Merge tag 'efi-efivars-removal-for-v5.20' of git://git.kernel.org/pub/scm/linux/kerne...
[linux-2.6-block.git] / drivers / net / ethernet / intel / igc / igc_main.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2018 Intel Corporation */
3
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/aer.h>
8 #include <linux/tcp.h>
9 #include <linux/udp.h>
10 #include <linux/ip.h>
11 #include <linux/pm_runtime.h>
12 #include <net/pkt_sched.h>
13 #include <linux/bpf_trace.h>
14 #include <net/xdp_sock_drv.h>
15 #include <linux/pci.h>
16
17 #include <net/ipv6.h>
18
19 #include "igc.h"
20 #include "igc_hw.h"
21 #include "igc_tsn.h"
22 #include "igc_xdp.h"
23
24 #define DRV_SUMMARY     "Intel(R) 2.5G Ethernet Linux Driver"
25
26 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
27
28 #define IGC_XDP_PASS            0
29 #define IGC_XDP_CONSUMED        BIT(0)
30 #define IGC_XDP_TX              BIT(1)
31 #define IGC_XDP_REDIRECT        BIT(2)
32
33 static int debug = -1;
34
35 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
36 MODULE_DESCRIPTION(DRV_SUMMARY);
37 MODULE_LICENSE("GPL v2");
38 module_param(debug, int, 0);
39 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
40
41 char igc_driver_name[] = "igc";
42 static const char igc_driver_string[] = DRV_SUMMARY;
43 static const char igc_copyright[] =
44         "Copyright(c) 2018 Intel Corporation.";
45
46 static const struct igc_info *igc_info_tbl[] = {
47         [board_base] = &igc_base_info,
48 };
49
50 static const struct pci_device_id igc_pci_tbl[] = {
51         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
52         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
53         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
54         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
55         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
56         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
57         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base },
58         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
59         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LMVP), board_base },
60         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
61         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base },
62         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base },
63         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base },
64         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base },
65         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base },
66         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
67         /* required last entry */
68         {0, }
69 };
70
71 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
72
73 enum latency_range {
74         lowest_latency = 0,
75         low_latency = 1,
76         bulk_latency = 2,
77         latency_invalid = 255
78 };
79
80 void igc_reset(struct igc_adapter *adapter)
81 {
82         struct net_device *dev = adapter->netdev;
83         struct igc_hw *hw = &adapter->hw;
84         struct igc_fc_info *fc = &hw->fc;
85         u32 pba, hwm;
86
87         /* Repartition PBA for greater than 9k MTU if required */
88         pba = IGC_PBA_34K;
89
90         /* flow control settings
91          * The high water mark must be low enough to fit one full frame
92          * after transmitting the pause frame.  As such we must have enough
93          * space to allow for us to complete our current transmit and then
94          * receive the frame that is in progress from the link partner.
95          * Set it to:
96          * - the full Rx FIFO size minus one full Tx plus one full Rx frame
97          */
98         hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
99
100         fc->high_water = hwm & 0xFFFFFFF0;      /* 16-byte granularity */
101         fc->low_water = fc->high_water - 16;
102         fc->pause_time = 0xFFFF;
103         fc->send_xon = 1;
104         fc->current_mode = fc->requested_mode;
105
106         hw->mac.ops.reset_hw(hw);
107
108         if (hw->mac.ops.init_hw(hw))
109                 netdev_err(dev, "Error on hardware initialization\n");
110
111         /* Re-establish EEE setting */
112         igc_set_eee_i225(hw, true, true, true);
113
114         if (!netif_running(adapter->netdev))
115                 igc_power_down_phy_copper_base(&adapter->hw);
116
117         /* Enable HW to recognize an 802.1Q VLAN Ethernet packet */
118         wr32(IGC_VET, ETH_P_8021Q);
119
120         /* Re-enable PTP, where applicable. */
121         igc_ptp_reset(adapter);
122
123         /* Re-enable TSN offloading, where applicable. */
124         igc_tsn_reset(adapter);
125
126         igc_get_phy_info(hw);
127 }
128
129 /**
130  * igc_power_up_link - Power up the phy link
131  * @adapter: address of board private structure
132  */
133 static void igc_power_up_link(struct igc_adapter *adapter)
134 {
135         igc_reset_phy(&adapter->hw);
136
137         igc_power_up_phy_copper(&adapter->hw);
138
139         igc_setup_link(&adapter->hw);
140 }
141
142 /**
143  * igc_release_hw_control - release control of the h/w to f/w
144  * @adapter: address of board private structure
145  *
146  * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
147  * For ASF and Pass Through versions of f/w this means that the
148  * driver is no longer loaded.
149  */
150 static void igc_release_hw_control(struct igc_adapter *adapter)
151 {
152         struct igc_hw *hw = &adapter->hw;
153         u32 ctrl_ext;
154
155         if (!pci_device_is_present(adapter->pdev))
156                 return;
157
158         /* Let firmware take over control of h/w */
159         ctrl_ext = rd32(IGC_CTRL_EXT);
160         wr32(IGC_CTRL_EXT,
161              ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
162 }
163
164 /**
165  * igc_get_hw_control - get control of the h/w from f/w
166  * @adapter: address of board private structure
167  *
168  * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
169  * For ASF and Pass Through versions of f/w this means that
170  * the driver is loaded.
171  */
172 static void igc_get_hw_control(struct igc_adapter *adapter)
173 {
174         struct igc_hw *hw = &adapter->hw;
175         u32 ctrl_ext;
176
177         /* Let firmware know the driver has taken over */
178         ctrl_ext = rd32(IGC_CTRL_EXT);
179         wr32(IGC_CTRL_EXT,
180              ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
181 }
182
183 static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf)
184 {
185         dma_unmap_single(dev, dma_unmap_addr(buf, dma),
186                          dma_unmap_len(buf, len), DMA_TO_DEVICE);
187
188         dma_unmap_len_set(buf, len, 0);
189 }
190
191 /**
192  * igc_clean_tx_ring - Free Tx Buffers
193  * @tx_ring: ring to be cleaned
194  */
195 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
196 {
197         u16 i = tx_ring->next_to_clean;
198         struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
199         u32 xsk_frames = 0;
200
201         while (i != tx_ring->next_to_use) {
202                 union igc_adv_tx_desc *eop_desc, *tx_desc;
203
204                 switch (tx_buffer->type) {
205                 case IGC_TX_BUFFER_TYPE_XSK:
206                         xsk_frames++;
207                         break;
208                 case IGC_TX_BUFFER_TYPE_XDP:
209                         xdp_return_frame(tx_buffer->xdpf);
210                         igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
211                         break;
212                 case IGC_TX_BUFFER_TYPE_SKB:
213                         dev_kfree_skb_any(tx_buffer->skb);
214                         igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
215                         break;
216                 default:
217                         netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
218                         break;
219                 }
220
221                 /* check for eop_desc to determine the end of the packet */
222                 eop_desc = tx_buffer->next_to_watch;
223                 tx_desc = IGC_TX_DESC(tx_ring, i);
224
225                 /* unmap remaining buffers */
226                 while (tx_desc != eop_desc) {
227                         tx_buffer++;
228                         tx_desc++;
229                         i++;
230                         if (unlikely(i == tx_ring->count)) {
231                                 i = 0;
232                                 tx_buffer = tx_ring->tx_buffer_info;
233                                 tx_desc = IGC_TX_DESC(tx_ring, 0);
234                         }
235
236                         /* unmap any remaining paged data */
237                         if (dma_unmap_len(tx_buffer, len))
238                                 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
239                 }
240
241                 tx_buffer->next_to_watch = NULL;
242
243                 /* move us one more past the eop_desc for start of next pkt */
244                 tx_buffer++;
245                 i++;
246                 if (unlikely(i == tx_ring->count)) {
247                         i = 0;
248                         tx_buffer = tx_ring->tx_buffer_info;
249                 }
250         }
251
252         if (tx_ring->xsk_pool && xsk_frames)
253                 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
254
255         /* reset BQL for queue */
256         netdev_tx_reset_queue(txring_txq(tx_ring));
257
258         /* reset next_to_use and next_to_clean */
259         tx_ring->next_to_use = 0;
260         tx_ring->next_to_clean = 0;
261 }
262
263 /**
264  * igc_free_tx_resources - Free Tx Resources per Queue
265  * @tx_ring: Tx descriptor ring for a specific queue
266  *
267  * Free all transmit software resources
268  */
269 void igc_free_tx_resources(struct igc_ring *tx_ring)
270 {
271         igc_clean_tx_ring(tx_ring);
272
273         vfree(tx_ring->tx_buffer_info);
274         tx_ring->tx_buffer_info = NULL;
275
276         /* if not set, then don't free */
277         if (!tx_ring->desc)
278                 return;
279
280         dma_free_coherent(tx_ring->dev, tx_ring->size,
281                           tx_ring->desc, tx_ring->dma);
282
283         tx_ring->desc = NULL;
284 }
285
286 /**
287  * igc_free_all_tx_resources - Free Tx Resources for All Queues
288  * @adapter: board private structure
289  *
290  * Free all transmit software resources
291  */
292 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
293 {
294         int i;
295
296         for (i = 0; i < adapter->num_tx_queues; i++)
297                 igc_free_tx_resources(adapter->tx_ring[i]);
298 }
299
300 /**
301  * igc_clean_all_tx_rings - Free Tx Buffers for all queues
302  * @adapter: board private structure
303  */
304 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
305 {
306         int i;
307
308         for (i = 0; i < adapter->num_tx_queues; i++)
309                 if (adapter->tx_ring[i])
310                         igc_clean_tx_ring(adapter->tx_ring[i]);
311 }
312
313 /**
314  * igc_setup_tx_resources - allocate Tx resources (Descriptors)
315  * @tx_ring: tx descriptor ring (for a specific queue) to setup
316  *
317  * Return 0 on success, negative on failure
318  */
319 int igc_setup_tx_resources(struct igc_ring *tx_ring)
320 {
321         struct net_device *ndev = tx_ring->netdev;
322         struct device *dev = tx_ring->dev;
323         int size = 0;
324
325         size = sizeof(struct igc_tx_buffer) * tx_ring->count;
326         tx_ring->tx_buffer_info = vzalloc(size);
327         if (!tx_ring->tx_buffer_info)
328                 goto err;
329
330         /* round up to nearest 4K */
331         tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
332         tx_ring->size = ALIGN(tx_ring->size, 4096);
333
334         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
335                                            &tx_ring->dma, GFP_KERNEL);
336
337         if (!tx_ring->desc)
338                 goto err;
339
340         tx_ring->next_to_use = 0;
341         tx_ring->next_to_clean = 0;
342
343         return 0;
344
345 err:
346         vfree(tx_ring->tx_buffer_info);
347         netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
348         return -ENOMEM;
349 }
350
351 /**
352  * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
353  * @adapter: board private structure
354  *
355  * Return 0 on success, negative on failure
356  */
357 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
358 {
359         struct net_device *dev = adapter->netdev;
360         int i, err = 0;
361
362         for (i = 0; i < adapter->num_tx_queues; i++) {
363                 err = igc_setup_tx_resources(adapter->tx_ring[i]);
364                 if (err) {
365                         netdev_err(dev, "Error on Tx queue %u setup\n", i);
366                         for (i--; i >= 0; i--)
367                                 igc_free_tx_resources(adapter->tx_ring[i]);
368                         break;
369                 }
370         }
371
372         return err;
373 }
374
375 static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring)
376 {
377         u16 i = rx_ring->next_to_clean;
378
379         dev_kfree_skb(rx_ring->skb);
380         rx_ring->skb = NULL;
381
382         /* Free all the Rx ring sk_buffs */
383         while (i != rx_ring->next_to_alloc) {
384                 struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
385
386                 /* Invalidate cache lines that may have been written to by
387                  * device so that we avoid corrupting memory.
388                  */
389                 dma_sync_single_range_for_cpu(rx_ring->dev,
390                                               buffer_info->dma,
391                                               buffer_info->page_offset,
392                                               igc_rx_bufsz(rx_ring),
393                                               DMA_FROM_DEVICE);
394
395                 /* free resources associated with mapping */
396                 dma_unmap_page_attrs(rx_ring->dev,
397                                      buffer_info->dma,
398                                      igc_rx_pg_size(rx_ring),
399                                      DMA_FROM_DEVICE,
400                                      IGC_RX_DMA_ATTR);
401                 __page_frag_cache_drain(buffer_info->page,
402                                         buffer_info->pagecnt_bias);
403
404                 i++;
405                 if (i == rx_ring->count)
406                         i = 0;
407         }
408 }
409
410 static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring)
411 {
412         struct igc_rx_buffer *bi;
413         u16 i;
414
415         for (i = 0; i < ring->count; i++) {
416                 bi = &ring->rx_buffer_info[i];
417                 if (!bi->xdp)
418                         continue;
419
420                 xsk_buff_free(bi->xdp);
421                 bi->xdp = NULL;
422         }
423 }
424
425 /**
426  * igc_clean_rx_ring - Free Rx Buffers per Queue
427  * @ring: ring to free buffers from
428  */
429 static void igc_clean_rx_ring(struct igc_ring *ring)
430 {
431         if (ring->xsk_pool)
432                 igc_clean_rx_ring_xsk_pool(ring);
433         else
434                 igc_clean_rx_ring_page_shared(ring);
435
436         clear_ring_uses_large_buffer(ring);
437
438         ring->next_to_alloc = 0;
439         ring->next_to_clean = 0;
440         ring->next_to_use = 0;
441 }
442
443 /**
444  * igc_clean_all_rx_rings - Free Rx Buffers for all queues
445  * @adapter: board private structure
446  */
447 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
448 {
449         int i;
450
451         for (i = 0; i < adapter->num_rx_queues; i++)
452                 if (adapter->rx_ring[i])
453                         igc_clean_rx_ring(adapter->rx_ring[i]);
454 }
455
456 /**
457  * igc_free_rx_resources - Free Rx Resources
458  * @rx_ring: ring to clean the resources from
459  *
460  * Free all receive software resources
461  */
462 void igc_free_rx_resources(struct igc_ring *rx_ring)
463 {
464         igc_clean_rx_ring(rx_ring);
465
466         xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
467
468         vfree(rx_ring->rx_buffer_info);
469         rx_ring->rx_buffer_info = NULL;
470
471         /* if not set, then don't free */
472         if (!rx_ring->desc)
473                 return;
474
475         dma_free_coherent(rx_ring->dev, rx_ring->size,
476                           rx_ring->desc, rx_ring->dma);
477
478         rx_ring->desc = NULL;
479 }
480
481 /**
482  * igc_free_all_rx_resources - Free Rx Resources for All Queues
483  * @adapter: board private structure
484  *
485  * Free all receive software resources
486  */
487 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
488 {
489         int i;
490
491         for (i = 0; i < adapter->num_rx_queues; i++)
492                 igc_free_rx_resources(adapter->rx_ring[i]);
493 }
494
495 /**
496  * igc_setup_rx_resources - allocate Rx resources (Descriptors)
497  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
498  *
499  * Returns 0 on success, negative on failure
500  */
501 int igc_setup_rx_resources(struct igc_ring *rx_ring)
502 {
503         struct net_device *ndev = rx_ring->netdev;
504         struct device *dev = rx_ring->dev;
505         u8 index = rx_ring->queue_index;
506         int size, desc_len, res;
507
508         /* XDP RX-queue info */
509         if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
510                 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
511         res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index,
512                                rx_ring->q_vector->napi.napi_id);
513         if (res < 0) {
514                 netdev_err(ndev, "Failed to register xdp_rxq index %u\n",
515                            index);
516                 return res;
517         }
518
519         size = sizeof(struct igc_rx_buffer) * rx_ring->count;
520         rx_ring->rx_buffer_info = vzalloc(size);
521         if (!rx_ring->rx_buffer_info)
522                 goto err;
523
524         desc_len = sizeof(union igc_adv_rx_desc);
525
526         /* Round up to nearest 4K */
527         rx_ring->size = rx_ring->count * desc_len;
528         rx_ring->size = ALIGN(rx_ring->size, 4096);
529
530         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
531                                            &rx_ring->dma, GFP_KERNEL);
532
533         if (!rx_ring->desc)
534                 goto err;
535
536         rx_ring->next_to_alloc = 0;
537         rx_ring->next_to_clean = 0;
538         rx_ring->next_to_use = 0;
539
540         return 0;
541
542 err:
543         xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
544         vfree(rx_ring->rx_buffer_info);
545         rx_ring->rx_buffer_info = NULL;
546         netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
547         return -ENOMEM;
548 }
549
550 /**
551  * igc_setup_all_rx_resources - wrapper to allocate Rx resources
552  *                                (Descriptors) for all queues
553  * @adapter: board private structure
554  *
555  * Return 0 on success, negative on failure
556  */
557 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
558 {
559         struct net_device *dev = adapter->netdev;
560         int i, err = 0;
561
562         for (i = 0; i < adapter->num_rx_queues; i++) {
563                 err = igc_setup_rx_resources(adapter->rx_ring[i]);
564                 if (err) {
565                         netdev_err(dev, "Error on Rx queue %u setup\n", i);
566                         for (i--; i >= 0; i--)
567                                 igc_free_rx_resources(adapter->rx_ring[i]);
568                         break;
569                 }
570         }
571
572         return err;
573 }
574
575 static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter,
576                                               struct igc_ring *ring)
577 {
578         if (!igc_xdp_is_enabled(adapter) ||
579             !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags))
580                 return NULL;
581
582         return xsk_get_pool_from_qid(ring->netdev, ring->queue_index);
583 }
584
585 /**
586  * igc_configure_rx_ring - Configure a receive ring after Reset
587  * @adapter: board private structure
588  * @ring: receive ring to be configured
589  *
590  * Configure the Rx unit of the MAC after a reset.
591  */
592 static void igc_configure_rx_ring(struct igc_adapter *adapter,
593                                   struct igc_ring *ring)
594 {
595         struct igc_hw *hw = &adapter->hw;
596         union igc_adv_rx_desc *rx_desc;
597         int reg_idx = ring->reg_idx;
598         u32 srrctl = 0, rxdctl = 0;
599         u64 rdba = ring->dma;
600         u32 buf_size;
601
602         xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
603         ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
604         if (ring->xsk_pool) {
605                 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
606                                                    MEM_TYPE_XSK_BUFF_POOL,
607                                                    NULL));
608                 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
609         } else {
610                 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
611                                                    MEM_TYPE_PAGE_SHARED,
612                                                    NULL));
613         }
614
615         if (igc_xdp_is_enabled(adapter))
616                 set_ring_uses_large_buffer(ring);
617
618         /* disable the queue */
619         wr32(IGC_RXDCTL(reg_idx), 0);
620
621         /* Set DMA base address registers */
622         wr32(IGC_RDBAL(reg_idx),
623              rdba & 0x00000000ffffffffULL);
624         wr32(IGC_RDBAH(reg_idx), rdba >> 32);
625         wr32(IGC_RDLEN(reg_idx),
626              ring->count * sizeof(union igc_adv_rx_desc));
627
628         /* initialize head and tail */
629         ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
630         wr32(IGC_RDH(reg_idx), 0);
631         writel(0, ring->tail);
632
633         /* reset next-to- use/clean to place SW in sync with hardware */
634         ring->next_to_clean = 0;
635         ring->next_to_use = 0;
636
637         if (ring->xsk_pool)
638                 buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool);
639         else if (ring_uses_large_buffer(ring))
640                 buf_size = IGC_RXBUFFER_3072;
641         else
642                 buf_size = IGC_RXBUFFER_2048;
643
644         srrctl = IGC_RX_HDR_LEN << IGC_SRRCTL_BSIZEHDRSIZE_SHIFT;
645         srrctl |= buf_size >> IGC_SRRCTL_BSIZEPKT_SHIFT;
646         srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
647
648         wr32(IGC_SRRCTL(reg_idx), srrctl);
649
650         rxdctl |= IGC_RX_PTHRESH;
651         rxdctl |= IGC_RX_HTHRESH << 8;
652         rxdctl |= IGC_RX_WTHRESH << 16;
653
654         /* initialize rx_buffer_info */
655         memset(ring->rx_buffer_info, 0,
656                sizeof(struct igc_rx_buffer) * ring->count);
657
658         /* initialize Rx descriptor 0 */
659         rx_desc = IGC_RX_DESC(ring, 0);
660         rx_desc->wb.upper.length = 0;
661
662         /* enable receive descriptor fetching */
663         rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
664
665         wr32(IGC_RXDCTL(reg_idx), rxdctl);
666 }
667
668 /**
669  * igc_configure_rx - Configure receive Unit after Reset
670  * @adapter: board private structure
671  *
672  * Configure the Rx unit of the MAC after a reset.
673  */
674 static void igc_configure_rx(struct igc_adapter *adapter)
675 {
676         int i;
677
678         /* Setup the HW Rx Head and Tail Descriptor Pointers and
679          * the Base and Length of the Rx Descriptor Ring
680          */
681         for (i = 0; i < adapter->num_rx_queues; i++)
682                 igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
683 }
684
685 /**
686  * igc_configure_tx_ring - Configure transmit ring after Reset
687  * @adapter: board private structure
688  * @ring: tx ring to configure
689  *
690  * Configure a transmit ring after a reset.
691  */
692 static void igc_configure_tx_ring(struct igc_adapter *adapter,
693                                   struct igc_ring *ring)
694 {
695         struct igc_hw *hw = &adapter->hw;
696         int reg_idx = ring->reg_idx;
697         u64 tdba = ring->dma;
698         u32 txdctl = 0;
699
700         ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
701
702         /* disable the queue */
703         wr32(IGC_TXDCTL(reg_idx), 0);
704         wrfl();
705         mdelay(10);
706
707         wr32(IGC_TDLEN(reg_idx),
708              ring->count * sizeof(union igc_adv_tx_desc));
709         wr32(IGC_TDBAL(reg_idx),
710              tdba & 0x00000000ffffffffULL);
711         wr32(IGC_TDBAH(reg_idx), tdba >> 32);
712
713         ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
714         wr32(IGC_TDH(reg_idx), 0);
715         writel(0, ring->tail);
716
717         txdctl |= IGC_TX_PTHRESH;
718         txdctl |= IGC_TX_HTHRESH << 8;
719         txdctl |= IGC_TX_WTHRESH << 16;
720
721         txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
722         wr32(IGC_TXDCTL(reg_idx), txdctl);
723 }
724
725 /**
726  * igc_configure_tx - Configure transmit Unit after Reset
727  * @adapter: board private structure
728  *
729  * Configure the Tx unit of the MAC after a reset.
730  */
731 static void igc_configure_tx(struct igc_adapter *adapter)
732 {
733         int i;
734
735         for (i = 0; i < adapter->num_tx_queues; i++)
736                 igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
737 }
738
739 /**
740  * igc_setup_mrqc - configure the multiple receive queue control registers
741  * @adapter: Board private structure
742  */
743 static void igc_setup_mrqc(struct igc_adapter *adapter)
744 {
745         struct igc_hw *hw = &adapter->hw;
746         u32 j, num_rx_queues;
747         u32 mrqc, rxcsum;
748         u32 rss_key[10];
749
750         netdev_rss_key_fill(rss_key, sizeof(rss_key));
751         for (j = 0; j < 10; j++)
752                 wr32(IGC_RSSRK(j), rss_key[j]);
753
754         num_rx_queues = adapter->rss_queues;
755
756         if (adapter->rss_indir_tbl_init != num_rx_queues) {
757                 for (j = 0; j < IGC_RETA_SIZE; j++)
758                         adapter->rss_indir_tbl[j] =
759                         (j * num_rx_queues) / IGC_RETA_SIZE;
760                 adapter->rss_indir_tbl_init = num_rx_queues;
761         }
762         igc_write_rss_indir_tbl(adapter);
763
764         /* Disable raw packet checksumming so that RSS hash is placed in
765          * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
766          * offloads as they are enabled by default
767          */
768         rxcsum = rd32(IGC_RXCSUM);
769         rxcsum |= IGC_RXCSUM_PCSD;
770
771         /* Enable Receive Checksum Offload for SCTP */
772         rxcsum |= IGC_RXCSUM_CRCOFL;
773
774         /* Don't need to set TUOFL or IPOFL, they default to 1 */
775         wr32(IGC_RXCSUM, rxcsum);
776
777         /* Generate RSS hash based on packet types, TCP/UDP
778          * port numbers and/or IPv4/v6 src and dst addresses
779          */
780         mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
781                IGC_MRQC_RSS_FIELD_IPV4_TCP |
782                IGC_MRQC_RSS_FIELD_IPV6 |
783                IGC_MRQC_RSS_FIELD_IPV6_TCP |
784                IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
785
786         if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
787                 mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
788         if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
789                 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
790
791         mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
792
793         wr32(IGC_MRQC, mrqc);
794 }
795
796 /**
797  * igc_setup_rctl - configure the receive control registers
798  * @adapter: Board private structure
799  */
800 static void igc_setup_rctl(struct igc_adapter *adapter)
801 {
802         struct igc_hw *hw = &adapter->hw;
803         u32 rctl;
804
805         rctl = rd32(IGC_RCTL);
806
807         rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
808         rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
809
810         rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
811                 (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
812
813         /* enable stripping of CRC. Newer features require
814          * that the HW strips the CRC.
815          */
816         rctl |= IGC_RCTL_SECRC;
817
818         /* disable store bad packets and clear size bits. */
819         rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
820
821         /* enable LPE to allow for reception of jumbo frames */
822         rctl |= IGC_RCTL_LPE;
823
824         /* disable queue 0 to prevent tail write w/o re-config */
825         wr32(IGC_RXDCTL(0), 0);
826
827         /* This is useful for sniffing bad packets. */
828         if (adapter->netdev->features & NETIF_F_RXALL) {
829                 /* UPE and MPE will be handled by normal PROMISC logic
830                  * in set_rx_mode
831                  */
832                 rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
833                          IGC_RCTL_BAM | /* RX All Bcast Pkts */
834                          IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
835
836                 rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
837                           IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
838         }
839
840         wr32(IGC_RCTL, rctl);
841 }
842
843 /**
844  * igc_setup_tctl - configure the transmit control registers
845  * @adapter: Board private structure
846  */
847 static void igc_setup_tctl(struct igc_adapter *adapter)
848 {
849         struct igc_hw *hw = &adapter->hw;
850         u32 tctl;
851
852         /* disable queue 0 which icould be enabled by default */
853         wr32(IGC_TXDCTL(0), 0);
854
855         /* Program the Transmit Control Register */
856         tctl = rd32(IGC_TCTL);
857         tctl &= ~IGC_TCTL_CT;
858         tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
859                 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
860
861         /* Enable transmits */
862         tctl |= IGC_TCTL_EN;
863
864         wr32(IGC_TCTL, tctl);
865 }
866
867 /**
868  * igc_set_mac_filter_hw() - Set MAC address filter in hardware
869  * @adapter: Pointer to adapter where the filter should be set
870  * @index: Filter index
871  * @type: MAC address filter type (source or destination)
872  * @addr: MAC address
873  * @queue: If non-negative, queue assignment feature is enabled and frames
874  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
875  *         assignment is disabled.
876  */
877 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
878                                   enum igc_mac_filter_type type,
879                                   const u8 *addr, int queue)
880 {
881         struct net_device *dev = adapter->netdev;
882         struct igc_hw *hw = &adapter->hw;
883         u32 ral, rah;
884
885         if (WARN_ON(index >= hw->mac.rar_entry_count))
886                 return;
887
888         ral = le32_to_cpup((__le32 *)(addr));
889         rah = le16_to_cpup((__le16 *)(addr + 4));
890
891         if (type == IGC_MAC_FILTER_TYPE_SRC) {
892                 rah &= ~IGC_RAH_ASEL_MASK;
893                 rah |= IGC_RAH_ASEL_SRC_ADDR;
894         }
895
896         if (queue >= 0) {
897                 rah &= ~IGC_RAH_QSEL_MASK;
898                 rah |= (queue << IGC_RAH_QSEL_SHIFT);
899                 rah |= IGC_RAH_QSEL_ENABLE;
900         }
901
902         rah |= IGC_RAH_AV;
903
904         wr32(IGC_RAL(index), ral);
905         wr32(IGC_RAH(index), rah);
906
907         netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
908 }
909
910 /**
911  * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
912  * @adapter: Pointer to adapter where the filter should be cleared
913  * @index: Filter index
914  */
915 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
916 {
917         struct net_device *dev = adapter->netdev;
918         struct igc_hw *hw = &adapter->hw;
919
920         if (WARN_ON(index >= hw->mac.rar_entry_count))
921                 return;
922
923         wr32(IGC_RAL(index), 0);
924         wr32(IGC_RAH(index), 0);
925
926         netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
927 }
928
929 /* Set default MAC address for the PF in the first RAR entry */
930 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
931 {
932         struct net_device *dev = adapter->netdev;
933         u8 *addr = adapter->hw.mac.addr;
934
935         netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
936
937         igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
938 }
939
940 /**
941  * igc_set_mac - Change the Ethernet Address of the NIC
942  * @netdev: network interface device structure
943  * @p: pointer to an address structure
944  *
945  * Returns 0 on success, negative on failure
946  */
947 static int igc_set_mac(struct net_device *netdev, void *p)
948 {
949         struct igc_adapter *adapter = netdev_priv(netdev);
950         struct igc_hw *hw = &adapter->hw;
951         struct sockaddr *addr = p;
952
953         if (!is_valid_ether_addr(addr->sa_data))
954                 return -EADDRNOTAVAIL;
955
956         eth_hw_addr_set(netdev, addr->sa_data);
957         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
958
959         /* set the correct pool for the new PF MAC address in entry 0 */
960         igc_set_default_mac_filter(adapter);
961
962         return 0;
963 }
964
965 /**
966  *  igc_write_mc_addr_list - write multicast addresses to MTA
967  *  @netdev: network interface device structure
968  *
969  *  Writes multicast address list to the MTA hash table.
