net: define gso types for IPx over IPv4 and IPv6
[linux-block.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 /* Intel(R) Gigabit Ethernet Linux driver
2  * Copyright(c) 2007-2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * The full GNU General Public License is included in this distribution in
17  * the file called "COPYING".
18  *
19  * Contact Information:
20  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22  */
23
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/init.h>
29 #include <linux/bitops.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pagemap.h>
32 #include <linux/netdevice.h>
33 #include <linux/ipv6.h>
34 #include <linux/slab.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if.h>
41 #include <linux/if_vlan.h>
42 #include <linux/pci.h>
43 #include <linux/pci-aspm.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/ip.h>
47 #include <linux/tcp.h>
48 #include <linux/sctp.h>
49 #include <linux/if_ether.h>
50 #include <linux/aer.h>
51 #include <linux/prefetch.h>
52 #include <linux/pm_runtime.h>
53 #include <linux/etherdevice.h>
54 #ifdef CONFIG_IGB_DCA
55 #include <linux/dca.h>
56 #endif
57 #include <linux/i2c.h>
58 #include "igb.h"
59
60 #define MAJ 5
61 #define MIN 3
62 #define BUILD 0
63 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
64 __stringify(BUILD) "-k"
65 char igb_driver_name[] = "igb";
66 char igb_driver_version[] = DRV_VERSION;
67 static const char igb_driver_string[] =
68                                 "Intel(R) Gigabit Ethernet Network Driver";
69 static const char igb_copyright[] =
70                                 "Copyright (c) 2007-2014 Intel Corporation.";
71
72 static const struct e1000_info *igb_info_tbl[] = {
73         [board_82575] = &e1000_82575_info,
74 };
75
76 static const struct pci_device_id igb_pci_tbl[] = {
77         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
78         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
79         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
80         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
81         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
82         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
83         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
84         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
85         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
86         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
87         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
88         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
89         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
90         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
91         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
92         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
93         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
94         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
95         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
96         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
97         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
98         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
99         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
100         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
101         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
102         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
103         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
104         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
105         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
106         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
107         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
108         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
109         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
110         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
111         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
112         /* required last entry */
113         {0, }
114 };
115
116 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
117
118 static int igb_setup_all_tx_resources(struct igb_adapter *);
119 static int igb_setup_all_rx_resources(struct igb_adapter *);
120 static void igb_free_all_tx_resources(struct igb_adapter *);
121 static void igb_free_all_rx_resources(struct igb_adapter *);
122 static void igb_setup_mrqc(struct igb_adapter *);
123 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
124 static void igb_remove(struct pci_dev *pdev);
125 static int igb_sw_init(struct igb_adapter *);
126 int igb_open(struct net_device *);
127 int igb_close(struct net_device *);
128 static void igb_configure(struct igb_adapter *);
129 static void igb_configure_tx(struct igb_adapter *);
130 static void igb_configure_rx(struct igb_adapter *);
131 static void igb_clean_all_tx_rings(struct igb_adapter *);
132 static void igb_clean_all_rx_rings(struct igb_adapter *);
133 static void igb_clean_tx_ring(struct igb_ring *);
134 static void igb_clean_rx_ring(struct igb_ring *);
135 static void igb_set_rx_mode(struct net_device *);
136 static void igb_update_phy_info(unsigned long);
137 static void igb_watchdog(unsigned long);
138 static void igb_watchdog_task(struct work_struct *);
139 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
140 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
141                                           struct rtnl_link_stats64 *stats);
142 static int igb_change_mtu(struct net_device *, int);
143 static int igb_set_mac(struct net_device *, void *);
144 static void igb_set_uta(struct igb_adapter *adapter, bool set);
145 static irqreturn_t igb_intr(int irq, void *);
146 static irqreturn_t igb_intr_msi(int irq, void *);
147 static irqreturn_t igb_msix_other(int irq, void *);
148 static irqreturn_t igb_msix_ring(int irq, void *);
149 #ifdef CONFIG_IGB_DCA
150 static void igb_update_dca(struct igb_q_vector *);
151 static void igb_setup_dca(struct igb_adapter *);
152 #endif /* CONFIG_IGB_DCA */
153 static int igb_poll(struct napi_struct *, int);
154 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
155 static int igb_clean_rx_irq(struct igb_q_vector *, int);
156 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
157 static void igb_tx_timeout(struct net_device *);
158 static void igb_reset_task(struct work_struct *);
159 static void igb_vlan_mode(struct net_device *netdev,
160                           netdev_features_t features);
161 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
162 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
163 static void igb_restore_vlan(struct igb_adapter *);
164 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
165 static void igb_ping_all_vfs(struct igb_adapter *);
166 static void igb_msg_task(struct igb_adapter *);
167 static void igb_vmm_control(struct igb_adapter *);
168 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
169 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
170 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
171 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
172                                int vf, u16 vlan, u8 qos);
173 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
174 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
175                                    bool setting);
176 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
177                                  struct ifla_vf_info *ivi);
178 static void igb_check_vf_rate_limit(struct igb_adapter *);
179
180 #ifdef CONFIG_PCI_IOV
181 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
182 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
183 static int igb_disable_sriov(struct pci_dev *dev);
184 static int igb_pci_disable_sriov(struct pci_dev *dev);
185 #endif
186
187 #ifdef CONFIG_PM
188 #ifdef CONFIG_PM_SLEEP
189 static int igb_suspend(struct device *);
190 #endif
191 static int igb_resume(struct device *);
192 static int igb_runtime_suspend(struct device *dev);
193 static int igb_runtime_resume(struct device *dev);
194 static int igb_runtime_idle(struct device *dev);
195 static const struct dev_pm_ops igb_pm_ops = {
196         SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
197         SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
198                         igb_runtime_idle)
199 };
200 #endif
201 static void igb_shutdown(struct pci_dev *);
202 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
203 #ifdef CONFIG_IGB_DCA
204 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
205 static struct notifier_block dca_notifier = {
206         .notifier_call  = igb_notify_dca,
207         .next           = NULL,
208         .priority       = 0
209 };
210 #endif
211 #ifdef CONFIG_NET_POLL_CONTROLLER
212 /* for netdump / net console */
213 static void igb_netpoll(struct net_device *);
214 #endif
215 #ifdef CONFIG_PCI_IOV
216 static unsigned int max_vfs;
217 module_param(max_vfs, uint, 0);
218 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
219 #endif /* CONFIG_PCI_IOV */
220
221 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
222                      pci_channel_state_t);
223 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
224 static void igb_io_resume(struct pci_dev *);
225
226 static const struct pci_error_handlers igb_err_handler = {
227         .error_detected = igb_io_error_detected,
228         .slot_reset = igb_io_slot_reset,
229         .resume = igb_io_resume,
230 };
231
232 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
233
234 static struct pci_driver igb_driver = {
235         .name     = igb_driver_name,
236         .id_table = igb_pci_tbl,
237         .probe    = igb_probe,
238         .remove   = igb_remove,
239 #ifdef CONFIG_PM
240         .driver.pm = &igb_pm_ops,
241 #endif
242         .shutdown = igb_shutdown,
243         .sriov_configure = igb_pci_sriov_configure,
244         .err_handler = &igb_err_handler
245 };
246
247 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
248 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
249 MODULE_LICENSE("GPL");
250 MODULE_VERSION(DRV_VERSION);
251
252 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
253 static int debug = -1;
254 module_param(debug, int, 0);
255 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
256
257 struct igb_reg_info {
258         u32 ofs;
259         char *name;
260 };
261
262 static const struct igb_reg_info igb_reg_info_tbl[] = {
263
264         /* General Registers */
265         {E1000_CTRL, "CTRL"},
266         {E1000_STATUS, "STATUS"},
267         {E1000_CTRL_EXT, "CTRL_EXT"},
268
269         /* Interrupt Registers */
270         {E1000_ICR, "ICR"},
271
272         /* RX Registers */
273         {E1000_RCTL, "RCTL"},
274         {E1000_RDLEN(0), "RDLEN"},
275         {E1000_RDH(0), "RDH"},
276         {E1000_RDT(0), "RDT"},
277         {E1000_RXDCTL(0), "RXDCTL"},
278         {E1000_RDBAL(0), "RDBAL"},
279         {E1000_RDBAH(0), "RDBAH"},
280
281         /* TX Registers */
282         {E1000_TCTL, "TCTL"},
283         {E1000_TDBAL(0), "TDBAL"},
284         {E1000_TDBAH(0), "TDBAH"},
285         {E1000_TDLEN(0), "TDLEN"},
286         {E1000_TDH(0), "TDH"},
287         {E1000_TDT(0), "TDT"},
288         {E1000_TXDCTL(0), "TXDCTL"},
289         {E1000_TDFH, "TDFH"},
290         {E1000_TDFT, "TDFT"},
291         {E1000_TDFHS, "TDFHS"},
292         {E1000_TDFPC, "TDFPC"},
293
294         /* List Terminator */
295         {}
296 };
297
298 /* igb_regdump - register printout routine */
299 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
300 {
301         int n = 0;
302         char rname[16];
303         u32 regs[8];
304
305         switch (reginfo->ofs) {
306         case E1000_RDLEN(0):
307                 for (n = 0; n < 4; n++)
308                         regs[n] = rd32(E1000_RDLEN(n));
309                 break;
310         case E1000_RDH(0):
311                 for (n = 0; n < 4; n++)
312                         regs[n] = rd32(E1000_RDH(n));
313                 break;
314         case E1000_RDT(0):
315                 for (n = 0; n < 4; n++)
316                         regs[n] = rd32(E1000_RDT(n));
317                 break;
318         case E1000_RXDCTL(0):
319                 for (n = 0; n < 4; n++)
320                         regs[n] = rd32(E1000_RXDCTL(n));
321                 break;
322         case E1000_RDBAL(0):
323                 for (n = 0; n < 4; n++)
324                         regs[n] = rd32(E1000_RDBAL(n));
325                 break;
326         case E1000_RDBAH(0):
327                 for (n = 0; n < 4; n++)
328                         regs[n] = rd32(E1000_RDBAH(n));
329                 break;
330         case E1000_TDBAL(0):
331                 for (n = 0; n < 4; n++)
332                         regs[n] = rd32(E1000_RDBAL(n));
333                 break;
334         case E1000_TDBAH(0):
335                 for (n = 0; n < 4; n++)
336                         regs[n] = rd32(E1000_TDBAH(n));
337                 break;
338         case E1000_TDLEN(0):
339                 for (n = 0; n < 4; n++)
340                         regs[n] = rd32(E1000_TDLEN(n));
341                 break;
342         case E1000_TDH(0):
343                 for (n = 0; n < 4; n++)
344                         regs[n] = rd32(E1000_TDH(n));
345                 break;
346         case E1000_TDT(0):
347                 for (n = 0; n < 4; n++)
348                         regs[n] = rd32(E1000_TDT(n));
349                 break;
350         case E1000_TXDCTL(0):
351                 for (n = 0; n < 4; n++)
352                         regs[n] = rd32(E1000_TXDCTL(n));
353                 break;
354         default:
355                 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
356                 return;
357         }
358
359         snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
360         pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
361                 regs[2], regs[3]);
362 }
363
364 /* igb_dump - Print registers, Tx-rings and Rx-rings */
365 static void igb_dump(struct igb_adapter *adapter)
366 {
367         struct net_device *netdev = adapter->netdev;
368         struct e1000_hw *hw = &adapter->hw;
369         struct igb_reg_info *reginfo;
370         struct igb_ring *tx_ring;
371         union e1000_adv_tx_desc *tx_desc;
372         struct my_u0 { u64 a; u64 b; } *u0;
373         struct igb_ring *rx_ring;
374         union e1000_adv_rx_desc *rx_desc;
375         u32 staterr;
376         u16 i, n;
377
378         if (!netif_msg_hw(adapter))
379                 return;
380
381         /* Print netdevice Info */
382         if (netdev) {
383                 dev_info(&adapter->pdev->dev, "Net device Info\n");
384                 pr_info("Device Name     state            trans_start      last_rx\n");
385                 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
386                         netdev->state, dev_trans_start(netdev), netdev->last_rx);
387         }
388
389         /* Print Registers */
390         dev_info(&adapter->pdev->dev, "Register Dump\n");
391         pr_info(" Register Name   Value\n");
392         for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
393              reginfo->name; reginfo++) {
394                 igb_regdump(hw, reginfo);
395         }
396
397         /* Print TX Ring Summary */
398         if (!netdev || !netif_running(netdev))
399                 goto exit;
400
401         dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
402         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
