drivers:net: dma_alloc_coherent: use __GFP_ZERO instead of memset(, 0)
[linux-2.6-block.git] / drivers / net / ethernet / intel / igbvf / netdev.c
1 /*******************************************************************************
2
3   Intel(R) 82576 Virtual Function Linux driver
4   Copyright(c) 2009 - 2012 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/init.h>
33 #include <linux/pci.h>
34 #include <linux/vmalloc.h>
35 #include <linux/pagemap.h>
36 #include <linux/delay.h>
37 #include <linux/netdevice.h>
38 #include <linux/tcp.h>
39 #include <linux/ipv6.h>
40 #include <linux/slab.h>
41 #include <net/checksum.h>
42 #include <net/ip6_checksum.h>
43 #include <linux/mii.h>
44 #include <linux/ethtool.h>
45 #include <linux/if_vlan.h>
46 #include <linux/prefetch.h>
47
48 #include "igbvf.h"
49
50 #define DRV_VERSION "2.0.2-k"
51 char igbvf_driver_name[] = "igbvf";
52 const char igbvf_driver_version[] = DRV_VERSION;
53 static const char igbvf_driver_string[] =
54                   "Intel(R) Gigabit Virtual Function Network Driver";
55 static const char igbvf_copyright[] =
56                   "Copyright (c) 2009 - 2012 Intel Corporation.";
57
58 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
59 static int debug = -1;
60 module_param(debug, int, 0);
61 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
62
63 static int igbvf_poll(struct napi_struct *napi, int budget);
64 static void igbvf_reset(struct igbvf_adapter *);
65 static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
66 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
67
68 static struct igbvf_info igbvf_vf_info = {
69         .mac                    = e1000_vfadapt,
70         .flags                  = 0,
71         .pba                    = 10,
72         .init_ops               = e1000_init_function_pointers_vf,
73 };
74
75 static struct igbvf_info igbvf_i350_vf_info = {
76         .mac                    = e1000_vfadapt_i350,
77         .flags                  = 0,
78         .pba                    = 10,
79         .init_ops               = e1000_init_function_pointers_vf,
80 };
81
82 static const struct igbvf_info *igbvf_info_tbl[] = {
83         [board_vf]              = &igbvf_vf_info,
84         [board_i350_vf]         = &igbvf_i350_vf_info,
85 };
86
87 /**
88  * igbvf_desc_unused - calculate if we have unused descriptors
89  **/
90 static int igbvf_desc_unused(struct igbvf_ring *ring)
91 {
92         if (ring->next_to_clean > ring->next_to_use)
93                 return ring->next_to_clean - ring->next_to_use - 1;
94
95         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
96 }
97
98 /**
99  * igbvf_receive_skb - helper function to handle Rx indications
100  * @adapter: board private structure
101  * @status: descriptor status field as written by hardware
102  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
103  * @skb: pointer to sk_buff to be indicated to stack
104  **/
105 static void igbvf_receive_skb(struct igbvf_adapter *adapter,
106                               struct net_device *netdev,
107                               struct sk_buff *skb,
108                               u32 status, u16 vlan)
109 {
110         u16 vid;
111
112         if (status & E1000_RXD_STAT_VP) {
113                 if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
114                     (status & E1000_RXDEXT_STATERR_LB))
115                         vid = be16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
116                 else
117                         vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
118                 if (test_bit(vid, adapter->active_vlans))
119                         __vlan_hwaccel_put_tag(skb, vid);
120         }
121
122         napi_gro_receive(&adapter->rx_ring->napi, skb);
123 }
124
125 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
126                                          u32 status_err, struct sk_buff *skb)
127 {
128         skb_checksum_none_assert(skb);
129
130         /* Ignore Checksum bit is set or checksum is disabled through ethtool */
131         if ((status_err & E1000_RXD_STAT_IXSM) ||
132             (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
133                 return;
134
135         /* TCP/UDP checksum error bit is set */
136         if (status_err &
137             (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
138                 /* let the stack verify checksum errors */
139                 adapter->hw_csum_err++;
140                 return;
141         }
142
143         /* It must be a TCP or UDP packet with a valid checksum */
144         if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
145                 skb->ip_summed = CHECKSUM_UNNECESSARY;
146
147         adapter->hw_csum_good++;
148 }
149
150 /**
151  * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
152  * @rx_ring: address of ring structure to repopulate
153  * @cleaned_count: number of buffers to repopulate
154  **/
155 static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
156                                    int cleaned_count)
157 {
158         struct igbvf_adapter *adapter = rx_ring->adapter;
159         struct net_device *netdev = adapter->netdev;
160         struct pci_dev *pdev = adapter->pdev;
161         union e1000_adv_rx_desc *rx_desc;
162         struct igbvf_buffer *buffer_info;
163         struct sk_buff *skb;
164         unsigned int i;
165         int bufsz;
166
167         i = rx_ring->next_to_use;
168         buffer_info = &rx_ring->buffer_info[i];
169
170         if (adapter->rx_ps_hdr_size)
171                 bufsz = adapter->rx_ps_hdr_size;
172         else
173                 bufsz = adapter->rx_buffer_len;
174
175         while (cleaned_count--) {
176                 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
177
178                 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
179                         if (!buffer_info->page) {
180                                 buffer_info->page = alloc_page(GFP_ATOMIC);
181                                 if (!buffer_info->page) {
182                                         adapter->alloc_rx_buff_failed++;
183                                         goto no_buffers;
184                                 }
185                                 buffer_info->page_offset = 0;
186                         } else {
187                                 buffer_info->page_offset ^= PAGE_SIZE / 2;
188                         }
189                         buffer_info->page_dma =
190                                 dma_map_page(&pdev->dev, buffer_info->page,
191                                              buffer_info->page_offset,
192                                              PAGE_SIZE / 2,
193                                              DMA_FROM_DEVICE);
194                         if (dma_mapping_error(&pdev->dev,
195                                               buffer_info->page_dma)) {
196                                 __free_page(buffer_info->page);
197                                 buffer_info->page = NULL;
198                                 dev_err(&pdev->dev, "RX DMA map failed\n");
199                                 break;
200                         }
201                 }
202
203                 if (!buffer_info->skb) {
204                         skb = netdev_alloc_skb_ip_align(netdev, bufsz);
205                         if (!skb) {
206                                 adapter->alloc_rx_buff_failed++;
207                                 goto no_buffers;
208                         }
209
210                         buffer_info->skb = skb;
211                         buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
212                                                           bufsz,
213                                                           DMA_FROM_DEVICE);
214                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
215                                 dev_kfree_skb(buffer_info->skb);
216                                 buffer_info->skb = NULL;
217                                 dev_err(&pdev->dev, "RX DMA map failed\n");
218                                 goto no_buffers;
219                         }
220                 }
221                 /* Refresh the desc even if buffer_addrs didn't change because
222                  * each write-back erases this info. */
223                 if (adapter->rx_ps_hdr_size) {
224                         rx_desc->read.pkt_addr =
225                              cpu_to_le64(buffer_info->page_dma);
226                         rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
227                 } else {
228                         rx_desc->read.pkt_addr =
229                              cpu_to_le64(buffer_info->dma);
230                         rx_desc->read.hdr_addr = 0;
231                 }
232
233                 i++;
234                 if (i == rx_ring->count)
235                         i = 0;
236                 buffer_info = &rx_ring->buffer_info[i];
237         }
238
239 no_buffers:
240         if (rx_ring->next_to_use != i) {
241                 rx_ring->next_to_use = i;
242                 if (i == 0)
243                         i = (rx_ring->count - 1);
244                 else
245                         i--;
246
247                 /* Force memory writes to complete before letting h/w
248                  * know there are new descriptors to fetch.  (Only
249                  * applicable for weak-ordered memory model archs,
250                  * such as IA-64). */
251                 wmb();
252                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
253         }
254 }
255
256 /**
257  * igbvf_clean_rx_irq - Send received data up the network stack; legacy
258  * @adapter: board private structure
259  *
260  * the return value indicates whether actual cleaning was done, there
261  * is no guarantee that everything was cleaned
262  **/
263 static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
264                                int *work_done, int work_to_do)
265 {
266         struct igbvf_ring *rx_ring = adapter->rx_ring;
267         struct net_device *netdev = adapter->netdev;
268         struct pci_dev *pdev = adapter->pdev;
269         union e1000_adv_rx_desc *rx_desc, *next_rxd;
270         struct igbvf_buffer *buffer_info, *next_buffer;
271         struct sk_buff *skb;
272         bool cleaned = false;
273         int cleaned_count = 0;
274         unsigned int total_bytes = 0, total_packets = 0;
275         unsigned int i;
276         u32 length, hlen, staterr;
277
278         i = rx_ring->next_to_clean;
279         rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
280         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
281
282         while (staterr & E1000_RXD_STAT_DD) {
283                 if (*work_done >= work_to_do)
284                         break;
285                 (*work_done)++;
286                 rmb(); /* read descriptor and rx_buffer_info after status DD */
287
288                 buffer_info = &rx_ring->buffer_info[i];
289
290                 /* HW will not DMA in data larger than the given buffer, even
291                  * if it parses the (NFS, of course) header to be larger.  In
292                  * that case, it fills the header buffer and spills the rest
293                  * into the page.
