87b8c032195d0ef66f2fd73d8bf6735e66ff781c
[linux-2.6-block.git] / drivers / net / ethernet / qualcomm / emac / emac-mac.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
3  */
4
5 /* Qualcomm Technologies, Inc. EMAC Ethernet Controller MAC layer support
6  */
7
8 #include <linux/tcp.h>
9 #include <linux/ip.h>
10 #include <linux/ipv6.h>
11 #include <linux/crc32.h>
12 #include <linux/if_vlan.h>
13 #include <linux/jiffies.h>
14 #include <linux/phy.h>
15 #include <linux/of.h>
16 #include <net/ip6_checksum.h>
17 #include "emac.h"
18 #include "emac-sgmii.h"
19
20 /* EMAC_MAC_CTRL */
21 #define SINGLE_PAUSE_MODE               0x10000000
22 #define DEBUG_MODE                      0x08000000
23 #define BROAD_EN                        0x04000000
24 #define MULTI_ALL                       0x02000000
25 #define RX_CHKSUM_EN                    0x01000000
26 #define HUGE                            0x00800000
27 #define SPEED(x)                        (((x) & 0x3) << 20)
28 #define SPEED_MASK                      SPEED(0x3)
29 #define SIMR                            0x00080000
30 #define TPAUSE                          0x00010000
31 #define PROM_MODE                       0x00008000
32 #define VLAN_STRIP                      0x00004000
33 #define PRLEN_BMSK                      0x00003c00
34 #define PRLEN_SHFT                      10
35 #define HUGEN                           0x00000200
36 #define FLCHK                           0x00000100
37 #define PCRCE                           0x00000080
38 #define CRCE                            0x00000040
39 #define FULLD                           0x00000020
40 #define MAC_LP_EN                       0x00000010
41 #define RXFC                            0x00000008
42 #define TXFC                            0x00000004
43 #define RXEN                            0x00000002
44 #define TXEN                            0x00000001
45
46 /* EMAC_DESC_CTRL_3 */
47 #define RFD_RING_SIZE_BMSK                                       0xfff
48
49 /* EMAC_DESC_CTRL_4 */
50 #define RX_BUFFER_SIZE_BMSK                                     0xffff
51
52 /* EMAC_DESC_CTRL_6 */
53 #define RRD_RING_SIZE_BMSK                                       0xfff
54
55 /* EMAC_DESC_CTRL_9 */
56 #define TPD_RING_SIZE_BMSK                                      0xffff
57
58 /* EMAC_TXQ_CTRL_0 */
59 #define NUM_TXF_BURST_PREF_BMSK                             0xffff0000
60 #define NUM_TXF_BURST_PREF_SHFT                                     16
61 #define LS_8023_SP                                                0x80
62 #define TXQ_MODE                                                  0x40
63 #define TXQ_EN                                                    0x20
64 #define IP_OP_SP                                                  0x10
65 #define NUM_TPD_BURST_PREF_BMSK                                    0xf
66 #define NUM_TPD_BURST_PREF_SHFT                                      0
67
68 /* EMAC_TXQ_CTRL_1 */
69 #define JUMBO_TASK_OFFLOAD_THRESHOLD_BMSK                        0x7ff
70
71 /* EMAC_TXQ_CTRL_2 */
72 #define TXF_HWM_BMSK                                         0xfff0000
73 #define TXF_LWM_BMSK                                             0xfff
74
75 /* EMAC_RXQ_CTRL_0 */
76 #define RXQ_EN                                                 BIT(31)
77 #define CUT_THRU_EN                                            BIT(30)
78 #define RSS_HASH_EN                                            BIT(29)
79 #define NUM_RFD_BURST_PREF_BMSK                              0x3f00000
80 #define NUM_RFD_BURST_PREF_SHFT                                     20
81 #define IDT_TABLE_SIZE_BMSK                                    0x1ff00
82 #define IDT_TABLE_SIZE_SHFT                                          8
83 #define SP_IPV6                                                   0x80
84
85 /* EMAC_RXQ_CTRL_1 */
86 #define JUMBO_1KAH_BMSK                                         0xf000
87 #define JUMBO_1KAH_SHFT                                             12
88 #define RFD_PREF_LOW_TH                                           0x10
89 #define RFD_PREF_LOW_THRESHOLD_BMSK                              0xfc0
90 #define RFD_PREF_LOW_THRESHOLD_SHFT                                  6
91 #define RFD_PREF_UP_TH                                            0x10
92 #define RFD_PREF_UP_THRESHOLD_BMSK                                0x3f
93 #define RFD_PREF_UP_THRESHOLD_SHFT                                   0
94
95 /* EMAC_RXQ_CTRL_2 */
96 #define RXF_DOF_THRESFHOLD                                       0x1a0
97 #define RXF_DOF_THRESHOLD_BMSK                               0xfff0000
98 #define RXF_DOF_THRESHOLD_SHFT                                      16
99 #define RXF_UOF_THRESFHOLD                                        0xbe
100 #define RXF_UOF_THRESHOLD_BMSK                                   0xfff
101 #define RXF_UOF_THRESHOLD_SHFT                                       0
102
103 /* EMAC_RXQ_CTRL_3 */
104 #define RXD_TIMER_BMSK                                      0xffff0000
105 #define RXD_THRESHOLD_BMSK                                       0xfff
106 #define RXD_THRESHOLD_SHFT                                           0
107
108 /* EMAC_DMA_CTRL */
109 #define DMAW_DLY_CNT_BMSK                                      0xf0000
110 #define DMAW_DLY_CNT_SHFT                                           16
111 #define DMAR_DLY_CNT_BMSK                                       0xf800
112 #define DMAR_DLY_CNT_SHFT                                           11
113 #define DMAR_REQ_PRI                                             0x400
114 #define REGWRBLEN_BMSK                                           0x380
115 #define REGWRBLEN_SHFT                                               7
116 #define REGRDBLEN_BMSK                                            0x70
117 #define REGRDBLEN_SHFT                                               4
118 #define OUT_ORDER_MODE                                             0x4
119 #define ENH_ORDER_MODE                                             0x2
120 #define IN_ORDER_MODE                                              0x1
121
122 /* EMAC_MAILBOX_13 */
123 #define RFD3_PROC_IDX_BMSK                                   0xfff0000
124 #define RFD3_PROC_IDX_SHFT                                          16
125 #define RFD3_PROD_IDX_BMSK                                       0xfff
126 #define RFD3_PROD_IDX_SHFT                                           0
127
128 /* EMAC_MAILBOX_2 */
129 #define NTPD_CONS_IDX_BMSK                                  0xffff0000
130 #define NTPD_CONS_IDX_SHFT                                          16
131
132 /* EMAC_MAILBOX_3 */
133 #define RFD0_CONS_IDX_BMSK                                       0xfff
134 #define RFD0_CONS_IDX_SHFT                                           0
135
136 /* EMAC_MAILBOX_11 */
137 #define H3TPD_PROD_IDX_BMSK                                 0xffff0000
138 #define H3TPD_PROD_IDX_SHFT                                         16
139
140 /* EMAC_AXI_MAST_CTRL */
141 #define DATA_BYTE_SWAP                                             0x8
142 #define MAX_BOUND                                                  0x2
143 #define MAX_BTYPE                                                  0x1
