3aabfc0adefe39863a3e7db08bf8a375a2bdd647
[linux-2.6-block.git] / drivers / net / ethernet / qlogic / qede / qede_main.c
1 /* QLogic qede NIC Driver
2 * Copyright (c) 2015 QLogic Corporation
3 *
4 * This software is available under the terms of the GNU General Public License
5 * (GPL) Version 2, available from the file COPYING in the main directory of
6 * this source tree.
7 */
8
9 #include <linux/module.h>
10 #include <linux/pci.h>
11 #include <linux/version.h>
12 #include <linux/device.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/skbuff.h>
16 #include <linux/errno.h>
17 #include <linux/list.h>
18 #include <linux/string.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/interrupt.h>
21 #include <asm/byteorder.h>
22 #include <asm/param.h>
23 #include <linux/io.h>
24 #include <linux/netdev_features.h>
25 #include <linux/udp.h>
26 #include <linux/tcp.h>
27 #ifdef CONFIG_QEDE_VXLAN
28 #include <net/vxlan.h>
29 #endif
30 #ifdef CONFIG_QEDE_GENEVE
31 #include <net/geneve.h>
32 #endif
33 #include <linux/ip.h>
34 #include <net/ipv6.h>
35 #include <net/tcp.h>
36 #include <linux/if_ether.h>
37 #include <linux/if_vlan.h>
38 #include <linux/pkt_sched.h>
39 #include <linux/ethtool.h>
40 #include <linux/in.h>
41 #include <linux/random.h>
42 #include <net/ip6_checksum.h>
43 #include <linux/bitops.h>
44
45 #include "qede.h"
46
47 static char version[] =
48         "QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
49
50 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
51 MODULE_LICENSE("GPL");
52 MODULE_VERSION(DRV_MODULE_VERSION);
53
54 static uint debug;
55 module_param(debug, uint, 0);
56 MODULE_PARM_DESC(debug, " Default debug msglevel");
57
58 static const struct qed_eth_ops *qed_ops;
59
60 #define CHIP_NUM_57980S_40              0x1634
61 #define CHIP_NUM_57980S_10              0x1666
62 #define CHIP_NUM_57980S_MF              0x1636
63 #define CHIP_NUM_57980S_100             0x1644
64 #define CHIP_NUM_57980S_50              0x1654
65 #define CHIP_NUM_57980S_25              0x1656
66 #define CHIP_NUM_57980S_IOV             0x1664
67
68 #ifndef PCI_DEVICE_ID_NX2_57980E
69 #define PCI_DEVICE_ID_57980S_40         CHIP_NUM_57980S_40
70 #define PCI_DEVICE_ID_57980S_10         CHIP_NUM_57980S_10
71 #define PCI_DEVICE_ID_57980S_MF         CHIP_NUM_57980S_MF
72 #define PCI_DEVICE_ID_57980S_100        CHIP_NUM_57980S_100
73 #define PCI_DEVICE_ID_57980S_50         CHIP_NUM_57980S_50
74 #define PCI_DEVICE_ID_57980S_25         CHIP_NUM_57980S_25
75 #define PCI_DEVICE_ID_57980S_IOV        CHIP_NUM_57980S_IOV
76 #endif
77
78 enum qede_pci_private {
79         QEDE_PRIVATE_PF,
80         QEDE_PRIVATE_VF
81 };
82
83 static const struct pci_device_id qede_pci_tbl[] = {
84         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
85         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
86         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
87         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
88         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
89         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
90         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
91         { 0 }
92 };
93
94 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
95
96 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
97
98 #define TX_TIMEOUT              (5 * HZ)
99
100 static void qede_remove(struct pci_dev *pdev);
101 static int qede_alloc_rx_buffer(struct qede_dev *edev,
102                                 struct qede_rx_queue *rxq);
103 static void qede_link_update(void *dev, struct qed_link_output *link);
104
105 #ifdef CONFIG_QED_SRIOV
106 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos)
107 {
108         struct qede_dev *edev = netdev_priv(ndev);
109
110         if (vlan > 4095) {
111                 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
112                 return -EINVAL;
113         }
114
115         DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
116                    vlan, vf);
117
118         return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
119 }
120
121 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
122 {
123         struct qede_dev *edev = netdev_priv(ndev);
124
125         DP_VERBOSE(edev, QED_MSG_IOV,
126                    "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n",
127                    mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx);
128
129         if (!is_valid_ether_addr(mac)) {
130                 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
131                 return -EINVAL;
132         }
133
134         return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
135 }
136
137 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
138 {
139         struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
140         struct qed_dev_info *qed_info = &edev->dev_info.common;
141         int rc;
142
143         DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
144
145         rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
146
147         /* Enable/Disable Tx switching for PF */
148         if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
149             qed_info->mf_mode != QED_MF_NPAR && qed_info->tx_switching) {
150                 struct qed_update_vport_params params;
151
152                 memset(&params, 0, sizeof(params));
153                 params.vport_id = 0;
154                 params.update_tx_switching_flg = 1;
155                 params.tx_switching_flg = num_vfs_param ? 1 : 0;
156                 edev->ops->vport_update(edev->cdev, &params);
157         }
158
159         return rc;
160 }
161 #endif
162
163 static struct pci_driver qede_pci_driver = {
164         .name = "qede",
165         .id_table = qede_pci_tbl,
166         .probe = qede_probe,
167         .remove = qede_remove,
168 #ifdef CONFIG_QED_SRIOV
169         .sriov_configure = qede_sriov_configure,
170 #endif
171 };
172
173 static void qede_force_mac(void *dev, u8 *mac)
174 {
175         struct qede_dev *edev = dev;
176
177         ether_addr_copy(edev->ndev->dev_addr, mac);
178         ether_addr_copy(edev->primary_mac, mac);
179 }
180
181 static struct qed_eth_cb_ops qede_ll_ops = {
182         {
183                 .link_update = qede_link_update,
184         },
185         .force_mac = qede_force_mac,
186 };
187
188 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
189                              void *ptr)
190 {
191         struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
192         struct ethtool_drvinfo drvinfo;
193         struct qede_dev *edev;
194
195         /* Currently only support name change */
196         if (event != NETDEV_CHANGENAME)
197                 goto done;
198
199         /* Check whether this is a qede device */
200         if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
201                 goto done;
202
203         memset(&drvinfo, 0, sizeof(drvinfo));
204         ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
205         if (strcmp(drvinfo.driver, "qede"))
206                 goto done;
207         edev = netdev_priv(ndev);
208
209         /* Notify qed of the name change */
210         if (!edev->ops || !edev->ops->common)
211                 goto done;
212         edev->ops->common->set_id(edev->cdev, edev->ndev->name,
213                                   "qede");
214
215 done:
216         return NOTIFY_DONE;
217 }
218
219 static struct notifier_block qede_netdev_notifier = {
220         .notifier_call = qede_netdev_event,
221 };
222
223 static
224 int __init qede_init(void)
225 {
226         int ret;
227
228         pr_notice("qede_init: %s\n", version);
229
230         qed_ops = qed_get_eth_ops();
231         if (!qed_ops) {
232                 pr_notice("Failed to get qed ethtool operations\n");
233                 return -EINVAL;
234         }
235
236         /* Must register notifier before pci ops, since we might miss
237          * interface rename after pci probe and netdev registeration.
238          */
239         ret = register_netdevice_notifier(&qede_netdev_notifier);
240         if (ret) {
241                 pr_notice("Failed to register netdevice_notifier\n");
242                 qed_put_eth_ops();
243                 return -EINVAL;
244         }
245
246         ret = pci_register_driver(&qede_pci_driver);
247         if (ret) {
248                 pr_notice("Failed to register driver\n");
249                 unregister_netdevice_notifier(&qede_netdev_notifier);
250                 qed_put_eth_ops();
251                 return -EINVAL;
252         }
253
254         return 0;
255 }
256
257 static void __exit qede_cleanup(void)
258 {
259         pr_notice("qede_cleanup called\n");
260
261         unregister_netdevice_notifier(&qede_netdev_notifier);
262         pci_unregister_driver(&qede_pci_driver);
263         qed_put_eth_ops();
264 }
265
266 module_init(qede_init);
267 module_exit(qede_cleanup);
268
269 /* -------------------------------------------------------------------------
270  * START OF FAST-PATH
271  * -------------------------------------------------------------------------
272  */
273
274 /* Unmap the data and free skb */
275 static int qede_free_tx_pkt(struct qede_dev *edev,
276                             struct qede_tx_queue *txq,
277                             int *len)
278 {
279         u16 idx = txq->sw_tx_cons & NUM_TX_BDS_MAX;
280         struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
281         struct eth_tx_1st_bd *first_bd;
282         struct eth_tx_bd *tx_data_bd;
283         int bds_consumed = 0;
284         int nbds;
285         bool data_split = txq->sw_tx_ring[idx].flags & QEDE_TSO_SPLIT_BD;
286         int i, split_bd_len = 0;
287
288         if (unlikely(!skb)) {
289                 DP_ERR(edev,
290                        "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n",
291                        idx, txq->sw_tx_cons, txq->sw_tx_prod);
292                 return -1;
293         }
294
295         *len = skb->len;
296
297         first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
298
299         bds_consumed++;
300
301         nbds = first_bd->data.nbds;
302
303         if (data_split) {
304                 struct eth_tx_bd *split = (struct eth_tx_bd *)
305                         qed_chain_consume(&txq->tx_pbl);
306                 split_bd_len = BD_UNMAP_LEN(split);
307                 bds_consumed++;
308         }
309         dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
310                        BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
311
312         /* Unmap the data of the skb frags */
313         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) {
314                 tx_data_bd = (struct eth_tx_bd *)
315                         qed_chain_consume(&txq->tx_pbl);
316                 dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
317                                BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
318         }
319
320         while (bds_consumed++ < nbds)
321                 qed_chain_consume(&txq->tx_pbl);
322
323         /* Free skb */
324         dev_kfree_skb_any(skb);
325         txq->sw_tx_ring[idx].skb = NULL;
326         txq->sw_tx_ring[idx].flags = 0;
327
328         return 0;
329 }
330
331 /* Unmap the data and free skb when mapping failed during start_xmit */
332 static void qede_free_failed_tx_pkt(struct qede_dev *edev,
333                                     struct qede_tx_queue *txq,
334                                     struct eth_tx_1st_bd *first_bd,
335                                     int nbd,
336                                     bool data_split)
337 {
338         u16 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
339         struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
340         struct eth_tx_bd *tx_data_bd;
341         int i, split_bd_len = 0;
342
343         /* Return prod to its position before this skb was handled */
344         qed_chain_set_prod(&txq->tx_pbl,
345                            le16_to_cpu(txq->tx_db.data.bd_prod),
346                            first_bd);
347
348         first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
349
350         if (data_split) {
351                 struct eth_tx_bd *split = (struct eth_tx_bd *)
352                                           qed_chain_produce(&txq->tx_pbl);
353                 split_bd_len = BD_UNMAP_LEN(split);
354                 nbd--;
355         }
356
357         dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
358                        BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
359
360         /* Unmap the data of the skb frags */
361         for (i = 0; i < nbd; i++) {
362                 tx_data_bd = (struct eth_tx_bd *)
363                         qed_chain_produce(&txq->tx_pbl);
364                 if (tx_data_bd->nbytes)
365                         dma_unmap_page(&edev->pdev->dev,
366                                        BD_UNMAP_ADDR(tx_data_bd),
367                                        BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
368         }
369
370         /* Return again prod to its position before this skb was handled */
371         qed_chain_set_prod(&txq->tx_pbl,
372                            le16_to_cpu(txq->tx_db.data.bd_prod),
373                            first_bd);
374
375         /* Free skb */
376         dev_kfree_skb_any(skb);
377         txq->sw_tx_ring[idx].skb = NULL;
378         txq->sw_tx_ring[idx].flags = 0;
379 }
380
381 static u32 qede_xmit_type(struct qede_dev *edev,
382                           struct sk_buff *skb,
383                           int *ipv6_ext)
384 {
385         u32 rc = XMIT_L4_CSUM;
386         __be16 l3_proto;
387
388         if (skb->ip_summed != CHECKSUM_PARTIAL)
389                 return XMIT_PLAIN;
390
391         l3_proto = vlan_get_protocol(skb);
392         if (l3_proto == htons(ETH_P_IPV6) &&
393             (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
394                 *ipv6_ext = 1;
395
396         if (skb->encapsulation)
397                 rc |= XMIT_ENC;
398
399         if (skb_is_gso(skb))
400                 rc |= XMIT_LSO;
401
402         return rc;
403 }
404
405 static void qede_set_params_for_ipv6_ext(struct sk_buff *skb,
406                                          struct eth_tx_2nd_bd *second_bd,
407                                          struct eth_tx_3rd_bd *third_bd)
408 {
409         u8 l4_proto;
410         u16 bd2_bits1 = 0, bd2_bits2 = 0;
411
412         bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT);
413
414         bd2_bits2 |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) &
415                      ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
416                     << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
417
418         bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
419                       ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT);
420
421         if (vlan_get_protocol(skb) == htons(ETH_P_IPV6))
422                 l4_proto = ipv6_hdr(skb)->nexthdr;
423         else
424                 l4_proto = ip_hdr(skb)->protocol;
425
426         if (l4_proto == IPPROTO_UDP)
427                 bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
428
429         if (third_bd)
430                 third_bd->data.bitfields |=
431                         cpu_to_le16(((tcp_hdrlen(skb) / 4) &
432                                 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) <<
433                                 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT);
434
435         second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1);
436         second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2);
437 }
438
439 static int map_frag_to_bd(struct qede_dev *edev,
440                           skb_frag_t *frag,
441                           struct eth_tx_bd *bd)
442 {
443         dma_addr_t mapping;
444
445         /* Map skb non-linear frag data for DMA */
446         mapping = skb_frag_dma_map(&edev->pdev->dev, frag, 0,
447                                    skb_frag_size(frag),
448                                    DMA_TO_DEVICE);
449         if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
450                 DP_NOTICE(edev, "Unable to map frag - dropping packet\n");
451                 return -ENOMEM;
452         }
453
454         /* Setup the data pointer of the frag data */
455         BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag));
456
457         return 0;
458 }
459
460 static u16 qede_get_skb_hlen(struct sk_buff *skb, bool is_encap_pkt)
461 {
462         if (is_encap_pkt)
463                 return (skb_inner_transport_header(skb) +
464                         inner_tcp_hdrlen(skb) - skb->data);
465         else
466                 return (skb_transport_header(skb) +
467                         tcp_hdrlen(skb) - skb->data);
468 }
469
470 /* +2 for 1st BD for headers and 2nd BD for headlen (if required) */
471 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
472 static bool qede_pkt_req_lin(struct qede_dev *edev, struct sk_buff *skb,
473                              u8 xmit_type)
474 {
475         int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1;
476
477         if (xmit_type & XMIT_LSO) {
478                 int hlen;
479
480                 hlen = qede_get_skb_hlen(skb, xmit_type & XMIT_ENC);
481
482                 /* linear payload would require its own BD */
483                 if (skb_headlen(skb) > hlen)
484                         allowed_frags--;
485         }
486
487         return (skb_shinfo(skb)->nr_frags > allowed_frags);
488 }
489 #endif
490
491 /* Main transmit function */
492 static
493 netdev_tx_t qede_start_xmit(struct sk_buff *skb,
494                             struct net_device *ndev)
495 {
496         struct qede_dev *edev = netdev_priv(ndev);
497         struct netdev_queue *netdev_txq;
498         struct qede_tx_queue *txq;
499         struct eth_tx_1st_bd *first_bd;
500         struct eth_tx_2nd_bd *second_bd = NULL;
501         struct eth_tx_3rd_bd *third_bd = NULL;
502         struct eth_tx_bd *tx_data_bd = NULL;
503         u16 txq_index;
504         u8 nbd = 0;
505         dma_addr_t mapping;
506         int rc, frag_idx = 0, ipv6_ext = 0;
507         u8 xmit_type;
508         u16 idx;
509         u16 hlen;
510         bool data_split = false;
511
512         /* Get tx-queue context and netdev index */
513         txq_index = skb_get_queue_mapping(skb);
514         WARN_ON(txq_index >= QEDE_TSS_CNT(edev));
515         txq = QEDE_TX_QUEUE(edev, txq_index);
516         netdev_txq = netdev_get_tx_queue(ndev, txq_index);
517
518         WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) <
519                                (MAX_SKB_FRAGS + 1));
520
521         xmit_type = qede_xmit_type(edev, skb, &ipv6_ext);
522
523 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
524         if (qede_pkt_req_lin(edev, skb, xmit_type)) {
525                 if (skb_linearize(skb)) {
526                         DP_NOTICE(edev,
527                                   "SKB linearization failed - silently dropping this SKB\n");
528                         dev_kfree_skb_any(skb);
529                         return NETDEV_TX_OK;
530                 }
531         }
532 #endif
533
534         /* Fill the entry in the SW ring and the BDs in the FW ring */
535         idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
536         txq->sw_tx_ring[idx].skb = skb;
537         first_bd = (struct eth_tx_1st_bd *)
538                    qed_chain_produce(&txq->tx_pbl);
539         memset(first_bd, 0, sizeof(*first_bd));
540         first_bd->data.bd_flags.bitfields =
541                 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
542
543         /* Map skb linear data for DMA and set in the first BD */
544         mapping = dma_map_single(&edev->pdev->dev, skb->data,
545                                  skb_headlen(skb), DMA_TO_DEVICE);
546         if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
547                 DP_NOTICE(edev, "SKB mapping failed\n");
548                 qede_free_failed_tx_pkt(edev, txq, first_bd, 0, false);
549                 return NETDEV_TX_OK;
550         }
551         nbd++;
552         BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb));
553
554         /* In case there is IPv6 with extension headers or LSO we need 2nd and
555          * 3rd BDs.