970  *  Returns: -ENOMEM on failure
971  *           0 on no addresses written
972  *           X on writing X addresses to MTA
973  **/
974 static int igc_write_mc_addr_list(struct net_device *netdev)
975 {
976         struct igc_adapter *adapter = netdev_priv(netdev);
977         struct igc_hw *hw = &adapter->hw;
978         struct netdev_hw_addr *ha;
979         u8  *mta_list;
980         int i;
981
982         if (netdev_mc_empty(netdev)) {
983                 /* nothing to program, so clear mc list */
984                 igc_update_mc_addr_list(hw, NULL, 0);
985                 return 0;
986         }
987
988         mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
989         if (!mta_list)
990                 return -ENOMEM;
991
992         /* The shared function expects a packed array of only addresses. */
993         i = 0;
994         netdev_for_each_mc_addr(ha, netdev)
995                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
996
997         igc_update_mc_addr_list(hw, mta_list, i);
998         kfree(mta_list);
999
1000         return netdev_mc_count(netdev);
1001 }
1002
1003 static __le32 igc_tx_launchtime(struct igc_adapter *adapter, ktime_t txtime)
1004 {
1005         ktime_t cycle_time = adapter->cycle_time;
1006         ktime_t base_time = adapter->base_time;
1007         u32 launchtime;
1008
1009         /* FIXME: when using ETF together with taprio, we may have a
1010          * case where 'delta' is larger than the cycle_time, this may
1011          * cause problems if we don't read the current value of
1012          * IGC_BASET, as the value writen into the launchtime
1013          * descriptor field may be misinterpreted.
1014          */
1015         div_s64_rem(ktime_sub_ns(txtime, base_time), cycle_time, &launchtime);
1016
1017         return cpu_to_le32(launchtime);
1018 }
1019
1020 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
1021                             struct igc_tx_buffer *first,
1022                             u32 vlan_macip_lens, u32 type_tucmd,
1023                             u32 mss_l4len_idx)
1024 {
1025         struct igc_adv_tx_context_desc *context_desc;
1026         u16 i = tx_ring->next_to_use;
1027
1028         context_desc = IGC_TX_CTXTDESC(tx_ring, i);
1029
1030         i++;
1031         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1032
1033         /* set bits to identify this as an advanced context descriptor */
1034         type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
1035
1036         /* For i225, context index must be unique per ring. */
1037         if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
1038                 mss_l4len_idx |= tx_ring->reg_idx << 4;
1039
1040         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
1041         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
1042         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
1043
1044         /* We assume there is always a valid Tx time available. Invalid times
1045          * should have been handled by the upper layers.
1046          */
1047         if (tx_ring->launchtime_enable) {
1048                 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1049                 ktime_t txtime = first->skb->tstamp;
1050
1051                 skb_txtime_consumed(first->skb);
1052                 context_desc->launch_time = igc_tx_launchtime(adapter,
1053                                                               txtime);
1054         } else {
1055                 context_desc->launch_time = 0;
1056         }
1057 }
1058
1059 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first)
1060 {
1061         struct sk_buff *skb = first->skb;
1062         u32 vlan_macip_lens = 0;
1063         u32 type_tucmd = 0;
1064
1065         if (skb->ip_summed != CHECKSUM_PARTIAL) {
1066 csum_failed:
1067                 if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
1068                     !tx_ring->launchtime_enable)
1069                         return;
1070                 goto no_csum;
1071         }
1072
1073         switch (skb->csum_offset) {
1074         case offsetof(struct tcphdr, check):
1075                 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1076                 fallthrough;
1077         case offsetof(struct udphdr, check):
1078                 break;
1079         case offsetof(struct sctphdr, checksum):
1080                 /* validate that this is actually an SCTP request */
1081                 if (skb_csum_is_sctp(skb)) {
1082                         type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
1083                         break;
1084                 }
1085                 fallthrough;
1086         default:
1087                 skb_checksum_help(skb);
1088                 goto csum_failed;
1089         }
1090
1091         /* update TX checksum flag */
1092         first->tx_flags |= IGC_TX_FLAGS_CSUM;
1093         vlan_macip_lens = skb_checksum_start_offset(skb) -
1094                           skb_network_offset(skb);
1095 no_csum:
1096         vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1097         vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1098
1099         igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
1100 }
1101
1102 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1103 {
1104         struct net_device *netdev = tx_ring->netdev;
1105
1106         netif_stop_subqueue(netdev, tx_ring->queue_index);
1107
1108         /* memory barriier comment */
1109         smp_mb();
1110
1111         /* We need to check again in a case another CPU has just
1112          * made room available.
1113          */
1114         if (igc_desc_unused(tx_ring) < size)
1115                 return -EBUSY;
1116
1117         /* A reprieve! */
1118         netif_wake_subqueue(netdev, tx_ring->queue_index);
1119
1120         u64_stats_update_begin(&tx_ring->tx_syncp2);
1121         tx_ring->tx_stats.restart_queue2++;
1122         u64_stats_update_end(&tx_ring->tx_syncp2);
1123
1124         return 0;
1125 }
1126
1127 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1128 {
1129         if (igc_desc_unused(tx_ring) >= size)
1130                 return 0;
1131         return __igc_maybe_stop_tx(tx_ring, size);
1132 }
1133
1134 #define IGC_SET_FLAG(_input, _flag, _result) \
1135         (((_flag) <= (_result)) ?                               \
1136          ((u32)((_input) & (_flag)) * ((_result) / (_flag))) :  \
1137          ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1138
1139 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1140 {
1141         /* set type for advanced descriptor with frame checksum insertion */
1142         u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1143                        IGC_ADVTXD_DCMD_DEXT |
1144                        IGC_ADVTXD_DCMD_IFCS;
1145
1146         /* set HW vlan bit if vlan is present */
1147         cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN,
1148                                  IGC_ADVTXD_DCMD_VLE);
1149
1150         /* set segmentation bits for TSO */
1151         cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1152                                  (IGC_ADVTXD_DCMD_TSE));
1153
1154         /* set timestamp bit if present */
1155         cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1156                                  (IGC_ADVTXD_MAC_TSTAMP));
1157
1158         /* insert frame checksum */
1159         cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS);
1160
1161         return cmd_type;
1162 }
1163
1164 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1165                                  union igc_adv_tx_desc *tx_desc,
1166                                  u32 tx_flags, unsigned int paylen)
1167 {
1168         u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1169
1170         /* insert L4 checksum */
1171         olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) *
1172                           ((IGC_TXD_POPTS_TXSM << 8) /
1173                           IGC_TX_FLAGS_CSUM);
1174
1175         /* insert IPv4 checksum */
1176         olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) *
1177                           (((IGC_TXD_POPTS_IXSM << 8)) /
1178                           IGC_TX_FLAGS_IPV4);
1179
1180         tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1181 }
1182
1183 static int igc_tx_map(struct igc_ring *tx_ring,
1184                       struct igc_tx_buffer *first,
1185                       const u8 hdr_len)
1186 {
1187         struct sk_buff *skb = first->skb;
1188         struct igc_tx_buffer *tx_buffer;
1189         union igc_adv_tx_desc *tx_desc;
1190         u32 tx_flags = first->tx_flags;
1191         skb_frag_t *frag;
1192         u16 i = tx_ring->next_to_use;
1193         unsigned int data_len, size;
1194         dma_addr_t dma;
1195         u32 cmd_type;
1196
1197         cmd_type = igc_tx_cmd_type(skb, tx_flags);
1198         tx_desc = IGC_TX_DESC(tx_ring, i);
1199
1200         igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1201
1202         size = skb_headlen(skb);
1203         data_len = skb->data_len;
1204
1205         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1206
1207         tx_buffer = first;
1208
1209         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1210                 if (dma_mapping_error(tx_ring->dev, dma))
1211                         goto dma_error;
1212
1213                 /* record length, and DMA address */
1214                 dma_unmap_len_set(tx_buffer, len, size);
1215                 dma_unmap_addr_set(tx_buffer, dma, dma);
1216
1217                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1218
1219                 while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1220                         tx_desc->read.cmd_type_len =
1221                                 cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1222
1223                         i++;
1224                         tx_desc++;
1225                         if (i == tx_ring->count) {
1226                                 tx_desc = IGC_TX_DESC(tx_ring, 0);
1227                                 i = 0;
1228                         }
1229                         tx_desc->read.olinfo_status = 0;
1230
1231                         dma += IGC_MAX_DATA_PER_TXD;
1232                         size -= IGC_MAX_DATA_PER_TXD;
1233
1234                         tx_desc->read.buffer_addr = cpu_to_le64(dma);
1235                 }
1236
1237                 if (likely(!data_len))
1238                         break;
1239
1240                 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1241
1242                 i++;
1243                 tx_desc++;
1244                 if (i == tx_ring->count) {
1245                         tx_desc = IGC_TX_DESC(tx_ring, 0);
1246                         i = 0;
1247                 }
1248                 tx_desc->read.olinfo_status = 0;
1249
1250                 size = skb_frag_size(frag);
1251                 data_len -= size;
1252
1253                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1254                                        size, DMA_TO_DEVICE);
1255
1256                 tx_buffer = &tx_ring->tx_buffer_info[i];
1257         }
1258
1259         /* write last descriptor with RS and EOP bits */
1260         cmd_type |= size | IGC_TXD_DCMD;
1261         tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1262
1263         netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1264
1265         /* set the timestamp */
1266         first->time_stamp = jiffies;
1267
1268         skb_tx_timestamp(skb);
1269
1270         /* Force memory writes to complete before letting h/w know there
1271          * are new descriptors to fetch.  (Only applicable for weak-ordered
1272          * memory model archs, such as IA-64).
1273          *
1274          * We also need this memory barrier to make certain all of the
1275          * status bits have been updated before next_to_watch is written.
1276          */
1277         wmb();
1278
1279         /* set next_to_watch value indicating a packet is present */
1280         first->next_to_watch = tx_desc;
1281
1282         i++;
1283         if (i == tx_ring->count)
1284                 i = 0;
1285
1286         tx_ring->next_to_use = i;
1287
1288         /* Make sure there is space in the ring for the next send. */
1289         igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1290
1291         if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1292                 writel(i, tx_ring->tail);
1293         }
1294
1295         return 0;
1296 dma_error:
1297         netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1298         tx_buffer = &tx_ring->tx_buffer_info[i];
1299
1300         /* clear dma mappings for failed tx_buffer_info map */
1301         while (tx_buffer != first) {
1302                 if (dma_unmap_len(tx_buffer, len))
1303                         igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1304
1305                 if (i-- == 0)
1306                         i += tx_ring->count;
1307                 tx_buffer = &tx_ring->tx_buffer_info[i];
1308         }
1309
1310         if (dma_unmap_len(tx_buffer, len))
1311                 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1312
1313         dev_kfree_skb_any(tx_buffer->skb);
1314         tx_buffer->skb = NULL;
1315
1316         tx_ring->next_to_use = i;
1317
1318         return -1;
1319 }
1320
1321 static int igc_tso(struct igc_ring *tx_ring,
1322                    struct igc_tx_buffer *first,
1323                    u8 *hdr_len)
1324 {
1325         u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1326         struct sk_buff *skb = first->skb;
1327         union {
1328                 struct iphdr *v4;
1329                 struct ipv6hdr *v6;
1330                 unsigned char *hdr;
1331         } ip;
1332         union {
1333                 struct tcphdr *tcp;
1334                 struct udphdr *udp;
1335                 unsigned char *hdr;
1336         } l4;
1337         u32 paylen, l4_offset;
1338         int err;
1339
1340         if (skb->ip_summed != CHECKSUM_PARTIAL)
1341                 return 0;
1342
1343         if (!skb_is_gso(skb))
1344                 return 0;
1345
1346         err = skb_cow_head(skb, 0);
1347         if (err < 0)
1348                 return err;
1349
1350         ip.hdr = skb_network_header(skb);
1351         l4.hdr = skb_checksum_start(skb);
1352
1353         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1354         type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1355
1356         /* initialize outer IP header fields */
1357         if (ip.v4->version == 4) {
1358                 unsigned char *csum_start = skb_checksum_start(skb);
1359                 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1360
1361                 /* IP header will have to cancel out any data that
1362                  * is not a part of the outer IP header
1363                  */
1364                 ip.v4->check = csum_fold(csum_partial(trans_start,
1365                                                       csum_start - trans_start,
1366                                                       0));
1367                 type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1368
1369                 ip.v4->tot_len = 0;
1370                 first->tx_flags |= IGC_TX_FLAGS_TSO |
1371                                    IGC_TX_FLAGS_CSUM |
1372                                    IGC_TX_FLAGS_IPV4;
1373         } else {
1374                 ip.v6->payload_len = 0;
1375                 first->tx_flags |= IGC_TX_FLAGS_TSO |
1376                                    IGC_TX_FLAGS_CSUM;
1377         }
1378
1379         /* determine offset of inner transport header */
1380         l4_offset = l4.hdr - skb->data;
1381
1382         /* remove payload length from inner checksum */
1383         paylen = skb->len - l4_offset;
1384         if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1385                 /* compute length of segmentation header */
1386                 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
1387                 csum_replace_by_diff(&l4.tcp->check,
1388                                      (__force __wsum)htonl(paylen));
1389         } else {
1390                 /* compute length of segmentation header */
1391                 *hdr_len = sizeof(*l4.udp) + l4_offset;
1392                 csum_replace_by_diff(&l4.udp->check,
1393                                      (__force __wsum)htonl(paylen));
1394         }
1395
1396         /* update gso size and bytecount with header size */
1397         first->gso_segs = skb_shinfo(skb)->gso_segs;
1398         first->bytecount += (first->gso_segs - 1) * *hdr_len;
1399
1400         /* MSS L4LEN IDX */
1401         mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1402         mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1403
1404         /* VLAN MACLEN IPLEN */
1405         vlan_macip_lens = l4.hdr - ip.hdr;
1406         vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1407         vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1408
1409         igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
1410                         type_tucmd, mss_l4len_idx);
1411
1412         return 1;
1413 }
1414
1415 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1416                                        struct igc_ring *tx_ring)
1417 {
1418         u16 count = TXD_USE_COUNT(skb_headlen(skb));
1419         __be16 protocol = vlan_get_protocol(skb);
1420         struct igc_tx_buffer *first;
1421         u32 tx_flags = 0;
1422         unsigned short f;
1423         u8 hdr_len = 0;
1424         int tso = 0;
1425
1426         /* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1427          *      + 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1428          *      + 2 desc gap to keep tail from touching head,
1429          *      + 1 desc for context descriptor,
1430          * otherwise try next time
1431          */
1432         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1433                 count += TXD_USE_COUNT(skb_frag_size(
1434                                                 &skb_shinfo(skb)->frags[f]));
1435
1436         if (igc_maybe_stop_tx(tx_ring, count + 3)) {
1437                 /* this is a hard error */
1438                 return NETDEV_TX_BUSY;
1439         }
1440
1441         /* record the location of the first descriptor for this packet */
1442         first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1443         first->type = IGC_TX_BUFFER_TYPE_SKB;
1444         first->skb = skb;
1445         first->bytecount = skb->len;
1446         first->gso_segs = 1;
1447
1448         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1449                 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1450
1451                 /* FIXME: add support for retrieving timestamps from
1452                  * the other timer registers before skipping the
1453                  * timestamping request.
1454                  */
1455                 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
1456                     !test_and_set_bit_lock(__IGC_PTP_TX_IN_PROGRESS,
1457                                            &adapter->state)) {
1458                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1459                         tx_flags |= IGC_TX_FLAGS_TSTAMP;
1460
1461                         adapter->ptp_tx_skb = skb_get(skb);
1462                         adapter->ptp_tx_start = jiffies;
1463                 } else {
1464                         adapter->tx_hwtstamp_skipped++;
1465                 }
1466         }
1467
1468         if (skb_vlan_tag_present(skb)) {
1469                 tx_flags |= IGC_TX_FLAGS_VLAN;
1470                 tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT);
1471         }
1472
1473         /* record initial flags and protocol */
1474         first->tx_flags = tx_flags;
1475         first->protocol = protocol;
1476
1477         tso = igc_tso(tx_ring, first, &hdr_len);
1478         if (tso < 0)
1479                 goto out_drop;
1480         else if (!tso)
1481                 igc_tx_csum(tx_ring, first);
1482
1483         igc_tx_map(tx_ring, first, hdr_len);
1484
1485         return NETDEV_TX_OK;
1486
1487 out_drop:
1488         dev_kfree_skb_any(first->skb);
1489         first->skb = NULL;
1490
1491         return NETDEV_TX_OK;
1492 }
1493
1494 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1495                                                     struct sk_buff *skb)
1496 {
1497         unsigned int r_idx = skb->queue_mapping;
1498
1499         if (r_idx >= adapter->num_tx_queues)
1500                 r_idx = r_idx % adapter->num_tx_queues;
1501
1502         return adapter->tx_ring[r_idx];
1503 }
1504
1505 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1506                                   struct net_device *netdev)
1507 {
1508         struct igc_adapter *adapter = netdev_priv(netdev);
1509
1510         /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1511          * in order to meet this minimum size requirement.
1512          */
1513         if (skb->len < 17) {
1514                 if (skb_padto(skb, 17))
1515                         return NETDEV_TX_OK;
1516                 skb->len = 17;
1517         }
1518
1519         return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1520 }
1521
1522 static void igc_rx_checksum(struct igc_ring *ring,
1523                             union igc_adv_rx_desc *rx_desc,
1524                             struct sk_buff *skb)
1525 {
1526         skb_checksum_none_assert(skb);
1527
1528         /* Ignore Checksum bit is set */
1529         if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1530                 return;
1531
1532         /* Rx checksum disabled via ethtool */
1533         if (!(ring->netdev->features & NETIF_F_RXCSUM))
1534                 return;
1535
1536         /* TCP/UDP checksum error bit is set */
1537         if (igc_test_staterr(rx_desc,
1538                              IGC_RXDEXT_STATERR_L4E |
1539                              IGC_RXDEXT_STATERR_IPE)) {
1540                 /* work around errata with sctp packets where the TCPE aka
1541                  * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1542                  * packets (aka let the stack check the crc32c)
1543                  */
1544                 if (!(skb->len == 60 &&
1545                       test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1546                         u64_stats_update_begin(&ring->rx_syncp);
1547                         ring->rx_stats.csum_err++;
1548                         u64_stats_update_end(&ring->rx_syncp);
1549                 }
1550                 /* let the stack verify checksum errors */
1551                 return;
1552         }
1553         /* It must be a TCP or UDP packet with a valid checksum */
1554         if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1555                                       IGC_RXD_STAT_UDPCS))
1556                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1557
1558         netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1559                    le32_to_cpu(rx_desc->wb.upper.status_error));
1560 }
1561
1562 static inline void igc_rx_hash(struct igc_ring *ring,
1563                                union igc_adv_rx_desc *rx_desc,
1564                                struct sk_buff *skb)
1565 {
1566         if (ring->netdev->features & NETIF_F_RXHASH)
1567                 skb_set_hash(skb,
1568                              le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
1569                              PKT_HASH_TYPE_L3);
1570 }
1571
1572 static void igc_rx_vlan(struct igc_ring *rx_ring,
1573                         union igc_adv_rx_desc *rx_desc,
1574                         struct sk_buff *skb)
1575 {
1576         struct net_device *dev = rx_ring->netdev;
1577         u16 vid;
1578
1579         if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1580             igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) {
1581                 if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) &&
1582                     test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
1583                         vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
1584                 else
1585                         vid = le16_to_cpu(rx_desc->wb.upper.vlan);
1586
1587                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
1588         }
1589 }
1590
1591 /**
1592  * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1593  * @rx_ring: rx descriptor ring packet is being transacted on
1594  * @rx_desc: pointer to the EOP Rx descriptor
1595  * @skb: pointer to current skb being populated
1596  *
1597  * This function checks the ring, descriptor, and packet information in order
1598  * to populate the hash, checksum, VLAN, protocol, and other fields within the
1599  * skb.
1600  */
1601 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1602                                    union igc_adv_rx_desc *rx_desc,
1603                                    struct sk_buff *skb)
1604 {
1605         igc_rx_hash(rx_ring, rx_desc, skb);
1606
1607         igc_rx_checksum(rx_ring, rx_desc, skb);
1608
1609         igc_rx_vlan(rx_ring, rx_desc, skb);
1610
1611         skb_record_rx_queue(skb, rx_ring->queue_index);
1612
1613         skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1614 }
1615
1616 static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features)
1617 {
1618         bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1619         struct igc_adapter *adapter = netdev_priv(netdev);
1620         struct igc_hw *hw = &adapter->hw;
1621         u32 ctrl;
1622
1623         ctrl = rd32(IGC_CTRL);
1624
1625         if (enable) {
1626                 /* enable VLAN tag insert/strip */
1627                 ctrl |= IGC_CTRL_VME;
1628         } else {
1629                 /* disable VLAN tag insert/strip */
1630                 ctrl &= ~IGC_CTRL_VME;
1631         }
1632         wr32(IGC_CTRL, ctrl);
1633 }
1634
1635 static void igc_restore_vlan(struct igc_adapter *adapter)
1636 {
1637         igc_vlan_mode(adapter->netdev, adapter->netdev->features);
1638 }
1639
1640 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1641                                                const unsigned int size,
1642                                                int *rx_buffer_pgcnt)
1643 {
1644         struct igc_rx_buffer *rx_buffer;
1645
1646         rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1647         *rx_buffer_pgcnt =
1648 #if (PAGE_SIZE < 8192)
1649                 page_count(rx_buffer->page);
1650 #else
1651                 0;
1652 #endif
1653         prefetchw(rx_buffer->page);
1654
1655         /* we are reusing so sync this buffer for CPU use */
1656         dma_sync_single_range_for_cpu(rx_ring->dev,
1657                                       rx_buffer->dma,
1658                                       rx_buffer->page_offset,
1659                                       size,
1660                                       DMA_FROM_DEVICE);
1661
1662         rx_buffer->pagecnt_bias--;
1663
1664         return rx_buffer;
1665 }
1666
1667 static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer,
1668                                unsigned int truesize)
1669 {
1670 #if (PAGE_SIZE < 8192)
1671         buffer->page_offset ^= truesize;
1672 #else
1673         buffer->page_offset += truesize;
1674 #endif
1675 }
1676
1677 static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring,
1678                                               unsigned int size)
1679 {
1680         unsigned int truesize;
1681
1682 #if (PAGE_SIZE < 8192)
1683         truesize = igc_rx_pg_size(ring) / 2;
1684 #else
1685         truesize = ring_uses_build_skb(ring) ?
1686                    SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1687                    SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1688                    SKB_DATA_ALIGN(size);
1689 #endif
1690         return truesize;
1691 }
1692
1693 /**
1694  * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1695  * @rx_ring: rx descriptor ring to transact packets on
1696  * @rx_buffer: buffer containing page to add
1697  * @skb: sk_buff to place the data into
1698  * @size: size of buffer to be added
1699  *
1700  * This function will add the data contained in rx_buffer->page to the skb.
1701  */
1702 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1703                             struct igc_rx_buffer *rx_buffer,
1704                             struct sk_buff *skb,
1705                             unsigned int size)
1706 {
1707         unsigned int truesize;
1708
1709 #if (PAGE_SIZE < 8192)
1710         truesize = igc_rx_pg_size(rx_ring) / 2;
1711 #else
1712         truesize = ring_uses_build_skb(rx_ring) ?
1713                    SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1714                    SKB_DATA_ALIGN(size);
1715 #endif
1716         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1717                         rx_buffer->page_offset, size, truesize);
1718
1719         igc_rx_buffer_flip(rx_buffer, truesize);
1720 }
1721
1722 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1723                                      struct igc_rx_buffer *rx_buffer,
1724                                      struct xdp_buff *xdp)
1725 {
1726         unsigned int size = xdp->data_end - xdp->data;
1727         unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1728         unsigned int metasize = xdp->data - xdp->data_meta;
1729         struct sk_buff *skb;
1730
1731         /* prefetch first cache line of first page */
1732         net_prefetch(xdp->data_meta);
1733
1734         /* build an skb around the page buffer */
1735         skb = napi_build_skb(xdp->data_hard_start, truesize);
1736         if (unlikely(!skb))
1737                 return NULL;
1738
1739         /* update pointers within the skb to store the data */
1740         skb_reserve(skb, xdp->data - xdp->data_hard_start);
1741         __skb_put(skb, size);
1742         if (metasize)
1743                 skb_metadata_set(skb, metasize);
1744
1745         igc_rx_buffer_flip(rx_buffer, truesize);
1746         return skb;
1747 }
1748
1749 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1750                                          struct igc_rx_buffer *rx_buffer,
1751                                          struct xdp_buff *xdp,
1752                                          ktime_t timestamp)
1753 {
1754         unsigned int metasize = xdp->data - xdp->data_meta;
1755         unsigned int size = xdp->data_end - xdp->data;
1756         unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1757         void *va = xdp->data;
1758         unsigned int headlen;
1759         struct sk_buff *skb;
1760
1761         /* prefetch first cache line of first page */
1762         net_prefetch(xdp->data_meta);
1763
1764         /* allocate a skb to store the frags */
1765         skb = napi_alloc_skb(&rx_ring->q_vector->napi,
1766                              IGC_RX_HDR_LEN + metasize);
1767         if (unlikely(!skb))
1768                 return NULL;
1769
1770         if (timestamp)
1771                 skb_hwtstamps(skb)->hwtstamp = timestamp;
1772
1773         /* Determine available headroom for copy */
1774         headlen = size;
1775         if (headlen > IGC_RX_HDR_LEN)
1776                 headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1777
1778         /* align pull length to size of long to optimize memcpy performance */
1779         memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta,
1780                ALIGN(headlen + metasize, sizeof(long)));
1781
1782         if (metasize) {
1783                 skb_metadata_set(skb, metasize);
1784                 __skb_pull(skb, metasize);
1785         }
1786
1787         /* update all of the pointers */
1788         size -= headlen;
1789         if (size) {
1790                 skb_add_rx_frag(skb, 0, rx_buffer->page,
1791                                 (va + headlen) - page_address(rx_buffer->page),
1792                                 size, truesize);
1793                 igc_rx_buffer_flip(rx_buffer, truesize);
1794         } else {
1795                 rx_buffer->pagecnt_bias++;
1796         }
1797
1798         return skb;
1799 }
1800
1801 /**
1802  * igc_reuse_rx_page - page flip buffer and store it back on the ring
1803  * @rx_ring: rx descriptor ring to store buffers on
1804  * @old_buff: donor buffer to have page reused
1805  *
1806  * Synchronizes page for reuse by the adapter
1807  */
1808 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
1809                               struct igc_rx_buffer *old_buff)
1810 {
1811         u16 nta = rx_ring->next_to_alloc;
1812         struct igc_rx_buffer *new_buff;
1813
1814         new_buff = &rx_ring->rx_buffer_info[nta];
1815
1816         /* update, and store next to alloc */
1817         nta++;
1818         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1819
1820         /* Transfer page from old buffer to new buffer.
1821          * Move each member individually to avoid possible store
1822          * forwarding stalls.