144
145 /* EMAC_MAILBOX_12 */
146 #define H3TPD_CONS_IDX_BMSK                                 0xffff0000
147 #define H3TPD_CONS_IDX_SHFT                                         16
148
149 /* EMAC_MAILBOX_9 */
150 #define H2TPD_PROD_IDX_BMSK                                     0xffff
151 #define H2TPD_PROD_IDX_SHFT                                          0
152
153 /* EMAC_MAILBOX_10 */
154 #define H1TPD_CONS_IDX_BMSK                                 0xffff0000
155 #define H1TPD_CONS_IDX_SHFT                                         16
156 #define H2TPD_CONS_IDX_BMSK                                     0xffff
157 #define H2TPD_CONS_IDX_SHFT                                          0
158
159 /* EMAC_ATHR_HEADER_CTRL */
160 #define HEADER_CNT_EN                                              0x2
161 #define HEADER_ENABLE                                              0x1
162
163 /* EMAC_MAILBOX_0 */
164 #define RFD0_PROC_IDX_BMSK                                   0xfff0000
165 #define RFD0_PROC_IDX_SHFT                                          16
166 #define RFD0_PROD_IDX_BMSK                                       0xfff
167 #define RFD0_PROD_IDX_SHFT                                           0
168
169 /* EMAC_MAILBOX_5 */
170 #define RFD1_PROC_IDX_BMSK                                   0xfff0000
171 #define RFD1_PROC_IDX_SHFT                                          16
172 #define RFD1_PROD_IDX_BMSK                                       0xfff
173 #define RFD1_PROD_IDX_SHFT                                           0
174
175 /* EMAC_MISC_CTRL */
176 #define RX_UNCPL_INT_EN                                            0x1
177
178 /* EMAC_MAILBOX_7 */
179 #define RFD2_CONS_IDX_BMSK                                   0xfff0000
180 #define RFD2_CONS_IDX_SHFT                                          16
181 #define RFD1_CONS_IDX_BMSK                                       0xfff
182 #define RFD1_CONS_IDX_SHFT                                           0
183
184 /* EMAC_MAILBOX_8 */
185 #define RFD3_CONS_IDX_BMSK                                       0xfff
186 #define RFD3_CONS_IDX_SHFT                                           0
187
188 /* EMAC_MAILBOX_15 */
189 #define NTPD_PROD_IDX_BMSK                                      0xffff
190 #define NTPD_PROD_IDX_SHFT                                           0
191
192 /* EMAC_MAILBOX_16 */
193 #define H1TPD_PROD_IDX_BMSK                                     0xffff
194 #define H1TPD_PROD_IDX_SHFT                                          0
195
196 #define RXQ0_RSS_HSTYP_IPV6_TCP_EN                                0x20
197 #define RXQ0_RSS_HSTYP_IPV6_EN                                    0x10
198 #define RXQ0_RSS_HSTYP_IPV4_TCP_EN                                 0x8
199 #define RXQ0_RSS_HSTYP_IPV4_EN                                     0x4
200
201 /* EMAC_EMAC_WRAPPER_TX_TS_INX */
202 #define EMAC_WRAPPER_TX_TS_EMPTY                               BIT(31)
203 #define EMAC_WRAPPER_TX_TS_INX_BMSK                             0xffff
204
205 struct emac_skb_cb {
206         u32           tpd_idx;
207         unsigned long jiffies;
208 };
209
210 #define EMAC_SKB_CB(skb)        ((struct emac_skb_cb *)(skb)->cb)
211 #define EMAC_RSS_IDT_SIZE       256
212 #define JUMBO_1KAH              0x4
213 #define RXD_TH                  0x100
214 #define EMAC_TPD_LAST_FRAGMENT  0x80000000
215 #define EMAC_TPD_TSTAMP_SAVE    0x80000000
216
217 /* EMAC Errors in emac_rrd.word[3] */
218 #define EMAC_RRD_L4F            BIT(14)
219 #define EMAC_RRD_IPF            BIT(15)
220 #define EMAC_RRD_CRC            BIT(21)
221 #define EMAC_RRD_FAE            BIT(22)
222 #define EMAC_RRD_TRN            BIT(23)
223 #define EMAC_RRD_RNT            BIT(24)
224 #define EMAC_RRD_INC            BIT(25)
225 #define EMAC_RRD_FOV            BIT(29)
226 #define EMAC_RRD_LEN            BIT(30)
227
228 /* Error bits that will result in a received frame being discarded */
229 #define EMAC_RRD_ERROR (EMAC_RRD_IPF | EMAC_RRD_CRC | EMAC_RRD_FAE | \
230                         EMAC_RRD_TRN | EMAC_RRD_RNT | EMAC_RRD_INC | \
231                         EMAC_RRD_FOV | EMAC_RRD_LEN)
232 #define EMAC_RRD_STATS_DW_IDX 3
233
234 #define EMAC_RRD(RXQ, SIZE, IDX)        ((RXQ)->rrd.v_addr + (SIZE * (IDX)))
235 #define EMAC_RFD(RXQ, SIZE, IDX)        ((RXQ)->rfd.v_addr + (SIZE * (IDX)))
236 #define EMAC_TPD(TXQ, SIZE, IDX)        ((TXQ)->tpd.v_addr + (SIZE * (IDX)))
237
238 #define GET_RFD_BUFFER(RXQ, IDX)        (&((RXQ)->rfd.rfbuff[(IDX)]))
239 #define GET_TPD_BUFFER(RTQ, IDX)        (&((RTQ)->tpd.tpbuff[(IDX)]))
240
241 #define EMAC_TX_POLL_HWTXTSTAMP_THRESHOLD       8
242
243 #define ISR_RX_PKT      (\
244         RX_PKT_INT0     |\
245         RX_PKT_INT1     |\
246         RX_PKT_INT2     |\
247         RX_PKT_INT3)
248
249 void emac_mac_multicast_addr_set(struct emac_adapter *adpt, u8 *addr)
250 {
251         u32 crc32, bit, reg, mta;
252
253         /* Calculate the CRC of the MAC address */
254         crc32 = ether_crc(ETH_ALEN, addr);
255
256         /* The HASH Table is an array of 2 32-bit registers. It is
257          * treated like an array of 64 bits (BitArray[hash_value]).
258          * Use the upper 6 bits of the above CRC as the hash value.
259          */
260         reg = (crc32 >> 31) & 0x1;
261         bit = (crc32 >> 26) & 0x1F;
262
263         mta = readl(adpt->base + EMAC_HASH_TAB_REG0 + (reg << 2));
264         mta |= BIT(bit);
265         writel(mta, adpt->base + EMAC_HASH_TAB_REG0 + (reg << 2));
266 }
267
268 void emac_mac_multicast_addr_clear(struct emac_adapter *adpt)
269 {
270         writel(0, adpt->base + EMAC_HASH_TAB_REG0);
271         writel(0, adpt->base + EMAC_HASH_TAB_REG1);
272 }
273
274 /* definitions for RSS */
275 #define EMAC_RSS_KEY(_i, _type) \
276                 (EMAC_RSS_KEY0 + ((_i) * sizeof(_type)))
277 #define EMAC_RSS_TBL(_i, _type) \
278                 (EMAC_IDT_TABLE0 + ((_i) * sizeof(_type)))
279
280 /* Config MAC modes */
281 void emac_mac_mode_config(struct emac_adapter *adpt)
282 {
283         struct net_device *netdev = adpt->netdev;
284         u32 mac;
285
286         mac = readl(adpt->base + EMAC_MAC_CTRL);
287         mac &= ~(VLAN_STRIP | PROM_MODE | MULTI_ALL | MAC_LP_EN);
288
289         if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
290                 mac |= VLAN_STRIP;
291
292         if (netdev->flags & IFF_PROMISC)
293                 mac |= PROM_MODE;
294
295         if (netdev->flags & IFF_ALLMULTI)
296                 mac |= MULTI_ALL;
297
298         writel(mac, adpt->base + EMAC_MAC_CTRL);
299 }
300
301 /* Config descriptor rings */
302 static void emac_mac_dma_rings_config(struct emac_adapter *adpt)
303 {
304         /* TPD (Transmit Packet Descriptor) */
305         writel(upper_32_bits(adpt->tx_q.tpd.dma_addr),
306                adpt->base + EMAC_DESC_CTRL_1);
307
308         writel(lower_32_bits(adpt->tx_q.tpd.dma_addr),
309                adpt->base + EMAC_DESC_CTRL_8);
310
311         writel(adpt->tx_q.tpd.count & TPD_RING_SIZE_BMSK,
312                adpt->base + EMAC_DESC_CTRL_9);
313
314         /* RFD (Receive Free Descriptor) & RRD (Receive Return Descriptor) */