403         for (n = 0; n < adapter->num_tx_queues; n++) {
404                 struct igb_tx_buffer *buffer_info;
405                 tx_ring = adapter->tx_ring[n];
406                 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
407                 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
408                         n, tx_ring->next_to_use, tx_ring->next_to_clean,
409                         (u64)dma_unmap_addr(buffer_info, dma),
410                         dma_unmap_len(buffer_info, len),
411                         buffer_info->next_to_watch,
412                         (u64)buffer_info->time_stamp);
413         }
414
415         /* Print TX Rings */
416         if (!netif_msg_tx_done(adapter))
417                 goto rx_ring_summary;
418
419         dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
420
421         /* Transmit Descriptor Formats
422          *
423          * Advanced Transmit Descriptor
424          *   +--------------------------------------------------------------+
425          * 0 |         Buffer Address [63:0]                                |
426          *   +--------------------------------------------------------------+
427          * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
428          *   +--------------------------------------------------------------+
429          *   63      46 45    40 39 38 36 35 32 31   24             15       0
430          */
431
432         for (n = 0; n < adapter->num_tx_queues; n++) {
433                 tx_ring = adapter->tx_ring[n];
434                 pr_info("------------------------------------\n");
435                 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
436                 pr_info("------------------------------------\n");
437                 pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
438
439                 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
440                         const char *next_desc;
441                         struct igb_tx_buffer *buffer_info;
442                         tx_desc = IGB_TX_DESC(tx_ring, i);
443                         buffer_info = &tx_ring->tx_buffer_info[i];
444                         u0 = (struct my_u0 *)tx_desc;
445                         if (i == tx_ring->next_to_use &&
446                             i == tx_ring->next_to_clean)
447                                 next_desc = " NTC/U";
448                         else if (i == tx_ring->next_to_use)
449                                 next_desc = " NTU";
450                         else if (i == tx_ring->next_to_clean)
451                                 next_desc = " NTC";
452                         else
453                                 next_desc = "";
454
455                         pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
456                                 i, le64_to_cpu(u0->a),
457                                 le64_to_cpu(u0->b),
458                                 (u64)dma_unmap_addr(buffer_info, dma),
459                                 dma_unmap_len(buffer_info, len),
460                                 buffer_info->next_to_watch,
461                                 (u64)buffer_info->time_stamp,
462                                 buffer_info->skb, next_desc);
463
464                         if (netif_msg_pktdata(adapter) && buffer_info->skb)
465                                 print_hex_dump(KERN_INFO, "",
466                                         DUMP_PREFIX_ADDRESS,
467                                         16, 1, buffer_info->skb->data,
468                                         dma_unmap_len(buffer_info, len),
469                                         true);
470                 }
471         }
472
473         /* Print RX Rings Summary */
474 rx_ring_summary:
475         dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
476         pr_info("Queue [NTU] [NTC]\n");
477         for (n = 0; n < adapter->num_rx_queues; n++) {
478                 rx_ring = adapter->rx_ring[n];
479                 pr_info(" %5d %5X %5X\n",
480                         n, rx_ring->next_to_use, rx_ring->next_to_clean);
481         }
482
483         /* Print RX Rings */
484         if (!netif_msg_rx_status(adapter))
485                 goto exit;
486
487         dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
488
489         /* Advanced Receive Descriptor (Read) Format
490          *    63                                           1        0
491          *    +-----------------------------------------------------+
492          *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
493          *    +----------------------------------------------+------+
494          *  8 |       Header Buffer Address [63:1]           |  DD  |
495          *    +-----------------------------------------------------+
496          *
497          *
498          * Advanced Receive Descriptor (Write-Back) Format
499          *
500          *   63       48 47    32 31  30      21 20 17 16   4 3     0
501          *   +------------------------------------------------------+
502          * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
503          *   | Checksum   Ident  |   |           |    | Type | Type |
504          *   +------------------------------------------------------+
505          * 8 | VLAN Tag | Length | Extended Error | Extended Status |
506          *   +------------------------------------------------------+
507          *   63       48 47    32 31            20 19               0
508          */
509
510         for (n = 0; n < adapter->num_rx_queues; n++) {
511                 rx_ring = adapter->rx_ring[n];
512                 pr_info("------------------------------------\n");
513                 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
514                 pr_info("------------------------------------\n");
515                 pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
516                 pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
517
518                 for (i = 0; i < rx_ring->count; i++) {
519                         const char *next_desc;
520                         struct igb_rx_buffer *buffer_info;
521                         buffer_info = &rx_ring->rx_buffer_info[i];
522                         rx_desc = IGB_RX_DESC(rx_ring, i);
523                         u0 = (struct my_u0 *)rx_desc;
524                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
525
526                         if (i == rx_ring->next_to_use)
527                                 next_desc = " NTU";
528                         else if (i == rx_ring->next_to_clean)
529                                 next_desc = " NTC";
530                         else
531                                 next_desc = "";
532
533                         if (staterr & E1000_RXD_STAT_DD) {
534                                 /* Descriptor Done */
535                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
536                                         "RWB", i,
537                                         le64_to_cpu(u0->a),
538                                         le64_to_cpu(u0->b),
539                                         next_desc);
540                         } else {
541                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
542                                         "R  ", i,
543                                         le64_to_cpu(u0->a),
544                                         le64_to_cpu(u0->b),
545                                         (u64)buffer_info->dma,
546                                         next_desc);
547
548                                 if (netif_msg_pktdata(adapter) &&
549                                     buffer_info->dma && buffer_info->page) {
550                                         print_hex_dump(KERN_INFO, "",
551                                           DUMP_PREFIX_ADDRESS,
552                                           16, 1,
553                                           page_address(buffer_info->page) +
554                                                       buffer_info->page_offset,
555                                           IGB_RX_BUFSZ, true);
556                                 }
557                         }
558                 }
559         }
560
561 exit:
562         return;
563 }
564
565 /**
566  *  igb_get_i2c_data - Reads the I2C SDA data bit
567  *  @hw: pointer to hardware structure
568  *  @i2cctl: Current value of I2CCTL register
569  *
570  *  Returns the I2C data bit value
571  **/
572 static int igb_get_i2c_data(void *data)
573 {
574         struct igb_adapter *adapter = (struct igb_adapter *)data;
575         struct e1000_hw *hw = &adapter->hw;
576         s32 i2cctl = rd32(E1000_I2CPARAMS);
577
578         return !!(i2cctl & E1000_I2C_DATA_IN);
579 }
580
581 /**
582  *  igb_set_i2c_data - Sets the I2C data bit
583  *  @data: pointer to hardware structure
584  *  @state: I2C data value (0 or 1) to set
585  *
586  *  Sets the I2C data bit
587  **/
588 static void igb_set_i2c_data(void *data, int state)
589 {
590         struct igb_adapter *adapter = (struct igb_adapter *)data;
591         struct e1000_hw *hw = &adapter->hw;
592         s32 i2cctl = rd32(E1000_I2CPARAMS);
593
594         if (state)
595                 i2cctl |= E1000_I2C_DATA_OUT;
596         else
597                 i2cctl &= ~E1000_I2C_DATA_OUT;
598
599         i2cctl &= ~E1000_I2C_DATA_OE_N;
600         i2cctl |= E1000_I2C_CLK_OE_N;
601         wr32(E1000_I2CPARAMS, i2cctl);
602         wrfl();
603
604 }
605
606 /**
607  *  igb_set_i2c_clk - Sets the I2C SCL clock
608  *  @data: pointer to hardware structure
609  *  @state: state to set clock
610  *
611  *  Sets the I2C clock line to state
612  **/
613 static void igb_set_i2c_clk(void *data, int state)
614 {
615         struct igb_adapter *adapter = (struct igb_adapter *)data;
616         struct e1000_hw *hw = &adapter->hw;
617         s32 i2cctl = rd32(E1000_I2CPARAMS);
618
619         if (state) {
620                 i2cctl |= E1000_I2C_CLK_OUT;
621                 i2cctl &= ~E1000_I2C_CLK_OE_N;
622         } else {
623                 i2cctl &= ~E1000_I2C_CLK_OUT;
624                 i2cctl &= ~E1000_I2C_CLK_OE_N;
625         }
626         wr32(E1000_I2CPARAMS, i2cctl);
627         wrfl();
628 }
629
630 /**
631  *  igb_get_i2c_clk - Gets the I2C SCL clock state
632  *  @data: pointer to hardware structure
633  *
634  *  Gets the I2C clock state
635  **/
636 static int igb_get_i2c_clk(void *data)
637 {
638         struct igb_adapter *adapter = (struct igb_adapter *)data;
639         struct e1000_hw *hw = &adapter->hw;
640         s32 i2cctl = rd32(E1000_I2CPARAMS);
641
642         return !!(i2cctl & E1000_I2C_CLK_IN);
643 }
644
645 static const struct i2c_algo_bit_data igb_i2c_algo = {
646         .setsda         = igb_set_i2c_data,
647         .setscl         = igb_set_i2c_clk,
648         .getsda         = igb_get_i2c_data,
649         .getscl         = igb_get_i2c_clk,
650         .udelay         = 5,
651         .timeout        = 20,
652 };
653
654 /**
655  *  igb_get_hw_dev - return device
656  *  @hw: pointer to hardware structure
657  *
658  *  used by hardware layer to print debugging information
659  **/
660 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
661 {
662         struct igb_adapter *adapter = hw->back;
663         return adapter->netdev;
664 }
665
666 /**
667  *  igb_init_module - Driver Registration Routine
668  *
669  *  igb_init_module is the first routine called when the driver is
670  *  loaded. All it does is register with the PCI subsystem.
671  **/
672 static int __init igb_init_module(void)
673 {
674         int ret;
675
676         pr_info("%s - version %s\n",
677                igb_driver_string, igb_driver_version);
678         pr_info("%s\n", igb_copyright);
679
680 #ifdef CONFIG_IGB_DCA
681         dca_register_notify(&dca_notifier);
682 #endif
683         ret = pci_register_driver(&igb_driver);
684         return ret;
685 }
686
687 module_init(igb_init_module);
688
689 /**
690  *  igb_exit_module - Driver Exit Cleanup Routine
691  *
692  *  igb_exit_module is called just before the driver is removed
693  *  from memory.
694  **/
695 static void __exit igb_exit_module(void)
696 {
697 #ifdef CONFIG_IGB_DCA
698         dca_unregister_notify(&dca_notifier);
699 #endif
700         pci_unregister_driver(&igb_driver);
701 }
702
703 module_exit(igb_exit_module);
704
705 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
706 /**
707  *  igb_cache_ring_register - Descriptor ring to register mapping
708  *  @adapter: board private structure to initialize
709  *
710  *  Once we know the feature-set enabled for the device, we'll cache
711  *  the register offset the descriptor ring is assigned to.
712  **/
713 static void igb_cache_ring_register(struct igb_adapter *adapter)
714 {
715         int i = 0, j = 0;
716         u32 rbase_offset = adapter->vfs_allocated_count;
717
718         switch (adapter->hw.mac.type) {
719         case e1000_82576:
720                 /* The queues are allocated for virtualization such that VF 0
721                  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
722                  * In order to avoid collision we start at the first free queue
723                  * and continue consuming queues in the same sequence
724                  */
725                 if (adapter->vfs_allocated_count) {
726                         for (; i < adapter->rss_queues; i++)
727                                 adapter->rx_ring[i]->reg_idx = rbase_offset +
728                                                                Q_IDX_82576(i);
729                 }
730                 /* Fall through */
731         case e1000_82575:
732         case e1000_82580:
733         case e1000_i350:
734         case e1000_i354:
735         case e1000_i210:
736         case e1000_i211:
737                 /* Fall through */
738         default:
739                 for (; i < adapter->num_rx_queues; i++)
740                         adapter->rx_ring[i]->reg_idx = rbase_offset + i;
741                 for (; j < adapter->num_tx_queues; j++)
742                         adapter->tx_ring[j]->reg_idx = rbase_offset + j;
743                 break;
744         }
745 }
746
747 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
748 {
749         struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
750         u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
751         u32 value = 0;
752
753         if (E1000_REMOVED(hw_addr))
754                 return ~value;
755
756         value = readl(&hw_addr[reg]);
757
758         /* reads should not return all F's */
759         if (!(~value) && (!reg || !(~readl(hw_addr)))) {
760                 struct net_device *netdev = igb->netdev;
761                 hw->hw_addr = NULL;
762                 netif_device_detach(netdev);
763                 netdev_err(netdev, "PCIe link lost, device now detached\n");
764         }
765
766         return value;
767 }
768
769 /**
770  *  igb_write_ivar - configure ivar for given MSI-X vector
771  *  @hw: pointer to the HW structure
772  *  @msix_vector: vector number we are allocating to a given ring
773  *  @index: row index of IVAR register to write within IVAR table
774  *  @offset: column offset of in IVAR, should be multiple of 8
775  *
776  *  This function is intended to handle the writing of the IVAR register
777  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
778  *  each containing an cause allocation for an Rx and Tx ring, and a
779  *  variable number of rows depending on the number of queues supported.