556          */
557         if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) {
558                 second_bd = (struct eth_tx_2nd_bd *)
559                         qed_chain_produce(&txq->tx_pbl);
560                 memset(second_bd, 0, sizeof(*second_bd));
561
562                 nbd++;
563                 third_bd = (struct eth_tx_3rd_bd *)
564                         qed_chain_produce(&txq->tx_pbl);
565                 memset(third_bd, 0, sizeof(*third_bd));
566
567                 nbd++;
568                 /* We need to fill in additional data in second_bd... */
569                 tx_data_bd = (struct eth_tx_bd *)second_bd;
570         }
571
572         if (skb_vlan_tag_present(skb)) {
573                 first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
574                 first_bd->data.bd_flags.bitfields |=
575                         1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
576         }
577
578         /* Fill the parsing flags & params according to the requested offload */
579         if (xmit_type & XMIT_L4_CSUM) {
580                 u16 temp = 1 << ETH_TX_DATA_1ST_BD_TUNN_CFG_OVERRIDE_SHIFT;
581
582                 /* We don't re-calculate IP checksum as it is already done by
583                  * the upper stack
584                  */
585                 first_bd->data.bd_flags.bitfields |=
586                         1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
587
588                 if (xmit_type & XMIT_ENC) {
589                         first_bd->data.bd_flags.bitfields |=
590                                 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
591                 } else {
592                         /* In cases when OS doesn't indicate for inner offloads
593                          * when packet is tunnelled, we need to override the HW
594                          * tunnel configuration so that packets are treated as
595                          * regular non tunnelled packets and no inner offloads
596                          * are done by the hardware.
597                          */
598                         first_bd->data.bitfields |= cpu_to_le16(temp);
599                 }
600
601                 /* If the packet is IPv6 with extension header, indicate that
602                  * to FW and pass few params, since the device cracker doesn't
603                  * support parsing IPv6 with extension header/s.
604                  */
605                 if (unlikely(ipv6_ext))
606                         qede_set_params_for_ipv6_ext(skb, second_bd, third_bd);
607         }
608
609         if (xmit_type & XMIT_LSO) {
610                 first_bd->data.bd_flags.bitfields |=
611                         (1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT);
612                 third_bd->data.lso_mss =
613                         cpu_to_le16(skb_shinfo(skb)->gso_size);
614
615                 if (unlikely(xmit_type & XMIT_ENC)) {
616                         first_bd->data.bd_flags.bitfields |=
617                                 1 << ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
618                         hlen = qede_get_skb_hlen(skb, true);
619                 } else {
620                         first_bd->data.bd_flags.bitfields |=
621                                 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
622                         hlen = qede_get_skb_hlen(skb, false);
623                 }
624
625                 /* @@@TBD - if will not be removed need to check */
626                 third_bd->data.bitfields |=
627                         cpu_to_le16((1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT));
628
629                 /* Make life easier for FW guys who can't deal with header and
630                  * data on same BD. If we need to split, use the second bd...
631                  */
632                 if (unlikely(skb_headlen(skb) > hlen)) {
633                         DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
634                                    "TSO split header size is %d (%x:%x)\n",
635                                    first_bd->nbytes, first_bd->addr.hi,
636                                    first_bd->addr.lo);
637
638                         mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi),
639                                            le32_to_cpu(first_bd->addr.lo)) +
640                                            hlen;
641
642                         BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping,
643                                               le16_to_cpu(first_bd->nbytes) -
644                                               hlen);
645
646                         /* this marks the BD as one that has no
647                          * individual mapping
648                          */
649                         txq->sw_tx_ring[idx].flags |= QEDE_TSO_SPLIT_BD;
650
651                         first_bd->nbytes = cpu_to_le16(hlen);
652
653                         tx_data_bd = (struct eth_tx_bd *)third_bd;
654                         data_split = true;
655                 }
656         }
657
658         /* Handle fragmented skb */
659         /* special handle for frags inside 2nd and 3rd bds.. */
660         while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) {
661                 rc = map_frag_to_bd(edev,
662                                     &skb_shinfo(skb)->frags[frag_idx],
663                                     tx_data_bd);
664                 if (rc) {
665                         qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
666                                                 data_split);
667                         return NETDEV_TX_OK;
668                 }
669
670                 if (tx_data_bd == (struct eth_tx_bd *)second_bd)
671                         tx_data_bd = (struct eth_tx_bd *)third_bd;
672                 else
673                         tx_data_bd = NULL;
674
675                 frag_idx++;
676         }
677
678         /* map last frags into 4th, 5th .... */
679         for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) {
680                 tx_data_bd = (struct eth_tx_bd *)
681                              qed_chain_produce(&txq->tx_pbl);
682
683                 memset(tx_data_bd, 0, sizeof(*tx_data_bd));
684
685                 rc = map_frag_to_bd(edev,
686                                     &skb_shinfo(skb)->frags[frag_idx],
687                                     tx_data_bd);
688                 if (rc) {
689                         qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
690                                                 data_split);
691                         return NETDEV_TX_OK;
692                 }
693         }
694
695         /* update the first BD with the actual num BDs */
696         first_bd->data.nbds = nbd;
697
698         netdev_tx_sent_queue(netdev_txq, skb->len);
699
700         skb_tx_timestamp(skb);
701
702         /* Advance packet producer only before sending the packet since mapping
703          * of pages may fail.
704          */
705         txq->sw_tx_prod++;
706
707         /* 'next page' entries are counted in the producer value */
708         txq->tx_db.data.bd_prod =
709                 cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl));
710
711         /* wmb makes sure that the BDs data is updated before updating the
712          * producer, otherwise FW may read old data from the BDs.
713          */
714         wmb();
715         barrier();
716         writel(txq->tx_db.raw, txq->doorbell_addr);
717
718         /* mmiowb is needed to synchronize doorbell writes from more than one
719          * processor. It guarantees that the write arrives to the device before
720          * the queue lock is released and another start_xmit is called (possibly
721          * on another CPU). Without this barrier, the next doorbell can bypass
722          * this doorbell. This is applicable to IA64/Altix systems.
723          */
724         mmiowb();
725
726         if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl)
727                       < (MAX_SKB_FRAGS + 1))) {
728                 netif_tx_stop_queue(netdev_txq);
729                 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
730                            "Stop queue was called\n");
731                 /* paired memory barrier is in qede_tx_int(), we have to keep
732                  * ordering of set_bit() in netif_tx_stop_queue() and read of
733                  * fp->bd_tx_cons
734                  */
735                 smp_mb();
736
737                 if (qed_chain_get_elem_left(&txq->tx_pbl)
738                      >= (MAX_SKB_FRAGS + 1) &&
739                     (edev->state == QEDE_STATE_OPEN)) {
740                         netif_tx_wake_queue(netdev_txq);
741                         DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
742                                    "Wake queue was called\n");
743                 }
744         }
745
746         return NETDEV_TX_OK;
747 }
748
749 int qede_txq_has_work(struct qede_tx_queue *txq)
750 {
751         u16 hw_bd_cons;
752
753         /* Tell compiler that consumer and producer can change */
754         barrier();
755         hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
756         if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1)
757                 return 0;
758
759         return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl);
760 }
761
762 static int qede_tx_int(struct qede_dev *edev,
763                        struct qede_tx_queue *txq)
764 {
765         struct netdev_queue *netdev_txq;
766         u16 hw_bd_cons;
767         unsigned int pkts_compl = 0, bytes_compl = 0;
768         int rc;
769
770         netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index);
771
772         hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
773         barrier();
774
775         while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
776                 int len = 0;
777
778                 rc = qede_free_tx_pkt(edev, txq, &len);
779                 if (rc) {
780                         DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n",
781                                   hw_bd_cons,
782                                   qed_chain_get_cons_idx(&txq->tx_pbl));
783                         break;
784                 }
785
786                 bytes_compl += len;
787                 pkts_compl++;
788                 txq->sw_tx_cons++;
789         }
790
791         netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
792
793         /* Need to make the tx_bd_cons update visible to start_xmit()
794          * before checking for netif_tx_queue_stopped().  Without the
795          * memory barrier, there is a small possibility that
796          * start_xmit() will miss it and cause the queue to be stopped
797          * forever.
798          * On the other hand we need an rmb() here to ensure the proper
799          * ordering of bit testing in the following
800          * netif_tx_queue_stopped(txq) call.
801          */
802         smp_mb();
803
804         if (unlikely(netif_tx_queue_stopped(netdev_txq))) {
805                 /* Taking tx_lock is needed to prevent reenabling the queue
806                  * while it's empty. This could have happen if rx_action() gets
807                  * suspended in qede_tx_int() after the condition before
808                  * netif_tx_wake_queue(), while tx_action (qede_start_xmit()):
809                  *
810                  * stops the queue->sees fresh tx_bd_cons->releases the queue->
811                  * sends some packets consuming the whole queue again->
812                  * stops the queue
813                  */
814
815                 __netif_tx_lock(netdev_txq, smp_processor_id());
816
817                 if ((netif_tx_queue_stopped(netdev_txq)) &&
818                     (edev->state == QEDE_STATE_OPEN) &&
819                     (qed_chain_get_elem_left(&txq->tx_pbl)
820                       >= (MAX_SKB_FRAGS + 1))) {
821                         netif_tx_wake_queue(netdev_txq);
822                         DP_VERBOSE(edev, NETIF_MSG_TX_DONE,
823                                    "Wake queue was called\n");
824                 }
825
826                 __netif_tx_unlock(netdev_txq);
827         }
828
829         return 0;
830 }
831
832 bool qede_has_rx_work(struct qede_rx_queue *rxq)
833 {
834         u16 hw_comp_cons, sw_comp_cons;
835
836         /* Tell compiler that status block fields can change */
837         barrier();
838
839         hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
840         sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
841
842         return hw_comp_cons != sw_comp_cons;
843 }
844
845 static bool qede_has_tx_work(struct qede_fastpath *fp)
846 {
847         u8 tc;
848
849         for (tc = 0; tc < fp->edev->num_tc; tc++)
850                 if (qede_txq_has_work(&fp->txqs[tc]))
851                         return true;
852         return false;
853 }
854
855 static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
856 {
857         qed_chain_consume(&rxq->rx_bd_ring);
858         rxq->sw_rx_cons++;
859 }
860
861 /* This function reuses the buffer(from an offset) from
862  * consumer index to producer index in the bd ring
863  */
864 static inline void qede_reuse_page(struct qede_dev *edev,
865                                    struct qede_rx_queue *rxq,
866                                    struct sw_rx_data *curr_cons)
867 {
868         struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
869         struct sw_rx_data *curr_prod;
870         dma_addr_t new_mapping;
871
872         curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
873         *curr_prod = *curr_cons;
874
875         new_mapping = curr_prod->mapping + curr_prod->page_offset;
876
877         rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping));
878         rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping));
879
880         rxq->sw_rx_prod++;
881         curr_cons->data = NULL;
882 }
883
884 /* In case of allocation failures reuse buffers
885  * from consumer index to produce buffers for firmware
886  */
887 void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq,
888                              struct qede_dev *edev, u8 count)
889 {
890         struct sw_rx_data *curr_cons;
891
892         for (; count > 0; count--) {
893                 curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
894                 qede_reuse_page(edev, rxq, curr_cons);
895                 qede_rx_bd_ring_consume(rxq);
896         }
897 }
898
899 static inline int qede_realloc_rx_buffer(struct qede_dev *edev,
900                                          struct qede_rx_queue *rxq,
901                                          struct sw_rx_data *curr_cons)
902 {
903         /* Move to the next segment in the page */
904         curr_cons->page_offset += rxq->rx_buf_seg_size;
905
906         if (curr_cons->page_offset == PAGE_SIZE) {
907                 if (unlikely(qede_alloc_rx_buffer(edev, rxq))) {
908                         /* Since we failed to allocate new buffer
909                          * current buffer can be used again.
910                          */
911                         curr_cons->page_offset -= rxq->rx_buf_seg_size;
912
913                         return -ENOMEM;
914                 }
915
916                 dma_unmap_page(&edev->pdev->dev, curr_cons->mapping,
917                                PAGE_SIZE, DMA_FROM_DEVICE);
918         } else {
919                 /* Increment refcount of the page as we don't want
920                  * network stack to take the ownership of the page
921                  * which can be recycled multiple times by the driver.
922                  */
923                 page_ref_inc(curr_cons->data);
924                 qede_reuse_page(edev, rxq, curr_cons);
925         }
926
927         return 0;
928 }
929
930 static inline void qede_update_rx_prod(struct qede_dev *edev,
931                                        struct qede_rx_queue *rxq)
932 {
933         u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring);
934         u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring);
935         struct eth_rx_prod_data rx_prods = {0};
936
937         /* Update producers */
938         rx_prods.bd_prod = cpu_to_le16(bd_prod);
939         rx_prods.cqe_prod = cpu_to_le16(cqe_prod);
940
941         /* Make sure that the BD and SGE data is updated before updating the
942          * producers since FW might read the BD/SGE right after the producer
943          * is updated.
944          */
945         wmb();
946
947         internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
948                         (u32 *)&rx_prods);
949
950         /* mmiowb is needed to synchronize doorbell writes from more than one
951          * processor. It guarantees that the write arrives to the device before
952          * the napi lock is released and another qede_poll is called (possibly
953          * on another CPU). Without this barrier, the next doorbell can bypass
954          * this doorbell. This is applicable to IA64/Altix systems.
955          */
956         mmiowb();
957 }
958
959 static u32 qede_get_rxhash(struct qede_dev *edev,
960                            u8 bitfields,
961                            __le32 rss_hash,
962                            enum pkt_hash_types *rxhash_type)
963 {
964         enum rss_hash_type htype;
965
966         htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
967
968         if ((edev->ndev->features & NETIF_F_RXHASH) && htype) {
969                 *rxhash_type = ((htype == RSS_HASH_TYPE_IPV4) ||
970                                 (htype == RSS_HASH_TYPE_IPV6)) ?
971                                 PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4;
972                 return le32_to_cpu(rss_hash);
973         }
974         *rxhash_type = PKT_HASH_TYPE_NONE;
975         return 0;
976 }
977
978 static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag)
979 {
980         skb_checksum_none_assert(skb);
981
982         if (csum_flag & QEDE_CSUM_UNNECESSARY)
983                 skb->ip_summed = CHECKSUM_UNNECESSARY;
984
985         if (csum_flag & QEDE_TUNN_CSUM_UNNECESSARY)
986                 skb->csum_level = 1;
987 }
988
989 static inline void qede_skb_receive(struct qede_dev *edev,
990                                     struct qede_fastpath *fp,
991                                     struct sk_buff *skb,
992                                     u16 vlan_tag)
993 {
994         if (vlan_tag)
995                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
996                                        vlan_tag);
997
998         napi_gro_receive(&fp->napi, skb);
999 }
1000
1001 static void qede_set_gro_params(struct qede_dev *edev,
1002                                 struct sk_buff *skb,
1003                                 struct eth_fast_path_rx_tpa_start_cqe *cqe)
1004 {
1005         u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags);
1006
1007         if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) &
1008             PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2)
1009                 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
1010         else
1011                 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
1012
1013         skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) -
1014                                         cqe->header_len;
1015 }
1016
1017 static int qede_fill_frag_skb(struct qede_dev *edev,
1018                               struct qede_rx_queue *rxq,
1019                               u8 tpa_agg_index,
1020                               u16 len_on_bd)
1021 {
1022         struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons &
1023                                                          NUM_RX_BDS_MAX];
1024         struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index];
1025         struct sk_buff *skb = tpa_info->skb;
1026
1027         if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START))
1028                 goto out;
1029
1030         /* Add one frag and update the appropriate fields in the skb */
1031         skb_fill_page_desc(skb, tpa_info->frag_id++,
1032                            current_bd->data, current_bd->page_offset,
1033                            len_on_bd);
1034
1035         if (unlikely(qede_realloc_rx_buffer(edev, rxq, current_bd))) {
1036                 /* Incr page ref count to reuse on allocation failure
1037                  * so that it doesn't get freed while freeing SKB.