315         writel(upper_32_bits(adpt->rx_q.rfd.dma_addr),
316                adpt->base + EMAC_DESC_CTRL_0);
317
318         writel(lower_32_bits(adpt->rx_q.rfd.dma_addr),
319                adpt->base + EMAC_DESC_CTRL_2);
320         writel(lower_32_bits(adpt->rx_q.rrd.dma_addr),
321                adpt->base + EMAC_DESC_CTRL_5);
322
323         writel(adpt->rx_q.rfd.count & RFD_RING_SIZE_BMSK,
324                adpt->base + EMAC_DESC_CTRL_3);
325         writel(adpt->rx_q.rrd.count & RRD_RING_SIZE_BMSK,
326                adpt->base + EMAC_DESC_CTRL_6);
327
328         writel(adpt->rxbuf_size & RX_BUFFER_SIZE_BMSK,
329                adpt->base + EMAC_DESC_CTRL_4);
330
331         writel(0, adpt->base + EMAC_DESC_CTRL_11);
332
333         /* Load all of the base addresses above and ensure that triggering HW to
334          * read ring pointers is flushed
335          */
336         writel(1, adpt->base + EMAC_INTER_SRAM_PART9);
337 }
338
339 /* Config transmit parameters */
340 static void emac_mac_tx_config(struct emac_adapter *adpt)
341 {
342         u32 val;
343
344         writel((EMAC_MAX_TX_OFFLOAD_THRESH >> 3) &
345                JUMBO_TASK_OFFLOAD_THRESHOLD_BMSK, adpt->base + EMAC_TXQ_CTRL_1);
346
347         val = (adpt->tpd_burst << NUM_TPD_BURST_PREF_SHFT) &
348                NUM_TPD_BURST_PREF_BMSK;
349
350         val |= TXQ_MODE | LS_8023_SP;
351         val |= (0x0100 << NUM_TXF_BURST_PREF_SHFT) &
352                 NUM_TXF_BURST_PREF_BMSK;
353
354         writel(val, adpt->base + EMAC_TXQ_CTRL_0);
355         emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_2,
356                           (TXF_HWM_BMSK | TXF_LWM_BMSK), 0);
357 }
358
359 /* Config receive parameters */
360 static void emac_mac_rx_config(struct emac_adapter *adpt)
361 {
362         u32 val;
363
364         val = (adpt->rfd_burst << NUM_RFD_BURST_PREF_SHFT) &
365                NUM_RFD_BURST_PREF_BMSK;
366         val |= (SP_IPV6 | CUT_THRU_EN);
367
368         writel(val, adpt->base + EMAC_RXQ_CTRL_0);
369
370         val = readl(adpt->base + EMAC_RXQ_CTRL_1);
371         val &= ~(JUMBO_1KAH_BMSK | RFD_PREF_LOW_THRESHOLD_BMSK |
372                  RFD_PREF_UP_THRESHOLD_BMSK);
373         val |= (JUMBO_1KAH << JUMBO_1KAH_SHFT) |
374                 (RFD_PREF_LOW_TH << RFD_PREF_LOW_THRESHOLD_SHFT) |
375                 (RFD_PREF_UP_TH  << RFD_PREF_UP_THRESHOLD_SHFT);
376         writel(val, adpt->base + EMAC_RXQ_CTRL_1);
377
378         val = readl(adpt->base + EMAC_RXQ_CTRL_2);
379         val &= ~(RXF_DOF_THRESHOLD_BMSK | RXF_UOF_THRESHOLD_BMSK);
380         val |= (RXF_DOF_THRESFHOLD  << RXF_DOF_THRESHOLD_SHFT) |
381                 (RXF_UOF_THRESFHOLD << RXF_UOF_THRESHOLD_SHFT);
382         writel(val, adpt->base + EMAC_RXQ_CTRL_2);
383
384         val = readl(adpt->base + EMAC_RXQ_CTRL_3);
385         val &= ~(RXD_TIMER_BMSK | RXD_THRESHOLD_BMSK);
386         val |= RXD_TH << RXD_THRESHOLD_SHFT;
387         writel(val, adpt->base + EMAC_RXQ_CTRL_3);
388 }
389
390 /* Config dma */
391 static void emac_mac_dma_config(struct emac_adapter *adpt)
392 {
393         u32 dma_ctrl = DMAR_REQ_PRI;
394
395         switch (adpt->dma_order) {
396         case emac_dma_ord_in:
397                 dma_ctrl |= IN_ORDER_MODE;
398                 break;
399         case emac_dma_ord_enh:
400                 dma_ctrl |= ENH_ORDER_MODE;
401                 break;
402         case emac_dma_ord_out:
403                 dma_ctrl |= OUT_ORDER_MODE;
404                 break;
405         default:
406                 break;
407         }
408
409         dma_ctrl |= (((u32)adpt->dmar_block) << REGRDBLEN_SHFT) &
410                                                 REGRDBLEN_BMSK;
411         dma_ctrl |= (((u32)adpt->dmaw_block) << REGWRBLEN_SHFT) &
412                                                 REGWRBLEN_BMSK;
413         dma_ctrl |= (((u32)adpt->dmar_dly_cnt) << DMAR_DLY_CNT_SHFT) &
414                                                 DMAR_DLY_CNT_BMSK;
415         dma_ctrl |= (((u32)adpt->dmaw_dly_cnt) << DMAW_DLY_CNT_SHFT) &
416                                                 DMAW_DLY_CNT_BMSK;
417
418         /* config DMA and ensure that configuration is flushed to HW */
419         writel(dma_ctrl, adpt->base + EMAC_DMA_CTRL);
420 }
421
422 /* set MAC address */
423 static void emac_set_mac_address(struct emac_adapter *adpt, u8 *addr)
424 {
425         u32 sta;
426
427         /* for example: 00-A0-C6-11-22-33
428          * 0<-->C6112233, 1<-->00A0.
429          */
430
431         /* low 32bit word */
432         sta = (((u32)addr[2]) << 24) | (((u32)addr[3]) << 16) |
433               (((u32)addr[4]) << 8)  | (((u32)addr[5]));
434         writel(sta, adpt->base + EMAC_MAC_STA_ADDR0);
435
436         /* hight 32bit word */
437         sta = (((u32)addr[0]) << 8) | (u32)addr[1];
438         writel(sta, adpt->base + EMAC_MAC_STA_ADDR1);
439 }
440
441 static void emac_mac_config(struct emac_adapter *adpt)
442 {
443         struct net_device *netdev = adpt->netdev;
444         unsigned int max_frame;
445         u32 val;
446
447         emac_set_mac_address(adpt, netdev->dev_addr);
448
449         max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
450         adpt->rxbuf_size = netdev->mtu > EMAC_DEF_RX_BUF_SIZE ?
451                 ALIGN(max_frame, 8) : EMAC_DEF_RX_BUF_SIZE;
452
453         emac_mac_dma_rings_config(adpt);
454
455         writel(netdev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
456                adpt->base + EMAC_MAX_FRAM_LEN_CTRL);
457
458         emac_mac_tx_config(adpt);
459         emac_mac_rx_config(adpt);
460         emac_mac_dma_config(adpt);
461
462         val = readl(adpt->base + EMAC_AXI_MAST_CTRL);
463         val &= ~(DATA_BYTE_SWAP | MAX_BOUND);
464         val |= MAX_BTYPE;
465         writel(val, adpt->base + EMAC_AXI_MAST_CTRL);
466         writel(0, adpt->base + EMAC_CLK_GATE_CTRL);
467         writel(RX_UNCPL_INT_EN, adpt->base + EMAC_MISC_CTRL);
468 }
469
470 void emac_mac_reset(struct emac_adapter *adpt)
471 {
472         emac_mac_stop(adpt);
473
474         emac_reg_update32(adpt->base + EMAC_DMA_MAS_CTRL, 0, SOFT_RST);
475         usleep_range(100, 150); /* reset may take up to 100usec */
476
477         /* interrupt clear-on-read */
478         emac_reg_update32(adpt->base + EMAC_DMA_MAS_CTRL, 0, INT_RD_CLR_EN);
479 }
480
481 static void emac_mac_start(struct emac_adapter *adpt)
482 {
483         struct phy_device *phydev = adpt->phydev;
484         u32 mac, csr1;
485
486         /* enable tx queue */
487         emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_0, 0, TXQ_EN);
488
489         /* enable rx queue */
490         emac_reg_update32(adpt->base + EMAC_RXQ_CTRL_0, 0, RXQ_EN);
491
492         /* enable mac control */
493         mac = readl(adpt->base + EMAC_MAC_CTRL);
494         csr1 = readl(adpt->csr + EMAC_EMAC_WRAPPER_CSR1);
495
496         mac |= TXEN | RXEN;     /* enable RX/TX */
497
498         /* Configure MAC flow control. If set to automatic, then match
499          * whatever the PHY does. Otherwise, enable or disable it, depending
500          * on what the user configured via ethtool.