1823          */
1824         new_buff->dma           = old_buff->dma;
1825         new_buff->page          = old_buff->page;
1826         new_buff->page_offset   = old_buff->page_offset;
1827         new_buff->pagecnt_bias  = old_buff->pagecnt_bias;
1828 }
1829
1830 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer,
1831                                   int rx_buffer_pgcnt)
1832 {
1833         unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1834         struct page *page = rx_buffer->page;
1835
1836         /* avoid re-using remote and pfmemalloc pages */
1837         if (!dev_page_is_reusable(page))
1838                 return false;
1839
1840 #if (PAGE_SIZE < 8192)
1841         /* if we are only owner of page we can reuse it */
1842         if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
1843                 return false;
1844 #else
1845 #define IGC_LAST_OFFSET \
1846         (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
1847
1848         if (rx_buffer->page_offset > IGC_LAST_OFFSET)
1849                 return false;
1850 #endif
1851
1852         /* If we have drained the page fragment pool we need to update
1853          * the pagecnt_bias and page count so that we fully restock the
1854          * number of references the driver holds.
1855          */
1856         if (unlikely(pagecnt_bias == 1)) {
1857                 page_ref_add(page, USHRT_MAX - 1);
1858                 rx_buffer->pagecnt_bias = USHRT_MAX;
1859         }
1860
1861         return true;
1862 }
1863
1864 /**
1865  * igc_is_non_eop - process handling of non-EOP buffers
1866  * @rx_ring: Rx ring being processed
1867  * @rx_desc: Rx descriptor for current buffer
1868  *
1869  * This function updates next to clean.  If the buffer is an EOP buffer
1870  * this function exits returning false, otherwise it will place the
1871  * sk_buff in the next buffer to be chained and return true indicating
1872  * that this is in fact a non-EOP buffer.
1873  */
1874 static bool igc_is_non_eop(struct igc_ring *rx_ring,
1875                            union igc_adv_rx_desc *rx_desc)
1876 {
1877         u32 ntc = rx_ring->next_to_clean + 1;
1878
1879         /* fetch, update, and store next to clean */
1880         ntc = (ntc < rx_ring->count) ? ntc : 0;
1881         rx_ring->next_to_clean = ntc;
1882
1883         prefetch(IGC_RX_DESC(rx_ring, ntc));
1884
1885         if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
1886                 return false;
1887
1888         return true;
1889 }
1890
1891 /**
1892  * igc_cleanup_headers - Correct corrupted or empty headers
1893  * @rx_ring: rx descriptor ring packet is being transacted on
1894  * @rx_desc: pointer to the EOP Rx descriptor
1895  * @skb: pointer to current skb being fixed
1896  *
1897  * Address the case where we are pulling data in on pages only
1898  * and as such no data is present in the skb header.
1899  *
1900  * In addition if skb is not at least 60 bytes we need to pad it so that
1901  * it is large enough to qualify as a valid Ethernet frame.
1902  *
1903  * Returns true if an error was encountered and skb was freed.
1904  */
1905 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
1906                                 union igc_adv_rx_desc *rx_desc,
1907                                 struct sk_buff *skb)
1908 {
1909         /* XDP packets use error pointer so abort at this point */
1910         if (IS_ERR(skb))
1911                 return true;
1912
1913         if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) {
1914                 struct net_device *netdev = rx_ring->netdev;
1915
1916                 if (!(netdev->features & NETIF_F_RXALL)) {
1917                         dev_kfree_skb_any(skb);
1918                         return true;
1919                 }
1920         }
1921
1922         /* if eth_skb_pad returns an error the skb was freed */
1923         if (eth_skb_pad(skb))
1924                 return true;
1925
1926         return false;
1927 }
1928
1929 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
1930                               struct igc_rx_buffer *rx_buffer,
1931                               int rx_buffer_pgcnt)
1932 {
1933         if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
1934                 /* hand second half of page back to the ring */
1935                 igc_reuse_rx_page(rx_ring, rx_buffer);
1936         } else {
1937                 /* We are not reusing the buffer so unmap it and free
1938                  * any references we are holding to it
1939                  */
1940                 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1941                                      igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1942                                      IGC_RX_DMA_ATTR);
1943                 __page_frag_cache_drain(rx_buffer->page,
1944                                         rx_buffer->pagecnt_bias);
1945         }
1946
1947         /* clear contents of rx_buffer */
1948         rx_buffer->page = NULL;
1949 }
1950
1951 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
1952 {
1953         struct igc_adapter *adapter = rx_ring->q_vector->adapter;
1954
1955         if (ring_uses_build_skb(rx_ring))
1956                 return IGC_SKB_PAD;
1957         if (igc_xdp_is_enabled(adapter))
1958                 return XDP_PACKET_HEADROOM;
1959
1960         return 0;
1961 }
1962
1963 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
1964                                   struct igc_rx_buffer *bi)
1965 {
1966         struct page *page = bi->page;
1967         dma_addr_t dma;
1968
1969         /* since we are recycling buffers we should seldom need to alloc */
1970         if (likely(page))
1971                 return true;
1972
1973         /* alloc new page for storage */
1974         page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
1975         if (unlikely(!page)) {
1976                 rx_ring->rx_stats.alloc_failed++;
1977                 return false;
1978         }
1979
1980         /* map page for use */
1981         dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1982                                  igc_rx_pg_size(rx_ring),
1983                                  DMA_FROM_DEVICE,
1984                                  IGC_RX_DMA_ATTR);
1985
1986         /* if mapping failed free memory back to system since
1987          * there isn't much point in holding memory we can't use
1988          */
1989         if (dma_mapping_error(rx_ring->dev, dma)) {
1990                 __free_page(page);
1991
1992                 rx_ring->rx_stats.alloc_failed++;
1993                 return false;
1994         }
1995
1996         bi->dma = dma;
1997         bi->page = page;
1998         bi->page_offset = igc_rx_offset(rx_ring);
1999         page_ref_add(page, USHRT_MAX - 1);
2000         bi->pagecnt_bias = USHRT_MAX;
2001
2002         return true;
2003 }
2004
2005 /**
2006  * igc_alloc_rx_buffers - Replace used receive buffers; packet split
2007  * @rx_ring: rx descriptor ring
2008  * @cleaned_count: number of buffers to clean
2009  */
2010 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
2011 {
2012         union igc_adv_rx_desc *rx_desc;
2013         u16 i = rx_ring->next_to_use;
2014         struct igc_rx_buffer *bi;
2015         u16 bufsz;
2016
2017         /* nothing to do */
2018         if (!cleaned_count)
2019                 return;
2020
2021         rx_desc = IGC_RX_DESC(rx_ring, i);
2022         bi = &rx_ring->rx_buffer_info[i];
2023         i -= rx_ring->count;
2024
2025         bufsz = igc_rx_bufsz(rx_ring);
2026
2027         do {
2028                 if (!igc_alloc_mapped_page(rx_ring, bi))
2029                         break;
2030
2031                 /* sync the buffer for use by the device */
2032                 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
2033                                                  bi->page_offset, bufsz,
2034                                                  DMA_FROM_DEVICE);
2035
2036                 /* Refresh the desc even if buffer_addrs didn't change
2037                  * because each write-back erases this info.
2038                  */
2039                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
2040
2041                 rx_desc++;
2042                 bi++;
2043                 i++;
2044                 if (unlikely(!i)) {
2045                         rx_desc = IGC_RX_DESC(rx_ring, 0);
2046                         bi = rx_ring->rx_buffer_info;
2047                         i -= rx_ring->count;
2048                 }
2049
2050                 /* clear the length for the next_to_use descriptor */
2051                 rx_desc->wb.upper.length = 0;
2052
2053                 cleaned_count--;
2054         } while (cleaned_count);
2055
2056         i += rx_ring->count;
2057
2058         if (rx_ring->next_to_use != i) {
2059                 /* record the next descriptor to use */
2060                 rx_ring->next_to_use = i;
2061
2062                 /* update next to alloc since we have filled the ring */
2063                 rx_ring->next_to_alloc = i;
2064
2065                 /* Force memory writes to complete before letting h/w
2066                  * know there are new descriptors to fetch.  (Only
2067                  * applicable for weak-ordered memory model archs,
2068                  * such as IA-64).
2069                  */
2070                 wmb();
2071                 writel(i, rx_ring->tail);
2072         }
2073 }
2074
2075 static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count)
2076 {
2077         union igc_adv_rx_desc *desc;
2078         u16 i = ring->next_to_use;
2079         struct igc_rx_buffer *bi;
2080         dma_addr_t dma;
2081         bool ok = true;
2082
2083         if (!count)
2084                 return ok;
2085
2086         desc = IGC_RX_DESC(ring, i);
2087         bi = &ring->rx_buffer_info[i];
2088         i -= ring->count;
2089
2090         do {
2091                 bi->xdp = xsk_buff_alloc(ring->xsk_pool);
2092                 if (!bi->xdp) {
2093                         ok = false;
2094                         break;
2095                 }
2096
2097                 dma = xsk_buff_xdp_get_dma(bi->xdp);
2098                 desc->read.pkt_addr = cpu_to_le64(dma);
2099
2100                 desc++;
2101                 bi++;
2102                 i++;
2103                 if (unlikely(!i)) {
2104                         desc = IGC_RX_DESC(ring, 0);
2105                         bi = ring->rx_buffer_info;
2106                         i -= ring->count;
2107                 }
2108
2109                 /* Clear the length for the next_to_use descriptor. */
2110                 desc->wb.upper.length = 0;
2111
2112                 count--;
2113         } while (count);
2114
2115         i += ring->count;
2116
2117         if (ring->next_to_use != i) {
2118                 ring->next_to_use = i;
2119
2120                 /* Force memory writes to complete before letting h/w
2121                  * know there are new descriptors to fetch.  (Only
2122                  * applicable for weak-ordered memory model archs,
2123                  * such as IA-64).
2124                  */
2125                 wmb();
2126                 writel(i, ring->tail);
2127         }
2128
2129         return ok;
2130 }
2131
2132 static int igc_xdp_init_tx_buffer(struct igc_tx_buffer *buffer,
2133                                   struct xdp_frame *xdpf,
2134                                   struct igc_ring *ring)
2135 {
2136         dma_addr_t dma;
2137
2138         dma = dma_map_single(ring->dev, xdpf->data, xdpf->len, DMA_TO_DEVICE);
2139         if (dma_mapping_error(ring->dev, dma)) {
2140                 netdev_err_once(ring->netdev, "Failed to map DMA for TX\n");
2141                 return -ENOMEM;
2142         }
2143
2144         buffer->type = IGC_TX_BUFFER_TYPE_XDP;
2145         buffer->xdpf = xdpf;
2146         buffer->protocol = 0;
2147         buffer->bytecount = xdpf->len;
2148         buffer->gso_segs = 1;
2149         buffer->time_stamp = jiffies;
2150         dma_unmap_len_set(buffer, len, xdpf->len);
2151         dma_unmap_addr_set(buffer, dma, dma);
2152         return 0;
2153 }
2154
2155 /* This function requires __netif_tx_lock is held by the caller. */
2156 static int igc_xdp_init_tx_descriptor(struct igc_ring *ring,
2157                                       struct xdp_frame *xdpf)
2158 {
2159         struct igc_tx_buffer *buffer;
2160         union igc_adv_tx_desc *desc;
2161         u32 cmd_type, olinfo_status;
2162         int err;
2163
2164         if (!igc_desc_unused(ring))
2165                 return -EBUSY;
2166
2167         buffer = &ring->tx_buffer_info[ring->next_to_use];
2168         err = igc_xdp_init_tx_buffer(buffer, xdpf, ring);
2169         if (err)
2170                 return err;
2171
2172         cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2173                    IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
2174                    buffer->bytecount;
2175         olinfo_status = buffer->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
2176
2177         desc = IGC_TX_DESC(ring, ring->next_to_use);
2178         desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2179         desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2180         desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(buffer, dma));
2181
2182         netdev_tx_sent_queue(txring_txq(ring), buffer->bytecount);
2183
2184         buffer->next_to_watch = desc;
2185
2186         ring->next_to_use++;
2187         if (ring->next_to_use == ring->count)
2188                 ring->next_to_use = 0;
2189
2190         return 0;
2191 }
2192
2193 static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter,
2194                                             int cpu)
2195 {
2196         int index = cpu;
2197
2198         if (unlikely(index < 0))
2199                 index = 0;
2200
2201         while (index >= adapter->num_tx_queues)
2202                 index -= adapter->num_tx_queues;
2203
2204         return adapter->tx_ring[index];
2205 }
2206
2207 static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp)
2208 {
2209         struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2210         int cpu = smp_processor_id();
2211         struct netdev_queue *nq;
2212         struct igc_ring *ring;
2213         int res;
2214
2215         if (unlikely(!xdpf))
2216                 return -EFAULT;
2217
2218         ring = igc_xdp_get_tx_ring(adapter, cpu);
2219         nq = txring_txq(ring);
2220
2221         __netif_tx_lock(nq, cpu);
2222         res = igc_xdp_init_tx_descriptor(ring, xdpf);
2223         __netif_tx_unlock(nq);
2224         return res;
2225 }
2226
2227 /* This function assumes rcu_read_lock() is held by the caller. */
2228 static int __igc_xdp_run_prog(struct igc_adapter *adapter,
2229                               struct bpf_prog *prog,
2230                               struct xdp_buff *xdp)
2231 {
2232         u32 act = bpf_prog_run_xdp(prog, xdp);
2233
2234         switch (act) {
2235         case XDP_PASS:
2236                 return IGC_XDP_PASS;
2237         case XDP_TX:
2238                 if (igc_xdp_xmit_back(adapter, xdp) < 0)
2239                         goto out_failure;
2240                 return IGC_XDP_TX;
2241         case XDP_REDIRECT:
2242                 if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0)
2243                         goto out_failure;
2244                 return IGC_XDP_REDIRECT;
2245                 break;
2246         default:
2247                 bpf_warn_invalid_xdp_action(adapter->netdev, prog, act);
2248                 fallthrough;
2249         case XDP_ABORTED:
2250 out_failure:
2251                 trace_xdp_exception(adapter->netdev, prog, act);
2252                 fallthrough;
2253         case XDP_DROP:
2254                 return IGC_XDP_CONSUMED;
2255         }
2256 }
2257
2258 static struct sk_buff *igc_xdp_run_prog(struct igc_adapter *adapter,
2259                                         struct xdp_buff *xdp)
2260 {
2261         struct bpf_prog *prog;
2262         int res;
2263
2264         prog = READ_ONCE(adapter->xdp_prog);
2265         if (!prog) {
2266                 res = IGC_XDP_PASS;
2267                 goto out;
2268         }
2269
2270         res = __igc_xdp_run_prog(adapter, prog, xdp);
2271
2272 out:
2273         return ERR_PTR(-res);
2274 }
2275
2276 /* This function assumes __netif_tx_lock is held by the caller. */
2277 static void igc_flush_tx_descriptors(struct igc_ring *ring)
2278 {
2279         /* Once tail pointer is updated, hardware can fetch the descriptors
2280          * any time so we issue a write membar here to ensure all memory
2281          * writes are complete before the tail pointer is updated.
2282          */
2283         wmb();
2284         writel(ring->next_to_use, ring->tail);
2285 }
2286
2287 static void igc_finalize_xdp(struct igc_adapter *adapter, int status)
2288 {
2289         int cpu = smp_processor_id();
2290         struct netdev_queue *nq;
2291         struct igc_ring *ring;
2292
2293         if (status & IGC_XDP_TX) {
2294                 ring = igc_xdp_get_tx_ring(adapter, cpu);
2295                 nq = txring_txq(ring);
2296
2297                 __netif_tx_lock(nq, cpu);
2298                 igc_flush_tx_descriptors(ring);
2299                 __netif_tx_unlock(nq);
2300         }
2301
2302         if (status & IGC_XDP_REDIRECT)
2303                 xdp_do_flush();
2304 }
2305
2306 static void igc_update_rx_stats(struct igc_q_vector *q_vector,
2307                                 unsigned int packets, unsigned int bytes)
2308 {
2309         struct igc_ring *ring = q_vector->rx.ring;
2310
2311         u64_stats_update_begin(&ring->rx_syncp);
2312         ring->rx_stats.packets += packets;
2313         ring->rx_stats.bytes += bytes;
2314         u64_stats_update_end(&ring->rx_syncp);
2315
2316         q_vector->rx.total_packets += packets;
2317         q_vector->rx.total_bytes += bytes;
2318 }
2319
2320 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
2321 {
2322         unsigned int total_bytes = 0, total_packets = 0;
2323         struct igc_adapter *adapter = q_vector->adapter;
2324         struct igc_ring *rx_ring = q_vector->rx.ring;
2325         struct sk_buff *skb = rx_ring->skb;
2326         u16 cleaned_count = igc_desc_unused(rx_ring);
2327         int xdp_status = 0, rx_buffer_pgcnt;
2328
2329         while (likely(total_packets < budget)) {
2330                 union igc_adv_rx_desc *rx_desc;
2331                 struct igc_rx_buffer *rx_buffer;
2332                 unsigned int size, truesize;
2333                 ktime_t timestamp = 0;
2334                 struct xdp_buff xdp;
2335                 int pkt_offset = 0;
2336                 void *pktbuf;
2337
2338                 /* return some buffers to hardware, one at a time is too slow */
2339                 if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
2340                         igc_alloc_rx_buffers(rx_ring, cleaned_count);
2341                         cleaned_count = 0;
2342                 }
2343
2344                 rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
2345                 size = le16_to_cpu(rx_desc->wb.upper.length);
2346                 if (!size)
2347                         break;
2348
2349                 /* This memory barrier is needed to keep us from reading
2350                  * any other fields out of the rx_desc until we know the
2351                  * descriptor has been written back
2352                  */
2353                 dma_rmb();
2354
2355                 rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2356                 truesize = igc_get_rx_frame_truesize(rx_ring, size);
2357
2358                 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
2359
2360                 if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) {
2361                         timestamp = igc_ptp_rx_pktstamp(q_vector->adapter,
2362                                                         pktbuf);
2363                         pkt_offset = IGC_TS_HDR_LEN;
2364                         size -= IGC_TS_HDR_LEN;
2365                 }
2366
2367                 if (!skb) {
2368                         xdp_init_buff(&xdp, truesize, &rx_ring->xdp_rxq);
2369                         xdp_prepare_buff(&xdp, pktbuf - igc_rx_offset(rx_ring),
2370                                          igc_rx_offset(rx_ring) + pkt_offset,
2371                                          size, true);
2372
2373                         skb = igc_xdp_run_prog(adapter, &xdp);
2374                 }
2375
2376                 if (IS_ERR(skb)) {
2377                         unsigned int xdp_res = -PTR_ERR(skb);
2378
2379                         switch (xdp_res) {
2380                         case IGC_XDP_CONSUMED:
2381                                 rx_buffer->pagecnt_bias++;
2382                                 break;
2383                         case IGC_XDP_TX:
2384                         case IGC_XDP_REDIRECT:
2385                                 igc_rx_buffer_flip(rx_buffer, truesize);
2386                                 xdp_status |= xdp_res;
2387                                 break;
2388                         }
2389
2390                         total_packets++;
2391                         total_bytes += size;
2392                 } else if (skb)
2393                         igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
2394                 else if (ring_uses_build_skb(rx_ring))
2395                         skb = igc_build_skb(rx_ring, rx_buffer, &xdp);
2396                 else
2397                         skb = igc_construct_skb(rx_ring, rx_buffer, &xdp,
2398                                                 timestamp);
2399
2400                 /* exit if we failed to retrieve a buffer */
2401                 if (!skb) {
2402                         rx_ring->rx_stats.alloc_failed++;
2403                         rx_buffer->pagecnt_bias++;
2404                         break;
2405                 }
2406
2407                 igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2408                 cleaned_count++;
2409
2410                 /* fetch next buffer in frame if non-eop */
2411                 if (igc_is_non_eop(rx_ring, rx_desc))
2412                         continue;
2413
2414                 /* verify the packet layout is correct */
2415                 if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
2416                         skb = NULL;
2417                         continue;
2418                 }
2419
2420                 /* probably a little skewed due to removing CRC */
2421                 total_bytes += skb->len;
2422
2423                 /* populate checksum, VLAN, and protocol */
2424                 igc_process_skb_fields(rx_ring, rx_desc, skb);
2425
2426                 napi_gro_receive(&q_vector->napi, skb);
2427
2428                 /* reset skb pointer */
2429                 skb = NULL;
2430
2431                 /* update budget accounting */
2432                 total_packets++;
2433         }
2434
2435         if (xdp_status)
2436                 igc_finalize_xdp(adapter, xdp_status);
2437
2438         /* place incomplete frames back on ring for completion */
2439         rx_ring->skb = skb;
2440
2441         igc_update_rx_stats(q_vector, total_packets, total_bytes);
2442
2443         if (cleaned_count)
2444                 igc_alloc_rx_buffers(rx_ring, cleaned_count);
2445
2446         return total_packets;
2447 }
2448
2449 static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring,
2450                                             struct xdp_buff *xdp)
2451 {
2452         unsigned int totalsize = xdp->data_end - xdp->data_meta;
2453         unsigned int metasize = xdp->data - xdp->data_meta;
2454         struct sk_buff *skb;
2455
2456         net_prefetch(xdp->data_meta);
2457
2458         skb = __napi_alloc_skb(&ring->q_vector->napi, totalsize,
2459                                GFP_ATOMIC | __GFP_NOWARN);
2460         if (unlikely(!skb))
2461                 return NULL;
2462
2463         memcpy(__skb_put(skb, totalsize), xdp->data_meta,
2464                ALIGN(totalsize, sizeof(long)));
2465
2466         if (metasize) {
2467                 skb_metadata_set(skb, metasize);
2468                 __skb_pull(skb, metasize);
2469         }
2470
2471         return skb;
2472 }
2473
2474 static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector,
2475                                 union igc_adv_rx_desc *desc,
2476                                 struct xdp_buff *xdp,
2477                                 ktime_t timestamp)
2478 {
2479         struct igc_ring *ring = q_vector->rx.ring;
2480         struct sk_buff *skb;
2481
2482         skb = igc_construct_skb_zc(ring, xdp);
2483         if (!skb) {
2484                 ring->rx_stats.alloc_failed++;
2485                 return;
2486         }
2487
2488         if (timestamp)
2489                 skb_hwtstamps(skb)->hwtstamp = timestamp;
2490
2491         if (igc_cleanup_headers(ring, desc, skb))
2492                 return;
2493
2494         igc_process_skb_fields(ring, desc, skb);
2495         napi_gro_receive(&q_vector->napi, skb);
2496 }
2497
2498 static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget)
2499 {
2500         struct igc_adapter *adapter = q_vector->adapter;
2501         struct igc_ring *ring = q_vector->rx.ring;
2502         u16 cleaned_count = igc_desc_unused(ring);
2503         int total_bytes = 0, total_packets = 0;
2504         u16 ntc = ring->next_to_clean;
2505         struct bpf_prog *prog;
2506         bool failure = false;
2507         int xdp_status = 0;
2508
2509         rcu_read_lock();
2510
2511         prog = READ_ONCE(adapter->xdp_prog);
2512
2513         while (likely(total_packets < budget)) {
2514                 union igc_adv_rx_desc *desc;
2515                 struct igc_rx_buffer *bi;
2516                 ktime_t timestamp = 0;
2517                 unsigned int size;
2518                 int res;
2519
2520                 desc = IGC_RX_DESC(ring, ntc);
2521                 size = le16_to_cpu(desc->wb.upper.length);
2522                 if (!size)
2523                         break;
2524
2525                 /* This memory barrier is needed to keep us from reading
2526                  * any other fields out of the rx_desc until we know the
2527                  * descriptor has been written back
2528                  */
2529                 dma_rmb();
2530
2531                 bi = &ring->rx_buffer_info[ntc];
2532
2533                 if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) {
2534                         timestamp = igc_ptp_rx_pktstamp(q_vector->adapter,
2535                                                         bi->xdp->data);
2536
2537                         bi->xdp->data += IGC_TS_HDR_LEN;
2538
2539                         /* HW timestamp has been copied into local variable. Metadata
2540                          * length when XDP program is called should be 0.