1038                  */
1039                 atomic_inc(&current_bd->data->_count);
1040                 goto out;
1041         }
1042
1043         qed_chain_consume(&rxq->rx_bd_ring);
1044         rxq->sw_rx_cons++;
1045
1046         skb->data_len += len_on_bd;
1047         skb->truesize += rxq->rx_buf_seg_size;
1048         skb->len += len_on_bd;
1049
1050         return 0;
1051
1052 out:
1053         tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1054         qede_recycle_rx_bd_ring(rxq, edev, 1);
1055         return -ENOMEM;
1056 }
1057
1058 static void qede_tpa_start(struct qede_dev *edev,
1059                            struct qede_rx_queue *rxq,
1060                            struct eth_fast_path_rx_tpa_start_cqe *cqe)
1061 {
1062         struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
1063         struct eth_rx_bd *rx_bd_cons = qed_chain_consume(&rxq->rx_bd_ring);
1064         struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
1065         struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
1066         dma_addr_t mapping = tpa_info->replace_buf_mapping;
1067         struct sw_rx_data *sw_rx_data_cons;
1068         struct sw_rx_data *sw_rx_data_prod;
1069         enum pkt_hash_types rxhash_type;
1070         u32 rxhash;
1071
1072         sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
1073         sw_rx_data_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
1074
1075         /* Use pre-allocated replacement buffer - we can't release the agg.
1076          * start until its over and we don't want to risk allocation failing
1077          * here, so re-allocate when aggregation will be over.
1078          */
1079         dma_unmap_addr_set(sw_rx_data_prod, mapping,
1080                            dma_unmap_addr(replace_buf, mapping));
1081
1082         sw_rx_data_prod->data = replace_buf->data;
1083         rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(mapping));
1084         rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(mapping));
1085         sw_rx_data_prod->page_offset = replace_buf->page_offset;
1086
1087         rxq->sw_rx_prod++;
1088
1089         /* move partial skb from cons to pool (don't unmap yet)
1090          * save mapping, incase we drop the packet later on.
1091          */
1092         tpa_info->start_buf = *sw_rx_data_cons;
1093         mapping = HILO_U64(le32_to_cpu(rx_bd_cons->addr.hi),
1094                            le32_to_cpu(rx_bd_cons->addr.lo));
1095
1096         tpa_info->start_buf_mapping = mapping;
1097         rxq->sw_rx_cons++;
1098
1099         /* set tpa state to start only if we are able to allocate skb
1100          * for this aggregation, otherwise mark as error and aggregation will
1101          * be dropped
1102          */
1103         tpa_info->skb = netdev_alloc_skb(edev->ndev,
1104                                          le16_to_cpu(cqe->len_on_first_bd));
1105         if (unlikely(!tpa_info->skb)) {
1106                 DP_NOTICE(edev, "Failed to allocate SKB for gro\n");
1107                 tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1108                 goto cons_buf;
1109         }
1110
1111         skb_put(tpa_info->skb, le16_to_cpu(cqe->len_on_first_bd));
1112         memcpy(&tpa_info->start_cqe, cqe, sizeof(tpa_info->start_cqe));
1113
1114         /* Start filling in the aggregation info */
1115         tpa_info->frag_id = 0;
1116         tpa_info->agg_state = QEDE_AGG_STATE_START;
1117
1118         rxhash = qede_get_rxhash(edev, cqe->bitfields,
1119                                  cqe->rss_hash, &rxhash_type);
1120         skb_set_hash(tpa_info->skb, rxhash, rxhash_type);
1121         if ((le16_to_cpu(cqe->pars_flags.flags) >>
1122              PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) &
1123                     PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK)
1124                 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
1125         else
1126                 tpa_info->vlan_tag = 0;
1127
1128         /* This is needed in order to enable forwarding support */
1129         qede_set_gro_params(edev, tpa_info->skb, cqe);
1130
1131 cons_buf: /* We still need to handle bd_len_list to consume buffers */
1132         if (likely(cqe->ext_bd_len_list[0]))
1133                 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1134                                    le16_to_cpu(cqe->ext_bd_len_list[0]));
1135
1136         if (unlikely(cqe->ext_bd_len_list[1])) {
1137                 DP_ERR(edev,
1138                        "Unlikely - got a TPA aggregation with more than one ext_bd_len_list entry in the TPA start\n");
1139                 tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1140         }
1141 }
1142
1143 #ifdef CONFIG_INET
1144 static void qede_gro_ip_csum(struct sk_buff *skb)
1145 {
1146         const struct iphdr *iph = ip_hdr(skb);
1147         struct tcphdr *th;
1148
1149         skb_set_transport_header(skb, sizeof(struct iphdr));
1150         th = tcp_hdr(skb);
1151
1152         th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
1153                                   iph->saddr, iph->daddr, 0);
1154
1155         tcp_gro_complete(skb);
1156 }
1157
1158 static void qede_gro_ipv6_csum(struct sk_buff *skb)
1159 {
1160         struct ipv6hdr *iph = ipv6_hdr(skb);
1161         struct tcphdr *th;
1162
1163         skb_set_transport_header(skb, sizeof(struct ipv6hdr));
1164         th = tcp_hdr(skb);
1165
1166         th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
1167                                   &iph->saddr, &iph->daddr, 0);
1168         tcp_gro_complete(skb);
1169 }
1170 #endif
1171
1172 static void qede_gro_receive(struct qede_dev *edev,
1173                              struct qede_fastpath *fp,
1174                              struct sk_buff *skb,
1175                              u16 vlan_tag)
1176 {
1177         /* FW can send a single MTU sized packet from gro flow
1178          * due to aggregation timeout/last segment etc. which
1179          * is not expected to be a gro packet. If a skb has zero
1180          * frags then simply push it in the stack as non gso skb.
1181          */
1182         if (unlikely(!skb->data_len)) {
1183                 skb_shinfo(skb)->gso_type = 0;
1184                 skb_shinfo(skb)->gso_size = 0;
1185                 goto send_skb;
1186         }
1187
1188 #ifdef CONFIG_INET
1189         if (skb_shinfo(skb)->gso_size) {
1190                 skb_set_network_header(skb, 0);
1191
1192                 switch (skb->protocol) {
1193                 case htons(ETH_P_IP):
1194                         qede_gro_ip_csum(skb);
1195                         break;
1196                 case htons(ETH_P_IPV6):
1197                         qede_gro_ipv6_csum(skb);
1198                         break;
1199                 default:
1200                         DP_ERR(edev,
1201                                "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
1202                                ntohs(skb->protocol));
1203                 }
1204         }
1205 #endif
1206
1207 send_skb:
1208         skb_record_rx_queue(skb, fp->rss_id);
1209         qede_skb_receive(edev, fp, skb, vlan_tag);
1210 }
1211
1212 static inline void qede_tpa_cont(struct qede_dev *edev,
1213                                  struct qede_rx_queue *rxq,
1214                                  struct eth_fast_path_rx_tpa_cont_cqe *cqe)
1215 {
1216         int i;
1217
1218         for (i = 0; cqe->len_list[i]; i++)
1219                 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1220                                    le16_to_cpu(cqe->len_list[i]));
1221
1222         if (unlikely(i > 1))
1223                 DP_ERR(edev,
1224                        "Strange - TPA cont with more than a single len_list entry\n");
1225 }
1226
1227 static void qede_tpa_end(struct qede_dev *edev,
1228                          struct qede_fastpath *fp,
1229                          struct eth_fast_path_rx_tpa_end_cqe *cqe)
1230 {
1231         struct qede_rx_queue *rxq = fp->rxq;
1232         struct qede_agg_info *tpa_info;
1233         struct sk_buff *skb;
1234         int i;
1235
1236         tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
1237         skb = tpa_info->skb;
1238
1239         for (i = 0; cqe->len_list[i]; i++)
1240                 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1241                                    le16_to_cpu(cqe->len_list[i]));
1242         if (unlikely(i > 1))
1243                 DP_ERR(edev,
1244                        "Strange - TPA emd with more than a single len_list entry\n");
1245
1246         if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START))
1247                 goto err;
1248
1249         /* Sanity */
1250         if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1))
1251                 DP_ERR(edev,
1252                        "Strange - TPA had %02x BDs, but SKB has only %d frags\n",
1253                        cqe->num_of_bds, tpa_info->frag_id);
1254         if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len)))
1255                 DP_ERR(edev,
1256                        "Strange - total packet len [cqe] is %4x but SKB has len %04x\n",
1257                        le16_to_cpu(cqe->total_packet_len), skb->len);
1258
1259         memcpy(skb->data,
1260                page_address(tpa_info->start_buf.data) +
1261                 tpa_info->start_cqe.placement_offset +
1262                 tpa_info->start_buf.page_offset,
1263                le16_to_cpu(tpa_info->start_cqe.len_on_first_bd));
1264
1265         /* Recycle [mapped] start buffer for the next replacement */
1266         tpa_info->replace_buf = tpa_info->start_buf;
1267         tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping;
1268
1269         /* Finalize the SKB */
1270         skb->protocol = eth_type_trans(skb, edev->ndev);
1271         skb->ip_summed = CHECKSUM_UNNECESSARY;
1272
1273         /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
1274          * to skb_shinfo(skb)->gso_segs
1275          */
1276         NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs);
1277
1278         qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag);
1279
1280         tpa_info->agg_state = QEDE_AGG_STATE_NONE;
1281
1282         return;
1283 err:
1284         /* The BD starting the aggregation is still mapped; Re-use it for
1285          * future aggregations [as replacement buffer]
1286          */
1287         memcpy(&tpa_info->replace_buf, &tpa_info->start_buf,
1288                sizeof(struct sw_rx_data));
1289         tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping;
1290         tpa_info->start_buf.data = NULL;
1291         tpa_info->agg_state = QEDE_AGG_STATE_NONE;
1292         dev_kfree_skb_any(tpa_info->skb);
1293         tpa_info->skb = NULL;
1294 }
1295
1296 static bool qede_tunn_exist(u16 flag)
1297 {
1298         return !!(flag & (PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
1299                           PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT));
1300 }
1301
1302 static u8 qede_check_tunn_csum(u16 flag)
1303 {
1304         u16 csum_flag = 0;
1305         u8 tcsum = 0;
1306
1307         if (flag & (PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
1308                     PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT))
1309                 csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
1310                              PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT;
1311
1312         if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1313                     PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
1314                 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1315                              PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
1316                 tcsum = QEDE_TUNN_CSUM_UNNECESSARY;
1317         }
1318
1319         csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK <<
1320                      PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT |
1321                      PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1322                      PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
1323
1324         if (csum_flag & flag)
1325                 return QEDE_CSUM_ERROR;
1326
1327         return QEDE_CSUM_UNNECESSARY | tcsum;
1328 }
1329
1330 static u8 qede_check_notunn_csum(u16 flag)
1331 {
1332         u16 csum_flag = 0;
1333         u8 csum = 0;
1334
1335         if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1336                     PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
1337                 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1338                              PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
1339                 csum = QEDE_CSUM_UNNECESSARY;
1340         }
1341
1342         csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1343                      PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
1344
1345         if (csum_flag & flag)
1346                 return QEDE_CSUM_ERROR;
1347
1348         return csum;
1349 }
1350
1351 static u8 qede_check_csum(u16 flag)
1352 {
1353         if (!qede_tunn_exist(flag))
1354                 return qede_check_notunn_csum(flag);
1355         else
1356                 return qede_check_tunn_csum(flag);
1357 }
1358
1359 static int qede_rx_int(struct qede_fastpath *fp, int budget)
1360 {
1361         struct qede_dev *edev = fp->edev;
1362         struct qede_rx_queue *rxq = fp->rxq;
1363
1364         u16 hw_comp_cons, sw_comp_cons, sw_rx_index, parse_flag;
1365         int rx_pkt = 0;
1366         u8 csum_flag;
1367
1368         hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
1369         sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1370
1371         /* Memory barrier to prevent the CPU from doing speculative reads of CQE
1372          * / BD in the while-loop before reading hw_comp_cons. If the CQE is
1373          * read before it is written by FW, then FW writes CQE and SB, and then
1374          * the CPU reads the hw_comp_cons, it will use an old CQE.
1375          */
1376         rmb();
1377
1378         /* Loop to complete all indicated BDs */
1379         while (sw_comp_cons != hw_comp_cons) {
1380                 struct eth_fast_path_rx_reg_cqe *fp_cqe;
1381                 enum pkt_hash_types rxhash_type;
1382                 enum eth_rx_cqe_type cqe_type;
1383                 struct sw_rx_data *sw_rx_data;
1384                 union eth_rx_cqe *cqe;
1385                 struct sk_buff *skb;
1386                 struct page *data;
1387                 __le16 flags;
1388                 u16 len, pad;
1389                 u32 rx_hash;
1390
1391                 /* Get the CQE from the completion ring */
1392                 cqe = (union eth_rx_cqe *)
1393                         qed_chain_consume(&rxq->rx_comp_ring);
1394                 cqe_type = cqe->fast_path_regular.type;
1395
1396                 if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
1397                         edev->ops->eth_cqe_completion(
1398                                         edev->cdev, fp->rss_id,
1399                                         (struct eth_slow_path_rx_cqe *)cqe);
1400                         goto next_cqe;
1401                 }
1402
1403                 if (cqe_type != ETH_RX_CQE_TYPE_REGULAR) {
1404                         switch (cqe_type) {
1405                         case ETH_RX_CQE_TYPE_TPA_START:
1406                                 qede_tpa_start(edev, rxq,
1407                                                &cqe->fast_path_tpa_start);
1408                                 goto next_cqe;
1409                         case ETH_RX_CQE_TYPE_TPA_CONT:
1410                                 qede_tpa_cont(edev, rxq,
1411                                               &cqe->fast_path_tpa_cont);
1412                                 goto next_cqe;
1413                         case ETH_RX_CQE_TYPE_TPA_END:
1414                                 qede_tpa_end(edev, fp,
1415                                              &cqe->fast_path_tpa_end);
1416                                 goto next_rx_only;
1417                         default:
1418                                 break;
1419                         }
1420                 }
1421
1422                 /* Get the data from the SW ring */
1423                 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1424                 sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
1425                 data = sw_rx_data->data;
1426
1427                 fp_cqe = &cqe->fast_path_regular;
1428                 len =  le16_to_cpu(fp_cqe->len_on_first_bd);
1429                 pad = fp_cqe->placement_offset;
1430                 flags = cqe->fast_path_regular.pars_flags.flags;
1431
1432                 /* If this is an error packet then drop it */
1433                 parse_flag = le16_to_cpu(flags);
1434
1435                 csum_flag = qede_check_csum(parse_flag);
1436                 if (unlikely(csum_flag == QEDE_CSUM_ERROR)) {
1437                         DP_NOTICE(edev,
1438                                   "CQE in CONS = %u has error, flags = %x, dropping incoming packet\n",
1439                                   sw_comp_cons, parse_flag);
1440                         rxq->rx_hw_errors++;
1441                         qede_recycle_rx_bd_ring(rxq, edev, fp_cqe->bd_num);
1442                         goto next_cqe;
1443                 }
1444
1445                 skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE);
1446                 if (unlikely(!skb)) {
1447                         DP_NOTICE(edev,
1448                                   "Build_skb failed, dropping incoming packet\n");
1449                         qede_recycle_rx_bd_ring(rxq, edev, fp_cqe->bd_num);
1450                         rxq->rx_alloc_errors++;
1451                         goto next_cqe;
1452                 }
1453
1454                 /* Copy data into SKB */
1455                 if (len + pad <= QEDE_RX_HDR_SIZE) {
1456                         memcpy(skb_put(skb, len),
1457                                page_address(data) + pad +
1458                                 sw_rx_data->page_offset, len);
1459                         qede_reuse_page(edev, rxq, sw_rx_data);
1460                 } else {
1461                         struct skb_frag_struct *frag;
1462                         unsigned int pull_len;
1463                         unsigned char *va;
1464
1465                         frag = &skb_shinfo(skb)->frags[0];
1466
1467                         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, data,
1468                                         pad + sw_rx_data->page_offset,
1469                                         len, rxq->rx_buf_seg_size);
1470
1471                         va = skb_frag_address(frag);
1472                         pull_len = eth_get_headlen(va, QEDE_RX_HDR_SIZE);
1473
1474                         /* Align the pull_len to optimize memcpy */
1475                         memcpy(skb->data, va, ALIGN(pull_len, sizeof(long)));
1476
1477                         skb_frag_size_sub(frag, pull_len);
1478                         frag->page_offset += pull_len;
1479                         skb->data_len -= pull_len;
1480                         skb->tail += pull_len;
1481
1482                         if (unlikely(qede_realloc_rx_buffer(edev, rxq,
1483                                                             sw_rx_data))) {
1484                                 DP_ERR(edev, "Failed to allocate rx buffer\n");
1485                                 /* Incr page ref count to reuse on allocation
1486                                  * failure so that it doesn't get freed while
1487                                  * freeing SKB.
