leds: lm3532: Introduce the lm3532 LED driver
[linux-2.6-block.git] / drivers / net / ethernet / qlogic / qed / qed_int.c
1 /* QLogic qed NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32
33 #include <linux/types.h>
34 #include <asm/byteorder.h>
35 #include <linux/io.h>
36 #include <linux/bitops.h>
37 #include <linux/delay.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/errno.h>
40 #include <linux/interrupt.h>
41 #include <linux/kernel.h>
42 #include <linux/pci.h>
43 #include <linux/slab.h>
44 #include <linux/string.h>
45 #include "qed.h"
46 #include "qed_hsi.h"
47 #include "qed_hw.h"
48 #include "qed_init_ops.h"
49 #include "qed_int.h"
50 #include "qed_mcp.h"
51 #include "qed_reg_addr.h"
52 #include "qed_sp.h"
53 #include "qed_sriov.h"
54 #include "qed_vf.h"
55
56 struct qed_pi_info {
57         qed_int_comp_cb_t       comp_cb;
58         void                    *cookie;
59 };
60
61 struct qed_sb_sp_info {
62         struct qed_sb_info sb_info;
63
64         /* per protocol index data */
65         struct qed_pi_info pi_info_arr[PIS_PER_SB_E4];
66 };
67
68 enum qed_attention_type {
69         QED_ATTN_TYPE_ATTN,
70         QED_ATTN_TYPE_PARITY,
71 };
72
73 #define SB_ATTN_ALIGNED_SIZE(p_hwfn) \
74         ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn)
75
76 struct aeu_invert_reg_bit {
77         char bit_name[30];
78
79 #define ATTENTION_PARITY                (1 << 0)
80
81 #define ATTENTION_LENGTH_MASK           (0x00000ff0)
82 #define ATTENTION_LENGTH_SHIFT          (4)
83 #define ATTENTION_LENGTH(flags)         (((flags) & ATTENTION_LENGTH_MASK) >> \
84                                          ATTENTION_LENGTH_SHIFT)
85 #define ATTENTION_SINGLE                BIT(ATTENTION_LENGTH_SHIFT)
86 #define ATTENTION_PAR                   (ATTENTION_SINGLE | ATTENTION_PARITY)
87 #define ATTENTION_PAR_INT               ((2 << ATTENTION_LENGTH_SHIFT) | \
88                                          ATTENTION_PARITY)
89
90 /* Multiple bits start with this offset */
91 #define ATTENTION_OFFSET_MASK           (0x000ff000)
92 #define ATTENTION_OFFSET_SHIFT          (12)
93
94 #define ATTENTION_BB_MASK               (0x00700000)
95 #define ATTENTION_BB_SHIFT              (20)
96 #define ATTENTION_BB(value)             (value << ATTENTION_BB_SHIFT)
97 #define ATTENTION_BB_DIFFERENT          BIT(23)
98
99         unsigned int flags;
100
101         /* Callback to call if attention will be triggered */
102         int (*cb)(struct qed_hwfn *p_hwfn);
103
104         enum block_id block_index;
105 };
106
107 struct aeu_invert_reg {
108         struct aeu_invert_reg_bit bits[32];
109 };
110
111 #define MAX_ATTN_GRPS           (8)
112 #define NUM_ATTN_REGS           (9)
113
114 /* Specific HW attention callbacks */
115 static int qed_mcp_attn_cb(struct qed_hwfn *p_hwfn)
116 {
117         u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE);
118
119         /* This might occur on certain instances; Log it once then mask it */
120         DP_INFO(p_hwfn->cdev, "MCP_REG_CPU_STATE: %08x - Masking...\n",
121                 tmp);
122         qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK,
123                0xffffffff);
124
125         return 0;
126 }
127
128 #define QED_PSWHST_ATTENTION_INCORRECT_ACCESS           (0x1)
129 #define ATTENTION_INCORRECT_ACCESS_WR_MASK              (0x1)
130 #define ATTENTION_INCORRECT_ACCESS_WR_SHIFT             (0)
131 #define ATTENTION_INCORRECT_ACCESS_CLIENT_MASK          (0xf)
132 #define ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT         (1)
133 #define ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK        (0x1)
134 #define ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT       (5)
135 #define ATTENTION_INCORRECT_ACCESS_VF_ID_MASK           (0xff)
136 #define ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT          (6)
137 #define ATTENTION_INCORRECT_ACCESS_PF_ID_MASK           (0xf)
138 #define ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT          (14)
139 #define ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK         (0xff)
140 #define ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT        (18)
141 static int qed_pswhst_attn_cb(struct qed_hwfn *p_hwfn)
142 {
143         u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
144                          PSWHST_REG_INCORRECT_ACCESS_VALID);
145
146         if (tmp & QED_PSWHST_ATTENTION_INCORRECT_ACCESS) {
147                 u32 addr, data, length;
148
149                 addr = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
150                               PSWHST_REG_INCORRECT_ACCESS_ADDRESS);
151                 data = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
152                               PSWHST_REG_INCORRECT_ACCESS_DATA);
153                 length = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
154                                 PSWHST_REG_INCORRECT_ACCESS_LENGTH);
155
156                 DP_INFO(p_hwfn->cdev,
157                         "Incorrect access to %08x of length %08x - PF [%02x] VF [%04x] [valid %02x] client [%02x] write [%02x] Byte-Enable [%04x] [%08x]\n",
158                         addr, length,
159                         (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_PF_ID),
160                         (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_VF_ID),
161                         (u8) GET_FIELD(data,
162                                        ATTENTION_INCORRECT_ACCESS_VF_VALID),
163                         (u8) GET_FIELD(data,
164                                        ATTENTION_INCORRECT_ACCESS_CLIENT),
165                         (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_WR),
166                         (u8) GET_FIELD(data,
167                                        ATTENTION_INCORRECT_ACCESS_BYTE_EN),
168                         data);
169         }
170
171         return 0;
172 }
173
174 #define QED_GRC_ATTENTION_VALID_BIT     (1 << 0)
175 #define QED_GRC_ATTENTION_ADDRESS_MASK  (0x7fffff)
176 #define QED_GRC_ATTENTION_ADDRESS_SHIFT (0)
177 #define QED_GRC_ATTENTION_RDWR_BIT      (1 << 23)
178 #define QED_GRC_ATTENTION_MASTER_MASK   (0xf)
179 #define QED_GRC_ATTENTION_MASTER_SHIFT  (24)
180 #define QED_GRC_ATTENTION_PF_MASK       (0xf)
181 #define QED_GRC_ATTENTION_PF_SHIFT      (0)
182 #define QED_GRC_ATTENTION_VF_MASK       (0xff)
183 #define QED_GRC_ATTENTION_VF_SHIFT      (4)
184 #define QED_GRC_ATTENTION_PRIV_MASK     (0x3)
185 #define QED_GRC_ATTENTION_PRIV_SHIFT    (14)
186 #define QED_GRC_ATTENTION_PRIV_VF       (0)
187 static const char *attn_master_to_str(u8 master)
188 {
189         switch (master) {
190         case 1: return "PXP";
191         case 2: return "MCP";
192         case 3: return "MSDM";
193         case 4: return "PSDM";
194         case 5: return "YSDM";
195         case 6: return "USDM";
196         case 7: return "TSDM";
197         case 8: return "XSDM";
198         case 9: return "DBU";
199         case 10: return "DMAE";
200         default:
201                 return "Unknown";
202         }
203 }
204
205 static int qed_grc_attn_cb(struct qed_hwfn *p_hwfn)
206 {
207         u32 tmp, tmp2;
208
209         /* We've already cleared the timeout interrupt register, so we learn
210          * of interrupts via the validity register
211          */
212         tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
213                      GRC_REG_TIMEOUT_ATTN_ACCESS_VALID);
214         if (!(tmp & QED_GRC_ATTENTION_VALID_BIT))
215                 goto out;
216
217         /* Read the GRC timeout information */
218         tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
219                      GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0);
220         tmp2 = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
221                       GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1);
222
223         DP_INFO(p_hwfn->cdev,
224                 "GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s] [PF: %02x %s %02x]\n",
225                 tmp2, tmp,
226                 (tmp & QED_GRC_ATTENTION_RDWR_BIT) ? "Write to" : "Read from",
227                 GET_FIELD(tmp, QED_GRC_ATTENTION_ADDRESS) << 2,
228                 attn_master_to_str(GET_FIELD(tmp, QED_GRC_ATTENTION_MASTER)),
229                 GET_FIELD(tmp2, QED_GRC_ATTENTION_PF),
230                 (GET_FIELD(tmp2, QED_GRC_ATTENTION_PRIV) ==
231                  QED_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Irrelevant)",
232                 GET_FIELD(tmp2, QED_GRC_ATTENTION_VF));
233
234 out:
235         /* Regardles of anything else, clean the validity bit */
236         qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
237                GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0);
238         return 0;
239 }
240
241 #define PGLUE_ATTENTION_VALID                   (1 << 29)
242 #define PGLUE_ATTENTION_RD_VALID                (1 << 26)
243 #define PGLUE_ATTENTION_DETAILS_PFID_MASK       (0xf)
244 #define PGLUE_ATTENTION_DETAILS_PFID_SHIFT      (20)
245 #define PGLUE_ATTENTION_DETAILS_VF_VALID_MASK   (0x1)
246 #define PGLUE_ATTENTION_DETAILS_VF_VALID_SHIFT  (19)
247 #define PGLUE_ATTENTION_DETAILS_VFID_MASK       (0xff)
248 #define PGLUE_ATTENTION_DETAILS_VFID_SHIFT      (24)
249 #define PGLUE_ATTENTION_DETAILS2_WAS_ERR_MASK   (0x1)
250 #define PGLUE_ATTENTION_DETAILS2_WAS_ERR_SHIFT  (21)
251 #define PGLUE_ATTENTION_DETAILS2_BME_MASK       (0x1)
252 #define PGLUE_ATTENTION_DETAILS2_BME_SHIFT      (22)
253 #define PGLUE_ATTENTION_DETAILS2_FID_EN_MASK    (0x1)
254 #define PGLUE_ATTENTION_DETAILS2_FID_EN_SHIFT   (23)
255 #define PGLUE_ATTENTION_ICPL_VALID              (1 << 23)
256 #define PGLUE_ATTENTION_ZLR_VALID               (1 << 25)
257 #define PGLUE_ATTENTION_ILT_VALID               (1 << 23)
258
259 int qed_pglueb_rbc_attn_handler(struct qed_hwfn *p_hwfn,
260                                 struct qed_ptt *p_ptt)
261 {
262         u32 tmp;
263
264         tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS2);
265         if (tmp & PGLUE_ATTENTION_VALID) {
266                 u32 addr_lo, addr_hi, details;
267
268                 addr_lo = qed_rd(p_hwfn, p_ptt,
269                                  PGLUE_B_REG_TX_ERR_WR_ADD_31_0);
270                 addr_hi = qed_rd(p_hwfn, p_ptt,
271                                  PGLUE_B_REG_TX_ERR_WR_ADD_63_32);
272                 details = qed_rd(p_hwfn, p_ptt,
273                                  PGLUE_B_REG_TX_ERR_WR_DETAILS);
274
275                 DP_NOTICE(p_hwfn,
276                           "Illegal write by chip to [%08x:%08x] blocked.\n"
277                           "Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n"
278                           "Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
279                           addr_hi, addr_lo, details,
280                           (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID),
281                           (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID),
282                           GET_FIELD(details,