294                  */
295                 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info) &
296                   E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
297                 if (hlen > adapter->rx_ps_hdr_size)
298                         hlen = adapter->rx_ps_hdr_size;
299
300                 length = le16_to_cpu(rx_desc->wb.upper.length);
301                 cleaned = true;
302                 cleaned_count++;
303
304                 skb = buffer_info->skb;
305                 prefetch(skb->data - NET_IP_ALIGN);
306                 buffer_info->skb = NULL;
307                 if (!adapter->rx_ps_hdr_size) {
308                         dma_unmap_single(&pdev->dev, buffer_info->dma,
309                                          adapter->rx_buffer_len,
310                                          DMA_FROM_DEVICE);
311                         buffer_info->dma = 0;
312                         skb_put(skb, length);
313                         goto send_up;
314                 }
315
316                 if (!skb_shinfo(skb)->nr_frags) {
317                         dma_unmap_single(&pdev->dev, buffer_info->dma,
318                                          adapter->rx_ps_hdr_size,
319                                          DMA_FROM_DEVICE);
320                         skb_put(skb, hlen);
321                 }
322
323                 if (length) {
324                         dma_unmap_page(&pdev->dev, buffer_info->page_dma,
325                                        PAGE_SIZE / 2,
326                                        DMA_FROM_DEVICE);
327                         buffer_info->page_dma = 0;
328
329                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
330                                            buffer_info->page,
331                                            buffer_info->page_offset,
332                                            length);
333
334                         if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
335                             (page_count(buffer_info->page) != 1))
336                                 buffer_info->page = NULL;
337                         else
338                                 get_page(buffer_info->page);
339
340                         skb->len += length;
341                         skb->data_len += length;
342                         skb->truesize += PAGE_SIZE / 2;
343                 }
344 send_up:
345                 i++;
346                 if (i == rx_ring->count)
347                         i = 0;
348                 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
349                 prefetch(next_rxd);
350                 next_buffer = &rx_ring->buffer_info[i];
351
352                 if (!(staterr & E1000_RXD_STAT_EOP)) {
353                         buffer_info->skb = next_buffer->skb;
354                         buffer_info->dma = next_buffer->dma;
355                         next_buffer->skb = skb;
356                         next_buffer->dma = 0;
357                         goto next_desc;
358                 }
359
360                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
361                         dev_kfree_skb_irq(skb);
362                         goto next_desc;
363                 }
364
365                 total_bytes += skb->len;
366                 total_packets++;
367
368                 igbvf_rx_checksum_adv(adapter, staterr, skb);
369
370                 skb->protocol = eth_type_trans(skb, netdev);
371
372                 igbvf_receive_skb(adapter, netdev, skb, staterr,
373                                   rx_desc->wb.upper.vlan);
374
375 next_desc:
376                 rx_desc->wb.upper.status_error = 0;
377
378                 /* return some buffers to hardware, one at a time is too slow */
379                 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
380                         igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
381                         cleaned_count = 0;
382                 }
383
384                 /* use prefetched values */
385                 rx_desc = next_rxd;
386                 buffer_info = next_buffer;
387
388                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
389         }
390
391         rx_ring->next_to_clean = i;
392         cleaned_count = igbvf_desc_unused(rx_ring);
393
394         if (cleaned_count)
395                 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
396
397         adapter->total_rx_packets += total_packets;
398         adapter->total_rx_bytes += total_bytes;
399         adapter->net_stats.rx_bytes += total_bytes;
400         adapter->net_stats.rx_packets += total_packets;
401         return cleaned;
402 }
403
404 static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
405                             struct igbvf_buffer *buffer_info)
406 {
407         if (buffer_info->dma) {
408                 if (buffer_info->mapped_as_page)
409                         dma_unmap_page(&adapter->pdev->dev,
410                                        buffer_info->dma,
411                                        buffer_info->length,
412                                        DMA_TO_DEVICE);
413                 else
414                         dma_unmap_single(&adapter->pdev->dev,
415                                          buffer_info->dma,
416                                          buffer_info->length,
417                                          DMA_TO_DEVICE);
418                 buffer_info->dma = 0;
419         }
420         if (buffer_info->skb) {
421                 dev_kfree_skb_any(buffer_info->skb);
422                 buffer_info->skb = NULL;
423         }
424         buffer_info->time_stamp = 0;
425 }
426
427 /**
428  * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
429  * @adapter: board private structure
430  *
431  * Return 0 on success, negative on failure
432  **/
433 int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
434                              struct igbvf_ring *tx_ring)
435 {
436         struct pci_dev *pdev = adapter->pdev;
437         int size;
438
439         size = sizeof(struct igbvf_buffer) * tx_ring->count;
440         tx_ring->buffer_info = vzalloc(size);
441         if (!tx_ring->buffer_info)
442                 goto err;
443
444         /* round up to nearest 4K */
445         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
446         tx_ring->size = ALIGN(tx_ring->size, 4096);
447
448         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
449                                            &tx_ring->dma, GFP_KERNEL);
450         if (!tx_ring->desc)
451                 goto err;
452
453         tx_ring->adapter = adapter;
454         tx_ring->next_to_use = 0;
455         tx_ring->next_to_clean = 0;
456
457         return 0;
458 err:
459         vfree(tx_ring->buffer_info);
460         dev_err(&adapter->pdev->dev,
461                 "Unable to allocate memory for the transmit descriptor ring\n");
462         return -ENOMEM;
463 }
464
465 /**
466  * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
467  * @adapter: board private structure
468  *
469  * Returns 0 on success, negative on failure
470  **/
471 int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
472                              struct igbvf_ring *rx_ring)
473 {
474         struct pci_dev *pdev = adapter->pdev;
475         int size, desc_len;
476
477         size = sizeof(struct igbvf_buffer) * rx_ring->count;
478         rx_ring->buffer_info = vzalloc(size);
479         if (!rx_ring->buffer_info)
480                 goto err;
481
482         desc_len = sizeof(union e1000_adv_rx_desc);
483
484         /* Round up to nearest 4K */
485         rx_ring->size = rx_ring->count * desc_len;
486         rx_ring->size = ALIGN(rx_ring->size, 4096);
487
488         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
489                                            &rx_ring->dma, GFP_KERNEL);
490         if (!rx_ring->desc)
491                 goto err;
492
493         rx_ring->next_to_clean = 0;
494         rx_ring->next_to_use = 0;
495
496         rx_ring->adapter = adapter;
497
498         return 0;
499
500 err:
501         vfree(rx_ring->buffer_info);
502         rx_ring->buffer_info = NULL;
503         dev_err(&adapter->pdev->dev,
504                 "Unable to allocate memory for the receive descriptor ring\n");
505         return -ENOMEM;
506 }
507
508 /**
509  * igbvf_clean_tx_ring - Free Tx Buffers
510  * @tx_ring: ring to be cleaned
511  **/
512 static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
513 {
514         struct igbvf_adapter *adapter = tx_ring->adapter;
515         struct igbvf_buffer *buffer_info;
516         unsigned long size;
517         unsigned int i;
518
519         if (!tx_ring->buffer_info)
520                 return;
521
522         /* Free all the Tx ring sk_buffs */
523         for (i = 0; i < tx_ring->count; i++) {
524                 buffer_info = &tx_ring->buffer_info[i];
525                 igbvf_put_txbuf(adapter, buffer_info);
526         }
527
528         size = sizeof(struct igbvf_buffer) * tx_ring->count;
529         memset(tx_ring->buffer_info, 0, size);
530
531         /* Zero out the descriptor ring */
532         memset(tx_ring->desc, 0, tx_ring->size);
533
534         tx_ring->next_to_use = 0;
535         tx_ring->next_to_clean = 0;
536
537         writel(0, adapter->hw.hw_addr + tx_ring->head);
538         writel(0, adapter->hw.hw_addr + tx_ring->tail);
539 }
540
541 /**
542  * igbvf_free_tx_resources - Free Tx Resources per Queue
543  * @tx_ring: ring to free resources from
544  *
545  * Free all transmit software resources
546  **/
547 void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
548 {
549         struct pci_dev *pdev = tx_ring->adapter->pdev;
550
551         igbvf_clean_tx_ring(tx_ring);
552
553         vfree(tx_ring->buffer_info);
554         tx_ring->buffer_info = NULL;
555
556         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
557                           tx_ring->dma);
558
559         tx_ring->desc = NULL;
560 }
561
562 /**
563  * igbvf_clean_rx_ring - Free Rx Buffers per Queue
564  * @adapter: board private structure
565  **/
566 static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
567 {
568         struct igbvf_adapter *adapter = rx_ring->adapter;
569         struct igbvf_buffer *buffer_info;
570         struct pci_dev *pdev = adapter->pdev;
571         unsigned long size;
572         unsigned int i;
573
574         if (!rx_ring->buffer_info)
575                 return;
576
577         /* Free all the Rx ring sk_buffs */
578         for (i = 0; i < rx_ring->count; i++) {
579                 buffer_info = &rx_ring->buffer_info[i];
580                 if (buffer_info->dma) {
581                         if (adapter->rx_ps_hdr_size){
582                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
583                                                  adapter->rx_ps_hdr_size,
584                                                  DMA_FROM_DEVICE);
585                         } else {
586                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
587                                                  adapter->rx_buffer_len,
588                                                  DMA_FROM_DEVICE);
589                         }
590                         buffer_info->dma = 0;
591                 }
592
593                 if (buffer_info->skb) {
594                         dev_kfree_skb(buffer_info->skb);
595                         buffer_info->skb = NULL;
596                 }
597
598                 if (buffer_info->page) {
599                         if (buffer_info->page_dma)
600                                 dma_unmap_page(&pdev->dev,
601                                                buffer_info->page_dma,
602                                                PAGE_SIZE / 2,
603                                                DMA_FROM_DEVICE);
604                         put_page(buffer_info->page);
605                         buffer_info->page = NULL;
606                         buffer_info->page_dma = 0;
607                         buffer_info->page_offset = 0;
608                 }
609         }
610
611         size = sizeof(struct igbvf_buffer) * rx_ring->count;
612         memset(rx_ring->buffer_info, 0, size);
613
614         /* Zero out the descriptor ring */
615         memset(rx_ring->desc, 0, rx_ring->size);
616
617         rx_ring->next_to_clean = 0;
618         rx_ring->next_to_use = 0;
619
620         writel(0, adapter->hw.hw_addr + rx_ring->head);
621         writel(0, adapter->hw.hw_addr + rx_ring->tail);
622 }
623
624 /**
625  * igbvf_free_rx_resources - Free Rx Resources
626  * @rx_ring: ring to clean the resources from
627  *
628  * Free all receive software resources
629  **/
630
631 void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
632 {
633         struct pci_dev *pdev = rx_ring->adapter->pdev;
634
635         igbvf_clean_rx_ring(rx_ring);
636
637         vfree(rx_ring->buffer_info);
638         rx_ring->buffer_info = NULL;
639
640         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
641                           rx_ring->dma);
642         rx_ring->desc = NULL;
643 }
644
645 /**
646  * igbvf_update_itr - update the dynamic ITR value based on statistics
647  * @adapter: pointer to adapter
648  * @itr_setting: current adapter->itr
649  * @packets: the number of packets during this measurement interval
650  * @bytes: the number of bytes during this measurement interval
651  *
652  *      Stores a new ITR value based on packets and byte
653  *      counts during the last interrupt.  The advantage of per interrupt
654  *      computation is faster updates and more accurate ITR for the current
655  *      traffic pattern.  Constants in this function were computed
656  *      based on theoretical maximum wire speed and thresholds were set based
657  *      on testing data as well as attempting to minimize response time
658  *      while increasing bulk throughput.
659  **/
660 static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
661                                            enum latency_range itr_setting,
662                                            int packets, int bytes)
663 {
664         enum latency_range retval = itr_setting;
665
666         if (packets == 0)
667                 goto update_itr_done;
668
669         switch (itr_setting) {
670         case lowest_latency:
671                 /* handle TSO and jumbo frames */
672                 if (bytes/packets > 8000)
673                         retval = bulk_latency;
674                 else if ((packets < 5) && (bytes > 512))
675                         retval = low_latency;
676                 break;
677         case low_latency:  /* 50 usec aka 20000 ints/s */
678                 if (bytes > 10000) {
679                         /* this if handles the TSO accounting */
680                         if (bytes/packets > 8000)
681                                 retval = bulk_latency;
682                         else if ((packets < 10) || ((bytes/packets) > 1200))
683                                 retval = bulk_latency;
684                         else if ((packets > 35))
685                                 retval = lowest_latency;
686                 } else if (bytes/packets > 2000) {
687                         retval = bulk_latency;
688                 } else if (packets <= 2 && bytes < 512) {
689                         retval = lowest_latency;
690                 }
691                 break;
692         case bulk_latency: /* 250 usec aka 4000 ints/s */
693                 if (bytes > 25000) {
694                         if (packets > 35)
695                                 retval = low_latency;
696                 } else if (bytes < 6000) {
697                         retval = low_latency;
698                 }
699                 break;
700         default:
701                 break;
702         }
703
704 update_itr_done:
705         return retval;
706 }
707
708 static int igbvf_range_to_itr(enum latency_range current_range)
709 {
710         int new_itr;
711
712         switch (current_range) {
713         /* counts and packets in update_itr are dependent on these numbers */
714         case lowest_latency:
715                 new_itr = IGBVF_70K_ITR;
716                 break;
717         case low_latency:
718                 new_itr = IGBVF_20K_ITR;
719                 break;
720         case bulk_latency:
721                 new_itr = IGBVF_4K_ITR;
722                 break;
723         default:
724                 new_itr = IGBVF_START_ITR;
725                 break;
726         }
727         return new_itr;
728 }
729
730 static void igbvf_set_itr(struct igbvf_adapter *adapter)
731 {
732         u32 new_itr;
733
734         adapter->tx_ring->itr_range =
735                         igbvf_update_itr(adapter,
736                                          adapter->tx_ring->itr_val,
737                                          adapter->total_tx_packets,
738                                          adapter->total_tx_bytes);
739
740         /* conservative mode (itr 3) eliminates the lowest_latency setting */
741         if (adapter->requested_itr == 3 &&
742             adapter->tx_ring->itr_range == lowest_latency)
743                 adapter->tx_ring->itr_range = low_latency;
744
745         new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
746
747
748         if (new_itr != adapter->tx_ring->itr_val) {
749                 u32 current_itr = adapter->tx_ring->itr_val;
750                 /*
751                  * this attempts to bias the interrupt rate towards Bulk
752                  * by adding intermediate steps when interrupt rate is
753                  * increasing
754                  */
755                 new_itr = new_itr > current_itr ?