780  **/
781 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
782                            int index, int offset)
783 {
784         u32 ivar = array_rd32(E1000_IVAR0, index);
785
786         /* clear any bits that are currently set */
787         ivar &= ~((u32)0xFF << offset);
788
789         /* write vector and valid bit */
790         ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
791
792         array_wr32(E1000_IVAR0, index, ivar);
793 }
794
795 #define IGB_N0_QUEUE -1
796 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
797 {
798         struct igb_adapter *adapter = q_vector->adapter;
799         struct e1000_hw *hw = &adapter->hw;
800         int rx_queue = IGB_N0_QUEUE;
801         int tx_queue = IGB_N0_QUEUE;
802         u32 msixbm = 0;
803
804         if (q_vector->rx.ring)
805                 rx_queue = q_vector->rx.ring->reg_idx;
806         if (q_vector->tx.ring)
807                 tx_queue = q_vector->tx.ring->reg_idx;
808
809         switch (hw->mac.type) {
810         case e1000_82575:
811                 /* The 82575 assigns vectors using a bitmask, which matches the
812                  * bitmask for the EICR/EIMS/EIMC registers.  To assign one
813                  * or more queues to a vector, we write the appropriate bits
814                  * into the MSIXBM register for that vector.
815                  */
816                 if (rx_queue > IGB_N0_QUEUE)
817                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
818                 if (tx_queue > IGB_N0_QUEUE)
819                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
820                 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
821                         msixbm |= E1000_EIMS_OTHER;
822                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
823                 q_vector->eims_value = msixbm;
824                 break;
825         case e1000_82576:
826                 /* 82576 uses a table that essentially consists of 2 columns
827                  * with 8 rows.  The ordering is column-major so we use the
828                  * lower 3 bits as the row index, and the 4th bit as the
829                  * column offset.
830                  */
831                 if (rx_queue > IGB_N0_QUEUE)
832                         igb_write_ivar(hw, msix_vector,
833                                        rx_queue & 0x7,
834                                        (rx_queue & 0x8) << 1);
835                 if (tx_queue > IGB_N0_QUEUE)
836                         igb_write_ivar(hw, msix_vector,
837                                        tx_queue & 0x7,
838                                        ((tx_queue & 0x8) << 1) + 8);
839                 q_vector->eims_value = BIT(msix_vector);
840                 break;
841         case e1000_82580:
842         case e1000_i350:
843         case e1000_i354:
844         case e1000_i210:
845         case e1000_i211:
846                 /* On 82580 and newer adapters the scheme is similar to 82576
847                  * however instead of ordering column-major we have things
848                  * ordered row-major.  So we traverse the table by using
849                  * bit 0 as the column offset, and the remaining bits as the
850                  * row index.
851                  */
852                 if (rx_queue > IGB_N0_QUEUE)
853                         igb_write_ivar(hw, msix_vector,
854                                        rx_queue >> 1,
855                                        (rx_queue & 0x1) << 4);
856                 if (tx_queue > IGB_N0_QUEUE)
857                         igb_write_ivar(hw, msix_vector,
858                                        tx_queue >> 1,
859                                        ((tx_queue & 0x1) << 4) + 8);
860                 q_vector->eims_value = BIT(msix_vector);
861                 break;
862         default:
863                 BUG();
864                 break;
865         }
866
867         /* add q_vector eims value to global eims_enable_mask */
868         adapter->eims_enable_mask |= q_vector->eims_value;
869
870         /* configure q_vector to set itr on first interrupt */
871         q_vector->set_itr = 1;
872 }
873
874 /**
875  *  igb_configure_msix - Configure MSI-X hardware
876  *  @adapter: board private structure to initialize
877  *
878  *  igb_configure_msix sets up the hardware to properly
879  *  generate MSI-X interrupts.
880  **/
881 static void igb_configure_msix(struct igb_adapter *adapter)
882 {
883         u32 tmp;
884         int i, vector = 0;
885         struct e1000_hw *hw = &adapter->hw;
886
887         adapter->eims_enable_mask = 0;
888
889         /* set vector for other causes, i.e. link changes */
890         switch (hw->mac.type) {
891         case e1000_82575:
892                 tmp = rd32(E1000_CTRL_EXT);
893                 /* enable MSI-X PBA support*/
894                 tmp |= E1000_CTRL_EXT_PBA_CLR;
895
896                 /* Auto-Mask interrupts upon ICR read. */
897                 tmp |= E1000_CTRL_EXT_EIAME;
898                 tmp |= E1000_CTRL_EXT_IRCA;
899
900                 wr32(E1000_CTRL_EXT, tmp);
901
902                 /* enable msix_other interrupt */
903                 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
904                 adapter->eims_other = E1000_EIMS_OTHER;
905
906                 break;
907
908         case e1000_82576:
909         case e1000_82580:
910         case e1000_i350:
911         case e1000_i354:
912         case e1000_i210:
913         case e1000_i211:
914                 /* Turn on MSI-X capability first, or our settings
915                  * won't stick.  And it will take days to debug.
916                  */
917                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
918                      E1000_GPIE_PBA | E1000_GPIE_EIAME |
919                      E1000_GPIE_NSICR);
920
921                 /* enable msix_other interrupt */
922                 adapter->eims_other = BIT(vector);
923                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
924
925                 wr32(E1000_IVAR_MISC, tmp);
926                 break;
927         default:
928                 /* do nothing, since nothing else supports MSI-X */
929                 break;
930         } /* switch (hw->mac.type) */
931
932         adapter->eims_enable_mask |= adapter->eims_other;
933
934         for (i = 0; i < adapter->num_q_vectors; i++)
935                 igb_assign_vector(adapter->q_vector[i], vector++);
936
937         wrfl();
938 }
939
940 /**
941  *  igb_request_msix - Initialize MSI-X interrupts
942  *  @adapter: board private structure to initialize
943  *
944  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
945  *  kernel.
946  **/
947 static int igb_request_msix(struct igb_adapter *adapter)
948 {
949         struct net_device *netdev = adapter->netdev;
950         int i, err = 0, vector = 0, free_vector = 0;
951
952         err = request_irq(adapter->msix_entries[vector].vector,
953                           igb_msix_other, 0, netdev->name, adapter);
954         if (err)
955                 goto err_out;
956
957         for (i = 0; i < adapter->num_q_vectors; i++) {
958                 struct igb_q_vector *q_vector = adapter->q_vector[i];
959
960                 vector++;
961
962                 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
963
964                 if (q_vector->rx.ring && q_vector->tx.ring)
965                         sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
966                                 q_vector->rx.ring->queue_index);
967                 else if (q_vector->tx.ring)
968                         sprintf(q_vector->name, "%s-tx-%u", netdev->name,
969                                 q_vector->tx.ring->queue_index);
970                 else if (q_vector->rx.ring)
971                         sprintf(q_vector->name, "%s-rx-%u", netdev->name,
972                                 q_vector->rx.ring->queue_index);
973                 else
974                         sprintf(q_vector->name, "%s-unused", netdev->name);
975
976                 err = request_irq(adapter->msix_entries[vector].vector,
977                                   igb_msix_ring, 0, q_vector->name,
978                                   q_vector);
979                 if (err)
980                         goto err_free;
981         }
982
983         igb_configure_msix(adapter);
984         return 0;
985
986 err_free:
987         /* free already assigned IRQs */
988         free_irq(adapter->msix_entries[free_vector++].vector, adapter);
989
990         vector--;
991         for (i = 0; i < vector; i++) {
992                 free_irq(adapter->msix_entries[free_vector++].vector,
993                          adapter->q_vector[i]);
994         }
995 err_out:
996         return err;
997 }
998
999 /**
1000  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
1001  *  @adapter: board private structure to initialize
1002  *  @v_idx: Index of vector to be freed
1003  *
1004  *  This function frees the memory allocated to the q_vector.
1005  **/
1006 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1007 {
1008         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1009
1010         adapter->q_vector[v_idx] = NULL;
1011
1012         /* igb_get_stats64() might access the rings on this vector,
1013          * we must wait a grace period before freeing it.
1014          */
1015         if (q_vector)
1016                 kfree_rcu(q_vector, rcu);
1017 }
1018
1019 /**
1020  *  igb_reset_q_vector - Reset config for interrupt vector
1021  *  @adapter: board private structure to initialize
1022  *  @v_idx: Index of vector to be reset
1023  *
1024  *  If NAPI is enabled it will delete any references to the
1025  *  NAPI struct. This is preparation for igb_free_q_vector.
1026  **/
1027 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1028 {
1029         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1030
1031         /* Coming from igb_set_interrupt_capability, the vectors are not yet
1032          * allocated. So, q_vector is NULL so we should stop here.
1033          */
1034         if (!q_vector)
1035                 return;
1036
1037         if (q_vector->tx.ring)
1038                 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1039
1040         if (q_vector->rx.ring)
1041                 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1042
1043         netif_napi_del(&q_vector->napi);
1044
1045 }
1046
1047 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1048 {
1049         int v_idx = adapter->num_q_vectors;
1050
1051         if (adapter->flags & IGB_FLAG_HAS_MSIX)
1052                 pci_disable_msix(adapter->pdev);
1053         else if (adapter->flags & IGB_FLAG_HAS_MSI)
1054                 pci_disable_msi(adapter->pdev);
1055
1056         while (v_idx--)
1057                 igb_reset_q_vector(adapter, v_idx);
1058 }
1059
1060 /**
1061  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1062  *  @adapter: board private structure to initialize
1063  *
1064  *  This function frees the memory allocated to the q_vectors.  In addition if
1065  *  NAPI is enabled it will delete any references to the NAPI struct prior
1066  *  to freeing the q_vector.
1067  **/
1068 static void igb_free_q_vectors(struct igb_adapter *adapter)
1069 {
1070         int v_idx = adapter->num_q_vectors;
1071
1072         adapter->num_tx_queues = 0;
1073         adapter->num_rx_queues = 0;
1074         adapter->num_q_vectors = 0;
1075
1076         while (v_idx--) {
1077                 igb_reset_q_vector(adapter, v_idx);
1078                 igb_free_q_vector(adapter, v_idx);
1079         }
1080 }
1081
1082 /**
1083  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1084  *  @adapter: board private structure to initialize
1085  *
1086  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1087  *  MSI-X interrupts allocated.
1088  */
1089 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1090 {
1091         igb_free_q_vectors(adapter);
1092         igb_reset_interrupt_capability(adapter);
1093 }
1094
1095 /**
1096  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1097  *  @adapter: board private structure to initialize
1098  *  @msix: boolean value of MSIX capability
1099  *
1100  *  Attempt to configure interrupts using the best available
1101  *  capabilities of the hardware and kernel.
