Merge tag 'soc-dt-6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[linux-block.git] / drivers / net / ethernet / sfc / tx_common.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2018 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include "net_driver.h"
12 #include "efx.h"
13 #include "nic_common.h"
14 #include "tx_common.h"
15 #include <net/gso.h>
16
17 static unsigned int efx_tx_cb_page_count(struct efx_tx_queue *tx_queue)
18 {
19         return DIV_ROUND_UP(tx_queue->ptr_mask + 1,
20                             PAGE_SIZE >> EFX_TX_CB_ORDER);
21 }
22
23 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
24 {
25         struct efx_nic *efx = tx_queue->efx;
26         unsigned int entries;
27         int rc;
28
29         /* Create the smallest power-of-two aligned ring */
30         entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
31         EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
32         tx_queue->ptr_mask = entries - 1;
33
34         netif_dbg(efx, probe, efx->net_dev,
35                   "creating TX queue %d size %#x mask %#x\n",
36                   tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
37
38         /* Allocate software ring */
39         tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
40                                    GFP_KERNEL);
41         if (!tx_queue->buffer)
42                 return -ENOMEM;
43
44         tx_queue->cb_page = kcalloc(efx_tx_cb_page_count(tx_queue),
45                                     sizeof(tx_queue->cb_page[0]), GFP_KERNEL);
46         if (!tx_queue->cb_page) {
47                 rc = -ENOMEM;
48                 goto fail1;
49         }
50
51         /* Allocate hardware ring, determine TXQ type */
52         rc = efx_nic_probe_tx(tx_queue);
53         if (rc)
54                 goto fail2;
55
56         tx_queue->channel->tx_queue_by_type[tx_queue->type] = tx_queue;
57         return 0;
58
59 fail2:
60         kfree(tx_queue->cb_page);
61         tx_queue->cb_page = NULL;
62 fail1:
63         kfree(tx_queue->buffer);
64         tx_queue->buffer = NULL;
65         return rc;
66 }
67
68 void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
69 {
70         struct efx_nic *efx = tx_queue->efx;
71
72         netif_dbg(efx, drv, efx->net_dev,
73                   "initialising TX queue %d\n", tx_queue->queue);
74
75         tx_queue->insert_count = 0;
76         tx_queue->notify_count = 0;
77         tx_queue->write_count = 0;
78         tx_queue->packet_write_count = 0;
79         tx_queue->old_write_count = 0;
80         tx_queue->read_count = 0;
81         tx_queue->old_read_count = 0;
82         tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
83         tx_queue->xmit_pending = false;
84         tx_queue->timestamping = (efx_ptp_use_mac_tx_timestamps(efx) &&
85                                   tx_queue->channel == efx_ptp_channel(efx));
86         tx_queue->completed_timestamp_major = 0;
87         tx_queue->completed_timestamp_minor = 0;
88
89         tx_queue->xdp_tx = efx_channel_is_xdp_tx(tx_queue->channel);
90         tx_queue->tso_version = 0;
91
92         /* Set up TX descriptor ring */
93         efx_nic_init_tx(tx_queue);
94
95         tx_queue->initialised = true;
96 }
97
98 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
99 {
100         struct efx_tx_buffer *buffer;
101
102         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
103                   "shutting down TX queue %d\n", tx_queue->queue);
104
105         tx_queue->initialised = false;
106
107         if (!tx_queue->buffer)
108                 return;
109
110         /* Free any buffers left in the ring */
111         while (tx_queue->read_count != tx_queue->write_count) {
112                 unsigned int pkts_compl = 0, bytes_compl = 0;
113                 unsigned int efv_pkts_compl = 0;
114
115                 buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