501          */
502         mac &= ~(RXFC | TXFC);
503
504         if (adpt->automatic) {
505                 /* If it's set to automatic, then update our local values */
506                 adpt->rx_flow_control = phydev->pause;
507                 adpt->tx_flow_control = phydev->pause != phydev->asym_pause;
508         }
509         mac |= adpt->rx_flow_control ? RXFC : 0;
510         mac |= adpt->tx_flow_control ? TXFC : 0;
511
512         /* setup link speed */
513         mac &= ~SPEED_MASK;
514         if (phydev->speed == SPEED_1000) {
515                 mac |= SPEED(2);
516                 csr1 |= FREQ_MODE;
517         } else {
518                 mac |= SPEED(1);
519                 csr1 &= ~FREQ_MODE;
520         }
521
522         if (phydev->duplex == DUPLEX_FULL)
523                 mac |= FULLD;
524         else
525                 mac &= ~FULLD;
526
527         /* other parameters */
528         mac |= (CRCE | PCRCE);
529         mac |= ((adpt->preamble << PRLEN_SHFT) & PRLEN_BMSK);
530         mac |= BROAD_EN;
531         mac |= FLCHK;
532         mac &= ~RX_CHKSUM_EN;
533         mac &= ~(HUGEN | VLAN_STRIP | TPAUSE | SIMR | HUGE | MULTI_ALL |
534                  DEBUG_MODE | SINGLE_PAUSE_MODE);
535
536         /* Enable single-pause-frame mode if requested.
537          *
538          * If enabled, the EMAC will send a single pause frame when the RX
539          * queue is full.  This normally leads to packet loss because
540          * the pause frame disables the remote MAC only for 33ms (the quanta),
541          * and then the remote MAC continues sending packets even though
542          * the RX queue is still full.
543          *
544          * If disabled, the EMAC sends a pause frame every 31ms until the RX
545          * queue is no longer full.  Normally, this is the preferred
546          * method of operation.  However, when the system is hung (e.g.
547          * cores are halted), the EMAC interrupt handler is never called
548          * and so the RX queue fills up quickly and stays full.  The resuling
549          * non-stop "flood" of pause frames sometimes has the effect of
550          * disabling nearby switches.  In some cases, other nearby switches
551          * are also affected, shutting down the entire network.
552          *
553          * The user can enable or disable single-pause-frame mode
554          * via ethtool.
555          */
556         mac |= adpt->single_pause_mode ? SINGLE_PAUSE_MODE : 0;
557
558         writel_relaxed(csr1, adpt->csr + EMAC_EMAC_WRAPPER_CSR1);
559
560         writel_relaxed(mac, adpt->base + EMAC_MAC_CTRL);
561
562         /* enable interrupt read clear, low power sleep mode and
563          * the irq moderators
564          */
565
566         writel_relaxed(adpt->irq_mod, adpt->base + EMAC_IRQ_MOD_TIM_INIT);
567         writel_relaxed(INT_RD_CLR_EN | LPW_MODE | IRQ_MODERATOR_EN |
568                         IRQ_MODERATOR2_EN, adpt->base + EMAC_DMA_MAS_CTRL);
569
570         emac_mac_mode_config(adpt);
571
572         emac_reg_update32(adpt->base + EMAC_ATHR_HEADER_CTRL,
573                           (HEADER_ENABLE | HEADER_CNT_EN), 0);
574 }
575
576 void emac_mac_stop(struct emac_adapter *adpt)
577 {
578         emac_reg_update32(adpt->base + EMAC_RXQ_CTRL_0, RXQ_EN, 0);
579         emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_0, TXQ_EN, 0);
580         emac_reg_update32(adpt->base + EMAC_MAC_CTRL, TXEN | RXEN, 0);
581         usleep_range(1000, 1050); /* stopping mac may take upto 1msec */
582 }
583
584 /* Free all descriptors of given transmit queue */
585 static void emac_tx_q_descs_free(struct emac_adapter *adpt)
586 {
587         struct emac_tx_queue *tx_q = &adpt->tx_q;
588         unsigned int i;
589         size_t size;
590
591         /* ring already cleared, nothing to do */
592         if (!tx_q->tpd.tpbuff)
593                 return;
594
595         for (i = 0; i < tx_q->tpd.count; i++) {
596                 struct emac_buffer *tpbuf = GET_TPD_BUFFER(tx_q, i);
597
598                 if (tpbuf->dma_addr) {
599                         dma_unmap_single(adpt->netdev->dev.parent,
600                                          tpbuf->dma_addr, tpbuf->length,
601                                          DMA_TO_DEVICE);
602                         tpbuf->dma_addr = 0;
603                 }
604                 if (tpbuf->skb) {
605                         dev_kfree_skb_any(tpbuf->skb);
606                         tpbuf->skb = NULL;
607                 }
608         }
609
610         size = sizeof(struct emac_buffer) * tx_q->tpd.count;
611         memset(tx_q->tpd.tpbuff, 0, size);
612
613         /* clear the descriptor ring */
614         memset(tx_q->tpd.v_addr, 0, tx_q->tpd.size);
615
616         tx_q->tpd.consume_idx = 0;
617         tx_q->tpd.produce_idx = 0;
618 }
619
620 /* Free all descriptors of given receive queue */
621 static void emac_rx_q_free_descs(struct emac_adapter *adpt)
622 {
623         struct device *dev = adpt->netdev->dev.parent;
624         struct emac_rx_queue *rx_q = &adpt->rx_q;
625         unsigned int i;
626         size_t size;
627
628         /* ring already cleared, nothing to do */
629         if (!rx_q->rfd.rfbuff)
630                 return;
631
632         for (i = 0; i < rx_q->rfd.count; i++) {
633                 struct emac_buffer *rfbuf = GET_RFD_BUFFER(rx_q, i);
634
635                 if (rfbuf->dma_addr) {
636                         dma_unmap_single(dev, rfbuf->dma_addr, rfbuf->length,
637                                          DMA_FROM_DEVICE);
638                         rfbuf->dma_addr = 0;
639                 }
640                 if (rfbuf->skb) {
641                         dev_kfree_skb(rfbuf->skb);
642                         rfbuf->skb = NULL;
643                 }
644         }
645
646         size =  sizeof(struct emac_buffer) * rx_q->rfd.count;
647         memset(rx_q->rfd.rfbuff, 0, size);
648
649         /* clear the descriptor rings */
650         memset(rx_q->rrd.v_addr, 0, rx_q->rrd.size);
651         rx_q->rrd.produce_idx = 0;
652         rx_q->rrd.consume_idx = 0;
653
654         memset(rx_q->rfd.v_addr, 0, rx_q->rfd.size);
655         rx_q->rfd.produce_idx = 0;
656         rx_q->rfd.consume_idx = 0;
657 }
658
659 /* Free all buffers associated with given transmit queue */
660 static void emac_tx_q_bufs_free(struct emac_adapter *adpt)
661 {
662         struct emac_tx_queue *tx_q = &adpt->tx_q;
663
664         emac_tx_q_descs_free(adpt);
665
666         kfree(tx_q->tpd.tpbuff);
667         tx_q->tpd.tpbuff = NULL;
668         tx_q->tpd.v_addr = NULL;
669         tx_q->tpd.dma_addr = 0;
670         tx_q->tpd.size = 0;
671 }
672
673 /* Allocate TX descriptor ring for the given transmit queue */
674 static int emac_tx_q_desc_alloc(struct emac_adapter *adpt,
675                                 struct emac_tx_queue *tx_q)
676 {
677         struct emac_ring_header *ring_header = &adpt->ring_header;
678         int node = dev_to_node(adpt->netdev->dev.parent);
679         size_t size;
680
681         size = sizeof(struct emac_buffer) * tx_q->tpd.count;
682         tx_q->tpd.tpbuff = kzalloc_node(size, GFP_KERNEL, node);
683         if (!tx_q->tpd.tpbuff)
684                 return -ENOMEM;
685
686         tx_q->tpd.size = tx_q->tpd.count * (adpt->tpd_size * 4);
687         tx_q->tpd.dma_addr = ring_header->dma_addr + ring_header->used;
688         tx_q->tpd.v_addr = ring_header->v_addr + ring_header->used;