2541                          */
2542                         bi->xdp->data_meta += IGC_TS_HDR_LEN;
2543                         size -= IGC_TS_HDR_LEN;
2544                 }
2545
2546                 bi->xdp->data_end = bi->xdp->data + size;
2547                 xsk_buff_dma_sync_for_cpu(bi->xdp, ring->xsk_pool);
2548
2549                 res = __igc_xdp_run_prog(adapter, prog, bi->xdp);
2550                 switch (res) {
2551                 case IGC_XDP_PASS:
2552                         igc_dispatch_skb_zc(q_vector, desc, bi->xdp, timestamp);
2553                         fallthrough;
2554                 case IGC_XDP_CONSUMED:
2555                         xsk_buff_free(bi->xdp);
2556                         break;
2557                 case IGC_XDP_TX:
2558                 case IGC_XDP_REDIRECT:
2559                         xdp_status |= res;
2560                         break;
2561                 }
2562
2563                 bi->xdp = NULL;
2564                 total_bytes += size;
2565                 total_packets++;
2566                 cleaned_count++;
2567                 ntc++;
2568                 if (ntc == ring->count)
2569                         ntc = 0;
2570         }
2571
2572         ring->next_to_clean = ntc;
2573         rcu_read_unlock();
2574
2575         if (cleaned_count >= IGC_RX_BUFFER_WRITE)
2576                 failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count);
2577
2578         if (xdp_status)
2579                 igc_finalize_xdp(adapter, xdp_status);
2580
2581         igc_update_rx_stats(q_vector, total_packets, total_bytes);
2582
2583         if (xsk_uses_need_wakeup(ring->xsk_pool)) {
2584                 if (failure || ring->next_to_clean == ring->next_to_use)
2585                         xsk_set_rx_need_wakeup(ring->xsk_pool);
2586                 else
2587                         xsk_clear_rx_need_wakeup(ring->xsk_pool);
2588                 return total_packets;
2589         }
2590
2591         return failure ? budget : total_packets;
2592 }
2593
2594 static void igc_update_tx_stats(struct igc_q_vector *q_vector,
2595                                 unsigned int packets, unsigned int bytes)
2596 {
2597         struct igc_ring *ring = q_vector->tx.ring;
2598
2599         u64_stats_update_begin(&ring->tx_syncp);
2600         ring->tx_stats.bytes += bytes;
2601         ring->tx_stats.packets += packets;
2602         u64_stats_update_end(&ring->tx_syncp);
2603
2604         q_vector->tx.total_bytes += bytes;
2605         q_vector->tx.total_packets += packets;
2606 }
2607
2608 static void igc_xdp_xmit_zc(struct igc_ring *ring)
2609 {
2610         struct xsk_buff_pool *pool = ring->xsk_pool;
2611         struct netdev_queue *nq = txring_txq(ring);
2612         union igc_adv_tx_desc *tx_desc = NULL;
2613         int cpu = smp_processor_id();
2614         u16 ntu = ring->next_to_use;
2615         struct xdp_desc xdp_desc;
2616         u16 budget;
2617
2618         if (!netif_carrier_ok(ring->netdev))
2619                 return;
2620
2621         __netif_tx_lock(nq, cpu);
2622
2623         budget = igc_desc_unused(ring);
2624
2625         while (xsk_tx_peek_desc(pool, &xdp_desc) && budget--) {
2626                 u32 cmd_type, olinfo_status;
2627                 struct igc_tx_buffer *bi;
2628                 dma_addr_t dma;
2629
2630                 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2631                            IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
2632                            xdp_desc.len;
2633                 olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT;
2634
2635                 dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2636                 xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len);
2637
2638                 tx_desc = IGC_TX_DESC(ring, ntu);
2639                 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2640                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2641                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
2642
2643                 bi = &ring->tx_buffer_info[ntu];
2644                 bi->type = IGC_TX_BUFFER_TYPE_XSK;
2645                 bi->protocol = 0;
2646                 bi->bytecount = xdp_desc.len;
2647                 bi->gso_segs = 1;
2648                 bi->time_stamp = jiffies;
2649                 bi->next_to_watch = tx_desc;
2650
2651                 netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len);
2652
2653                 ntu++;
2654                 if (ntu == ring->count)
2655                         ntu = 0;
2656         }
2657
2658         ring->next_to_use = ntu;
2659         if (tx_desc) {
2660                 igc_flush_tx_descriptors(ring);
2661                 xsk_tx_release(pool);
2662         }
2663
2664         __netif_tx_unlock(nq);
2665 }
2666
2667 /**
2668  * igc_clean_tx_irq - Reclaim resources after transmit completes
2669  * @q_vector: pointer to q_vector containing needed info
2670  * @napi_budget: Used to determine if we are in netpoll
2671  *
2672  * returns true if ring is completely cleaned
2673  */
2674 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
2675 {
2676         struct igc_adapter *adapter = q_vector->adapter;
2677         unsigned int total_bytes = 0, total_packets = 0;
2678         unsigned int budget = q_vector->tx.work_limit;
2679         struct igc_ring *tx_ring = q_vector->tx.ring;
2680         unsigned int i = tx_ring->next_to_clean;
2681         struct igc_tx_buffer *tx_buffer;
2682         union igc_adv_tx_desc *tx_desc;
2683         u32 xsk_frames = 0;
2684
2685         if (test_bit(__IGC_DOWN, &adapter->state))
2686                 return true;
2687
2688         tx_buffer = &tx_ring->tx_buffer_info[i];
2689         tx_desc = IGC_TX_DESC(tx_ring, i);
2690         i -= tx_ring->count;
2691
2692         do {
2693                 union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
2694
2695                 /* if next_to_watch is not set then there is no work pending */
2696                 if (!eop_desc)
2697                         break;
2698
2699                 /* prevent any other reads prior to eop_desc */
2700                 smp_rmb();
2701
2702                 /* if DD is not set pending work has not been completed */
2703                 if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
2704                         break;
2705
2706                 /* clear next_to_watch to prevent false hangs */
2707                 tx_buffer->next_to_watch = NULL;
2708
2709                 /* update the statistics for this packet */
2710                 total_bytes += tx_buffer->bytecount;
2711                 total_packets += tx_buffer->gso_segs;
2712
2713                 switch (tx_buffer->type) {
2714                 case IGC_TX_BUFFER_TYPE_XSK:
2715                         xsk_frames++;
2716                         break;
2717                 case IGC_TX_BUFFER_TYPE_XDP:
2718                         xdp_return_frame(tx_buffer->xdpf);
2719                         igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2720                         break;
2721                 case IGC_TX_BUFFER_TYPE_SKB:
2722                         napi_consume_skb(tx_buffer->skb, napi_budget);
2723                         igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2724                         break;
2725                 default:
2726                         netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
2727                         break;
2728                 }
2729
2730                 /* clear last DMA location and unmap remaining buffers */
2731                 while (tx_desc != eop_desc) {
2732                         tx_buffer++;
2733                         tx_desc++;
2734                         i++;
2735                         if (unlikely(!i)) {
2736                                 i -= tx_ring->count;
2737                                 tx_buffer = tx_ring->tx_buffer_info;
2738                                 tx_desc = IGC_TX_DESC(tx_ring, 0);
2739                         }
2740
2741                         /* unmap any remaining paged data */
2742                         if (dma_unmap_len(tx_buffer, len))
2743                                 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2744                 }
2745
2746                 /* move us one more past the eop_desc for start of next pkt */
2747                 tx_buffer++;
2748                 tx_desc++;
2749                 i++;
2750                 if (unlikely(!i)) {
2751                         i -= tx_ring->count;
2752                         tx_buffer = tx_ring->tx_buffer_info;
2753                         tx_desc = IGC_TX_DESC(tx_ring, 0);
2754                 }
2755
2756                 /* issue prefetch for next Tx descriptor */
2757                 prefetch(tx_desc);
2758
2759                 /* update budget accounting */
2760                 budget--;
2761         } while (likely(budget));
2762
2763         netdev_tx_completed_queue(txring_txq(tx_ring),
2764                                   total_packets, total_bytes);
2765
2766         i += tx_ring->count;
2767         tx_ring->next_to_clean = i;
2768
2769         igc_update_tx_stats(q_vector, total_packets, total_bytes);
2770
2771         if (tx_ring->xsk_pool) {
2772                 if (xsk_frames)
2773                         xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
2774                 if (xsk_uses_need_wakeup(tx_ring->xsk_pool))
2775                         xsk_set_tx_need_wakeup(tx_ring->xsk_pool);
2776                 igc_xdp_xmit_zc(tx_ring);
2777         }
2778
2779         if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
2780                 struct igc_hw *hw = &adapter->hw;
2781
2782                 /* Detect a transmit hang in hardware, this serializes the
2783                  * check with the clearing of time_stamp and movement of i
2784                  */
2785                 clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
2786                 if (tx_buffer->next_to_watch &&
2787                     time_after(jiffies, tx_buffer->time_stamp +
2788                     (adapter->tx_timeout_factor * HZ)) &&
2789                     !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF)) {
2790                         /* detected Tx unit hang */
2791                         netdev_err(tx_ring->netdev,
2792                                    "Detected Tx Unit Hang\n"
2793                                    "  Tx Queue             <%d>\n"
2794                                    "  TDH                  <%x>\n"
2795                                    "  TDT                  <%x>\n"
2796                                    "  next_to_use          <%x>\n"
2797                                    "  next_to_clean        <%x>\n"
2798                                    "buffer_info[next_to_clean]\n"
2799                                    "  time_stamp           <%lx>\n"
2800                                    "  next_to_watch        <%p>\n"
2801                                    "  jiffies              <%lx>\n"
2802                                    "  desc.status          <%x>\n",
2803                                    tx_ring->queue_index,
2804                                    rd32(IGC_TDH(tx_ring->reg_idx)),
2805                                    readl(tx_ring->tail),
2806                                    tx_ring->next_to_use,
2807                                    tx_ring->next_to_clean,
2808                                    tx_buffer->time_stamp,
2809                                    tx_buffer->next_to_watch,
2810                                    jiffies,
2811                                    tx_buffer->next_to_watch->wb.status);
2812                         netif_stop_subqueue(tx_ring->netdev,
2813                                             tx_ring->queue_index);
2814
2815                         /* we are about to reset, no point in enabling stuff */
2816                         return true;
2817                 }
2818         }
2819
2820 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
2821         if (unlikely(total_packets &&
2822                      netif_carrier_ok(tx_ring->netdev) &&
2823                      igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
2824                 /* Make sure that anybody stopping the queue after this
2825                  * sees the new next_to_clean.
2826                  */
2827                 smp_mb();
2828                 if (__netif_subqueue_stopped(tx_ring->netdev,
2829                                              tx_ring->queue_index) &&
2830                     !(test_bit(__IGC_DOWN, &adapter->state))) {
2831                         netif_wake_subqueue(tx_ring->netdev,
2832                                             tx_ring->queue_index);
2833
2834                         u64_stats_update_begin(&tx_ring->tx_syncp);
2835                         tx_ring->tx_stats.restart_queue++;
2836                         u64_stats_update_end(&tx_ring->tx_syncp);
2837                 }
2838         }
2839
2840         return !!budget;
2841 }
2842
2843 static int igc_find_mac_filter(struct igc_adapter *adapter,
2844                                enum igc_mac_filter_type type, const u8 *addr)
2845 {
2846         struct igc_hw *hw = &adapter->hw;
2847         int max_entries = hw->mac.rar_entry_count;
2848         u32 ral, rah;
2849         int i;
2850
2851         for (i = 0; i < max_entries; i++) {
2852                 ral = rd32(IGC_RAL(i));
2853                 rah = rd32(IGC_RAH(i));
2854
2855                 if (!(rah & IGC_RAH_AV))
2856                         continue;
2857                 if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
2858                         continue;
2859                 if ((rah & IGC_RAH_RAH_MASK) !=
2860                     le16_to_cpup((__le16 *)(addr + 4)))
2861                         continue;
2862                 if (ral != le32_to_cpup((__le32 *)(addr)))
2863                         continue;
2864
2865                 return i;
2866         }
2867
2868         return -1;
2869 }
2870
2871 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
2872 {
2873         struct igc_hw *hw = &adapter->hw;
2874         int max_entries = hw->mac.rar_entry_count;
2875         u32 rah;
2876         int i;
2877
2878         for (i = 0; i < max_entries; i++) {
2879                 rah = rd32(IGC_RAH(i));
2880
2881                 if (!(rah & IGC_RAH_AV))
2882                         return i;
2883         }
2884
2885         return -1;
2886 }
2887
2888 /**
2889  * igc_add_mac_filter() - Add MAC address filter
2890  * @adapter: Pointer to adapter where the filter should be added
2891  * @type: MAC address filter type (source or destination)
2892  * @addr: MAC address
2893  * @queue: If non-negative, queue assignment feature is enabled and frames
2894  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
2895  *         assignment is disabled.
2896  *
2897  * Return: 0 in case of success, negative errno code otherwise.
2898  */
2899 static int igc_add_mac_filter(struct igc_adapter *adapter,
2900                               enum igc_mac_filter_type type, const u8 *addr,
2901                               int queue)
2902 {
2903         struct net_device *dev = adapter->netdev;
2904         int index;
2905
2906         index = igc_find_mac_filter(adapter, type, addr);
2907         if (index >= 0)
2908                 goto update_filter;
2909
2910         index = igc_get_avail_mac_filter_slot(adapter);
2911         if (index < 0)
2912                 return -ENOSPC;
2913
2914         netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
2915                    index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2916                    addr, queue);
2917
2918 update_filter:
2919         igc_set_mac_filter_hw(adapter, index, type, addr, queue);
2920         return 0;
2921 }
2922
2923 /**
2924  * igc_del_mac_filter() - Delete MAC address filter
2925  * @adapter: Pointer to adapter where the filter should be deleted from
2926  * @type: MAC address filter type (source or destination)
2927  * @addr: MAC address
2928  */
2929 static void igc_del_mac_filter(struct igc_adapter *adapter,
2930                                enum igc_mac_filter_type type, const u8 *addr)
2931 {
2932         struct net_device *dev = adapter->netdev;
2933         int index;
2934
2935         index = igc_find_mac_filter(adapter, type, addr);
2936         if (index < 0)
2937                 return;
2938
2939         if (index == 0) {
2940                 /* If this is the default filter, we don't actually delete it.
2941                  * We just reset to its default value i.e. disable queue
2942                  * assignment.
2943                  */
2944                 netdev_dbg(dev, "Disable default MAC filter queue assignment");
2945
2946                 igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
2947         } else {
2948                 netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
2949                            index,
2950                            type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2951                            addr);
2952
2953                 igc_clear_mac_filter_hw(adapter, index);
2954         }
2955 }
2956
2957 /**
2958  * igc_add_vlan_prio_filter() - Add VLAN priority filter
2959  * @adapter: Pointer to adapter where the filter should be added
2960  * @prio: VLAN priority value
2961  * @queue: Queue number which matching frames are assigned to
2962  *
2963  * Return: 0 in case of success, negative errno code otherwise.
2964  */
2965 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
2966                                     int queue)
2967 {
2968         struct net_device *dev = adapter->netdev;
2969         struct igc_hw *hw = &adapter->hw;
2970         u32 vlanpqf;
2971
2972         vlanpqf = rd32(IGC_VLANPQF);
2973
2974         if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
2975                 netdev_dbg(dev, "VLAN priority filter already in use\n");
2976                 return -EEXIST;
2977         }
2978
2979         vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
2980         vlanpqf |= IGC_VLANPQF_VALID(prio);
2981
2982         wr32(IGC_VLANPQF, vlanpqf);
2983
2984         netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
2985                    prio, queue);
2986         return 0;
2987 }
2988
2989 /**
2990  * igc_del_vlan_prio_filter() - Delete VLAN priority filter
2991  * @adapter: Pointer to adapter where the filter should be deleted from
2992  * @prio: VLAN priority value
2993  */
2994 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
2995 {
2996         struct igc_hw *hw = &adapter->hw;
2997         u32 vlanpqf;
2998
2999         vlanpqf = rd32(IGC_VLANPQF);
3000
3001         vlanpqf &= ~IGC_VLANPQF_VALID(prio);
3002         vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
3003
3004         wr32(IGC_VLANPQF, vlanpqf);
3005
3006         netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
3007                    prio);
3008 }
3009
3010 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
3011 {
3012         struct igc_hw *hw = &adapter->hw;
3013         int i;
3014
3015         for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3016                 u32 etqf = rd32(IGC_ETQF(i));
3017
3018                 if (!(etqf & IGC_ETQF_FILTER_ENABLE))
3019                         return i;
3020         }
3021
3022         return -1;
3023 }
3024
3025 /**
3026  * igc_add_etype_filter() - Add ethertype filter
3027  * @adapter: Pointer to adapter where the filter should be added
3028  * @etype: Ethertype value
3029  * @queue: If non-negative, queue assignment feature is enabled and frames
3030  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
3031  *         assignment is disabled.
3032  *
3033  * Return: 0 in case of success, negative errno code otherwise.
3034  */
3035 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
3036                                 int queue)
3037 {
3038         struct igc_hw *hw = &adapter->hw;
3039         int index;
3040         u32 etqf;
3041
3042         index = igc_get_avail_etype_filter_slot(adapter);
3043         if (index < 0)
3044                 return -ENOSPC;
3045
3046         etqf = rd32(IGC_ETQF(index));
3047
3048         etqf &= ~IGC_ETQF_ETYPE_MASK;
3049         etqf |= etype;
3050
3051         if (queue >= 0) {
3052                 etqf &= ~IGC_ETQF_QUEUE_MASK;
3053                 etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
3054                 etqf |= IGC_ETQF_QUEUE_ENABLE;
3055         }
3056
3057         etqf |= IGC_ETQF_FILTER_ENABLE;
3058
3059         wr32(IGC_ETQF(index), etqf);
3060
3061         netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
3062                    etype, queue);
3063         return 0;
3064 }
3065
3066 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
3067 {
3068         struct igc_hw *hw = &adapter->hw;
3069         int i;
3070
3071         for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3072                 u32 etqf = rd32(IGC_ETQF(i));
3073
3074                 if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
3075                         return i;
3076         }
3077
3078         return -1;
3079 }
3080
3081 /**
3082  * igc_del_etype_filter() - Delete ethertype filter
3083  * @adapter: Pointer to adapter where the filter should be deleted from
3084  * @etype: Ethertype value
3085  */
3086 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
3087 {
3088         struct igc_hw *hw = &adapter->hw;
3089         int index;
3090
3091         index = igc_find_etype_filter(adapter, etype);
3092         if (index < 0)
3093                 return;
3094
3095         wr32(IGC_ETQF(index), 0);
3096
3097         netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
3098                    etype);
3099 }
3100
3101 static int igc_flex_filter_select(struct igc_adapter *adapter,
3102                                   struct igc_flex_filter *input,
3103                                   u32 *fhft)
3104 {
3105         struct igc_hw *hw = &adapter->hw;
3106         u8 fhft_index;
3107         u32 fhftsl;
3108
3109         if (input->index >= MAX_FLEX_FILTER) {
3110                 dev_err(&adapter->pdev->dev, "Wrong Flex Filter index selected!\n");
3111                 return -EINVAL;
3112         }
3113
3114         /* Indirect table select register */
3115         fhftsl = rd32(IGC_FHFTSL);
3116         fhftsl &= ~IGC_FHFTSL_FTSL_MASK;
3117         switch (input->index) {
3118         case 0 ... 7:
3119                 fhftsl |= 0x00;
3120                 break;
3121         case 8 ... 15:
3122                 fhftsl |= 0x01;
3123                 break;
3124         case 16 ... 23:
3125                 fhftsl |= 0x02;
3126                 break;
3127         case 24 ... 31:
3128                 fhftsl |= 0x03;
3129                 break;
3130         }
3131         wr32(IGC_FHFTSL, fhftsl);
3132
3133         /* Normalize index down to host table register */
3134         fhft_index = input->index % 8;
3135
3136         *fhft = (fhft_index < 4) ? IGC_FHFT(fhft_index) :
3137                 IGC_FHFT_EXT(fhft_index - 4);
3138
3139         return 0;
3140 }
3141
3142 static int igc_write_flex_filter_ll(struct igc_adapter *adapter,
3143                                     struct igc_flex_filter *input)
3144 {
3145         struct device *dev = &adapter->pdev->dev;
3146         struct igc_hw *hw = &adapter->hw;
3147         u8 *data = input->data;
3148         u8 *mask = input->mask;
3149         u32 queuing;
3150         u32 fhft;
3151         u32 wufc;
3152         int ret;
3153         int i;
3154
3155         /* Length has to be aligned to 8. Otherwise the filter will fail. Bail
3156          * out early to avoid surprises later.
3157          */
3158         if (input->length % 8 != 0) {
3159                 dev_err(dev, "The length of a flex filter has to be 8 byte aligned!\n");
3160                 return -EINVAL;
3161         }
3162
3163         /* Select corresponding flex filter register and get base for host table. */
3164         ret = igc_flex_filter_select(adapter, input, &fhft);
3165         if (ret)
3166                 return ret;
3167
3168         /* When adding a filter globally disable flex filter feature. That is
3169          * recommended within the datasheet.
3170          */
3171         wufc = rd32(IGC_WUFC);
3172         wufc &= ~IGC_WUFC_FLEX_HQ;
3173         wr32(IGC_WUFC, wufc);
3174
3175         /* Configure filter */
3176         queuing = input->length & IGC_FHFT_LENGTH_MASK;
3177         queuing |= (input->rx_queue << IGC_FHFT_QUEUE_SHIFT) & IGC_FHFT_QUEUE_MASK;
3178         queuing |= (input->prio << IGC_FHFT_PRIO_SHIFT) & IGC_FHFT_PRIO_MASK;
3179
3180         if (input->immediate_irq)
3181                 queuing |= IGC_FHFT_IMM_INT;
3182
3183         if (input->drop)
3184                 queuing |= IGC_FHFT_DROP;
3185
3186         wr32(fhft + 0xFC, queuing);
3187
3188         /* Write data (128 byte) and mask (128 bit) */
3189         for (i = 0; i < 16; ++i) {
3190                 const size_t data_idx = i * 8;
3191                 const size_t row_idx = i * 16;
3192                 u32 dw0 =
3193                         (data[data_idx + 0] << 0) |
3194                         (data[data_idx + 1] << 8) |
3195                         (data[data_idx + 2] << 16) |
3196                         (data[data_idx + 3] << 24);
3197                 u32 dw1 =
3198                         (data[data_idx + 4] << 0) |
3199                         (data[data_idx + 5] << 8) |
3200                         (data[data_idx + 6] << 16) |
3201                         (data[data_idx + 7] << 24);
3202                 u32 tmp;
3203
3204                 /* Write row: dw0, dw1 and mask */
3205                 wr32(fhft + row_idx, dw0);
3206                 wr32(fhft + row_idx + 4, dw1);
3207
3208                 /* mask is only valid for MASK(7, 0) */
3209                 tmp = rd32(fhft + row_idx + 8);
3210                 tmp &= ~GENMASK(7, 0);
3211                 tmp |= mask[i];
3212                 wr32(fhft + row_idx + 8, tmp);
3213         }
3214
3215         /* Enable filter. */
3216         wufc |= IGC_WUFC_FLEX_HQ;
3217         if (input->index > 8) {
3218                 /* Filter 0-7 are enabled via WUFC. The other 24 filters are not. */
3219                 u32 wufc_ext = rd32(IGC_WUFC_EXT);
3220
3221                 wufc_ext |= (IGC_WUFC_EXT_FLX8 << (input->index - 8));
3222
3223                 wr32(IGC_WUFC_EXT, wufc_ext);
3224         } else {
3225                 wufc |= (IGC_WUFC_FLX0 << input->index);
3226         }
3227         wr32(IGC_WUFC, wufc);
3228
3229         dev_dbg(&adapter->pdev->dev, "Added flex filter %u to HW.\n",
3230                 input->index);
3231
3232         return 0;
3233 }
3234
3235 static void igc_flex_filter_add_field(struct igc_flex_filter *flex,
3236                                       const void *src, unsigned int offset,
3237                                       size_t len, const void *mask)
3238 {
3239         int i;
3240
3241         /* data */
3242         memcpy(&flex->data[offset], src, len);
3243
3244         /* mask */
3245         for (i = 0; i < len; ++i) {
3246                 const unsigned int idx = i + offset;
3247                 const u8 *ptr = mask;
3248
3249                 if (mask) {
3250                         if (ptr[i] & 0xff)
3251                                 flex->mask[idx / 8] |= BIT(idx % 8);
3252
3253                         continue;
3254                 }
3255
3256                 flex->mask[idx / 8] |= BIT(idx % 8);
3257         }
3258 }
3259
3260 static int igc_find_avail_flex_filter_slot(struct igc_adapter *adapter)
3261 {
3262         struct igc_hw *hw = &adapter->hw;
3263         u32 wufc, wufc_ext;
3264         int i;
3265
3266         wufc = rd32(IGC_WUFC);
3267         wufc_ext = rd32(IGC_WUFC_EXT);
3268
3269         for (i = 0; i < MAX_FLEX_FILTER; i++) {
3270                 if (i < 8) {
3271                         if (!(wufc & (IGC_WUFC_FLX0 << i)))
3272                                 return i;
3273                 } else {
3274                         if (!(wufc_ext & (IGC_WUFC_EXT_FLX8 << (i - 8))))
3275                                 return i;
3276                 }
3277         }
3278
3279         return -ENOSPC;
3280 }
3281
3282 static bool igc_flex_filter_in_use(struct igc_adapter *adapter)
3283 {
3284         struct igc_hw *hw = &adapter->hw;
3285         u32 wufc, wufc_ext;
3286
3287         wufc = rd32(IGC_WUFC);
3288         wufc_ext = rd32(IGC_WUFC_EXT);
3289
3290         if (wufc & IGC_WUFC_FILTER_MASK)
3291                 return true;
3292
3293         if (wufc_ext & IGC_WUFC_EXT_FILTER_MASK)
3294                 return true;
3295
3296         return false;
3297 }
3298
3299 static int igc_add_flex_filter(struct igc_adapter *adapter,
3300                                struct igc_nfc_rule *rule)
3301 {
3302         struct igc_flex_filter flex = { };
3303         struct igc_nfc_filter *filter = &rule->filter;
3304         unsigned int eth_offset, user_offset;
3305         int ret, index;
3306         bool vlan;
3307
3308         index = igc_find_avail_flex_filter_slot(adapter);
3309         if (index < 0)
3310                 return -ENOSPC;
3311
3312         /* Construct the flex filter:
3313          *  -> dest_mac [6]
3314          *  -> src_mac [6]
3315          *  -> tpid [2]
3316          *  -> vlan tci [2]
3317          *  -> ether type [2]
3318          *  -> user data [8]
3319          *  -> = 26 bytes => 32 length
3320          */
3321         flex.index    = index;
3322         flex.length   = 32;
3323         flex.rx_queue = rule->action;
3324
3325         vlan = rule->filter.vlan_tci || rule->filter.vlan_etype;
3326         eth_offset = vlan ? 16 : 12;
3327         user_offset = vlan ? 18 : 14;
3328
3329         /* Add destination MAC  */
3330         if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3331                 igc_flex_filter_add_field(&flex, &filter->dst_addr, 0,
3332                                           ETH_ALEN, NULL);
3333
3334         /* Add source MAC */
3335         if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3336                 igc_flex_filter_add_field(&flex, &filter->src_addr, 6,
3337                                           ETH_ALEN, NULL);
3338
3339         /* Add VLAN etype */
3340         if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_ETYPE)
3341                 igc_flex_filter_add_field(&flex, &filter->vlan_etype, 12,
3342                                           sizeof(filter->vlan_etype),
3343                                           NULL);
3344
3345         /* Add VLAN TCI */
3346         if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI)
3347                 igc_flex_filter_add_field(&flex, &filter->vlan_tci, 14,
3348                                           sizeof(filter->vlan_tci), NULL);
3349
3350         /* Add Ether type */
3351         if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3352                 __be16 etype = cpu_to_be16(filter->etype);
3353
3354                 igc_flex_filter_add_field(&flex, &etype, eth_offset,
3355                                           sizeof(etype), NULL);
3356         }
3357
3358         /* Add user data */
3359         if (rule->filter.match_flags & IGC_FILTER_FLAG_USER_DATA)
3360                 igc_flex_filter_add_field(&flex, &filter->user_data,
3361                                           user_offset,
3362                                           sizeof(filter->user_data),
3363                                           filter->user_mask);
3364
3365         /* Add it down to the hardware and enable it. */
3366         ret = igc_write_flex_filter_ll(adapter, &flex);
3367         if (ret)
3368                 return ret;
3369
3370         filter->flex_index = index;
3371
3372         return 0;
3373 }
3374
3375 static void igc_del_flex_filter(struct igc_adapter *adapter,
3376                                 u16 reg_index)
3377 {
3378         struct igc_hw *hw = &adapter->hw;
3379         u32 wufc;
3380
3381         /* Just disable the filter. The filter table itself is kept
3382          * intact. Another flex_filter_add() should override the "old" data
3383          * then.
3384          */
3385         if (reg_index > 8) {
3386                 u32 wufc_ext = rd32(IGC_WUFC_EXT);
3387
3388                 wufc_ext &= ~(IGC_WUFC_EXT_FLX8 << (reg_index - 8));
3389                 wr32(IGC_WUFC_EXT, wufc_ext);
3390         } else {
3391                 wufc = rd32(IGC_WUFC);
3392
3393                 wufc &= ~(IGC_WUFC_FLX0 << reg_index);
3394                 wr32(IGC_WUFC, wufc);
3395         }
3396
3397         if (igc_flex_filter_in_use(adapter))
3398                 return;
3399
3400         /* No filters are in use, we may disable flex filters */
3401         wufc = rd32(IGC_WUFC);
3402         wufc &= ~IGC_WUFC_FLEX_HQ;
3403         wr32(IGC_WUFC, wufc);
3404 }
3405
3406 static int igc_enable_nfc_rule(struct igc_adapter *adapter,
3407                                struct igc_nfc_rule *rule)
3408 {
3409         int err;
3410
3411         if (rule->flex) {
3412                 return igc_add_flex_filter(adapter, rule);
3413         }
3414
3415         if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3416                 err = igc_add_etype_filter(adapter, rule->filter.etype,
3417                                            rule->action);
3418                 if (err)
3419                         return err;
3420         }
3421
3422         if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
3423                 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3424                                          rule->filter.src_addr, rule->action);
3425                 if (err)
3426                         return err;
3427         }
3428
3429         if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
3430                 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3431                                          rule->filter.dst_addr, rule->action);
3432                 if (err)
3433                         return err;
3434         }
3435
3436         if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3437                 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
3438                            VLAN_PRIO_SHIFT;
3439
3440                 err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
3441                 if (err)
3442                         return err;
3443         }
3444
3445         return 0;
3446 }
3447
3448 static void igc_disable_nfc_rule(struct igc_adapter *adapter,
3449                                  const struct igc_nfc_rule *rule)
3450 {
3451         if (rule->flex) {
3452                 igc_del_flex_filter(adapter, rule->filter.flex_index);
3453                 return;
3454         }
3455
3456         if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
3457                 igc_del_etype_filter(adapter, rule->filter.etype);
3458
3459         if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3460                 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
3461                            VLAN_PRIO_SHIFT;
3462
3463                 igc_del_vlan_prio_filter(adapter, prio);
3464         }
3465
3466         if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3467                 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3468                                    rule->filter.src_addr);
3469
3470         if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3471                 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3472                                    rule->filter.dst_addr);
3473 }
3474
3475 /**
3476  * igc_get_nfc_rule() - Get NFC rule
3477  * @adapter: Pointer to adapter
3478  * @location: Rule location
3479  *
3480  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3481  *
3482  * Return: Pointer to NFC rule at @location. If not found, NULL.
3483  */
3484 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
3485                                       u32 location)
3486 {
3487         struct igc_nfc_rule *rule;
3488
3489         list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
3490                 if (rule->location == location)
3491                         return rule;
3492                 if (rule->location > location)
3493                         break;
3494         }
3495
3496         return NULL;
3497 }
3498
3499 /**
3500  * igc_del_nfc_rule() - Delete NFC rule
3501  * @adapter: Pointer to adapter
3502  * @rule: Pointer to rule to be deleted
3503  *
3504  * Disable NFC rule in hardware and delete it from adapter.
3505  *
3506  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3507  */
3508 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3509 {
3510         igc_disable_nfc_rule(adapter, rule);
3511
3512         list_del(&rule->list);
3513         adapter->nfc_rule_count--;
3514
3515         kfree(rule);
3516 }
3517
3518 static void igc_flush_nfc_rules(struct igc_adapter *adapter)
3519 {
3520         struct igc_nfc_rule *rule, *tmp;
3521
3522         mutex_lock(&adapter->nfc_rule_lock);
3523
3524         list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
3525                 igc_del_nfc_rule(adapter, rule);
3526
3527         mutex_unlock(&adapter->nfc_rule_lock);
3528 }
3529
3530 /**
3531  * igc_add_nfc_rule() - Add NFC rule
3532  * @adapter: Pointer to adapter
3533  * @rule: Pointer to rule to be added
3534  *
3535  * Enable NFC rule in hardware and add it to adapter.
3536  *
3537  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3538  *
3539  * Return: 0 on success, negative errno on failure.
