Merge tag 'x86-mm-2023-06-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
[linux-block.git] / drivers / net / ethernet / sfc / tx_common.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2018 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include "net_driver.h"
12 #include "efx.h"
13 #include "nic_common.h"
14 #include "tx_common.h"
15
16 static unsigned int efx_tx_cb_page_count(struct efx_tx_queue *tx_queue)
17 {
18         return DIV_ROUND_UP(tx_queue->ptr_mask + 1,
19                             PAGE_SIZE >> EFX_TX_CB_ORDER);
20 }
21
22 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
23 {
24         struct efx_nic *efx = tx_queue->efx;
25         unsigned int entries;
26         int rc;
27
28         /* Create the smallest power-of-two aligned ring */
29         entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
30         EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
31         tx_queue->ptr_mask = entries - 1;
32
33         netif_dbg(efx, probe, efx->net_dev,
34                   "creating TX queue %d size %#x mask %#x\n",
35                   tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
36
37         /* Allocate software ring */
38         tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
39                                    GFP_KERNEL);
40         if (!tx_queue->buffer)
41                 return -ENOMEM;
42
43         tx_queue->cb_page = kcalloc(efx_tx_cb_page_count(tx_queue),
44                                     sizeof(tx_queue->cb_page[0]), GFP_KERNEL);
45         if (!tx_queue->cb_page) {
46                 rc = -ENOMEM;
47                 goto fail1;
48         }
49
50         /* Allocate hardware ring, determine TXQ type */
51         rc = efx_nic_probe_tx(tx_queue);
52         if (rc)
53                 goto fail2;
54
55         tx_queue->channel->tx_queue_by_type[tx_queue->type] = tx_queue;
56         return 0;
57
58 fail2:
59         kfree(tx_queue->cb_page);
60         tx_queue->cb_page = NULL;
61 fail1:
62         kfree(tx_queue->buffer);
63         tx_queue->buffer = NULL;
64         return rc;
65 }
66
67 void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
68 {
69         struct efx_nic *efx = tx_queue->efx;
70
71         netif_dbg(efx, drv, efx->net_dev,
72                   "initialising TX queue %d\n", tx_queue->queue);
73
74         tx_queue->insert_count = 0;
75         tx_queue->notify_count = 0;
76         tx_queue->write_count = 0;
77         tx_queue->packet_write_count = 0;
78         tx_queue->old_write_count = 0;
79         tx_queue->read_count = 0;
80         tx_queue->old_read_count = 0;
81         tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
82         tx_queue->xmit_pending = false;
83         tx_queue->timestamping = (efx_ptp_use_mac_tx_timestamps(efx) &&
84                                   tx_queue->channel == efx_ptp_channel(efx));
85         tx_queue->completed_timestamp_major = 0;
86         tx_queue->completed_timestamp_minor = 0;
87
88         tx_queue->xdp_tx = efx_channel_is_xdp_tx(tx_queue->channel);
89         tx_queue->tso_version = 0;
90
91         /* Set up TX descriptor ring */
92         efx_nic_init_tx(tx_queue);
93
94         tx_queue->initialised = true;
95 }
96
97 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
98 {
99         struct efx_tx_buffer *buffer;
100
101         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
102                   "shutting down TX queue %d\n", tx_queue->queue);
103
104         tx_queue->initialised = false;
105
106         if (!tx_queue->buffer)
107                 return;
108
109         /* Free any buffers left in the ring */
110         while (tx_queue->read_count != tx_queue->write_count) {
111                 unsigned int pkts_compl = 0, bytes_compl = 0;
112                 unsigned int efv_pkts_compl = 0;
113
114                 buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