283                                     PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0,
284                           tmp,
285                           GET_FIELD(tmp,
286                                     PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0,
287                           GET_FIELD(tmp,
288                                     PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0,
289                           GET_FIELD(tmp,
290                                     PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0);
291         }
292
293         tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_RD_DETAILS2);
294         if (tmp & PGLUE_ATTENTION_RD_VALID) {
295                 u32 addr_lo, addr_hi, details;
296
297                 addr_lo = qed_rd(p_hwfn, p_ptt,
298                                  PGLUE_B_REG_TX_ERR_RD_ADD_31_0);
299                 addr_hi = qed_rd(p_hwfn, p_ptt,
300                                  PGLUE_B_REG_TX_ERR_RD_ADD_63_32);
301                 details = qed_rd(p_hwfn, p_ptt,
302                                  PGLUE_B_REG_TX_ERR_RD_DETAILS);
303
304                 DP_NOTICE(p_hwfn,
305                           "Illegal read by chip from [%08x:%08x] blocked.\n"
306                           "Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n"
307                           "Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
308                           addr_hi, addr_lo, details,
309                           (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID),
310                           (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID),
311                           GET_FIELD(details,
312                                     PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0,
313                           tmp,
314                           GET_FIELD(tmp,
315                                     PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0,
316                           GET_FIELD(tmp,
317                                     PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0,
318                           GET_FIELD(tmp,
319                                     PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0);
320         }
321
322         tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL);
323         if (tmp & PGLUE_ATTENTION_ICPL_VALID)
324                 DP_NOTICE(p_hwfn, "ICPL error - %08x\n", tmp);
325
326         tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS);
327         if (tmp & PGLUE_ATTENTION_ZLR_VALID) {
328                 u32 addr_hi, addr_lo;
329
330                 addr_lo = qed_rd(p_hwfn, p_ptt,
331                                  PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0);
332                 addr_hi = qed_rd(p_hwfn, p_ptt,
333                                  PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32);
334
335                 DP_NOTICE(p_hwfn, "ZLR error - %08x [Address %08x:%08x]\n",
336                           tmp, addr_hi, addr_lo);
337         }
338
339         tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_ILT_ERR_DETAILS2);
340         if (tmp & PGLUE_ATTENTION_ILT_VALID) {
341                 u32 addr_hi, addr_lo, details;
342
343                 addr_lo = qed_rd(p_hwfn, p_ptt,
344                                  PGLUE_B_REG_VF_ILT_ERR_ADD_31_0);
345                 addr_hi = qed_rd(p_hwfn, p_ptt,
346                                  PGLUE_B_REG_VF_ILT_ERR_ADD_63_32);
347                 details = qed_rd(p_hwfn, p_ptt,
348                                  PGLUE_B_REG_VF_ILT_ERR_DETAILS);
349
350                 DP_NOTICE(p_hwfn,
351                           "ILT error - Details %08x Details2 %08x [Address %08x:%08x]\n",
352                           details, tmp, addr_hi, addr_lo);
353         }
354
355         /* Clear the indications */
356         qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_LATCHED_ERRORS_CLR, BIT(2));
357
358         return 0;
359 }
360
361 static int qed_pglueb_rbc_attn_cb(struct qed_hwfn *p_hwfn)
362 {
363         return qed_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_dpc_ptt);
364 }
365
366 #define QED_DORQ_ATTENTION_REASON_MASK  (0xfffff)
367 #define QED_DORQ_ATTENTION_OPAQUE_MASK  (0xffff)
368 #define QED_DORQ_ATTENTION_OPAQUE_SHIFT (0x0)
369 #define QED_DORQ_ATTENTION_SIZE_MASK            (0x7f)
370 #define QED_DORQ_ATTENTION_SIZE_SHIFT           (16)
371
372 #define QED_DB_REC_COUNT                        1000
373 #define QED_DB_REC_INTERVAL                     100
374
375 static int qed_db_rec_flush_queue(struct qed_hwfn *p_hwfn,
376                                   struct qed_ptt *p_ptt)
377 {
378         u32 count = QED_DB_REC_COUNT;
379         u32 usage = 1;
380
381         /* wait for usage to zero or count to run out. This is necessary since
382          * EDPM doorbell transactions can take multiple 64b cycles, and as such
383          * can "split" over the pci. Possibly, the doorbell drop can happen with
384          * half an EDPM in the queue and other half dropped. Another EDPM
385          * doorbell to the same address (from doorbell recovery mechanism or
386          * from the doorbelling entity) could have first half dropped and second
387          * half interpreted as continuation of the first. To prevent such
388          * malformed doorbells from reaching the device, flush the queue before
389          * releasing the overflow sticky indication.
390          */
391         while (count-- && usage) {
392                 usage = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_USAGE_CNT);
393                 udelay(QED_DB_REC_INTERVAL);
394         }
395
396         /* should have been depleted by now */
397         if (usage) {
398                 DP_NOTICE(p_hwfn->cdev,
399                           "DB recovery: doorbell usage failed to zero after %d usec. usage was %x\n",
400                           QED_DB_REC_INTERVAL * QED_DB_REC_COUNT, usage);
401                 return -EBUSY;
402         }
403
404         return 0;
405 }
406
407 int qed_db_rec_handler(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
408 {
409         u32 overflow;
410         int rc;
411
412         overflow = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY);
413         DP_NOTICE(p_hwfn, "PF Overflow sticky 0x%x\n", overflow);
414         if (!overflow) {
415                 qed_db_recovery_execute(p_hwfn, DB_REC_ONCE);
416                 return 0;
417         }
418
419         if (qed_edpm_enabled(p_hwfn)) {
420                 rc = qed_db_rec_flush_queue(p_hwfn, p_ptt);
421                 if (rc)
422                         return rc;
423         }
424
425         /* Flush any pending (e)dpm as they may never arrive */
426         qed_wr(p_hwfn, p_ptt, DORQ_REG_DPM_FORCE_ABORT, 0x1);
427
428         /* Release overflow sticky indication (stop silently dropping everything) */
429         qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0);
430
431         /* Repeat all last doorbells (doorbell drop recovery) */
432         qed_db_recovery_execute(p_hwfn, DB_REC_REAL_DEAL);
433
434         return 0;
435 }
436
437 static int qed_dorq_attn_cb(struct qed_hwfn *p_hwfn)
438 {
439         u32 int_sts, first_drop_reason, details, address, all_drops_reason;
440         struct qed_ptt *p_ptt = p_hwfn->p_dpc_ptt;
441         int rc;
442
443         int_sts = qed_rd(p_hwfn, p_ptt, DORQ_REG_INT_STS);
444         DP_NOTICE(p_hwfn->cdev, "DORQ attention. int_sts was %x\n", int_sts);
445
446         /* int_sts may be zero since all PFs were interrupted for doorbell
447          * overflow but another one already handled it. Can abort here. If
448          * This PF also requires overflow recovery we will be interrupted again.
449          * The masked almost full indication may also be set. Ignoring.
450          */
451         if (!(int_sts & ~DORQ_REG_INT_STS_DORQ_FIFO_AFULL))
452                 return 0;
453
454         /* check if db_drop or overflow happened */
455         if (int_sts & (DORQ_REG_INT_STS_DB_DROP |
456                        DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR)) {
457                 /* Obtain data about db drop/overflow */
458                 first_drop_reason = qed_rd(p_hwfn, p_ptt,
459                                            DORQ_REG_DB_DROP_REASON) &
460                     QED_DORQ_ATTENTION_REASON_MASK;
461                 details = qed_rd(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS);
462                 address = qed_rd(p_hwfn, p_ptt,
463                                  DORQ_REG_DB_DROP_DETAILS_ADDRESS);
464                 all_drops_reason = qed_rd(p_hwfn, p_ptt,
465                                           DORQ_REG_DB_DROP_DETAILS_REASON);
466
467                 /* Log info */
468                 DP_NOTICE(p_hwfn->cdev,
469                           "Doorbell drop occurred\n"
470                           "Address\t\t0x%08x\t(second BAR address)\n"
471                           "FID\t\t0x%04x\t\t(Opaque FID)\n"
472                           "Size\t\t0x%04x\t\t(in bytes)\n"
473                           "1st drop reason\t0x%08x\t(details on first drop since last handling)\n"
474                           "Sticky reasons\t0x%08x\t(all drop reasons since last handling)\n",
475                           address,
476                           GET_FIELD(details, QED_DORQ_ATTENTION_OPAQUE),
477                           GET_FIELD(details, QED_DORQ_ATTENTION_SIZE) * 4,
478                           first_drop_reason, all_drops_reason);
479
480                 rc = qed_db_rec_handler(p_hwfn, p_ptt);
481                 qed_periodic_db_rec_start(p_hwfn);
482                 if (rc)
483                         return rc;
484
485                 /* Clear the doorbell drop details and prepare for next drop */
486                 qed_wr(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS_REL, 0);
487
488                 /* Mark interrupt as handled (note: even if drop was due to a different
489                  * reason than overflow we mark as handled)
490                  */
491                 qed_wr(p_hwfn,
492                        p_ptt,
493                        DORQ_REG_INT_STS_WR,
494                        DORQ_REG_INT_STS_DB_DROP |
495                        DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR);
496
497                 /* If there are no indications other than drop indications, success */
498                 if ((int_sts & ~(DORQ_REG_INT_STS_DB_DROP |
499                                  DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR |
500                                  DORQ_REG_INT_STS_DORQ_FIFO_AFULL)) == 0)
501                         return 0;
502         }
503
504         /* Some other indication was present - non recoverable */
505         DP_INFO(p_hwfn, "DORQ fatal attention\n");
506
507         return -EINVAL;
508 }
509
510 /* Instead of major changes to the data-structure, we have a some 'special'
511  * identifiers for sources that changed meaning between adapters.