1102  **/
1103 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1104 {
1105         int err;
1106         int numvecs, i;
1107
1108         if (!msix)
1109                 goto msi_only;
1110         adapter->flags |= IGB_FLAG_HAS_MSIX;
1111
1112         /* Number of supported queues. */
1113         adapter->num_rx_queues = adapter->rss_queues;
1114         if (adapter->vfs_allocated_count)
1115                 adapter->num_tx_queues = 1;
1116         else
1117                 adapter->num_tx_queues = adapter->rss_queues;
1118
1119         /* start with one vector for every Rx queue */
1120         numvecs = adapter->num_rx_queues;
1121
1122         /* if Tx handler is separate add 1 for every Tx queue */
1123         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1124                 numvecs += adapter->num_tx_queues;
1125
1126         /* store the number of vectors reserved for queues */
1127         adapter->num_q_vectors = numvecs;
1128
1129         /* add 1 vector for link status interrupts */
1130         numvecs++;
1131         for (i = 0; i < numvecs; i++)
1132                 adapter->msix_entries[i].entry = i;
1133
1134         err = pci_enable_msix_range(adapter->pdev,
1135                                     adapter->msix_entries,
1136                                     numvecs,
1137                                     numvecs);
1138         if (err > 0)
1139                 return;
1140
1141         igb_reset_interrupt_capability(adapter);
1142
1143         /* If we can't do MSI-X, try MSI */
1144 msi_only:
1145         adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1146 #ifdef CONFIG_PCI_IOV
1147         /* disable SR-IOV for non MSI-X configurations */
1148         if (adapter->vf_data) {
1149                 struct e1000_hw *hw = &adapter->hw;
1150                 /* disable iov and allow time for transactions to clear */
1151                 pci_disable_sriov(adapter->pdev);
1152                 msleep(500);
1153
1154                 kfree(adapter->vf_data);
1155                 adapter->vf_data = NULL;
1156                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1157                 wrfl();
1158                 msleep(100);
1159                 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1160         }
1161 #endif
1162         adapter->vfs_allocated_count = 0;
1163         adapter->rss_queues = 1;
1164         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1165         adapter->num_rx_queues = 1;
1166         adapter->num_tx_queues = 1;
1167         adapter->num_q_vectors = 1;
1168         if (!pci_enable_msi(adapter->pdev))
1169                 adapter->flags |= IGB_FLAG_HAS_MSI;
1170 }
1171
1172 static void igb_add_ring(struct igb_ring *ring,
1173                          struct igb_ring_container *head)
1174 {
1175         head->ring = ring;
1176         head->count++;
1177 }
1178
1179 /**
1180  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1181  *  @adapter: board private structure to initialize
1182  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1183  *  @v_idx: index of vector in adapter struct
1184  *  @txr_count: total number of Tx rings to allocate
1185  *  @txr_idx: index of first Tx ring to allocate
1186  *  @rxr_count: total number of Rx rings to allocate
1187  *  @rxr_idx: index of first Rx ring to allocate
1188  *
1189  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1190  **/
1191 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1192                               int v_count, int v_idx,
1193                               int txr_count, int txr_idx,
1194                               int rxr_count, int rxr_idx)
1195 {
1196         struct igb_q_vector *q_vector;
1197         struct igb_ring *ring;
1198         int ring_count, size;
1199
1200         /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1201         if (txr_count > 1 || rxr_count > 1)
1202                 return -ENOMEM;
1203
1204         ring_count = txr_count + rxr_count;
1205         size = sizeof(struct igb_q_vector) +
1206                (sizeof(struct igb_ring) * ring_count);
1207
1208         /* allocate q_vector and rings */
1209         q_vector = adapter->q_vector[v_idx];
1210         if (!q_vector) {
1211                 q_vector = kzalloc(size, GFP_KERNEL);
1212         } else if (size > ksize(q_vector)) {
1213                 kfree_rcu(q_vector, rcu);
1214                 q_vector = kzalloc(size, GFP_KERNEL);
1215         } else {
1216                 memset(q_vector, 0, size);
1217         }
1218         if (!q_vector)
1219                 return -ENOMEM;
1220
1221         /* initialize NAPI */
1222         netif_napi_add(adapter->netdev, &q_vector->napi,
1223                        igb_poll, 64);
1224
1225         /* tie q_vector and adapter together */
1226         adapter->q_vector[v_idx] = q_vector;
1227         q_vector->adapter = adapter;
1228
1229         /* initialize work limits */
1230         q_vector->tx.work_limit = adapter->tx_work_limit;
1231
1232         /* initialize ITR configuration */
1233         q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1234         q_vector->itr_val = IGB_START_ITR;
1235
1236         /* initialize pointer to rings */
1237         ring = q_vector->ring;
1238
1239         /* intialize ITR */
1240         if (rxr_count) {
1241                 /* rx or rx/tx vector */
1242                 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1243                         q_vector->itr_val = adapter->rx_itr_setting;
1244         } else {
1245                 /* tx only vector */
1246                 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1247                         q_vector->itr_val = adapter->tx_itr_setting;
1248         }
1249
1250         if (txr_count) {
1251                 /* assign generic ring traits */
1252                 ring->dev = &adapter->pdev->dev;
1253                 ring->netdev = adapter->netdev;
1254
1255                 /* configure backlink on ring */
1256                 ring->q_vector = q_vector;
1257
1258                 /* update q_vector Tx values */
1259                 igb_add_ring(ring, &q_vector->tx);
1260
1261                 /* For 82575, context index must be unique per ring. */
1262                 if (adapter->hw.mac.type == e1000_82575)
1263                         set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1264
1265                 /* apply Tx specific ring traits */
1266                 ring->count = adapter->tx_ring_count;
1267                 ring->queue_index = txr_idx;
1268
1269                 u64_stats_init(&ring->tx_syncp);
1270                 u64_stats_init(&ring->tx_syncp2);
1271
1272                 /* assign ring to adapter */
1273                 adapter->tx_ring[txr_idx] = ring;
1274
1275                 /* push pointer to next ring */
1276                 ring++;
1277         }
1278
1279         if (rxr_count) {
1280                 /* assign generic ring traits */
1281                 ring->dev = &adapter->pdev->dev;
1282                 ring->netdev = adapter->netdev;
1283
1284                 /* configure backlink on ring */
1285                 ring->q_vector = q_vector;
1286
1287                 /* update q_vector Rx values */
1288                 igb_add_ring(ring, &q_vector->rx);
1289
1290                 /* set flag indicating ring supports SCTP checksum offload */
1291                 if (adapter->hw.mac.type >= e1000_82576)
1292                         set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1293
1294                 /* On i350, i354, i210, and i211, loopback VLAN packets
1295                  * have the tag byte-swapped.
1296                  */
1297                 if (adapter->hw.mac.type >= e1000_i350)
1298                         set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1299
1300                 /* apply Rx specific ring traits */
1301                 ring->count = adapter->rx_ring_count;
1302                 ring->queue_index = rxr_idx;
1303
1304                 u64_stats_init(&ring->rx_syncp);
1305
1306                 /* assign ring to adapter */
1307                 adapter->rx_ring[rxr_idx] = ring;
1308         }
1309
1310         return 0;
1311 }
1312
1313
1314 /**
1315  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1316  *  @adapter: board private structure to initialize
1317  *
1318  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1319  *  return -ENOMEM.
1320  **/
1321 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1322 {
1323         int q_vectors = adapter->num_q_vectors;
1324         int rxr_remaining = adapter->num_rx_queues;
1325         int txr_remaining = adapter->num_tx_queues;
1326         int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1327         int err;
1328
1329         if (q_vectors >= (rxr_remaining + txr_remaining)) {
1330                 for (; rxr_remaining; v_idx++) {
1331                         err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1332                                                  0, 0, 1, rxr_idx);
1333
1334                         if (err)
1335                                 goto err_out;
1336
1337                         /* update counts and index */
1338                         rxr_remaining--;
1339                         rxr_idx++;
1340                 }
1341         }
1342
1343         for (; v_idx < q_vectors; v_idx++) {
1344                 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1345                 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1346
1347                 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1348                                          tqpv, txr_idx, rqpv, rxr_idx);
1349
1350                 if (err)
1351                         goto err_out;
1352
1353                 /* update counts and index */
1354                 rxr_remaining -= rqpv;
1355                 txr_remaining -= tqpv;
1356                 rxr_idx++;
1357                 txr_idx++;
1358         }
1359
1360         return 0;
1361
1362 err_out:
1363         adapter->num_tx_queues = 0;
1364         adapter->num_rx_queues = 0;
1365         adapter->num_q_vectors = 0;
1366
1367         while (v_idx--)
1368                 igb_free_q_vector(adapter, v_idx);
1369
1370         return -ENOMEM;
1371 }
1372
1373 /**
1374  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1375  *  @adapter: board private structure to initialize
1376  *  @msix: boolean value of MSIX capability
1377  *
1378  *  This function initializes the interrupts and allocates all of the queues.
1379  **/
1380 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1381 {
1382         struct pci_dev *pdev = adapter->pdev;
1383         int err;
1384
1385         igb_set_interrupt_capability(adapter, msix);
1386
1387         err = igb_alloc_q_vectors(adapter);
1388         if (err) {
1389                 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1390                 goto err_alloc_q_vectors;
1391         }
1392
1393         igb_cache_ring_register(adapter);
1394
1395         return 0;
1396
1397 err_alloc_q_vectors:
1398         igb_reset_interrupt_capability(adapter);
1399         return err;
1400 }
1401
1402 /**
1403  *  igb_request_irq - initialize interrupts
1404  *  @adapter: board private structure to initialize
1405  *
1406  *  Attempts to configure interrupts using the best available
1407  *  capabilities of the hardware and kernel.
1408  **/
1409 static int igb_request_irq(struct igb_adapter *adapter)
1410 {
1411         struct net_device *netdev = adapter->netdev;
1412         struct pci_dev *pdev = adapter->pdev;
1413         int err = 0;
1414
1415         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1416                 err = igb_request_msix(adapter);
1417                 if (!err)
1418                         goto request_done;
1419                 /* fall back to MSI */
1420                 igb_free_all_tx_resources(adapter);
1421                 igb_free_all_rx_resources(adapter);
1422
1423                 igb_clear_interrupt_scheme(adapter);
1424                 err = igb_init_interrupt_scheme(adapter, false);
1425                 if (err)
1426                         goto request_done;
1427
1428                 igb_setup_all_tx_resources(adapter);
1429                 igb_setup_all_rx_resources(adapter);
1430                 igb_configure(adapter);
1431         }
1432
1433         igb_assign_vector(adapter->q_vector[0], 0);
1434
1435         if (adapter->flags & IGB_FLAG_HAS_MSI) {
1436                 err = request_irq(pdev->irq, igb_intr_msi, 0,
1437                                   netdev->name, adapter);
1438                 if (!err)
1439                         goto request_done;
1440
1441                 /* fall back to legacy interrupts */
1442                 igb_reset_interrupt_capability(adapter);
1443                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1444         }
1445
1446         err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1447                           netdev->name, adapter);
1448
1449         if (err)
1450                 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1451                         err);
1452
1453 request_done:
1454         return err;
1455 }
1456
1457 static void igb_free_irq(struct igb_adapter *adapter)
1458 {
1459         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1460                 int vector = 0, i;
1461
1462                 free_irq(adapter->msix_entries[vector++].vector, adapter);
1463
1464                 for (i = 0; i < adapter->num_q_vectors; i++)
1465                         free_irq(adapter->msix_entries[vector++].vector,
1466                                  adapter->q_vector[i]);
1467         } else {
1468                 free_irq(adapter->pdev->irq, adapter);
1469         }
1470 }
1471
1472 /**
1473  *  igb_irq_disable - Mask off interrupt generation on the NIC
1474  *  @adapter: board private structure
1475  **/
1476 static void igb_irq_disable(struct igb_adapter *adapter)
1477 {
1478         struct e1000_hw *hw = &adapter->hw;
1479
1480         /* we need to be careful when disabling interrupts.  The VFs are also
1481          * mapped into these registers and so clearing the bits can cause
1482          * issues on the VF drivers so we only need to clear what we set
1483          */
1484         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1485                 u32 regval = rd32(E1000_EIAM);
1486
1487                 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1488                 wr32(E1000_EIMC, adapter->eims_enable_mask);
1489                 regval = rd32(E1000_EIAC);
1490                 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1491         }
1492
1493         wr32(E1000_IAM, 0);
1494         wr32(E1000_IMC, ~0);
1495         wrfl();
1496         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1497                 int i;
1498
1499                 for (i = 0; i < adapter->num_q_vectors; i++)
1500                         synchronize_irq(adapter->msix_entries[i].vector);
1501         } else {
1502                 synchronize_irq(adapter->pdev->irq);
1503         }
1504 }
1505
1506 /**
1507  *  igb_irq_enable - Enable default interrupt generation settings
1508  *  @adapter: board private structure
1509  **/
1510 static void igb_irq_enable(struct igb_adapter *adapter)
1511 {
1512         struct e1000_hw *hw = &adapter->hw;
1513
1514         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1515                 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1516                 u32 regval = rd32(E1000_EIAC);
1517
1518                 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1519                 regval = rd32(E1000_EIAM);
1520                 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1521                 wr32(E1000_EIMS, adapter->eims_enable_mask);
1522                 if (adapter->vfs_allocated_count) {
1523                         wr32(E1000_MBVFIMR, 0xFF);
1524                         ims |= E1000_IMS_VMMB;
1525                 }
1526                 wr32(E1000_IMS, ims);
1527         } else {
1528                 wr32(E1000_IMS, IMS_ENABLE_MASK |
1529                                 E1000_IMS_DRSTA);
1530                 wr32(E1000_IAM, IMS_ENABLE_MASK |
1531                                 E1000_IMS_DRSTA);
1532         }
1533 }
1534
1535 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1536 {
1537         struct e1000_hw *hw = &adapter->hw;
1538         u16 pf_id = adapter->vfs_allocated_count;
1539         u16 vid = adapter->hw.mng_cookie.vlan_id;
1540         u16 old_vid = adapter->mng_vlan_id;
1541
1542         if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1543                 /* add VID to filter table */
1544                 igb_vfta_set(hw, vid, pf_id, true, true);
1545                 adapter->mng_vlan_id = vid;
1546         } else {
1547                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1548         }
1549
1550         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1551             (vid != old_vid) &&
1552             !test_bit(old_vid, adapter->active_vlans)) {
1553                 /* remove VID from filter table */
1554                 igb_vfta_set(hw, vid, pf_id, false, true);
1555         }
1556 }
1557
1558 /**
1559  *  igb_release_hw_control - release control of the h/w to f/w
1560  *  @adapter: address of board private structure
1561  *
1562  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1563  *  For ASF and Pass Through versions of f/w this means that the
1564  *  driver is no longer loaded.
1565  **/
1566 static void igb_release_hw_control(struct igb_adapter *adapter)
1567 {
1568         struct e1000_hw *hw = &adapter->hw;
1569         u32 ctrl_ext;
1570
1571         /* Let firmware take over control of h/w */
1572         ctrl_ext = rd32(E1000_CTRL_EXT);
1573         wr32(E1000_CTRL_EXT,
1574                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1575 }
1576
1577 /**
1578  *  igb_get_hw_control - get control of the h/w from f/w
1579  *  @adapter: address of board private structure
1580  *
1581  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1582  *  For ASF and Pass Through versions of f/w this means that
1583  *  the driver is loaded.