1488                                  */
1489
1490                                 atomic_inc(&sw_rx_data->data->_count);
1491                                 rxq->rx_alloc_errors++;
1492                                 qede_recycle_rx_bd_ring(rxq, edev,
1493                                                         fp_cqe->bd_num);
1494                                 dev_kfree_skb_any(skb);
1495                                 goto next_cqe;
1496                         }
1497                 }
1498
1499                 qede_rx_bd_ring_consume(rxq);
1500
1501                 if (fp_cqe->bd_num != 1) {
1502                         u16 pkt_len = le16_to_cpu(fp_cqe->pkt_len);
1503                         u8 num_frags;
1504
1505                         pkt_len -= len;
1506
1507                         for (num_frags = fp_cqe->bd_num - 1; num_frags > 0;
1508                              num_frags--) {
1509                                 u16 cur_size = pkt_len > rxq->rx_buf_size ?
1510                                                 rxq->rx_buf_size : pkt_len;
1511                                 if (unlikely(!cur_size)) {
1512                                         DP_ERR(edev,
1513                                                "Still got %d BDs for mapping jumbo, but length became 0\n",
1514                                                num_frags);
1515                                         qede_recycle_rx_bd_ring(rxq, edev,
1516                                                                 num_frags);
1517                                         dev_kfree_skb_any(skb);
1518                                         goto next_cqe;
1519                                 }
1520
1521                                 if (unlikely(qede_alloc_rx_buffer(edev, rxq))) {
1522                                         qede_recycle_rx_bd_ring(rxq, edev,
1523                                                                 num_frags);
1524                                         dev_kfree_skb_any(skb);
1525                                         goto next_cqe;
1526                                 }
1527
1528                                 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1529                                 sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
1530                                 qede_rx_bd_ring_consume(rxq);
1531
1532                                 dma_unmap_page(&edev->pdev->dev,
1533                                                sw_rx_data->mapping,
1534                                                PAGE_SIZE, DMA_FROM_DEVICE);
1535
1536                                 skb_fill_page_desc(skb,
1537                                                    skb_shinfo(skb)->nr_frags++,
1538                                                    sw_rx_data->data, 0,
1539                                                    cur_size);
1540
1541                                 skb->truesize += PAGE_SIZE;
1542                                 skb->data_len += cur_size;
1543                                 skb->len += cur_size;
1544                                 pkt_len -= cur_size;
1545                         }
1546
1547                         if (unlikely(pkt_len))
1548                                 DP_ERR(edev,
1549                                        "Mapped all BDs of jumbo, but still have %d bytes\n",
1550                                        pkt_len);
1551                 }
1552
1553                 skb->protocol = eth_type_trans(skb, edev->ndev);
1554
1555                 rx_hash = qede_get_rxhash(edev, fp_cqe->bitfields,
1556                                           fp_cqe->rss_hash,
1557                                           &rxhash_type);
1558
1559                 skb_set_hash(skb, rx_hash, rxhash_type);
1560
1561                 qede_set_skb_csum(skb, csum_flag);
1562
1563                 skb_record_rx_queue(skb, fp->rss_id);
1564
1565                 qede_skb_receive(edev, fp, skb, le16_to_cpu(fp_cqe->vlan_tag));
1566 next_rx_only:
1567                 rx_pkt++;
1568
1569 next_cqe: /* don't consume bd rx buffer */
1570                 qed_chain_recycle_consumed(&rxq->rx_comp_ring);
1571                 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1572                 /* CR TPA - revisit how to handle budget in TPA perhaps
1573                  * increase on "end"
1574                  */
1575                 if (rx_pkt == budget)
1576                         break;
1577         } /* repeat while sw_comp_cons != hw_comp_cons... */
1578
1579         /* Update producers */
1580         qede_update_rx_prod(edev, rxq);
1581
1582         return rx_pkt;
1583 }
1584
1585 static int qede_poll(struct napi_struct *napi, int budget)
1586 {
1587         int work_done = 0;
1588         struct qede_fastpath *fp = container_of(napi, struct qede_fastpath,
1589                                                  napi);
1590         struct qede_dev *edev = fp->edev;
1591
1592         while (1) {
1593                 u8 tc;
1594
1595                 for (tc = 0; tc < edev->num_tc; tc++)
1596                         if (qede_txq_has_work(&fp->txqs[tc]))
1597                                 qede_tx_int(edev, &fp->txqs[tc]);
1598
1599                 if (qede_has_rx_work(fp->rxq)) {
1600                         work_done += qede_rx_int(fp, budget - work_done);
1601
1602                         /* must not complete if we consumed full budget */
1603                         if (work_done >= budget)
1604                                 break;
1605                 }
1606
1607                 /* Fall out from the NAPI loop if needed */
1608                 if (!(qede_has_rx_work(fp->rxq) || qede_has_tx_work(fp))) {
1609                         qed_sb_update_sb_idx(fp->sb_info);
1610                         /* *_has_*_work() reads the status block,
1611                          * thus we need to ensure that status block indices
1612                          * have been actually read (qed_sb_update_sb_idx)
1613                          * prior to this check (*_has_*_work) so that
1614                          * we won't write the "newer" value of the status block
1615                          * to HW (if there was a DMA right after
1616                          * qede_has_rx_work and if there is no rmb, the memory
1617                          * reading (qed_sb_update_sb_idx) may be postponed
1618                          * to right before *_ack_sb). In this case there
1619                          * will never be another interrupt until there is
1620                          * another update of the status block, while there
1621                          * is still unhandled work.
1622                          */
1623                         rmb();
1624
1625                         if (!(qede_has_rx_work(fp->rxq) ||
1626                               qede_has_tx_work(fp))) {
1627                                 napi_complete(napi);
1628                                 /* Update and reenable interrupts */
1629                                 qed_sb_ack(fp->sb_info, IGU_INT_ENABLE,
1630                                            1 /*update*/);
1631                                 break;
1632                         }
1633                 }
1634         }
1635
1636         return work_done;
1637 }
1638
1639 static irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie)
1640 {
1641         struct qede_fastpath *fp = fp_cookie;
1642
1643         qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/);
1644
1645         napi_schedule_irqoff(&fp->napi);
1646         return IRQ_HANDLED;
1647 }
1648
1649 /* -------------------------------------------------------------------------
1650  * END OF FAST-PATH
1651  * -------------------------------------------------------------------------
1652  */
1653
1654 static int qede_open(struct net_device *ndev);
1655 static int qede_close(struct net_device *ndev);
1656 static int qede_set_mac_addr(struct net_device *ndev, void *p);
1657 static void qede_set_rx_mode(struct net_device *ndev);
1658 static void qede_config_rx_mode(struct net_device *ndev);
1659
1660 static int qede_set_ucast_rx_mac(struct qede_dev *edev,
1661                                  enum qed_filter_xcast_params_type opcode,
1662                                  unsigned char mac[ETH_ALEN])
1663 {
1664         struct qed_filter_params filter_cmd;
1665
1666         memset(&filter_cmd, 0, sizeof(filter_cmd));
1667         filter_cmd.type = QED_FILTER_TYPE_UCAST;
1668         filter_cmd.filter.ucast.type = opcode;
1669         filter_cmd.filter.ucast.mac_valid = 1;
1670         ether_addr_copy(filter_cmd.filter.ucast.mac, mac);
1671
1672         return edev->ops->filter_config(edev->cdev, &filter_cmd);
1673 }
1674
1675 static int qede_set_ucast_rx_vlan(struct qede_dev *edev,
1676                                   enum qed_filter_xcast_params_type opcode,
1677                                   u16 vid)
1678 {
1679         struct qed_filter_params filter_cmd;
1680
1681         memset(&filter_cmd, 0, sizeof(filter_cmd));
1682         filter_cmd.type = QED_FILTER_TYPE_UCAST;
1683         filter_cmd.filter.ucast.type = opcode;
1684         filter_cmd.filter.ucast.vlan_valid = 1;
1685         filter_cmd.filter.ucast.vlan = vid;
1686
1687         return edev->ops->filter_config(edev->cdev, &filter_cmd);
1688 }
1689
1690 void qede_fill_by_demand_stats(struct qede_dev *edev)
1691 {
1692         struct qed_eth_stats stats;
1693
1694         edev->ops->get_vport_stats(edev->cdev, &stats);
1695         edev->stats.no_buff_discards = stats.no_buff_discards;
1696         edev->stats.rx_ucast_bytes = stats.rx_ucast_bytes;
1697         edev->stats.rx_mcast_bytes = stats.rx_mcast_bytes;
1698         edev->stats.rx_bcast_bytes = stats.rx_bcast_bytes;
1699         edev->stats.rx_ucast_pkts = stats.rx_ucast_pkts;
1700         edev->stats.rx_mcast_pkts = stats.rx_mcast_pkts;
1701         edev->stats.rx_bcast_pkts = stats.rx_bcast_pkts;
1702         edev->stats.mftag_filter_discards = stats.mftag_filter_discards;
1703         edev->stats.mac_filter_discards = stats.mac_filter_discards;
1704
1705         edev->stats.tx_ucast_bytes = stats.tx_ucast_bytes;
1706         edev->stats.tx_mcast_bytes = stats.tx_mcast_bytes;
1707         edev->stats.tx_bcast_bytes = stats.tx_bcast_bytes;
1708         edev->stats.tx_ucast_pkts = stats.tx_ucast_pkts;
1709         edev->stats.tx_mcast_pkts = stats.tx_mcast_pkts;
1710         edev->stats.tx_bcast_pkts = stats.tx_bcast_pkts;
1711         edev->stats.tx_err_drop_pkts = stats.tx_err_drop_pkts;
1712         edev->stats.coalesced_pkts = stats.tpa_coalesced_pkts;
1713         edev->stats.coalesced_events = stats.tpa_coalesced_events;
1714         edev->stats.coalesced_aborts_num = stats.tpa_aborts_num;
1715         edev->stats.non_coalesced_pkts = stats.tpa_not_coalesced_pkts;
1716         edev->stats.coalesced_bytes = stats.tpa_coalesced_bytes;
1717
1718         edev->stats.rx_64_byte_packets = stats.rx_64_byte_packets;
1719         edev->stats.rx_65_to_127_byte_packets = stats.rx_65_to_127_byte_packets;
1720         edev->stats.rx_128_to_255_byte_packets =
1721                                 stats.rx_128_to_255_byte_packets;
1722         edev->stats.rx_256_to_511_byte_packets =
1723                                 stats.rx_256_to_511_byte_packets;
1724         edev->stats.rx_512_to_1023_byte_packets =
1725                                 stats.rx_512_to_1023_byte_packets;
1726         edev->stats.rx_1024_to_1518_byte_packets =
1727                                 stats.rx_1024_to_1518_byte_packets;
1728         edev->stats.rx_1519_to_1522_byte_packets =
1729                                 stats.rx_1519_to_1522_byte_packets;
1730         edev->stats.rx_1519_to_2047_byte_packets =
1731                                 stats.rx_1519_to_2047_byte_packets;
1732         edev->stats.rx_2048_to_4095_byte_packets =
1733                                 stats.rx_2048_to_4095_byte_packets;
1734         edev->stats.rx_4096_to_9216_byte_packets =
1735                                 stats.rx_4096_to_9216_byte_packets;
1736         edev->stats.rx_9217_to_16383_byte_packets =
1737                                 stats.rx_9217_to_16383_byte_packets;
1738         edev->stats.rx_crc_errors = stats.rx_crc_errors;
1739         edev->stats.rx_mac_crtl_frames = stats.rx_mac_crtl_frames;
1740         edev->stats.rx_pause_frames = stats.rx_pause_frames;
1741         edev->stats.rx_pfc_frames = stats.rx_pfc_frames;
1742         edev->stats.rx_align_errors = stats.rx_align_errors;
1743         edev->stats.rx_carrier_errors = stats.rx_carrier_errors;
1744         edev->stats.rx_oversize_packets = stats.rx_oversize_packets;
1745         edev->stats.rx_jabbers = stats.rx_jabbers;
1746         edev->stats.rx_undersize_packets = stats.rx_undersize_packets;
1747         edev->stats.rx_fragments = stats.rx_fragments;
1748         edev->stats.tx_64_byte_packets = stats.tx_64_byte_packets;
1749         edev->stats.tx_65_to_127_byte_packets = stats.tx_65_to_127_byte_packets;
1750         edev->stats.tx_128_to_255_byte_packets =
1751                                 stats.tx_128_to_255_byte_packets;
1752         edev->stats.tx_256_to_511_byte_packets =
1753                                 stats.tx_256_to_511_byte_packets;
1754         edev->stats.tx_512_to_1023_byte_packets =
1755                                 stats.tx_512_to_1023_byte_packets;
1756         edev->stats.tx_1024_to_1518_byte_packets =
1757                                 stats.tx_1024_to_1518_byte_packets;
1758         edev->stats.tx_1519_to_2047_byte_packets =
1759                                 stats.tx_1519_to_2047_byte_packets;
1760         edev->stats.tx_2048_to_4095_byte_packets =
1761                                 stats.tx_2048_to_4095_byte_packets;
1762         edev->stats.tx_4096_to_9216_byte_packets =
1763                                 stats.tx_4096_to_9216_byte_packets;
1764         edev->stats.tx_9217_to_16383_byte_packets =
1765                                 stats.tx_9217_to_16383_byte_packets;
1766         edev->stats.tx_pause_frames = stats.tx_pause_frames;
1767         edev->stats.tx_pfc_frames = stats.tx_pfc_frames;
1768         edev->stats.tx_lpi_entry_count = stats.tx_lpi_entry_count;
1769         edev->stats.tx_total_collisions = stats.tx_total_collisions;
1770         edev->stats.brb_truncates = stats.brb_truncates;
1771         edev->stats.brb_discards = stats.brb_discards;
1772         edev->stats.tx_mac_ctrl_frames = stats.tx_mac_ctrl_frames;
1773 }
1774
1775 static struct rtnl_link_stats64 *qede_get_stats64(
1776                             struct net_device *dev,
1777                             struct rtnl_link_stats64 *stats)
1778 {
1779         struct qede_dev *edev = netdev_priv(dev);
1780
1781         qede_fill_by_demand_stats(edev);
1782
1783         stats->rx_packets = edev->stats.rx_ucast_pkts +
1784                             edev->stats.rx_mcast_pkts +
1785                             edev->stats.rx_bcast_pkts;
1786         stats->tx_packets = edev->stats.tx_ucast_pkts +
1787                             edev->stats.tx_mcast_pkts +
1788                             edev->stats.tx_bcast_pkts;
1789
1790         stats->rx_bytes = edev->stats.rx_ucast_bytes +
1791                           edev->stats.rx_mcast_bytes +
1792                           edev->stats.rx_bcast_bytes;
1793
1794         stats->tx_bytes = edev->stats.tx_ucast_bytes +
1795                           edev->stats.tx_mcast_bytes +
1796                           edev->stats.tx_bcast_bytes;
1797
1798         stats->tx_errors = edev->stats.tx_err_drop_pkts;
1799         stats->multicast = edev->stats.rx_mcast_pkts +
1800                            edev->stats.rx_bcast_pkts;
1801
1802         stats->rx_fifo_errors = edev->stats.no_buff_discards;
1803
1804         stats->collisions = edev->stats.tx_total_collisions;
1805         stats->rx_crc_errors = edev->stats.rx_crc_errors;
1806         stats->rx_frame_errors = edev->stats.rx_align_errors;
1807
1808         return stats;
1809 }
1810
1811 #ifdef CONFIG_QED_SRIOV
1812 static int qede_get_vf_config(struct net_device *dev, int vfidx,
1813                               struct ifla_vf_info *ivi)
1814 {
1815         struct qede_dev *edev = netdev_priv(dev);
1816
1817         if (!edev->ops)
1818                 return -EINVAL;
1819
1820         return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
1821 }
1822
1823 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
1824                             int min_tx_rate, int max_tx_rate)
1825 {
1826         struct qede_dev *edev = netdev_priv(dev);
1827
1828         return edev->ops->iov->set_rate(edev->cdev, vfidx, max_tx_rate,
1829                                         max_tx_rate);
1830 }
1831
1832 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
1833 {
1834         struct qede_dev *edev = netdev_priv(dev);
1835
1836         if (!edev->ops)
1837                 return -EINVAL;
1838
1839         return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
1840 }
1841
1842 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
1843                                   int link_state)
1844 {
1845         struct qede_dev *edev = netdev_priv(dev);
1846
1847         if (!edev->ops)
1848                 return -EINVAL;
1849
1850         return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
1851 }
1852 #endif
1853
1854 static void qede_config_accept_any_vlan(struct qede_dev *edev, bool action)
1855 {
1856         struct qed_update_vport_params params;
1857         int rc;
1858
1859         /* Proceed only if action actually needs to be performed */
1860         if (edev->accept_any_vlan == action)
1861                 return;
1862
1863         memset(&params, 0, sizeof(params));
1864
1865         params.vport_id = 0;
1866         params.accept_any_vlan = action;
1867         params.update_accept_any_vlan_flg = 1;
1868
1869         rc = edev->ops->vport_update(edev->cdev, &params);
1870         if (rc) {
1871                 DP_ERR(edev, "Failed to %s accept-any-vlan\n",
1872                        action ? "enable" : "disable");
1873         } else {
1874                 DP_INFO(edev, "%s accept-any-vlan\n",
1875                         action ? "enabled" : "disabled");
1876                 edev->accept_any_vlan = action;
1877         }
1878 }
1879
1880 static int qede_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
1881 {
1882         struct qede_dev *edev = netdev_priv(dev);
1883         struct qede_vlan *vlan, *tmp;
1884         int rc;
1885
1886         DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan 0x%04x\n", vid);
1887
1888         vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
1889         if (!vlan) {
1890                 DP_INFO(edev, "Failed to allocate struct for vlan\n");
1891                 return -ENOMEM;
1892         }
1893         INIT_LIST_HEAD(&vlan->list);
1894         vlan->vid = vid;
1895         vlan->configured = false;
1896
1897         /* Verify vlan isn't already configured */
1898         list_for_each_entry(tmp, &edev->vlan_list, list) {
1899                 if (tmp->vid == vlan->vid) {
1900                         DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
1901                                    "vlan already configured\n");
1902                         kfree(vlan);
1903                         return -EEXIST;
1904                 }
1905         }
1906
1907         /* If interface is down, cache this VLAN ID and return */
1908         if (edev->state != QEDE_STATE_OPEN) {
1909                 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1910                            "Interface is down, VLAN %d will be configured when interface is up\n",
1911                            vid);
1912                 if (vid != 0)
1913                         edev->non_configured_vlans++;
1914                 list_add(&vlan->list, &edev->vlan_list);
1915
1916                 return 0;
1917         }
1918
1919         /* Check for the filter limit.