512  */
513 enum aeu_invert_reg_special_type {
514         AEU_INVERT_REG_SPECIAL_CNIG_0,
515         AEU_INVERT_REG_SPECIAL_CNIG_1,
516         AEU_INVERT_REG_SPECIAL_CNIG_2,
517         AEU_INVERT_REG_SPECIAL_CNIG_3,
518         AEU_INVERT_REG_SPECIAL_MAX,
519 };
520
521 static struct aeu_invert_reg_bit
522 aeu_descs_special[AEU_INVERT_REG_SPECIAL_MAX] = {
523         {"CNIG port 0", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
524         {"CNIG port 1", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
525         {"CNIG port 2", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
526         {"CNIG port 3", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
527 };
528
529 /* Notice aeu_invert_reg must be defined in the same order of bits as HW;  */
530 static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] = {
531         {
532                 {       /* After Invert 1 */
533                         {"GPIO0 function%d",
534                          (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID},
535                 }
536         },
537
538         {
539                 {       /* After Invert 2 */
540                         {"PGLUE config_space", ATTENTION_SINGLE,
541                          NULL, MAX_BLOCK_ID},
542                         {"PGLUE misc_flr", ATTENTION_SINGLE,
543                          NULL, MAX_BLOCK_ID},
544                         {"PGLUE B RBC", ATTENTION_PAR_INT,
545                          qed_pglueb_rbc_attn_cb, BLOCK_PGLUE_B},
546                         {"PGLUE misc_mctp", ATTENTION_SINGLE,
547                          NULL, MAX_BLOCK_ID},
548                         {"Flash event", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
549                         {"SMB event", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
550                         {"Main Power", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
551                         {"SW timers #%d", (8 << ATTENTION_LENGTH_SHIFT) |
552                                           (1 << ATTENTION_OFFSET_SHIFT),
553                          NULL, MAX_BLOCK_ID},
554                         {"PCIE glue/PXP VPD %d",
555                          (16 << ATTENTION_LENGTH_SHIFT), NULL, BLOCK_PGLCS},
556                 }
557         },
558
559         {
560                 {       /* After Invert 3 */
561                         {"General Attention %d",
562                          (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID},
563                 }
564         },
565
566         {
567                 {       /* After Invert 4 */
568                         {"General Attention 32", ATTENTION_SINGLE,
569                          NULL, MAX_BLOCK_ID},
570                         {"General Attention %d",
571                          (2 << ATTENTION_LENGTH_SHIFT) |
572                          (33 << ATTENTION_OFFSET_SHIFT), NULL, MAX_BLOCK_ID},
573                         {"General Attention 35", ATTENTION_SINGLE,
574                          NULL, MAX_BLOCK_ID},
575                         {"NWS Parity",
576                          ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
577                          ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_0),
578                          NULL, BLOCK_NWS},
579                         {"NWS Interrupt",
580                          ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
581                          ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_1),
582                          NULL, BLOCK_NWS},
583                         {"NWM Parity",
584                          ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
585                          ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_2),
586                          NULL, BLOCK_NWM},
587                         {"NWM Interrupt",
588                          ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
589                          ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_3),
590                          NULL, BLOCK_NWM},
591                         {"MCP CPU", ATTENTION_SINGLE,
592                          qed_mcp_attn_cb, MAX_BLOCK_ID},
593                         {"MCP Watchdog timer", ATTENTION_SINGLE,
594                          NULL, MAX_BLOCK_ID},
595                         {"MCP M2P", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
596                         {"AVS stop status ready", ATTENTION_SINGLE,
597                          NULL, MAX_BLOCK_ID},
598                         {"MSTAT", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID},
599                         {"MSTAT per-path", ATTENTION_PAR_INT,
600                          NULL, MAX_BLOCK_ID},
601                         {"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT),
602                          NULL, MAX_BLOCK_ID},
603                         {"NIG", ATTENTION_PAR_INT, NULL, BLOCK_NIG},
604                         {"BMB/OPTE/MCP", ATTENTION_PAR_INT, NULL, BLOCK_BMB},
605                         {"BTB", ATTENTION_PAR_INT, NULL, BLOCK_BTB},
606                         {"BRB", ATTENTION_PAR_INT, NULL, BLOCK_BRB},
607                         {"PRS", ATTENTION_PAR_INT, NULL, BLOCK_PRS},
608                 }
609         },
610
611         {
612                 {       /* After Invert 5 */
613                         {"SRC", ATTENTION_PAR_INT, NULL, BLOCK_SRC},
614                         {"PB Client1", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB1},
615                         {"PB Client2", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB2},
616                         {"RPB", ATTENTION_PAR_INT, NULL, BLOCK_RPB},
617                         {"PBF", ATTENTION_PAR_INT, NULL, BLOCK_PBF},
618                         {"QM", ATTENTION_PAR_INT, NULL, BLOCK_QM},
619                         {"TM", ATTENTION_PAR_INT, NULL, BLOCK_TM},
620                         {"MCM",  ATTENTION_PAR_INT, NULL, BLOCK_MCM},
621                         {"MSDM", ATTENTION_PAR_INT, NULL, BLOCK_MSDM},
622                         {"MSEM", ATTENTION_PAR_INT, NULL, BLOCK_MSEM},
623                         {"PCM", ATTENTION_PAR_INT, NULL, BLOCK_PCM},
624                         {"PSDM", ATTENTION_PAR_INT, NULL, BLOCK_PSDM},
625                         {"PSEM", ATTENTION_PAR_INT, NULL, BLOCK_PSEM},
626                         {"TCM", ATTENTION_PAR_INT, NULL, BLOCK_TCM},
627                         {"TSDM", ATTENTION_PAR_INT, NULL, BLOCK_TSDM},
628                         {"TSEM", ATTENTION_PAR_INT, NULL, BLOCK_TSEM},
629                 }
630         },
631
632         {
633                 {       /* After Invert 6 */
634                         {"UCM", ATTENTION_PAR_INT, NULL, BLOCK_UCM},
635                         {"USDM", ATTENTION_PAR_INT, NULL, BLOCK_USDM},
636                         {"USEM", ATTENTION_PAR_INT, NULL, BLOCK_USEM},
637                         {"XCM", ATTENTION_PAR_INT, NULL, BLOCK_XCM},
638                         {"XSDM", ATTENTION_PAR_INT, NULL, BLOCK_XSDM},
639                         {"XSEM", ATTENTION_PAR_INT, NULL, BLOCK_XSEM},
640                         {"YCM", ATTENTION_PAR_INT, NULL, BLOCK_YCM},
641                         {"YSDM", ATTENTION_PAR_INT, NULL, BLOCK_YSDM},
642                         {"YSEM", ATTENTION_PAR_INT, NULL, BLOCK_YSEM},
643                         {"XYLD", ATTENTION_PAR_INT, NULL, BLOCK_XYLD},
644                         {"TMLD", ATTENTION_PAR_INT, NULL, BLOCK_TMLD},
645                         {"MYLD", ATTENTION_PAR_INT, NULL, BLOCK_MULD},
646                         {"YULD", ATTENTION_PAR_INT, NULL, BLOCK_YULD},
647                         {"DORQ", ATTENTION_PAR_INT,
648                          qed_dorq_attn_cb, BLOCK_DORQ},
649                         {"DBG", ATTENTION_PAR_INT, NULL, BLOCK_DBG},
650                         {"IPC", ATTENTION_PAR_INT, NULL, BLOCK_IPC},
651                 }
652         },
653
654         {
655                 {       /* After Invert 7 */
656                         {"CCFC", ATTENTION_PAR_INT, NULL, BLOCK_CCFC},
657                         {"CDU", ATTENTION_PAR_INT, NULL, BLOCK_CDU},
658                         {"DMAE", ATTENTION_PAR_INT, NULL, BLOCK_DMAE},
659                         {"IGU", ATTENTION_PAR_INT, NULL, BLOCK_IGU},
660                         {"ATC", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID},
661                         {"CAU", ATTENTION_PAR_INT, NULL, BLOCK_CAU},
662                         {"PTU", ATTENTION_PAR_INT, NULL, BLOCK_PTU},
663                         {"PRM", ATTENTION_PAR_INT, NULL, BLOCK_PRM},
664                         {"TCFC", ATTENTION_PAR_INT, NULL, BLOCK_TCFC},
665                         {"RDIF", ATTENTION_PAR_INT, NULL, BLOCK_RDIF},
666                         {"TDIF", ATTENTION_PAR_INT, NULL, BLOCK_TDIF},
667                         {"RSS", ATTENTION_PAR_INT, NULL, BLOCK_RSS},
668                         {"MISC", ATTENTION_PAR_INT, NULL, BLOCK_MISC},
669                         {"MISCS", ATTENTION_PAR_INT, NULL, BLOCK_MISCS},
670                         {"PCIE", ATTENTION_PAR, NULL, BLOCK_PCIE},
671                         {"Vaux PCI core", ATTENTION_SINGLE, NULL, BLOCK_PGLCS},
672                         {"PSWRQ", ATTENTION_PAR_INT, NULL, BLOCK_PSWRQ},
673                 }
674         },
675
676         {
677                 {       /* After Invert 8 */
678                         {"PSWRQ (pci_clk)", ATTENTION_PAR_INT,
679                          NULL, BLOCK_PSWRQ2},
680                         {"PSWWR", ATTENTION_PAR_INT, NULL, BLOCK_PSWWR},
681                         {"PSWWR (pci_clk)", ATTENTION_PAR_INT,
682                          NULL, BLOCK_PSWWR2},
683                         {"PSWRD", ATTENTION_PAR_INT, NULL, BLOCK_PSWRD},
684                         {"PSWRD (pci_clk)", ATTENTION_PAR_INT,
685                          NULL, BLOCK_PSWRD2},
686                         {"PSWHST", ATTENTION_PAR_INT,
687                          qed_pswhst_attn_cb, BLOCK_PSWHST},
688                         {"PSWHST (pci_clk)", ATTENTION_PAR_INT,
689                          NULL, BLOCK_PSWHST2},
690                         {"GRC", ATTENTION_PAR_INT,
691                          qed_grc_attn_cb, BLOCK_GRC},
692                         {"CPMU", ATTENTION_PAR_INT, NULL, BLOCK_CPMU},
693                         {"NCSI", ATTENTION_PAR_INT, NULL, BLOCK_NCSI},
694                         {"MSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
695                         {"PSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
696                         {"TSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
697                         {"USEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
698                         {"XSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
699                         {"YSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
700                         {"pxp_misc_mps", ATTENTION_PAR, NULL, BLOCK_PGLCS},
701                         {"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE,
702                          NULL, BLOCK_PGLCS},
703                         {"PERST_B assertion", ATTENTION_SINGLE,
704                          NULL, MAX_BLOCK_ID},
705                         {"PERST_B deassertion", ATTENTION_SINGLE,
706                          NULL, MAX_BLOCK_ID},
707                         {"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT),
708                          NULL, MAX_BLOCK_ID},
709                 }
710         },
711
712         {
713                 {       /* After Invert 9 */
714                         {"MCP Latched memory", ATTENTION_PAR,
715                          NULL, MAX_BLOCK_ID},
716                         {"MCP Latched scratchpad cache", ATTENTION_SINGLE,
717                          NULL, MAX_BLOCK_ID},
718                         {"MCP Latched ump_tx", ATTENTION_PAR,
719                          NULL, MAX_BLOCK_ID},
720                         {"MCP Latched scratchpad", ATTENTION_PAR,
721                          NULL, MAX_BLOCK_ID},
722                         {"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT),
723                          NULL, MAX_BLOCK_ID},
724                 }
725         },
726 };
727
728 static struct aeu_invert_reg_bit *
729 qed_int_aeu_translate(struct qed_hwfn *p_hwfn,
730                       struct aeu_invert_reg_bit *p_bit)
731 {
732         if (!QED_IS_BB(p_hwfn->cdev))
733                 return p_bit;
734
735         if (!(p_bit->flags & ATTENTION_BB_DIFFERENT))
736                 return p_bit;
737
738         return &aeu_descs_special[(p_bit->flags & ATTENTION_BB_MASK) >>
739                                   ATTENTION_BB_SHIFT];
740 }
741
742 static bool qed_int_is_parity_flag(struct qed_hwfn *p_hwfn,
743                                    struct aeu_invert_reg_bit *p_bit)
744 {
745         return !!(qed_int_aeu_translate(p_hwfn, p_bit)->flags &
746                    ATTENTION_PARITY);
747 }
748
749 #define ATTN_STATE_BITS         (0xfff)
750 #define ATTN_BITS_MASKABLE      (0x3ff)
751 struct qed_sb_attn_info {
752         /* Virtual & Physical address of the SB */
753         struct atten_status_block       *sb_attn;
754         dma_addr_t                      sb_phys;
755
756         /* Last seen running index */
757         u16                             index;
758
759         /* A mask of the AEU bits resulting in a parity error */
760         u32                             parity_mask[NUM_ATTN_REGS];
761
762         /* A pointer to the attention description structure */
763         struct aeu_invert_reg           *p_aeu_desc;
764
765         /* Previously asserted attentions, which are still unasserted */
766         u16                             known_attn;
767
768         /* Cleanup address for the link's general hw attention */
769         u32                             mfw_attn_addr;
770 };
771
772 static inline u16 qed_attn_update_idx(struct qed_hwfn *p_hwfn,
773                                       struct qed_sb_attn_info *p_sb_desc)
774 {
775         u16 rc = 0, index;
776
777         /* Make certain HW write took affect */
778         mmiowb();
779
780         index = le16_to_cpu(p_sb_desc->sb_attn->sb_index);
781         if (p_sb_desc->index != index) {
782                 p_sb_desc->index        = index;
783                 rc                    = QED_SB_ATT_IDX;
784         }
785
786         /* Make certain we got a consistent view with HW */
787         mmiowb();
788
789         return rc;
790 }
791
792 /**
793  *  @brief qed_int_assertion - handles asserted attention bits
794  *
795  *  @param p_hwfn
796  *  @param asserted_bits newly asserted bits
797  *  @return int
798  */
799 static int qed_int_assertion(struct qed_hwfn *p_hwfn, u16 asserted_bits)
800 {
801         struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
802         u32 igu_mask;
803
804         /* Mask the source of the attention in the IGU */
805         igu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE);
806         DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n",
807                    igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE));
808         igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE);
809         qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask);
810
811         DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
812                    "inner known ATTN state: 0x%04x --> 0x%04x\n",
813                    sb_attn_sw->known_attn,
814                    sb_attn_sw->known_attn | asserted_bits);
815         sb_attn_sw->known_attn |= asserted_bits;
816
817         /* Handle MCP events */
818         if (asserted_bits & 0x100) {
819                 qed_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt);
820                 /* Clean the MCP attention */
821                 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
822                        sb_attn_sw->mfw_attn_addr, 0);
823         }
824
825         DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
826                       GTT_BAR0_MAP_REG_IGU_CMD +
827                       ((IGU_CMD_ATTN_BIT_SET_UPPER -
828                         IGU_CMD_INT_ACK_BASE) << 3),
829                       (u32)asserted_bits);
830
831         DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "set cmd IGU: 0x%04x\n",
832                    asserted_bits);
833
834         return 0;
835 }
836
837 static void qed_int_attn_print(struct qed_hwfn *p_hwfn,
838                                enum block_id id,
839                                enum dbg_attn_type type, bool b_clear)
840 {
841         struct dbg_attn_block_result attn_results;
842         enum dbg_status status;
843
844         memset(&attn_results, 0, sizeof(attn_results));
845
846         status = qed_dbg_read_attn(p_hwfn, p_hwfn->p_dpc_ptt, id, type,
847                                    b_clear, &attn_results);
848         if (status != DBG_STATUS_OK)
849                 DP_NOTICE(p_hwfn,
850                           "Failed to parse attention information [status: %s]\n",
851                           qed_dbg_get_status_str(status));
852         else
853                 qed_dbg_parse_attn(p_hwfn, &attn_results);
854 }
855
856 /**
857  * @brief qed_int_deassertion_aeu_bit - handles the effects of a single
858  * cause of the attention
859  *
860  * @param p_hwfn
861  * @param p_aeu - descriptor of an AEU bit which caused the attention
862  * @param aeu_en_reg - register offset of the AEU enable reg. which configured
863  *  this bit to this group.