3540  */
3541 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3542 {
3543         struct igc_nfc_rule *pred, *cur;
3544         int err;
3545
3546         err = igc_enable_nfc_rule(adapter, rule);
3547         if (err)
3548                 return err;
3549
3550         pred = NULL;
3551         list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
3552                 if (cur->location >= rule->location)
3553                         break;
3554                 pred = cur;
3555         }
3556
3557         list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
3558         adapter->nfc_rule_count++;
3559         return 0;
3560 }
3561
3562 static void igc_restore_nfc_rules(struct igc_adapter *adapter)
3563 {
3564         struct igc_nfc_rule *rule;
3565
3566         mutex_lock(&adapter->nfc_rule_lock);
3567
3568         list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
3569                 igc_enable_nfc_rule(adapter, rule);
3570
3571         mutex_unlock(&adapter->nfc_rule_lock);
3572 }
3573
3574 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
3575 {
3576         struct igc_adapter *adapter = netdev_priv(netdev);
3577
3578         return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
3579 }
3580
3581 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
3582 {
3583         struct igc_adapter *adapter = netdev_priv(netdev);
3584
3585         igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
3586         return 0;
3587 }
3588
3589 /**
3590  * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3591  * @netdev: network interface device structure
3592  *
3593  * The set_rx_mode entry point is called whenever the unicast or multicast
3594  * address lists or the network interface flags are updated.  This routine is
3595  * responsible for configuring the hardware for proper unicast, multicast,
3596  * promiscuous mode, and all-multi behavior.
3597  */
3598 static void igc_set_rx_mode(struct net_device *netdev)
3599 {
3600         struct igc_adapter *adapter = netdev_priv(netdev);
3601         struct igc_hw *hw = &adapter->hw;
3602         u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
3603         int count;
3604
3605         /* Check for Promiscuous and All Multicast modes */
3606         if (netdev->flags & IFF_PROMISC) {
3607                 rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
3608         } else {
3609                 if (netdev->flags & IFF_ALLMULTI) {
3610                         rctl |= IGC_RCTL_MPE;
3611                 } else {
3612                         /* Write addresses to the MTA, if the attempt fails
3613                          * then we should just turn on promiscuous mode so
3614                          * that we can at least receive multicast traffic
3615                          */
3616                         count = igc_write_mc_addr_list(netdev);
3617                         if (count < 0)
3618                                 rctl |= IGC_RCTL_MPE;
3619                 }
3620         }
3621
3622         /* Write addresses to available RAR registers, if there is not
3623          * sufficient space to store all the addresses then enable
3624          * unicast promiscuous mode
3625          */
3626         if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
3627                 rctl |= IGC_RCTL_UPE;
3628
3629         /* update state of unicast and multicast */
3630         rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
3631         wr32(IGC_RCTL, rctl);
3632
3633 #if (PAGE_SIZE < 8192)
3634         if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
3635                 rlpml = IGC_MAX_FRAME_BUILD_SKB;
3636 #endif
3637         wr32(IGC_RLPML, rlpml);
3638 }
3639
3640 /**
3641  * igc_configure - configure the hardware for RX and TX
3642  * @adapter: private board structure
3643  */
3644 static void igc_configure(struct igc_adapter *adapter)
3645 {
3646         struct net_device *netdev = adapter->netdev;
3647         int i = 0;
3648
3649         igc_get_hw_control(adapter);
3650         igc_set_rx_mode(netdev);
3651
3652         igc_restore_vlan(adapter);
3653
3654         igc_setup_tctl(adapter);
3655         igc_setup_mrqc(adapter);
3656         igc_setup_rctl(adapter);
3657
3658         igc_set_default_mac_filter(adapter);
3659         igc_restore_nfc_rules(adapter);
3660
3661         igc_configure_tx(adapter);
3662         igc_configure_rx(adapter);
3663
3664         igc_rx_fifo_flush_base(&adapter->hw);
3665
3666         /* call igc_desc_unused which always leaves
3667          * at least 1 descriptor unused to make sure
3668          * next_to_use != next_to_clean
3669          */
3670         for (i = 0; i < adapter->num_rx_queues; i++) {
3671                 struct igc_ring *ring = adapter->rx_ring[i];
3672
3673                 if (ring->xsk_pool)
3674                         igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
3675                 else
3676                         igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
3677         }
3678 }
3679
3680 /**
3681  * igc_write_ivar - configure ivar for given MSI-X vector
3682  * @hw: pointer to the HW structure
3683  * @msix_vector: vector number we are allocating to a given ring
3684  * @index: row index of IVAR register to write within IVAR table
3685  * @offset: column offset of in IVAR, should be multiple of 8
3686  *
3687  * The IVAR table consists of 2 columns,
3688  * each containing an cause allocation for an Rx and Tx ring, and a
3689  * variable number of rows depending on the number of queues supported.
3690  */
3691 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
3692                            int index, int offset)
3693 {
3694         u32 ivar = array_rd32(IGC_IVAR0, index);
3695
3696         /* clear any bits that are currently set */
3697         ivar &= ~((u32)0xFF << offset);
3698
3699         /* write vector and valid bit */
3700         ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
3701
3702         array_wr32(IGC_IVAR0, index, ivar);
3703 }
3704
3705 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
3706 {
3707         struct igc_adapter *adapter = q_vector->adapter;
3708         struct igc_hw *hw = &adapter->hw;
3709         int rx_queue = IGC_N0_QUEUE;
3710         int tx_queue = IGC_N0_QUEUE;
3711
3712         if (q_vector->rx.ring)
3713                 rx_queue = q_vector->rx.ring->reg_idx;
3714         if (q_vector->tx.ring)
3715                 tx_queue = q_vector->tx.ring->reg_idx;
3716
3717         switch (hw->mac.type) {
3718         case igc_i225:
3719                 if (rx_queue > IGC_N0_QUEUE)
3720                         igc_write_ivar(hw, msix_vector,
3721                                        rx_queue >> 1,
3722                                        (rx_queue & 0x1) << 4);
3723                 if (tx_queue > IGC_N0_QUEUE)
3724                         igc_write_ivar(hw, msix_vector,
3725                                        tx_queue >> 1,
3726                                        ((tx_queue & 0x1) << 4) + 8);
3727                 q_vector->eims_value = BIT(msix_vector);
3728                 break;
3729         default:
3730                 WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
3731                 break;
3732         }
3733
3734         /* add q_vector eims value to global eims_enable_mask */
3735         adapter->eims_enable_mask |= q_vector->eims_value;
3736
3737         /* configure q_vector to set itr on first interrupt */
3738         q_vector->set_itr = 1;
3739 }
3740
3741 /**
3742  * igc_configure_msix - Configure MSI-X hardware
3743  * @adapter: Pointer to adapter structure
3744  *
3745  * igc_configure_msix sets up the hardware to properly
3746  * generate MSI-X interrupts.
3747  */
3748 static void igc_configure_msix(struct igc_adapter *adapter)
3749 {
3750         struct igc_hw *hw = &adapter->hw;
3751         int i, vector = 0;
3752         u32 tmp;
3753
3754         adapter->eims_enable_mask = 0;
3755
3756         /* set vector for other causes, i.e. link changes */
3757         switch (hw->mac.type) {
3758         case igc_i225:
3759                 /* Turn on MSI-X capability first, or our settings
3760                  * won't stick.  And it will take days to debug.
3761                  */
3762                 wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
3763                      IGC_GPIE_PBA | IGC_GPIE_EIAME |
3764                      IGC_GPIE_NSICR);
3765
3766                 /* enable msix_other interrupt */
3767                 adapter->eims_other = BIT(vector);
3768                 tmp = (vector++ | IGC_IVAR_VALID) << 8;
3769
3770                 wr32(IGC_IVAR_MISC, tmp);
3771                 break;
3772         default:
3773                 /* do nothing, since nothing else supports MSI-X */
3774                 break;
3775         } /* switch (hw->mac.type) */
3776
3777         adapter->eims_enable_mask |= adapter->eims_other;
3778
3779         for (i = 0; i < adapter->num_q_vectors; i++)
3780                 igc_assign_vector(adapter->q_vector[i], vector++);
3781
3782         wrfl();
3783 }
3784
3785 /**
3786  * igc_irq_enable - Enable default interrupt generation settings
3787  * @adapter: board private structure
3788  */
3789 static void igc_irq_enable(struct igc_adapter *adapter)
3790 {
3791         struct igc_hw *hw = &adapter->hw;
3792
3793         if (adapter->msix_entries) {
3794                 u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
3795                 u32 regval = rd32(IGC_EIAC);
3796
3797                 wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
3798                 regval = rd32(IGC_EIAM);
3799                 wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
3800                 wr32(IGC_EIMS, adapter->eims_enable_mask);
3801                 wr32(IGC_IMS, ims);
3802         } else {
3803                 wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3804                 wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3805         }
3806 }
3807
3808 /**
3809  * igc_irq_disable - Mask off interrupt generation on the NIC
3810  * @adapter: board private structure
3811  */
3812 static void igc_irq_disable(struct igc_adapter *adapter)
3813 {
3814         struct igc_hw *hw = &adapter->hw;
3815
3816         if (adapter->msix_entries) {
3817                 u32 regval = rd32(IGC_EIAM);
3818
3819                 wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
3820                 wr32(IGC_EIMC, adapter->eims_enable_mask);
3821                 regval = rd32(IGC_EIAC);
3822                 wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
3823         }
3824
3825         wr32(IGC_IAM, 0);
3826         wr32(IGC_IMC, ~0);
3827         wrfl();
3828
3829         if (adapter->msix_entries) {
3830                 int vector = 0, i;
3831
3832                 synchronize_irq(adapter->msix_entries[vector++].vector);
3833
3834                 for (i = 0; i < adapter->num_q_vectors; i++)
3835                         synchronize_irq(adapter->msix_entries[vector++].vector);
3836         } else {
3837                 synchronize_irq(adapter->pdev->irq);
3838         }
3839 }
3840
3841 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
3842                               const u32 max_rss_queues)
3843 {
3844         /* Determine if we need to pair queues. */
3845         /* If rss_queues > half of max_rss_queues, pair the queues in
3846          * order to conserve interrupts due to limited supply.
3847          */
3848         if (adapter->rss_queues > (max_rss_queues / 2))
3849                 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
3850         else
3851                 adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
3852 }
3853
3854 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
3855 {
3856         return IGC_MAX_RX_QUEUES;
3857 }
3858
3859 static void igc_init_queue_configuration(struct igc_adapter *adapter)
3860 {
3861         u32 max_rss_queues;
3862
3863         max_rss_queues = igc_get_max_rss_queues(adapter);
3864         adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3865
3866         igc_set_flag_queue_pairs(adapter, max_rss_queues);
3867 }
3868
3869 /**
3870  * igc_reset_q_vector - Reset config for interrupt vector
3871  * @adapter: board private structure to initialize
3872  * @v_idx: Index of vector to be reset
3873  *
3874  * If NAPI is enabled it will delete any references to the
3875  * NAPI struct. This is preparation for igc_free_q_vector.
3876  */
3877 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
3878 {
3879         struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
3880
3881         /* if we're coming from igc_set_interrupt_capability, the vectors are
3882          * not yet allocated
3883          */
3884         if (!q_vector)
3885                 return;
3886
3887         if (q_vector->tx.ring)
3888                 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
3889
3890         if (q_vector->rx.ring)
3891                 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
3892
3893         netif_napi_del(&q_vector->napi);
3894 }
3895
3896 /**
3897  * igc_free_q_vector - Free memory allocated for specific interrupt vector
3898  * @adapter: board private structure to initialize
3899  * @v_idx: Index of vector to be freed
3900  *
3901  * This function frees the memory allocated to the q_vector.
3902  */
3903 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
3904 {
3905         struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
3906
3907         adapter->q_vector[v_idx] = NULL;
3908
3909         /* igc_get_stats64() might access the rings on this vector,
3910          * we must wait a grace period before freeing it.
3911          */
3912         if (q_vector)
3913                 kfree_rcu(q_vector, rcu);
3914 }
3915
3916 /**
3917  * igc_free_q_vectors - Free memory allocated for interrupt vectors
3918  * @adapter: board private structure to initialize
3919  *
3920  * This function frees the memory allocated to the q_vectors.  In addition if
3921  * NAPI is enabled it will delete any references to the NAPI struct prior
3922  * to freeing the q_vector.
3923  */
3924 static void igc_free_q_vectors(struct igc_adapter *adapter)
3925 {
3926         int v_idx = adapter->num_q_vectors;
3927
3928         adapter->num_tx_queues = 0;
3929         adapter->num_rx_queues = 0;
3930         adapter->num_q_vectors = 0;
3931
3932         while (v_idx--) {
3933                 igc_reset_q_vector(adapter, v_idx);
3934                 igc_free_q_vector(adapter, v_idx);
3935         }
3936 }
3937
3938 /**
3939  * igc_update_itr - update the dynamic ITR value based on statistics
3940  * @q_vector: pointer to q_vector
3941  * @ring_container: ring info to update the itr for
3942  *
3943  * Stores a new ITR value based on packets and byte
3944  * counts during the last interrupt.  The advantage of per interrupt
3945  * computation is faster updates and more accurate ITR for the current
3946  * traffic pattern.  Constants in this function were computed
3947  * based on theoretical maximum wire speed and thresholds were set based
3948  * on testing data as well as attempting to minimize response time
3949  * while increasing bulk throughput.
3950  * NOTE: These calculations are only valid when operating in a single-
3951  * queue environment.
3952  */
3953 static void igc_update_itr(struct igc_q_vector *q_vector,
3954                            struct igc_ring_container *ring_container)
3955 {
3956         unsigned int packets = ring_container->total_packets;
3957         unsigned int bytes = ring_container->total_bytes;
3958         u8 itrval = ring_container->itr;
3959
3960         /* no packets, exit with status unchanged */
3961         if (packets == 0)
3962                 return;
3963
3964         switch (itrval) {
3965         case lowest_latency:
3966                 /* handle TSO and jumbo frames */
3967                 if (bytes / packets > 8000)
3968                         itrval = bulk_latency;
3969                 else if ((packets < 5) && (bytes > 512))
3970                         itrval = low_latency;
3971                 break;
3972         case low_latency:  /* 50 usec aka 20000 ints/s */
3973                 if (bytes > 10000) {
3974                         /* this if handles the TSO accounting */
3975                         if (bytes / packets > 8000)
3976                                 itrval = bulk_latency;
3977                         else if ((packets < 10) || ((bytes / packets) > 1200))
3978                                 itrval = bulk_latency;
3979                         else if ((packets > 35))
3980                                 itrval = lowest_latency;
3981                 } else if (bytes / packets > 2000) {
3982                         itrval = bulk_latency;
3983                 } else if (packets <= 2 && bytes < 512) {
3984                         itrval = lowest_latency;
3985                 }
3986                 break;
3987         case bulk_latency: /* 250 usec aka 4000 ints/s */
3988                 if (bytes > 25000) {
3989                         if (packets > 35)
3990                                 itrval = low_latency;
3991                 } else if (bytes < 1500) {
3992                         itrval = low_latency;
3993                 }
3994                 break;
3995         }
3996
3997         /* clear work counters since we have the values we need */
3998         ring_container->total_bytes = 0;
3999         ring_container->total_packets = 0;
4000
4001         /* write updated itr to ring container */
4002         ring_container->itr = itrval;
4003 }
4004
4005 static void igc_set_itr(struct igc_q_vector *q_vector)
4006 {
4007         struct igc_adapter *adapter = q_vector->adapter;
4008         u32 new_itr = q_vector->itr_val;
4009         u8 current_itr = 0;
4010
4011         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4012         switch (adapter->link_speed) {
4013         case SPEED_10:
4014         case SPEED_100:
4015                 current_itr = 0;
4016                 new_itr = IGC_4K_ITR;
4017                 goto set_itr_now;
4018         default:
4019                 break;
4020         }
4021
4022         igc_update_itr(q_vector, &q_vector->tx);
4023         igc_update_itr(q_vector, &q_vector->rx);
4024
4025         current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4026
4027         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4028         if (current_itr == lowest_latency &&
4029             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4030             (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4031                 current_itr = low_latency;
4032
4033         switch (current_itr) {
4034         /* counts and packets in update_itr are dependent on these numbers */
4035         case lowest_latency:
4036                 new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
4037                 break;
4038         case low_latency:
4039                 new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
4040                 break;
4041         case bulk_latency:
4042                 new_itr = IGC_4K_ITR;  /* 4,000 ints/sec */
4043                 break;
4044         default:
4045                 break;
4046         }
4047
4048 set_itr_now:
4049         if (new_itr != q_vector->itr_val) {
4050                 /* this attempts to bias the interrupt rate towards Bulk
4051                  * by adding intermediate steps when interrupt rate is
4052                  * increasing
4053                  */
4054                 new_itr = new_itr > q_vector->itr_val ?
4055                           max((new_itr * q_vector->itr_val) /
4056                           (new_itr + (q_vector->itr_val >> 2)),
4057                           new_itr) : new_itr;
4058                 /* Don't write the value here; it resets the adapter's
4059                  * internal timer, and causes us to delay far longer than
4060                  * we should between interrupts.  Instead, we write the ITR
4061                  * value at the beginning of the next interrupt so the timing
4062                  * ends up being correct.
4063                  */
4064                 q_vector->itr_val = new_itr;
4065                 q_vector->set_itr = 1;
4066         }
4067 }
4068
4069 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
4070 {
4071         int v_idx = adapter->num_q_vectors;
4072
4073         if (adapter->msix_entries) {
4074                 pci_disable_msix(adapter->pdev);
4075                 kfree(adapter->msix_entries);
4076                 adapter->msix_entries = NULL;
4077         } else if (adapter->flags & IGC_FLAG_HAS_MSI) {
4078                 pci_disable_msi(adapter->pdev);
4079         }
4080
4081         while (v_idx--)
4082                 igc_reset_q_vector(adapter, v_idx);
4083 }
4084
4085 /**
4086  * igc_set_interrupt_capability - set MSI or MSI-X if supported
4087  * @adapter: Pointer to adapter structure
4088  * @msix: boolean value for MSI-X capability
4089  *
4090  * Attempt to configure interrupts using the best available
4091  * capabilities of the hardware and kernel.
4092  */
4093 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
4094                                          bool msix)
4095 {
4096         int numvecs, i;
4097         int err;
4098
4099         if (!msix)
4100                 goto msi_only;
4101         adapter->flags |= IGC_FLAG_HAS_MSIX;
4102
4103         /* Number of supported queues. */
4104         adapter->num_rx_queues = adapter->rss_queues;
4105
4106         adapter->num_tx_queues = adapter->rss_queues;
4107
4108         /* start with one vector for every Rx queue */
4109         numvecs = adapter->num_rx_queues;
4110
4111         /* if Tx handler is separate add 1 for every Tx queue */
4112         if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
4113                 numvecs += adapter->num_tx_queues;
4114
4115         /* store the number of vectors reserved for queues */
4116         adapter->num_q_vectors = numvecs;
4117
4118         /* add 1 vector for link status interrupts */
4119         numvecs++;
4120
4121         adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
4122                                         GFP_KERNEL);
4123
4124         if (!adapter->msix_entries)
4125                 return;
4126
4127         /* populate entry values */
4128         for (i = 0; i < numvecs; i++)
4129                 adapter->msix_entries[i].entry = i;
4130
4131         err = pci_enable_msix_range(adapter->pdev,
4132                                     adapter->msix_entries,
4133                                     numvecs,
4134                                     numvecs);
4135         if (err > 0)
4136                 return;
4137
4138         kfree(adapter->msix_entries);
4139         adapter->msix_entries = NULL;
4140
4141         igc_reset_interrupt_capability(adapter);
4142
4143 msi_only:
4144         adapter->flags &= ~IGC_FLAG_HAS_MSIX;
4145
4146         adapter->rss_queues = 1;
4147         adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4148         adapter->num_rx_queues = 1;
4149         adapter->num_tx_queues = 1;
4150         adapter->num_q_vectors = 1;
4151         if (!pci_enable_msi(adapter->pdev))
4152                 adapter->flags |= IGC_FLAG_HAS_MSI;
4153 }
4154
4155 /**
4156  * igc_update_ring_itr - update the dynamic ITR value based on packet size
4157  * @q_vector: pointer to q_vector
4158  *
4159  * Stores a new ITR value based on strictly on packet size.  This
4160  * algorithm is less sophisticated than that used in igc_update_itr,
4161  * due to the difficulty of synchronizing statistics across multiple
4162  * receive rings.  The divisors and thresholds used by this function
4163  * were determined based on theoretical maximum wire speed and testing
4164  * data, in order to minimize response time while increasing bulk
4165  * throughput.
4166  * NOTE: This function is called only when operating in a multiqueue
4167  * receive environment.
4168  */
4169 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
4170 {
4171         struct igc_adapter *adapter = q_vector->adapter;
4172         int new_val = q_vector->itr_val;
4173         int avg_wire_size = 0;
4174         unsigned int packets;
4175
4176         /* For non-gigabit speeds, just fix the interrupt rate at 4000
4177          * ints/sec - ITR timer value of 120 ticks.
4178          */
4179         switch (adapter->link_speed) {
4180         case SPEED_10:
4181         case SPEED_100:
4182                 new_val = IGC_4K_ITR;
4183                 goto set_itr_val;
4184         default:
4185                 break;
4186         }
4187
4188         packets = q_vector->rx.total_packets;
4189         if (packets)
4190                 avg_wire_size = q_vector->rx.total_bytes / packets;
4191
4192         packets = q_vector->tx.total_packets;
4193         if (packets)
4194                 avg_wire_size = max_t(u32, avg_wire_size,
4195                                       q_vector->tx.total_bytes / packets);
4196
4197         /* if avg_wire_size isn't set no work was done */
4198         if (!avg_wire_size)
4199                 goto clear_counts;
4200
4201         /* Add 24 bytes to size to account for CRC, preamble, and gap */
4202         avg_wire_size += 24;
4203
4204         /* Don't starve jumbo frames */
4205         avg_wire_size = min(avg_wire_size, 3000);
4206
4207         /* Give a little boost to mid-size frames */
4208         if (avg_wire_size > 300 && avg_wire_size < 1200)
4209                 new_val = avg_wire_size / 3;
4210         else
4211                 new_val = avg_wire_size / 2;
4212
4213         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4214         if (new_val < IGC_20K_ITR &&
4215             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4216             (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4217                 new_val = IGC_20K_ITR;
4218
4219 set_itr_val:
4220         if (new_val != q_vector->itr_val) {
4221                 q_vector->itr_val = new_val;
4222                 q_vector->set_itr = 1;
4223         }
4224 clear_counts:
4225         q_vector->rx.total_bytes = 0;
4226         q_vector->rx.total_packets = 0;
4227         q_vector->tx.total_bytes = 0;
4228         q_vector->tx.total_packets = 0;
4229 }
4230
4231 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
4232 {
4233         struct igc_adapter *adapter = q_vector->adapter;
4234         struct igc_hw *hw = &adapter->hw;
4235
4236         if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
4237             (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
4238                 if (adapter->num_q_vectors == 1)
4239                         igc_set_itr(q_vector);
4240                 else
4241                         igc_update_ring_itr(q_vector);
4242         }
4243
4244         if (!test_bit(__IGC_DOWN, &adapter->state)) {
4245                 if (adapter->msix_entries)
4246                         wr32(IGC_EIMS, q_vector->eims_value);
4247                 else
4248                         igc_irq_enable(adapter);
4249         }
4250 }
4251
4252 static void igc_add_ring(struct igc_ring *ring,
4253                          struct igc_ring_container *head)
4254 {
4255         head->ring = ring;
4256         head->count++;
4257 }
4258
4259 /**
4260  * igc_cache_ring_register - Descriptor ring to register mapping
4261  * @adapter: board private structure to initialize
4262  *
4263  * Once we know the feature-set enabled for the device, we'll cache
4264  * the register offset the descriptor ring is assigned to.
4265  */
4266 static void igc_cache_ring_register(struct igc_adapter *adapter)
4267 {
4268         int i = 0, j = 0;
4269
4270         switch (adapter->hw.mac.type) {
4271         case igc_i225:
4272         default:
4273                 for (; i < adapter->num_rx_queues; i++)
4274                         adapter->rx_ring[i]->reg_idx = i;
4275                 for (; j < adapter->num_tx_queues; j++)
4276                         adapter->tx_ring[j]->reg_idx = j;
4277                 break;
4278         }
4279 }
4280
4281 /**
4282  * igc_poll - NAPI Rx polling callback
4283  * @napi: napi polling structure
4284  * @budget: count of how many packets we should handle
4285  */
4286 static int igc_poll(struct napi_struct *napi, int budget)
4287 {
4288         struct igc_q_vector *q_vector = container_of(napi,
4289                                                      struct igc_q_vector,
4290                                                      napi);
4291         struct igc_ring *rx_ring = q_vector->rx.ring;
4292         bool clean_complete = true;
4293         int work_done = 0;
4294
4295         if (q_vector->tx.ring)
4296                 clean_complete = igc_clean_tx_irq(q_vector, budget);
4297
4298         if (rx_ring) {
4299                 int cleaned = rx_ring->xsk_pool ?
4300                               igc_clean_rx_irq_zc(q_vector, budget) :
4301                               igc_clean_rx_irq(q_vector, budget);
4302
4303                 work_done += cleaned;
4304                 if (cleaned >= budget)
4305                         clean_complete = false;
4306         }
4307
4308         /* If all work not completed, return budget and keep polling */
4309         if (!clean_complete)
4310                 return budget;
4311
4312         /* Exit the polling mode, but don't re-enable interrupts if stack might
4313          * poll us due to busy-polling
4314          */
4315         if (likely(napi_complete_done(napi, work_done)))
4316                 igc_ring_irq_enable(q_vector);
4317
4318         return min(work_done, budget - 1);
4319 }
4320
4321 /**
4322  * igc_alloc_q_vector - Allocate memory for a single interrupt vector
4323  * @adapter: board private structure to initialize
4324  * @v_count: q_vectors allocated on adapter, used for ring interleaving
4325  * @v_idx: index of vector in adapter struct
4326  * @txr_count: total number of Tx rings to allocate
4327  * @txr_idx: index of first Tx ring to allocate
4328  * @rxr_count: total number of Rx rings to allocate
4329  * @rxr_idx: index of first Rx ring to allocate
4330  *
4331  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
4332  */
4333 static int igc_alloc_q_vector(struct igc_adapter *adapter,
4334                               unsigned int v_count, unsigned int v_idx,
4335                               unsigned int txr_count, unsigned int txr_idx,
4336                               unsigned int rxr_count, unsigned int rxr_idx)
4337 {
4338         struct igc_q_vector *q_vector;
4339         struct igc_ring *ring;
4340         int ring_count;
4341
4342         /* igc only supports 1 Tx and/or 1 Rx queue per vector */
4343         if (txr_count > 1 || rxr_count > 1)
4344                 return -ENOMEM;
4345
4346         ring_count = txr_count + rxr_count;
4347
4348         /* allocate q_vector and rings */
4349         q_vector = adapter->q_vector[v_idx];
4350         if (!q_vector)
4351                 q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
4352                                    GFP_KERNEL);
4353         else
4354                 memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
4355         if (!q_vector)
4356                 return -ENOMEM;
4357
4358         /* initialize NAPI */
4359         netif_napi_add(adapter->netdev, &q_vector->napi,
4360                        igc_poll, 64);
4361
4362         /* tie q_vector and adapter together */
4363         adapter->q_vector[v_idx] = q_vector;
4364         q_vector->adapter = adapter;
4365
4366         /* initialize work limits */
4367         q_vector->tx.work_limit = adapter->tx_work_limit;
4368
4369         /* initialize ITR configuration */
4370         q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
4371         q_vector->itr_val = IGC_START_ITR;
4372
4373         /* initialize pointer to rings */
4374         ring = q_vector->ring;
4375
4376         /* initialize ITR */
4377         if (rxr_count) {
4378                 /* rx or rx/tx vector */
4379                 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
4380                         q_vector->itr_val = adapter->rx_itr_setting;
4381         } else {
4382                 /* tx only vector */
4383                 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
4384                         q_vector->itr_val = adapter->tx_itr_setting;
4385         }
4386
4387         if (txr_count) {
4388                 /* assign generic ring traits */
4389                 ring->dev = &adapter->pdev->dev;
4390                 ring->netdev = adapter->netdev;
4391
4392                 /* configure backlink on ring */
4393                 ring->q_vector = q_vector;
4394
4395                 /* update q_vector Tx values */
4396                 igc_add_ring(ring, &q_vector->tx);
4397
4398                 /* apply Tx specific ring traits */
4399                 ring->count = adapter->tx_ring_count;
4400                 ring->queue_index = txr_idx;
4401
4402                 /* assign ring to adapter */
4403                 adapter->tx_ring[txr_idx] = ring;
4404
4405                 /* push pointer to next ring */
4406                 ring++;
4407         }
4408
4409         if (rxr_count) {
4410                 /* assign generic ring traits */
4411                 ring->dev = &adapter->pdev->dev;
4412                 ring->netdev = adapter->netdev;
4413
4414                 /* configure backlink on ring */
4415                 ring->q_vector = q_vector;
4416
4417                 /* update q_vector Rx values */
4418                 igc_add_ring(ring, &q_vector->rx);
4419
4420                 /* apply Rx specific ring traits */
4421                 ring->count = adapter->rx_ring_count;
4422                 ring->queue_index = rxr_idx;
4423
4424                 /* assign ring to adapter */
4425                 adapter->rx_ring[rxr_idx] = ring;
4426         }
4427
4428         return 0;
4429 }
4430
4431 /**
4432  * igc_alloc_q_vectors - Allocate memory for interrupt vectors
4433  * @adapter: board private structure to initialize
4434  *
4435  * We allocate one q_vector per queue interrupt.  If allocation fails we
4436  * return -ENOMEM.