116                 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl,
117                                    &efv_pkts_compl);
118
119                 ++tx_queue->read_count;
120         }
121         tx_queue->xmit_pending = false;
122         netdev_tx_reset_queue(tx_queue->core_txq);
123 }
124
125 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
126 {
127         int i;
128
129         if (!tx_queue->buffer)
130                 return;
131
132         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
133                   "destroying TX queue %d\n", tx_queue->queue);
134         efx_nic_remove_tx(tx_queue);
135
136         if (tx_queue->cb_page) {
137                 for (i = 0; i < efx_tx_cb_page_count(tx_queue); i++)
138                         efx_nic_free_buffer(tx_queue->efx,
139                                             &tx_queue->cb_page[i]);
140                 kfree(tx_queue->cb_page);
141                 tx_queue->cb_page = NULL;
142         }
143
144         kfree(tx_queue->buffer);
145         tx_queue->buffer = NULL;
146         tx_queue->channel->tx_queue_by_type[tx_queue->type] = NULL;
147 }
148
149 void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
150                         struct efx_tx_buffer *buffer,
151                         unsigned int *pkts_compl,
152                         unsigned int *bytes_compl,
153                         unsigned int *efv_pkts_compl)
154 {
155         if (buffer->unmap_len) {
156                 struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
157                 dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
158
159                 if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
160                         dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
161                                          DMA_TO_DEVICE);
162                 else
163                         dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
164                                        DMA_TO_DEVICE);
165                 buffer->unmap_len = 0;
166         }
167
168         if (buffer->flags & EFX_TX_BUF_SKB) {
169                 struct sk_buff *skb = (struct sk_buff *)buffer->skb;
170
171                 if (unlikely(buffer->flags & EFX_TX_BUF_EFV)) {
172                         EFX_WARN_ON_PARANOID(!efv_pkts_compl);
173                         (*efv_pkts_compl)++;
174                 } else {
175                         EFX_WARN_ON_PARANOID(!pkts_compl || !bytes_compl);
176                         (*pkts_compl)++;
177                         (*bytes_compl) += skb->len;
178                 }
179
180                 if (tx_queue->timestamping &&
181                     (tx_queue->completed_timestamp_major ||
182                      tx_queue->completed_timestamp_minor)) {
183                         struct skb_shared_hwtstamps hwtstamp;
184
185                         hwtstamp.hwtstamp =
186                                 efx_ptp_nic_to_kernel_time(tx_queue);
187                         skb_tstamp_tx(skb, &hwtstamp);
188
189                         tx_queue->completed_timestamp_major = 0;
190                         tx_queue->completed_timestamp_minor = 0;
191                 }
192                 dev_consume_skb_any((struct sk_buff *)buffer->skb);
193                 netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
194                            "TX queue %d transmission id %x complete\n",
195                            tx_queue->queue, tx_queue->read_count);
196         } else if (buffer->flags & EFX_TX_BUF_XDP) {
197                 xdp_return_frame_rx_napi(buffer->xdpf);
198         }
199
200         buffer->len = 0;
201         buffer->flags = 0;
202 }
203
204 /* Remove packets from the TX queue
205  *
206  * This removes packets from the TX queue, up to and including the
207  * specified index.