756                              min(current_itr + (new_itr >> 2), new_itr) :
757                              new_itr;
758                 adapter->tx_ring->itr_val = new_itr;
759
760                 adapter->tx_ring->set_itr = 1;
761         }
762
763         adapter->rx_ring->itr_range =
764                         igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
765                                          adapter->total_rx_packets,
766                                          adapter->total_rx_bytes);
767         if (adapter->requested_itr == 3 &&
768             adapter->rx_ring->itr_range == lowest_latency)
769                 adapter->rx_ring->itr_range = low_latency;
770
771         new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
772
773         if (new_itr != adapter->rx_ring->itr_val) {
774                 u32 current_itr = adapter->rx_ring->itr_val;
775                 new_itr = new_itr > current_itr ?
776                              min(current_itr + (new_itr >> 2), new_itr) :
777                              new_itr;
778                 adapter->rx_ring->itr_val = new_itr;
779
780                 adapter->rx_ring->set_itr = 1;
781         }
782 }
783
784 /**
785  * igbvf_clean_tx_irq - Reclaim resources after transmit completes
786  * @adapter: board private structure
787  *
788  * returns true if ring is completely cleaned
789  **/
790 static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
791 {
792         struct igbvf_adapter *adapter = tx_ring->adapter;
793         struct net_device *netdev = adapter->netdev;
794         struct igbvf_buffer *buffer_info;
795         struct sk_buff *skb;
796         union e1000_adv_tx_desc *tx_desc, *eop_desc;
797         unsigned int total_bytes = 0, total_packets = 0;
798         unsigned int i, count = 0;
799         bool cleaned = false;
800
801         i = tx_ring->next_to_clean;
802         buffer_info = &tx_ring->buffer_info[i];
803         eop_desc = buffer_info->next_to_watch;
804
805         do {
806                 /* if next_to_watch is not set then there is no work pending */
807                 if (!eop_desc)
808                         break;
809
810                 /* prevent any other reads prior to eop_desc */
811                 read_barrier_depends();
812
813                 /* if DD is not set pending work has not been completed */
814                 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
815                         break;
816
817                 /* clear next_to_watch to prevent false hangs */
818                 buffer_info->next_to_watch = NULL;
819
820                 for (cleaned = false; !cleaned; count++) {
821                         tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
822                         cleaned = (tx_desc == eop_desc);
823                         skb = buffer_info->skb;
824
825                         if (skb) {
826                                 unsigned int segs, bytecount;
827
828                                 /* gso_segs is currently only valid for tcp */
829                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
830                                 /* multiply data chunks by size of headers */
831                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
832                                             skb->len;
833                                 total_packets += segs;
834                                 total_bytes += bytecount;
835                         }
836
837                         igbvf_put_txbuf(adapter, buffer_info);
838                         tx_desc->wb.status = 0;
839
840                         i++;
841                         if (i == tx_ring->count)
842                                 i = 0;
843
844                         buffer_info = &tx_ring->buffer_info[i];
845                 }
846
847                 eop_desc = buffer_info->next_to_watch;
848         } while (count < tx_ring->count);
849
850         tx_ring->next_to_clean = i;
851
852         if (unlikely(count &&
853                      netif_carrier_ok(netdev) &&
854                      igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
855                 /* Make sure that anybody stopping the queue after this
856                  * sees the new next_to_clean.
857                  */
858                 smp_mb();
859                 if (netif_queue_stopped(netdev) &&
860                     !(test_bit(__IGBVF_DOWN, &adapter->state))) {
861                         netif_wake_queue(netdev);
862                         ++adapter->restart_queue;
863                 }
864         }
865
866         adapter->net_stats.tx_bytes += total_bytes;
867         adapter->net_stats.tx_packets += total_packets;
868         return count < tx_ring->count;
869 }
870
871 static irqreturn_t igbvf_msix_other(int irq, void *data)
872 {
873         struct net_device *netdev = data;
874         struct igbvf_adapter *adapter = netdev_priv(netdev);
875         struct e1000_hw *hw = &adapter->hw;
876
877         adapter->int_counter1++;
878
879         netif_carrier_off(netdev);
880         hw->mac.get_link_status = 1;
881         if (!test_bit(__IGBVF_DOWN, &adapter->state))
882                 mod_timer(&adapter->watchdog_timer, jiffies + 1);
883
884         ew32(EIMS, adapter->eims_other);
885
886         return IRQ_HANDLED;
887 }
888
889 static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
890 {
891         struct net_device *netdev = data;
892         struct igbvf_adapter *adapter = netdev_priv(netdev);
893         struct e1000_hw *hw = &adapter->hw;
894         struct igbvf_ring *tx_ring = adapter->tx_ring;
895
896         if (tx_ring->set_itr) {
897                 writel(tx_ring->itr_val,
898                        adapter->hw.hw_addr + tx_ring->itr_register);
899                 adapter->tx_ring->set_itr = 0;
900         }
901
902         adapter->total_tx_bytes = 0;
903         adapter->total_tx_packets = 0;
904
905         /* auto mask will automatically reenable the interrupt when we write
906          * EICS */
907         if (!igbvf_clean_tx_irq(tx_ring))
908                 /* Ring was not completely cleaned, so fire another interrupt */
909                 ew32(EICS, tx_ring->eims_value);
910         else
911                 ew32(EIMS, tx_ring->eims_value);
912
913         return IRQ_HANDLED;
914 }
915
916 static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
917 {
918         struct net_device *netdev = data;
919         struct igbvf_adapter *adapter = netdev_priv(netdev);
920
921         adapter->int_counter0++;
922
923         /* Write the ITR value calculated at the end of the
924          * previous interrupt.
925          */
926         if (adapter->rx_ring->set_itr) {
927                 writel(adapter->rx_ring->itr_val,
928                        adapter->hw.hw_addr + adapter->rx_ring->itr_register);
929                 adapter->rx_ring->set_itr = 0;
930         }
931
932         if (napi_schedule_prep(&adapter->rx_ring->napi)) {
933                 adapter->total_rx_bytes = 0;
934                 adapter->total_rx_packets = 0;
935                 __napi_schedule(&adapter->rx_ring->napi);
936         }
937
938         return IRQ_HANDLED;
939 }
940
941 #define IGBVF_NO_QUEUE -1
942
943 static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
944                                 int tx_queue, int msix_vector)
945 {
946         struct e1000_hw *hw = &adapter->hw;
947         u32 ivar, index;
948
949         /* 82576 uses a table-based method for assigning vectors.
950            Each queue has a single entry in the table to which we write
951            a vector number along with a "valid" bit.  Sadly, the layout
952            of the table is somewhat counterintuitive. */
953         if (rx_queue > IGBVF_NO_QUEUE) {
954                 index = (rx_queue >> 1);
955                 ivar = array_er32(IVAR0, index);
956                 if (rx_queue & 0x1) {
957                         /* vector goes into third byte of register */
958                         ivar = ivar & 0xFF00FFFF;
959                         ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
960                 } else {
961                         /* vector goes into low byte of register */
962                         ivar = ivar & 0xFFFFFF00;
963                         ivar |= msix_vector | E1000_IVAR_VALID;
964                 }
965                 adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector;
966                 array_ew32(IVAR0, index, ivar);
967         }
968         if (tx_queue > IGBVF_NO_QUEUE) {
969                 index = (tx_queue >> 1);
970                 ivar = array_er32(IVAR0, index);
971                 if (tx_queue & 0x1) {
972                         /* vector goes into high byte of register */
973                         ivar = ivar & 0x00FFFFFF;
974                         ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
975                 } else {
976                         /* vector goes into second byte of register */
977                         ivar = ivar & 0xFFFF00FF;
978                         ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
979                 }
980                 adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector;
981                 array_ew32(IVAR0, index, ivar);
982         }
983 }
984
985 /**
986  * igbvf_configure_msix - Configure MSI-X hardware
987  *
988  * igbvf_configure_msix sets up the hardware to properly
989  * generate MSI-X interrupts.
990  **/
991 static void igbvf_configure_msix(struct igbvf_adapter *adapter)
992 {
993         u32 tmp;
994         struct e1000_hw *hw = &adapter->hw;
995         struct igbvf_ring *tx_ring = adapter->tx_ring;
996         struct igbvf_ring *rx_ring = adapter->rx_ring;
997         int vector = 0;
998
999         adapter->eims_enable_mask = 0;
1000
1001         igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
1002         adapter->eims_enable_mask |= tx_ring->eims_value;
1003         writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
1004         igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
1005         adapter->eims_enable_mask |= rx_ring->eims_value;
1006         writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
1007
1008         /* set vector for other causes, i.e. link changes */
1009
1010         tmp = (vector++ | E1000_IVAR_VALID);
1011
1012         ew32(IVAR_MISC, tmp);
1013
1014         adapter->eims_enable_mask = (1 << (vector)) - 1;
1015         adapter->eims_other = 1 << (vector - 1);
1016         e1e_flush();
1017 }
1018
1019 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
1020 {
1021         if (adapter->msix_entries) {
1022                 pci_disable_msix(adapter->pdev);
1023                 kfree(adapter->msix_entries);
1024                 adapter->msix_entries = NULL;
1025         }
1026 }
1027
1028 /**
1029  * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1030  *
1031  * Attempt to configure interrupts using the best available
1032  * capabilities of the hardware and kernel.
1033  **/
1034 static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1035 {
1036         int err = -ENOMEM;
1037         int i;
1038
1039         /* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */
1040         adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1041                                         GFP_KERNEL);
1042         if (adapter->msix_entries) {
1043                 for (i = 0; i < 3; i++)
1044                         adapter->msix_entries[i].entry = i;
1045
1046                 err = pci_enable_msix(adapter->pdev,
1047                                       adapter->msix_entries, 3);
1048         }
1049
1050         if (err) {
1051                 /* MSI-X failed */
1052                 dev_err(&adapter->pdev->dev,
1053                         "Failed to initialize MSI-X interrupts.\n");
1054                 igbvf_reset_interrupt_capability(adapter);
1055         }
1056 }
1057
1058 /**
1059  * igbvf_request_msix - Initialize MSI-X interrupts
1060  *
1061  * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1062  * kernel.
1063  **/
1064 static int igbvf_request_msix(struct igbvf_adapter *adapter)
1065 {
1066         struct net_device *netdev = adapter->netdev;
1067         int err = 0, vector = 0;
1068
1069         if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1070                 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1071                 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1072         } else {
1073                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1074                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1075         }
1076
1077         err = request_irq(adapter->msix_entries[vector].vector,
1078                           igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1079                           netdev);
1080         if (err)
1081                 goto out;
1082
1083         adapter->tx_ring->itr_register = E1000_EITR(vector);
1084         adapter->tx_ring->itr_val = adapter->current_itr;
1085         vector++;
1086
1087         err = request_irq(adapter->msix_entries[vector].vector,
1088                           igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1089                           netdev);
1090         if (err)
1091                 goto out;
1092
1093         adapter->rx_ring->itr_register = E1000_EITR(vector);
1094         adapter->rx_ring->itr_val = adapter->current_itr;
1095         vector++;
1096
1097         err = request_irq(adapter->msix_entries[vector].vector,
1098                           igbvf_msix_other, 0, netdev->name, netdev);
1099         if (err)
1100                 goto out;
1101
1102         igbvf_configure_msix(adapter);
1103         return 0;
1104 out:
1105         return err;
1106 }
1107
1108 /**
1109  * igbvf_alloc_queues - Allocate memory for all rings
1110  * @adapter: board private structure to initialize
1111  **/
1112 static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1113 {
1114         struct net_device *netdev = adapter->netdev;
1115
1116         adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1117         if (!adapter->tx_ring)
1118                 return -ENOMEM;
1119
1120         adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1121         if (!adapter->rx_ring) {
1122                 kfree(adapter->tx_ring);
1123                 return -ENOMEM;
1124         }
1125
1126         netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1127
1128         return 0;
1129 }
1130
1131 /**
1132  * igbvf_request_irq - initialize interrupts
1133  *
1134  * Attempts to configure interrupts using the best available
1135  * capabilities of the hardware and kernel.