4437  */
4438 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
4439 {
4440         int rxr_remaining = adapter->num_rx_queues;
4441         int txr_remaining = adapter->num_tx_queues;
4442         int rxr_idx = 0, txr_idx = 0, v_idx = 0;
4443         int q_vectors = adapter->num_q_vectors;
4444         int err;
4445
4446         if (q_vectors >= (rxr_remaining + txr_remaining)) {
4447                 for (; rxr_remaining; v_idx++) {
4448                         err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4449                                                  0, 0, 1, rxr_idx);
4450
4451                         if (err)
4452                                 goto err_out;
4453
4454                         /* update counts and index */
4455                         rxr_remaining--;
4456                         rxr_idx++;
4457                 }
4458         }
4459
4460         for (; v_idx < q_vectors; v_idx++) {
4461                 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
4462                 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
4463
4464                 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4465                                          tqpv, txr_idx, rqpv, rxr_idx);
4466
4467                 if (err)
4468                         goto err_out;
4469
4470                 /* update counts and index */
4471                 rxr_remaining -= rqpv;
4472                 txr_remaining -= tqpv;
4473                 rxr_idx++;
4474                 txr_idx++;
4475         }
4476
4477         return 0;
4478
4479 err_out:
4480         adapter->num_tx_queues = 0;
4481         adapter->num_rx_queues = 0;
4482         adapter->num_q_vectors = 0;
4483
4484         while (v_idx--)
4485                 igc_free_q_vector(adapter, v_idx);
4486
4487         return -ENOMEM;
4488 }
4489
4490 /**
4491  * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
4492  * @adapter: Pointer to adapter structure
4493  * @msix: boolean for MSI-X capability
4494  *
4495  * This function initializes the interrupts and allocates all of the queues.
4496  */
4497 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
4498 {
4499         struct net_device *dev = adapter->netdev;
4500         int err = 0;
4501
4502         igc_set_interrupt_capability(adapter, msix);
4503
4504         err = igc_alloc_q_vectors(adapter);
4505         if (err) {
4506                 netdev_err(dev, "Unable to allocate memory for vectors\n");
4507                 goto err_alloc_q_vectors;
4508         }
4509
4510         igc_cache_ring_register(adapter);
4511
4512         return 0;
4513
4514 err_alloc_q_vectors:
4515         igc_reset_interrupt_capability(adapter);
4516         return err;
4517 }
4518
4519 /**
4520  * igc_sw_init - Initialize general software structures (struct igc_adapter)
4521  * @adapter: board private structure to initialize
4522  *
4523  * igc_sw_init initializes the Adapter private data structure.
4524  * Fields are initialized based on PCI device information and
4525  * OS network device settings (MTU size).
4526  */
4527 static int igc_sw_init(struct igc_adapter *adapter)
4528 {
4529         struct net_device *netdev = adapter->netdev;
4530         struct pci_dev *pdev = adapter->pdev;
4531         struct igc_hw *hw = &adapter->hw;
4532
4533         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4534
4535         /* set default ring sizes */
4536         adapter->tx_ring_count = IGC_DEFAULT_TXD;
4537         adapter->rx_ring_count = IGC_DEFAULT_RXD;
4538
4539         /* set default ITR values */
4540         adapter->rx_itr_setting = IGC_DEFAULT_ITR;
4541         adapter->tx_itr_setting = IGC_DEFAULT_ITR;
4542
4543         /* set default work limits */
4544         adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
4545
4546         /* adjust max frame to be at least the size of a standard frame */
4547         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
4548                                 VLAN_HLEN;
4549         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4550
4551         mutex_init(&adapter->nfc_rule_lock);
4552         INIT_LIST_HEAD(&adapter->nfc_rule_list);
4553         adapter->nfc_rule_count = 0;
4554
4555         spin_lock_init(&adapter->stats64_lock);
4556         /* Assume MSI-X interrupts, will be checked during IRQ allocation */
4557         adapter->flags |= IGC_FLAG_HAS_MSIX;
4558
4559         igc_init_queue_configuration(adapter);
4560
4561         /* This call may decrease the number of queues */
4562         if (igc_init_interrupt_scheme(adapter, true)) {
4563                 netdev_err(netdev, "Unable to allocate memory for queues\n");
4564                 return -ENOMEM;
4565         }
4566
4567         /* Explicitly disable IRQ since the NIC can be in any state. */
4568         igc_irq_disable(adapter);
4569
4570         set_bit(__IGC_DOWN, &adapter->state);
4571
4572         return 0;
4573 }
4574
4575 /**
4576  * igc_up - Open the interface and prepare it to handle traffic
4577  * @adapter: board private structure
4578  */
4579 void igc_up(struct igc_adapter *adapter)
4580 {
4581         struct igc_hw *hw = &adapter->hw;
4582         int i = 0;
4583
4584         /* hardware has been reset, we need to reload some things */
4585         igc_configure(adapter);
4586
4587         clear_bit(__IGC_DOWN, &adapter->state);
4588
4589         for (i = 0; i < adapter->num_q_vectors; i++)
4590                 napi_enable(&adapter->q_vector[i]->napi);
4591
4592         if (adapter->msix_entries)
4593                 igc_configure_msix(adapter);
4594         else
4595                 igc_assign_vector(adapter->q_vector[0], 0);
4596
4597         /* Clear any pending interrupts. */
4598         rd32(IGC_ICR);
4599         igc_irq_enable(adapter);
4600
4601         netif_tx_start_all_queues(adapter->netdev);
4602
4603         /* start the watchdog. */
4604         hw->mac.get_link_status = true;
4605         schedule_work(&adapter->watchdog_task);
4606 }
4607
4608 /**
4609  * igc_update_stats - Update the board statistics counters
4610  * @adapter: board private structure
4611  */
4612 void igc_update_stats(struct igc_adapter *adapter)
4613 {
4614         struct rtnl_link_stats64 *net_stats = &adapter->stats64;
4615         struct pci_dev *pdev = adapter->pdev;
4616         struct igc_hw *hw = &adapter->hw;
4617         u64 _bytes, _packets;
4618         u64 bytes, packets;
4619         unsigned int start;
4620         u32 mpc;
4621         int i;
4622
4623         /* Prevent stats update while adapter is being reset, or if the pci
4624          * connection is down.
4625          */
4626         if (adapter->link_speed == 0)
4627                 return;
4628         if (pci_channel_offline(pdev))
4629                 return;
4630
4631         packets = 0;
4632         bytes = 0;
4633
4634         rcu_read_lock();
4635         for (i = 0; i < adapter->num_rx_queues; i++) {
4636                 struct igc_ring *ring = adapter->rx_ring[i];
4637                 u32 rqdpc = rd32(IGC_RQDPC(i));
4638
4639                 if (hw->mac.type >= igc_i225)
4640                         wr32(IGC_RQDPC(i), 0);
4641
4642                 if (rqdpc) {
4643                         ring->rx_stats.drops += rqdpc;
4644                         net_stats->rx_fifo_errors += rqdpc;
4645                 }
4646
4647                 do {
4648                         start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
4649                         _bytes = ring->rx_stats.bytes;
4650                         _packets = ring->rx_stats.packets;
4651                 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
4652                 bytes += _bytes;
4653                 packets += _packets;
4654         }
4655
4656         net_stats->rx_bytes = bytes;
4657         net_stats->rx_packets = packets;
4658
4659         packets = 0;
4660         bytes = 0;
4661         for (i = 0; i < adapter->num_tx_queues; i++) {
4662                 struct igc_ring *ring = adapter->tx_ring[i];
4663
4664                 do {
4665                         start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
4666                         _bytes = ring->tx_stats.bytes;
4667                         _packets = ring->tx_stats.packets;
4668                 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
4669                 bytes += _bytes;
4670                 packets += _packets;
4671         }
4672         net_stats->tx_bytes = bytes;
4673         net_stats->tx_packets = packets;
4674         rcu_read_unlock();
4675
4676         /* read stats registers */
4677         adapter->stats.crcerrs += rd32(IGC_CRCERRS);
4678         adapter->stats.gprc += rd32(IGC_GPRC);
4679         adapter->stats.gorc += rd32(IGC_GORCL);
4680         rd32(IGC_GORCH); /* clear GORCL */
4681         adapter->stats.bprc += rd32(IGC_BPRC);
4682         adapter->stats.mprc += rd32(IGC_MPRC);
4683         adapter->stats.roc += rd32(IGC_ROC);
4684
4685         adapter->stats.prc64 += rd32(IGC_PRC64);
4686         adapter->stats.prc127 += rd32(IGC_PRC127);
4687         adapter->stats.prc255 += rd32(IGC_PRC255);
4688         adapter->stats.prc511 += rd32(IGC_PRC511);
4689         adapter->stats.prc1023 += rd32(IGC_PRC1023);
4690         adapter->stats.prc1522 += rd32(IGC_PRC1522);
4691         adapter->stats.tlpic += rd32(IGC_TLPIC);
4692         adapter->stats.rlpic += rd32(IGC_RLPIC);
4693         adapter->stats.hgptc += rd32(IGC_HGPTC);
4694
4695         mpc = rd32(IGC_MPC);
4696         adapter->stats.mpc += mpc;
4697         net_stats->rx_fifo_errors += mpc;
4698         adapter->stats.scc += rd32(IGC_SCC);
4699         adapter->stats.ecol += rd32(IGC_ECOL);
4700         adapter->stats.mcc += rd32(IGC_MCC);
4701         adapter->stats.latecol += rd32(IGC_LATECOL);
4702         adapter->stats.dc += rd32(IGC_DC);
4703         adapter->stats.rlec += rd32(IGC_RLEC);
4704         adapter->stats.xonrxc += rd32(IGC_XONRXC);
4705         adapter->stats.xontxc += rd32(IGC_XONTXC);
4706         adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
4707         adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
4708         adapter->stats.fcruc += rd32(IGC_FCRUC);
4709         adapter->stats.gptc += rd32(IGC_GPTC);
4710         adapter->stats.gotc += rd32(IGC_GOTCL);
4711         rd32(IGC_GOTCH); /* clear GOTCL */
4712         adapter->stats.rnbc += rd32(IGC_RNBC);
4713         adapter->stats.ruc += rd32(IGC_RUC);
4714         adapter->stats.rfc += rd32(IGC_RFC);
4715         adapter->stats.rjc += rd32(IGC_RJC);
4716         adapter->stats.tor += rd32(IGC_TORH);
4717         adapter->stats.tot += rd32(IGC_TOTH);
4718         adapter->stats.tpr += rd32(IGC_TPR);
4719
4720         adapter->stats.ptc64 += rd32(IGC_PTC64);
4721         adapter->stats.ptc127 += rd32(IGC_PTC127);
4722         adapter->stats.ptc255 += rd32(IGC_PTC255);
4723         adapter->stats.ptc511 += rd32(IGC_PTC511);
4724         adapter->stats.ptc1023 += rd32(IGC_PTC1023);
4725         adapter->stats.ptc1522 += rd32(IGC_PTC1522);
4726
4727         adapter->stats.mptc += rd32(IGC_MPTC);
4728         adapter->stats.bptc += rd32(IGC_BPTC);
4729
4730         adapter->stats.tpt += rd32(IGC_TPT);
4731         adapter->stats.colc += rd32(IGC_COLC);
4732         adapter->stats.colc += rd32(IGC_RERC);
4733
4734         adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
4735
4736         adapter->stats.tsctc += rd32(IGC_TSCTC);
4737
4738         adapter->stats.iac += rd32(IGC_IAC);
4739
4740         /* Fill out the OS statistics structure */
4741         net_stats->multicast = adapter->stats.mprc;
4742         net_stats->collisions = adapter->stats.colc;
4743
4744         /* Rx Errors */
4745
4746         /* RLEC on some newer hardware can be incorrect so build
4747          * our own version based on RUC and ROC
4748          */
4749         net_stats->rx_errors = adapter->stats.rxerrc +
4750                 adapter->stats.crcerrs + adapter->stats.algnerrc +
4751                 adapter->stats.ruc + adapter->stats.roc +
4752                 adapter->stats.cexterr;
4753         net_stats->rx_length_errors = adapter->stats.ruc +
4754                                       adapter->stats.roc;
4755         net_stats->rx_crc_errors = adapter->stats.crcerrs;
4756         net_stats->rx_frame_errors = adapter->stats.algnerrc;
4757         net_stats->rx_missed_errors = adapter->stats.mpc;
4758
4759         /* Tx Errors */
4760         net_stats->tx_errors = adapter->stats.ecol +
4761                                adapter->stats.latecol;
4762         net_stats->tx_aborted_errors = adapter->stats.ecol;
4763         net_stats->tx_window_errors = adapter->stats.latecol;
4764         net_stats->tx_carrier_errors = adapter->stats.tncrs;
4765
4766         /* Tx Dropped needs to be maintained elsewhere */
4767
4768         /* Management Stats */
4769         adapter->stats.mgptc += rd32(IGC_MGTPTC);
4770         adapter->stats.mgprc += rd32(IGC_MGTPRC);
4771         adapter->stats.mgpdc += rd32(IGC_MGTPDC);
4772 }
4773
4774 /**
4775  * igc_down - Close the interface
4776  * @adapter: board private structure
4777  */
4778 void igc_down(struct igc_adapter *adapter)
4779 {
4780         struct net_device *netdev = adapter->netdev;
4781         struct igc_hw *hw = &adapter->hw;
4782         u32 tctl, rctl;
4783         int i = 0;
4784
4785         set_bit(__IGC_DOWN, &adapter->state);
4786
4787         igc_ptp_suspend(adapter);
4788
4789         if (pci_device_is_present(adapter->pdev)) {
4790                 /* disable receives in the hardware */
4791                 rctl = rd32(IGC_RCTL);
4792                 wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
4793                 /* flush and sleep below */
4794         }
4795         /* set trans_start so we don't get spurious watchdogs during reset */
4796         netif_trans_update(netdev);
4797
4798         netif_carrier_off(netdev);
4799         netif_tx_stop_all_queues(netdev);
4800
4801         if (pci_device_is_present(adapter->pdev)) {
4802                 /* disable transmits in the hardware */
4803                 tctl = rd32(IGC_TCTL);
4804                 tctl &= ~IGC_TCTL_EN;
4805                 wr32(IGC_TCTL, tctl);
4806                 /* flush both disables and wait for them to finish */
4807                 wrfl();
4808                 usleep_range(10000, 20000);
4809
4810                 igc_irq_disable(adapter);
4811         }
4812
4813         adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4814
4815         for (i = 0; i < adapter->num_q_vectors; i++) {
4816                 if (adapter->q_vector[i]) {
4817                         napi_synchronize(&adapter->q_vector[i]->napi);
4818                         napi_disable(&adapter->q_vector[i]->napi);
4819                 }
4820         }
4821
4822         del_timer_sync(&adapter->watchdog_timer);
4823         del_timer_sync(&adapter->phy_info_timer);
4824
4825         /* record the stats before reset*/
4826         spin_lock(&adapter->stats64_lock);
4827         igc_update_stats(adapter);
4828         spin_unlock(&adapter->stats64_lock);
4829
4830         adapter->link_speed = 0;
4831         adapter->link_duplex = 0;
4832
4833         if (!pci_channel_offline(adapter->pdev))
4834                 igc_reset(adapter);
4835
4836         /* clear VLAN promisc flag so VFTA will be updated if necessary */
4837         adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
4838
4839         igc_clean_all_tx_rings(adapter);
4840         igc_clean_all_rx_rings(adapter);
4841 }
4842
4843 void igc_reinit_locked(struct igc_adapter *adapter)
4844 {
4845         while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
4846                 usleep_range(1000, 2000);
4847         igc_down(adapter);
4848         igc_up(adapter);
4849         clear_bit(__IGC_RESETTING, &adapter->state);
4850 }
4851
4852 static void igc_reset_task(struct work_struct *work)
4853 {
4854         struct igc_adapter *adapter;
4855
4856         adapter = container_of(work, struct igc_adapter, reset_task);
4857
4858         rtnl_lock();
4859         /* If we're already down or resetting, just bail */
4860         if (test_bit(__IGC_DOWN, &adapter->state) ||
4861             test_bit(__IGC_RESETTING, &adapter->state)) {
4862                 rtnl_unlock();
4863                 return;
4864         }
4865
4866         igc_rings_dump(adapter);
4867         igc_regs_dump(adapter);
4868         netdev_err(adapter->netdev, "Reset adapter\n");
4869         igc_reinit_locked(adapter);
4870         rtnl_unlock();
4871 }
4872
4873 /**
4874  * igc_change_mtu - Change the Maximum Transfer Unit
4875  * @netdev: network interface device structure
4876  * @new_mtu: new value for maximum frame size
4877  *
4878  * Returns 0 on success, negative on failure
4879  */
4880 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
4881 {
4882         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4883         struct igc_adapter *adapter = netdev_priv(netdev);
4884
4885         if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) {
4886                 netdev_dbg(netdev, "Jumbo frames not supported with XDP");
4887                 return -EINVAL;
4888         }
4889
4890         /* adjust max frame to be at least the size of a standard frame */
4891         if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
4892                 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
4893
4894         while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
4895                 usleep_range(1000, 2000);
4896
4897         /* igc_down has a dependency on max_frame_size */
4898         adapter->max_frame_size = max_frame;
4899
4900         if (netif_running(netdev))
4901                 igc_down(adapter);
4902
4903         netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
4904         netdev->mtu = new_mtu;
4905
4906         if (netif_running(netdev))
4907                 igc_up(adapter);
4908         else
4909                 igc_reset(adapter);
4910
4911         clear_bit(__IGC_RESETTING, &adapter->state);
4912
4913         return 0;
4914 }
4915
4916 /**
4917  * igc_get_stats64 - Get System Network Statistics
4918  * @netdev: network interface device structure
4919  * @stats: rtnl_link_stats64 pointer
4920  *
4921  * Returns the address of the device statistics structure.
4922  * The statistics are updated here and also from the timer callback.
4923  */
4924 static void igc_get_stats64(struct net_device *netdev,
4925                             struct rtnl_link_stats64 *stats)
4926 {
4927         struct igc_adapter *adapter = netdev_priv(netdev);
4928
4929         spin_lock(&adapter->stats64_lock);
4930         if (!test_bit(__IGC_RESETTING, &adapter->state))
4931                 igc_update_stats(adapter);
4932         memcpy(stats, &adapter->stats64, sizeof(*stats));
4933         spin_unlock(&adapter->stats64_lock);
4934 }
4935
4936 static netdev_features_t igc_fix_features(struct net_device *netdev,
4937                                           netdev_features_t features)
4938 {
4939         /* Since there is no support for separate Rx/Tx vlan accel
4940          * enable/disable make sure Tx flag is always in same state as Rx.
4941          */
4942         if (features & NETIF_F_HW_VLAN_CTAG_RX)
4943                 features |= NETIF_F_HW_VLAN_CTAG_TX;
4944         else
4945                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4946
4947         return features;
4948 }
4949
4950 static int igc_set_features(struct net_device *netdev,
4951                             netdev_features_t features)
4952 {
4953         netdev_features_t changed = netdev->features ^ features;
4954         struct igc_adapter *adapter = netdev_priv(netdev);
4955
4956         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
4957                 igc_vlan_mode(netdev, features);
4958
4959         /* Add VLAN support */
4960         if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
4961                 return 0;
4962
4963         if (!(features & NETIF_F_NTUPLE))
4964                 igc_flush_nfc_rules(adapter);
4965
4966         netdev->features = features;
4967
4968         if (netif_running(netdev))
4969                 igc_reinit_locked(adapter);
4970         else
4971                 igc_reset(adapter);
4972
4973         return 1;
4974 }
4975
4976 static netdev_features_t
4977 igc_features_check(struct sk_buff *skb, struct net_device *dev,
4978                    netdev_features_t features)
4979 {
4980         unsigned int network_hdr_len, mac_hdr_len;
4981
4982         /* Make certain the headers can be described by a context descriptor */
4983         mac_hdr_len = skb_network_header(skb) - skb->data;
4984         if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
4985                 return features & ~(NETIF_F_HW_CSUM |
4986                                     NETIF_F_SCTP_CRC |
4987                                     NETIF_F_HW_VLAN_CTAG_TX |
4988                                     NETIF_F_TSO |
4989                                     NETIF_F_TSO6);
4990
4991         network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
4992         if (unlikely(network_hdr_len >  IGC_MAX_NETWORK_HDR_LEN))
4993                 return features & ~(NETIF_F_HW_CSUM |
4994                                     NETIF_F_SCTP_CRC |
4995                                     NETIF_F_TSO |
4996                                     NETIF_F_TSO6);
4997
4998         /* We can only support IPv4 TSO in tunnels if we can mangle the
4999          * inner IP ID field, so strip TSO if MANGLEID is not supported.
5000          */
5001         if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
5002                 features &= ~NETIF_F_TSO;
5003
5004         return features;
5005 }
5006
5007 static void igc_tsync_interrupt(struct igc_adapter *adapter)
5008 {
5009         u32 ack, tsauxc, sec, nsec, tsicr;
5010         struct igc_hw *hw = &adapter->hw;
5011         struct ptp_clock_event event;
5012         struct timespec64 ts;
5013
5014         tsicr = rd32(IGC_TSICR);
5015         ack = 0;
5016
5017         if (tsicr & IGC_TSICR_SYS_WRAP) {
5018                 event.type = PTP_CLOCK_PPS;
5019                 if (adapter->ptp_caps.pps)
5020                         ptp_clock_event(adapter->ptp_clock, &event);
5021                 ack |= IGC_TSICR_SYS_WRAP;
5022         }
5023
5024         if (tsicr & IGC_TSICR_TXTS) {
5025                 /* retrieve hardware timestamp */
5026                 schedule_work(&adapter->ptp_tx_work);
5027                 ack |= IGC_TSICR_TXTS;
5028         }
5029
5030         if (tsicr & IGC_TSICR_TT0) {
5031                 spin_lock(&adapter->tmreg_lock);
5032                 ts = timespec64_add(adapter->perout[0].start,
5033                                     adapter->perout[0].period);
5034                 wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5035                 wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec);
5036                 tsauxc = rd32(IGC_TSAUXC);
5037                 tsauxc |= IGC_TSAUXC_EN_TT0;
5038                 wr32(IGC_TSAUXC, tsauxc);
5039                 adapter->perout[0].start = ts;
5040                 spin_unlock(&adapter->tmreg_lock);
5041                 ack |= IGC_TSICR_TT0;
5042         }
5043
5044         if (tsicr & IGC_TSICR_TT1) {
5045                 spin_lock(&adapter->tmreg_lock);
5046                 ts = timespec64_add(adapter->perout[1].start,
5047                                     adapter->perout[1].period);
5048                 wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5049                 wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec);
5050                 tsauxc = rd32(IGC_TSAUXC);
5051                 tsauxc |= IGC_TSAUXC_EN_TT1;
5052                 wr32(IGC_TSAUXC, tsauxc);
5053                 adapter->perout[1].start = ts;
5054                 spin_unlock(&adapter->tmreg_lock);
5055                 ack |= IGC_TSICR_TT1;
5056         }
5057
5058         if (tsicr & IGC_TSICR_AUTT0) {
5059                 nsec = rd32(IGC_AUXSTMPL0);
5060                 sec  = rd32(IGC_AUXSTMPH0);
5061                 event.type = PTP_CLOCK_EXTTS;
5062                 event.index = 0;
5063                 event.timestamp = sec * NSEC_PER_SEC + nsec;
5064                 ptp_clock_event(adapter->ptp_clock, &event);
5065                 ack |= IGC_TSICR_AUTT0;
5066         }
5067
5068         if (tsicr & IGC_TSICR_AUTT1) {
5069                 nsec = rd32(IGC_AUXSTMPL1);
5070                 sec  = rd32(IGC_AUXSTMPH1);
5071                 event.type = PTP_CLOCK_EXTTS;
5072                 event.index = 1;
5073                 event.timestamp = sec * NSEC_PER_SEC + nsec;
5074                 ptp_clock_event(adapter->ptp_clock, &event);
5075                 ack |= IGC_TSICR_AUTT1;
5076         }
5077
5078         /* acknowledge the interrupts */
5079         wr32(IGC_TSICR, ack);
5080 }
5081
5082 /**
5083  * igc_msix_other - msix other interrupt handler
5084  * @irq: interrupt number
5085  * @data: pointer to a q_vector
5086  */
5087 static irqreturn_t igc_msix_other(int irq, void *data)
5088 {
5089         struct igc_adapter *adapter = data;
5090         struct igc_hw *hw = &adapter->hw;
5091         u32 icr = rd32(IGC_ICR);
5092
5093         /* reading ICR causes bit 31 of EICR to be cleared */
5094         if (icr & IGC_ICR_DRSTA)
5095                 schedule_work(&adapter->reset_task);
5096
5097         if (icr & IGC_ICR_DOUTSYNC) {
5098                 /* HW is reporting DMA is out of sync */
5099                 adapter->stats.doosync++;
5100         }
5101
5102         if (icr & IGC_ICR_LSC) {
5103                 hw->mac.get_link_status = true;
5104                 /* guard against interrupt when we're going down */
5105                 if (!test_bit(__IGC_DOWN, &adapter->state))
5106                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5107         }
5108
5109         if (icr & IGC_ICR_TS)
5110                 igc_tsync_interrupt(adapter);
5111
5112         wr32(IGC_EIMS, adapter->eims_other);
5113
5114         return IRQ_HANDLED;
5115 }
5116
5117 static void igc_write_itr(struct igc_q_vector *q_vector)
5118 {
5119         u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
5120
5121         if (!q_vector->set_itr)
5122                 return;
5123
5124         if (!itr_val)
5125                 itr_val = IGC_ITR_VAL_MASK;
5126
5127         itr_val |= IGC_EITR_CNT_IGNR;
5128
5129         writel(itr_val, q_vector->itr_register);
5130         q_vector->set_itr = 0;
5131 }
5132
5133 static irqreturn_t igc_msix_ring(int irq, void *data)
5134 {
5135         struct igc_q_vector *q_vector = data;
5136
5137         /* Write the ITR value calculated from the previous interrupt. */
5138         igc_write_itr(q_vector);
5139
5140         napi_schedule(&q_vector->napi);
5141
5142         return IRQ_HANDLED;
5143 }
5144
5145 /**
5146  * igc_request_msix - Initialize MSI-X interrupts
5147  * @adapter: Pointer to adapter structure
5148  *
5149  * igc_request_msix allocates MSI-X vectors and requests interrupts from the
5150  * kernel.
5151  */
5152 static int igc_request_msix(struct igc_adapter *adapter)
5153 {
5154         unsigned int num_q_vectors = adapter->num_q_vectors;
5155         int i = 0, err = 0, vector = 0, free_vector = 0;
5156         struct net_device *netdev = adapter->netdev;
5157
5158         err = request_irq(adapter->msix_entries[vector].vector,
5159                           &igc_msix_other, 0, netdev->name, adapter);
5160         if (err)
5161                 goto err_out;
5162
5163         if (num_q_vectors > MAX_Q_VECTORS) {
5164                 num_q_vectors = MAX_Q_VECTORS;
5165                 dev_warn(&adapter->pdev->dev,
5166                          "The number of queue vectors (%d) is higher than max allowed (%d)\n",
5167                          adapter->num_q_vectors, MAX_Q_VECTORS);
5168         }
5169         for (i = 0; i < num_q_vectors; i++) {
5170                 struct igc_q_vector *q_vector = adapter->q_vector[i];
5171
5172                 vector++;
5173
5174                 q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
5175
5176                 if (q_vector->rx.ring && q_vector->tx.ring)
5177                         sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
5178                                 q_vector->rx.ring->queue_index);
5179                 else if (q_vector->tx.ring)
5180                         sprintf(q_vector->name, "%s-tx-%u", netdev->name,
5181                                 q_vector->tx.ring->queue_index);
5182                 else if (q_vector->rx.ring)
5183                         sprintf(q_vector->name, "%s-rx-%u", netdev->name,
5184                                 q_vector->rx.ring->queue_index);
5185                 else
5186                         sprintf(q_vector->name, "%s-unused", netdev->name);
5187
5188                 err = request_irq(adapter->msix_entries[vector].vector,
5189                                   igc_msix_ring, 0, q_vector->name,
5190                                   q_vector);
5191                 if (err)
5192                         goto err_free;
5193         }
5194
5195         igc_configure_msix(adapter);
5196         return 0;
5197
5198 err_free:
5199         /* free already assigned IRQs */
5200         free_irq(adapter->msix_entries[free_vector++].vector, adapter);
5201
5202         vector--;
5203         for (i = 0; i < vector; i++) {
5204                 free_irq(adapter->msix_entries[free_vector++].vector,
5205                          adapter->q_vector[i]);
5206         }
5207 err_out:
5208         return err;
5209 }
5210
5211 /**
5212  * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
5213  * @adapter: Pointer to adapter structure
5214  *
5215  * This function resets the device so that it has 0 rx queues, tx queues, and
5216  * MSI-X interrupts allocated.