1584  **/
1585 static void igb_get_hw_control(struct igb_adapter *adapter)
1586 {
1587         struct e1000_hw *hw = &adapter->hw;
1588         u32 ctrl_ext;
1589
1590         /* Let firmware know the driver has taken over */
1591         ctrl_ext = rd32(E1000_CTRL_EXT);
1592         wr32(E1000_CTRL_EXT,
1593                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1594 }
1595
1596 /**
1597  *  igb_configure - configure the hardware for RX and TX
1598  *  @adapter: private board structure
1599  **/
1600 static void igb_configure(struct igb_adapter *adapter)
1601 {
1602         struct net_device *netdev = adapter->netdev;
1603         int i;
1604
1605         igb_get_hw_control(adapter);
1606         igb_set_rx_mode(netdev);
1607
1608         igb_restore_vlan(adapter);
1609
1610         igb_setup_tctl(adapter);
1611         igb_setup_mrqc(adapter);
1612         igb_setup_rctl(adapter);
1613
1614         igb_configure_tx(adapter);
1615         igb_configure_rx(adapter);
1616
1617         igb_rx_fifo_flush_82575(&adapter->hw);
1618
1619         /* call igb_desc_unused which always leaves
1620          * at least 1 descriptor unused to make sure
1621          * next_to_use != next_to_clean
1622          */
1623         for (i = 0; i < adapter->num_rx_queues; i++) {
1624                 struct igb_ring *ring = adapter->rx_ring[i];
1625                 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1626         }
1627 }
1628
1629 /**
1630  *  igb_power_up_link - Power up the phy/serdes link
1631  *  @adapter: address of board private structure
1632  **/
1633 void igb_power_up_link(struct igb_adapter *adapter)
1634 {
1635         igb_reset_phy(&adapter->hw);
1636
1637         if (adapter->hw.phy.media_type == e1000_media_type_copper)
1638                 igb_power_up_phy_copper(&adapter->hw);
1639         else
1640                 igb_power_up_serdes_link_82575(&adapter->hw);
1641
1642         igb_setup_link(&adapter->hw);
1643 }
1644
1645 /**
1646  *  igb_power_down_link - Power down the phy/serdes link
1647  *  @adapter: address of board private structure
1648  */
1649 static void igb_power_down_link(struct igb_adapter *adapter)
1650 {
1651         if (adapter->hw.phy.media_type == e1000_media_type_copper)
1652                 igb_power_down_phy_copper_82575(&adapter->hw);
1653         else
1654                 igb_shutdown_serdes_link_82575(&adapter->hw);
1655 }
1656
1657 /**
1658  * Detect and switch function for Media Auto Sense
1659  * @adapter: address of the board private structure
1660  **/
1661 static void igb_check_swap_media(struct igb_adapter *adapter)
1662 {
1663         struct e1000_hw *hw = &adapter->hw;
1664         u32 ctrl_ext, connsw;
1665         bool swap_now = false;
1666
1667         ctrl_ext = rd32(E1000_CTRL_EXT);
1668         connsw = rd32(E1000_CONNSW);
1669
1670         /* need to live swap if current media is copper and we have fiber/serdes
1671          * to go to.
1672          */
1673
1674         if ((hw->phy.media_type == e1000_media_type_copper) &&
1675             (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1676                 swap_now = true;
1677         } else if (!(connsw & E1000_CONNSW_SERDESD)) {
1678                 /* copper signal takes time to appear */
1679                 if (adapter->copper_tries < 4) {
1680                         adapter->copper_tries++;
1681                         connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1682                         wr32(E1000_CONNSW, connsw);
1683                         return;
1684                 } else {
1685                         adapter->copper_tries = 0;
1686                         if ((connsw & E1000_CONNSW_PHYSD) &&
1687                             (!(connsw & E1000_CONNSW_PHY_PDN))) {
1688                                 swap_now = true;
1689                                 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1690                                 wr32(E1000_CONNSW, connsw);
1691                         }
1692                 }
1693         }
1694
1695         if (!swap_now)
1696                 return;
1697
1698         switch (hw->phy.media_type) {
1699         case e1000_media_type_copper:
1700                 netdev_info(adapter->netdev,
1701                         "MAS: changing media to fiber/serdes\n");
1702                 ctrl_ext |=
1703                         E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1704                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1705                 adapter->copper_tries = 0;
1706                 break;
1707         case e1000_media_type_internal_serdes:
1708         case e1000_media_type_fiber:
1709                 netdev_info(adapter->netdev,
1710                         "MAS: changing media to copper\n");
1711                 ctrl_ext &=
1712                         ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1713                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1714                 break;
1715         default:
1716                 /* shouldn't get here during regular operation */
1717                 netdev_err(adapter->netdev,
1718                         "AMS: Invalid media type found, returning\n");
1719                 break;
1720         }
1721         wr32(E1000_CTRL_EXT, ctrl_ext);
1722 }
1723
1724 /**
1725  *  igb_up - Open the interface and prepare it to handle traffic
1726  *  @adapter: board private structure
1727  **/
1728 int igb_up(struct igb_adapter *adapter)
1729 {
1730         struct e1000_hw *hw = &adapter->hw;
1731         int i;
1732
1733         /* hardware has been reset, we need to reload some things */
1734         igb_configure(adapter);
1735
1736         clear_bit(__IGB_DOWN, &adapter->state);
1737
1738         for (i = 0; i < adapter->num_q_vectors; i++)
1739                 napi_enable(&(adapter->q_vector[i]->napi));
1740
1741         if (adapter->flags & IGB_FLAG_HAS_MSIX)
1742                 igb_configure_msix(adapter);
1743         else
1744                 igb_assign_vector(adapter->q_vector[0], 0);
1745
1746         /* Clear any pending interrupts. */
1747         rd32(E1000_ICR);
1748         igb_irq_enable(adapter);
1749
1750         /* notify VFs that reset has been completed */
1751         if (adapter->vfs_allocated_count) {
1752                 u32 reg_data = rd32(E1000_CTRL_EXT);
1753
1754                 reg_data |= E1000_CTRL_EXT_PFRSTD;
1755                 wr32(E1000_CTRL_EXT, reg_data);
1756         }
1757
1758         netif_tx_start_all_queues(adapter->netdev);
1759
1760         /* start the watchdog. */
1761         hw->mac.get_link_status = 1;
1762         schedule_work(&adapter->watchdog_task);
1763
1764         if ((adapter->flags & IGB_FLAG_EEE) &&
1765             (!hw->dev_spec._82575.eee_disable))
1766                 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1767
1768         return 0;
1769 }
1770
1771 void igb_down(struct igb_adapter *adapter)
1772 {
1773         struct net_device *netdev = adapter->netdev;
1774         struct e1000_hw *hw = &adapter->hw;
1775         u32 tctl, rctl;
1776         int i;
1777
1778         /* signal that we're down so the interrupt handler does not
1779          * reschedule our watchdog timer
1780          */
1781         set_bit(__IGB_DOWN, &adapter->state);
1782
1783         /* disable receives in the hardware */
1784         rctl = rd32(E1000_RCTL);
1785         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1786         /* flush and sleep below */
1787
1788         netif_carrier_off(netdev);
1789         netif_tx_stop_all_queues(netdev);
1790
1791         /* disable transmits in the hardware */
1792         tctl = rd32(E1000_TCTL);
1793         tctl &= ~E1000_TCTL_EN;
1794         wr32(E1000_TCTL, tctl);
1795         /* flush both disables and wait for them to finish */
1796         wrfl();
1797         usleep_range(10000, 11000);
1798
1799         igb_irq_disable(adapter);
1800
1801         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1802
1803         for (i = 0; i < adapter->num_q_vectors; i++) {
1804                 if (adapter->q_vector[i]) {
1805                         napi_synchronize(&adapter->q_vector[i]->napi);
1806                         napi_disable(&adapter->q_vector[i]->napi);
1807                 }
1808         }
1809
1810         del_timer_sync(&adapter->watchdog_timer);
1811         del_timer_sync(&adapter->phy_info_timer);
1812
1813         /* record the stats before reset*/
1814         spin_lock(&adapter->stats64_lock);
1815         igb_update_stats(adapter, &adapter->stats64);
1816         spin_unlock(&adapter->stats64_lock);
1817
1818         adapter->link_speed = 0;
1819         adapter->link_duplex = 0;
1820
1821         if (!pci_channel_offline(adapter->pdev))
1822                 igb_reset(adapter);
1823
1824         /* clear VLAN promisc flag so VFTA will be updated if necessary */
1825         adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
1826
1827         igb_clean_all_tx_rings(adapter);
1828         igb_clean_all_rx_rings(adapter);
1829 #ifdef CONFIG_IGB_DCA
1830
1831         /* since we reset the hardware DCA settings were cleared */
1832         igb_setup_dca(adapter);
1833 #endif
1834 }
1835
1836 void igb_reinit_locked(struct igb_adapter *adapter)
1837 {
1838         WARN_ON(in_interrupt());
1839         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1840                 usleep_range(1000, 2000);
1841         igb_down(adapter);
1842         igb_up(adapter);
1843         clear_bit(__IGB_RESETTING, &adapter->state);
1844 }
1845
1846 /** igb_enable_mas - Media Autosense re-enable after swap
1847  *
1848  * @adapter: adapter struct
1849  **/
1850 static void igb_enable_mas(struct igb_adapter *adapter)
1851 {
1852         struct e1000_hw *hw = &adapter->hw;
1853         u32 connsw = rd32(E1000_CONNSW);
1854
1855         /* configure for SerDes media detect */
1856         if ((hw->phy.media_type == e1000_media_type_copper) &&
1857             (!(connsw & E1000_CONNSW_SERDESD))) {
1858                 connsw |= E1000_CONNSW_ENRGSRC;
1859                 connsw |= E1000_CONNSW_AUTOSENSE_EN;
1860                 wr32(E1000_CONNSW, connsw);
1861                 wrfl();
1862         }
1863 }
1864
1865 void igb_reset(struct igb_adapter *adapter)
1866 {
1867         struct pci_dev *pdev = adapter->pdev;
1868         struct e1000_hw *hw = &adapter->hw;
1869         struct e1000_mac_info *mac = &hw->mac;
1870         struct e1000_fc_info *fc = &hw->fc;
1871         u32 pba, hwm;
1872
1873         /* Repartition Pba for greater than 9k mtu
1874          * To take effect CTRL.RST is required.
1875          */
1876         switch (mac->type) {
1877         case e1000_i350:
1878         case e1000_i354:
1879         case e1000_82580:
1880                 pba = rd32(E1000_RXPBS);
1881                 pba = igb_rxpbs_adjust_82580(pba);
1882                 break;
1883         case e1000_82576:
1884                 pba = rd32(E1000_RXPBS);
1885                 pba &= E1000_RXPBS_SIZE_MASK_82576;
1886                 break;
1887         case e1000_82575:
1888         case e1000_i210:
1889         case e1000_i211:
1890         default:
1891                 pba = E1000_PBA_34K;
1892                 break;
1893         }
1894
1895         if (mac->type == e1000_82575) {
1896                 u32 min_rx_space, min_tx_space, needed_tx_space;
1897
1898                 /* write Rx PBA so that hardware can report correct Tx PBA */
1899                 wr32(E1000_PBA, pba);
1900
1901                 /* To maintain wire speed transmits, the Tx FIFO should be
1902                  * large enough to accommodate two full transmit packets,
1903                  * rounded up to the next 1KB and expressed in KB.  Likewise,
1904                  * the Rx FIFO should be large enough to accommodate at least
1905                  * one full receive packet and is similarly rounded up and
1906                  * expressed in KB.
1907                  */
1908                 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
1909
1910                 /* The Tx FIFO also stores 16 bytes of information about the Tx
1911                  * but don't include Ethernet FCS because hardware appends it.
1912                  * We only need to round down to the nearest 512 byte block
1913                  * count since the value we care about is 2 frames, not 1.
1914                  */
1915                 min_tx_space = adapter->max_frame_size;
1916                 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
1917                 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
1918
1919                 /* upper 16 bits has Tx packet buffer allocation size in KB */
1920                 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
1921
1922                 /* If current Tx allocation is less than the min Tx FIFO size,
1923                  * and the min Tx FIFO size is less than the current Rx FIFO
1924                  * allocation, take space away from current Rx allocation.
1925                  */
1926                 if (needed_tx_space < pba) {
1927                         pba -= needed_tx_space;
1928
1929                         /* if short on Rx space, Rx wins and must trump Tx
1930                          * adjustment
1931                          */
1932                         if (pba < min_rx_space)
1933                                 pba = min_rx_space;
1934                 }
1935
1936                 /* adjust PBA for jumbo frames */
1937                 wr32(E1000_PBA, pba);
1938         }
1939
1940         /* flow control settings
1941          * The high water mark must be low enough to fit one full frame
1942          * after transmitting the pause frame.  As such we must have enough
1943          * space to allow for us to complete our current transmit and then
1944          * receive the frame that is in progress from the link partner.