1920          * Note - vlan0 has a reserved filter and can be added without
1921          * worrying about quota
1922          */
1923         if ((edev->configured_vlans < edev->dev_info.num_vlan_filters) ||
1924             (vlan->vid == 0)) {
1925                 rc = qede_set_ucast_rx_vlan(edev,
1926                                             QED_FILTER_XCAST_TYPE_ADD,
1927                                             vlan->vid);
1928                 if (rc) {
1929                         DP_ERR(edev, "Failed to configure VLAN %d\n",
1930                                vlan->vid);
1931                         kfree(vlan);
1932                         return -EINVAL;
1933                 }
1934                 vlan->configured = true;
1935
1936                 /* vlan0 filter isn't consuming out of our quota */
1937                 if (vlan->vid != 0)
1938                         edev->configured_vlans++;
1939         } else {
1940                 /* Out of quota; Activate accept-any-VLAN mode */
1941                 if (!edev->non_configured_vlans)
1942                         qede_config_accept_any_vlan(edev, true);
1943
1944                 edev->non_configured_vlans++;
1945         }
1946
1947         list_add(&vlan->list, &edev->vlan_list);
1948
1949         return 0;
1950 }
1951
1952 static void qede_del_vlan_from_list(struct qede_dev *edev,
1953                                     struct qede_vlan *vlan)
1954 {
1955         /* vlan0 filter isn't consuming out of our quota */
1956         if (vlan->vid != 0) {
1957                 if (vlan->configured)
1958                         edev->configured_vlans--;
1959                 else
1960                         edev->non_configured_vlans--;
1961         }
1962
1963         list_del(&vlan->list);
1964         kfree(vlan);
1965 }
1966
1967 static int qede_configure_vlan_filters(struct qede_dev *edev)
1968 {
1969         int rc = 0, real_rc = 0, accept_any_vlan = 0;
1970         struct qed_dev_eth_info *dev_info;
1971         struct qede_vlan *vlan = NULL;
1972
1973         if (list_empty(&edev->vlan_list))
1974                 return 0;
1975
1976         dev_info = &edev->dev_info;
1977
1978         /* Configure non-configured vlans */
1979         list_for_each_entry(vlan, &edev->vlan_list, list) {
1980                 if (vlan->configured)
1981                         continue;
1982
1983                 /* We have used all our credits, now enable accept_any_vlan */
1984                 if ((vlan->vid != 0) &&
1985                     (edev->configured_vlans == dev_info->num_vlan_filters)) {
1986                         accept_any_vlan = 1;
1987                         continue;
1988                 }
1989
1990                 DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan %d\n", vlan->vid);
1991
1992                 rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_ADD,
1993                                             vlan->vid);
1994                 if (rc) {
1995                         DP_ERR(edev, "Failed to configure VLAN %u\n",
1996                                vlan->vid);
1997                         real_rc = rc;
1998                         continue;
1999                 }
2000
2001                 vlan->configured = true;
2002                 /* vlan0 filter doesn't consume our VLAN filter's quota */
2003                 if (vlan->vid != 0) {
2004                         edev->non_configured_vlans--;
2005                         edev->configured_vlans++;
2006                 }
2007         }
2008
2009         /* enable accept_any_vlan mode if we have more VLANs than credits,
2010          * or remove accept_any_vlan mode if we've actually removed
2011          * a non-configured vlan, and all remaining vlans are truly configured.
2012          */
2013
2014         if (accept_any_vlan)
2015                 qede_config_accept_any_vlan(edev, true);
2016         else if (!edev->non_configured_vlans)
2017                 qede_config_accept_any_vlan(edev, false);
2018
2019         return real_rc;
2020 }
2021
2022 static int qede_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
2023 {
2024         struct qede_dev *edev = netdev_priv(dev);
2025         struct qede_vlan *vlan = NULL;
2026         int rc;
2027
2028         DP_VERBOSE(edev, NETIF_MSG_IFDOWN, "Removing vlan 0x%04x\n", vid);
2029
2030         /* Find whether entry exists */
2031         list_for_each_entry(vlan, &edev->vlan_list, list)
2032                 if (vlan->vid == vid)
2033                         break;
2034
2035         if (!vlan || (vlan->vid != vid)) {
2036                 DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
2037                            "Vlan isn't configured\n");
2038                 return 0;
2039         }
2040
2041         if (edev->state != QEDE_STATE_OPEN) {
2042                 /* As interface is already down, we don't have a VPORT
2043                  * instance to remove vlan filter. So just update vlan list
2044                  */
2045                 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
2046                            "Interface is down, removing VLAN from list only\n");
2047                 qede_del_vlan_from_list(edev, vlan);
2048                 return 0;
2049         }
2050
2051         /* Remove vlan */
2052         rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_DEL, vid);
2053         if (rc) {
2054                 DP_ERR(edev, "Failed to remove VLAN %d\n", vid);
2055                 return -EINVAL;
2056         }
2057
2058         qede_del_vlan_from_list(edev, vlan);
2059
2060         /* We have removed a VLAN - try to see if we can
2061          * configure non-configured VLAN from the list.
2062          */
2063         rc = qede_configure_vlan_filters(edev);
2064
2065         return rc;
2066 }
2067
2068 static void qede_vlan_mark_nonconfigured(struct qede_dev *edev)
2069 {
2070         struct qede_vlan *vlan = NULL;
2071
2072         if (list_empty(&edev->vlan_list))
2073                 return;
2074
2075         list_for_each_entry(vlan, &edev->vlan_list, list) {
2076                 if (!vlan->configured)
2077                         continue;
2078
2079                 vlan->configured = false;
2080
2081                 /* vlan0 filter isn't consuming out of our quota */
2082                 if (vlan->vid != 0) {
2083                         edev->non_configured_vlans++;
2084                         edev->configured_vlans--;
2085                 }
2086
2087                 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
2088                            "marked vlan %d as non-configured\n",
2089                            vlan->vid);
2090         }
2091
2092         edev->accept_any_vlan = false;
2093 }
2094
2095 #ifdef CONFIG_QEDE_VXLAN
2096 static void qede_add_vxlan_port(struct net_device *dev,
2097                                 sa_family_t sa_family, __be16 port)
2098 {
2099         struct qede_dev *edev = netdev_priv(dev);
2100         u16 t_port = ntohs(port);
2101
2102         if (edev->vxlan_dst_port)
2103                 return;
2104
2105         edev->vxlan_dst_port = t_port;
2106
2107         DP_VERBOSE(edev, QED_MSG_DEBUG, "Added vxlan port=%d", t_port);
2108
2109         set_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags);
2110         schedule_delayed_work(&edev->sp_task, 0);
2111 }
2112
2113 static void qede_del_vxlan_port(struct net_device *dev,
2114                                 sa_family_t sa_family, __be16 port)
2115 {
2116         struct qede_dev *edev = netdev_priv(dev);
2117         u16 t_port = ntohs(port);
2118
2119         if (t_port != edev->vxlan_dst_port)
2120                 return;
2121
2122         edev->vxlan_dst_port = 0;
2123
2124         DP_VERBOSE(edev, QED_MSG_DEBUG, "Deleted vxlan port=%d", t_port);
2125
2126         set_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags);
2127         schedule_delayed_work(&edev->sp_task, 0);
2128 }
2129 #endif
2130
2131 #ifdef CONFIG_QEDE_GENEVE
2132 static void qede_add_geneve_port(struct net_device *dev,
2133                                  sa_family_t sa_family, __be16 port)
2134 {
2135         struct qede_dev *edev = netdev_priv(dev);
2136         u16 t_port = ntohs(port);
2137
2138         if (edev->geneve_dst_port)
2139                 return;
2140
2141         edev->geneve_dst_port = t_port;
2142
2143         DP_VERBOSE(edev, QED_MSG_DEBUG, "Added geneve port=%d", t_port);
2144         set_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags);
2145         schedule_delayed_work(&edev->sp_task, 0);
2146 }
2147
2148 static void qede_del_geneve_port(struct net_device *dev,
2149                                  sa_family_t sa_family, __be16 port)
2150 {
2151         struct qede_dev *edev = netdev_priv(dev);
2152         u16 t_port = ntohs(port);
2153
2154         if (t_port != edev->geneve_dst_port)
2155                 return;
2156
2157         edev->geneve_dst_port = 0;
2158
2159         DP_VERBOSE(edev, QED_MSG_DEBUG, "Deleted geneve port=%d", t_port);
2160         set_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags);
2161         schedule_delayed_work(&edev->sp_task, 0);
2162 }
2163 #endif
2164
2165 static const struct net_device_ops qede_netdev_ops = {
2166         .ndo_open = qede_open,
2167         .ndo_stop = qede_close,
2168         .ndo_start_xmit = qede_start_xmit,
2169         .ndo_set_rx_mode = qede_set_rx_mode,
2170         .ndo_set_mac_address = qede_set_mac_addr,
2171         .ndo_validate_addr = eth_validate_addr,
2172         .ndo_change_mtu = qede_change_mtu,
2173 #ifdef CONFIG_QED_SRIOV
2174         .ndo_set_vf_mac = qede_set_vf_mac,
2175         .ndo_set_vf_vlan = qede_set_vf_vlan,
2176 #endif
2177         .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
2178         .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
2179         .ndo_get_stats64 = qede_get_stats64,
2180 #ifdef CONFIG_QED_SRIOV
2181         .ndo_set_vf_link_state = qede_set_vf_link_state,
2182         .ndo_set_vf_spoofchk = qede_set_vf_spoofchk,
2183         .ndo_get_vf_config = qede_get_vf_config,
2184         .ndo_set_vf_rate = qede_set_vf_rate,
2185 #endif
2186 #ifdef CONFIG_QEDE_VXLAN
2187         .ndo_add_vxlan_port = qede_add_vxlan_port,
2188         .ndo_del_vxlan_port = qede_del_vxlan_port,
2189 #endif
2190 #ifdef CONFIG_QEDE_GENEVE
2191         .ndo_add_geneve_port = qede_add_geneve_port,
2192         .ndo_del_geneve_port = qede_del_geneve_port,
2193 #endif
2194 };
2195
2196 /* -------------------------------------------------------------------------
2197  * START OF PROBE / REMOVE
2198  * -------------------------------------------------------------------------
2199  */
2200
2201 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
2202                                             struct pci_dev *pdev,
2203                                             struct qed_dev_eth_info *info,
2204                                             u32 dp_module,
2205                                             u8 dp_level)
2206 {
2207         struct net_device *ndev;
2208         struct qede_dev *edev;
2209
2210         ndev = alloc_etherdev_mqs(sizeof(*edev),
2211                                   info->num_queues,
2212                                   info->num_queues);
2213         if (!ndev) {
2214                 pr_err("etherdev allocation failed\n");
2215                 return NULL;
2216         }
2217
2218         edev = netdev_priv(ndev);
2219         edev->ndev = ndev;
2220         edev->cdev = cdev;
2221         edev->pdev = pdev;
2222         edev->dp_module = dp_module;
2223         edev->dp_level = dp_level;
2224         edev->ops = qed_ops;
2225         edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
2226         edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
2227
2228         SET_NETDEV_DEV(ndev, &pdev->dev);
2229
2230         memset(&edev->stats, 0, sizeof(edev->stats));
2231         memcpy(&edev->dev_info, info, sizeof(*info));
2232
2233         edev->num_tc = edev->dev_info.num_tc;
2234
2235         INIT_LIST_HEAD(&edev->vlan_list);
2236
2237         return edev;
2238 }
2239
2240 static void qede_init_ndev(struct qede_dev *edev)
2241 {
2242         struct net_device *ndev = edev->ndev;
2243         struct pci_dev *pdev = edev->pdev;
2244         u32 hw_features;
2245
2246         pci_set_drvdata(pdev, ndev);
2247
2248         ndev->mem_start = edev->dev_info.common.pci_mem_start;
2249         ndev->base_addr = ndev->mem_start;
2250         ndev->mem_end = edev->dev_info.common.pci_mem_end;
2251         ndev->irq = edev->dev_info.common.pci_irq;
2252
2253         ndev->watchdog_timeo = TX_TIMEOUT;
2254
2255         ndev->netdev_ops = &qede_netdev_ops;
2256
2257         qede_set_ethtool_ops(ndev);
2258
2259         /* user-changeble features */
2260         hw_features = NETIF_F_GRO | NETIF_F_SG |
2261                       NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2262                       NETIF_F_TSO | NETIF_F_TSO6;
2263
2264         /* Encap features*/
2265         hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL |
2266                        NETIF_F_TSO_ECN;
2267         ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2268                                 NETIF_F_SG | NETIF_F_TSO | NETIF_F_TSO_ECN |
2269                                 NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2270                                 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_RXCSUM;
2271
2272         ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
2273                               NETIF_F_HIGHDMA;
2274         ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
2275                          NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
2276                          NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
2277
2278         ndev->hw_features = hw_features;
2279
2280         /* Set network device HW mac */
2281         ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
2282 }
2283
2284 /* This function converts from 32b param to two params of level and module
2285  * Input 32b decoding:
2286  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
2287  * 'happy' flow, e.g. memory allocation failed.
2288  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
2289  * and provide important parameters.
2290  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
2291  * module. VERBOSE prints are for tracking the specific flow in low level.
2292  *
2293  * Notice that the level should be that of the lowest required logs.