864  * @param bit_index - index of this bit in the aeu_en_reg
865  *
866  * @return int
867  */
868 static int
869 qed_int_deassertion_aeu_bit(struct qed_hwfn *p_hwfn,
870                             struct aeu_invert_reg_bit *p_aeu,
871                             u32 aeu_en_reg,
872                             const char *p_bit_name, u32 bitmask)
873 {
874         bool b_fatal = false;
875         int rc = -EINVAL;
876         u32 val;
877
878         DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n",
879                 p_bit_name, bitmask);
880
881         /* Call callback before clearing the interrupt status */
882         if (p_aeu->cb) {
883                 DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n",
884                         p_bit_name);
885                 rc = p_aeu->cb(p_hwfn);
886         }
887
888         if (rc)
889                 b_fatal = true;
890
891         /* Print HW block interrupt registers */
892         if (p_aeu->block_index != MAX_BLOCK_ID)
893                 qed_int_attn_print(p_hwfn, p_aeu->block_index,
894                                    ATTN_TYPE_INTERRUPT, !b_fatal);
895
896
897         /* If the attention is benign, no need to prevent it */
898         if (!rc)
899                 goto out;
900
901         /* Prevent this Attention from being asserted in the future */
902         val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
903         qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & ~bitmask));
904         DP_INFO(p_hwfn, "`%s' - Disabled future attentions\n",
905                 p_bit_name);
906
907 out:
908         return rc;
909 }
910
911 /**
912  * @brief qed_int_deassertion_parity - handle a single parity AEU source
913  *
914  * @param p_hwfn
915  * @param p_aeu - descriptor of an AEU bit which caused the parity
916  * @param aeu_en_reg - address of the AEU enable register
917  * @param bit_index
918  */
919 static void qed_int_deassertion_parity(struct qed_hwfn *p_hwfn,
920                                        struct aeu_invert_reg_bit *p_aeu,
921                                        u32 aeu_en_reg, u8 bit_index)
922 {
923         u32 block_id = p_aeu->block_index, mask, val;
924
925         DP_NOTICE(p_hwfn->cdev,
926                   "%s parity attention is set [address 0x%08x, bit %d]\n",
927                   p_aeu->bit_name, aeu_en_reg, bit_index);
928
929         if (block_id != MAX_BLOCK_ID) {
930                 qed_int_attn_print(p_hwfn, block_id, ATTN_TYPE_PARITY, false);
931
932                 /* In BB, there's a single parity bit for several blocks */
933                 if (block_id == BLOCK_BTB) {
934                         qed_int_attn_print(p_hwfn, BLOCK_OPTE,
935                                            ATTN_TYPE_PARITY, false);
936                         qed_int_attn_print(p_hwfn, BLOCK_MCP,
937                                            ATTN_TYPE_PARITY, false);
938                 }
939         }
940
941         /* Prevent this parity error from being re-asserted */
942         mask = ~BIT(bit_index);
943         val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
944         qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, val & mask);
945         DP_INFO(p_hwfn, "`%s' - Disabled future parity errors\n",
946                 p_aeu->bit_name);
947 }
948
949 /**
950  * @brief - handles deassertion of previously asserted attentions.
951  *
952  * @param p_hwfn
953  * @param deasserted_bits - newly deasserted bits
954  * @return int
955  *
956  */
957 static int qed_int_deassertion(struct qed_hwfn  *p_hwfn,
958                                u16 deasserted_bits)
959 {
960         struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
961         u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask, aeu_en, en;
962         u8 i, j, k, bit_idx;
963         int rc = 0;
964
965         /* Read the attention registers in the AEU */
966         for (i = 0; i < NUM_ATTN_REGS; i++) {
967                 aeu_inv_arr[i] = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
968                                         MISC_REG_AEU_AFTER_INVERT_1_IGU +
969                                         i * 0x4);
970                 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
971                            "Deasserted bits [%d]: %08x\n",
972                            i, aeu_inv_arr[i]);
973         }
974
975         /* Find parity attentions first */
976         for (i = 0; i < NUM_ATTN_REGS; i++) {
977                 struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i];
978                 u32 parities;
979
980                 aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + i * sizeof(u32);
981                 en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
982
983                 /* Skip register in which no parity bit is currently set */
984                 parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en;
985                 if (!parities)
986                         continue;
987
988                 for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
989                         struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j];
990
991                         if (qed_int_is_parity_flag(p_hwfn, p_bit) &&
992                             !!(parities & BIT(bit_idx)))
993                                 qed_int_deassertion_parity(p_hwfn, p_bit,
994                                                            aeu_en, bit_idx);
995
996                         bit_idx += ATTENTION_LENGTH(p_bit->flags);
997                 }
998         }
999
1000         /* Find non-parity cause for attention and act */
1001         for (k = 0; k < MAX_ATTN_GRPS; k++) {
1002                 struct aeu_invert_reg_bit *p_aeu;
1003
1004                 /* Handle only groups whose attention is currently deasserted */
1005                 if (!(deasserted_bits & (1 << k)))
1006                         continue;
1007
1008                 for (i = 0; i < NUM_ATTN_REGS; i++) {
1009                         u32 bits;
1010
1011                         aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
1012                                  i * sizeof(u32) +
1013                                  k * sizeof(u32) * NUM_ATTN_REGS;
1014
1015                         en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1016                         bits = aeu_inv_arr[i] & en;
1017
1018                         /* Skip if no bit from this group is currently set */
1019                         if (!bits)
1020                                 continue;
1021
1022                         /* Find all set bits from current register which belong
1023                          * to current group, making them responsible for the
1024                          * previous assertion.
1025                          */
1026                         for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
1027                                 long unsigned int bitmask;
1028                                 u8 bit, bit_len;
1029
1030                                 p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j];
1031                                 p_aeu = qed_int_aeu_translate(p_hwfn, p_aeu);
1032
1033                                 bit = bit_idx;
1034                                 bit_len = ATTENTION_LENGTH(p_aeu->flags);
1035                                 if (qed_int_is_parity_flag(p_hwfn, p_aeu)) {
1036                                         /* Skip Parity */
1037                                         bit++;
1038                                         bit_len--;
1039                                 }
1040
1041                                 bitmask = bits & (((1 << bit_len) - 1) << bit);
1042                                 bitmask >>= bit;
1043
1044                                 if (bitmask) {
1045                                         u32 flags = p_aeu->flags;
1046                                         char bit_name[30];
1047                                         u8 num;
1048
1049                                         num = (u8)find_first_bit(&bitmask,
1050                                                                  bit_len);
1051
1052                                         /* Some bits represent more than a
1053                                          * a single interrupt. Correctly print
1054                                          * their name.
1055                                          */
1056                                         if (ATTENTION_LENGTH(flags) > 2 ||
1057                                             ((flags & ATTENTION_PAR_INT) &&
1058                                              ATTENTION_LENGTH(flags) > 1))
1059                                                 snprintf(bit_name, 30,
1060                                                          p_aeu->bit_name, num);
1061                                         else
1062                                                 strncpy(bit_name,
1063                                                         p_aeu->bit_name, 30);
1064
1065                                         /* We now need to pass bitmask in its
1066                                          * correct position.