115                 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl,
116                                    &efv_pkts_compl);
117
118                 ++tx_queue->read_count;
119         }
120         tx_queue->xmit_pending = false;
121         netdev_tx_reset_queue(tx_queue->core_txq);
122 }
123
124 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
125 {
126         int i;
127
128         if (!tx_queue->buffer)
129                 return;
130
131         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
132                   "destroying TX queue %d\n", tx_queue->queue);
133         efx_nic_remove_tx(tx_queue);
134
135         if (tx_queue->cb_page) {
136                 for (i = 0; i < efx_tx_cb_page_count(tx_queue); i++)
137                         efx_nic_free_buffer(tx_queue->efx,
138                                             &tx_queue->cb_page[i]);
139                 kfree(tx_queue->cb_page);
140                 tx_queue->cb_page = NULL;
141         }
142
143         kfree(tx_queue->buffer);
144         tx_queue->buffer = NULL;
145         tx_queue->channel->tx_queue_by_type[tx_queue->type] = NULL;
146 }
147
148 void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
149                         struct efx_tx_buffer *buffer,
150                         unsigned int *pkts_compl,
151                         unsigned int *bytes_compl,
152                         unsigned int *efv_pkts_compl)
153 {
154         if (buffer->unmap_len) {
155                 struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
156                 dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
157
158                 if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
159                         dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
160                                          DMA_TO_DEVICE);
161                 else
162                         dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
163                                        DMA_TO_DEVICE);
164                 buffer->unmap_len = 0;
165         }
166
167         if (buffer->flags & EFX_TX_BUF_SKB) {
168                 struct sk_buff *skb = (struct sk_buff *)buffer->skb;
169
170                 if (unlikely(buffer->flags & EFX_TX_BUF_EFV)) {
171                         EFX_WARN_ON_PARANOID(!efv_pkts_compl);
172                         (*efv_pkts_compl)++;
173                 } else {
174                         EFX_WARN_ON_PARANOID(!pkts_compl || !bytes_compl);
175                         (*pkts_compl)++;
176                         (*bytes_compl) += skb->len;
177                 }
178
179                 if (tx_queue->timestamping &&
180                     (tx_queue->completed_timestamp_major ||
181                      tx_queue->completed_timestamp_minor)) {
182                         struct skb_shared_hwtstamps hwtstamp;
183
184                         hwtstamp.hwtstamp =
185                                 efx_ptp_nic_to_kernel_time(tx_queue);
186                         skb_tstamp_tx(skb, &hwtstamp);
187
188                         tx_queue->completed_timestamp_major = 0;
189                         tx_queue->completed_timestamp_minor = 0;
190                 }
191                 dev_consume_skb_any((struct sk_buff *)buffer->skb);
192                 netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
193                            "TX queue %d transmission id %x complete\n",
194                            tx_queue->queue, tx_queue->read_count);
195         } else if (buffer->flags & EFX_TX_BUF_XDP) {
196                 xdp_return_frame_rx_napi(buffer->xdpf);
197         }
198
199         buffer->len = 0;
200         buffer->flags = 0;
201 }
202
203 /* Remove packets from the TX queue
204  *
205  * This removes packets from the TX queue, up to and including the
206  * specified index.