1136  **/
1137 static int igbvf_request_irq(struct igbvf_adapter *adapter)
1138 {
1139         int err = -1;
1140
1141         /* igbvf supports msi-x only */
1142         if (adapter->msix_entries)
1143                 err = igbvf_request_msix(adapter);
1144
1145         if (!err)
1146                 return err;
1147
1148         dev_err(&adapter->pdev->dev,
1149                 "Unable to allocate interrupt, Error: %d\n", err);
1150
1151         return err;
1152 }
1153
1154 static void igbvf_free_irq(struct igbvf_adapter *adapter)
1155 {
1156         struct net_device *netdev = adapter->netdev;
1157         int vector;
1158
1159         if (adapter->msix_entries) {
1160                 for (vector = 0; vector < 3; vector++)
1161                         free_irq(adapter->msix_entries[vector].vector, netdev);
1162         }
1163 }
1164
1165 /**
1166  * igbvf_irq_disable - Mask off interrupt generation on the NIC
1167  **/
1168 static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1169 {
1170         struct e1000_hw *hw = &adapter->hw;
1171
1172         ew32(EIMC, ~0);
1173
1174         if (adapter->msix_entries)
1175                 ew32(EIAC, 0);
1176 }
1177
1178 /**
1179  * igbvf_irq_enable - Enable default interrupt generation settings
1180  **/
1181 static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1182 {
1183         struct e1000_hw *hw = &adapter->hw;
1184
1185         ew32(EIAC, adapter->eims_enable_mask);
1186         ew32(EIAM, adapter->eims_enable_mask);
1187         ew32(EIMS, adapter->eims_enable_mask);
1188 }
1189
1190 /**
1191  * igbvf_poll - NAPI Rx polling callback
1192  * @napi: struct associated with this polling callback
1193  * @budget: amount of packets driver is allowed to process this poll
1194  **/
1195 static int igbvf_poll(struct napi_struct *napi, int budget)
1196 {
1197         struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1198         struct igbvf_adapter *adapter = rx_ring->adapter;
1199         struct e1000_hw *hw = &adapter->hw;
1200         int work_done = 0;
1201
1202         igbvf_clean_rx_irq(adapter, &work_done, budget);
1203
1204         /* If not enough Rx work done, exit the polling mode */
1205         if (work_done < budget) {
1206                 napi_complete(napi);
1207
1208                 if (adapter->requested_itr & 3)
1209                         igbvf_set_itr(adapter);
1210
1211                 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1212                         ew32(EIMS, adapter->rx_ring->eims_value);
1213         }
1214
1215         return work_done;
1216 }
1217
1218 /**
1219  * igbvf_set_rlpml - set receive large packet maximum length
1220  * @adapter: board private structure
1221  *
1222  * Configure the maximum size of packets that will be received
1223  */
1224 static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1225 {
1226         int max_frame_size;
1227         struct e1000_hw *hw = &adapter->hw;
1228
1229         max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1230         e1000_rlpml_set_vf(hw, max_frame_size);
1231 }
1232
1233 static int igbvf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1234 {
1235         struct igbvf_adapter *adapter = netdev_priv(netdev);
1236         struct e1000_hw *hw = &adapter->hw;
1237
1238         if (hw->mac.ops.set_vfta(hw, vid, true)) {
1239                 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1240                 return -EINVAL;
1241         }
1242         set_bit(vid, adapter->active_vlans);
1243         return 0;
1244 }
1245
1246 static int igbvf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1247 {
1248         struct igbvf_adapter *adapter = netdev_priv(netdev);
1249         struct e1000_hw *hw = &adapter->hw;
1250
1251         if (hw->mac.ops.set_vfta(hw, vid, false)) {
1252                 dev_err(&adapter->pdev->dev,
1253                         "Failed to remove vlan id %d\n", vid);
1254                 return -EINVAL;
1255         }
1256         clear_bit(vid, adapter->active_vlans);
1257         return 0;
1258 }
1259
1260 static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1261 {
1262         u16 vid;
1263
1264         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1265                 igbvf_vlan_rx_add_vid(adapter->netdev, vid);
1266 }
1267
1268 /**
1269  * igbvf_configure_tx - Configure Transmit Unit after Reset
1270  * @adapter: board private structure
1271  *
1272  * Configure the Tx unit of the MAC after a reset.
1273  **/
1274 static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1275 {
1276         struct e1000_hw *hw = &adapter->hw;
1277         struct igbvf_ring *tx_ring = adapter->tx_ring;
1278         u64 tdba;
1279         u32 txdctl, dca_txctrl;
1280
1281         /* disable transmits */
1282         txdctl = er32(TXDCTL(0));
1283         ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1284         e1e_flush();
1285         msleep(10);
1286
1287         /* Setup the HW Tx Head and Tail descriptor pointers */
1288         ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1289         tdba = tx_ring->dma;
1290         ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1291         ew32(TDBAH(0), (tdba >> 32));
1292         ew32(TDH(0), 0);
1293         ew32(TDT(0), 0);
1294         tx_ring->head = E1000_TDH(0);
1295         tx_ring->tail = E1000_TDT(0);
1296
1297         /* Turn off Relaxed Ordering on head write-backs.  The writebacks
1298          * MUST be delivered in order or it will completely screw up
1299          * our bookeeping.
1300          */
1301         dca_txctrl = er32(DCA_TXCTRL(0));
1302         dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1303         ew32(DCA_TXCTRL(0), dca_txctrl);
1304
1305         /* enable transmits */
1306         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1307         ew32(TXDCTL(0), txdctl);
1308
1309         /* Setup Transmit Descriptor Settings for eop descriptor */
1310         adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1311
1312         /* enable Report Status bit */
1313         adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1314 }
1315
1316 /**
1317  * igbvf_setup_srrctl - configure the receive control registers
1318  * @adapter: Board private structure
1319  **/
1320 static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1321 {
1322         struct e1000_hw *hw = &adapter->hw;
1323         u32 srrctl = 0;
1324
1325         srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1326                     E1000_SRRCTL_BSIZEHDR_MASK |
1327                     E1000_SRRCTL_BSIZEPKT_MASK);
1328
1329         /* Enable queue drop to avoid head of line blocking */
1330         srrctl |= E1000_SRRCTL_DROP_EN;
1331
1332         /* Setup buffer sizes */
1333         srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1334                   E1000_SRRCTL_BSIZEPKT_SHIFT;
1335
1336         if (adapter->rx_buffer_len < 2048) {
1337                 adapter->rx_ps_hdr_size = 0;
1338                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1339         } else {
1340                 adapter->rx_ps_hdr_size = 128;
1341                 srrctl |= adapter->rx_ps_hdr_size <<
1342                           E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1343                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1344         }
1345
1346         ew32(SRRCTL(0), srrctl);
1347 }
1348
1349 /**
1350  * igbvf_configure_rx - Configure Receive Unit after Reset
1351  * @adapter: board private structure
1352  *
1353  * Configure the Rx unit of the MAC after a reset.
1354  **/
1355 static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1356 {
1357         struct e1000_hw *hw = &adapter->hw;
1358         struct igbvf_ring *rx_ring = adapter->rx_ring;
1359         u64 rdba;
1360         u32 rdlen, rxdctl;
1361
1362         /* disable receives */
1363         rxdctl = er32(RXDCTL(0));
1364         ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1365         e1e_flush();
1366         msleep(10);
1367
1368         rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1369
1370         /*
1371          * Setup the HW Rx Head and Tail Descriptor Pointers and
1372          * the Base and Length of the Rx Descriptor Ring
1373          */
1374         rdba = rx_ring->dma;
1375         ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1376         ew32(RDBAH(0), (rdba >> 32));
1377         ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1378         rx_ring->head = E1000_RDH(0);
1379         rx_ring->tail = E1000_RDT(0);
1380         ew32(RDH(0), 0);
1381         ew32(RDT(0), 0);
1382
1383         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1384         rxdctl &= 0xFFF00000;
1385         rxdctl |= IGBVF_RX_PTHRESH;
1386         rxdctl |= IGBVF_RX_HTHRESH << 8;
1387         rxdctl |= IGBVF_RX_WTHRESH << 16;
1388
1389         igbvf_set_rlpml(adapter);
1390
1391         /* enable receives */
1392         ew32(RXDCTL(0), rxdctl);
1393 }
1394
1395 /**
1396  * igbvf_set_multi - Multicast and Promiscuous mode set
1397  * @netdev: network interface device structure
1398  *
1399  * The set_multi entry point is called whenever the multicast address
1400  * list or the network interface flags are updated.  This routine is
1401  * responsible for configuring the hardware for proper multicast,
1402  * promiscuous mode, and all-multi behavior.
1403  **/
1404 static void igbvf_set_multi(struct net_device *netdev)
1405 {
1406         struct igbvf_adapter *adapter = netdev_priv(netdev);
1407         struct e1000_hw *hw = &adapter->hw;
1408         struct netdev_hw_addr *ha;
1409         u8  *mta_list = NULL;
1410         int i;
1411
1412         if (!netdev_mc_empty(netdev)) {
1413                 mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1414                                          GFP_ATOMIC);
1415                 if (!mta_list)
1416                         return;
1417         }
1418
1419         /* prepare a packed array of only addresses. */
1420         i = 0;
1421         netdev_for_each_mc_addr(ha, netdev)
1422                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1423
1424         hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1425         kfree(mta_list);
1426 }
1427
1428 /**
1429  * igbvf_configure - configure the hardware for Rx and Tx
1430  * @adapter: private board structure
1431  **/
1432 static void igbvf_configure(struct igbvf_adapter *adapter)
1433 {
1434         igbvf_set_multi(adapter->netdev);
1435
1436         igbvf_restore_vlan(adapter);
1437
1438         igbvf_configure_tx(adapter);
1439         igbvf_setup_srrctl(adapter);
1440         igbvf_configure_rx(adapter);
1441         igbvf_alloc_rx_buffers(adapter->rx_ring,
1442                                igbvf_desc_unused(adapter->rx_ring));
1443 }
1444
1445 /* igbvf_reset - bring the hardware into a known good state
1446  *
1447  * This function boots the hardware and enables some settings that
1448  * require a configuration cycle of the hardware - those cannot be
1449  * set/changed during runtime. After reset the device needs to be
1450  * properly configured for Rx, Tx etc.