1945          * Set it to:
1946          * - the full Rx FIFO size minus one full Tx plus one full Rx frame
1947          */
1948         hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
1949
1950         fc->high_water = hwm & 0xFFFFFFF0;      /* 16-byte granularity */
1951         fc->low_water = fc->high_water - 16;
1952         fc->pause_time = 0xFFFF;
1953         fc->send_xon = 1;
1954         fc->current_mode = fc->requested_mode;
1955
1956         /* disable receive for all VFs and wait one second */
1957         if (adapter->vfs_allocated_count) {
1958                 int i;
1959
1960                 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1961                         adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1962
1963                 /* ping all the active vfs to let them know we are going down */
1964                 igb_ping_all_vfs(adapter);
1965
1966                 /* disable transmits and receives */
1967                 wr32(E1000_VFRE, 0);
1968                 wr32(E1000_VFTE, 0);
1969         }
1970
1971         /* Allow time for pending master requests to run */
1972         hw->mac.ops.reset_hw(hw);
1973         wr32(E1000_WUC, 0);
1974
1975         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1976                 /* need to resetup here after media swap */
1977                 adapter->ei.get_invariants(hw);
1978                 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1979         }
1980         if ((mac->type == e1000_82575) &&
1981             (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
1982                 igb_enable_mas(adapter);
1983         }
1984         if (hw->mac.ops.init_hw(hw))
1985                 dev_err(&pdev->dev, "Hardware Error\n");
1986
1987         /* Flow control settings reset on hardware reset, so guarantee flow
1988          * control is off when forcing speed.
1989          */
1990         if (!hw->mac.autoneg)
1991                 igb_force_mac_fc(hw);
1992
1993         igb_init_dmac(adapter, pba);
1994 #ifdef CONFIG_IGB_HWMON
1995         /* Re-initialize the thermal sensor on i350 devices. */
1996         if (!test_bit(__IGB_DOWN, &adapter->state)) {
1997                 if (mac->type == e1000_i350 && hw->bus.func == 0) {
1998                         /* If present, re-initialize the external thermal sensor
1999                          * interface.
2000                          */
2001                         if (adapter->ets)
2002                                 mac->ops.init_thermal_sensor_thresh(hw);
2003                 }
2004         }
2005 #endif
2006         /* Re-establish EEE setting */
2007         if (hw->phy.media_type == e1000_media_type_copper) {
2008                 switch (mac->type) {
2009                 case e1000_i350:
2010                 case e1000_i210:
2011                 case e1000_i211:
2012                         igb_set_eee_i350(hw, true, true);
2013                         break;
2014                 case e1000_i354:
2015                         igb_set_eee_i354(hw, true, true);
2016                         break;
2017                 default:
2018                         break;
2019                 }
2020         }
2021         if (!netif_running(adapter->netdev))
2022                 igb_power_down_link(adapter);
2023
2024         igb_update_mng_vlan(adapter);
2025
2026         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2027         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2028
2029         /* Re-enable PTP, where applicable. */
2030         igb_ptp_reset(adapter);
2031
2032         igb_get_phy_info(hw);
2033 }
2034
2035 static netdev_features_t igb_fix_features(struct net_device *netdev,
2036         netdev_features_t features)
2037 {
2038         /* Since there is no support for separate Rx/Tx vlan accel
2039          * enable/disable make sure Tx flag is always in same state as Rx.
2040          */
2041         if (features & NETIF_F_HW_VLAN_CTAG_RX)
2042                 features |= NETIF_F_HW_VLAN_CTAG_TX;
2043         else
2044                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2045
2046         return features;
2047 }
2048
2049 static int igb_set_features(struct net_device *netdev,
2050         netdev_features_t features)
2051 {
2052         netdev_features_t changed = netdev->features ^ features;
2053         struct igb_adapter *adapter = netdev_priv(netdev);
2054
2055         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2056                 igb_vlan_mode(netdev, features);
2057
2058         if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2059                 return 0;
2060
2061         netdev->features = features;
2062
2063         if (netif_running(netdev))
2064                 igb_reinit_locked(adapter);
2065         else
2066                 igb_reset(adapter);
2067
2068         return 0;
2069 }
2070
2071 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2072                            struct net_device *dev,
2073                            const unsigned char *addr, u16 vid,
2074                            u16 flags)
2075 {
2076         /* guarantee we can provide a unique filter for the unicast address */
2077         if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2078                 struct igb_adapter *adapter = netdev_priv(dev);
2079                 struct e1000_hw *hw = &adapter->hw;
2080                 int vfn = adapter->vfs_allocated_count;
2081                 int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
2082
2083                 if (netdev_uc_count(dev) >= rar_entries)
2084                         return -ENOMEM;
2085         }
2086
2087         return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2088 }
2089
2090 #define IGB_MAX_MAC_HDR_LEN     127
2091 #define IGB_MAX_NETWORK_HDR_LEN 511
2092
2093 static netdev_features_t
2094 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2095                    netdev_features_t features)
2096 {
2097         unsigned int network_hdr_len, mac_hdr_len;
2098
2099         /* Make certain the headers can be described by a context descriptor */
2100         mac_hdr_len = skb_network_header(skb) - skb->data;
2101         if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2102                 return features & ~(NETIF_F_HW_CSUM |
2103                                     NETIF_F_SCTP_CRC |
2104                                     NETIF_F_HW_VLAN_CTAG_TX |
2105                                     NETIF_F_TSO |
2106                                     NETIF_F_TSO6);
2107
2108         network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2109         if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2110                 return features & ~(NETIF_F_HW_CSUM |
2111                                     NETIF_F_SCTP_CRC |
2112                                     NETIF_F_TSO |
2113                                     NETIF_F_TSO6);
2114
2115         /* We can only support IPV4 TSO in tunnels if we can mangle the
2116          * inner IP ID field, so strip TSO if MANGLEID is not supported.
2117          */
2118         if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2119                 features &= ~NETIF_F_TSO;
2120
2121         return features;
2122 }
2123
2124 static const struct net_device_ops igb_netdev_ops = {
2125         .ndo_open               = igb_open,
2126         .ndo_stop               = igb_close,
2127         .ndo_start_xmit         = igb_xmit_frame,
2128         .ndo_get_stats64        = igb_get_stats64,
2129         .ndo_set_rx_mode        = igb_set_rx_mode,
2130         .ndo_set_mac_address    = igb_set_mac,
2131         .ndo_change_mtu         = igb_change_mtu,
2132         .ndo_do_ioctl           = igb_ioctl,
2133         .ndo_tx_timeout         = igb_tx_timeout,
2134         .ndo_validate_addr      = eth_validate_addr,
2135         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
2136         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
2137         .ndo_set_vf_mac         = igb_ndo_set_vf_mac,
2138         .ndo_set_vf_vlan        = igb_ndo_set_vf_vlan,
2139         .ndo_set_vf_rate        = igb_ndo_set_vf_bw,
2140         .ndo_set_vf_spoofchk    = igb_ndo_set_vf_spoofchk,
2141         .ndo_get_vf_config      = igb_ndo_get_vf_config,
2142 #ifdef CONFIG_NET_POLL_CONTROLLER
2143         .ndo_poll_controller    = igb_netpoll,
2144 #endif
2145         .ndo_fix_features       = igb_fix_features,
2146         .ndo_set_features       = igb_set_features,
2147         .ndo_fdb_add            = igb_ndo_fdb_add,
2148         .ndo_features_check     = igb_features_check,
2149 };
2150
2151 /**
2152  * igb_set_fw_version - Configure version string for ethtool
2153  * @adapter: adapter struct
2154  **/
2155 void igb_set_fw_version(struct igb_adapter *adapter)
2156 {
2157         struct e1000_hw *hw = &adapter->hw;
2158         struct e1000_fw_version fw;
2159
2160         igb_get_fw_version(hw, &fw);
2161
2162         switch (hw->mac.type) {
2163         case e1000_i210:
2164         case e1000_i211:
2165                 if (!(igb_get_flash_presence_i210(hw))) {
2166                         snprintf(adapter->fw_version,
2167                                  sizeof(adapter->fw_version),
2168                                  "%2d.%2d-%d",
2169                                  fw.invm_major, fw.invm_minor,
2170                                  fw.invm_img_type);
2171                         break;
2172                 }
2173                 /* fall through */
2174         default:
2175                 /* if option is rom valid, display its version too */
2176                 if (fw.or_valid) {
2177                         snprintf(adapter->fw_version,
2178                                  sizeof(adapter->fw_version),
2179                                  "%d.%d, 0x%08x, %d.%d.%d",
2180                                  fw.eep_major, fw.eep_minor, fw.etrack_id,
2181                                  fw.or_major, fw.or_build, fw.or_patch);
2182                 /* no option rom */
2183                 } else if (fw.etrack_id != 0X0000) {
2184                         snprintf(adapter->fw_version,
2185                             sizeof(adapter->fw_version),
2186                             "%d.%d, 0x%08x",
2187                             fw.eep_major, fw.eep_minor, fw.etrack_id);
2188                 } else {
2189                 snprintf(adapter->fw_version,
2190                     sizeof(adapter->fw_version),
2191                     "%d.%d.%d",
2192                     fw.eep_major, fw.eep_minor, fw.eep_build);
2193                 }
2194                 break;
2195         }
2196 }
2197
2198 /**
2199  * igb_init_mas - init Media Autosense feature if enabled in the NVM
2200  *
2201  * @adapter: adapter struct
2202  **/
2203 static void igb_init_mas(struct igb_adapter *adapter)
2204 {
2205         struct e1000_hw *hw = &adapter->hw;
2206         u16 eeprom_data;
2207
2208         hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2209         switch (hw->bus.func) {
2210         case E1000_FUNC_0:
2211                 if (eeprom_data & IGB_MAS_ENABLE_0) {
2212                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2213                         netdev_info(adapter->netdev,
2214                                 "MAS: Enabling Media Autosense for port %d\n",
2215                                 hw->bus.func);
2216                 }
2217                 break;
2218         case E1000_FUNC_1:
2219                 if (eeprom_data & IGB_MAS_ENABLE_1) {
2220                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2221                         netdev_info(adapter->netdev,
2222                                 "MAS: Enabling Media Autosense for port %d\n",
2223                                 hw->bus.func);
2224                 }
2225                 break;
2226         case E1000_FUNC_2:
2227                 if (eeprom_data & IGB_MAS_ENABLE_2) {
2228                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2229                         netdev_info(adapter->netdev,
2230                                 "MAS: Enabling Media Autosense for port %d\n",
2231                                 hw->bus.func);
2232                 }
2233                 break;
2234         case E1000_FUNC_3:
2235                 if (eeprom_data & IGB_MAS_ENABLE_3) {
2236                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2237                         netdev_info(adapter->netdev,
2238                                 "MAS: Enabling Media Autosense for port %d\n",
2239                                 hw->bus.func);
2240                 }
2241                 break;
2242         default:
2243                 /* Shouldn't get here */
2244                 netdev_err(adapter->netdev,
2245                         "MAS: Invalid port configuration, returning\n");
2246                 break;
2247         }
2248 }
2249
2250 /**
2251  *  igb_init_i2c - Init I2C interface
2252  *  @adapter: pointer to adapter structure
2253  **/
2254 static s32 igb_init_i2c(struct igb_adapter *adapter)
2255 {
2256         s32 status = 0;
2257
2258         /* I2C interface supported on i350 devices */
2259         if (adapter->hw.mac.type != e1000_i350)
2260                 return 0;
2261
2262         /* Initialize the i2c bus which is controlled by the registers.
2263          * This bus will use the i2c_algo_bit structue that implements
2264          * the protocol through toggling of the 4 bits in the register.
2265          */
2266         adapter->i2c_adap.owner = THIS_MODULE;
2267         adapter->i2c_algo = igb_i2c_algo;
2268         adapter->i2c_algo.data = adapter;
2269         adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2270         adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2271         strlcpy(adapter->i2c_adap.name, "igb BB",
2272                 sizeof(adapter->i2c_adap.name));
2273         status = i2c_bit_add_bus(&adapter->i2c_adap);
2274         return status;
2275 }
2276
2277 /**
2278  *  igb_probe - Device Initialization Routine
2279  *  @pdev: PCI device information struct
2280  *  @ent: entry in igb_pci_tbl
2281  *
2282  *  Returns 0 on success, negative on failure
2283  *
2284  *  igb_probe initializes an adapter identified by a pci_dev structure.
2285  *  The OS initialization, configuring of the adapter private structure,
2286  *  and a hardware reset occur.
2287  **/
2288 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2289 {
2290         struct net_device *netdev;
2291         struct igb_adapter *adapter;
2292         struct e1000_hw *hw;
2293         u16 eeprom_data = 0;
2294         s32 ret_val;
2295         static int global_quad_port_a; /* global quad port a indication */
2296         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2297         int err, pci_using_dac;
2298         u8 part_str[E1000_PBANUM_LENGTH];
2299
2300         /* Catch broken hardware that put the wrong VF device ID in
2301          * the PCIe SR-IOV capability.