207  */
208 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
209                                 unsigned int index,
210                                 unsigned int *pkts_compl,
211                                 unsigned int *bytes_compl,
212                                 unsigned int *efv_pkts_compl)
213 {
214         struct efx_nic *efx = tx_queue->efx;
215         unsigned int stop_index, read_ptr;
216
217         stop_index = (index + 1) & tx_queue->ptr_mask;
218         read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
219
220         while (read_ptr != stop_index) {
221                 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
222
223                 if (!efx_tx_buffer_in_use(buffer)) {
224                         netif_err(efx, tx_err, efx->net_dev,
225                                   "TX queue %d spurious TX completion id %d\n",
226                                   tx_queue->queue, read_ptr);
227                         efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
228                         return;
229                 }
230
231                 efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl,
232                                    efv_pkts_compl);
233
234                 ++tx_queue->read_count;
235                 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
236         }
237 }
238
239 void efx_xmit_done_check_empty(struct efx_tx_queue *tx_queue)
240 {
241         if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
242                 tx_queue->old_write_count = READ_ONCE(tx_queue->write_count);
243                 if (tx_queue->read_count == tx_queue->old_write_count) {
244                         /* Ensure that read_count is flushed. */
245                         smp_mb();
246                         tx_queue->empty_read_count =
247                                 tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
248                 }
249         }
250 }
251
252 int efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
253 {
254         unsigned int fill_level, pkts_compl = 0, bytes_compl = 0;
255         unsigned int efv_pkts_compl = 0;
256         struct efx_nic *efx = tx_queue->efx;
257
258         EFX_WARN_ON_ONCE_PARANOID(index > tx_queue->ptr_mask);
259
260         efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl,
261                             &efv_pkts_compl);
262         tx_queue->pkts_compl += pkts_compl;
263         tx_queue->bytes_compl += bytes_compl;
264
265         if (pkts_compl + efv_pkts_compl > 1)
266                 ++tx_queue->merge_events;
267
268         /* See if we need to restart the netif queue.  This memory
269          * barrier ensures that we write read_count (inside
270          * efx_dequeue_buffers()) before reading the queue status.
271          */
272         smp_mb();
273         if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
274             likely(efx->port_enabled) &&
275             likely(netif_device_present(efx->net_dev))) {
276                 fill_level = efx_channel_tx_fill_level(tx_queue->channel);
277                 if (fill_level <= efx->txq_wake_thresh)
278                         netif_tx_wake_queue(tx_queue->core_txq);
279         }
280
281         efx_xmit_done_check_empty(tx_queue);
282
283         return pkts_compl + efv_pkts_compl;
284 }
285
286 /* Remove buffers put into a tx_queue for the current packet.
287  * None of the buffers must have an skb attached.
288  */
289 void efx_enqueue_unwind(struct efx_tx_queue *tx_queue,
290                         unsigned int insert_count)
291 {
292         unsigned int efv_pkts_compl = 0;
293         struct efx_tx_buffer *buffer;
294         unsigned int bytes_compl = 0;
295         unsigned int pkts_compl = 0;
296
297         /* Work backwards until we hit the original insert pointer value */
298         while (tx_queue->insert_count != insert_count) {
299                 --tx_queue->insert_count;
300                 buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
301                 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl,
302                                    &efv_pkts_compl);
303         }
304 }
305
306 struct efx_tx_buffer *efx_tx_map_chunk(struct efx_tx_queue *tx_queue,
307                                        dma_addr_t dma_addr, size_t len)
308 {
309         const struct efx_nic_type *nic_type = tx_queue->efx->type;
310         struct efx_tx_buffer *buffer;
311         unsigned int dma_len;
312
313         /* Map the fragment taking account of NIC-dependent DMA limits. */
314         do {
315                 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
316
317                 if (nic_type->tx_limit_len)
318                         dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len);
319                 else
320                         dma_len = len;
321
322                 buffer->len = dma_len;
323                 buffer->dma_addr = dma_addr;
324                 buffer->flags = EFX_TX_BUF_CONT;
325                 len -= dma_len;
326                 dma_addr += dma_len;
327                 ++tx_queue->insert_count;
328         } while (len);
329
330         return buffer;
331 }
332
333 int efx_tx_tso_header_length(struct sk_buff *skb)
334 {
335         size_t header_len;
336
337         if (skb->encapsulation)
338                 header_len = skb_inner_transport_header(skb) -
339                                 skb->data +
340                                 (inner_tcp_hdr(skb)->doff << 2u);
341         else
342                 header_len = skb_transport_header(skb) - skb->data +
343                                 (tcp_hdr(skb)->doff << 2u);
344         return header_len;
345 }
346
347 /* Map all data from an SKB for DMA and create descriptors on the queue. */
348 int efx_tx_map_data(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
349                     unsigned int segment_count)
350 {
351         struct efx_nic *efx = tx_queue->efx;
352         struct device *dma_dev = &efx->pci_dev->dev;
353         unsigned int frag_index, nr_frags;
354         dma_addr_t dma_addr, unmap_addr;
355         unsigned short dma_flags;
356         size_t len, unmap_len;
357
358         nr_frags = skb_shinfo(skb)->nr_frags;
359         frag_index = 0;
360
361         /* Map header data. */
362         len = skb_headlen(skb);
363         dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE);
364         dma_flags = EFX_TX_BUF_MAP_SINGLE;
365         unmap_len = len;
366         unmap_addr = dma_addr;
367
368         if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
369                 return -EIO;
370
371         if (segment_count) {
372                 /* For TSO we need to put the header in to a separate
373                  * descriptor. Map this separately if necessary.