1451  */
1452 static void igbvf_reset(struct igbvf_adapter *adapter)
1453 {
1454         struct e1000_mac_info *mac = &adapter->hw.mac;
1455         struct net_device *netdev = adapter->netdev;
1456         struct e1000_hw *hw = &adapter->hw;
1457
1458         /* Allow time for pending master requests to run */
1459         if (mac->ops.reset_hw(hw))
1460                 dev_err(&adapter->pdev->dev, "PF still resetting\n");
1461
1462         mac->ops.init_hw(hw);
1463
1464         if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1465                 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1466                        netdev->addr_len);
1467                 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1468                        netdev->addr_len);
1469         }
1470
1471         adapter->last_reset = jiffies;
1472 }
1473
1474 int igbvf_up(struct igbvf_adapter *adapter)
1475 {
1476         struct e1000_hw *hw = &adapter->hw;
1477
1478         /* hardware has been reset, we need to reload some things */
1479         igbvf_configure(adapter);
1480
1481         clear_bit(__IGBVF_DOWN, &adapter->state);
1482
1483         napi_enable(&adapter->rx_ring->napi);
1484         if (adapter->msix_entries)
1485                 igbvf_configure_msix(adapter);
1486
1487         /* Clear any pending interrupts. */
1488         er32(EICR);
1489         igbvf_irq_enable(adapter);
1490
1491         /* start the watchdog */
1492         hw->mac.get_link_status = 1;
1493         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1494
1495
1496         return 0;
1497 }
1498
1499 void igbvf_down(struct igbvf_adapter *adapter)
1500 {
1501         struct net_device *netdev = adapter->netdev;
1502         struct e1000_hw *hw = &adapter->hw;
1503         u32 rxdctl, txdctl;
1504
1505         /*
1506          * signal that we're down so the interrupt handler does not
1507          * reschedule our watchdog timer
1508          */
1509         set_bit(__IGBVF_DOWN, &adapter->state);
1510
1511         /* disable receives in the hardware */
1512         rxdctl = er32(RXDCTL(0));
1513         ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1514
1515         netif_stop_queue(netdev);
1516
1517         /* disable transmits in the hardware */
1518         txdctl = er32(TXDCTL(0));
1519         ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1520
1521         /* flush both disables and wait for them to finish */
1522         e1e_flush();
1523         msleep(10);
1524
1525         napi_disable(&adapter->rx_ring->napi);
1526
1527         igbvf_irq_disable(adapter);
1528
1529         del_timer_sync(&adapter->watchdog_timer);
1530
1531         netif_carrier_off(netdev);
1532
1533         /* record the stats before reset*/
1534         igbvf_update_stats(adapter);
1535
1536         adapter->link_speed = 0;
1537         adapter->link_duplex = 0;
1538
1539         igbvf_reset(adapter);
1540         igbvf_clean_tx_ring(adapter->tx_ring);
1541         igbvf_clean_rx_ring(adapter->rx_ring);
1542 }
1543
1544 void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1545 {
1546         might_sleep();
1547         while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1548                 msleep(1);
1549         igbvf_down(adapter);
1550         igbvf_up(adapter);
1551         clear_bit(__IGBVF_RESETTING, &adapter->state);
1552 }
1553
1554 /**
1555  * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1556  * @adapter: board private structure to initialize
1557  *
1558  * igbvf_sw_init initializes the Adapter private data structure.
1559  * Fields are initialized based on PCI device information and
1560  * OS network device settings (MTU size).
1561  **/
1562 static int igbvf_sw_init(struct igbvf_adapter *adapter)
1563 {
1564         struct net_device *netdev = adapter->netdev;
1565         s32 rc;
1566
1567         adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1568         adapter->rx_ps_hdr_size = 0;
1569         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1570         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1571
1572         adapter->tx_int_delay = 8;
1573         adapter->tx_abs_int_delay = 32;
1574         adapter->rx_int_delay = 0;
1575         adapter->rx_abs_int_delay = 8;
1576         adapter->requested_itr = 3;
1577         adapter->current_itr = IGBVF_START_ITR;
1578
1579         /* Set various function pointers */
1580         adapter->ei->init_ops(&adapter->hw);
1581
1582         rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1583         if (rc)
1584                 return rc;
1585
1586         rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1587         if (rc)
1588                 return rc;
1589
1590         igbvf_set_interrupt_capability(adapter);
1591
1592         if (igbvf_alloc_queues(adapter))
1593                 return -ENOMEM;
1594
1595         spin_lock_init(&adapter->tx_queue_lock);
1596
1597         /* Explicitly disable IRQ since the NIC can be in any state. */
1598         igbvf_irq_disable(adapter);
1599
1600         spin_lock_init(&adapter->stats_lock);
1601
1602         set_bit(__IGBVF_DOWN, &adapter->state);
1603         return 0;
1604 }
1605
1606 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1607 {
1608         struct e1000_hw *hw = &adapter->hw;
1609
1610         adapter->stats.last_gprc = er32(VFGPRC);
1611         adapter->stats.last_gorc = er32(VFGORC);
1612         adapter->stats.last_gptc = er32(VFGPTC);
1613         adapter->stats.last_gotc = er32(VFGOTC);
1614         adapter->stats.last_mprc = er32(VFMPRC);
1615         adapter->stats.last_gotlbc = er32(VFGOTLBC);
1616         adapter->stats.last_gptlbc = er32(VFGPTLBC);
1617         adapter->stats.last_gorlbc = er32(VFGORLBC);
1618         adapter->stats.last_gprlbc = er32(VFGPRLBC);
1619
1620         adapter->stats.base_gprc = er32(VFGPRC);
1621         adapter->stats.base_gorc = er32(VFGORC);
1622         adapter->stats.base_gptc = er32(VFGPTC);
1623         adapter->stats.base_gotc = er32(VFGOTC);
1624         adapter->stats.base_mprc = er32(VFMPRC);
1625         adapter->stats.base_gotlbc = er32(VFGOTLBC);
1626         adapter->stats.base_gptlbc = er32(VFGPTLBC);
1627         adapter->stats.base_gorlbc = er32(VFGORLBC);
1628         adapter->stats.base_gprlbc = er32(VFGPRLBC);
1629 }
1630
1631 /**
1632  * igbvf_open - Called when a network interface is made active
1633  * @netdev: network interface device structure
1634  *
1635  * Returns 0 on success, negative value on failure
1636  *
1637  * The open entry point is called when a network interface is made
1638  * active by the system (IFF_UP).  At this point all resources needed
1639  * for transmit and receive operations are allocated, the interrupt
1640  * handler is registered with the OS, the watchdog timer is started,
1641  * and the stack is notified that the interface is ready.
1642  **/
1643 static int igbvf_open(struct net_device *netdev)
1644 {
1645         struct igbvf_adapter *adapter = netdev_priv(netdev);
1646         struct e1000_hw *hw = &adapter->hw;
1647         int err;
1648
1649         /* disallow open during test */
1650         if (test_bit(__IGBVF_TESTING, &adapter->state))
1651                 return -EBUSY;
1652
1653         /* allocate transmit descriptors */
1654         err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1655         if (err)
1656                 goto err_setup_tx;
1657
1658         /* allocate receive descriptors */
1659         err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1660         if (err)
1661                 goto err_setup_rx;
1662
1663         /*
1664          * before we allocate an interrupt, we must be ready to handle it.
1665          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1666          * as soon as we call pci_request_irq, so we have to setup our
1667          * clean_rx handler before we do so.
1668          */
1669         igbvf_configure(adapter);
1670
1671         err = igbvf_request_irq(adapter);
1672         if (err)
1673                 goto err_req_irq;
1674
1675         /* From here on the code is the same as igbvf_up() */
1676         clear_bit(__IGBVF_DOWN, &adapter->state);
1677
1678         napi_enable(&adapter->rx_ring->napi);
1679
1680         /* clear any pending interrupts */
1681         er32(EICR);
1682
1683         igbvf_irq_enable(adapter);
1684
1685         /* start the watchdog */
1686         hw->mac.get_link_status = 1;
1687         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1688
1689         return 0;
1690
1691 err_req_irq:
1692         igbvf_free_rx_resources(adapter->rx_ring);
1693 err_setup_rx:
1694         igbvf_free_tx_resources(adapter->tx_ring);
1695 err_setup_tx:
1696         igbvf_reset(adapter);
1697
1698         return err;
1699 }
1700
1701 /**
1702  * igbvf_close - Disables a network interface
1703  * @netdev: network interface device structure
1704  *
1705  * Returns 0, this is not allowed to fail
1706  *
1707  * The close entry point is called when an interface is de-activated
1708  * by the OS.  The hardware is still under the drivers control, but
1709  * needs to be disabled.  A global MAC reset is issued to stop the
1710  * hardware, and all transmit and receive resources are freed.
1711  **/
1712 static int igbvf_close(struct net_device *netdev)
1713 {
1714         struct igbvf_adapter *adapter = netdev_priv(netdev);
1715
1716         WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1717         igbvf_down(adapter);
1718
1719         igbvf_free_irq(adapter);
1720
1721         igbvf_free_tx_resources(adapter->tx_ring);
1722         igbvf_free_rx_resources(adapter->rx_ring);
1723
1724         return 0;
1725 }
1726 /**
1727  * igbvf_set_mac - Change the Ethernet Address of the NIC
1728  * @netdev: network interface device structure
1729  * @p: pointer to an address structure
1730  *
1731  * Returns 0 on success, negative on failure
1732  **/
1733 static int igbvf_set_mac(struct net_device *netdev, void *p)
1734 {
1735         struct igbvf_adapter *adapter = netdev_priv(netdev);
1736         struct e1000_hw *hw = &adapter->hw;
1737         struct sockaddr *addr = p;
1738
1739         if (!is_valid_ether_addr(addr->sa_data))
1740                 return -EADDRNOTAVAIL;
1741
1742         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1743
1744         hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1745
1746         if (memcmp(addr->sa_data, hw->mac.addr, 6))
1747                 return -EADDRNOTAVAIL;
1748
1749         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1750
1751         return 0;
1752 }
1753
1754 #define UPDATE_VF_COUNTER(reg, name)                                    \
1755         {                                                               \
1756                 u32 current_counter = er32(reg);                        \
1757                 if (current_counter < adapter->stats.last_##name)       \
1758                         adapter->stats.name += 0x100000000LL;           \
1759                 adapter->stats.last_##name = current_counter;           \
1760                 adapter->stats.name &= 0xFFFFFFFF00000000LL;            \
1761                 adapter->stats.name |= current_counter;                 \
1762         }
1763
1764 /**
1765  * igbvf_update_stats - Update the board statistics counters
1766  * @adapter: board private structure
1767 **/
1768 void igbvf_update_stats(struct igbvf_adapter *adapter)
1769 {
1770         struct e1000_hw *hw = &adapter->hw;
1771         struct pci_dev *pdev = adapter->pdev;
1772
1773         /*
1774          * Prevent stats update while adapter is being reset, link is down
1775          * or if the pci connection is down.
1776          */
1777         if (adapter->link_speed == 0)
1778                 return;
1779
1780         if (test_bit(__IGBVF_RESETTING, &adapter->state))
1781                 return;
1782
1783         if (pci_channel_offline(pdev))
1784                 return;
1785
1786         UPDATE_VF_COUNTER(VFGPRC, gprc);
1787         UPDATE_VF_COUNTER(VFGORC, gorc);
1788         UPDATE_VF_COUNTER(VFGPTC, gptc);
1789         UPDATE_VF_COUNTER(VFGOTC, gotc);
1790         UPDATE_VF_COUNTER(VFMPRC, mprc);
1791         UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1792         UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1793         UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1794         UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1795
1796         /* Fill out the OS statistics structure */
1797         adapter->net_stats.multicast = adapter->stats.mprc;
1798 }
1799
1800 static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1801 {
1802         dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1803                  adapter->link_speed,
1804                  adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1805 }
1806
1807 static bool igbvf_has_link(struct igbvf_adapter *adapter)
1808 {
1809         struct e1000_hw *hw = &adapter->hw;
1810         s32 ret_val = E1000_SUCCESS;
1811         bool link_active;
1812
1813         /* If interface is down, stay link down */
1814         if (test_bit(__IGBVF_DOWN, &adapter->state))
1815                 return false;
1816
1817         ret_val = hw->mac.ops.check_for_link(hw);
1818         link_active = !hw->mac.get_link_status;
1819
1820         /* if check for link returns error we will need to reset */
1821         if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1822                 schedule_work(&adapter->reset_task);
1823
1824         return link_active;
1825 }
1826
1827 /**
1828  * igbvf_watchdog - Timer Call-back
1829  * @data: pointer to adapter cast into an unsigned long
1830  **/
1831 static void igbvf_watchdog(unsigned long data)
1832 {
1833         struct igbvf_adapter *adapter = (struct igbvf_adapter *) data;
1834
1835         /* Do the rest outside of interrupt context */
1836         schedule_work(&adapter->watchdog_task);
1837 }
1838
1839 static void igbvf_watchdog_task(struct work_struct *work)
1840 {
1841         struct igbvf_adapter *adapter = container_of(work,
1842                                                      struct igbvf_adapter,
1843                                                      watchdog_task);
1844         struct net_device *netdev = adapter->netdev;
1845         struct e1000_mac_info *mac = &adapter->hw.mac;
1846         struct igbvf_ring *tx_ring = adapter->tx_ring;
1847         struct e1000_hw *hw = &adapter->hw;
1848         u32 link;
1849         int tx_pending = 0;
1850
1851         link = igbvf_has_link(adapter);
1852
1853         if (link) {
1854                 if (!netif_carrier_ok(netdev)) {
1855                         mac->ops.get_link_up_info(&adapter->hw,
1856                                                   &adapter->link_speed,
1857                                                   &adapter->link_duplex);
1858                         igbvf_print_link_info(adapter);
1859
1860                         netif_carrier_on(netdev);
1861                         netif_wake_queue(netdev);
1862                 }
1863         } else {
1864                 if (netif_carrier_ok(netdev)) {
1865                         adapter->link_speed = 0;
1866                         adapter->link_duplex = 0;
1867                         dev_info(&adapter->pdev->dev, "Link is Down\n");
1868                         netif_carrier_off(netdev);
1869                         netif_stop_queue(netdev);
1870                 }
1871         }
1872
1873         if (netif_carrier_ok(netdev)) {
1874                 igbvf_update_stats(adapter);
1875         } else {
1876                 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1877                               tx_ring->count);
1878                 if (tx_pending) {
1879                         /*
1880                          * We've lost link, so the controller stops DMA,
1881                          * but we've got queued Tx work that's never going
1882                          * to get done, so reset controller to flush Tx.