1067                                          */
1068                                         bitmask <<= bit;
1069
1070                                         /* Handle source of the attention */
1071                                         qed_int_deassertion_aeu_bit(p_hwfn,
1072                                                                     p_aeu,
1073                                                                     aeu_en,
1074                                                                     bit_name,
1075                                                                     bitmask);
1076                                 }
1077
1078                                 bit_idx += ATTENTION_LENGTH(p_aeu->flags);
1079                         }
1080                 }
1081         }
1082
1083         /* Clear IGU indication for the deasserted bits */
1084         DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
1085                                     GTT_BAR0_MAP_REG_IGU_CMD +
1086                                     ((IGU_CMD_ATTN_BIT_CLR_UPPER -
1087                                       IGU_CMD_INT_ACK_BASE) << 3),
1088                                     ~((u32)deasserted_bits));
1089
1090         /* Unmask deasserted attentions in IGU */
1091         aeu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE);
1092         aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE);
1093         qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask);
1094
1095         /* Clear deassertion from inner state */
1096         sb_attn_sw->known_attn &= ~deasserted_bits;
1097
1098         return rc;
1099 }
1100
1101 static int qed_int_attentions(struct qed_hwfn *p_hwfn)
1102 {
1103         struct qed_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn;
1104         struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn;
1105         u32 attn_bits = 0, attn_acks = 0;
1106         u16 asserted_bits, deasserted_bits;
1107         __le16 index;
1108         int rc = 0;
1109
1110         /* Read current attention bits/acks - safeguard against attentions
1111          * by guaranting work on a synchronized timeframe
1112          */
1113         do {
1114                 index = p_sb_attn->sb_index;
1115                 /* finish reading index before the loop condition */
1116                 dma_rmb();
1117                 attn_bits = le32_to_cpu(p_sb_attn->atten_bits);
1118                 attn_acks = le32_to_cpu(p_sb_attn->atten_ack);
1119         } while (index != p_sb_attn->sb_index);
1120         p_sb_attn->sb_index = index;
1121
1122         /* Attention / Deassertion are meaningful (and in correct state)
1123          * only when they differ and consistent with known state - deassertion
1124          * when previous attention & current ack, and assertion when current
1125          * attention with no previous attention
1126          */
1127         asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) &
1128                 ~p_sb_attn_sw->known_attn;
1129         deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) &
1130                 p_sb_attn_sw->known_attn;
1131
1132         if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100)) {
1133                 DP_INFO(p_hwfn,
1134                         "Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n",
1135                         index, attn_bits, attn_acks, asserted_bits,
1136                         deasserted_bits, p_sb_attn_sw->known_attn);
1137         } else if (asserted_bits == 0x100) {
1138                 DP_INFO(p_hwfn, "MFW indication via attention\n");
1139         } else {
1140                 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1141                            "MFW indication [deassertion]\n");
1142         }
1143
1144         if (asserted_bits) {
1145                 rc = qed_int_assertion(p_hwfn, asserted_bits);
1146                 if (rc)
1147                         return rc;
1148         }
1149
1150         if (deasserted_bits)
1151                 rc = qed_int_deassertion(p_hwfn, deasserted_bits);
1152
1153         return rc;
1154 }
1155
1156 static void qed_sb_ack_attn(struct qed_hwfn *p_hwfn,
1157                             void __iomem *igu_addr, u32 ack_cons)
1158 {
1159         struct igu_prod_cons_update igu_ack = { 0 };
1160
1161         igu_ack.sb_id_and_flags =
1162                 ((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) |
1163                  (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) |
1164                  (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) |
1165                  (IGU_SEG_ACCESS_ATTN <<
1166                   IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT));
1167
1168         DIRECT_REG_WR(igu_addr, igu_ack.sb_id_and_flags);
1169
1170         /* Both segments (interrupts & acks) are written to same place address;
1171          * Need to guarantee all commands will be received (in-order) by HW.
1172          */
1173         mmiowb();
1174         barrier();
1175 }
1176
1177 void qed_int_sp_dpc(unsigned long hwfn_cookie)
1178 {
1179         struct qed_hwfn *p_hwfn = (struct qed_hwfn *)hwfn_cookie;
1180         struct qed_pi_info *pi_info = NULL;
1181         struct qed_sb_attn_info *sb_attn;
1182         struct qed_sb_info *sb_info;
1183         int arr_size;
1184         u16 rc = 0;
1185
1186         if (!p_hwfn->p_sp_sb) {
1187                 DP_ERR(p_hwfn->cdev, "DPC called - no p_sp_sb\n");
1188                 return;
1189         }
1190
1191         sb_info = &p_hwfn->p_sp_sb->sb_info;
1192         arr_size = ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr);
1193         if (!sb_info) {
1194                 DP_ERR(p_hwfn->cdev,
1195                        "Status block is NULL - cannot ack interrupts\n");
1196                 return;
1197         }
1198
1199         if (!p_hwfn->p_sb_attn) {
1200                 DP_ERR(p_hwfn->cdev, "DPC called - no p_sb_attn");
1201                 return;
1202         }
1203         sb_attn = p_hwfn->p_sb_attn;
1204
1205         DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "DPC Called! (hwfn %p %d)\n",
1206                    p_hwfn, p_hwfn->my_id);
1207
1208         /* Disable ack for def status block. Required both for msix +
1209          * inta in non-mask mode, in inta does no harm.
1210          */
1211         qed_sb_ack(sb_info, IGU_INT_DISABLE, 0);
1212
1213         /* Gather Interrupts/Attentions information */
1214         if (!sb_info->sb_virt) {
1215                 DP_ERR(p_hwfn->cdev,
1216                        "Interrupt Status block is NULL - cannot check for new interrupts!\n");
1217         } else {
1218                 u32 tmp_index = sb_info->sb_ack;
1219
1220                 rc = qed_sb_update_sb_idx(sb_info);
1221                 DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
1222                            "Interrupt indices: 0x%08x --> 0x%08x\n",
1223                            tmp_index, sb_info->sb_ack);
1224         }
1225
1226         if (!sb_attn || !sb_attn->sb_attn) {
1227                 DP_ERR(p_hwfn->cdev,
1228                        "Attentions Status block is NULL - cannot check for new attentions!\n");
1229         } else {
1230                 u16 tmp_index = sb_attn->index;
1231
1232                 rc |= qed_attn_update_idx(p_hwfn, sb_attn);
1233                 DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
1234                            "Attention indices: 0x%08x --> 0x%08x\n",
1235                            tmp_index, sb_attn->index);
1236         }
1237
1238         /* Check if we expect interrupts at this time. if not just ack them */
1239         if (!(rc & QED_SB_EVENT_MASK)) {
1240                 qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1241                 return;
1242         }
1243
1244         /* Check the validity of the DPC ptt. If not ack interrupts and fail */
1245         if (!p_hwfn->p_dpc_ptt) {
1246                 DP_NOTICE(p_hwfn->cdev, "Failed to allocate PTT\n");
1247                 qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1248                 return;
1249         }
1250
1251         if (rc & QED_SB_ATT_IDX)
1252                 qed_int_attentions(p_hwfn);
1253
1254         if (rc & QED_SB_IDX) {
1255                 int pi;
1256
1257                 /* Look for a free index */
1258                 for (pi = 0; pi < arr_size; pi++) {
1259                         pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi];
1260                         if (pi_info->comp_cb)
1261                                 pi_info->comp_cb(p_hwfn, pi_info->cookie);
1262                 }
1263         }
1264
1265         if (sb_attn && (rc & QED_SB_ATT_IDX))
1266                 /* This should be done before the interrupts are enabled,
1267                  * since otherwise a new attention will be generated.
1268                  */
1269                 qed_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index);
1270
1271         qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1272 }
1273
1274 static void qed_int_sb_attn_free(struct qed_hwfn *p_hwfn)
1275 {
1276         struct qed_sb_attn_info *p_sb = p_hwfn->p_sb_attn;
1277
1278         if (!p_sb)
1279                 return;
1280
1281         if (p_sb->sb_attn)
1282                 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
1283                                   SB_ATTN_ALIGNED_SIZE(p_hwfn),
1284                                   p_sb->sb_attn, p_sb->sb_phys);
1285         kfree(p_sb);
1286         p_hwfn->p_sb_attn = NULL;
1287 }
1288
1289 static void qed_int_sb_attn_setup(struct qed_hwfn *p_hwfn,
1290                                   struct qed_ptt *p_ptt)
1291 {
1292         struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1293
1294         memset(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn));
1295
1296         sb_info->index = 0;
1297         sb_info->known_attn = 0;
1298
1299         /* Configure Attention Status Block in IGU */
1300         qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L,
1301                lower_32_bits(p_hwfn->p_sb_attn->sb_phys));
1302         qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H,
1303                upper_32_bits(p_hwfn->p_sb_attn->sb_phys));
1304 }
1305
1306 static void qed_int_sb_attn_init(struct qed_hwfn *p_hwfn,
1307                                  struct qed_ptt *p_ptt,
1308                                  void *sb_virt_addr, dma_addr_t sb_phy_addr)
1309 {
1310         struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1311         int i, j, k;
1312
1313         sb_info->sb_attn = sb_virt_addr;
1314         sb_info->sb_phys = sb_phy_addr;
1315
1316         /* Set the pointer to the AEU descriptors */
1317         sb_info->p_aeu_desc = aeu_descs;
1318
1319         /* Calculate Parity Masks */
1320         memset(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS);
1321         for (i = 0; i < NUM_ATTN_REGS; i++) {
1322                 /* j is array index, k is bit index */
1323                 for (j = 0, k = 0; k < 32; j++) {
1324                         struct aeu_invert_reg_bit *p_aeu;
1325
1326                         p_aeu = &aeu_descs[i].bits[j];
1327                         if (qed_int_is_parity_flag(p_hwfn, p_aeu))
1328                                 sb_info->parity_mask[i] |= 1 << k;
1329
1330                         k += ATTENTION_LENGTH(p_aeu->flags);
1331                 }
1332                 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1333                            "Attn Mask [Reg %d]: 0x%08x\n",
1334                            i, sb_info->parity_mask[i]);
1335         }
1336
1337         /* Set the address of cleanup for the mcp attention */
1338         sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) +
1339                                  MISC_REG_AEU_GENERAL_ATTN_0;
1340
1341         qed_int_sb_attn_setup(p_hwfn, p_ptt);
1342 }
1343
1344 static int qed_int_sb_attn_alloc(struct qed_hwfn *p_hwfn,
1345                                  struct qed_ptt *p_ptt)
1346 {
1347         struct qed_dev *cdev = p_hwfn->cdev;
1348         struct qed_sb_attn_info *p_sb;
1349         dma_addr_t p_phys = 0;
1350         void *p_virt;
1351
1352         /* SB struct */
1353         p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL);
1354         if (!p_sb)
1355                 return -ENOMEM;
1356
1357         /* SB ring  */
1358         p_virt = dma_alloc_coherent(&cdev->pdev->dev,
1359                                     SB_ATTN_ALIGNED_SIZE(p_hwfn),
1360                                     &p_phys, GFP_KERNEL);
1361
1362         if (!p_virt) {
1363                 kfree(p_sb);
1364                 return -ENOMEM;
1365         }
1366
1367         /* Attention setup */
1368         p_hwfn->p_sb_attn = p_sb;
1369         qed_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys);
1370
1371         return 0;
1372 }
1373
1374 /* coalescing timeout = timeset << (timer_res + 1) */
1375 #define QED_CAU_DEF_RX_USECS 24
1376 #define QED_CAU_DEF_TX_USECS 48
1377
1378 void qed_init_cau_sb_entry(struct qed_hwfn *p_hwfn,
1379                            struct cau_sb_entry *p_sb_entry,
1380                            u8 pf_id, u16 vf_number, u8 vf_valid)
1381 {
1382         struct qed_dev *cdev = p_hwfn->cdev;
1383         u32 cau_state;
1384         u8 timer_res;
1385
1386         memset(p_sb_entry, 0, sizeof(*p_sb_entry));
1387
1388         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_PF_NUMBER, pf_id);
