx_tx_queue *tx_queue,
171                      const struct sk_buff *skb)
172 {
173         struct device *dma_dev = &efx->pci_dev->dev;
174         unsigned int header_len, in_len;
175         dma_addr_t dma_addr;
176
177         st->ip_off = skb_network_header(skb) - skb->data;
178         st->tcp_off = skb_transport_header(skb) - skb->data;
179         header_len = st->tcp_off + (tcp_hdr(skb)->doff << 2u);
180         in_len = skb_headlen(skb) - header_len;
181         st->header_len = header_len;
182         st->in_len = in_len;
183         if (st->protocol == htons(ETH_P_IP)) {
184                 st->ip_base_len = st->header_len - st->ip_off;
185                 st->ipv4_id = ntohs(ip_hdr(skb)->id);
186         } else {
187                 st->ip_base_len = st->header_len - st->tcp_off;
188                 st->ipv4_id = 0;
189         }
190         st->seqnum = ntohl(tcp_hdr(skb)->seq);
191
192         EFX_WARN_ON_ONCE_PARANOID(tcp_hdr(skb)->urg);
193         EFX_WARN_ON_ONCE_PARANOID(tcp_hdr(skb)->syn);
194         EFX_WARN_ON_ONCE_PARANOID(tcp_hdr(skb)->rst);
195
196         st->out_len = skb->len - header_len;
197
198         dma_addr = dma_map_single(dma_dev, skb->data,
199                                   skb_headlen(skb), DMA_TO_DEVICE);
200         st->header_dma_addr = dma_addr;
201         st->header_unmap_len = skb_headlen(skb);
202         st->dma_addr = dma_addr + header_len;
203         st->unmap_len = 0;
204
205         return unlikely(dma_mapping_error(dma_dev, dma_addr)) ? -ENOMEM : 0;
206 }
207
208 static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
209                             skb_frag_t *frag)
210 {
211         st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0,
212                                           skb_frag_size(frag), DMA_TO_DEVICE);
213         if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
214                 st->unmap_len = skb_frag_size(frag);
215                 st->in_len = skb_frag_size(frag);
216                 st->dma_addr = st->unmap_addr;
217                 return 0;
218         }
219         return -ENOMEM;
220 }
221
222
223 /**
224  * tso_fill_packet_with_fragment - form descriptors for the current fragment
225  * @tx_queue:           Efx TX queue
226  * @skb:                Socket buffer
227  * @st:                 TSO state
228  *
229  * Form descriptors for the current fragment, until we reach the end
230  * of fragment or end-of-packet.
231  */
232 static void tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
233                                           const struct sk_buff *skb,
234                                           struct tso_state *st)
235 {
236         struct efx_tx_buffer *buffer;
237         int n;
238
239         if (st->in_len == 0)
240                 return;
241         if (st->packet_space == 0)
242                 return;
243
244         EFX_WARN_ON_ONCE_PARANOID(st->in_len <= 0);
245         EFX_WARN_ON_ONCE_PARANOID(st->packet_space <= 0);
246
247         n = min(st->in_len, st->packet_space);
248
249         st->packet_space -= n;
250         st->out_len -= n;
251         st->in_len -= n;
252
253         efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
254
255         if (st->out_len == 0) {
256                 /* Transfer ownership of the skb */
257                 buffer->skb = skb;
258                 buffer->flags = EFX_TX_BUF_SKB;
259         } else if (st->packet_space != 0) {
260                 buffer->flags = EFX_TX_BUF_CONT;
261         }
262
263         if (st->in_len == 0) {
264                 /* Transfer ownership of the DMA mapping */
265                 buffer->unmap_len = st->unmap_len;
266                 buffer->dma_offset = buffer->unmap_len - buffer->len;
267                 st->unmap_len = 0;
268         }
269
270         st->dma_addr += n;
271 }
272
273
274 #define TCP_FLAGS_OFFSET 13
275
276 /**
277  * tso_start_new_packet - generate a new header and prepare for the new packet
278  * @tx_queue:           Efx TX queue
279  * @skb:                Socket buffer
280  * @st:                 TSO state
281  *
282  * Generate a new header and prepare for the new packet.  Return 0 on
283  * success, or -%ENOMEM if failed to alloc header, or other negative error.
284  */
285 static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
286                                 const struct sk_buff *skb,
287                                 struct tso_state *st)
288 {
289         struct efx_tx_buffer *buffer =
290                 efx_tx_queue_get_insert_buffer(tx_queue);
291         bool is_last = st->out_len <= skb_shinfo(skb)->gso_size;
292         u8 tcp_flags_mask, tcp_flags;
293
294         if (!is_last) {
295                 st->packet_space = skb_shinfo(skb)->gso_size;
296                 tcp_flags_mask = 0x09; /* mask out FIN and PSH */
297         } else {
298                 st->packet_space = st->out_len;
299                 tcp_flags_mask = 0x00;
300         }
301
302         if (WARN_ON(!st->header_unmap_len))
303                 return -EINVAL;
304         /* Send the original headers with a TSO option descriptor
305          * in front
306          */
307         tcp_flags = ((u8 *)tcp_hdr(skb))[TCP_FLAGS_OFFSET] & ~tcp_flags_mask;
308
309         buffer->flags = EFX_TX_BUF_OPTION;
310         buffer->len = 0;
311         buffer->unmap_len = 0;
312         EFX_POPULATE_QWORD_5(buffer->option,
313                              ESF_DZ_TX_DESC_IS_OPT, 1,
314                              ESF_DZ_TX_OPTION_TYPE,
315                              ESE_DZ_TX_OPTION_DESC_TSO,
316                              ESF_DZ_TX_TSO_TCP_FLAGS, tcp_flags,
317                              ESF_DZ_TX_TSO_IP_ID, st->ipv4_id,
318                              ESF_DZ_TX_TSO_TCP_SEQNO, st->seqnum);
319         ++tx_queue->insert_count;
320
321         /* We mapped the headers in tso_start().  Unmap them
322          * when the last segment is completed.