208  */
209 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
210                                 unsigned int index,
211                                 unsigned int *pkts_compl,
212                                 unsigned int *bytes_compl,
213                                 unsigned int *efv_pkts_compl)
214 {
215         struct efx_nic *efx = tx_queue->efx;
216         unsigned int stop_index, read_ptr;
217
218         stop_index = (index + 1) & tx_queue->ptr_mask;
219         read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
220
221         while (read_ptr != stop_index) {
222                 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
223
224                 if (!efx_tx_buffer_in_use(buffer)) {
225                         netif_err(efx, tx_err, efx->net_dev,
226                                   "TX queue %d spurious TX completion id %d\n",
227                                   tx_queue->queue, read_ptr);
228                         efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
229                         return;
230                 }
231
232                 efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl,
233                                    efv_pkts_compl);
234
235                 ++tx_queue->read_count;
236                 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
237         }
238 }
239
240 void efx_xmit_done_check_empty(struct efx_tx_queue *tx_queue)
241 {
242         if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
243                 tx_queue->old_write_count = READ_ONCE(tx_queue->write_count);
244                 if (tx_queue->read_count == tx_queue->old_write_count) {
245                         /* Ensure that read_count is flushed. */
246                         smp_mb();
247                         tx_queue->empty_read_count =
248                                 tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
249                 }
250         }
251 }
252
253 int efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
254 {
255         unsigned int fill_level, pkts_compl = 0, bytes_compl = 0;
256         unsigned int efv_pkts_compl = 0;
257         struct efx_nic *efx = tx_queue->efx;
258
259         EFX_WARN_ON_ONCE_PARANOID(index > tx_queue->ptr_mask);
260
261         efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl,
262                             &efv_pkts_compl);
263         tx_queue->pkts_compl += pkts_compl;
264         tx_queue->bytes_compl += bytes_compl;
265
266         if (pkts_compl + efv_pkts_compl > 1)
267                 ++tx_queue->merge_events;
268
269         /* See if we need to restart the netif queue.  This memory
270          * barrier ensures that we write read_count (inside
271          * efx_dequeue_buffers()) before reading the queue status.
272          */
273         smp_mb();
274         if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
275             likely(efx->port_enabled) &&
276             likely(netif_device_present(efx->net_dev))) {
277                 fill_level = efx_channel_tx_fill_level(tx_queue->channel);
278                 if (fill_level <= efx->txq_wake_thresh)
279                         netif_tx_wake_queue(tx_queue->core_txq);
280         }
281
282         efx_xmit_done_check_empty(tx_queue);
283
284         return pkts_compl + efv_pkts_compl;
285 }
286
287 /* Remove buffers put into a tx_queue for the current packet.
288  * None of the buffers must have an skb attached.
289  */
290 void efx_enqueue_unwind(struct efx_tx_queue *tx_queue,
291                         unsigned int insert_count)
292 {
293         unsigned int efv_pkts_compl = 0;
294         struct efx_tx_buffer *buffer;
295         unsigned int bytes_compl = 0;
296         unsigned int pkts_compl = 0;
297
298         /* Work backwards until we hit the original insert pointer value */
299         while (tx_queue->insert_count != insert_count) {
300                 --tx_queue->insert_count;
301                 buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
302                 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl,
303                                    &efv_pkts_compl);
304         }
305 }
306
307 struct efx_tx_buffer *efx_tx_map_chunk(struct efx_tx_queue *tx_queue,
308                                        dma_addr_t dma_addr, size_t len)
309 {
310         const struct efx_nic_type *nic_type = tx_queue->efx->type;
311         struct efx_tx_buffer *buffer;
312         unsigned int dma_len;
313
314         /* Map the fragment taking account of NIC-dependent DMA limits. */
315         do {
316                 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
317
318                 if (nic_type->tx_limit_len)
319                         dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len);
320                 else
321                         dma_len = len;
322
323                 buffer->len = dma_len;
324                 buffer->dma_addr = dma_addr;
325                 buffer->flags = EFX_TX_BUF_CONT;
326                 len -= dma_len;
327                 dma_addr += dma_len;
328                 ++tx_queue->insert_count;
329         } while (len);
330
331         return buffer;
332 }
333
334 int efx_tx_tso_header_length(struct sk_buff *skb)
335 {
336         size_t header_len;
337
338         if (skb->encapsulation)
339                 header_len = skb_inner_transport_header(skb) -
340                                 skb->data +
341                                 (inner_tcp_hdr(skb)->doff << 2u);
342         else
343                 header_len = skb_transport_header(skb) - skb->data +
344                                 (tcp_hdr(skb)->doff << 2u);
345         return header_len;
346 }
347
348 /* Map all data from an SKB for DMA and create descriptors on the queue. */
349 int efx_tx_map_data(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
350                     unsigned int segment_count)
351 {
352         struct efx_nic *efx = tx_queue->efx;
353         struct device *dma_dev = &efx->pci_dev->dev;
354         unsigned int frag_index, nr_frags;
355         dma_addr_t dma_addr, unmap_addr;
356         unsigned short dma_flags;
357         size_t len, unmap_len;
358
359         nr_frags = skb_shinfo(skb)->nr_frags;
360         frag_index = 0;
361
362         /* Map header data. */
363         len = skb_headlen(skb);
364         dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE);
365         dma_flags = EFX_TX_BUF_MAP_SINGLE;
366         unmap_len = len;
367         unmap_addr = dma_addr;
368
369         if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
370                 return -EIO;
371
372         if (segment_count) {
373                 /* For TSO we need to put the header in to a separate
374                  * descriptor. Map this separately if necessary.