1883                          * (Do the reset outside of interrupt context).
1884                          */
1885                         adapter->tx_timeout_count++;
1886                         schedule_work(&adapter->reset_task);
1887                 }
1888         }
1889
1890         /* Cause software interrupt to ensure Rx ring is cleaned */
1891         ew32(EICS, adapter->rx_ring->eims_value);
1892
1893         /* Reset the timer */
1894         if (!test_bit(__IGBVF_DOWN, &adapter->state))
1895                 mod_timer(&adapter->watchdog_timer,
1896                           round_jiffies(jiffies + (2 * HZ)));
1897 }
1898
1899 #define IGBVF_TX_FLAGS_CSUM             0x00000001
1900 #define IGBVF_TX_FLAGS_VLAN             0x00000002
1901 #define IGBVF_TX_FLAGS_TSO              0x00000004
1902 #define IGBVF_TX_FLAGS_IPV4             0x00000008
1903 #define IGBVF_TX_FLAGS_VLAN_MASK        0xffff0000
1904 #define IGBVF_TX_FLAGS_VLAN_SHIFT       16
1905
1906 static int igbvf_tso(struct igbvf_adapter *adapter,
1907                      struct igbvf_ring *tx_ring,
1908                      struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1909 {
1910         struct e1000_adv_tx_context_desc *context_desc;
1911         unsigned int i;
1912         int err;
1913         struct igbvf_buffer *buffer_info;
1914         u32 info = 0, tu_cmd = 0;
1915         u32 mss_l4len_idx, l4len;
1916         *hdr_len = 0;
1917
1918         if (skb_header_cloned(skb)) {
1919                 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1920                 if (err) {
1921                         dev_err(&adapter->pdev->dev,
1922                                 "igbvf_tso returning an error\n");
1923                         return err;
1924                 }
1925         }
1926
1927         l4len = tcp_hdrlen(skb);
1928         *hdr_len += l4len;
1929
1930         if (skb->protocol == htons(ETH_P_IP)) {
1931                 struct iphdr *iph = ip_hdr(skb);
1932                 iph->tot_len = 0;
1933                 iph->check = 0;
1934                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1935                                                          iph->daddr, 0,
1936                                                          IPPROTO_TCP,
1937                                                          0);
1938         } else if (skb_is_gso_v6(skb)) {
1939                 ipv6_hdr(skb)->payload_len = 0;
1940                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1941                                                        &ipv6_hdr(skb)->daddr,
1942                                                        0, IPPROTO_TCP, 0);
1943         }
1944
1945         i = tx_ring->next_to_use;
1946
1947         buffer_info = &tx_ring->buffer_info[i];
1948         context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1949         /* VLAN MACLEN IPLEN */
1950         if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1951                 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1952         info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1953         *hdr_len += skb_network_offset(skb);
1954         info |= (skb_transport_header(skb) - skb_network_header(skb));
1955         *hdr_len += (skb_transport_header(skb) - skb_network_header(skb));
1956         context_desc->vlan_macip_lens = cpu_to_le32(info);
1957
1958         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1959         tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1960
1961         if (skb->protocol == htons(ETH_P_IP))
1962                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1963         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1964
1965         context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1966
1967         /* MSS L4LEN IDX */
1968         mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
1969         mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
1970
1971         context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1972         context_desc->seqnum_seed = 0;
1973
1974         buffer_info->time_stamp = jiffies;
1975         buffer_info->dma = 0;
1976         i++;
1977         if (i == tx_ring->count)
1978                 i = 0;
1979
1980         tx_ring->next_to_use = i;
1981
1982         return true;
1983 }
1984
1985 static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter,
1986                                  struct igbvf_ring *tx_ring,
1987                                  struct sk_buff *skb, u32 tx_flags)
1988 {
1989         struct e1000_adv_tx_context_desc *context_desc;
1990         unsigned int i;
1991         struct igbvf_buffer *buffer_info;
1992         u32 info = 0, tu_cmd = 0;
1993
1994         if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
1995             (tx_flags & IGBVF_TX_FLAGS_VLAN)) {
1996                 i = tx_ring->next_to_use;
1997                 buffer_info = &tx_ring->buffer_info[i];
1998                 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1999
2000                 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2001                         info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
2002
2003                 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2004                 if (skb->ip_summed == CHECKSUM_PARTIAL)
2005                         info |= (skb_transport_header(skb) -
2006                                  skb_network_header(skb));
2007
2008
2009                 context_desc->vlan_macip_lens = cpu_to_le32(info);
2010
2011                 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2012
2013                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2014                         switch (skb->protocol) {
2015                         case __constant_htons(ETH_P_IP):
2016                                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2017                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2018                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2019                                 break;
2020                         case __constant_htons(ETH_P_IPV6):
2021                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2022                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2023                                 break;
2024                         default:
2025                                 break;
2026                         }
2027                 }
2028
2029                 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2030                 context_desc->seqnum_seed = 0;
2031                 context_desc->mss_l4len_idx = 0;
2032
2033                 buffer_info->time_stamp = jiffies;
2034                 buffer_info->dma = 0;
2035                 i++;
2036                 if (i == tx_ring->count)
2037                         i = 0;
2038                 tx_ring->next_to_use = i;
2039
2040                 return true;
2041         }
2042
2043         return false;
2044 }
2045
2046 static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2047 {
2048         struct igbvf_adapter *adapter = netdev_priv(netdev);
2049
2050         /* there is enough descriptors then we don't need to worry  */
2051         if (igbvf_desc_unused(adapter->tx_ring) >= size)
2052                 return 0;
2053
2054         netif_stop_queue(netdev);
2055
2056         smp_mb();
2057
2058         /* We need to check again just in case room has been made available */
2059         if (igbvf_desc_unused(adapter->tx_ring) < size)
2060                 return -EBUSY;
2061
2062         netif_wake_queue(netdev);
2063
2064         ++adapter->restart_queue;
2065         return 0;
2066 }
2067
2068 #define IGBVF_MAX_TXD_PWR       16
2069 #define IGBVF_MAX_DATA_PER_TXD  (1 << IGBVF_MAX_TXD_PWR)
2070
2071 static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2072                                    struct igbvf_ring *tx_ring,
2073                                    struct sk_buff *skb)
2074 {
2075         struct igbvf_buffer *buffer_info;
2076         struct pci_dev *pdev = adapter->pdev;
2077         unsigned int len = skb_headlen(skb);
2078         unsigned int count = 0, i;
2079         unsigned int f;
2080
2081         i = tx_ring->next_to_use;
2082
2083         buffer_info = &tx_ring->buffer_info[i];
2084         BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2085         buffer_info->length = len;
2086         /* set time_stamp *before* dma to help avoid a possible race */
2087         buffer_info->time_stamp = jiffies;
2088         buffer_info->mapped_as_page = false;
2089         buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2090                                           DMA_TO_DEVICE);
2091         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2092                 goto dma_error;
2093
2094
2095         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2096                 const struct skb_frag_struct *frag;
2097
2098                 count++;
2099                 i++;
2100                 if (i == tx_ring->count)
2101                         i = 0;
2102
2103                 frag = &skb_shinfo(skb)->frags[f];
2104                 len = skb_frag_size(frag);
2105
2106                 buffer_info = &tx_ring->buffer_info[i];
2107                 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2108                 buffer_info->length = len;
2109                 buffer_info->time_stamp = jiffies;
2110                 buffer_info->mapped_as_page = true;
2111                 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2112                                                 DMA_TO_DEVICE);
2113                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2114                         goto dma_error;
2115         }
2116
2117         tx_ring->buffer_info[i].skb = skb;
2118
2119         return ++count;
2120
2121 dma_error:
2122         dev_err(&pdev->dev, "TX DMA map failed\n");
2123
2124         /* clear timestamp and dma mappings for failed buffer_info mapping */
2125         buffer_info->dma = 0;
2126         buffer_info->time_stamp = 0;
2127         buffer_info->length = 0;
2128         buffer_info->mapped_as_page = false;
2129         if (count)
2130                 count--;
2131
2132         /* clear timestamp and dma mappings for remaining portion of packet */
2133         while (count--) {
2134                 if (i==0)
2135                         i += tx_ring->count;
2136                 i--;
2137                 buffer_info = &tx_ring->buffer_info[i];
2138                 igbvf_put_txbuf(adapter, buffer_info);
2139         }
2140
2141         return 0;
2142 }
2143
2144 static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2145                                       struct igbvf_ring *tx_ring,
2146                                       int tx_flags, int count,
2147                                       unsigned int first, u32 paylen,
2148                                       u8 hdr_len)
2149 {
2150         union e1000_adv_tx_desc *tx_desc = NULL;
2151         struct igbvf_buffer *buffer_info;
2152         u32 olinfo_status = 0, cmd_type_len;
2153         unsigned int i;
2154
2155         cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2156                         E1000_ADVTXD_DCMD_DEXT);
2157
2158         if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2159                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2160
2161         if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2162                 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2163
2164                 /* insert tcp checksum */
2165                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2166
2167                 /* insert ip checksum */
2168                 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2169                         olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2170
2171         } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2172                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2173         }
2174
2175         olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2176
2177         i = tx_ring->next_to_use;
2178         while (count--) {
2179                 buffer_info = &tx_ring->buffer_info[i];
2180                 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2181                 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2182                 tx_desc->read.cmd_type_len =
2183                          cpu_to_le32(cmd_type_len | buffer_info->length);
2184                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2185                 i++;
2186                 if (i == tx_ring->count)
2187                         i = 0;
2188         }
2189
2190         tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2191         /* Force memory writes to complete before letting h/w
2192          * know there are new descriptors to fetch.  (Only
2193          * applicable for weak-ordered memory model archs,
2194          * such as IA-64). */
2195         wmb();
2196
2197         tx_ring->buffer_info[first].next_to_watch = tx_desc;
2198         tx_ring->next_to_use = i;
2199         writel(i, adapter->hw.hw_addr + tx_ring->tail);
2200         /* we need this if more than one processor can write to our tail
2201          * at a time, it syncronizes IO on IA64/Altix systems */
2202         mmiowb();
2203 }
2204
2205 static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2206                                              struct net_device *netdev,
2207                                              struct igbvf_ring *tx_ring)
2208 {
2209         struct igbvf_adapter *adapter = netdev_priv(netdev);
2210         unsigned int first, tx_flags = 0;
2211         u8 hdr_len = 0;
2212         int count = 0;
2213         int tso = 0;
2214
2215         if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2216                 dev_kfree_skb_any(skb);
2217                 return NETDEV_TX_OK;
2218         }
2219
2220         if (skb->len <= 0) {
2221                 dev_kfree_skb_any(skb);
2222                 return NETDEV_TX_OK;
2223         }
2224
2225         /*
2226          * need: count + 4 desc gap to keep tail from touching
2227          *       + 2 desc gap to keep tail from touching head,
2228          *       + 1 desc for skb->data,
2229          *       + 1 desc for context descriptor,
2230          * head, otherwise try next time
2231          */
2232         if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2233                 /* this is a hard error */
2234                 return NETDEV_TX_BUSY;
2235         }
2236
2237         if (vlan_tx_tag_present(skb)) {
2238                 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2239                 tx_flags |= (vlan_tx_tag_get(skb) << IGBVF_TX_FLAGS_VLAN_SHIFT);
2240         }
2241
2242         if (skb->protocol == htons(ETH_P_IP))
2243                 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2244
2245         first = tx_ring->next_to_use;
2246
2247         tso = skb_is_gso(skb) ?