323          */
324         buffer = efx_tx_queue_get_insert_buffer(tx_queue);
325         buffer->dma_addr = st->header_dma_addr;
326         buffer->len = st->header_len;
327         if (is_last) {
328                 buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_MAP_SINGLE;
329                 buffer->unmap_len = st->header_unmap_len;
330                 buffer->dma_offset = 0;
331                 /* Ensure we only unmap them once in case of a
332                  * later DMA mapping error and rollback
333                  */
334                 st->header_unmap_len = 0;
335         } else {
336                 buffer->flags = EFX_TX_BUF_CONT;
337                 buffer->unmap_len = 0;
338         }
339         ++tx_queue->insert_count;
340
341         st->seqnum += skb_shinfo(skb)->gso_size;
342
343         /* Linux leaves suitable gaps in the IP ID space for us to fill. */
344         ++st->ipv4_id;
345
346         return 0;
347 }
348
349 /**
350  * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
351  * @tx_queue:           Efx TX queue
352  * @skb:                Socket buffer
353  * @data_mapped:        Did we map the data? Always set to true
354  *                      by this on success.
355  *
356  * Context: You must hold netif_tx_lock() to call this function.
357  *
358  * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
359  * @skb was not enqueued.  @skb is consumed unless return value is
360  * %EINVAL.
361  */
362 int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
363                         struct sk_buff *skb,
364                         bool *data_mapped)
365 {
366         struct efx_nic *efx = tx_queue->efx;
367         int frag_i, rc;
368         struct tso_state state;
369
370         if (tx_queue->tso_version != 1)
371                 return -EINVAL;
372
373         prefetch(skb->data);
374
375         /* Find the packet protocol and sanity-check it */
376         state.protocol = efx_tso_check_protocol(skb);
377
378         EFX_WARN_ON_ONCE_PARANOID(tx_queue->write_count != tx_queue->insert_count);
379
380         rc = tso_start(&state, efx, tx_queue, skb);
381         if (rc)
382                 goto fail;
383
384         if (likely(state.in_len == 0)) {
385                 /* Grab the first payload fragment. */
386                 EFX_WARN_ON_ONCE_PARANOID(skb_shinfo(skb)->nr_frags < 1);
387                 frag_i = 0;
388                 rc = tso_get_fragment(&state, efx,
389                                       skb_shinfo(skb)->frags + frag_i);
390                 if (rc)
391                         goto fail;
392         } else {
393                 /* Payload starts in the header area. */
394                 frag_i = -1;
395         }
396
397         rc = tso_start_new_packet(tx_queue, skb, &state);
398         if (rc)
399                 goto fail;
400
401         prefetch_ptr(tx_queue);
402
403         while (1) {
404                 tso_fill_packet_with_fragment(tx_queue, skb, &state);
405
406                 /* Move onto the next fragment? */
407                 if (state.in_len == 0) {
408                         if (++frag_i >= skb_shinfo(skb)->nr_frags)
409                                 /* End of payload reached. */
410                                 break;
411                         rc = tso_get_fragment(&state, efx,
412                                               skb_shinfo(skb)->frags + frag_i);
413                         if (rc)
414                                 goto fail;
415                 }
416
417                 /* Start at new packet? */
418                 if (state.packet_space == 0) {
419                         rc = tso_start_new_packet(tx_queue, skb, &state);
420                         if (rc)
421                                 goto fail;
422                 }
423         }
424
425         *data_mapped = true;
426
427         return 0;
428
429 fail:
430         if (rc == -ENOMEM)
431                 netif_err(efx, tx_err, efx->net_dev,
432                           "Out of memory for TSO headers, or DMA mapping error\n");
433         else
434                 netif_err(efx, tx_err, efx->net_dev, "TSO failed, rc = %d\n", rc);
435
436         /* Free the DMA mapping we were in the process of writing out */
437         if (state.unmap_len) {
438                 dma_unmap_page(&efx->pci_dev->dev, state.unmap_addr,
439                                state.unmap_len, DMA_TO_DEVICE);
440         }
441
442         /* Free the header DMA mapping */
443         if (state.header_unmap_len)
444                 dma_unmap_single(&efx->pci_dev->dev, state.header_dma_addr,
445                                  state.header_unmap_len, DMA_TO_DEVICE);
446
447         return rc;
448 }