2302          */
2303         if (pdev->is_virtfn) {
2304                 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2305                         pci_name(pdev), pdev->vendor, pdev->device);
2306                 return -EINVAL;
2307         }
2308
2309         err = pci_enable_device_mem(pdev);
2310         if (err)
2311                 return err;
2312
2313         pci_using_dac = 0;
2314         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2315         if (!err) {
2316                 pci_using_dac = 1;
2317         } else {
2318                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2319                 if (err) {
2320                         dev_err(&pdev->dev,
2321                                 "No usable DMA configuration, aborting\n");
2322                         goto err_dma;
2323                 }
2324         }
2325
2326         err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2327                                            IORESOURCE_MEM),
2328                                            igb_driver_name);
2329         if (err)
2330                 goto err_pci_reg;
2331
2332         pci_enable_pcie_error_reporting(pdev);
2333
2334         pci_set_master(pdev);
2335         pci_save_state(pdev);
2336
2337         err = -ENOMEM;
2338         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2339                                    IGB_MAX_TX_QUEUES);
2340         if (!netdev)
2341                 goto err_alloc_etherdev;
2342
2343         SET_NETDEV_DEV(netdev, &pdev->dev);
2344
2345         pci_set_drvdata(pdev, netdev);
2346         adapter = netdev_priv(netdev);
2347         adapter->netdev = netdev;
2348         adapter->pdev = pdev;
2349         hw = &adapter->hw;
2350         hw->back = adapter;
2351         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2352
2353         err = -EIO;
2354         adapter->io_addr = pci_iomap(pdev, 0, 0);
2355         if (!adapter->io_addr)
2356                 goto err_ioremap;
2357         /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
2358         hw->hw_addr = adapter->io_addr;
2359
2360         netdev->netdev_ops = &igb_netdev_ops;
2361         igb_set_ethtool_ops(netdev);
2362         netdev->watchdog_timeo = 5 * HZ;
2363
2364         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2365
2366         netdev->mem_start = pci_resource_start(pdev, 0);
2367         netdev->mem_end = pci_resource_end(pdev, 0);
2368
2369         /* PCI config space info */
2370         hw->vendor_id = pdev->vendor;
2371         hw->device_id = pdev->device;
2372         hw->revision_id = pdev->revision;
2373         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2374         hw->subsystem_device_id = pdev->subsystem_device;
2375
2376         /* Copy the default MAC, PHY and NVM function pointers */
2377         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2378         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2379         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2380         /* Initialize skew-specific constants */
2381         err = ei->get_invariants(hw);
2382         if (err)
2383                 goto err_sw_init;
2384
2385         /* setup the private structure */
2386         err = igb_sw_init(adapter);
2387         if (err)
2388                 goto err_sw_init;
2389
2390         igb_get_bus_info_pcie(hw);
2391
2392         hw->phy.autoneg_wait_to_complete = false;
2393
2394         /* Copper options */
2395         if (hw->phy.media_type == e1000_media_type_copper) {
2396                 hw->phy.mdix = AUTO_ALL_MODES;
2397                 hw->phy.disable_polarity_correction = false;
2398                 hw->phy.ms_type = e1000_ms_hw_default;
2399         }
2400
2401         if (igb_check_reset_block(hw))
2402                 dev_info(&pdev->dev,
2403                         "PHY reset is blocked due to SOL/IDER session.\n");
2404
2405         /* features is initialized to 0 in allocation, it might have bits
2406          * set by igb_sw_init so we should use an or instead of an
2407          * assignment.
2408          */
2409         netdev->features |= NETIF_F_SG |
2410                             NETIF_F_TSO |
2411                             NETIF_F_TSO6 |
2412                             NETIF_F_RXHASH |
2413                             NETIF_F_RXCSUM |
2414                             NETIF_F_HW_CSUM;
2415
2416         if (hw->mac.type >= e1000_82576)
2417                 netdev->features |= NETIF_F_SCTP_CRC;
2418
2419 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2420                                   NETIF_F_GSO_GRE_CSUM | \
2421                                   NETIF_F_GSO_IPXIP4 | \
2422                                   NETIF_F_GSO_UDP_TUNNEL | \
2423                                   NETIF_F_GSO_UDP_TUNNEL_CSUM)
2424
2425         netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
2426         netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
2427
2428         /* copy netdev features into list of user selectable features */
2429         netdev->hw_features |= netdev->features |
2430                                NETIF_F_HW_VLAN_CTAG_RX |
2431                                NETIF_F_HW_VLAN_CTAG_TX |
2432                                NETIF_F_RXALL;
2433
2434         if (hw->mac.type >= e1000_i350)
2435                 netdev->hw_features |= NETIF_F_NTUPLE;
2436
2437         if (pci_using_dac)
2438                 netdev->features |= NETIF_F_HIGHDMA;
2439
2440         netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2441         netdev->mpls_features |= NETIF_F_HW_CSUM;
2442         netdev->hw_enc_features |= netdev->vlan_features;
2443
2444         /* set this bit last since it cannot be part of vlan_features */
2445         netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2446                             NETIF_F_HW_VLAN_CTAG_RX |
2447                             NETIF_F_HW_VLAN_CTAG_TX;
2448
2449         netdev->priv_flags |= IFF_SUPP_NOFCS;
2450
2451         netdev->priv_flags |= IFF_UNICAST_FLT;
2452
2453         adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2454
2455         /* before reading the NVM, reset the controller to put the device in a
2456          * known good starting state
2457          */
2458         hw->mac.ops.reset_hw(hw);
2459
2460         /* make sure the NVM is good , i211/i210 parts can have special NVM
2461          * that doesn't contain a checksum
2462          */
2463         switch (hw->mac.type) {
2464         case e1000_i210:
2465         case e1000_i211:
2466                 if (igb_get_flash_presence_i210(hw)) {
2467                         if (hw->nvm.ops.validate(hw) < 0) {
2468                                 dev_err(&pdev->dev,
2469                                         "The NVM Checksum Is Not Valid\n");
2470                                 err = -EIO;
2471                                 goto err_eeprom;
2472                         }
2473                 }
2474                 break;
2475         default:
2476                 if (hw->nvm.ops.validate(hw) < 0) {
2477                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2478                         err = -EIO;
2479                         goto err_eeprom;
2480                 }
2481                 break;
2482         }
2483
2484         if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
2485                 /* copy the MAC address out of the NVM */
2486                 if (hw->mac.ops.read_mac_addr(hw))
2487                         dev_err(&pdev->dev, "NVM Read Error\n");
2488         }
2489
2490         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2491
2492         if (!is_valid_ether_addr(netdev->dev_addr)) {
2493                 dev_err(&pdev->dev, "Invalid MAC Address\n");
2494                 err = -EIO;
2495                 goto err_eeprom;
2496         }
2497
2498         /* get firmware version for ethtool -i */
2499         igb_set_fw_version(adapter);
2500
2501         /* configure RXPBSIZE and TXPBSIZE */
2502         if (hw->mac.type == e1000_i210) {
2503                 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
2504                 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
2505         }
2506
2507         setup_timer(&adapter->watchdog_timer, igb_watchdog,
2508                     (unsigned long) adapter);
2509         setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2510                     (unsigned long) adapter);
2511
2512         INIT_WORK(&adapter->reset_task, igb_reset_task);
2513         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2514
2515         /* Initialize link properties that are user-changeable */
2516         adapter->fc_autoneg = true;
2517         hw->mac.autoneg = true;
2518         hw->phy.autoneg_advertised = 0x2f;
2519
2520         hw->fc.requested_mode = e1000_fc_default;
2521         hw->fc.current_mode = e1000_fc_default;
2522
2523         igb_validate_mdi_setting(hw);
2524
2525         /* By default, support wake on port A */
2526         if (hw->bus.func == 0)
2527                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2528
2529         /* Check the NVM for wake support on non-port A ports */
2530         if (hw->mac.type >= e1000_82580)
2531                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2532                                  NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2533                                  &eeprom_data);
2534         else if (hw->bus.func == 1)
2535                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2536
2537         if (eeprom_data & IGB_EEPROM_APME)
2538                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2539
2540         /* now that we have the eeprom settings, apply the special cases where
2541          * the eeprom may be wrong or the board simply won't support wake on
2542          * lan on a particular port
2543          */
2544         switch (pdev->device) {
2545         case E1000_DEV_ID_82575GB_QUAD_COPPER:
2546                 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2547                 break;
2548         case E1000_DEV_ID_82575EB_FIBER_SERDES:
2549         case E1000_DEV_ID_82576_FIBER:
2550         case E1000_DEV_ID_82576_SERDES:
2551                 /* Wake events only supported on port A for dual fiber
2552                  * regardless of eeprom setting
2553                  */
2554                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2555                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2556                 break;
2557         case E1000_DEV_ID_82576_QUAD_COPPER:
2558         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2559                 /* if quad port adapter, disable WoL on all but port A */
2560                 if (global_quad_port_a != 0)
2561                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2562                 else
2563                         adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2564                 /* Reset for multiple quad port adapters */
2565                 if (++global_quad_port_a == 4)
2566                         global_quad_port_a = 0;
2567                 break;
2568         default:
2569                 /* If the device can't wake, don't set software support */
2570                 if (!device_can_wakeup(&adapter->pdev->dev))
2571                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2572         }
2573
2574         /* initialize the wol settings based on the eeprom settings */
2575         if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2576                 adapter->wol |= E1000_WUFC_MAG;
2577
2578         /* Some vendors want WoL disabled by default, but still supported */
2579         if ((hw->mac.type == e1000_i350) &&
2580             (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2581                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2582                 adapter->wol = 0;
2583         }
2584
2585         /* Some vendors want the ability to Use the EEPROM setting as
2586          * enable/disable only, and not for capability
2587          */
2588         if (((hw->mac.type == e1000_i350) ||
2589              (hw->mac.type == e1000_i354)) &&
2590             (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
2591                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2592                 adapter->wol = 0;
2593         }
2594         if (hw->mac.type == e1000_i350) {
2595                 if (((pdev->subsystem_device == 0x5001) ||
2596                      (pdev->subsystem_device == 0x5002)) &&
2597                                 (hw->bus.func == 0)) {
2598                         adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2599                         adapter->wol = 0;
2600                 }
2601                 if (pdev->subsystem_device == 0x1F52)
2602                         adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2603         }
2604
2605         device_set_wakeup_enable(&adapter->pdev->dev,
2606                                  adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2607
2608         /* reset the hardware with the new settings */
2609         igb_reset(adapter);
2610
2611         /* Init the I2C interface */
2612         err = igb_init_i2c(adapter);
2613         if (err) {
2614                 dev_err(&pdev->dev, "failed to init i2c interface\n");
2615                 goto err_eeprom;
2616         }
2617
2618         /* let the f/w know that the h/w is now under the control of the
2619          * driver.
2620          */
2621         igb_get_hw_control(adapter);
2622
2623         strcpy(netdev->name, "eth%d");
2624         err = register_netdev(netdev);
2625         if (err)
2626                 goto err_register;
2627
2628         /* carrier off reporting is important to ethtool even BEFORE open */
2629         netif_carrier_off(netdev);
2630
2631 #ifdef CONFIG_IGB_DCA
2632         if (dca_add_requester(&pdev->dev) == 0) {
2633                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2634                 dev_info(&pdev->dev, "DCA enabled\n");
2635                 igb_setup_dca(adapter);
2636         }
2637
2638 #endif
2639 #ifdef CONFIG_IGB_HWMON
2640         /* Initialize the thermal sensor on i350 devices. */
2641         if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2642                 u16 ets_word;
2643
2644                 /* Read the NVM to determine if this i350 device supports an
2645                  * external thermal sensor.
2646                  */
2647                 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2648                 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2649                         adapter->ets = true;
2650                 else
2651                         adapter->ets = false;
2652                 if (igb_sysfs_init(adapter))
2653                         dev_err(&pdev->dev,
2654                                 "failed to allocate sysfs resources\n");
2655         } else {
2656                 adapter->ets = false;
2657         }
2658 #endif
2659         /* Check if Media Autosense is enabled */
2660         adapter->ei = *ei;
2661         if (hw->dev_spec._82575.mas_capable)
2662                 igb_init_mas(adapter);
2663
2664         /* do hw tstamp init after resetting */
2665         igb_ptp_init(adapter);
2666
2667         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2668         /* print bus type/speed/width info, not applicable to i354 */
2669         if (hw->mac.type != e1000_i354) {
2670                 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2671                          netdev->name,
2672                          ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2673                           (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2674                            "unknown"),
2675                          ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2676                           "Width x4" :
2677                           (hw->bus.width == e1000_bus_width_pcie_x2) ?
2678                           "Width x2" :
2679                           (hw->bus.width == e1000_bus_width_pcie_x1) ?