2248                 igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len) : 0;
2249         if (unlikely(tso < 0)) {
2250                 dev_kfree_skb_any(skb);
2251                 return NETDEV_TX_OK;
2252         }
2253
2254         if (tso)
2255                 tx_flags |= IGBVF_TX_FLAGS_TSO;
2256         else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
2257                  (skb->ip_summed == CHECKSUM_PARTIAL))
2258                 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2259
2260         /*
2261          * count reflects descriptors mapped, if 0 then mapping error
2262          * has occurred and we need to rewind the descriptor queue
2263          */
2264         count = igbvf_tx_map_adv(adapter, tx_ring, skb);
2265
2266         if (count) {
2267                 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2268                                    first, skb->len, hdr_len);
2269                 /* Make sure there is space in the ring for the next send. */
2270                 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2271         } else {
2272                 dev_kfree_skb_any(skb);
2273                 tx_ring->buffer_info[first].time_stamp = 0;
2274                 tx_ring->next_to_use = first;
2275         }
2276
2277         return NETDEV_TX_OK;
2278 }
2279
2280 static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2281                                     struct net_device *netdev)
2282 {
2283         struct igbvf_adapter *adapter = netdev_priv(netdev);
2284         struct igbvf_ring *tx_ring;
2285
2286         if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2287                 dev_kfree_skb_any(skb);
2288                 return NETDEV_TX_OK;
2289         }
2290
2291         tx_ring = &adapter->tx_ring[0];
2292
2293         return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2294 }
2295
2296 /**
2297  * igbvf_tx_timeout - Respond to a Tx Hang
2298  * @netdev: network interface device structure
2299  **/
2300 static void igbvf_tx_timeout(struct net_device *netdev)
2301 {
2302         struct igbvf_adapter *adapter = netdev_priv(netdev);
2303
2304         /* Do the reset outside of interrupt context */
2305         adapter->tx_timeout_count++;
2306         schedule_work(&adapter->reset_task);
2307 }
2308
2309 static void igbvf_reset_task(struct work_struct *work)
2310 {
2311         struct igbvf_adapter *adapter;
2312         adapter = container_of(work, struct igbvf_adapter, reset_task);
2313
2314         igbvf_reinit_locked(adapter);
2315 }
2316
2317 /**
2318  * igbvf_get_stats - Get System Network Statistics
2319  * @netdev: network interface device structure
2320  *
2321  * Returns the address of the device statistics structure.
2322  * The statistics are actually updated from the timer callback.
2323  **/
2324 static struct net_device_stats *igbvf_get_stats(struct net_device *netdev)
2325 {
2326         struct igbvf_adapter *adapter = netdev_priv(netdev);
2327
2328         /* only return the current stats */
2329         return &adapter->net_stats;
2330 }
2331
2332 /**
2333  * igbvf_change_mtu - Change the Maximum Transfer Unit
2334  * @netdev: network interface device structure
2335  * @new_mtu: new value for maximum frame size
2336  *
2337  * Returns 0 on success, negative on failure
2338  **/
2339 static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2340 {
2341         struct igbvf_adapter *adapter = netdev_priv(netdev);
2342         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2343
2344         if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2345                 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
2346                 return -EINVAL;
2347         }
2348
2349 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2350         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2351                 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2352                 return -EINVAL;
2353         }
2354
2355         while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2356                 msleep(1);
2357         /* igbvf_down has a dependency on max_frame_size */
2358         adapter->max_frame_size = max_frame;
2359         if (netif_running(netdev))
2360                 igbvf_down(adapter);
2361
2362         /*
2363          * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2364          * means we reserve 2 more, this pushes us to allocate from the next
2365          * larger slab size.
2366          * i.e. RXBUFFER_2048 --> size-4096 slab
2367          * However with the new *_jumbo_rx* routines, jumbo receives will use
2368          * fragmented skbs
2369          */
2370
2371         if (max_frame <= 1024)
2372                 adapter->rx_buffer_len = 1024;
2373         else if (max_frame <= 2048)
2374                 adapter->rx_buffer_len = 2048;
2375         else
2376 #if (PAGE_SIZE / 2) > 16384
2377                 adapter->rx_buffer_len = 16384;
2378 #else
2379                 adapter->rx_buffer_len = PAGE_SIZE / 2;
2380 #endif
2381
2382
2383         /* adjust allocation if LPE protects us, and we aren't using SBP */
2384         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2385              (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2386                 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2387                                          ETH_FCS_LEN;
2388
2389         dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2390                  netdev->mtu, new_mtu);
2391         netdev->mtu = new_mtu;
2392
2393         if (netif_running(netdev))
2394                 igbvf_up(adapter);
2395         else
2396                 igbvf_reset(adapter);
2397
2398         clear_bit(__IGBVF_RESETTING, &adapter->state);
2399
2400         return 0;
2401 }
2402
2403 static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2404 {
2405         switch (cmd) {
2406         default:
2407                 return -EOPNOTSUPP;
2408         }
2409 }
2410
2411 static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2412 {
2413         struct net_device *netdev = pci_get_drvdata(pdev);
2414         struct igbvf_adapter *adapter = netdev_priv(netdev);
2415 #ifdef CONFIG_PM
2416         int retval = 0;
2417 #endif
2418
2419         netif_device_detach(netdev);
2420
2421         if (netif_running(netdev)) {
2422                 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2423                 igbvf_down(adapter);
2424                 igbvf_free_irq(adapter);
2425         }
2426
2427 #ifdef CONFIG_PM
2428         retval = pci_save_state(pdev);
2429         if (retval)
2430                 return retval;
2431 #endif
2432
2433         pci_disable_device(pdev);
2434
2435         return 0;
2436 }
2437
2438 #ifdef CONFIG_PM
2439 static int igbvf_resume(struct pci_dev *pdev)
2440 {
2441         struct net_device *netdev = pci_get_drvdata(pdev);
2442         struct igbvf_adapter *adapter = netdev_priv(netdev);
2443         u32 err;
2444
2445         pci_restore_state(pdev);
2446         err = pci_enable_device_mem(pdev);
2447         if (err) {
2448                 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2449                 return err;
2450         }
2451
2452         pci_set_master(pdev);
2453
2454         if (netif_running(netdev)) {
2455                 err = igbvf_request_irq(adapter);
2456                 if (err)
2457                         return err;
2458         }
2459
2460         igbvf_reset(adapter);
2461
2462         if (netif_running(netdev))
2463                 igbvf_up(adapter);
2464
2465         netif_device_attach(netdev);
2466
2467         return 0;
2468 }
2469 #endif
2470
2471 static void igbvf_shutdown(struct pci_dev *pdev)
2472 {
2473         igbvf_suspend(pdev, PMSG_SUSPEND);
2474 }
2475
2476 #ifdef CONFIG_NET_POLL_CONTROLLER
2477 /*
2478  * Polling 'interrupt' - used by things like netconsole to send skbs
2479  * without having to re-enable interrupts. It's not called while
2480  * the interrupt routine is executing.
2481  */
2482 static void igbvf_netpoll(struct net_device *netdev)
2483 {
2484         struct igbvf_adapter *adapter = netdev_priv(netdev);
2485
2486         disable_irq(adapter->pdev->irq);
2487
2488         igbvf_clean_tx_irq(adapter->tx_ring);
2489
2490         enable_irq(adapter->pdev->irq);
2491 }
2492 #endif
2493
2494 /**
2495  * igbvf_io_error_detected - called when PCI error is detected
2496  * @pdev: Pointer to PCI device
2497  * @state: The current pci connection state
2498  *
2499  * This function is called after a PCI bus error affecting
2500  * this device has been detected.
2501  */
2502 static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2503                                                 pci_channel_state_t state)
2504 {
2505         struct net_device *netdev = pci_get_drvdata(pdev);
2506         struct igbvf_adapter *adapter = netdev_priv(netdev);
2507
2508         netif_device_detach(netdev);
2509
2510         if (state == pci_channel_io_perm_failure)
2511                 return PCI_ERS_RESULT_DISCONNECT;
2512
2513         if (netif_running(netdev))
2514                 igbvf_down(adapter);
2515         pci_disable_device(pdev);
2516
2517         /* Request a slot slot reset. */
2518         return PCI_ERS_RESULT_NEED_RESET;
2519 }
2520
2521 /**
2522  * igbvf_io_slot_reset - called after the pci bus has been reset.
2523  * @pdev: Pointer to PCI device
2524  *
2525  * Restart the card from scratch, as if from a cold-boot. Implementation
2526  * resembles the first-half of the igbvf_resume routine.
2527  */
2528 static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2529 {
2530         struct net_device *netdev = pci_get_drvdata(pdev);
2531         struct igbvf_adapter *adapter = netdev_priv(netdev);
2532
2533         if (pci_enable_device_mem(pdev)) {
2534                 dev_err(&pdev->dev,
2535                         "Cannot re-enable PCI device after reset.\n");
2536                 return PCI_ERS_RESULT_DISCONNECT;
2537         }
2538         pci_set_master(pdev);
2539
2540         igbvf_reset(adapter);
2541
2542         return PCI_ERS_RESULT_RECOVERED;
2543 }
2544
2545 /**
2546  * igbvf_io_resume - called when traffic can start flowing again.
2547  * @pdev: Pointer to PCI device
2548  *
2549  * This callback is called when the error recovery driver tells us that
2550  * its OK to resume normal operation. Implementation resembles the
2551  * second-half of the igbvf_resume routine.