689         ring_header->used += ALIGN(tx_q->tpd.size, 8);
690         tx_q->tpd.produce_idx = 0;
691         tx_q->tpd.consume_idx = 0;
692
693         return 0;
694 }
695
696 /* Free all buffers associated with given transmit queue */
697 static void emac_rx_q_bufs_free(struct emac_adapter *adpt)
698 {
699         struct emac_rx_queue *rx_q = &adpt->rx_q;
700
701         emac_rx_q_free_descs(adpt);
702
703         kfree(rx_q->rfd.rfbuff);
704         rx_q->rfd.rfbuff   = NULL;
705
706         rx_q->rfd.v_addr   = NULL;
707         rx_q->rfd.dma_addr = 0;
708         rx_q->rfd.size     = 0;
709
710         rx_q->rrd.v_addr   = NULL;
711         rx_q->rrd.dma_addr = 0;
712         rx_q->rrd.size     = 0;
713 }
714
715 /* Allocate RX descriptor rings for the given receive queue */
716 static int emac_rx_descs_alloc(struct emac_adapter *adpt)
717 {
718         struct emac_ring_header *ring_header = &adpt->ring_header;
719         int node = dev_to_node(adpt->netdev->dev.parent);
720         struct emac_rx_queue *rx_q = &adpt->rx_q;
721         size_t size;
722
723         size = sizeof(struct emac_buffer) * rx_q->rfd.count;
724         rx_q->rfd.rfbuff = kzalloc_node(size, GFP_KERNEL, node);
725         if (!rx_q->rfd.rfbuff)
726                 return -ENOMEM;
727
728         rx_q->rrd.size = rx_q->rrd.count * (adpt->rrd_size * 4);
729         rx_q->rfd.size = rx_q->rfd.count * (adpt->rfd_size * 4);
730
731         rx_q->rrd.dma_addr = ring_header->dma_addr + ring_header->used;
732         rx_q->rrd.v_addr   = ring_header->v_addr + ring_header->used;
733         ring_header->used += ALIGN(rx_q->rrd.size, 8);
734
735         rx_q->rfd.dma_addr = ring_header->dma_addr + ring_header->used;
736         rx_q->rfd.v_addr   = ring_header->v_addr + ring_header->used;
737         ring_header->used += ALIGN(rx_q->rfd.size, 8);
738
739         rx_q->rrd.produce_idx = 0;
740         rx_q->rrd.consume_idx = 0;
741
742         rx_q->rfd.produce_idx = 0;
743         rx_q->rfd.consume_idx = 0;
744
745         return 0;
746 }
747
748 /* Allocate all TX and RX descriptor rings */
749 int emac_mac_rx_tx_rings_alloc_all(struct emac_adapter *adpt)
750 {
751         struct emac_ring_header *ring_header = &adpt->ring_header;
752         struct device *dev = adpt->netdev->dev.parent;
753         unsigned int num_tx_descs = adpt->tx_desc_cnt;
754         unsigned int num_rx_descs = adpt->rx_desc_cnt;
755         int ret;
756
757         adpt->tx_q.tpd.count = adpt->tx_desc_cnt;
758
759         adpt->rx_q.rrd.count = adpt->rx_desc_cnt;
760         adpt->rx_q.rfd.count = adpt->rx_desc_cnt;
761
762         /* Ring DMA buffer. Each ring may need up to 8 bytes for alignment,
763          * hence the additional padding bytes are allocated.
764          */
765         ring_header->size = num_tx_descs * (adpt->tpd_size * 4) +
766                             num_rx_descs * (adpt->rfd_size * 4) +
767                             num_rx_descs * (adpt->rrd_size * 4) +
768                             8 + 2 * 8; /* 8 byte per one Tx and two Rx rings */
769
770         ring_header->used = 0;
771         ring_header->v_addr = dma_alloc_coherent(dev, ring_header->size,
772                                                  &ring_header->dma_addr,
773                                                  GFP_KERNEL);
774         if (!ring_header->v_addr)
775                 return -ENOMEM;
776
777         ring_header->used = ALIGN(ring_header->dma_addr, 8) -
778                                                         ring_header->dma_addr;
779
780         ret = emac_tx_q_desc_alloc(adpt, &adpt->tx_q);
781         if (ret) {
782                 netdev_err(adpt->netdev, "error: Tx Queue alloc failed\n");
783                 goto err_alloc_tx;
784         }
785
786         ret = emac_rx_descs_alloc(adpt);
787         if (ret) {
788                 netdev_err(adpt->netdev, "error: Rx Queue alloc failed\n");
789                 goto err_alloc_rx;
790         }
791
792         return 0;
793
794 err_alloc_rx:
795         emac_tx_q_bufs_free(adpt);
796 err_alloc_tx:
797         dma_free_coherent(dev, ring_header->size,
798                           ring_header->v_addr, ring_header->dma_addr);
799
800         ring_header->v_addr   = NULL;
801         ring_header->dma_addr = 0;
802         ring_header->size     = 0;
803         ring_header->used     = 0;
804
805         return ret;
806 }
807
808 /* Free all TX and RX descriptor rings */
809 void emac_mac_rx_tx_rings_free_all(struct emac_adapter *adpt)
810 {
811         struct emac_ring_header *ring_header = &adpt->ring_header;
812         struct device *dev = adpt->netdev->dev.parent;
813
814         emac_tx_q_bufs_free(adpt);
815         emac_rx_q_bufs_free(adpt);
816
817         dma_free_coherent(dev, ring_header->size,
818                           ring_header->v_addr, ring_header->dma_addr);
819
820         ring_header->v_addr   = NULL;
821         ring_header->dma_addr = 0;
822         ring_header->size     = 0;
823         ring_header->used     = 0;
824 }
825
826 /* Initialize descriptor rings */
827 static void emac_mac_rx_tx_ring_reset_all(struct emac_adapter *adpt)
828 {
829         unsigned int i;
830
831         adpt->tx_q.tpd.produce_idx = 0;
832         adpt->tx_q.tpd.consume_idx = 0;
833         for (i = 0; i < adpt->tx_q.tpd.count; i++)
834                 adpt->tx_q.tpd.tpbuff[i].dma_addr = 0;
835
836         adpt->rx_q.rrd.produce_idx = 0;
837         adpt->rx_q.rrd.consume_idx = 0;
838         adpt->rx_q.rfd.produce_idx = 0;
839         adpt->rx_q.rfd.consume_idx = 0;
840         for (i = 0; i < adpt->rx_q.rfd.count; i++)
841                 adpt->rx_q.rfd.rfbuff[i].dma_addr = 0;
842 }
843
844 /* Produce new receive free descriptor */
845 static void emac_mac_rx_rfd_create(struct emac_adapter *adpt,
846                                    struct emac_rx_queue *rx_q,
847                                    dma_addr_t addr)
848 {
849         u32 *hw_rfd = EMAC_RFD(rx_q, adpt->rfd_size, rx_q->rfd.produce_idx);
850
851         *(hw_rfd++) = lower_32_bits(addr);
852         *hw_rfd = upper_32_bits(addr);
853
854         if (++rx_q->rfd.produce_idx == rx_q->rfd.count)
855                 rx_q->rfd.produce_idx = 0;
856 }
857
858 /* Fill up receive queue's RFD with preallocated receive buffers */
859 static void emac_mac_rx_descs_refill(struct emac_adapter *adpt,
860                                     struct emac_rx_queue *rx_q)
861 {
862         struct emac_buffer *curr_rxbuf;
863         struct emac_buffer *next_rxbuf;
864         unsigned int count = 0;
865         u32 next_produce_idx;
866
867         next_produce_idx = rx_q->rfd.produce_idx + 1;
868         if (next_produce_idx == rx_q->rfd.count)
869                 next_produce_idx = 0;
870
871         curr_rxbuf = GET_RFD_BUFFER(rx_q, rx_q->rfd.produce_idx);
872         next_rxbuf = GET_RFD_BUFFER(rx_q, next_produce_idx);
873
874         /* this always has a blank rx_buffer*/
875         while (!next_rxbuf->dma_addr) {
876                 struct sk_buff *skb;
877                 int ret;
878
879                 skb = netdev_alloc_skb_ip_align(adpt->netdev, adpt->rxbuf_size);
880                 if (!skb)
881                         break;
882
883                 curr_rxbuf->dma_addr =
884                         dma_map_single(adpt->netdev->dev.parent, skb->data,
885                                        adpt->rxbuf_size, DMA_FROM_DEVICE);
886
887                 ret = dma_mapping_error(adpt->netdev->dev.parent,
888                                         curr_rxbuf->dma_addr);