375                  */
376                 size_t header_len = efx_tx_tso_header_length(skb);
377
378                 if (header_len != len) {
379                         tx_queue->tso_long_headers++;
380                         efx_tx_map_chunk(tx_queue, dma_addr, header_len);
381                         len -= header_len;
382                         dma_addr += header_len;
383                 }
384         }
385
386         /* Add descriptors for each fragment. */
387         do {
388                 struct efx_tx_buffer *buffer;
389                 skb_frag_t *fragment;
390
391                 buffer = efx_tx_map_chunk(tx_queue, dma_addr, len);
392
393                 /* The final descriptor for a fragment is responsible for
394                  * unmapping the whole fragment.
395                  */
396                 buffer->flags = EFX_TX_BUF_CONT | dma_flags;
397                 buffer->unmap_len = unmap_len;
398                 buffer->dma_offset = buffer->dma_addr - unmap_addr;
399
400                 if (frag_index >= nr_frags) {
401                         /* Store SKB details with the final buffer for
402                          * the completion.
403                          */
404                         buffer->skb = skb;
405                         buffer->flags = EFX_TX_BUF_SKB | dma_flags;
406                         return 0;
407                 }
408
409                 /* Move on to the next fragment. */
410                 fragment = &skb_shinfo(skb)->frags[frag_index++];
411                 len = skb_frag_size(fragment);
412                 dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len,
413                                             DMA_TO_DEVICE);
414                 dma_flags = 0;
415                 unmap_len = len;
416                 unmap_addr = dma_addr;
417
418                 if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
419                         return -EIO;
420         } while (1);
421 }
422
423 unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
424 {
425         /* Header and payload descriptor for each output segment, plus
426          * one for every input fragment boundary within a segment
427          */
428         unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
429
430         /* Possibly one more per segment for option descriptors */
431         if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
432                 max_descs += EFX_TSO_MAX_SEGS;
433
434         /* Possibly more for PCIe page boundaries within input fragments */
435         if (PAGE_SIZE > EFX_PAGE_SIZE)
436                 max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
437                                    DIV_ROUND_UP(GSO_LEGACY_MAX_SIZE,
438                                                 EFX_PAGE_SIZE));
439
440         return max_descs;
441 }
442
443 /*
444  * Fallback to software TSO.
445  *
446  * This is used if we are unable to send a GSO packet through hardware TSO.
447  * This should only ever happen due to per-queue restrictions - unsupported
448  * packets should first be filtered by the feature flags.
449  *
450  * Returns 0 on success, error code otherwise.
451  */
452 int efx_tx_tso_fallback(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
453 {
454         struct sk_buff *segments, *next;
455
456         segments = skb_gso_segment(skb, 0);
457         if (IS_ERR(segments))
458                 return PTR_ERR(segments);
459
460         dev_consume_skb_any(skb);
461
462         skb_list_walk_safe(segments, skb, next) {
463                 skb_mark_not_on_list(skb);
464                 efx_enqueue_skb(tx_queue, skb);
465         }
466
467         return 0;
468 }