2294  */
2295 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
2296 {
2297         *p_dp_level = QED_LEVEL_NOTICE;
2298         *p_dp_module = 0;
2299
2300         if (debug & QED_LOG_VERBOSE_MASK) {
2301                 *p_dp_level = QED_LEVEL_VERBOSE;
2302                 *p_dp_module = (debug & 0x3FFFFFFF);
2303         } else if (debug & QED_LOG_INFO_MASK) {
2304                 *p_dp_level = QED_LEVEL_INFO;
2305         } else if (debug & QED_LOG_NOTICE_MASK) {
2306                 *p_dp_level = QED_LEVEL_NOTICE;
2307         }
2308 }
2309
2310 static void qede_free_fp_array(struct qede_dev *edev)
2311 {
2312         if (edev->fp_array) {
2313                 struct qede_fastpath *fp;
2314                 int i;
2315
2316                 for_each_rss(i) {
2317                         fp = &edev->fp_array[i];
2318
2319                         kfree(fp->sb_info);
2320                         kfree(fp->rxq);
2321                         kfree(fp->txqs);
2322                 }
2323                 kfree(edev->fp_array);
2324         }
2325         edev->num_rss = 0;
2326 }
2327
2328 static int qede_alloc_fp_array(struct qede_dev *edev)
2329 {
2330         struct qede_fastpath *fp;
2331         int i;
2332
2333         edev->fp_array = kcalloc(QEDE_RSS_CNT(edev),
2334                                  sizeof(*edev->fp_array), GFP_KERNEL);
2335         if (!edev->fp_array) {
2336                 DP_NOTICE(edev, "fp array allocation failed\n");
2337                 goto err;
2338         }
2339
2340         for_each_rss(i) {
2341                 fp = &edev->fp_array[i];
2342
2343                 fp->sb_info = kcalloc(1, sizeof(*fp->sb_info), GFP_KERNEL);
2344                 if (!fp->sb_info) {
2345                         DP_NOTICE(edev, "sb info struct allocation failed\n");
2346                         goto err;
2347                 }
2348
2349                 fp->rxq = kcalloc(1, sizeof(*fp->rxq), GFP_KERNEL);
2350                 if (!fp->rxq) {
2351                         DP_NOTICE(edev, "RXQ struct allocation failed\n");
2352                         goto err;
2353                 }
2354
2355                 fp->txqs = kcalloc(edev->num_tc, sizeof(*fp->txqs), GFP_KERNEL);
2356                 if (!fp->txqs) {
2357                         DP_NOTICE(edev, "TXQ array allocation failed\n");
2358                         goto err;
2359                 }
2360         }
2361
2362         return 0;
2363 err:
2364         qede_free_fp_array(edev);
2365         return -ENOMEM;
2366 }
2367
2368 static void qede_sp_task(struct work_struct *work)
2369 {
2370         struct qede_dev *edev = container_of(work, struct qede_dev,
2371                                              sp_task.work);
2372         struct qed_dev *cdev = edev->cdev;
2373
2374         mutex_lock(&edev->qede_lock);
2375
2376         if (edev->state == QEDE_STATE_OPEN) {
2377                 if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
2378                         qede_config_rx_mode(edev->ndev);
2379         }
2380
2381         if (test_and_clear_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags)) {
2382                 struct qed_tunn_params tunn_params;
2383
2384                 memset(&tunn_params, 0, sizeof(tunn_params));
2385                 tunn_params.update_vxlan_port = 1;
2386                 tunn_params.vxlan_port = edev->vxlan_dst_port;
2387                 qed_ops->tunn_config(cdev, &tunn_params);
2388         }
2389
2390         if (test_and_clear_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags)) {
2391                 struct qed_tunn_params tunn_params;
2392
2393                 memset(&tunn_params, 0, sizeof(tunn_params));
2394                 tunn_params.update_geneve_port = 1;
2395                 tunn_params.geneve_port = edev->geneve_dst_port;
2396                 qed_ops->tunn_config(cdev, &tunn_params);
2397         }
2398
2399         mutex_unlock(&edev->qede_lock);
2400 }
2401
2402 static void qede_update_pf_params(struct qed_dev *cdev)
2403 {
2404         struct qed_pf_params pf_params;
2405
2406         /* 64 rx + 64 tx */
2407         memset(&pf_params, 0, sizeof(struct qed_pf_params));
2408         pf_params.eth_pf_params.num_cons = 128;
2409         qed_ops->common->update_pf_params(cdev, &pf_params);
2410 }
2411
2412 enum qede_probe_mode {
2413         QEDE_PROBE_NORMAL,
2414 };
2415
2416 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
2417                         bool is_vf, enum qede_probe_mode mode)
2418 {
2419         struct qed_probe_params probe_params;
2420         struct qed_slowpath_params params;
2421         struct qed_dev_eth_info dev_info;
2422         struct qede_dev *edev;
2423         struct qed_dev *cdev;
2424         int rc;
2425
2426         if (unlikely(dp_level & QED_LEVEL_INFO))
2427                 pr_notice("Starting qede probe\n");
2428
2429         memset(&probe_params, 0, sizeof(probe_params));
2430         probe_params.protocol = QED_PROTOCOL_ETH;
2431         probe_params.dp_module = dp_module;
2432         probe_params.dp_level = dp_level;
2433         probe_params.is_vf = is_vf;
2434         cdev = qed_ops->common->probe(pdev, &probe_params);
2435         if (!cdev) {
2436                 rc = -ENODEV;
2437                 goto err0;
2438         }
2439
2440         qede_update_pf_params(cdev);
2441
2442         /* Start the Slowpath-process */
2443         memset(&params, 0, sizeof(struct qed_slowpath_params));
2444         params.int_mode = QED_INT_MODE_MSIX;
2445         params.drv_major = QEDE_MAJOR_VERSION;
2446         params.drv_minor = QEDE_MINOR_VERSION;
2447         params.drv_rev = QEDE_REVISION_VERSION;
2448         params.drv_eng = QEDE_ENGINEERING_VERSION;
2449         strlcpy(params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
2450         rc = qed_ops->common->slowpath_start(cdev, &params);
2451         if (rc) {
2452                 pr_notice("Cannot start slowpath\n");
2453                 goto err1;
2454         }
2455
2456         /* Learn information crucial for qede to progress */
2457         rc = qed_ops->fill_dev_info(cdev, &dev_info);
2458         if (rc)
2459                 goto err2;
2460
2461         edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
2462                                    dp_level);
2463         if (!edev) {
2464                 rc = -ENOMEM;
2465                 goto err2;
2466         }
2467
2468         if (is_vf)
2469                 edev->flags |= QEDE_FLAG_IS_VF;
2470
2471         qede_init_ndev(edev);
2472
2473         rc = register_netdev(edev->ndev);
2474         if (rc) {
2475                 DP_NOTICE(edev, "Cannot register net-device\n");
2476                 goto err3;
2477         }
2478
2479         edev->ops->common->set_id(cdev, edev->ndev->name, DRV_MODULE_VERSION);
2480
2481         edev->ops->register_ops(cdev, &qede_ll_ops, edev);
2482
2483         INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
2484         mutex_init(&edev->qede_lock);
2485
2486         DP_INFO(edev, "Ending successfully qede probe\n");
2487
2488         return 0;
2489
2490 err3:
2491         free_netdev(edev->ndev);
2492 err2:
2493         qed_ops->common->slowpath_stop(cdev);
2494 err1:
2495         qed_ops->common->remove(cdev);
2496 err0:
2497         return rc;
2498 }
2499
2500 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2501 {
2502         bool is_vf = false;
2503         u32 dp_module = 0;
2504         u8 dp_level = 0;
2505
2506         switch ((enum qede_pci_private)id->driver_data) {
2507         case QEDE_PRIVATE_VF:
2508                 if (debug & QED_LOG_VERBOSE_MASK)
2509                         dev_err(&pdev->dev, "Probing a VF\n");
2510                 is_vf = true;
2511                 break;
2512         default:
2513                 if (debug & QED_LOG_VERBOSE_MASK)
2514                         dev_err(&pdev->dev, "Probing a PF\n");
2515         }
2516
2517         qede_config_debug(debug, &dp_module, &dp_level);
2518
2519         return __qede_probe(pdev, dp_module, dp_level, is_vf,
2520                             QEDE_PROBE_NORMAL);
2521 }
2522
2523 enum qede_remove_mode {
2524         QEDE_REMOVE_NORMAL,
2525 };
2526
2527 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
2528 {
2529         struct net_device *ndev = pci_get_drvdata(pdev);
2530         struct qede_dev *edev = netdev_priv(ndev);
2531         struct qed_dev *cdev = edev->cdev;
2532
2533         DP_INFO(edev, "Starting qede_remove\n");
2534
2535         cancel_delayed_work_sync(&edev->sp_task);
2536         unregister_netdev(ndev);
2537
2538         edev->ops->common->set_power_state(cdev, PCI_D0);
2539
2540         pci_set_drvdata(pdev, NULL);
2541
2542         free_netdev(ndev);
2543
2544         /* Use global ops since we've freed edev */
2545         qed_ops->common->slowpath_stop(cdev);
2546         qed_ops->common->remove(cdev);
2547
2548         pr_notice("Ending successfully qede_remove\n");
2549 }
2550
2551 static void qede_remove(struct pci_dev *pdev)
2552 {
2553         __qede_remove(pdev, QEDE_REMOVE_NORMAL);
2554 }
2555
2556 /* -------------------------------------------------------------------------
2557  * START OF LOAD / UNLOAD
2558  * -------------------------------------------------------------------------
2559  */
2560
2561 static int qede_set_num_queues(struct qede_dev *edev)
2562 {
2563         int rc;
2564         u16 rss_num;
2565
2566         /* Setup queues according to possible resources*/
2567         if (edev->req_rss)
2568                 rss_num = edev->req_rss;
2569         else
2570                 rss_num = netif_get_num_default_rss_queues() *
2571                           edev->dev_info.common.num_hwfns;
2572
2573         rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
2574
2575         rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
2576         if (rc > 0) {
2577                 /* Managed to request interrupts for our queues */
2578                 edev->num_rss = rc;
2579                 DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
2580                         QEDE_RSS_CNT(edev), rss_num);
2581                 rc = 0;
2582         }
2583         return rc;
2584 }
2585
2586 static void qede_free_mem_sb(struct qede_dev *edev,
2587                              struct qed_sb_info *sb_info)
2588 {
2589         if (sb_info->sb_virt)
2590                 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
2591                                   (void *)sb_info->sb_virt, sb_info->sb_phys);
2592 }
2593
2594 /* This function allocates fast-path status block memory */
2595 static int qede_alloc_mem_sb(struct qede_dev *edev,
2596                              struct qed_sb_info *sb_info,
2597                              u16 sb_id)
2598 {
2599         struct status_block *sb_virt;
2600         dma_addr_t sb_phys;
2601         int rc;
2602
2603         sb_virt = dma_alloc_coherent(&edev->pdev->dev,
2604                                      sizeof(*sb_virt),
2605                                      &sb_phys, GFP_KERNEL);
2606         if (!sb_virt) {
2607                 DP_ERR(edev, "Status block allocation failed\n");
2608                 return -ENOMEM;
2609         }
2610
2611         rc = edev->ops->common->sb_init(edev->cdev, sb_info,
2612                                         sb_virt, sb_phys, sb_id,
2613                                         QED_SB_TYPE_L2_QUEUE);
2614         if (rc) {
2615                 DP_ERR(edev, "Status block initialization failed\n");
2616                 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
2617                                   sb_virt, sb_phys);
2618                 return rc;
2619         }
2620
2621         return 0;
2622 }
2623
2624 static void qede_free_rx_buffers(struct qede_dev *edev,
2625                                  struct qede_rx_queue *rxq)
2626 {
2627         u16 i;
2628
2629         for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
2630                 struct sw_rx_data *rx_buf;
2631                 struct page *data;
2632
2633                 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
2634                 data = rx_buf->data;
2635
2636                 dma_unmap_page(&edev->pdev->dev,
2637                                rx_buf->mapping,
2638                                PAGE_SIZE, DMA_FROM_DEVICE);
2639
2640                 rx_buf->data = NULL;
2641                 __free_page(data);
2642         }
2643 }
2644
2645 static void qede_free_sge_mem(struct qede_dev *edev,
2646                               struct qede_rx_queue *rxq) {
2647         int i;
2648
2649         if (edev->gro_disable)
2650                 return;
2651
2652         for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
2653                 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
2654                 struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
2655
2656                 if (replace_buf->data) {
2657                         dma_unmap_page(&edev->pdev->dev,
2658                                        dma_unmap_addr(replace_buf, mapping),
2659                                        PAGE_SIZE, DMA_FROM_DEVICE);
2660                         __free_page(replace_buf->data);
2661                 }
2662         }
2663 }
2664
2665 static void qede_free_mem_rxq(struct qede_dev *edev,
2666                               struct qede_rx_queue *rxq)
2667 {
2668         qede_free_sge_mem(edev, rxq);
2669
2670         /* Free rx buffers */
2671         qede_free_rx_buffers(edev, rxq);
2672
2673         /* Free the parallel SW ring */
2674         kfree(rxq->sw_rx_ring);
2675
2676         /* Free the real RQ ring used by FW */
2677         edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
2678         edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
2679 }
2680
2681 static int qede_alloc_rx_buffer(struct qede_dev *edev,
2682                                 struct qede_rx_queue *rxq)
2683 {
2684         struct sw_rx_data *sw_rx_data;
2685         struct eth_rx_bd *rx_bd;
2686         dma_addr_t mapping;
2687         struct page *data;
2688         u16 rx_buf_size;
2689
2690         rx_buf_size = rxq->rx_buf_size;
2691
2692         data = alloc_pages(GFP_ATOMIC, 0);
2693         if (unlikely(!data)) {
2694                 DP_NOTICE(edev, "Failed to allocate Rx data [page]\n");
2695                 return -ENOMEM;
2696         }
2697
2698         /* Map the entire page as it would be used
2699          * for multiple RX buffer segment size mapping.
2700          */
2701         mapping = dma_map_page(&edev->pdev->dev, data, 0,
2702                                PAGE_SIZE, DMA_FROM_DEVICE);
2703         if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
2704                 __free_page(data);
2705                 DP_NOTICE(edev, "Failed to map Rx buffer\n");
2706                 return -ENOMEM;
2707         }
2708
2709         sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
2710         sw_rx_data->page_offset = 0;
2711         sw_rx_data->data = data;
2712         sw_rx_data->mapping = mapping;
2713
2714         /* Advance PROD and get BD pointer */
2715         rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring);
2716         WARN_ON(!rx_bd);
2717         rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping));
2718         rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping));
2719
2720         rxq->sw_rx_prod++;
2721
2722         return 0;
2723 }
2724
2725 static int qede_alloc_sge_mem(struct qede_dev *edev,
2726                               struct qede_rx_queue *rxq)
2727 {
2728         dma_addr_t mapping;
2729         int i;
2730
2731         if (edev->gro_disable)
2732                 return 0;
2733
2734         if (edev->ndev->mtu > PAGE_SIZE) {
2735                 edev->gro_disable = 1;
2736                 return 0;
2737         }
2738
2739         for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
2740                 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
2741                 struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
2742
2743                 replace_buf->data = alloc_pages(GFP_ATOMIC, 0);
2744                 if (unlikely(!replace_buf->data)) {
2745                         DP_NOTICE(edev,
2746                                   "Failed to allocate TPA skb pool [replacement buffer]\n");
2747                         goto err;
2748                 }
2749
2750                 mapping = dma_map_page(&edev->pdev->dev, replace_buf->data, 0,
2751                                        rxq->rx_buf_size, DMA_FROM_DEVICE);
2752                 if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
2753                         DP_NOTICE(edev,
2754                                   "Failed to map TPA replacement buffer\n");
2755                         goto err;
2756                 }
2757
2758                 dma_unmap_addr_set(replace_buf, mapping, mapping);
2759                 tpa_info->replace_buf.page_offset = 0;
2760
2761                 tpa_info->replace_buf_mapping = mapping;
2762                 tpa_info->agg_state = QEDE_AGG_STATE_NONE;
2763         }
2764
2765         return 0;
2766 err:
2767         qede_free_sge_mem(edev, rxq);
2768         edev->gro_disable = 1;
2769         return -ENOMEM;
2770 }
2771
2772 /* This function allocates all memory needed per Rx queue */
2773 static int qede_alloc_mem_rxq(struct qede_dev *edev,
2774                               struct qede_rx_queue *rxq)
2775 {
2776         int i, rc, size;
2777
2778         rxq->num_rx_buffers = edev->q_num_rx_buffers;
2779
2780         rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD +
2781                            edev->ndev->mtu;
2782         if (rxq->rx_buf_size > PAGE_SIZE)
2783                 rxq->rx_buf_size = PAGE_SIZE;
2784
2785         /* Segment size to spilt a page in multiple equal parts */
2786         rxq->rx_buf_seg_size = roundup_pow_of_two(rxq->rx_buf_size);
2787
2788         /* Allocate the parallel driver ring for Rx buffers */
2789         size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
2790         rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
2791         if (!rxq->sw_rx_ring) {
2792                 DP_ERR(edev, "Rx buffers ring allocation failed\n");
2793                 rc = -ENOMEM;
2794                 goto err;
2795         }
2796
2797         /* Allocate FW Rx ring  */
2798         rc = edev->ops->common->chain_alloc(edev->cdev,
2799                                             QED_CHAIN_USE_TO_CONSUME_PRODUCE,
2800                                             QED_CHAIN_MODE_NEXT_PTR,
2801                                             RX_RING_SIZE,
2802                                             sizeof(struct eth_rx_bd),
2803                                             &rxq->rx_bd_ring);
2804
2805         if (rc)
2806                 goto err;
2807
2808         /* Allocate FW completion ring */
2809         rc = edev->ops->common->chain_alloc(edev->cdev,
2810                                             QED_CHAIN_USE_TO_CONSUME,
2811                                             QED_CHAIN_MODE_PBL,
2812                                             RX_RING_SIZE,
2813                                             sizeof(union eth_rx_cqe),
2814                                             &rxq->rx_comp_ring);
2815         if (rc)
2816                 goto err;
2817
2818         /* Allocate buffers for the Rx ring */
2819         for (i = 0; i < rxq->num_rx_buffers; i++) {
2820                 rc = qede_alloc_rx_buffer(edev, rxq);
2821                 if (rc) {
2822                         DP_ERR(edev,
2823                                "Rx buffers allocation failed at index %d\n", i);
2824                         goto err;
2825                 }
2826         }
2827
2828         rc = qede_alloc_sge_mem(edev, rxq);
2829 err:
2830         return rc;
2831 }
2832
2833 static void qede_free_mem_txq(struct qede_dev *edev,
2834                               struct qede_tx_queue *txq)
2835 {
2836         /* Free the parallel SW ring */
2837         kfree(txq->sw_tx_ring);
2838
2839         /* Free the real RQ ring used by FW */
2840         edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
2841 }
2842
2843 /* This function allocates all memory needed per Tx queue */
2844 static int qede_alloc_mem_txq(struct qede_dev *edev,
2845                               struct qede_tx_queue *txq)
2846 {
2847         int size, rc;
2848         union eth_tx_bd_types *p_virt;
2849
2850         txq->num_tx_buffers = edev->q_num_tx_buffers;
2851
2852         /* Allocate the parallel driver ring for Tx buffers */
2853         size = sizeof(*txq->sw_tx_ring) * NUM_TX_BDS_MAX;
2854         txq->sw_tx_ring = kzalloc(size, GFP_KERNEL);
2855         if (!txq->sw_tx_ring) {
2856                 DP_NOTICE(edev, "Tx buffers ring allocation failed\n");
2857                 goto err;
2858         }
2859
2860         rc = edev->ops->common->chain_alloc(edev->cdev,
2861                                             QED_CHAIN_USE_TO_CONSUME_PRODUCE,
2862                                             QED_CHAIN_MODE_PBL,
2863                                             NUM_TX_BDS_MAX,
2864                                             sizeof(*p_virt),
2865                                             &txq->tx_pbl);
2866         if (rc)
2867                 goto err;
2868
2869         return 0;
2870
2871 err:
2872         qede_free_mem_txq(edev, txq);
2873         return -ENOMEM;
2874 }
2875
2876 /* This function frees all memory of a single fp */
2877 static void qede_free_mem_fp(struct qede_dev *edev,
2878                              struct qede_fastpath *fp)
2879 {
2880         int tc;
2881
2882         qede_free_mem_sb(edev, fp->sb_info);
2883
2884         qede_free_mem_rxq(edev, fp->rxq);
2885
2886         for (tc = 0; tc < edev->num_tc; tc++)
2887                 qede_free_mem_txq(edev, &fp->txqs[tc]);
2888 }
2889
2890 /* This function allocates all memory needed for a single fp (i.e. an entity
2891  * which contains status block, one rx queue and multiple per-TC tx queues.