1389         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_NUMBER, vf_number);
1390         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_VALID, vf_valid);
1391         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F);
1392         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F);
1393
1394         cau_state = CAU_HC_DISABLE_STATE;
1395
1396         if (cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
1397                 cau_state = CAU_HC_ENABLE_STATE;
1398                 if (!cdev->rx_coalesce_usecs)
1399                         cdev->rx_coalesce_usecs = QED_CAU_DEF_RX_USECS;
1400                 if (!cdev->tx_coalesce_usecs)
1401                         cdev->tx_coalesce_usecs = QED_CAU_DEF_TX_USECS;
1402         }
1403
1404         /* Coalesce = (timeset << timer-res), timeset is 7bit wide */
1405         if (cdev->rx_coalesce_usecs <= 0x7F)
1406                 timer_res = 0;
1407         else if (cdev->rx_coalesce_usecs <= 0xFF)
1408                 timer_res = 1;
1409         else
1410                 timer_res = 2;
1411         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
1412
1413         if (cdev->tx_coalesce_usecs <= 0x7F)
1414                 timer_res = 0;
1415         else if (cdev->tx_coalesce_usecs <= 0xFF)
1416                 timer_res = 1;
1417         else
1418                 timer_res = 2;
1419         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
1420
1421         SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE0, cau_state);
1422         SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE1, cau_state);
1423 }
1424
1425 static void qed_int_cau_conf_pi(struct qed_hwfn *p_hwfn,
1426                                 struct qed_ptt *p_ptt,
1427                                 u16 igu_sb_id,
1428                                 u32 pi_index,
1429                                 enum qed_coalescing_fsm coalescing_fsm,
1430                                 u8 timeset)
1431 {
1432         struct cau_pi_entry pi_entry;
1433         u32 sb_offset, pi_offset;
1434
1435         if (IS_VF(p_hwfn->cdev))
1436                 return;
1437
1438         sb_offset = igu_sb_id * PIS_PER_SB_E4;
1439         memset(&pi_entry, 0, sizeof(struct cau_pi_entry));
1440
1441         SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_PI_TIMESET, timeset);
1442         if (coalescing_fsm == QED_COAL_RX_STATE_MACHINE)
1443                 SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 0);
1444         else
1445                 SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 1);
1446
1447         pi_offset = sb_offset + pi_index;
1448         if (p_hwfn->hw_init_done) {
1449                 qed_wr(p_hwfn, p_ptt,
1450                        CAU_REG_PI_MEMORY + pi_offset * sizeof(u32),
1451                        *((u32 *)&(pi_entry)));
1452         } else {
1453                 STORE_RT_REG(p_hwfn,
1454                              CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset,
1455                              *((u32 *)&(pi_entry)));
1456         }
1457 }
1458
1459 void qed_int_cau_conf_sb(struct qed_hwfn *p_hwfn,
1460                          struct qed_ptt *p_ptt,
1461                          dma_addr_t sb_phys,
1462                          u16 igu_sb_id, u16 vf_number, u8 vf_valid)
1463 {
1464         struct cau_sb_entry sb_entry;
1465
1466         qed_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id,
1467                               vf_number, vf_valid);
1468
1469         if (p_hwfn->hw_init_done) {
1470                 /* Wide-bus, initialize via DMAE */
1471                 u64 phys_addr = (u64)sb_phys;
1472
1473                 qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&phys_addr,
1474                                   CAU_REG_SB_ADDR_MEMORY +
1475                                   igu_sb_id * sizeof(u64), 2, 0);
1476                 qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&sb_entry,
1477                                   CAU_REG_SB_VAR_MEMORY +
1478                                   igu_sb_id * sizeof(u64), 2, 0);
1479         } else {
1480                 /* Initialize Status Block Address */
1481                 STORE_RT_REG_AGG(p_hwfn,
1482                                  CAU_REG_SB_ADDR_MEMORY_RT_OFFSET +
1483                                  igu_sb_id * 2,
1484                                  sb_phys);
1485
1486                 STORE_RT_REG_AGG(p_hwfn,
1487                                  CAU_REG_SB_VAR_MEMORY_RT_OFFSET +
1488                                  igu_sb_id * 2,
1489                                  sb_entry);
1490         }
1491
1492         /* Configure pi coalescing if set */
1493         if (p_hwfn->cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
1494                 u8 num_tc = p_hwfn->hw_info.num_hw_tc;
1495                 u8 timeset, timer_res;
1496                 u8 i;
1497
1498                 /* timeset = (coalesce >> timer-res), timeset is 7bit wide */
1499                 if (p_hwfn->cdev->rx_coalesce_usecs <= 0x7F)
1500                         timer_res = 0;
1501                 else if (p_hwfn->cdev->rx_coalesce_usecs <= 0xFF)
1502                         timer_res = 1;
1503                 else
1504                         timer_res = 2;
1505                 timeset = (u8)(p_hwfn->cdev->rx_coalesce_usecs >> timer_res);
1506                 qed_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI,
1507                                     QED_COAL_RX_STATE_MACHINE, timeset);
1508
1509                 if (p_hwfn->cdev->tx_coalesce_usecs <= 0x7F)
1510                         timer_res = 0;
1511                 else if (p_hwfn->cdev->tx_coalesce_usecs <= 0xFF)
1512                         timer_res = 1;
1513                 else
1514                         timer_res = 2;
1515                 timeset = (u8)(p_hwfn->cdev->tx_coalesce_usecs >> timer_res);
1516                 for (i = 0; i < num_tc; i++) {
1517                         qed_int_cau_conf_pi(p_hwfn, p_ptt,
1518                                             igu_sb_id, TX_PI(i),
1519                                             QED_COAL_TX_STATE_MACHINE,
1520                                             timeset);
1521                 }
1522         }
1523 }
1524
1525 void qed_int_sb_setup(struct qed_hwfn *p_hwfn,
1526                       struct qed_ptt *p_ptt, struct qed_sb_info *sb_info)
1527 {
1528         /* zero status block and ack counter */
1529         sb_info->sb_ack = 0;
1530         memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1531
1532         if (IS_PF(p_hwfn->cdev))
1533                 qed_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys,
1534                                     sb_info->igu_sb_id, 0, 0);
1535 }
1536
1537 struct qed_igu_block *qed_get_igu_free_sb(struct qed_hwfn *p_hwfn, bool b_is_pf)
1538 {
1539         struct qed_igu_block *p_block;
1540         u16 igu_id;
1541
1542         for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
1543              igu_id++) {
1544                 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1545
1546                 if (!(p_block->status & QED_IGU_STATUS_VALID) ||
1547                     !(p_block->status & QED_IGU_STATUS_FREE))
1548                         continue;
1549
1550                 if (!!(p_block->status & QED_IGU_STATUS_PF) == b_is_pf)
1551                         return p_block;
1552         }
1553
1554         return NULL;
1555 }
1556
1557 static u16 qed_get_pf_igu_sb_id(struct qed_hwfn *p_hwfn, u16 vector_id)
1558 {
1559         struct qed_igu_block *p_block;
1560         u16 igu_id;
1561
1562         for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
1563              igu_id++) {
1564                 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1565
1566                 if (!(p_block->status & QED_IGU_STATUS_VALID) ||
1567                     !p_block->is_pf ||
1568                     p_block->vector_number != vector_id)
1569                         continue;
1570
1571                 return igu_id;
1572         }
1573
1574         return QED_SB_INVALID_IDX;
1575 }
1576
1577 u16 qed_get_igu_sb_id(struct qed_hwfn *p_hwfn, u16 sb_id)
1578 {
1579         u16 igu_sb_id;
1580
1581         /* Assuming continuous set of IGU SBs dedicated for given PF */
1582         if (sb_id == QED_SP_SB_ID)
1583                 igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
1584         else if (IS_PF(p_hwfn->cdev))
1585                 igu_sb_id = qed_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
1586         else
1587                 igu_sb_id = qed_vf_get_igu_sb_id(p_hwfn, sb_id);
1588
1589         if (sb_id == QED_SP_SB_ID)
1590                 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1591                            "Slowpath SB index in IGU is 0x%04x\n", igu_sb_id);
1592         else
1593                 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1594                            "SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id);
1595
1596         return igu_sb_id;
1597 }
1598
1599 int qed_int_sb_init(struct qed_hwfn *p_hwfn,
1600                     struct qed_ptt *p_ptt,
1601                     struct qed_sb_info *sb_info,
1602                     void *sb_virt_addr, dma_addr_t sb_phy_addr, u16 sb_id)
1603 {
1604         sb_info->sb_virt = sb_virt_addr;
1605         sb_info->sb_phys = sb_phy_addr;
1606
1607         sb_info->igu_sb_id = qed_get_igu_sb_id(p_hwfn, sb_id);
1608
1609         if (sb_id != QED_SP_SB_ID) {
1610                 if (IS_PF(p_hwfn->cdev)) {
1611                         struct qed_igu_info *p_info;
1612                         struct qed_igu_block *p_block;
1613
1614                         p_info = p_hwfn->hw_info.p_igu_info;
1615                         p_block = &p_info->entry[sb_info->igu_sb_id];
1616
1617                         p_block->sb_info = sb_info;
1618                         p_block->status &= ~QED_IGU_STATUS_FREE;
1619                         p_info->usage.free_cnt--;
1620                 } else {
1621                         qed_vf_set_sb_info(p_hwfn, sb_id, sb_info);
1622                 }
1623         }
1624
1625         sb_info->cdev = p_hwfn->cdev;
1626
1627         /* The igu address will hold the absolute address that needs to be
1628          * written to for a specific status block
1629          */
1630         if (IS_PF(p_hwfn->cdev)) {
1631                 sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
1632                                                   GTT_BAR0_MAP_REG_IGU_CMD +
1633                                                   (sb_info->igu_sb_id << 3);
1634         } else {
1635                 sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
1636                                                   PXP_VF_BAR0_START_IGU +
1637                                                   ((IGU_CMD_INT_ACK_BASE +
1638                                                     sb_info->igu_sb_id) << 3);
1639         }
1640
1641         sb_info->flags |= QED_SB_INFO_INIT;
1642
1643         qed_int_sb_setup(p_hwfn, p_ptt, sb_info);
1644
1645         return 0;
1646 }
1647
1648 int qed_int_sb_release(struct qed_hwfn *p_hwfn,
1649                        struct qed_sb_info *sb_info, u16 sb_id)
1650 {
1651         struct qed_igu_block *p_block;
1652         struct qed_igu_info *p_info;
1653
1654         if (!sb_info)
1655                 return 0;
1656
1657         /* zero status block and ack counter */
1658         sb_info->sb_ack = 0;
1659         memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1660
1661         if (IS_VF(p_hwfn->cdev)) {
1662                 qed_vf_set_sb_info(p_hwfn, sb_id, NULL);
1663                 return 0;
1664         }
1665
1666         p_info = p_hwfn->hw_info.p_igu_info;
1667         p_block = &p_info->entry[sb_info->igu_sb_id];
1668
1669         /* Vector 0 is reserved to Default SB */
1670         if (!p_block->vector_number) {
1671                 DP_ERR(p_hwfn, "Do Not free sp sb using this function");
1672                 return -EINVAL;
1673         }
1674
1675         /* Lose reference to client's SB info, and fix counters */
1676         p_block->sb_info = NULL;
1677         p_block->status |= QED_IGU_STATUS_FREE;
1678         p_info->usage.free_cnt++;
1679
1680         return 0;
1681 }
1682
1683 static void qed_int_sp_sb_free(struct qed_hwfn *p_hwfn)
1684 {
1685         struct qed_sb_sp_info *p_sb = p_hwfn->p_sp_sb;
1686
1687         if (!p_sb)
1688                 return;
1689
1690         if (p_sb->sb_info.sb_virt)
1691                 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
1692                                   SB_ALIGNED_SIZE(p_hwfn),
1693                                   p_sb->sb_info.sb_virt,
1694                                   p_sb->sb_info.sb_phys);
1695         kfree(p_sb);
1696         p_hwfn->p_sp_sb = NULL;
1697 }
1698
1699 static int qed_int_sp_sb_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1700 {
1701         struct qed_sb_sp_info *p_sb;
1702         dma_addr_t p_phys = 0;
1703         void *p_virt;
1704
1705         /* SB struct */
1706         p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL);
1707         if (!p_sb)
1708                 return -ENOMEM;
1709
1710         /* SB ring  */
1711         p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
1712                                     SB_ALIGNED_SIZE(p_hwfn),
1713                                     &p_phys, GFP_KERNEL);
1714         if (!p_virt) {