889                 if (ret) {
890                         dev_kfree_skb(skb);
891                         break;
892                 }
893                 curr_rxbuf->skb = skb;
894                 curr_rxbuf->length = adpt->rxbuf_size;
895
896                 emac_mac_rx_rfd_create(adpt, rx_q, curr_rxbuf->dma_addr);
897                 next_produce_idx = rx_q->rfd.produce_idx + 1;
898                 if (next_produce_idx == rx_q->rfd.count)
899                         next_produce_idx = 0;
900
901                 curr_rxbuf = GET_RFD_BUFFER(rx_q, rx_q->rfd.produce_idx);
902                 next_rxbuf = GET_RFD_BUFFER(rx_q, next_produce_idx);
903                 count++;
904         }
905
906         if (count) {
907                 u32 prod_idx = (rx_q->rfd.produce_idx << rx_q->produce_shift) &
908                                 rx_q->produce_mask;
909                 emac_reg_update32(adpt->base + rx_q->produce_reg,
910                                   rx_q->produce_mask, prod_idx);
911         }
912 }
913
914 static void emac_adjust_link(struct net_device *netdev)
915 {
916         struct emac_adapter *adpt = netdev_priv(netdev);
917         struct phy_device *phydev = netdev->phydev;
918
919         if (phydev->link) {
920                 emac_mac_start(adpt);
921                 emac_sgmii_link_change(adpt, true);
922         } else {
923                 emac_sgmii_link_change(adpt, false);
924                 emac_mac_stop(adpt);
925         }
926
927         phy_print_status(phydev);
928 }
929
930 /* Bringup the interface/HW */
931 int emac_mac_up(struct emac_adapter *adpt)
932 {
933         struct net_device *netdev = adpt->netdev;
934         int ret;
935
936         emac_mac_rx_tx_ring_reset_all(adpt);
937         emac_mac_config(adpt);
938         emac_mac_rx_descs_refill(adpt, &adpt->rx_q);
939
940         adpt->phydev->irq = PHY_POLL;
941         ret = phy_connect_direct(netdev, adpt->phydev, emac_adjust_link,
942                                  PHY_INTERFACE_MODE_SGMII);
943         if (ret) {
944                 netdev_err(adpt->netdev, "could not connect phy\n");
945                 return ret;
946         }
947
948         phy_attached_print(adpt->phydev, NULL);
949
950         /* enable mac irq */
951         writel((u32)~DIS_INT, adpt->base + EMAC_INT_STATUS);
952         writel(adpt->irq.mask, adpt->base + EMAC_INT_MASK);
953
954         phy_start(adpt->phydev);
955
956         napi_enable(&adpt->rx_q.napi);
957         netif_start_queue(netdev);
958
959         return 0;
960 }
961
962 /* Bring down the interface/HW */
963 void emac_mac_down(struct emac_adapter *adpt)
964 {
965         struct net_device *netdev = adpt->netdev;
966
967         netif_stop_queue(netdev);
968         napi_disable(&adpt->rx_q.napi);
969
970         phy_stop(adpt->phydev);
971
972         /* Interrupts must be disabled before the PHY is disconnected, to
973          * avoid a race condition where adjust_link is null when we get
974          * an interrupt.
975          */
976         writel(DIS_INT, adpt->base + EMAC_INT_STATUS);
977         writel(0, adpt->base + EMAC_INT_MASK);
978         synchronize_irq(adpt->irq.irq);
979
980         phy_disconnect(adpt->phydev);
981
982         emac_mac_reset(adpt);
983
984         emac_tx_q_descs_free(adpt);
985         netdev_reset_queue(adpt->netdev);
986         emac_rx_q_free_descs(adpt);
987 }
988
989 /* Consume next received packet descriptor */
990 static bool emac_rx_process_rrd(struct emac_adapter *adpt,
991                                 struct emac_rx_queue *rx_q,
992                                 struct emac_rrd *rrd)
993 {
994         u32 *hw_rrd = EMAC_RRD(rx_q, adpt->rrd_size, rx_q->rrd.consume_idx);
995
996         rrd->word[3] = *(hw_rrd + 3);
997
998         if (!RRD_UPDT(rrd))
999                 return false;
1000
1001         rrd->word[4] = 0;
1002         rrd->word[5] = 0;
1003
1004         rrd->word[0] = *(hw_rrd++);
1005         rrd->word[1] = *(hw_rrd++);
1006         rrd->word[2] = *(hw_rrd++);
1007
1008         if (unlikely(RRD_NOR(rrd) != 1)) {
1009                 netdev_err(adpt->netdev,
1010                            "error: multi-RFD not support yet! nor:%lu\n",
1011                            RRD_NOR(rrd));
1012         }
1013
1014         /* mark rrd as processed */
1015         RRD_UPDT_SET(rrd, 0);
1016         *hw_rrd = rrd->word[3];
1017
1018         if (++rx_q->rrd.consume_idx == rx_q->rrd.count)
1019                 rx_q->rrd.consume_idx = 0;
1020
1021         return true;
1022 }
1023
1024 /* Produce new transmit descriptor */
1025 static void emac_tx_tpd_create(struct emac_adapter *adpt,
1026                                struct emac_tx_queue *tx_q, struct emac_tpd *tpd)
1027 {
1028         u32 *hw_tpd;
1029
1030         tx_q->tpd.last_produce_idx = tx_q->tpd.produce_idx;
1031         hw_tpd = EMAC_TPD(tx_q, adpt->tpd_size, tx_q->tpd.produce_idx);
1032
1033         if (++tx_q->tpd.produce_idx == tx_q->tpd.count)
1034                 tx_q->tpd.produce_idx = 0;
1035
1036         *(hw_tpd++) = tpd->word[0];
1037         *(hw_tpd++) = tpd->word[1];
1038         *(hw_tpd++) = tpd->word[2];
1039         *hw_tpd = tpd->word[3];
1040 }
1041
1042 /* Mark the last transmit descriptor as such (for the transmit packet) */
1043 static void emac_tx_tpd_mark_last(struct emac_adapter *adpt,
1044                                   struct emac_tx_queue *tx_q)
1045 {
1046         u32 *hw_tpd =
1047                 EMAC_TPD(tx_q, adpt->tpd_size, tx_q->tpd.last_produce_idx);
1048         u32 tmp_tpd;
1049
1050         tmp_tpd = *(hw_tpd + 1);
1051         tmp_tpd |= EMAC_TPD_LAST_FRAGMENT;
1052         *(hw_tpd + 1) = tmp_tpd;
1053 }
1054
1055 static void emac_rx_rfd_clean(struct emac_rx_queue *rx_q, struct emac_rrd *rrd)
1056 {
1057         struct emac_buffer *rfbuf = rx_q->rfd.rfbuff;
1058         u32 consume_idx = RRD_SI(rrd);
1059         unsigned int i;
1060
1061         for (i = 0; i < RRD_NOR(rrd); i++) {
1062                 rfbuf[consume_idx].skb = NULL;
1063                 if (++consume_idx == rx_q->rfd.count)
1064                         consume_idx = 0;
1065         }
1066
1067         rx_q->rfd.consume_idx = consume_idx;
1068         rx_q->rfd.process_idx = consume_idx;
1069 }
1070
1071 /* Push the received skb to upper layers */
1072 static void emac_receive_skb(struct emac_rx_queue *rx_q,
1073                              struct sk_buff *skb,
1074                              u16 vlan_tag, bool vlan_flag)
1075 {
1076         if (vlan_flag) {
1077                 u16 vlan;
1078
1079                 EMAC_TAG_TO_VLAN(vlan_tag, vlan);
1080                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan);
1081         }
1082
1083         napi_gro_receive(&rx_q->napi, skb);
1084 }
1085
1086 /* Process receive event */
1087 void emac_mac_rx_process(struct emac_adapter *adpt, struct emac_rx_queue *rx_q,
1088                          int *num_pkts, int max_pkts)
1089 {
1090         u32 proc_idx, hw_consume_idx, num_consume_pkts;
1091         struct net_device *netdev  = adpt->netdev;
1092         struct emac_buffer *rfbuf;
1093         unsigned int count = 0;
1094         struct emac_rrd rrd;
1095         struct sk_buff *skb;
1096         u32 reg;
1097
1098         reg = readl_relaxed(adpt->base + rx_q->consume_reg);
1099
1100         hw_consume_idx = (reg & rx_q->consume_mask) >> rx_q->consume_shift;
1101         num_consume_pkts = (hw_consume_idx >= rx_q->rrd.consume_idx) ?