5217  */
5218 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
5219 {
5220         igc_free_q_vectors(adapter);
5221         igc_reset_interrupt_capability(adapter);
5222 }
5223
5224 /* Need to wait a few seconds after link up to get diagnostic information from
5225  * the phy
5226  */
5227 static void igc_update_phy_info(struct timer_list *t)
5228 {
5229         struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5230
5231         igc_get_phy_info(&adapter->hw);
5232 }
5233
5234 /**
5235  * igc_has_link - check shared code for link and determine up/down
5236  * @adapter: pointer to driver private info
5237  */
5238 bool igc_has_link(struct igc_adapter *adapter)
5239 {
5240         struct igc_hw *hw = &adapter->hw;
5241         bool link_active = false;
5242
5243         /* get_link_status is set on LSC (link status) interrupt or
5244          * rx sequence error interrupt.  get_link_status will stay
5245          * false until the igc_check_for_link establishes link
5246          * for copper adapters ONLY
5247          */
5248         if (!hw->mac.get_link_status)
5249                 return true;
5250         hw->mac.ops.check_for_link(hw);
5251         link_active = !hw->mac.get_link_status;
5252
5253         if (hw->mac.type == igc_i225) {
5254                 if (!netif_carrier_ok(adapter->netdev)) {
5255                         adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5256                 } else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
5257                         adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
5258                         adapter->link_check_timeout = jiffies;
5259                 }
5260         }
5261
5262         return link_active;
5263 }
5264
5265 /**
5266  * igc_watchdog - Timer Call-back
5267  * @t: timer for the watchdog
5268  */
5269 static void igc_watchdog(struct timer_list *t)
5270 {
5271         struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5272         /* Do the rest outside of interrupt context */
5273         schedule_work(&adapter->watchdog_task);
5274 }
5275
5276 static void igc_watchdog_task(struct work_struct *work)
5277 {
5278         struct igc_adapter *adapter = container_of(work,
5279                                                    struct igc_adapter,
5280                                                    watchdog_task);
5281         struct net_device *netdev = adapter->netdev;
5282         struct igc_hw *hw = &adapter->hw;
5283         struct igc_phy_info *phy = &hw->phy;
5284         u16 phy_data, retry_count = 20;
5285         u32 link;
5286         int i;
5287
5288         link = igc_has_link(adapter);
5289
5290         if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
5291                 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5292                         adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5293                 else
5294                         link = false;
5295         }
5296
5297         if (link) {
5298                 /* Cancel scheduled suspend requests. */
5299                 pm_runtime_resume(netdev->dev.parent);
5300
5301                 if (!netif_carrier_ok(netdev)) {
5302                         u32 ctrl;
5303
5304                         hw->mac.ops.get_speed_and_duplex(hw,
5305                                                          &adapter->link_speed,
5306                                                          &adapter->link_duplex);
5307
5308                         ctrl = rd32(IGC_CTRL);
5309                         /* Link status message must follow this format */
5310                         netdev_info(netdev,
5311                                     "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5312                                     adapter->link_speed,
5313                                     adapter->link_duplex == FULL_DUPLEX ?
5314                                     "Full" : "Half",
5315                                     (ctrl & IGC_CTRL_TFCE) &&
5316                                     (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
5317                                     (ctrl & IGC_CTRL_RFCE) ?  "RX" :
5318                                     (ctrl & IGC_CTRL_TFCE) ?  "TX" : "None");
5319
5320                         /* disable EEE if enabled */
5321                         if ((adapter->flags & IGC_FLAG_EEE) &&
5322                             adapter->link_duplex == HALF_DUPLEX) {
5323                                 netdev_info(netdev,
5324                                             "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
5325                                 adapter->hw.dev_spec._base.eee_enable = false;
5326                                 adapter->flags &= ~IGC_FLAG_EEE;
5327                         }
5328
5329                         /* check if SmartSpeed worked */
5330                         igc_check_downshift(hw);
5331                         if (phy->speed_downgraded)
5332                                 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5333
5334                         /* adjust timeout factor according to speed/duplex */
5335                         adapter->tx_timeout_factor = 1;
5336                         switch (adapter->link_speed) {
5337                         case SPEED_10:
5338                                 adapter->tx_timeout_factor = 14;
5339                                 break;
5340                         case SPEED_100:
5341                         case SPEED_1000:
5342                         case SPEED_2500:
5343                                 adapter->tx_timeout_factor = 7;
5344                                 break;
5345                         }
5346
5347                         if (adapter->link_speed != SPEED_1000)
5348                                 goto no_wait;
5349
5350                         /* wait for Remote receiver status OK */
5351 retry_read_status:
5352                         if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
5353                                               &phy_data)) {
5354                                 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5355                                     retry_count) {
5356                                         msleep(100);
5357                                         retry_count--;
5358                                         goto retry_read_status;
5359                                 } else if (!retry_count) {
5360                                         netdev_err(netdev, "exceed max 2 second\n");
5361                                 }
5362                         } else {
5363                                 netdev_err(netdev, "read 1000Base-T Status Reg\n");
5364                         }
5365 no_wait:
5366                         netif_carrier_on(netdev);
5367
5368                         /* link state has changed, schedule phy info update */
5369                         if (!test_bit(__IGC_DOWN, &adapter->state))
5370                                 mod_timer(&adapter->phy_info_timer,
5371                                           round_jiffies(jiffies + 2 * HZ));
5372                 }
5373         } else {
5374                 if (netif_carrier_ok(netdev)) {
5375                         adapter->link_speed = 0;
5376                         adapter->link_duplex = 0;
5377
5378                         /* Links status message must follow this format */
5379                         netdev_info(netdev, "NIC Link is Down\n");
5380                         netif_carrier_off(netdev);
5381
5382                         /* link state has changed, schedule phy info update */
5383                         if (!test_bit(__IGC_DOWN, &adapter->state))
5384                                 mod_timer(&adapter->phy_info_timer,
5385                                           round_jiffies(jiffies + 2 * HZ));
5386
5387                         /* link is down, time to check for alternate media */
5388                         if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
5389                                 if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
5390                                         schedule_work(&adapter->reset_task);
5391                                         /* return immediately */
5392                                         return;
5393                                 }
5394                         }
5395                         pm_schedule_suspend(netdev->dev.parent,
5396                                             MSEC_PER_SEC * 5);
5397
5398                 /* also check for alternate media here */
5399                 } else if (!netif_carrier_ok(netdev) &&
5400                            (adapter->flags & IGC_FLAG_MAS_ENABLE)) {
5401                         if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
5402                                 schedule_work(&adapter->reset_task);
5403                                 /* return immediately */
5404                                 return;
5405                         }
5406                 }
5407         }
5408
5409         spin_lock(&adapter->stats64_lock);
5410         igc_update_stats(adapter);
5411         spin_unlock(&adapter->stats64_lock);
5412
5413         for (i = 0; i < adapter->num_tx_queues; i++) {
5414                 struct igc_ring *tx_ring = adapter->tx_ring[i];
5415
5416                 if (!netif_carrier_ok(netdev)) {
5417                         /* We've lost link, so the controller stops DMA,
5418                          * but we've got queued Tx work that's never going
5419                          * to get done, so reset controller to flush Tx.
5420                          * (Do the reset outside of interrupt context).
5421                          */
5422                         if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
5423                                 adapter->tx_timeout_count++;
5424                                 schedule_work(&adapter->reset_task);
5425                                 /* return immediately since reset is imminent */
5426                                 return;
5427                         }
5428                 }
5429
5430                 /* Force detection of hung controller every watchdog period */
5431                 set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5432         }
5433
5434         /* Cause software interrupt to ensure Rx ring is cleaned */
5435         if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5436                 u32 eics = 0;
5437
5438                 for (i = 0; i < adapter->num_q_vectors; i++)
5439                         eics |= adapter->q_vector[i]->eims_value;
5440                 wr32(IGC_EICS, eics);
5441         } else {
5442                 wr32(IGC_ICS, IGC_ICS_RXDMT0);
5443         }
5444
5445         igc_ptp_tx_hang(adapter);
5446
5447         /* Reset the timer */
5448         if (!test_bit(__IGC_DOWN, &adapter->state)) {
5449                 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
5450                         mod_timer(&adapter->watchdog_timer,
5451                                   round_jiffies(jiffies +  HZ));
5452                 else
5453                         mod_timer(&adapter->watchdog_timer,
5454                                   round_jiffies(jiffies + 2 * HZ));
5455         }
5456 }
5457
5458 /**
5459  * igc_intr_msi - Interrupt Handler
5460  * @irq: interrupt number
5461  * @data: pointer to a network interface device structure
5462  */
5463 static irqreturn_t igc_intr_msi(int irq, void *data)
5464 {
5465         struct igc_adapter *adapter = data;
5466         struct igc_q_vector *q_vector = adapter->q_vector[0];
5467         struct igc_hw *hw = &adapter->hw;
5468         /* read ICR disables interrupts using IAM */
5469         u32 icr = rd32(IGC_ICR);
5470
5471         igc_write_itr(q_vector);
5472
5473         if (icr & IGC_ICR_DRSTA)
5474                 schedule_work(&adapter->reset_task);
5475
5476         if (icr & IGC_ICR_DOUTSYNC) {
5477                 /* HW is reporting DMA is out of sync */
5478                 adapter->stats.doosync++;
5479         }
5480
5481         if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5482                 hw->mac.get_link_status = true;
5483                 if (!test_bit(__IGC_DOWN, &adapter->state))
5484                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5485         }
5486
5487         if (icr & IGC_ICR_TS)
5488                 igc_tsync_interrupt(adapter);
5489
5490         napi_schedule(&q_vector->napi);
5491
5492         return IRQ_HANDLED;
5493 }
5494
5495 /**
5496  * igc_intr - Legacy Interrupt Handler
5497  * @irq: interrupt number
5498  * @data: pointer to a network interface device structure
5499  */
5500 static irqreturn_t igc_intr(int irq, void *data)
5501 {
5502         struct igc_adapter *adapter = data;
5503         struct igc_q_vector *q_vector = adapter->q_vector[0];
5504         struct igc_hw *hw = &adapter->hw;
5505         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5506          * need for the IMC write
5507          */
5508         u32 icr = rd32(IGC_ICR);
5509
5510         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5511          * not set, then the adapter didn't send an interrupt
5512          */
5513         if (!(icr & IGC_ICR_INT_ASSERTED))
5514                 return IRQ_NONE;
5515
5516         igc_write_itr(q_vector);
5517
5518         if (icr & IGC_ICR_DRSTA)
5519                 schedule_work(&adapter->reset_task);
5520
5521         if (icr & IGC_ICR_DOUTSYNC) {
5522                 /* HW is reporting DMA is out of sync */
5523                 adapter->stats.doosync++;
5524         }
5525
5526         if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5527                 hw->mac.get_link_status = true;
5528                 /* guard against interrupt when we're going down */
5529                 if (!test_bit(__IGC_DOWN, &adapter->state))
5530                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5531         }
5532
5533         if (icr & IGC_ICR_TS)
5534                 igc_tsync_interrupt(adapter);
5535
5536         napi_schedule(&q_vector->napi);
5537
5538         return IRQ_HANDLED;
5539 }
5540
5541 static void igc_free_irq(struct igc_adapter *adapter)
5542 {
5543         if (adapter->msix_entries) {
5544                 int vector = 0, i;
5545
5546                 free_irq(adapter->msix_entries[vector++].vector, adapter);
5547
5548                 for (i = 0; i < adapter->num_q_vectors; i++)
5549                         free_irq(adapter->msix_entries[vector++].vector,
5550                                  adapter->q_vector[i]);
5551         } else {
5552                 free_irq(adapter->pdev->irq, adapter);
5553         }
5554 }
5555
5556 /**
5557  * igc_request_irq - initialize interrupts
5558  * @adapter: Pointer to adapter structure
5559  *
5560  * Attempts to configure interrupts using the best available
5561  * capabilities of the hardware and kernel.
5562  */
5563 static int igc_request_irq(struct igc_adapter *adapter)
5564 {
5565         struct net_device *netdev = adapter->netdev;
5566         struct pci_dev *pdev = adapter->pdev;
5567         int err = 0;
5568
5569         if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5570                 err = igc_request_msix(adapter);
5571                 if (!err)
5572                         goto request_done;
5573                 /* fall back to MSI */
5574                 igc_free_all_tx_resources(adapter);
5575                 igc_free_all_rx_resources(adapter);
5576
5577                 igc_clear_interrupt_scheme(adapter);
5578                 err = igc_init_interrupt_scheme(adapter, false);
5579                 if (err)
5580                         goto request_done;
5581                 igc_setup_all_tx_resources(adapter);
5582                 igc_setup_all_rx_resources(adapter);
5583                 igc_configure(adapter);
5584         }
5585
5586         igc_assign_vector(adapter->q_vector[0], 0);
5587
5588         if (adapter->flags & IGC_FLAG_HAS_MSI) {
5589                 err = request_irq(pdev->irq, &igc_intr_msi, 0,
5590                                   netdev->name, adapter);
5591                 if (!err)
5592                         goto request_done;
5593
5594                 /* fall back to legacy interrupts */
5595                 igc_reset_interrupt_capability(adapter);
5596                 adapter->flags &= ~IGC_FLAG_HAS_MSI;
5597         }
5598
5599         err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
5600                           netdev->name, adapter);
5601
5602         if (err)
5603                 netdev_err(netdev, "Error %d getting interrupt\n", err);
5604
5605 request_done:
5606         return err;
5607 }
5608
5609 /**
5610  * __igc_open - Called when a network interface is made active
5611  * @netdev: network interface device structure
5612  * @resuming: boolean indicating if the device is resuming
5613  *
5614  * Returns 0 on success, negative value on failure
5615  *
5616  * The open entry point is called when a network interface is made
5617  * active by the system (IFF_UP).  At this point all resources needed
5618  * for transmit and receive operations are allocated, the interrupt
5619  * handler is registered with the OS, the watchdog timer is started,
5620  * and the stack is notified that the interface is ready.
5621  */
5622 static int __igc_open(struct net_device *netdev, bool resuming)
5623 {
5624         struct igc_adapter *adapter = netdev_priv(netdev);
5625         struct pci_dev *pdev = adapter->pdev;
5626         struct igc_hw *hw = &adapter->hw;
5627         int err = 0;
5628         int i = 0;
5629
5630         /* disallow open during test */
5631
5632         if (test_bit(__IGC_TESTING, &adapter->state)) {
5633                 WARN_ON(resuming);
5634                 return -EBUSY;
5635         }
5636
5637         if (!resuming)
5638                 pm_runtime_get_sync(&pdev->dev);
5639
5640         netif_carrier_off(netdev);
5641
5642         /* allocate transmit descriptors */
5643         err = igc_setup_all_tx_resources(adapter);
5644         if (err)
5645                 goto err_setup_tx;
5646
5647         /* allocate receive descriptors */
5648         err = igc_setup_all_rx_resources(adapter);
5649         if (err)
5650                 goto err_setup_rx;
5651
5652         igc_power_up_link(adapter);
5653
5654         igc_configure(adapter);
5655
5656         err = igc_request_irq(adapter);
5657         if (err)
5658                 goto err_req_irq;
5659
5660         /* Notify the stack of the actual queue counts. */
5661         err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
5662         if (err)
5663                 goto err_set_queues;
5664
5665         err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
5666         if (err)
5667                 goto err_set_queues;
5668
5669         clear_bit(__IGC_DOWN, &adapter->state);
5670
5671         for (i = 0; i < adapter->num_q_vectors; i++)
5672                 napi_enable(&adapter->q_vector[i]->napi);
5673
5674         /* Clear any pending interrupts. */
5675         rd32(IGC_ICR);
5676         igc_irq_enable(adapter);
5677
5678         if (!resuming)
5679                 pm_runtime_put(&pdev->dev);
5680
5681         netif_tx_start_all_queues(netdev);
5682
5683         /* start the watchdog. */
5684         hw->mac.get_link_status = true;
5685         schedule_work(&adapter->watchdog_task);
5686
5687         return IGC_SUCCESS;
5688
5689 err_set_queues:
5690         igc_free_irq(adapter);
5691 err_req_irq:
5692         igc_release_hw_control(adapter);
5693         igc_power_down_phy_copper_base(&adapter->hw);
5694         igc_free_all_rx_resources(adapter);
5695 err_setup_rx:
5696         igc_free_all_tx_resources(adapter);
5697 err_setup_tx:
5698         igc_reset(adapter);
5699         if (!resuming)
5700                 pm_runtime_put(&pdev->dev);
5701
5702         return err;
5703 }
5704
5705 int igc_open(struct net_device *netdev)
5706 {
5707         return __igc_open(netdev, false);
5708 }
5709
5710 /**
5711  * __igc_close - Disables a network interface
5712  * @netdev: network interface device structure
5713  * @suspending: boolean indicating the device is suspending
5714  *
5715  * Returns 0, this is not allowed to fail
5716  *
5717  * The close entry point is called when an interface is de-activated
5718  * by the OS.  The hardware is still under the driver's control, but
5719  * needs to be disabled.  A global MAC reset is issued to stop the
5720  * hardware, and all transmit and receive resources are freed.
5721  */
5722 static int __igc_close(struct net_device *netdev, bool suspending)
5723 {
5724         struct igc_adapter *adapter = netdev_priv(netdev);
5725         struct pci_dev *pdev = adapter->pdev;
5726
5727         WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
5728
5729         if (!suspending)
5730                 pm_runtime_get_sync(&pdev->dev);
5731
5732         igc_down(adapter);
5733
5734         igc_release_hw_control(adapter);
5735
5736         igc_free_irq(adapter);
5737
5738         igc_free_all_tx_resources(adapter);
5739         igc_free_all_rx_resources(adapter);
5740
5741         if (!suspending)
5742                 pm_runtime_put_sync(&pdev->dev);
5743
5744         return 0;
5745 }
5746
5747 int igc_close(struct net_device *netdev)
5748 {
5749         if (netif_device_present(netdev) || netdev->dismantle)
5750                 return __igc_close(netdev, false);
5751         return 0;
5752 }
5753
5754 /**
5755  * igc_ioctl - Access the hwtstamp interface
5756  * @netdev: network interface device structure
5757  * @ifr: interface request data
5758  * @cmd: ioctl command
5759  **/
5760 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5761 {
5762         switch (cmd) {
5763         case SIOCGHWTSTAMP:
5764                 return igc_ptp_get_ts_config(netdev, ifr);
5765         case SIOCSHWTSTAMP:
5766                 return igc_ptp_set_ts_config(netdev, ifr);
5767         default:
5768                 return -EOPNOTSUPP;
5769         }
5770 }
5771
5772 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
5773                                       bool enable)
5774 {
5775         struct igc_ring *ring;
5776
5777         if (queue < 0 || queue >= adapter->num_tx_queues)
5778                 return -EINVAL;
5779
5780         ring = adapter->tx_ring[queue];
5781         ring->launchtime_enable = enable;
5782
5783         return 0;
5784 }
5785
5786 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now)
5787 {
5788         struct timespec64 b;
5789
5790         b = ktime_to_timespec64(base_time);
5791
5792         return timespec64_compare(now, &b) > 0;
5793 }
5794
5795 static bool validate_schedule(struct igc_adapter *adapter,
5796                               const struct tc_taprio_qopt_offload *qopt)
5797 {
5798         int queue_uses[IGC_MAX_TX_QUEUES] = { };
5799         struct timespec64 now;
5800         size_t n;
5801
5802         if (qopt->cycle_time_extension)
5803                 return false;
5804
5805         igc_ptp_read(adapter, &now);
5806
5807         /* If we program the controller's BASET registers with a time
5808          * in the future, it will hold all the packets until that
5809          * time, causing a lot of TX Hangs, so to avoid that, we
5810          * reject schedules that would start in the future.
5811          */
5812         if (!is_base_time_past(qopt->base_time, &now))
5813                 return false;
5814
5815         for (n = 0; n < qopt->num_entries; n++) {
5816                 const struct tc_taprio_sched_entry *e;
5817                 int i;
5818
5819                 e = &qopt->entries[n];
5820
5821                 /* i225 only supports "global" frame preemption
5822                  * settings.
5823                  */
5824                 if (e->command != TC_TAPRIO_CMD_SET_GATES)
5825                         return false;
5826
5827                 for (i = 0; i < adapter->num_tx_queues; i++) {
5828                         if (e->gate_mask & BIT(i))
5829                                 queue_uses[i]++;
5830
5831                         if (queue_uses[i] > 1)
5832                                 return false;
5833                 }
5834         }
5835
5836         return true;
5837 }
5838
5839 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
5840                                      struct tc_etf_qopt_offload *qopt)
5841 {
5842         struct igc_hw *hw = &adapter->hw;
5843         int err;
5844
5845         if (hw->mac.type != igc_i225)
5846                 return -EOPNOTSUPP;
5847
5848         err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
5849         if (err)
5850                 return err;
5851
5852         return igc_tsn_offload_apply(adapter);
5853 }
5854
5855 static int igc_tsn_clear_schedule(struct igc_adapter *adapter)
5856 {
5857         int i;
5858
5859         adapter->base_time = 0;
5860         adapter->cycle_time = NSEC_PER_SEC;
5861
5862         for (i = 0; i < adapter->num_tx_queues; i++) {
5863                 struct igc_ring *ring = adapter->tx_ring[i];
5864
5865                 ring->start_time = 0;
5866                 ring->end_time = NSEC_PER_SEC;
5867         }
5868
5869         return 0;
5870 }
5871
5872 static int igc_save_qbv_schedule(struct igc_adapter *adapter,
5873                                  struct tc_taprio_qopt_offload *qopt)
5874 {
5875         u32 start_time = 0, end_time = 0;
5876         size_t n;
5877
5878         if (!qopt->enable)
5879                 return igc_tsn_clear_schedule(adapter);
5880
5881         if (adapter->base_time)
5882                 return -EALREADY;
5883
5884         if (!validate_schedule(adapter, qopt))
5885                 return -EINVAL;
5886
5887         adapter->cycle_time = qopt->cycle_time;
5888         adapter->base_time = qopt->base_time;
5889
5890         /* FIXME: be a little smarter about cases when the gate for a
5891          * queue stays open for more than one entry.
5892          */
5893         for (n = 0; n < qopt->num_entries; n++) {
5894                 struct tc_taprio_sched_entry *e = &qopt->entries[n];
5895                 int i;
5896
5897                 end_time += e->interval;
5898
5899                 for (i = 0; i < adapter->num_tx_queues; i++) {
5900                         struct igc_ring *ring = adapter->tx_ring[i];
5901
5902                         if (!(e->gate_mask & BIT(i)))
5903                                 continue;
5904
5905                         ring->start_time = start_time;
5906                         ring->end_time = end_time;
5907                 }
5908
5909                 start_time += e->interval;
5910         }
5911
5912         return 0;
5913 }
5914
5915 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
5916                                          struct tc_taprio_qopt_offload *qopt)
5917 {
5918         struct igc_hw *hw = &adapter->hw;
5919         int err;
5920
5921         if (hw->mac.type != igc_i225)
5922                 return -EOPNOTSUPP;
5923
5924         err = igc_save_qbv_schedule(adapter, qopt);
5925         if (err)
5926                 return err;
5927
5928         return igc_tsn_offload_apply(adapter);
5929 }
5930
5931 static int igc_save_cbs_params(struct igc_adapter *adapter, int queue,
5932                                bool enable, int idleslope, int sendslope,
5933                                int hicredit, int locredit)
5934 {
5935         bool cbs_status[IGC_MAX_SR_QUEUES] = { false };
5936         struct net_device *netdev = adapter->netdev;
5937         struct igc_ring *ring;
5938         int i;
5939
5940         /* i225 has two sets of credit-based shaper logic.
5941          * Supporting it only on the top two priority queues
5942          */
5943         if (queue < 0 || queue > 1)
5944                 return -EINVAL;
5945
5946         ring = adapter->tx_ring[queue];
5947
5948         for (i = 0; i < IGC_MAX_SR_QUEUES; i++)
5949                 if (adapter->tx_ring[i])
5950                         cbs_status[i] = adapter->tx_ring[i]->cbs_enable;
5951
5952         /* CBS should be enabled on the highest priority queue first in order
5953          * for the CBS algorithm to operate as intended.