2892  */
2893 static int qede_alloc_mem_fp(struct qede_dev *edev,
2894                              struct qede_fastpath *fp)
2895 {
2896         int rc, tc;
2897
2898         rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->rss_id);
2899         if (rc)
2900                 goto err;
2901
2902         rc = qede_alloc_mem_rxq(edev, fp->rxq);
2903         if (rc)
2904                 goto err;
2905
2906         for (tc = 0; tc < edev->num_tc; tc++) {
2907                 rc = qede_alloc_mem_txq(edev, &fp->txqs[tc]);
2908                 if (rc)
2909                         goto err;
2910         }
2911
2912         return 0;
2913 err:
2914         return rc;
2915 }
2916
2917 static void qede_free_mem_load(struct qede_dev *edev)
2918 {
2919         int i;
2920
2921         for_each_rss(i) {
2922                 struct qede_fastpath *fp = &edev->fp_array[i];
2923
2924                 qede_free_mem_fp(edev, fp);
2925         }
2926 }
2927
2928 /* This function allocates all qede memory at NIC load. */
2929 static int qede_alloc_mem_load(struct qede_dev *edev)
2930 {
2931         int rc = 0, rss_id;
2932
2933         for (rss_id = 0; rss_id < QEDE_RSS_CNT(edev); rss_id++) {
2934                 struct qede_fastpath *fp = &edev->fp_array[rss_id];
2935
2936                 rc = qede_alloc_mem_fp(edev, fp);
2937                 if (rc) {
2938                         DP_ERR(edev,
2939                                "Failed to allocate memory for fastpath - rss id = %d\n",
2940                                rss_id);
2941                         qede_free_mem_load(edev);
2942                         return rc;
2943                 }
2944         }
2945
2946         return 0;
2947 }
2948
2949 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
2950 static void qede_init_fp(struct qede_dev *edev)
2951 {
2952         int rss_id, txq_index, tc;
2953         struct qede_fastpath *fp;
2954
2955         for_each_rss(rss_id) {
2956                 fp = &edev->fp_array[rss_id];
2957
2958                 fp->edev = edev;
2959                 fp->rss_id = rss_id;
2960
2961                 memset((void *)&fp->napi, 0, sizeof(fp->napi));
2962
2963                 memset((void *)fp->sb_info, 0, sizeof(*fp->sb_info));
2964
2965                 memset((void *)fp->rxq, 0, sizeof(*fp->rxq));
2966                 fp->rxq->rxq_id = rss_id;
2967
2968                 memset((void *)fp->txqs, 0, (edev->num_tc * sizeof(*fp->txqs)));
2969                 for (tc = 0; tc < edev->num_tc; tc++) {
2970                         txq_index = tc * QEDE_RSS_CNT(edev) + rss_id;
2971                         fp->txqs[tc].index = txq_index;
2972                 }
2973
2974                 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
2975                          edev->ndev->name, rss_id);
2976         }
2977
2978         edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO);
2979 }
2980
2981 static int qede_set_real_num_queues(struct qede_dev *edev)
2982 {
2983         int rc = 0;
2984
2985         rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_CNT(edev));
2986         if (rc) {
2987                 DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
2988                 return rc;
2989         }
2990         rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_CNT(edev));
2991         if (rc) {
2992                 DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
2993                 return rc;
2994         }
2995
2996         return 0;
2997 }
2998
2999 static void qede_napi_disable_remove(struct qede_dev *edev)
3000 {
3001         int i;
3002
3003         for_each_rss(i) {
3004                 napi_disable(&edev->fp_array[i].napi);
3005
3006                 netif_napi_del(&edev->fp_array[i].napi);
3007         }
3008 }
3009
3010 static void qede_napi_add_enable(struct qede_dev *edev)
3011 {
3012         int i;
3013
3014         /* Add NAPI objects */
3015         for_each_rss(i) {
3016                 netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
3017                                qede_poll, NAPI_POLL_WEIGHT);
3018                 napi_enable(&edev->fp_array[i].napi);
3019         }
3020 }
3021
3022 static void qede_sync_free_irqs(struct qede_dev *edev)
3023 {
3024         int i;
3025
3026         for (i = 0; i < edev->int_info.used_cnt; i++) {
3027                 if (edev->int_info.msix_cnt) {
3028                         synchronize_irq(edev->int_info.msix[i].vector);
3029                         free_irq(edev->int_info.msix[i].vector,
3030                                  &edev->fp_array[i]);
3031                 } else {
3032                         edev->ops->common->simd_handler_clean(edev->cdev, i);
3033                 }
3034         }
3035
3036         edev->int_info.used_cnt = 0;
3037 }
3038
3039 static int qede_req_msix_irqs(struct qede_dev *edev)
3040 {
3041         int i, rc;
3042
3043         /* Sanitize number of interrupts == number of prepared RSS queues */
3044         if (QEDE_RSS_CNT(edev) > edev->int_info.msix_cnt) {
3045                 DP_ERR(edev,
3046                        "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
3047                        QEDE_RSS_CNT(edev), edev->int_info.msix_cnt);
3048                 return -EINVAL;
3049         }
3050
3051         for (i = 0; i < QEDE_RSS_CNT(edev); i++) {
3052                 rc = request_irq(edev->int_info.msix[i].vector,
3053                                  qede_msix_fp_int, 0, edev->fp_array[i].name,
3054                                  &edev->fp_array[i]);
3055                 if (rc) {
3056                         DP_ERR(edev, "Request fp %d irq failed\n", i);
3057                         qede_sync_free_irqs(edev);
3058                         return rc;
3059                 }
3060                 DP_VERBOSE(edev, NETIF_MSG_INTR,
3061                            "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
3062                            edev->fp_array[i].name, i,
3063                            &edev->fp_array[i]);
3064                 edev->int_info.used_cnt++;
3065         }
3066
3067         return 0;
3068 }
3069
3070 static void qede_simd_fp_handler(void *cookie)
3071 {
3072         struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
3073
3074         napi_schedule_irqoff(&fp->napi);
3075 }
3076
3077 static int qede_setup_irqs(struct qede_dev *edev)
3078 {
3079         int i, rc = 0;
3080
3081         /* Learn Interrupt configuration */
3082         rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
3083         if (rc)
3084                 return rc;
3085
3086         if (edev->int_info.msix_cnt) {
3087                 rc = qede_req_msix_irqs(edev);
3088                 if (rc)
3089                         return rc;
3090                 edev->ndev->irq = edev->int_info.msix[0].vector;
3091         } else {
3092                 const struct qed_common_ops *ops;
3093
3094                 /* qed should learn receive the RSS ids and callbacks */
3095                 ops = edev->ops->common;
3096                 for (i = 0; i < QEDE_RSS_CNT(edev); i++)
3097                         ops->simd_handler_config(edev->cdev,
3098                                                  &edev->fp_array[i], i,
3099                                                  qede_simd_fp_handler);
3100                 edev->int_info.used_cnt = QEDE_RSS_CNT(edev);
3101         }
3102         return 0;
3103 }
3104
3105 static int qede_drain_txq(struct qede_dev *edev,
3106                           struct qede_tx_queue *txq,
3107                           bool allow_drain)
3108 {
3109         int rc, cnt = 1000;
3110
3111         while (txq->sw_tx_cons != txq->sw_tx_prod) {
3112                 if (!cnt) {
3113                         if (allow_drain) {
3114                                 DP_NOTICE(edev,
3115                                           "Tx queue[%d] is stuck, requesting MCP to drain\n",
3116                                           txq->index);
3117                                 rc = edev->ops->common->drain(edev->cdev);
3118                                 if (rc)
3119                                         return rc;
3120                                 return qede_drain_txq(edev, txq, false);
3121                         }
3122                         DP_NOTICE(edev,
3123                                   "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
3124                                   txq->index, txq->sw_tx_prod,
3125                                   txq->sw_tx_cons);
3126                         return -ENODEV;
3127                 }
3128                 cnt--;
3129                 usleep_range(1000, 2000);
3130                 barrier();
3131         }
3132
3133         /* FW finished processing, wait for HW to transmit all tx packets */
3134         usleep_range(1000, 2000);
3135
3136         return 0;
3137 }
3138
3139 static int qede_stop_queues(struct qede_dev *edev)
3140 {
3141         struct qed_update_vport_params vport_update_params;
3142         struct qed_dev *cdev = edev->cdev;
3143         int rc, tc, i;
3144
3145         /* Disable the vport */
3146         memset(&vport_update_params, 0, sizeof(vport_update_params));
3147         vport_update_params.vport_id = 0;
3148         vport_update_params.update_vport_active_flg = 1;
3149         vport_update_params.vport_active_flg = 0;
3150         vport_update_params.update_rss_flg = 0;
3151
3152         rc = edev->ops->vport_update(cdev, &vport_update_params);
3153         if (rc) {
3154                 DP_ERR(edev, "Failed to update vport\n");
3155                 return rc;
3156         }
3157
3158         /* Flush Tx queues. If needed, request drain from MCP */
3159         for_each_rss(i) {
3160                 struct qede_fastpath *fp = &edev->fp_array[i];
3161
3162                 for (tc = 0; tc < edev->num_tc; tc++) {
3163                         struct qede_tx_queue *txq = &fp->txqs[tc];
3164
3165                         rc = qede_drain_txq(edev, txq, true);
3166                         if (rc)
3167                                 return rc;
3168                 }
3169         }
3170
3171         /* Stop all Queues in reverse order*/
3172         for (i = QEDE_RSS_CNT(edev) - 1; i >= 0; i--) {
3173                 struct qed_stop_rxq_params rx_params;
3174
3175                 /* Stop the Tx Queue(s)*/
3176                 for (tc = 0; tc < edev->num_tc; tc++) {
3177                         struct qed_stop_txq_params tx_params;
3178
3179                         tx_params.rss_id = i;
3180                         tx_params.tx_queue_id = tc * QEDE_RSS_CNT(edev) + i;
3181                         rc = edev->ops->q_tx_stop(cdev, &tx_params);
3182                         if (rc) {
3183                                 DP_ERR(edev, "Failed to stop TXQ #%d\n",
3184                                        tx_params.tx_queue_id);
3185                                 return rc;
3186                         }
3187                 }
3188
3189                 /* Stop the Rx Queue*/
3190                 memset(&rx_params, 0, sizeof(rx_params));
3191                 rx_params.rss_id = i;
3192                 rx_params.rx_queue_id = i;
3193
3194                 rc = edev->ops->q_rx_stop(cdev, &rx_params);
3195                 if (rc) {
3196                         DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
3197                         return rc;
3198                 }
3199         }
3200
3201         /* Stop the vport */
3202         rc = edev->ops->vport_stop(cdev, 0);
3203         if (rc)
3204                 DP_ERR(edev, "Failed to stop VPORT\n");
3205
3206         return rc;
3207 }
3208
3209 static int qede_start_queues(struct qede_dev *edev)
3210 {
3211         int rc, tc, i;
3212         int vlan_removal_en = 1;
3213         struct qed_dev *cdev = edev->cdev;
3214         struct qed_update_vport_params vport_update_params;
3215         struct qed_queue_start_common_params q_params;
3216         struct qed_dev_info *qed_info = &edev->dev_info.common;
3217         struct qed_start_vport_params start = {0};
3218         bool reset_rss_indir = false;
3219
3220         if (!edev->num_rss) {
3221                 DP_ERR(edev,
3222                        "Cannot update V-VPORT as active as there are no Rx queues\n");
3223                 return -EINVAL;
3224         }
3225
3226         start.gro_enable = !edev->gro_disable;
3227         start.mtu = edev->ndev->mtu;
3228         start.vport_id = 0;
3229         start.drop_ttl0 = true;
3230         start.remove_inner_vlan = vlan_removal_en;
3231
3232         rc = edev->ops->vport_start(cdev, &start);
3233
3234         if (rc) {
3235                 DP_ERR(edev, "Start V-PORT failed %d\n", rc);
3236                 return rc;
3237         }
3238
3239         DP_VERBOSE(edev, NETIF_MSG_IFUP,
3240                    "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
3241                    start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
3242
3243         for_each_rss(i) {
3244                 struct qede_fastpath *fp = &edev->fp_array[i];
3245                 dma_addr_t phys_table = fp->rxq->rx_comp_ring.pbl.p_phys_table;
3246
3247                 memset(&q_params, 0, sizeof(q_params));
3248                 q_params.rss_id = i;
3249                 q_params.queue_id = i;
3250                 q_params.vport_id = 0;
3251                 q_params.sb = fp->sb_info->igu_sb_id;
3252                 q_params.sb_idx = RX_PI;
3253
3254                 rc = edev->ops->q_rx_start(cdev, &q_params,
3255                                            fp->rxq->rx_buf_size,
3256                                            fp->rxq->rx_bd_ring.p_phys_addr,
3257                                            phys_table,
3258                                            fp->rxq->rx_comp_ring.page_cnt,
3259                                            &fp->rxq->hw_rxq_prod_addr);
3260                 if (rc) {
3261                         DP_ERR(edev, "Start RXQ #%d failed %d\n", i, rc);
3262                         return rc;
3263                 }
3264
3265                 fp->rxq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[RX_PI];
3266
3267                 qede_update_rx_prod(edev, fp->rxq);
3268
3269                 for (tc = 0; tc < edev->num_tc; tc++) {
3270                         struct qede_tx_queue *txq = &fp->txqs[tc];
3271                         int txq_index = tc * QEDE_RSS_CNT(edev) + i;
3272
3273                         memset(&q_params, 0, sizeof(q_params));
3274                         q_params.rss_id = i;
3275                         q_params.queue_id = txq_index;
3276                         q_params.vport_id = 0;
3277                         q_params.sb = fp->sb_info->igu_sb_id;
3278                         q_params.sb_idx = TX_PI(tc);
3279
3280                         rc = edev->ops->q_tx_start(cdev, &q_params,
3281                                                    txq->tx_pbl.pbl.p_phys_table,
3282                                                    txq->tx_pbl.page_cnt,
3283                                                    &txq->doorbell_addr);
3284                         if (rc) {
3285                                 DP_ERR(edev, "Start TXQ #%d failed %d\n",
3286                                        txq_index, rc);
3287                                 return rc;
3288                         }
3289
3290                         txq->hw_cons_ptr =
3291                                 &fp->sb_info->sb_virt->pi_array[TX_PI(tc)];
3292                         SET_FIELD(txq->tx_db.data.params,
3293                                   ETH_DB_DATA_DEST, DB_DEST_XCM);
3294                         SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD,
3295                                   DB_AGG_CMD_SET);
3296                         SET_FIELD(txq->tx_db.data.params,
3297                                   ETH_DB_DATA_AGG_VAL_SEL,
3298                                   DQ_XCM_ETH_TX_BD_PROD_CMD);
3299
3300                         txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
3301                 }
3302         }
3303
3304         /* Prepare and send the vport enable */
3305         memset(&vport_update_params, 0, sizeof(vport_update_params));
3306         vport_update_params.vport_id = start.vport_id;
3307         vport_update_params.update_vport_active_flg = 1;
3308         vport_update_params.vport_active_flg = 1;
3309
3310         if ((qed_info->mf_mode == QED_MF_NPAR || pci_num_vf(edev->pdev)) &&
3311             qed_info->tx_switching) {
3312                 vport_update_params.update_tx_switching_flg = 1;
3313                 vport_update_params.tx_switching_flg = 1;
3314         }
3315
3316         /* Fill struct with RSS params */
3317         if (QEDE_RSS_CNT(edev) > 1) {
3318                 vport_update_params.update_rss_flg = 1;
3319
3320                 /* Need to validate current RSS config uses valid entries */