1102                 (hw_consume_idx -  rx_q->rrd.consume_idx) :
1103                 (hw_consume_idx + rx_q->rrd.count - rx_q->rrd.consume_idx);
1104
1105         do {
1106                 if (!num_consume_pkts)
1107                         break;
1108
1109                 if (!emac_rx_process_rrd(adpt, rx_q, &rrd))
1110                         break;
1111
1112                 if (likely(RRD_NOR(&rrd) == 1)) {
1113                         /* good receive */
1114                         rfbuf = GET_RFD_BUFFER(rx_q, RRD_SI(&rrd));
1115                         dma_unmap_single(adpt->netdev->dev.parent,
1116                                          rfbuf->dma_addr, rfbuf->length,
1117                                          DMA_FROM_DEVICE);
1118                         rfbuf->dma_addr = 0;
1119                         skb = rfbuf->skb;
1120                 } else {
1121                         netdev_err(adpt->netdev,
1122                                    "error: multi-RFD not support yet!\n");
1123                         break;
1124                 }
1125                 emac_rx_rfd_clean(rx_q, &rrd);
1126                 num_consume_pkts--;
1127                 count++;
1128
1129                 /* Due to a HW issue in L4 check sum detection (UDP/TCP frags
1130                  * with DF set are marked as error), drop packets based on the
1131                  * error mask rather than the summary bit (ignoring L4F errors)
1132                  */
1133                 if (rrd.word[EMAC_RRD_STATS_DW_IDX] & EMAC_RRD_ERROR) {
1134                         netif_dbg(adpt, rx_status, adpt->netdev,
1135                                   "Drop error packet[RRD: 0x%x:0x%x:0x%x:0x%x]\n",
1136                                   rrd.word[0], rrd.word[1],
1137                                   rrd.word[2], rrd.word[3]);
1138
1139                         dev_kfree_skb(skb);
1140                         continue;
1141                 }
1142
1143                 skb_put(skb, RRD_PKT_SIZE(&rrd) - ETH_FCS_LEN);
1144                 skb->dev = netdev;
1145                 skb->protocol = eth_type_trans(skb, skb->dev);
1146                 if (netdev->features & NETIF_F_RXCSUM)
1147                         skb->ip_summed = RRD_L4F(&rrd) ?
1148                                           CHECKSUM_NONE : CHECKSUM_UNNECESSARY;
1149                 else
1150                         skb_checksum_none_assert(skb);
1151
1152                 emac_receive_skb(rx_q, skb, (u16)RRD_CVALN_TAG(&rrd),
1153                                  (bool)RRD_CVTAG(&rrd));
1154
1155                 (*num_pkts)++;
1156         } while (*num_pkts < max_pkts);
1157
1158         if (count) {
1159                 proc_idx = (rx_q->rfd.process_idx << rx_q->process_shft) &
1160                                 rx_q->process_mask;
1161                 emac_reg_update32(adpt->base + rx_q->process_reg,
1162                                   rx_q->process_mask, proc_idx);
1163                 emac_mac_rx_descs_refill(adpt, rx_q);
1164         }
1165 }
1166
1167 /* get the number of free transmit descriptors */
1168 static unsigned int emac_tpd_num_free_descs(struct emac_tx_queue *tx_q)
1169 {
1170         u32 produce_idx = tx_q->tpd.produce_idx;
1171         u32 consume_idx = tx_q->tpd.consume_idx;
1172
1173         return (consume_idx > produce_idx) ?
1174                 (consume_idx - produce_idx - 1) :
1175                 (tx_q->tpd.count + consume_idx - produce_idx - 1);
1176 }
1177
1178 /* Process transmit event */
1179 void emac_mac_tx_process(struct emac_adapter *adpt, struct emac_tx_queue *tx_q)
1180 {
1181         u32 reg = readl_relaxed(adpt->base + tx_q->consume_reg);
1182         u32 hw_consume_idx, pkts_compl = 0, bytes_compl = 0;
1183         struct emac_buffer *tpbuf;
1184
1185         hw_consume_idx = (reg & tx_q->consume_mask) >> tx_q->consume_shift;
1186
1187         while (tx_q->tpd.consume_idx != hw_consume_idx) {
1188                 tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.consume_idx);
1189                 if (tpbuf->dma_addr) {
1190                         dma_unmap_page(adpt->netdev->dev.parent,
1191                                        tpbuf->dma_addr, tpbuf->length,
1192                                        DMA_TO_DEVICE);
1193                         tpbuf->dma_addr = 0;
1194                 }
1195
1196                 if (tpbuf->skb) {
1197                         pkts_compl++;
1198                         bytes_compl += tpbuf->skb->len;
1199                         dev_consume_skb_irq(tpbuf->skb);
1200                         tpbuf->skb = NULL;
1201                 }
1202
1203                 if (++tx_q->tpd.consume_idx == tx_q->tpd.count)
1204                         tx_q->tpd.consume_idx = 0;
1205         }
1206
1207         netdev_completed_queue(adpt->netdev, pkts_compl, bytes_compl);
1208
1209         if (netif_queue_stopped(adpt->netdev))
1210                 if (emac_tpd_num_free_descs(tx_q) > (MAX_SKB_FRAGS + 1))
1211                         netif_wake_queue(adpt->netdev);
1212 }
1213
1214 /* Initialize all queue data structures */
1215 void emac_mac_rx_tx_ring_init_all(struct platform_device *pdev,
1216                                   struct emac_adapter *adpt)
1217 {
1218         adpt->rx_q.netdev = adpt->netdev;
1219
1220         adpt->rx_q.produce_reg  = EMAC_MAILBOX_0;
1221         adpt->rx_q.produce_mask = RFD0_PROD_IDX_BMSK;
1222         adpt->rx_q.produce_shift = RFD0_PROD_IDX_SHFT;
1223
1224         adpt->rx_q.process_reg  = EMAC_MAILBOX_0;
1225         adpt->rx_q.process_mask = RFD0_PROC_IDX_BMSK;
1226         adpt->rx_q.process_shft = RFD0_PROC_IDX_SHFT;
1227
1228         adpt->rx_q.consume_reg  = EMAC_MAILBOX_3;
1229         adpt->rx_q.consume_mask = RFD0_CONS_IDX_BMSK;
1230         adpt->rx_q.consume_shift = RFD0_CONS_IDX_SHFT;
1231
1232         adpt->rx_q.irq          = &adpt->irq;
1233         adpt->rx_q.intr         = adpt->irq.mask & ISR_RX_PKT;
1234
1235         adpt->tx_q.produce_reg  = EMAC_MAILBOX_15;
1236         adpt->tx_q.produce_mask = NTPD_PROD_IDX_BMSK;
1237         adpt->tx_q.produce_shift = NTPD_PROD_IDX_SHFT;
1238
1239         adpt->tx_q.consume_reg  = EMAC_MAILBOX_2;
1240         adpt->tx_q.consume_mask = NTPD_CONS_IDX_BMSK;
1241         adpt->tx_q.consume_shift = NTPD_CONS_IDX_SHFT;
1242 }
1243
1244 /* Fill up transmit descriptors with TSO and Checksum offload information */
1245 static int emac_tso_csum(struct emac_adapter *adpt,
1246                          struct emac_tx_queue *tx_q,
1247                          struct sk_buff *skb,
1248                          struct emac_tpd *tpd)
1249 {
1250         unsigned int hdr_len;
1251         int ret;
1252
1253         if (skb_is_gso(skb)) {
1254                 if (skb_header_cloned(skb)) {
1255                         ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1256                         if (unlikely(ret))
1257                                 return ret;
1258                 }
1259
1260                 if (skb->protocol == htons(ETH_P_IP)) {
1261                         u32 pkt_len = ((unsigned char *)ip_hdr(skb) - skb->data)
1262                                        + ntohs(ip_hdr(skb)->tot_len);
1263                         if (skb->len > pkt_len)
1264                                 pskb_trim(skb, pkt_len);
1265                 }
1266
1267                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1268                 if (unlikely(skb->len == hdr_len)) {
1269                         /* we only need to do csum */
1270                         netif_warn(adpt, tx_err, adpt->netdev,
1271                                    "tso not needed for packet with 0 data\n");
1272                         goto do_csum;
1273                 }
1274
1275                 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
1276                         ip_hdr(skb)->check = 0;
1277                         tcp_hdr(skb)->check =
1278                                 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
1279                                                    ip_hdr(skb)->daddr,
1280                                                    0, IPPROTO_TCP, 0);
1281                         TPD_IPV4_SET(tpd, 1);
1282                 }
1283
1284                 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