2552  */
2553 static void igbvf_io_resume(struct pci_dev *pdev)
2554 {
2555         struct net_device *netdev = pci_get_drvdata(pdev);
2556         struct igbvf_adapter *adapter = netdev_priv(netdev);
2557
2558         if (netif_running(netdev)) {
2559                 if (igbvf_up(adapter)) {
2560                         dev_err(&pdev->dev,
2561                                 "can't bring device back up after reset\n");
2562                         return;
2563                 }
2564         }
2565
2566         netif_device_attach(netdev);
2567 }
2568
2569 static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2570 {
2571         struct e1000_hw *hw = &adapter->hw;
2572         struct net_device *netdev = adapter->netdev;
2573         struct pci_dev *pdev = adapter->pdev;
2574
2575         if (hw->mac.type == e1000_vfadapt_i350)
2576                 dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2577         else
2578                 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2579         dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2580 }
2581
2582 static int igbvf_set_features(struct net_device *netdev,
2583         netdev_features_t features)
2584 {
2585         struct igbvf_adapter *adapter = netdev_priv(netdev);
2586
2587         if (features & NETIF_F_RXCSUM)
2588                 adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2589         else
2590                 adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2591
2592         return 0;
2593 }
2594
2595 static const struct net_device_ops igbvf_netdev_ops = {
2596         .ndo_open                       = igbvf_open,
2597         .ndo_stop                       = igbvf_close,
2598         .ndo_start_xmit                 = igbvf_xmit_frame,
2599         .ndo_get_stats                  = igbvf_get_stats,
2600         .ndo_set_rx_mode                = igbvf_set_multi,
2601         .ndo_set_mac_address            = igbvf_set_mac,
2602         .ndo_change_mtu                 = igbvf_change_mtu,
2603         .ndo_do_ioctl                   = igbvf_ioctl,
2604         .ndo_tx_timeout                 = igbvf_tx_timeout,
2605         .ndo_vlan_rx_add_vid            = igbvf_vlan_rx_add_vid,
2606         .ndo_vlan_rx_kill_vid           = igbvf_vlan_rx_kill_vid,
2607 #ifdef CONFIG_NET_POLL_CONTROLLER
2608         .ndo_poll_controller            = igbvf_netpoll,
2609 #endif
2610         .ndo_set_features               = igbvf_set_features,
2611 };
2612
2613 /**
2614  * igbvf_probe - Device Initialization Routine
2615  * @pdev: PCI device information struct
2616  * @ent: entry in igbvf_pci_tbl
2617  *
2618  * Returns 0 on success, negative on failure
2619  *
2620  * igbvf_probe initializes an adapter identified by a pci_dev structure.
2621  * The OS initialization, configuring of the adapter private structure,
2622  * and a hardware reset occur.
2623  **/
2624 static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2625 {
2626         struct net_device *netdev;
2627         struct igbvf_adapter *adapter;
2628         struct e1000_hw *hw;
2629         const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2630
2631         static int cards_found;
2632         int err, pci_using_dac;
2633
2634         err = pci_enable_device_mem(pdev);
2635         if (err)
2636                 return err;
2637
2638         pci_using_dac = 0;
2639         err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
2640         if (!err) {
2641                 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
2642                 if (!err)
2643                         pci_using_dac = 1;
2644         } else {
2645                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2646                 if (err) {
2647                         err = dma_set_coherent_mask(&pdev->dev,
2648                                                     DMA_BIT_MASK(32));
2649                         if (err) {
2650                                 dev_err(&pdev->dev, "No usable DMA "
2651                                         "configuration, aborting\n");
2652                                 goto err_dma;
2653                         }
2654                 }
2655         }
2656
2657         err = pci_request_regions(pdev, igbvf_driver_name);
2658         if (err)
2659                 goto err_pci_reg;
2660
2661         pci_set_master(pdev);
2662
2663         err = -ENOMEM;
2664         netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2665         if (!netdev)
2666                 goto err_alloc_etherdev;
2667
2668         SET_NETDEV_DEV(netdev, &pdev->dev);
2669
2670         pci_set_drvdata(pdev, netdev);
2671         adapter = netdev_priv(netdev);
2672         hw = &adapter->hw;
2673         adapter->netdev = netdev;
2674         adapter->pdev = pdev;
2675         adapter->ei = ei;
2676         adapter->pba = ei->pba;
2677         adapter->flags = ei->flags;
2678         adapter->hw.back = adapter;
2679         adapter->hw.mac.type = ei->mac;
2680         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2681
2682         /* PCI config space info */
2683
2684         hw->vendor_id = pdev->vendor;
2685         hw->device_id = pdev->device;
2686         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2687         hw->subsystem_device_id = pdev->subsystem_device;
2688         hw->revision_id = pdev->revision;
2689
2690         err = -EIO;
2691         adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2692                                       pci_resource_len(pdev, 0));
2693
2694         if (!adapter->hw.hw_addr)
2695                 goto err_ioremap;
2696
2697         if (ei->get_variants) {
2698                 err = ei->get_variants(adapter);
2699                 if (err)
2700                         goto err_ioremap;
2701         }
2702
2703         /* setup adapter struct */
2704         err = igbvf_sw_init(adapter);
2705         if (err)
2706                 goto err_sw_init;
2707
2708         /* construct the net_device struct */
2709         netdev->netdev_ops = &igbvf_netdev_ops;
2710
2711         igbvf_set_ethtool_ops(netdev);
2712         netdev->watchdog_timeo = 5 * HZ;
2713         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2714
2715         adapter->bd_number = cards_found++;
2716
2717         netdev->hw_features = NETIF_F_SG |
2718                            NETIF_F_IP_CSUM |
2719                            NETIF_F_IPV6_CSUM |
2720                            NETIF_F_TSO |
2721                            NETIF_F_TSO6 |
2722                            NETIF_F_RXCSUM;
2723
2724         netdev->features = netdev->hw_features |
2725                            NETIF_F_HW_VLAN_TX |
2726                            NETIF_F_HW_VLAN_RX |
2727                            NETIF_F_HW_VLAN_FILTER;
2728
2729         if (pci_using_dac)
2730                 netdev->features |= NETIF_F_HIGHDMA;
2731
2732         netdev->vlan_features |= NETIF_F_TSO;
2733         netdev->vlan_features |= NETIF_F_TSO6;
2734         netdev->vlan_features |= NETIF_F_IP_CSUM;
2735         netdev->vlan_features |= NETIF_F_IPV6_CSUM;
2736         netdev->vlan_features |= NETIF_F_SG;
2737
2738         /*reset the controller to put the device in a known good state */
2739         err = hw->mac.ops.reset_hw(hw);
2740         if (err) {
2741                 dev_info(&pdev->dev,
2742                          "PF still in reset state. Is the PF interface up?\n");
2743         } else {
2744                 err = hw->mac.ops.read_mac_addr(hw);
2745                 if (err)
2746                         dev_info(&pdev->dev, "Error reading MAC address.\n");
2747                 else if (is_zero_ether_addr(adapter->hw.mac.addr))
2748                         dev_info(&pdev->dev, "MAC address not assigned by administrator.\n");
2749                 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2750                        netdev->addr_len);
2751         }
2752
2753         if (!is_valid_ether_addr(netdev->dev_addr)) {
2754                 dev_info(&pdev->dev, "Assigning random MAC address.\n");
2755                 eth_hw_addr_random(netdev);
2756                 memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2757                         netdev->addr_len);
2758         }
2759
2760         setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
2761                     (unsigned long) adapter);
2762
2763         INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2764         INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2765
2766         /* ring size defaults */
2767         adapter->rx_ring->count = 1024;
2768         adapter->tx_ring->count = 1024;
2769
2770         /* reset the hardware with the new settings */
2771         igbvf_reset(adapter);
2772
2773         /* set hardware-specific flags */
2774         if (adapter->hw.mac.type == e1000_vfadapt_i350)
2775                 adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2776
2777         strcpy(netdev->name, "eth%d");
2778         err = register_netdev(netdev);
2779         if (err)
2780                 goto err_hw_init;
2781
2782         /* tell the stack to leave us alone until igbvf_open() is called */
2783         netif_carrier_off(netdev);
2784         netif_stop_queue(netdev);
2785
2786         igbvf_print_device_info(adapter);
2787
2788         igbvf_initialize_last_counter_stats(adapter);
2789
2790         return 0;
2791
2792 err_hw_init:
2793         kfree(adapter->tx_ring);
2794         kfree(adapter->rx_ring);
2795 err_sw_init:
2796         igbvf_reset_interrupt_capability(adapter);
2797         iounmap(adapter->hw.hw_addr);
2798 err_ioremap:
2799         free_netdev(netdev);
2800 err_alloc_etherdev:
2801         pci_release_regions(pdev);
2802 err_pci_reg:
2803 err_dma:
2804         pci_disable_device(pdev);
2805         return err;
2806 }
2807
2808 /**
2809  * igbvf_remove - Device Removal Routine
2810  * @pdev: PCI device information struct
2811  *
2812  * igbvf_remove is called by the PCI subsystem to alert the driver
2813  * that it should release a PCI device.  The could be caused by a
2814  * Hot-Plug event, or because the driver is going to be removed from
2815  * memory.
2816  **/
2817 static void igbvf_remove(struct pci_dev *pdev)
2818 {
2819         struct net_device *netdev = pci_get_drvdata(pdev);
2820         struct igbvf_adapter *adapter = netdev_priv(netdev);
2821         struct e1000_hw *hw = &adapter->hw;
2822
2823         /*
2824          * The watchdog timer may be rescheduled, so explicitly
2825          * disable it from being rescheduled.
2826          */
2827         set_bit(__IGBVF_DOWN, &adapter->state);
2828         del_timer_sync(&adapter->watchdog_timer);
2829
2830         cancel_work_sync(&adapter->reset_task);
2831         cancel_work_sync(&adapter->watchdog_task);
2832
2833         unregister_netdev(netdev);
2834
2835         igbvf_reset_interrupt_capability(adapter);
2836
2837         /*
2838          * it is important to delete the napi struct prior to freeing the
2839          * rx ring so that you do not end up with null pointer refs
2840          */
2841         netif_napi_del(&adapter->rx_ring->napi);
2842         kfree(adapter->tx_ring);
2843         kfree(adapter->rx_ring);
2844
2845         iounmap(hw->hw_addr);
2846         if (hw->flash_address)
2847                 iounmap(hw->flash_address);
2848         pci_release_regions(pdev);
2849
2850         free_netdev(netdev);
2851
2852         pci_disable_device(pdev);
2853 }
2854
2855 /* PCI Error Recovery (ERS) */
2856 static const struct pci_error_handlers igbvf_err_handler = {
2857         .error_detected = igbvf_io_error_detected,
2858         .slot_reset = igbvf_io_slot_reset,
2859         .resume = igbvf_io_resume,
2860 };
2861
2862 static DEFINE_PCI_DEVICE_TABLE(igbvf_pci_tbl) = {
2863         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2864         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2865         { } /* terminate list */
2866 };
2867 MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2868
2869 /* PCI Device API Driver */
2870 static struct pci_driver igbvf_driver = {
2871         .name     = igbvf_driver_name,
2872         .id_table = igbvf_pci_tbl,
2873         .probe    = igbvf_probe,
2874         .remove   = igbvf_remove,
2875 #ifdef CONFIG_PM
2876         /* Power Management Hooks */
2877         .suspend  = igbvf_suspend,
2878         .resume   = igbvf_resume,
2879 #endif
2880         .shutdown = igbvf_shutdown,
2881         .err_handler = &igbvf_err_handler
2882 };
2883
2884 /**
2885  * igbvf_init_module - Driver Registration Routine
2886  *
2887  * igbvf_init_module is the first routine called when the driver is
2888  * loaded. All it does is register with the PCI subsystem.
2889  **/
2890 static int __init igbvf_init_module(void)
2891 {
2892         int ret;
2893         pr_info("%s - version %s\n", igbvf_driver_string, igbvf_driver_version);
2894         pr_info("%s\n", igbvf_copyright);
2895
2896         ret = pci_register_driver(&igbvf_driver);
2897
2898         return ret;
2899 }
2900 module_init(igbvf_init_module);
2901
2902 /**
2903  * igbvf_exit_module - Driver Exit Cleanup Routine
2904  *
2905  * igbvf_exit_module is called just before the driver is removed
2906  * from memory.
2907  **/
2908 static void __exit igbvf_exit_module(void)
2909 {
2910         pci_unregister_driver(&igbvf_driver);
2911 }
2912 module_exit(igbvf_exit_module);
2913
2914
2915 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2916 MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
2917 MODULE_LICENSE("GPL");
2918 MODULE_VERSION(DRV_VERSION);
2919
2920 /* netdev.c */