5954          */
5955         if (enable) {
5956                 if (queue == 1 && !cbs_status[0]) {
5957                         netdev_err(netdev,
5958                                    "Enabling CBS on queue1 before queue0\n");
5959                         return -EINVAL;
5960                 }
5961         } else {
5962                 if (queue == 0 && cbs_status[1]) {
5963                         netdev_err(netdev,
5964                                    "Disabling CBS on queue0 before queue1\n");
5965                         return -EINVAL;
5966                 }
5967         }
5968
5969         ring->cbs_enable = enable;
5970         ring->idleslope = idleslope;
5971         ring->sendslope = sendslope;
5972         ring->hicredit = hicredit;
5973         ring->locredit = locredit;
5974
5975         return 0;
5976 }
5977
5978 static int igc_tsn_enable_cbs(struct igc_adapter *adapter,
5979                               struct tc_cbs_qopt_offload *qopt)
5980 {
5981         struct igc_hw *hw = &adapter->hw;
5982         int err;
5983
5984         if (hw->mac.type != igc_i225)
5985                 return -EOPNOTSUPP;
5986
5987         if (qopt->queue < 0 || qopt->queue > 1)
5988                 return -EINVAL;
5989
5990         err = igc_save_cbs_params(adapter, qopt->queue, qopt->enable,
5991                                   qopt->idleslope, qopt->sendslope,
5992                                   qopt->hicredit, qopt->locredit);
5993         if (err)
5994                 return err;
5995
5996         return igc_tsn_offload_apply(adapter);
5997 }
5998
5999 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
6000                         void *type_data)
6001 {
6002         struct igc_adapter *adapter = netdev_priv(dev);
6003
6004         switch (type) {
6005         case TC_SETUP_QDISC_TAPRIO:
6006                 return igc_tsn_enable_qbv_scheduling(adapter, type_data);
6007
6008         case TC_SETUP_QDISC_ETF:
6009                 return igc_tsn_enable_launchtime(adapter, type_data);
6010
6011         case TC_SETUP_QDISC_CBS:
6012                 return igc_tsn_enable_cbs(adapter, type_data);
6013
6014         default:
6015                 return -EOPNOTSUPP;
6016         }
6017 }
6018
6019 static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6020 {
6021         struct igc_adapter *adapter = netdev_priv(dev);
6022
6023         switch (bpf->command) {
6024         case XDP_SETUP_PROG:
6025                 return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack);
6026         case XDP_SETUP_XSK_POOL:
6027                 return igc_xdp_setup_pool(adapter, bpf->xsk.pool,
6028                                           bpf->xsk.queue_id);
6029         default:
6030                 return -EOPNOTSUPP;
6031         }
6032 }
6033
6034 static int igc_xdp_xmit(struct net_device *dev, int num_frames,
6035                         struct xdp_frame **frames, u32 flags)
6036 {
6037         struct igc_adapter *adapter = netdev_priv(dev);
6038         int cpu = smp_processor_id();
6039         struct netdev_queue *nq;
6040         struct igc_ring *ring;
6041         int i, drops;
6042
6043         if (unlikely(test_bit(__IGC_DOWN, &adapter->state)))
6044                 return -ENETDOWN;
6045
6046         if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6047                 return -EINVAL;
6048
6049         ring = igc_xdp_get_tx_ring(adapter, cpu);
6050         nq = txring_txq(ring);
6051
6052         __netif_tx_lock(nq, cpu);
6053
6054         drops = 0;
6055         for (i = 0; i < num_frames; i++) {
6056                 int err;
6057                 struct xdp_frame *xdpf = frames[i];
6058
6059                 err = igc_xdp_init_tx_descriptor(ring, xdpf);
6060                 if (err) {
6061                         xdp_return_frame_rx_napi(xdpf);
6062                         drops++;
6063                 }
6064         }
6065
6066         if (flags & XDP_XMIT_FLUSH)
6067                 igc_flush_tx_descriptors(ring);
6068
6069         __netif_tx_unlock(nq);
6070
6071         return num_frames - drops;
6072 }
6073
6074 static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter,
6075                                         struct igc_q_vector *q_vector)
6076 {
6077         struct igc_hw *hw = &adapter->hw;
6078         u32 eics = 0;
6079
6080         eics |= q_vector->eims_value;
6081         wr32(IGC_EICS, eics);
6082 }
6083
6084 int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
6085 {
6086         struct igc_adapter *adapter = netdev_priv(dev);
6087         struct igc_q_vector *q_vector;
6088         struct igc_ring *ring;
6089
6090         if (test_bit(__IGC_DOWN, &adapter->state))
6091                 return -ENETDOWN;
6092
6093         if (!igc_xdp_is_enabled(adapter))
6094                 return -ENXIO;
6095
6096         if (queue_id >= adapter->num_rx_queues)
6097                 return -EINVAL;
6098
6099         ring = adapter->rx_ring[queue_id];
6100
6101         if (!ring->xsk_pool)
6102                 return -ENXIO;
6103
6104         q_vector = adapter->q_vector[queue_id];
6105         if (!napi_if_scheduled_mark_missed(&q_vector->napi))
6106                 igc_trigger_rxtxq_interrupt(adapter, q_vector);
6107
6108         return 0;
6109 }
6110
6111 static const struct net_device_ops igc_netdev_ops = {
6112         .ndo_open               = igc_open,
6113         .ndo_stop               = igc_close,
6114         .ndo_start_xmit         = igc_xmit_frame,
6115         .ndo_set_rx_mode        = igc_set_rx_mode,
6116         .ndo_set_mac_address    = igc_set_mac,
6117         .ndo_change_mtu         = igc_change_mtu,
6118         .ndo_get_stats64        = igc_get_stats64,
6119         .ndo_fix_features       = igc_fix_features,
6120         .ndo_set_features       = igc_set_features,
6121         .ndo_features_check     = igc_features_check,
6122         .ndo_eth_ioctl          = igc_ioctl,
6123         .ndo_setup_tc           = igc_setup_tc,
6124         .ndo_bpf                = igc_bpf,
6125         .ndo_xdp_xmit           = igc_xdp_xmit,
6126         .ndo_xsk_wakeup         = igc_xsk_wakeup,
6127 };
6128
6129 /* PCIe configuration access */
6130 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6131 {
6132         struct igc_adapter *adapter = hw->back;
6133
6134         pci_read_config_word(adapter->pdev, reg, value);
6135 }
6136
6137 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6138 {
6139         struct igc_adapter *adapter = hw->back;
6140
6141         pci_write_config_word(adapter->pdev, reg, *value);
6142 }
6143
6144 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6145 {
6146         struct igc_adapter *adapter = hw->back;
6147
6148         if (!pci_is_pcie(adapter->pdev))
6149                 return -IGC_ERR_CONFIG;
6150
6151         pcie_capability_read_word(adapter->pdev, reg, value);
6152
6153         return IGC_SUCCESS;
6154 }
6155
6156 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6157 {
6158         struct igc_adapter *adapter = hw->back;
6159
6160         if (!pci_is_pcie(adapter->pdev))
6161                 return -IGC_ERR_CONFIG;
6162
6163         pcie_capability_write_word(adapter->pdev, reg, *value);
6164
6165         return IGC_SUCCESS;
6166 }
6167
6168 u32 igc_rd32(struct igc_hw *hw, u32 reg)
6169 {
6170         struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
6171         u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
6172         u32 value = 0;
6173
6174         if (IGC_REMOVED(hw_addr))
6175                 return ~value;
6176
6177         value = readl(&hw_addr[reg]);
6178
6179         /* reads should not return all F's */
6180         if (!(~value) && (!reg || !(~readl(hw_addr)))) {
6181                 struct net_device *netdev = igc->netdev;
6182
6183                 hw->hw_addr = NULL;
6184                 netif_device_detach(netdev);
6185                 netdev_err(netdev, "PCIe link lost, device now detached\n");
6186                 WARN(pci_device_is_present(igc->pdev),
6187                      "igc: Failed to read reg 0x%x!\n", reg);
6188         }
6189
6190         return value;
6191 }
6192
6193 /**
6194  * igc_probe - Device Initialization Routine
6195  * @pdev: PCI device information struct
6196  * @ent: entry in igc_pci_tbl
6197  *
6198  * Returns 0 on success, negative on failure
6199  *
6200  * igc_probe initializes an adapter identified by a pci_dev structure.
6201  * The OS initialization, configuring the adapter private structure,
6202  * and a hardware reset occur.
6203  */
6204 static int igc_probe(struct pci_dev *pdev,
6205                      const struct pci_device_id *ent)
6206 {
6207         struct igc_adapter *adapter;
6208         struct net_device *netdev;
6209         struct igc_hw *hw;
6210         const struct igc_info *ei = igc_info_tbl[ent->driver_data];
6211         int err;
6212
6213         err = pci_enable_device_mem(pdev);
6214         if (err)
6215                 return err;
6216
6217         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6218         if (err) {
6219                 dev_err(&pdev->dev,
6220                         "No usable DMA configuration, aborting\n");
6221                 goto err_dma;
6222         }
6223
6224         err = pci_request_mem_regions(pdev, igc_driver_name);
6225         if (err)
6226                 goto err_pci_reg;
6227
6228         pci_enable_pcie_error_reporting(pdev);
6229
6230         err = pci_enable_ptm(pdev, NULL);
6231         if (err < 0)
6232                 dev_info(&pdev->dev, "PCIe PTM not supported by PCIe bus/controller\n");
6233
6234         pci_set_master(pdev);
6235
6236         err = -ENOMEM;
6237         netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
6238                                    IGC_MAX_TX_QUEUES);
6239
6240         if (!netdev)
6241                 goto err_alloc_etherdev;
6242
6243         SET_NETDEV_DEV(netdev, &pdev->dev);
6244
6245         pci_set_drvdata(pdev, netdev);
6246         adapter = netdev_priv(netdev);
6247         adapter->netdev = netdev;
6248         adapter->pdev = pdev;
6249         hw = &adapter->hw;
6250         hw->back = adapter;
6251         adapter->port_num = hw->bus.func;
6252         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6253
6254         err = pci_save_state(pdev);
6255         if (err)
6256                 goto err_ioremap;
6257
6258         err = -EIO;
6259         adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
6260                                    pci_resource_len(pdev, 0));
6261         if (!adapter->io_addr)
6262                 goto err_ioremap;
6263
6264         /* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
6265         hw->hw_addr = adapter->io_addr;
6266
6267         netdev->netdev_ops = &igc_netdev_ops;
6268         igc_ethtool_set_ops(netdev);
6269         netdev->watchdog_timeo = 5 * HZ;
6270
6271         netdev->mem_start = pci_resource_start(pdev, 0);
6272         netdev->mem_end = pci_resource_end(pdev, 0);
6273
6274         /* PCI config space info */
6275         hw->vendor_id = pdev->vendor;
6276         hw->device_id = pdev->device;
6277         hw->revision_id = pdev->revision;
6278         hw->subsystem_vendor_id = pdev->subsystem_vendor;
6279         hw->subsystem_device_id = pdev->subsystem_device;
6280
6281         /* Copy the default MAC and PHY function pointers */
6282         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6283         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6284
6285         /* Initialize skew-specific constants */
6286         err = ei->get_invariants(hw);
6287         if (err)
6288                 goto err_sw_init;
6289
6290         /* Add supported features to the features list*/
6291         netdev->features |= NETIF_F_SG;
6292         netdev->features |= NETIF_F_TSO;
6293         netdev->features |= NETIF_F_TSO6;
6294         netdev->features |= NETIF_F_TSO_ECN;
6295         netdev->features |= NETIF_F_RXCSUM;
6296         netdev->features |= NETIF_F_HW_CSUM;
6297         netdev->features |= NETIF_F_SCTP_CRC;
6298         netdev->features |= NETIF_F_HW_TC;
6299
6300 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
6301                                   NETIF_F_GSO_GRE_CSUM | \
6302                                   NETIF_F_GSO_IPXIP4 | \
6303                                   NETIF_F_GSO_IPXIP6 | \
6304                                   NETIF_F_GSO_UDP_TUNNEL | \
6305                                   NETIF_F_GSO_UDP_TUNNEL_CSUM)
6306
6307         netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
6308         netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
6309
6310         /* setup the private structure */
6311         err = igc_sw_init(adapter);
6312         if (err)
6313                 goto err_sw_init;
6314
6315         /* copy netdev features into list of user selectable features */
6316         netdev->hw_features |= NETIF_F_NTUPLE;
6317         netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
6318         netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
6319         netdev->hw_features |= netdev->features;
6320
6321         netdev->features |= NETIF_F_HIGHDMA;
6322
6323         netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
6324         netdev->mpls_features |= NETIF_F_HW_CSUM;
6325         netdev->hw_enc_features |= netdev->vlan_features;
6326
6327         /* MTU range: 68 - 9216 */
6328         netdev->min_mtu = ETH_MIN_MTU;
6329         netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
6330
6331         /* before reading the NVM, reset the controller to put the device in a
6332          * known good starting state
6333          */
6334         hw->mac.ops.reset_hw(hw);
6335
6336         if (igc_get_flash_presence_i225(hw)) {
6337                 if (hw->nvm.ops.validate(hw) < 0) {
6338                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
6339                         err = -EIO;
6340                         goto err_eeprom;
6341                 }
6342         }
6343
6344         if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
6345                 /* copy the MAC address out of the NVM */
6346                 if (hw->mac.ops.read_mac_addr(hw))
6347                         dev_err(&pdev->dev, "NVM Read Error\n");
6348         }
6349
6350         eth_hw_addr_set(netdev, hw->mac.addr);
6351
6352         if (!is_valid_ether_addr(netdev->dev_addr)) {
6353                 dev_err(&pdev->dev, "Invalid MAC Address\n");
6354                 err = -EIO;
6355                 goto err_eeprom;
6356         }
6357
6358         /* configure RXPBSIZE and TXPBSIZE */
6359         wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
6360         wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
6361
6362         timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
6363         timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
6364
6365         INIT_WORK(&adapter->reset_task, igc_reset_task);
6366         INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
6367
6368         /* Initialize link properties that are user-changeable */
6369         adapter->fc_autoneg = true;
6370         hw->mac.autoneg = true;
6371         hw->phy.autoneg_advertised = 0xaf;
6372
6373         hw->fc.requested_mode = igc_fc_default;
6374         hw->fc.current_mode = igc_fc_default;
6375
6376         /* By default, support wake on port A */
6377         adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
6378
6379         /* initialize the wol settings based on the eeprom settings */
6380         if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
6381                 adapter->wol |= IGC_WUFC_MAG;
6382
6383         device_set_wakeup_enable(&adapter->pdev->dev,
6384                                  adapter->flags & IGC_FLAG_WOL_SUPPORTED);
6385
6386         igc_ptp_init(adapter);
6387
6388         igc_tsn_clear_schedule(adapter);
6389
6390         /* reset the hardware with the new settings */
6391         igc_reset(adapter);
6392
6393         /* let the f/w know that the h/w is now under the control of the
6394          * driver.
6395          */
6396         igc_get_hw_control(adapter);
6397
6398         strncpy(netdev->name, "eth%d", IFNAMSIZ);
6399         err = register_netdev(netdev);
6400         if (err)
6401                 goto err_register;
6402
6403          /* carrier off reporting is important to ethtool even BEFORE open */
6404         netif_carrier_off(netdev);
6405
6406         /* Check if Media Autosense is enabled */
6407         adapter->ei = *ei;
6408
6409         /* print pcie link status and MAC address */
6410         pcie_print_link_status(pdev);
6411         netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
6412
6413         dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
6414         /* Disable EEE for internal PHY devices */
6415         hw->dev_spec._base.eee_enable = false;
6416         adapter->flags &= ~IGC_FLAG_EEE;
6417         igc_set_eee_i225(hw, false, false, false);
6418
6419         pm_runtime_put_noidle(&pdev->dev);
6420
6421         return 0;
6422
6423 err_register:
6424         igc_release_hw_control(adapter);
6425 err_eeprom:
6426         if (!igc_check_reset_block(hw))
6427                 igc_reset_phy(hw);
6428 err_sw_init:
6429         igc_clear_interrupt_scheme(adapter);
6430         iounmap(adapter->io_addr);
6431 err_ioremap:
6432         free_netdev(netdev);
6433 err_alloc_etherdev:
6434         pci_disable_pcie_error_reporting(pdev);
6435         pci_release_mem_regions(pdev);
6436 err_pci_reg:
6437 err_dma:
6438         pci_disable_device(pdev);
6439         return err;
6440 }
6441
6442 /**
6443  * igc_remove - Device Removal Routine
6444  * @pdev: PCI device information struct
6445  *
6446  * igc_remove is called by the PCI subsystem to alert the driver
6447  * that it should release a PCI device.  This could be caused by a
6448  * Hot-Plug event, or because the driver is going to be removed from
6449  * memory.
6450  */
6451 static void igc_remove(struct pci_dev *pdev)
6452 {
6453         struct net_device *netdev = pci_get_drvdata(pdev);
6454         struct igc_adapter *adapter = netdev_priv(netdev);
6455
6456         pm_runtime_get_noresume(&pdev->dev);
6457
6458         igc_flush_nfc_rules(adapter);
6459
6460         igc_ptp_stop(adapter);
6461
6462         set_bit(__IGC_DOWN, &adapter->state);
6463
6464         del_timer_sync(&adapter->watchdog_timer);
6465         del_timer_sync(&adapter->phy_info_timer);
6466
6467         cancel_work_sync(&adapter->reset_task);
6468         cancel_work_sync(&adapter->watchdog_task);
6469
6470         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
6471          * would have already happened in close and is redundant.
6472          */
6473         igc_release_hw_control(adapter);
6474         unregister_netdev(netdev);
6475
6476         igc_clear_interrupt_scheme(adapter);
6477         pci_iounmap(pdev, adapter->io_addr);
6478         pci_release_mem_regions(pdev);
6479
6480         free_netdev(netdev);
6481
6482         pci_disable_pcie_error_reporting(pdev);
6483
6484         pci_disable_device(pdev);
6485 }
6486
6487 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
6488                           bool runtime)
6489 {
6490         struct net_device *netdev = pci_get_drvdata(pdev);
6491         struct igc_adapter *adapter = netdev_priv(netdev);
6492         u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
6493         struct igc_hw *hw = &adapter->hw;
6494         u32 ctrl, rctl, status;
6495         bool wake;
6496
6497         rtnl_lock();
6498         netif_device_detach(netdev);
6499
6500         if (netif_running(netdev))
6501                 __igc_close(netdev, true);
6502
6503         igc_ptp_suspend(adapter);
6504
6505         igc_clear_interrupt_scheme(adapter);
6506         rtnl_unlock();
6507
6508         status = rd32(IGC_STATUS);
6509         if (status & IGC_STATUS_LU)
6510                 wufc &= ~IGC_WUFC_LNKC;
6511
6512         if (wufc) {
6513                 igc_setup_rctl(adapter);
6514                 igc_set_rx_mode(netdev);
6515
6516                 /* turn on all-multi mode if wake on multicast is enabled */
6517                 if (wufc & IGC_WUFC_MC) {
6518                         rctl = rd32(IGC_RCTL);
6519                         rctl |= IGC_RCTL_MPE;
6520                         wr32(IGC_RCTL, rctl);
6521                 }
6522
6523                 ctrl = rd32(IGC_CTRL);
6524                 ctrl |= IGC_CTRL_ADVD3WUC;
6525                 wr32(IGC_CTRL, ctrl);
6526
6527                 /* Allow time for pending master requests to run */
6528                 igc_disable_pcie_master(hw);
6529
6530                 wr32(IGC_WUC, IGC_WUC_PME_EN);
6531                 wr32(IGC_WUFC, wufc);
6532         } else {
6533                 wr32(IGC_WUC, 0);
6534                 wr32(IGC_WUFC, 0);
6535         }
6536
6537         wake = wufc || adapter->en_mng_pt;
6538         if (!wake)
6539                 igc_power_down_phy_copper_base(&adapter->hw);
6540         else
6541                 igc_power_up_link(adapter);
6542
6543         if (enable_wake)
6544                 *enable_wake = wake;
6545
6546         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
6547          * would have already happened in close and is redundant.
6548          */
6549         igc_release_hw_control(adapter);
6550
6551         pci_disable_device(pdev);
6552
6553         return 0;
6554 }
6555
6556 #ifdef CONFIG_PM
6557 static int __maybe_unused igc_runtime_suspend(struct device *dev)
6558 {
6559         return __igc_shutdown(to_pci_dev(dev), NULL, 1);
6560 }
6561
6562 static void igc_deliver_wake_packet(struct net_device *netdev)
6563 {
6564         struct igc_adapter *adapter = netdev_priv(netdev);
6565         struct igc_hw *hw = &adapter->hw;
6566         struct sk_buff *skb;
6567         u32 wupl;
6568
6569         wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
6570
6571         /* WUPM stores only the first 128 bytes of the wake packet.
6572          * Read the packet only if we have the whole thing.
6573          */
6574         if (wupl == 0 || wupl > IGC_WUPM_BYTES)
6575                 return;
6576
6577         skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
6578         if (!skb)
6579                 return;
6580
6581         skb_put(skb, wupl);
6582
6583         /* Ensure reads are 32-bit aligned */
6584         wupl = roundup(wupl, 4);
6585
6586         memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
6587
6588         skb->protocol = eth_type_trans(skb, netdev);
6589         netif_rx(skb);
6590 }
6591
6592 static int __maybe_unused igc_resume(struct device *dev)
6593 {
6594         struct pci_dev *pdev = to_pci_dev(dev);
6595         struct net_device *netdev = pci_get_drvdata(pdev);
6596         struct igc_adapter *adapter = netdev_priv(netdev);
6597         struct igc_hw *hw = &adapter->hw;
6598         u32 err, val;
6599
6600         pci_set_power_state(pdev, PCI_D0);
6601         pci_restore_state(pdev);
6602         pci_save_state(pdev);
6603
6604         if (!pci_device_is_present(pdev))
6605                 return -ENODEV;
6606         err = pci_enable_device_mem(pdev);
6607         if (err) {
6608                 netdev_err(netdev, "Cannot enable PCI device from suspend\n");
6609                 return err;
6610         }
6611         pci_set_master(pdev);
6612
6613         pci_enable_wake(pdev, PCI_D3hot, 0);
6614         pci_enable_wake(pdev, PCI_D3cold, 0);
6615
6616         if (igc_init_interrupt_scheme(adapter, true)) {
6617                 netdev_err(netdev, "Unable to allocate memory for queues\n");
6618                 return -ENOMEM;
6619         }
6620
6621         igc_reset(adapter);
6622
6623         /* let the f/w know that the h/w is now under the control of the
6624          * driver.
6625          */
6626         igc_get_hw_control(adapter);
6627
6628         val = rd32(IGC_WUS);
6629         if (val & WAKE_PKT_WUS)
6630                 igc_deliver_wake_packet(netdev);
6631
6632         wr32(IGC_WUS, ~0);
6633
6634         rtnl_lock();
6635         if (!err && netif_running(netdev))
6636                 err = __igc_open(netdev, true);
6637
6638         if (!err)
6639                 netif_device_attach(netdev);
6640         rtnl_unlock();
6641
6642         return err;
6643 }
6644
6645 static int __maybe_unused igc_runtime_resume(struct device *dev)
6646 {
6647         return igc_resume(dev);
6648 }
6649
6650 static int __maybe_unused igc_suspend(struct device *dev)
6651 {
6652         return __igc_shutdown(to_pci_dev(dev), NULL, 0);
6653 }
6654
6655 static int __maybe_unused igc_runtime_idle(struct device *dev)
6656 {
6657         struct net_device *netdev = dev_get_drvdata(dev);
6658         struct igc_adapter *adapter = netdev_priv(netdev);
6659
6660         if (!igc_has_link(adapter))
6661                 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
6662
6663         return -EBUSY;
6664 }
6665 #endif /* CONFIG_PM */
6666
6667 static void igc_shutdown(struct pci_dev *pdev)
6668 {
6669         bool wake;
6670
6671         __igc_shutdown(pdev, &wake, 0);
6672
6673         if (system_state == SYSTEM_POWER_OFF) {
6674                 pci_wake_from_d3(pdev, wake);
6675                 pci_set_power_state(pdev, PCI_D3hot);
6676         }
6677 }
6678
6679 /**
6680  *  igc_io_error_detected - called when PCI error is detected
6681  *  @pdev: Pointer to PCI device
6682  *  @state: The current PCI connection state
6683  *
6684  *  This function is called after a PCI bus error affecting
6685  *  this device has been detected.
6686  **/
6687 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
6688                                               pci_channel_state_t state)
6689 {
6690         struct net_device *netdev = pci_get_drvdata(pdev);
6691         struct igc_adapter *adapter = netdev_priv(netdev);
6692
6693         netif_device_detach(netdev);
6694
6695         if (state == pci_channel_io_perm_failure)
6696                 return PCI_ERS_RESULT_DISCONNECT;
6697
6698         if (netif_running(netdev))
6699                 igc_down(adapter);
6700         pci_disable_device(pdev);
6701
6702         /* Request a slot reset. */
6703         return PCI_ERS_RESULT_NEED_RESET;
6704 }
6705
6706 /**
6707  *  igc_io_slot_reset - called after the PCI bus has been reset.
6708  *  @pdev: Pointer to PCI device
6709  *
6710  *  Restart the card from scratch, as if from a cold-boot. Implementation
6711  *  resembles the first-half of the igc_resume routine.
6712  **/
6713 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
6714 {
6715         struct net_device *netdev = pci_get_drvdata(pdev);
6716         struct igc_adapter *adapter = netdev_priv(netdev);
6717         struct igc_hw *hw = &adapter->hw;
6718         pci_ers_result_t result;
6719
6720         if (pci_enable_device_mem(pdev)) {
6721                 netdev_err(netdev, "Could not re-enable PCI device after reset\n");
6722                 result = PCI_ERS_RESULT_DISCONNECT;
6723         } else {
6724                 pci_set_master(pdev);
6725                 pci_restore_state(pdev);
6726                 pci_save_state(pdev);
6727
6728                 pci_enable_wake(pdev, PCI_D3hot, 0);
6729                 pci_enable_wake(pdev, PCI_D3cold, 0);
6730
6731                 /* In case of PCI error, adapter loses its HW address
6732                  * so we should re-assign it here.
6733                  */
6734                 hw->hw_addr = adapter->io_addr;
6735
6736                 igc_reset(adapter);
6737                 wr32(IGC_WUS, ~0);
6738                 result = PCI_ERS_RESULT_RECOVERED;
6739         }
6740
6741         return result;
6742 }
6743
6744 /**
6745  *  igc_io_resume - called when traffic can start to flow again.
6746  *  @pdev: Pointer to PCI device
6747  *
6748  *  This callback is called when the error recovery driver tells us that
6749  *  its OK to resume normal operation. Implementation resembles the
6750  *  second-half of the igc_resume routine.
6751  */
6752 static void igc_io_resume(struct pci_dev *pdev)
6753 {
6754         struct net_device *netdev = pci_get_drvdata(pdev);
6755         struct igc_adapter *adapter = netdev_priv(netdev);
6756
6757         rtnl_lock();
6758         if (netif_running(netdev)) {
6759                 if (igc_open(netdev)) {
6760                         netdev_err(netdev, "igc_open failed after reset\n");
6761                         return;
6762                 }
6763         }
6764
6765         netif_device_attach(netdev);
6766
6767         /* let the f/w know that the h/w is now under the control of the
6768          * driver.
6769          */
6770         igc_get_hw_control(adapter);
6771         rtnl_unlock();
6772 }
6773
6774 static const struct pci_error_handlers igc_err_handler = {
6775         .error_detected = igc_io_error_detected,
6776         .slot_reset = igc_io_slot_reset,
6777         .resume = igc_io_resume,
6778 };
6779
6780 #ifdef CONFIG_PM
6781 static const struct dev_pm_ops igc_pm_ops = {
6782         SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume)
6783         SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume,
6784                            igc_runtime_idle)
6785 };
6786 #endif
6787
6788 static struct pci_driver igc_driver = {
6789         .name     = igc_driver_name,
6790         .id_table = igc_pci_tbl,
6791         .probe    = igc_probe,
6792         .remove   = igc_remove,
6793 #ifdef CONFIG_PM
6794         .driver.pm = &igc_pm_ops,
6795 #endif
6796         .shutdown = igc_shutdown,
6797         .err_handler = &igc_err_handler,
6798 };
6799
6800 /**
6801  * igc_reinit_queues - return error
6802  * @adapter: pointer to adapter structure
6803  */
6804 int igc_reinit_queues(struct igc_adapter *adapter)
6805 {
6806         struct net_device *netdev = adapter->netdev;
6807         int err = 0;
6808
6809         if (netif_running(netdev))
6810                 igc_close(netdev);
6811
6812         igc_reset_interrupt_capability(adapter);
6813
6814         if (igc_init_interrupt_scheme(adapter, true)) {
6815                 netdev_err(netdev, "Unable to allocate memory for queues\n");
6816                 return -ENOMEM;
6817         }
6818
6819         if (netif_running(netdev))
6820                 err = igc_open(netdev);
6821
6822         return err;
6823 }
6824
6825 /**
6826  * igc_get_hw_dev - return device
6827  * @hw: pointer to hardware structure
6828  *
6829  * used by hardware layer to print debugging information
6830  */
6831 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
6832 {
6833         struct igc_adapter *adapter = hw->back;
6834
6835         return adapter->netdev;
6836 }
6837
6838 static void igc_disable_rx_ring_hw(struct igc_ring *ring)
6839 {
6840         struct igc_hw *hw = &ring->q_vector->adapter->hw;
6841         u8 idx = ring->reg_idx;
6842         u32 rxdctl;
6843
6844         rxdctl = rd32(IGC_RXDCTL(idx));
6845         rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE;
6846         rxdctl |= IGC_RXDCTL_SWFLUSH;
6847         wr32(IGC_RXDCTL(idx), rxdctl);
6848 }
6849
6850 void igc_disable_rx_ring(struct igc_ring *ring)
6851 {
6852         igc_disable_rx_ring_hw(ring);
6853         igc_clean_rx_ring(ring);
6854 }
6855
6856 void igc_enable_rx_ring(struct igc_ring *ring)
6857 {
6858         struct igc_adapter *adapter = ring->q_vector->adapter;
6859
6860         igc_configure_rx_ring(adapter, ring);
6861
6862         if (ring->xsk_pool)
6863                 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
6864         else
6865                 igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
6866 }
6867
6868 static void igc_disable_tx_ring_hw(struct igc_ring *ring)
6869 {
6870         struct igc_hw *hw = &ring->q_vector->adapter->hw;
6871         u8 idx = ring->reg_idx;
6872         u32 txdctl;
6873
6874         txdctl = rd32(IGC_TXDCTL(idx));
6875         txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE;
6876         txdctl |= IGC_TXDCTL_SWFLUSH;
6877         wr32(IGC_TXDCTL(idx), txdctl);
6878 }
6879
6880 void igc_disable_tx_ring(struct igc_ring *ring)
6881 {
6882         igc_disable_tx_ring_hw(ring);
6883         igc_clean_tx_ring(ring);
6884 }
6885
6886 void igc_enable_tx_ring(struct igc_ring *ring)
6887 {
6888         struct igc_adapter *adapter = ring->q_vector->adapter;
6889
6890         igc_configure_tx_ring(adapter, ring);
6891 }
6892
6893 /**
6894  * igc_init_module - Driver Registration Routine
6895  *
6896  * igc_init_module is the first routine called when the driver is
6897  * loaded. All it does is register with the PCI subsystem.
6898  */
6899 static int __init igc_init_module(void)
6900 {
6901         int ret;
6902
6903         pr_info("%s\n", igc_driver_string);
6904         pr_info("%s\n", igc_copyright);
6905
6906         ret = pci_register_driver(&igc_driver);
6907         return ret;
6908 }
6909
6910 module_init(igc_init_module);
6911
6912 /**
6913  * igc_exit_module - Driver Exit Cleanup Routine
6914  *
6915  * igc_exit_module is called just before the driver is removed
6916  * from memory.
6917  */
6918 static void __exit igc_exit_module(void)
6919 {
6920         pci_unregister_driver(&igc_driver);
6921 }
6922
6923 module_exit(igc_exit_module);
6924 /* igc_main.c */