1715                 kfree(p_sb);
1716                 return -ENOMEM;
1717         }
1718
1719         /* Status Block setup */
1720         p_hwfn->p_sp_sb = p_sb;
1721         qed_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info, p_virt,
1722                         p_phys, QED_SP_SB_ID);
1723
1724         memset(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr));
1725
1726         return 0;
1727 }
1728
1729 int qed_int_register_cb(struct qed_hwfn *p_hwfn,
1730                         qed_int_comp_cb_t comp_cb,
1731                         void *cookie, u8 *sb_idx, __le16 **p_fw_cons)
1732 {
1733         struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1734         int rc = -ENOMEM;
1735         u8 pi;
1736
1737         /* Look for a free index */
1738         for (pi = 0; pi < ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) {
1739                 if (p_sp_sb->pi_info_arr[pi].comp_cb)
1740                         continue;
1741
1742                 p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb;
1743                 p_sp_sb->pi_info_arr[pi].cookie = cookie;
1744                 *sb_idx = pi;
1745                 *p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi];
1746                 rc = 0;
1747                 break;
1748         }
1749
1750         return rc;
1751 }
1752
1753 int qed_int_unregister_cb(struct qed_hwfn *p_hwfn, u8 pi)
1754 {
1755         struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1756
1757         if (p_sp_sb->pi_info_arr[pi].comp_cb == NULL)
1758                 return -ENOMEM;
1759
1760         p_sp_sb->pi_info_arr[pi].comp_cb = NULL;
1761         p_sp_sb->pi_info_arr[pi].cookie = NULL;
1762
1763         return 0;
1764 }
1765
1766 u16 qed_int_get_sp_sb_id(struct qed_hwfn *p_hwfn)
1767 {
1768         return p_hwfn->p_sp_sb->sb_info.igu_sb_id;
1769 }
1770
1771 void qed_int_igu_enable_int(struct qed_hwfn *p_hwfn,
1772                             struct qed_ptt *p_ptt, enum qed_int_mode int_mode)
1773 {
1774         u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN;
1775
1776         p_hwfn->cdev->int_mode = int_mode;
1777         switch (p_hwfn->cdev->int_mode) {
1778         case QED_INT_MODE_INTA:
1779                 igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN;
1780                 igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1781                 break;
1782
1783         case QED_INT_MODE_MSI:
1784                 igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1785                 igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1786                 break;
1787
1788         case QED_INT_MODE_MSIX:
1789                 igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1790                 break;
1791         case QED_INT_MODE_POLL:
1792                 break;
1793         }
1794
1795         qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf);
1796 }
1797
1798 static void qed_int_igu_enable_attn(struct qed_hwfn *p_hwfn,
1799                                     struct qed_ptt *p_ptt)
1800 {
1801
1802         /* Configure AEU signal change to produce attentions */
1803         qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0);
1804         qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff);
1805         qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff);
1806         qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff);
1807
1808         /* Flush the writes to IGU */
1809         mmiowb();
1810
1811         /* Unmask AEU signals toward IGU */
1812         qed_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff);
1813 }
1814
1815 int
1816 qed_int_igu_enable(struct qed_hwfn *p_hwfn,
1817                    struct qed_ptt *p_ptt, enum qed_int_mode int_mode)
1818 {
1819         int rc = 0;
1820
1821         qed_int_igu_enable_attn(p_hwfn, p_ptt);
1822
1823         if ((int_mode != QED_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) {
1824                 rc = qed_slowpath_irq_req(p_hwfn);
1825                 if (rc) {
1826                         DP_NOTICE(p_hwfn, "Slowpath IRQ request failed\n");
1827                         return -EINVAL;
1828                 }
1829                 p_hwfn->b_int_requested = true;
1830         }
1831         /* Enable interrupt Generation */
1832         qed_int_igu_enable_int(p_hwfn, p_ptt, int_mode);
1833         p_hwfn->b_int_enabled = 1;
1834
1835         return rc;
1836 }
1837
1838 void qed_int_igu_disable_int(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1839 {
1840         p_hwfn->b_int_enabled = 0;
1841
1842         if (IS_VF(p_hwfn->cdev))
1843                 return;
1844
1845         qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
1846 }
1847
1848 #define IGU_CLEANUP_SLEEP_LENGTH                (1000)
1849 static void qed_int_igu_cleanup_sb(struct qed_hwfn *p_hwfn,
1850                                    struct qed_ptt *p_ptt,
1851                                    u16 igu_sb_id,
1852                                    bool cleanup_set, u16 opaque_fid)
1853 {
1854         u32 cmd_ctrl = 0, val = 0, sb_bit = 0, sb_bit_addr = 0, data = 0;
1855         u32 pxp_addr = IGU_CMD_INT_ACK_BASE + igu_sb_id;
1856         u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH;
1857
1858         /* Set the data field */
1859         SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0);
1860         SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, 0);
1861         SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET);
1862
1863         /* Set the control register */
1864         SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr);
1865         SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid);
1866         SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR);
1867
1868         qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data);
1869
1870         barrier();
1871
1872         qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl);
1873
1874         /* Flush the write to IGU */
1875         mmiowb();
1876
1877         /* calculate where to read the status bit from */
1878         sb_bit = 1 << (igu_sb_id % 32);
1879         sb_bit_addr = igu_sb_id / 32 * sizeof(u32);
1880
1881         sb_bit_addr += IGU_REG_CLEANUP_STATUS_0;
1882
1883         /* Now wait for the command to complete */
1884         do {
1885                 val = qed_rd(p_hwfn, p_ptt, sb_bit_addr);
1886
1887                 if ((val & sb_bit) == (cleanup_set ? sb_bit : 0))
1888                         break;
1889
1890                 usleep_range(5000, 10000);
1891         } while (--sleep_cnt);
1892
1893         if (!sleep_cnt)
1894                 DP_NOTICE(p_hwfn,
1895                           "Timeout waiting for clear status 0x%08x [for sb %d]\n",
1896                           val, igu_sb_id);
1897 }
1898
1899 void qed_int_igu_init_pure_rt_single(struct qed_hwfn *p_hwfn,
1900                                      struct qed_ptt *p_ptt,
1901                                      u16 igu_sb_id, u16 opaque, bool b_set)
1902 {
1903         struct qed_igu_block *p_block;
1904         int pi, i;
1905
1906         p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
1907         DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1908                    "Cleaning SB [%04x]: func_id= %d is_pf = %d vector_num = 0x%0x\n",
1909                    igu_sb_id,
1910                    p_block->function_id,
1911                    p_block->is_pf, p_block->vector_number);
1912
1913         /* Set */
1914         if (b_set)
1915                 qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 1, opaque);
1916
1917         /* Clear */
1918         qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 0, opaque);
1919
1920         /* Wait for the IGU SB to cleanup */
1921         for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) {
1922                 u32 val;
1923
1924                 val = qed_rd(p_hwfn, p_ptt,
1925                              IGU_REG_WRITE_DONE_PENDING +
1926                              ((igu_sb_id / 32) * 4));
1927                 if (val & BIT((igu_sb_id % 32)))
1928                         usleep_range(10, 20);
1929                 else
1930                         break;
1931         }
1932         if (i == IGU_CLEANUP_SLEEP_LENGTH)
1933                 DP_NOTICE(p_hwfn,
1934                           "Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n",
1935                           igu_sb_id);
1936
1937         /* Clear the CAU for the SB */
1938         for (pi = 0; pi < 12; pi++)
1939                 qed_wr(p_hwfn, p_ptt,
1940                        CAU_REG_PI_MEMORY + (igu_sb_id * 12 + pi) * 4, 0);
1941 }
1942
1943 void qed_int_igu_init_pure_rt(struct qed_hwfn *p_hwfn,
1944                               struct qed_ptt *p_ptt,
1945                               bool b_set, bool b_slowpath)
1946 {
1947         struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
1948         struct qed_igu_block *p_block;
1949         u16 igu_sb_id = 0;
1950         u32 val = 0;
1951
1952         val = qed_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION);
1953         val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN;
1954         val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN;
1955         qed_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val);
1956
1957         for (igu_sb_id = 0;
1958              igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
1959                 p_block = &p_info->entry[igu_sb_id];
1960
1961                 if (!(p_block->status & QED_IGU_STATUS_VALID) ||
1962                     !p_block->is_pf ||
1963                     (p_block->status & QED_IGU_STATUS_DSB))
1964                         continue;
1965
1966                 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, igu_sb_id,
1967                                                 p_hwfn->hw_info.opaque_fid,
1968                                                 b_set);
1969         }
1970
1971         if (b_slowpath)
1972                 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
1973                                                 p_info->igu_dsb_id,
1974                                                 p_hwfn->hw_info.opaque_fid,
1975                                                 b_set);
1976 }
1977
1978 int qed_int_igu_reset_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1979 {
1980         struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
1981         struct qed_igu_block *p_block;
1982         int pf_sbs, vf_sbs;
1983         u16 igu_sb_id;
1984         u32 val, rval;
1985
1986         if (!RESC_NUM(p_hwfn, QED_SB)) {
1987                 p_info->b_allow_pf_vf_change = false;
1988         } else {
1989                 /* Use the numbers the MFW have provided -
1990                  * don't forget MFW accounts for the default SB as well.
1991                  */
1992                 p_info->b_allow_pf_vf_change = true;
1993
1994                 if (p_info->usage.cnt != RESC_NUM(p_hwfn, QED_SB) - 1) {
1995                         DP_INFO(p_hwfn,
1996                                 "MFW notifies of 0x%04x PF SBs; IGU indicates of only 0x%04x\n",
1997                                 RESC_NUM(p_hwfn, QED_SB) - 1,
1998                                 p_info->usage.cnt);
1999                         p_info->usage.cnt = RESC_NUM(p_hwfn, QED_SB) - 1;
2000                 }
2001
2002                 if (IS_PF_SRIOV(p_hwfn)) {
2003                         u16 vfs = p_hwfn->cdev->p_iov_info->total_vfs;
2004
2005                         if (vfs != p_info->usage.iov_cnt)
2006                                 DP_VERBOSE(p_hwfn,
2007                                            NETIF_MSG_INTR,
2008                                            "0x%04x VF SBs in IGU CAM != PCI configuration 0x%04x\n",
2009                                            p_info->usage.iov_cnt, vfs);
2010
2011                         /* At this point we know how many SBs we have totally
2012                          * in IGU + number of PF SBs. So we can validate that
2013                          * we'd have sufficient for VF.
2014                          */
2015                         if (vfs > p_info->usage.free_cnt +
2016                             p_info->usage.free_cnt_iov - p_info->usage.cnt) {
2017                                 DP_NOTICE(p_hwfn,
2018                                           "Not enough SBs for VFs - 0x%04x SBs, from which %04x PFs and %04x are required\n",
2019                                           p_info->usage.free_cnt +
2020                                           p_info->usage.free_cnt_iov,
2021                                           p_info->usage.cnt, vfs);
2022                                 return -EINVAL;
2023                         }
2024
2025                         /* Currently cap the number of VFs SBs by the
2026                          * number of VFs.
2027                          */
2028                         p_info->usage.iov_cnt = vfs;
2029                 }
2030         }
2031
2032         /* Mark all SBs as free, now in the right PF/VFs division */
2033         p_info->usage.free_cnt = p_info->usage.cnt;
2034         p_info->usage.free_cnt_iov = p_info->usage.iov_cnt;
2035         p_info->usage.orig = p_info->usage.cnt;
2036         p_info->usage.iov_orig = p_info->usage.iov_cnt;
2037
2038         /* We now proceed to re-configure the IGU cam to reflect the initial
2039          * configuration. We can start with the Default SB.