374                  */
375                 size_t header_len = efx_tx_tso_header_length(skb);
376
377                 if (header_len != len) {
378                         tx_queue->tso_long_headers++;
379                         efx_tx_map_chunk(tx_queue, dma_addr, header_len);
380                         len -= header_len;
381                         dma_addr += header_len;
382                 }
383         }
384
385         /* Add descriptors for each fragment. */
386         do {
387                 struct efx_tx_buffer *buffer;
388                 skb_frag_t *fragment;
389
390                 buffer = efx_tx_map_chunk(tx_queue, dma_addr, len);
391
392                 /* The final descriptor for a fragment is responsible for
393                  * unmapping the whole fragment.
394                  */
395                 buffer->flags = EFX_TX_BUF_CONT | dma_flags;
396                 buffer->unmap_len = unmap_len;
397                 buffer->dma_offset = buffer->dma_addr - unmap_addr;
398
399                 if (frag_index >= nr_frags) {
400                         /* Store SKB details with the final buffer for
401                          * the completion.
402                          */
403                         buffer->skb = skb;
404                         buffer->flags = EFX_TX_BUF_SKB | dma_flags;
405                         return 0;
406                 }
407
408                 /* Move on to the next fragment. */
409                 fragment = &skb_shinfo(skb)->frags[frag_index++];
410                 len = skb_frag_size(fragment);
411                 dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len,
412                                             DMA_TO_DEVICE);
413                 dma_flags = 0;
414                 unmap_len = len;
415                 unmap_addr = dma_addr;
416
417                 if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
418                         return -EIO;
419         } while (1);
420 }
421
422 unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
423 {
424         /* Header and payload descriptor for each output segment, plus
425          * one for every input fragment boundary within a segment
426          */
427         unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
428
429         /* Possibly one more per segment for option descriptors */
430         if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
431                 max_descs += EFX_TSO_MAX_SEGS;
432
433         /* Possibly more for PCIe page boundaries within input fragments */
434         if (PAGE_SIZE > EFX_PAGE_SIZE)
435                 max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
436                                    DIV_ROUND_UP(GSO_LEGACY_MAX_SIZE,
437                                                 EFX_PAGE_SIZE));
438
439         return max_descs;
440 }
441
442 /*
443  * Fallback to software TSO.
444  *
445  * This is used if we are unable to send a GSO packet through hardware TSO.
446  * This should only ever happen due to per-queue restrictions - unsupported
447  * packets should first be filtered by the feature flags.
448  *
449  * Returns 0 on success, error code otherwise.
450  */
451 int efx_tx_tso_fallback(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
452 {
453         struct sk_buff *segments, *next;
454
455         segments = skb_gso_segment(skb, 0);
456         if (IS_ERR(segments))
457                 return PTR_ERR(segments);
458
459         dev_consume_skb_any(skb);
460
461         skb_list_walk_safe(segments, skb, next) {
462                 skb_mark_not_on_list(skb);
463                 efx_enqueue_skb(tx_queue, skb);
464         }
465
466         return 0;
467 }