1285                         /* ipv6 tso need an extra tpd */
1286                         struct emac_tpd extra_tpd;
1287
1288                         memset(tpd, 0, sizeof(*tpd));
1289                         memset(&extra_tpd, 0, sizeof(extra_tpd));
1290
1291                         tcp_v6_gso_csum_prep(skb);
1292
1293                         TPD_PKT_LEN_SET(&extra_tpd, skb->len);
1294                         TPD_LSO_SET(&extra_tpd, 1);
1295                         TPD_LSOV_SET(&extra_tpd, 1);
1296                         emac_tx_tpd_create(adpt, tx_q, &extra_tpd);
1297                         TPD_LSOV_SET(tpd, 1);
1298                 }
1299
1300                 TPD_LSO_SET(tpd, 1);
1301                 TPD_TCPHDR_OFFSET_SET(tpd, skb_transport_offset(skb));
1302                 TPD_MSS_SET(tpd, skb_shinfo(skb)->gso_size);
1303                 return 0;
1304         }
1305
1306 do_csum:
1307         if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
1308                 unsigned int css, cso;
1309
1310                 cso = skb_transport_offset(skb);
1311                 if (unlikely(cso & 0x1)) {
1312                         netdev_err(adpt->netdev,
1313                                    "error: payload offset should be even\n");
1314                         return -EINVAL;
1315                 }
1316                 css = cso + skb->csum_offset;
1317
1318                 TPD_PAYLOAD_OFFSET_SET(tpd, cso >> 1);
1319                 TPD_CXSUM_OFFSET_SET(tpd, css >> 1);
1320                 TPD_CSX_SET(tpd, 1);
1321         }
1322
1323         return 0;
1324 }
1325
1326 /* Fill up transmit descriptors */
1327 static void emac_tx_fill_tpd(struct emac_adapter *adpt,
1328                              struct emac_tx_queue *tx_q, struct sk_buff *skb,
1329                              struct emac_tpd *tpd)
1330 {
1331         unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
1332         unsigned int first = tx_q->tpd.produce_idx;
1333         unsigned int len = skb_headlen(skb);
1334         struct emac_buffer *tpbuf = NULL;
1335         unsigned int mapped_len = 0;
1336         unsigned int i;
1337         int count = 0;
1338         int ret;
1339
1340         /* if Large Segment Offload is (in TCP Segmentation Offload struct) */
1341         if (TPD_LSO(tpd)) {
1342                 mapped_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1343
1344                 tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
1345                 tpbuf->length = mapped_len;
1346                 tpbuf->dma_addr = dma_map_page(adpt->netdev->dev.parent,
1347                                                virt_to_page(skb->data),
1348                                                offset_in_page(skb->data),
1349                                                tpbuf->length,
1350                                                DMA_TO_DEVICE);
1351                 ret = dma_mapping_error(adpt->netdev->dev.parent,
1352                                         tpbuf->dma_addr);
1353                 if (ret)
1354                         goto error;
1355
1356                 TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
1357                 TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
1358                 TPD_BUF_LEN_SET(tpd, tpbuf->length);
1359                 emac_tx_tpd_create(adpt, tx_q, tpd);
1360                 count++;
1361         }
1362
1363         if (mapped_len < len) {
1364                 tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
1365                 tpbuf->length = len - mapped_len;
1366                 tpbuf->dma_addr = dma_map_page(adpt->netdev->dev.parent,
1367                                                virt_to_page(skb->data +
1368                                                             mapped_len),
1369                                                offset_in_page(skb->data +
1370                                                               mapped_len),
1371                                                tpbuf->length, DMA_TO_DEVICE);
1372                 ret = dma_mapping_error(adpt->netdev->dev.parent,
1373                                         tpbuf->dma_addr);
1374                 if (ret)
1375                         goto error;
1376
1377                 TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
1378                 TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
1379                 TPD_BUF_LEN_SET(tpd, tpbuf->length);
1380                 emac_tx_tpd_create(adpt, tx_q, tpd);
1381                 count++;
1382         }
1383
1384         for (i = 0; i < nr_frags; i++) {
1385                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1386
1387                 tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
1388                 tpbuf->length = skb_frag_size(frag);
1389                 tpbuf->dma_addr = skb_frag_dma_map(adpt->netdev->dev.parent,
1390                                                    frag, 0, tpbuf->length,
1391                                                    DMA_TO_DEVICE);
1392                 ret = dma_mapping_error(adpt->netdev->dev.parent,
1393                                         tpbuf->dma_addr);
1394                 if (ret)
1395                         goto error;
1396
1397                 TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
1398                 TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
1399                 TPD_BUF_LEN_SET(tpd, tpbuf->length);
1400                 emac_tx_tpd_create(adpt, tx_q, tpd);
1401                 count++;
1402         }
1403
1404         /* The last tpd */
1405         wmb();
1406         emac_tx_tpd_mark_last(adpt, tx_q);
1407
1408         /* The last buffer info contain the skb address,
1409          * so it will be freed after unmap
1410          */
1411         tpbuf->skb = skb;
1412
1413         return;
1414
1415 error:
1416         /* One of the memory mappings failed, so undo everything */
1417         tx_q->tpd.produce_idx = first;
1418
1419         while (count--) {
1420                 tpbuf = GET_TPD_BUFFER(tx_q, first);
1421                 dma_unmap_page(adpt->netdev->dev.parent, tpbuf->dma_addr,
1422                                tpbuf->length, DMA_TO_DEVICE);
1423                 tpbuf->dma_addr = 0;
1424                 tpbuf->length = 0;
1425
1426                 if (++first == tx_q->tpd.count)
1427                         first = 0;
1428         }
1429
1430         dev_kfree_skb(skb);
1431 }
1432
1433 /* Transmit the packet using specified transmit queue */
1434 netdev_tx_t emac_mac_tx_buf_send(struct emac_adapter *adpt,
1435                                  struct emac_tx_queue *tx_q,
1436                                  struct sk_buff *skb)
1437 {
1438         struct emac_tpd tpd;
1439         u32 prod_idx;
1440         int len;
1441
1442         memset(&tpd, 0, sizeof(tpd));
1443
1444         if (emac_tso_csum(adpt, tx_q, skb, &tpd) != 0) {
1445                 dev_kfree_skb_any(skb);
1446                 return NETDEV_TX_OK;
1447         }
1448
1449         if (skb_vlan_tag_present(skb)) {
1450                 u16 tag;
1451
1452                 EMAC_VLAN_TO_TAG(skb_vlan_tag_get(skb), tag);
1453                 TPD_CVLAN_TAG_SET(&tpd, tag);
1454                 TPD_INSTC_SET(&tpd, 1);
1455         }
1456
1457         if (skb_network_offset(skb) != ETH_HLEN)
1458                 TPD_TYP_SET(&tpd, 1);
1459
1460         len = skb->len;
1461         emac_tx_fill_tpd(adpt, tx_q, skb, &tpd);
1462
1463         netdev_sent_queue(adpt->netdev, len);
1464
1465         /* Make sure the are enough free descriptors to hold one
1466          * maximum-sized SKB.  We need one desc for each fragment,
1467          * one for the checksum (emac_tso_csum), one for TSO, and
1468          * and one for the SKB header.
1469          */
1470         if (emac_tpd_num_free_descs(tx_q) < (MAX_SKB_FRAGS + 3))
1471                 netif_stop_queue(adpt->netdev);
1472
1473         /* update produce idx */
1474         prod_idx = (tx_q->tpd.produce_idx << tx_q->produce_shift) &
1475                     tx_q->produce_mask;
1476         emac_reg_update32(adpt->base + tx_q->produce_reg,
1477                           tx_q->produce_mask, prod_idx);
1478
1479         return NETDEV_TX_OK;
1480 }