2040          */
2041         pf_sbs = p_info->usage.cnt;
2042         vf_sbs = p_info->usage.iov_cnt;
2043
2044         for (igu_sb_id = p_info->igu_dsb_id;
2045              igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
2046                 p_block = &p_info->entry[igu_sb_id];
2047                 val = 0;
2048
2049                 if (!(p_block->status & QED_IGU_STATUS_VALID))
2050                         continue;
2051
2052                 if (p_block->status & QED_IGU_STATUS_DSB) {
2053                         p_block->function_id = p_hwfn->rel_pf_id;
2054                         p_block->is_pf = 1;
2055                         p_block->vector_number = 0;
2056                         p_block->status = QED_IGU_STATUS_VALID |
2057                                           QED_IGU_STATUS_PF |
2058                                           QED_IGU_STATUS_DSB;
2059                 } else if (pf_sbs) {
2060                         pf_sbs--;
2061                         p_block->function_id = p_hwfn->rel_pf_id;
2062                         p_block->is_pf = 1;
2063                         p_block->vector_number = p_info->usage.cnt - pf_sbs;
2064                         p_block->status = QED_IGU_STATUS_VALID |
2065                                           QED_IGU_STATUS_PF |
2066                                           QED_IGU_STATUS_FREE;
2067                 } else if (vf_sbs) {
2068                         p_block->function_id =
2069                             p_hwfn->cdev->p_iov_info->first_vf_in_pf +
2070                             p_info->usage.iov_cnt - vf_sbs;
2071                         p_block->is_pf = 0;
2072                         p_block->vector_number = 0;
2073                         p_block->status = QED_IGU_STATUS_VALID |
2074                                           QED_IGU_STATUS_FREE;
2075                         vf_sbs--;
2076                 } else {
2077                         p_block->function_id = 0;
2078                         p_block->is_pf = 0;
2079                         p_block->vector_number = 0;
2080                 }
2081
2082                 SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2083                           p_block->function_id);
2084                 SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2085                 SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2086                           p_block->vector_number);
2087
2088                 /* VF entries would be enabled when VF is initializaed */
2089                 SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2090
2091                 rval = qed_rd(p_hwfn, p_ptt,
2092                               IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
2093
2094                 if (rval != val) {
2095                         qed_wr(p_hwfn, p_ptt,
2096                                IGU_REG_MAPPING_MEMORY +
2097                                sizeof(u32) * igu_sb_id, val);
2098
2099                         DP_VERBOSE(p_hwfn,
2100                                    NETIF_MSG_INTR,
2101                                    "IGU reset: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x [%08x -> %08x]\n",
2102                                    igu_sb_id,
2103                                    p_block->function_id,
2104                                    p_block->is_pf,
2105                                    p_block->vector_number, rval, val);
2106                 }
2107         }
2108
2109         return 0;
2110 }
2111
2112 static void qed_int_igu_read_cam_block(struct qed_hwfn *p_hwfn,
2113                                        struct qed_ptt *p_ptt, u16 igu_sb_id)
2114 {
2115         u32 val = qed_rd(p_hwfn, p_ptt,
2116                          IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
2117         struct qed_igu_block *p_block;
2118
2119         p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2120
2121         /* Fill the block information */
2122         p_block->function_id = GET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER);
2123         p_block->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID);
2124         p_block->vector_number = GET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER);
2125         p_block->igu_sb_id = igu_sb_id;
2126 }
2127
2128 int qed_int_igu_read_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2129 {
2130         struct qed_igu_info *p_igu_info;
2131         struct qed_igu_block *p_block;
2132         u32 min_vf = 0, max_vf = 0;
2133         u16 igu_sb_id;
2134
2135         p_hwfn->hw_info.p_igu_info = kzalloc(sizeof(*p_igu_info), GFP_KERNEL);
2136         if (!p_hwfn->hw_info.p_igu_info)
2137                 return -ENOMEM;
2138
2139         p_igu_info = p_hwfn->hw_info.p_igu_info;
2140
2141         /* Distinguish between existent and non-existent default SB */
2142         p_igu_info->igu_dsb_id = QED_SB_INVALID_IDX;
2143
2144         /* Find the range of VF ids whose SB belong to this PF */
2145         if (p_hwfn->cdev->p_iov_info) {
2146                 struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
2147
2148                 min_vf  = p_iov->first_vf_in_pf;
2149                 max_vf  = p_iov->first_vf_in_pf + p_iov->total_vfs;
2150         }
2151
2152         for (igu_sb_id = 0;
2153              igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
2154                 /* Read current entry; Notice it might not belong to this PF */
2155                 qed_int_igu_read_cam_block(p_hwfn, p_ptt, igu_sb_id);
2156                 p_block = &p_igu_info->entry[igu_sb_id];
2157
2158                 if ((p_block->is_pf) &&
2159                     (p_block->function_id == p_hwfn->rel_pf_id)) {
2160                         p_block->status = QED_IGU_STATUS_PF |
2161                                           QED_IGU_STATUS_VALID |
2162                                           QED_IGU_STATUS_FREE;
2163
2164                         if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX)
2165                                 p_igu_info->usage.cnt++;
2166                 } else if (!(p_block->is_pf) &&
2167                            (p_block->function_id >= min_vf) &&
2168                            (p_block->function_id < max_vf)) {
2169                         /* Available for VFs of this PF */
2170                         p_block->status = QED_IGU_STATUS_VALID |
2171                                           QED_IGU_STATUS_FREE;
2172
2173                         if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX)
2174                                 p_igu_info->usage.iov_cnt++;
2175                 }
2176
2177                 /* Mark the First entry belonging to the PF or its VFs
2178                  * as the default SB [we'll reset IGU prior to first usage].
2179                  */
2180                 if ((p_block->status & QED_IGU_STATUS_VALID) &&
2181                     (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX)) {
2182                         p_igu_info->igu_dsb_id = igu_sb_id;
2183                         p_block->status |= QED_IGU_STATUS_DSB;
2184                 }
2185
2186                 /* limit number of prints by having each PF print only its
2187                  * entries with the exception of PF0 which would print
2188                  * everything.
2189                  */
2190                 if ((p_block->status & QED_IGU_STATUS_VALID) ||
2191                     (p_hwfn->abs_pf_id == 0)) {
2192                         DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
2193                                    "IGU_BLOCK: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2194                                    igu_sb_id, p_block->function_id,
2195                                    p_block->is_pf, p_block->vector_number);
2196                 }
2197         }
2198
2199         if (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX) {
2200                 DP_NOTICE(p_hwfn,
2201                           "IGU CAM returned invalid values igu_dsb_id=0x%x\n",
2202                           p_igu_info->igu_dsb_id);
2203                 return -EINVAL;
2204         }
2205
2206         /* All non default SB are considered free at this point */
2207         p_igu_info->usage.free_cnt = p_igu_info->usage.cnt;
2208         p_igu_info->usage.free_cnt_iov = p_igu_info->usage.iov_cnt;
2209
2210         DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
2211                    "igu_dsb_id=0x%x, num Free SBs - PF: %04x VF: %04x [might change after resource allocation]\n",
2212                    p_igu_info->igu_dsb_id,
2213                    p_igu_info->usage.cnt, p_igu_info->usage.iov_cnt);
2214
2215         return 0;
2216 }
2217
2218 /**
2219  * @brief Initialize igu runtime registers
2220  *
2221  * @param p_hwfn
2222  */
2223 void qed_int_igu_init_rt(struct qed_hwfn *p_hwfn)
2224 {
2225         u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN;
2226
2227         STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf);
2228 }
2229
2230 u64 qed_int_igu_read_sisr_reg(struct qed_hwfn *p_hwfn)
2231 {
2232         u32 lsb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_LSB_UPPER -
2233                                IGU_CMD_INT_ACK_BASE;
2234         u32 msb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_MSB_UPPER -
2235                                IGU_CMD_INT_ACK_BASE;
2236         u32 intr_status_hi = 0, intr_status_lo = 0;
2237         u64 intr_status = 0;
2238
2239         intr_status_lo = REG_RD(p_hwfn,
2240                                 GTT_BAR0_MAP_REG_IGU_CMD +
2241                                 lsb_igu_cmd_addr * 8);
2242         intr_status_hi = REG_RD(p_hwfn,
2243                                 GTT_BAR0_MAP_REG_IGU_CMD +
2244                                 msb_igu_cmd_addr * 8);
2245         intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo;
2246
2247         return intr_status;
2248 }
2249
2250 static void qed_int_sp_dpc_setup(struct qed_hwfn *p_hwfn)
2251 {
2252         tasklet_init(p_hwfn->sp_dpc,
2253                      qed_int_sp_dpc, (unsigned long)p_hwfn);
2254         p_hwfn->b_sp_dpc_enabled = true;
2255 }
2256
2257 static int qed_int_sp_dpc_alloc(struct qed_hwfn *p_hwfn)
2258 {
2259         p_hwfn->sp_dpc = kmalloc(sizeof(*p_hwfn->sp_dpc), GFP_KERNEL);
2260         if (!p_hwfn->sp_dpc)
2261                 return -ENOMEM;
2262
2263         return 0;
2264 }
2265
2266 static void qed_int_sp_dpc_free(struct qed_hwfn *p_hwfn)
2267 {
2268         kfree(p_hwfn->sp_dpc);
2269         p_hwfn->sp_dpc = NULL;
2270 }
2271
2272 int qed_int_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2273 {
2274         int rc = 0;
2275
2276         rc = qed_int_sp_dpc_alloc(p_hwfn);
2277         if (rc)
2278                 return rc;
2279
2280         rc = qed_int_sp_sb_alloc(p_hwfn, p_ptt);
2281         if (rc)
2282                 return rc;
2283
2284         rc = qed_int_sb_attn_alloc(p_hwfn, p_ptt);
2285
2286         return rc;
2287 }
2288
2289 void qed_int_free(struct qed_hwfn *p_hwfn)
2290 {
2291         qed_int_sp_sb_free(p_hwfn);
2292         qed_int_sb_attn_free(p_hwfn);
2293         qed_int_sp_dpc_free(p_hwfn);
2294 }
2295
2296 void qed_int_setup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2297 {
2298         qed_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info);
2299         qed_int_sb_attn_setup(p_hwfn, p_ptt);
2300         qed_int_sp_dpc_setup(p_hwfn);
2301 }
2302
2303 void qed_int_get_num_sbs(struct qed_hwfn        *p_hwfn,
2304                          struct qed_sb_cnt_info *p_sb_cnt_info)
2305 {
2306         struct qed_igu_info *info = p_hwfn->hw_info.p_igu_info;
2307
2308         if (!info || !p_sb_cnt_info)
2309                 return;
2310
2311         memcpy(p_sb_cnt_info, &info->usage, sizeof(*p_sb_cnt_info));
2312 }
2313
2314 void qed_int_disable_post_isr_release(struct qed_dev *cdev)
2315 {
2316         int i;
2317
2318         for_each_hwfn(cdev, i)
2319                 cdev->hwfns[i].b_int_requested = false;
2320 }
2321
2322 int qed_int_set_timer_res(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
2323                           u8 timer_res, u16 sb_id, bool tx)
2324 {
2325         struct cau_sb_entry sb_entry;
2326         int rc;
2327
2328         if (!p_hwfn->hw_init_done) {
2329                 DP_ERR(p_hwfn, "hardware not initialized yet\n");
2330                 return -EINVAL;
2331         }
2332
2333         rc = qed_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY +
2334                                sb_id * sizeof(u64),
2335                                (u64)(uintptr_t)&sb_entry, 2, 0);
2336         if (rc) {
2337                 DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc);
2338                 return rc;
2339         }
2340
2341         if (tx)
2342                 SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
2343         else
2344                 SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
2345
2346         rc = qed_dmae_host2grc(p_hwfn, p_ptt,
2347                                (u64)(uintptr_t)&sb_entry,
2348                                CAU_REG_SB_VAR_MEMORY +
2349                                sb_id * sizeof(u64), 2, 0);
2350         if (rc) {
2351                 DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc);
2352                 return rc;
2353         }
2354
2355         return rc;
2356 }