3321                 for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) {
3322                         if (edev->rss_params.rss_ind_table[i] >=
3323                             edev->num_rss) {
3324                                 reset_rss_indir = true;
3325                                 break;
3326                         }
3327                 }
3328
3329                 if (!(edev->rss_params_inited & QEDE_RSS_INDIR_INITED) ||
3330                     reset_rss_indir) {
3331                         u16 val;
3332
3333                         for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) {
3334                                 u16 indir_val;
3335
3336                                 val = QEDE_RSS_CNT(edev);
3337                                 indir_val = ethtool_rxfh_indir_default(i, val);
3338                                 edev->rss_params.rss_ind_table[i] = indir_val;
3339                         }
3340                         edev->rss_params_inited |= QEDE_RSS_INDIR_INITED;
3341                 }
3342
3343                 if (!(edev->rss_params_inited & QEDE_RSS_KEY_INITED)) {
3344                         netdev_rss_key_fill(edev->rss_params.rss_key,
3345                                             sizeof(edev->rss_params.rss_key));
3346                         edev->rss_params_inited |= QEDE_RSS_KEY_INITED;
3347                 }
3348
3349                 if (!(edev->rss_params_inited & QEDE_RSS_CAPS_INITED)) {
3350                         edev->rss_params.rss_caps = QED_RSS_IPV4 |
3351                                                     QED_RSS_IPV6 |
3352                                                     QED_RSS_IPV4_TCP |
3353                                                     QED_RSS_IPV6_TCP;
3354                         edev->rss_params_inited |= QEDE_RSS_CAPS_INITED;
3355                 }
3356
3357                 memcpy(&vport_update_params.rss_params, &edev->rss_params,
3358                        sizeof(vport_update_params.rss_params));
3359         } else {
3360                 memset(&vport_update_params.rss_params, 0,
3361                        sizeof(vport_update_params.rss_params));
3362         }
3363
3364         rc = edev->ops->vport_update(cdev, &vport_update_params);
3365         if (rc) {
3366                 DP_ERR(edev, "Update V-PORT failed %d\n", rc);
3367                 return rc;
3368         }
3369
3370         return 0;
3371 }
3372
3373 static int qede_set_mcast_rx_mac(struct qede_dev *edev,
3374                                  enum qed_filter_xcast_params_type opcode,
3375                                  unsigned char *mac, int num_macs)
3376 {
3377         struct qed_filter_params filter_cmd;
3378         int i;
3379
3380         memset(&filter_cmd, 0, sizeof(filter_cmd));
3381         filter_cmd.type = QED_FILTER_TYPE_MCAST;
3382         filter_cmd.filter.mcast.type = opcode;
3383         filter_cmd.filter.mcast.num = num_macs;
3384
3385         for (i = 0; i < num_macs; i++, mac += ETH_ALEN)
3386                 ether_addr_copy(filter_cmd.filter.mcast.mac[i], mac);
3387
3388         return edev->ops->filter_config(edev->cdev, &filter_cmd);
3389 }
3390
3391 enum qede_unload_mode {
3392         QEDE_UNLOAD_NORMAL,
3393 };
3394
3395 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode)
3396 {
3397         struct qed_link_params link_params;
3398         int rc;
3399
3400         DP_INFO(edev, "Starting qede unload\n");
3401
3402         mutex_lock(&edev->qede_lock);
3403         edev->state = QEDE_STATE_CLOSED;
3404
3405         /* Close OS Tx */
3406         netif_tx_disable(edev->ndev);
3407         netif_carrier_off(edev->ndev);
3408
3409         /* Reset the link */
3410         memset(&link_params, 0, sizeof(link_params));
3411         link_params.link_up = false;
3412         edev->ops->common->set_link(edev->cdev, &link_params);
3413         rc = qede_stop_queues(edev);
3414         if (rc) {
3415                 qede_sync_free_irqs(edev);
3416                 goto out;
3417         }
3418
3419         DP_INFO(edev, "Stopped Queues\n");
3420
3421         qede_vlan_mark_nonconfigured(edev);
3422         edev->ops->fastpath_stop(edev->cdev);
3423
3424         /* Release the interrupts */
3425         qede_sync_free_irqs(edev);
3426         edev->ops->common->set_fp_int(edev->cdev, 0);
3427
3428         qede_napi_disable_remove(edev);
3429
3430         qede_free_mem_load(edev);
3431         qede_free_fp_array(edev);
3432
3433 out:
3434         mutex_unlock(&edev->qede_lock);
3435         DP_INFO(edev, "Ending qede unload\n");
3436 }
3437
3438 enum qede_load_mode {
3439         QEDE_LOAD_NORMAL,
3440 };
3441
3442 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode)
3443 {
3444         struct qed_link_params link_params;
3445         struct qed_link_output link_output;
3446         int rc;
3447
3448         DP_INFO(edev, "Starting qede load\n");
3449
3450         rc = qede_set_num_queues(edev);
3451         if (rc)
3452                 goto err0;
3453
3454         rc = qede_alloc_fp_array(edev);
3455         if (rc)
3456                 goto err0;
3457
3458         qede_init_fp(edev);
3459
3460         rc = qede_alloc_mem_load(edev);
3461         if (rc)
3462                 goto err1;
3463         DP_INFO(edev, "Allocated %d RSS queues on %d TC/s\n",
3464                 QEDE_RSS_CNT(edev), edev->num_tc);
3465
3466         rc = qede_set_real_num_queues(edev);
3467         if (rc)
3468                 goto err2;
3469
3470         qede_napi_add_enable(edev);
3471         DP_INFO(edev, "Napi added and enabled\n");
3472
3473         rc = qede_setup_irqs(edev);
3474         if (rc)
3475                 goto err3;
3476         DP_INFO(edev, "Setup IRQs succeeded\n");
3477
3478         rc = qede_start_queues(edev);
3479         if (rc)
3480                 goto err4;
3481         DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
3482
3483         /* Add primary mac and set Rx filters */
3484         ether_addr_copy(edev->primary_mac, edev->ndev->dev_addr);
3485
3486         mutex_lock(&edev->qede_lock);
3487         edev->state = QEDE_STATE_OPEN;
3488         mutex_unlock(&edev->qede_lock);
3489
3490         /* Program un-configured VLANs */
3491         qede_configure_vlan_filters(edev);
3492
3493         /* Ask for link-up using current configuration */
3494         memset(&link_params, 0, sizeof(link_params));
3495         link_params.link_up = true;
3496         edev->ops->common->set_link(edev->cdev, &link_params);
3497
3498         /* Query whether link is already-up */
3499         memset(&link_output, 0, sizeof(link_output));
3500         edev->ops->common->get_link(edev->cdev, &link_output);
3501         qede_link_update(edev, &link_output);
3502
3503         DP_INFO(edev, "Ending successfully qede load\n");
3504
3505         return 0;
3506
3507 err4:
3508         qede_sync_free_irqs(edev);
3509         memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
3510 err3:
3511         qede_napi_disable_remove(edev);
3512 err2:
3513         qede_free_mem_load(edev);
3514 err1:
3515         edev->ops->common->set_fp_int(edev->cdev, 0);
3516         qede_free_fp_array(edev);
3517         edev->num_rss = 0;
3518 err0:
3519         return rc;
3520 }
3521
3522 void qede_reload(struct qede_dev *edev,
3523                  void (*func)(struct qede_dev *, union qede_reload_args *),
3524                  union qede_reload_args *args)
3525 {
3526         qede_unload(edev, QEDE_UNLOAD_NORMAL);
3527         /* Call function handler to update parameters
3528          * needed for function load.
3529          */
3530         if (func)
3531                 func(edev, args);
3532
3533         qede_load(edev, QEDE_LOAD_NORMAL);
3534
3535         mutex_lock(&edev->qede_lock);
3536         qede_config_rx_mode(edev->ndev);
3537         mutex_unlock(&edev->qede_lock);
3538 }
3539
3540 /* called with rtnl_lock */
3541 static int qede_open(struct net_device *ndev)
3542 {
3543         struct qede_dev *edev = netdev_priv(ndev);
3544         int rc;
3545
3546         netif_carrier_off(ndev);
3547
3548         edev->ops->common->set_power_state(edev->cdev, PCI_D0);
3549
3550         rc = qede_load(edev, QEDE_LOAD_NORMAL);
3551
3552         if (rc)
3553                 return rc;
3554
3555 #ifdef CONFIG_QEDE_VXLAN
3556         vxlan_get_rx_port(ndev);
3557 #endif
3558 #ifdef CONFIG_QEDE_GENEVE
3559         geneve_get_rx_port(ndev);
3560 #endif
3561         return 0;
3562 }
3563
3564 static int qede_close(struct net_device *ndev)
3565 {
3566         struct qede_dev *edev = netdev_priv(ndev);
3567
3568         qede_unload(edev, QEDE_UNLOAD_NORMAL);
3569
3570         return 0;
3571 }
3572
3573 static void qede_link_update(void *dev, struct qed_link_output *link)
3574 {
3575         struct qede_dev *edev = dev;
3576
3577         if (!netif_running(edev->ndev)) {
3578                 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n");
3579                 return;
3580         }
3581
3582         if (link->link_up) {
3583                 if (!netif_carrier_ok(edev->ndev)) {
3584                         DP_NOTICE(edev, "Link is up\n");
3585                         netif_tx_start_all_queues(edev->ndev);
3586                         netif_carrier_on(edev->ndev);
3587                 }
3588         } else {
3589                 if (netif_carrier_ok(edev->ndev)) {
3590                         DP_NOTICE(edev, "Link is down\n");
3591                         netif_tx_disable(edev->ndev);
3592                         netif_carrier_off(edev->ndev);
3593                 }
3594         }
3595 }
3596
3597 static int qede_set_mac_addr(struct net_device *ndev, void *p)
3598 {
3599         struct qede_dev *edev = netdev_priv(ndev);
3600         struct sockaddr *addr = p;
3601         int rc;
3602
3603         ASSERT_RTNL(); /* @@@TBD To be removed */
3604
3605         DP_INFO(edev, "Set_mac_addr called\n");
3606
3607         if (!is_valid_ether_addr(addr->sa_data)) {
3608                 DP_NOTICE(edev, "The MAC address is not valid\n");
3609                 return -EFAULT;
3610         }
3611
3612         if (!edev->ops->check_mac(edev->cdev, addr->sa_data)) {
3613                 DP_NOTICE(edev, "qed prevents setting MAC\n");
3614                 return -EINVAL;
3615         }
3616
3617         ether_addr_copy(ndev->dev_addr, addr->sa_data);
3618
3619         if (!netif_running(ndev))  {
3620                 DP_NOTICE(edev, "The device is currently down\n");
3621                 return 0;
3622         }
3623
3624         /* Remove the previous primary mac */
3625         rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
3626                                    edev->primary_mac);
3627         if (rc)
3628                 return rc;
3629
3630         /* Add MAC filter according to the new unicast HW MAC address */
3631         ether_addr_copy(edev->primary_mac, ndev->dev_addr);
3632         return qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
3633                                       edev->primary_mac);
3634 }
3635
3636 static int
3637 qede_configure_mcast_filtering(struct net_device *ndev,
3638                                enum qed_filter_rx_mode_type *accept_flags)
3639 {
3640         struct qede_dev *edev = netdev_priv(ndev);
3641         unsigned char *mc_macs, *temp;
3642         struct netdev_hw_addr *ha;
3643         int rc = 0, mc_count;
3644         size_t size;
3645
3646         size = 64 * ETH_ALEN;
3647
3648         mc_macs = kzalloc(size, GFP_KERNEL);
3649         if (!mc_macs) {
3650                 DP_NOTICE(edev,
3651                           "Failed to allocate memory for multicast MACs\n");
3652                 rc = -ENOMEM;
3653                 goto exit;
3654         }
3655
3656         temp = mc_macs;
3657
3658         /* Remove all previously configured MAC filters */
3659         rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
3660                                    mc_macs, 1);
3661         if (rc)
3662                 goto exit;
3663
3664         netif_addr_lock_bh(ndev);
3665
3666         mc_count = netdev_mc_count(ndev);
3667         if (mc_count < 64) {
3668                 netdev_for_each_mc_addr(ha, ndev) {
3669                         ether_addr_copy(temp, ha->addr);
3670                         temp += ETH_ALEN;
3671                 }
3672         }
3673
3674         netif_addr_unlock_bh(ndev);
3675
3676         /* Check for all multicast @@@TBD resource allocation */
3677         if ((ndev->flags & IFF_ALLMULTI) ||
3678             (mc_count > 64)) {
3679                 if (*accept_flags == QED_FILTER_RX_MODE_TYPE_REGULAR)
3680                         *accept_flags = QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC;
3681         } else {
3682                 /* Add all multicast MAC filters */
3683                 rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
3684                                            mc_macs, mc_count);
3685         }
3686
3687 exit:
3688         kfree(mc_macs);
3689         return rc;
3690 }
3691
3692 static void qede_set_rx_mode(struct net_device *ndev)
3693 {
3694         struct qede_dev *edev = netdev_priv(ndev);
3695
3696         DP_INFO(edev, "qede_set_rx_mode called\n");
3697
3698         if (edev->state != QEDE_STATE_OPEN) {
3699                 DP_INFO(edev,
3700                         "qede_set_rx_mode called while interface is down\n");
3701         } else {
3702                 set_bit(QEDE_SP_RX_MODE, &edev->sp_flags);
3703                 schedule_delayed_work(&edev->sp_task, 0);
3704         }
3705 }
3706
3707 /* Must be called with qede_lock held */
3708 static void qede_config_rx_mode(struct net_device *ndev)
3709 {
3710         enum qed_filter_rx_mode_type accept_flags = QED_FILTER_TYPE_UCAST;
3711         struct qede_dev *edev = netdev_priv(ndev);
3712         struct qed_filter_params rx_mode;
3713         unsigned char *uc_macs, *temp;
3714         struct netdev_hw_addr *ha;
3715         int rc, uc_count;
3716         size_t size;
3717
3718         netif_addr_lock_bh(ndev);
3719
3720         uc_count = netdev_uc_count(ndev);
3721         size = uc_count * ETH_ALEN;
3722
3723         uc_macs = kzalloc(size, GFP_ATOMIC);
3724         if (!uc_macs) {
3725                 DP_NOTICE(edev, "Failed to allocate memory for unicast MACs\n");
3726                 netif_addr_unlock_bh(ndev);
3727                 return;
3728         }
3729
3730         temp = uc_macs;
3731         netdev_for_each_uc_addr(ha, ndev) {
3732                 ether_addr_copy(temp, ha->addr);
3733                 temp += ETH_ALEN;
3734         }
3735
3736         netif_addr_unlock_bh(ndev);
3737
3738         /* Configure the struct for the Rx mode */
3739         memset(&rx_mode, 0, sizeof(struct qed_filter_params));
3740         rx_mode.type = QED_FILTER_TYPE_RX_MODE;
3741
3742         /* Remove all previous unicast secondary macs and multicast macs
3743          * (configrue / leave the primary mac)
3744          */
3745         rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_REPLACE,
3746                                    edev->primary_mac);
3747         if (rc)
3748                 goto out;
3749
3750         /* Check for promiscuous */
3751         if ((ndev->flags & IFF_PROMISC) ||
3752             (uc_count > 15)) { /* @@@TBD resource allocation - 1 */
3753                 accept_flags = QED_FILTER_RX_MODE_TYPE_PROMISC;
3754         } else {
3755                 /* Add MAC filters according to the unicast secondary macs */
3756                 int i;
3757
3758                 temp = uc_macs;
3759                 for (i = 0; i < uc_count; i++) {
3760                         rc = qede_set_ucast_rx_mac(edev,
3761                                                    QED_FILTER_XCAST_TYPE_ADD,
3762                                                    temp);
3763                         if (rc)
3764                                 goto out;
3765
3766                         temp += ETH_ALEN;
3767                 }
3768
3769                 rc = qede_configure_mcast_filtering(ndev, &accept_flags);
3770                 if (rc)
3771                         goto out;
3772         }
3773
3774         /* take care of VLAN mode */
3775         if (ndev->flags & IFF_PROMISC) {
3776                 qede_config_accept_any_vlan(edev, true);
3777         } else if (!edev->non_configured_vlans) {
3778                 /* It's possible that accept_any_vlan mode is set due to a
3779                  * previous setting of IFF_PROMISC. If vlan credits are
3780                  * sufficient, disable accept_any_vlan.
3781                  */
3782                 qede_config_accept_any_vlan(edev, false);
3783         }
3784
3785         rx_mode.filter.accept_flags = accept_flags;
3786         edev->ops->filter_config(edev->cdev, &rx_mode);
3787 out:
3788         kfree(uc_macs);
3789 }