2680                           "Width x1" : "unknown"), netdev->dev_addr);
2681         }
2682
2683         if ((hw->mac.type >= e1000_i210 ||
2684              igb_get_flash_presence_i210(hw))) {
2685                 ret_val = igb_read_part_string(hw, part_str,
2686                                                E1000_PBANUM_LENGTH);
2687         } else {
2688                 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2689         }
2690
2691         if (ret_val)
2692                 strcpy(part_str, "Unknown");
2693         dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2694         dev_info(&pdev->dev,
2695                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2696                 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2697                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2698                 adapter->num_rx_queues, adapter->num_tx_queues);
2699         if (hw->phy.media_type == e1000_media_type_copper) {
2700                 switch (hw->mac.type) {
2701                 case e1000_i350:
2702                 case e1000_i210:
2703                 case e1000_i211:
2704                         /* Enable EEE for internal copper PHY devices */
2705                         err = igb_set_eee_i350(hw, true, true);
2706                         if ((!err) &&
2707                             (!hw->dev_spec._82575.eee_disable)) {
2708                                 adapter->eee_advert =
2709                                         MDIO_EEE_100TX | MDIO_EEE_1000T;
2710                                 adapter->flags |= IGB_FLAG_EEE;
2711                         }
2712                         break;
2713                 case e1000_i354:
2714                         if ((rd32(E1000_CTRL_EXT) &
2715                             E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2716                                 err = igb_set_eee_i354(hw, true, true);
2717                                 if ((!err) &&
2718                                         (!hw->dev_spec._82575.eee_disable)) {
2719                                         adapter->eee_advert =
2720                                            MDIO_EEE_100TX | MDIO_EEE_1000T;
2721                                         adapter->flags |= IGB_FLAG_EEE;
2722                                 }
2723                         }
2724                         break;
2725                 default:
2726                         break;
2727                 }
2728         }
2729         pm_runtime_put_noidle(&pdev->dev);
2730         return 0;
2731
2732 err_register:
2733         igb_release_hw_control(adapter);
2734         memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2735 err_eeprom:
2736         if (!igb_check_reset_block(hw))
2737                 igb_reset_phy(hw);
2738
2739         if (hw->flash_address)
2740                 iounmap(hw->flash_address);
2741 err_sw_init:
2742         kfree(adapter->shadow_vfta);
2743         igb_clear_interrupt_scheme(adapter);
2744 #ifdef CONFIG_PCI_IOV
2745         igb_disable_sriov(pdev);
2746 #endif
2747         pci_iounmap(pdev, adapter->io_addr);
2748 err_ioremap:
2749         free_netdev(netdev);
2750 err_alloc_etherdev:
2751         pci_release_selected_regions(pdev,
2752                                      pci_select_bars(pdev, IORESOURCE_MEM));
2753 err_pci_reg:
2754 err_dma:
2755         pci_disable_device(pdev);
2756         return err;
2757 }
2758
2759 #ifdef CONFIG_PCI_IOV
2760 static int igb_disable_sriov(struct pci_dev *pdev)
2761 {
2762         struct net_device *netdev = pci_get_drvdata(pdev);
2763         struct igb_adapter *adapter = netdev_priv(netdev);
2764         struct e1000_hw *hw = &adapter->hw;
2765
2766         /* reclaim resources allocated to VFs */
2767         if (adapter->vf_data) {
2768                 /* disable iov and allow time for transactions to clear */
2769                 if (pci_vfs_assigned(pdev)) {
2770                         dev_warn(&pdev->dev,
2771                                  "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2772                         return -EPERM;
2773                 } else {
2774                         pci_disable_sriov(pdev);
2775                         msleep(500);
2776                 }
2777
2778                 kfree(adapter->vf_data);
2779                 adapter->vf_data = NULL;
2780                 adapter->vfs_allocated_count = 0;
2781                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2782                 wrfl();
2783                 msleep(100);
2784                 dev_info(&pdev->dev, "IOV Disabled\n");
2785
2786                 /* Re-enable DMA Coalescing flag since IOV is turned off */
2787                 adapter->flags |= IGB_FLAG_DMAC;
2788         }
2789
2790         return 0;
2791 }
2792
2793 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2794 {
2795         struct net_device *netdev = pci_get_drvdata(pdev);
2796         struct igb_adapter *adapter = netdev_priv(netdev);
2797         int old_vfs = pci_num_vf(pdev);
2798         int err = 0;
2799         int i;
2800
2801         if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2802                 err = -EPERM;
2803                 goto out;
2804         }
2805         if (!num_vfs)
2806                 goto out;
2807
2808         if (old_vfs) {
2809                 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2810                          old_vfs, max_vfs);
2811                 adapter->vfs_allocated_count = old_vfs;
2812         } else
2813                 adapter->vfs_allocated_count = num_vfs;
2814
2815         adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2816                                 sizeof(struct vf_data_storage), GFP_KERNEL);
2817
2818         /* if allocation failed then we do not support SR-IOV */
2819         if (!adapter->vf_data) {
2820                 adapter->vfs_allocated_count = 0;
2821                 dev_err(&pdev->dev,
2822                         "Unable to allocate memory for VF Data Storage\n");
2823                 err = -ENOMEM;
2824                 goto out;
2825         }
2826
2827         /* only call pci_enable_sriov() if no VFs are allocated already */
2828         if (!old_vfs) {
2829                 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2830                 if (err)
2831                         goto err_out;
2832         }
2833         dev_info(&pdev->dev, "%d VFs allocated\n",
2834                  adapter->vfs_allocated_count);
2835         for (i = 0; i < adapter->vfs_allocated_count; i++)
2836                 igb_vf_configure(adapter, i);
2837
2838         /* DMA Coalescing is not supported in IOV mode. */
2839         adapter->flags &= ~IGB_FLAG_DMAC;
2840         goto out;
2841
2842 err_out:
2843         kfree(adapter->vf_data);
2844         adapter->vf_data = NULL;
2845         adapter->vfs_allocated_count = 0;
2846 out:
2847         return err;
2848 }
2849
2850 #endif
2851 /**
2852  *  igb_remove_i2c - Cleanup  I2C interface
2853  *  @adapter: pointer to adapter structure
2854  **/
2855 static void igb_remove_i2c(struct igb_adapter *adapter)
2856 {
2857         /* free the adapter bus structure */
2858         i2c_del_adapter(&adapter->i2c_adap);
2859 }
2860
2861 /**
2862  *  igb_remove - Device Removal Routine
2863  *  @pdev: PCI device information struct
2864  *
2865  *  igb_remove is called by the PCI subsystem to alert the driver
2866  *  that it should release a PCI device.  The could be caused by a
2867  *  Hot-Plug event, or because the driver is going to be removed from
2868  *  memory.
2869  **/
2870 static void igb_remove(struct pci_dev *pdev)
2871 {
2872         struct net_device *netdev = pci_get_drvdata(pdev);
2873         struct igb_adapter *adapter = netdev_priv(netdev);
2874         struct e1000_hw *hw = &adapter->hw;
2875
2876         pm_runtime_get_noresume(&pdev->dev);
2877 #ifdef CONFIG_IGB_HWMON
2878         igb_sysfs_exit(adapter);
2879 #endif
2880         igb_remove_i2c(adapter);
2881         igb_ptp_stop(adapter);
2882         /* The watchdog timer may be rescheduled, so explicitly
2883          * disable watchdog from being rescheduled.
2884          */
2885         set_bit(__IGB_DOWN, &adapter->state);
2886         del_timer_sync(&adapter->watchdog_timer);
2887         del_timer_sync(&adapter->phy_info_timer);
2888
2889         cancel_work_sync(&adapter->reset_task);
2890         cancel_work_sync(&adapter->watchdog_task);
2891
2892 #ifdef CONFIG_IGB_DCA
2893         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2894                 dev_info(&pdev->dev, "DCA disabled\n");
2895                 dca_remove_requester(&pdev->dev);
2896                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2897                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2898         }
2899 #endif
2900
2901         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
2902          * would have already happened in close and is redundant.
2903          */
2904         igb_release_hw_control(adapter);
2905
2906 #ifdef CONFIG_PCI_IOV
2907         igb_disable_sriov(pdev);
2908 #endif
2909
2910         unregister_netdev(netdev);
2911
2912         igb_clear_interrupt_scheme(adapter);
2913
2914         pci_iounmap(pdev, adapter->io_addr);
2915         if (hw->flash_address)
2916                 iounmap(hw->flash_address);
2917         pci_release_selected_regions(pdev,
2918                                      pci_select_bars(pdev, IORESOURCE_MEM));
2919
2920         kfree(adapter->shadow_vfta);
2921         free_netdev(netdev);
2922
2923         pci_disable_pcie_error_reporting(pdev);
2924
2925         pci_disable_device(pdev);
2926 }
2927
2928 /**
2929  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2930  *  @adapter: board private structure to initialize
2931  *
2932  *  This function initializes the vf specific data storage and then attempts to
2933  *  allocate the VFs.  The reason for ordering it this way is because it is much
2934  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2935  *  the memory for the VFs.
2936  **/
2937 static void igb_probe_vfs(struct igb_adapter *adapter)
2938 {
2939 #ifdef CONFIG_PCI_IOV
2940         struct pci_dev *pdev = adapter->pdev;
2941         struct e1000_hw *hw = &adapter->hw;
2942
2943         /* Virtualization features not supported on i210 family. */
2944         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2945                 return;
2946
2947         /* Of the below we really only want the effect of getting
2948          * IGB_FLAG_HAS_MSIX set (if available), without which
2949          * igb_enable_sriov() has no effect.
2950          */
2951         igb_set_interrupt_capability(adapter, true);
2952         igb_reset_interrupt_capability(adapter);
2953
2954         pci_sriov_set_totalvfs(pdev, 7);
2955         igb_enable_sriov(pdev, max_vfs);
2956
2957 #endif /* CONFIG_PCI_IOV */
2958 }
2959
2960 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2961 {
2962         struct e1000_hw *hw = &adapter->hw;
2963         u32 max_rss_queues;
2964
2965         /* Determine the maximum number of RSS queues supported. */
2966         switch (hw->mac.type) {
2967         case e1000_i211:
2968                 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2969                 break;
2970         case e1000_82575:
2971         case e1000_i210:
2972                 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2973                 break;
2974         case e1000_i350:
2975                 /* I350 cannot do RSS and SR-IOV at the same time */
2976                 if (!!adapter->vfs_allocated_count) {
2977                         max_rss_queues = 1;
2978                         break;
2979                 }
2980                 /* fall through */
2981         case e1000_82576:
2982                 if (!!adapter->vfs_allocated_count) {
2983                         max_rss_queues = 2;
2984                         break;
2985                 }
2986                 /* fall through */
2987         case e1000_82580:
2988         case e1000_i354:
2989         default:
2990                 max_rss_queues = IGB_MAX_RX_QUEUES;
2991                 break;
2992         }
2993
2994         adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2995
2996         igb_set_flag_queue_pairs(adapter, max_rss_queues);
2997 }
2998
2999 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3000                               const u32 max_rss_queues)
3001 {
3002         struct e1000_hw *hw = &adapter->hw;
3003
3004         /* Determine if we need to pair queues. */
3005         switch (hw->mac.type) {
3006         case e1000_82575:
3007         case e1000_i211:
3008                 /* Device supports enough interrupts without queue pairing. */
3009                 break;
3010         case e1000_82576:
3011         case e1000_82580:
3012         case e1000_i350:
3013         case e1000_i354:
3014         case e1000_i210:
3015         default:
3016                 /* If rss_queues > half of max_rss_queues, pair the queues in
3017                  * order to conserve interrupts due to limited supply.
3018                  */
3019                 if (adapter->rss_queues > (max_rss_queues / 2))
3020                         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3021                 else
3022                         adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3023                 break;
3024         }
3025 }
3026
3027 /**
3028  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
3029  *  @adapter: board private structure to initialize
3030  *
3031  *  igb_sw_init initializes the Adapter private data structure.
3032  *  Fields are initialized based on PCI device information and
3033  *  OS network device settings (MTU size).
3034  **/
3035 static int igb_sw_init(struct igb_adapter *adapter)
3036 {
3037         struct e1000_hw *hw = &adapter->hw;
3038         struct net_device *netdev = adapter->netdev;
3039         struct pci_dev *pdev = adapter->pdev;
3040
3041         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3042
3043         /* set default ring sizes */
3044         adapter->tx_ring_count = IGB_DEFAULT_TXD;
3045         adapter->rx_ring_count = IGB_DEFAULT_RXD;
3046
3047         /* set default ITR values */
3048         adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3049         adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3050
3051         /* set default work limits */
3052         adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3053
3054         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3055                                   VLAN_HLEN;
3056         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3057
3058         spin_lock_init(&adapter->stats64_lock);
3059 #ifdef CONFIG_PCI_IOV
3060         switch (hw->mac.type) {
3061         case e1000_82576:
3062         case e1000_i350:
3063                 if (max_vfs > 7) {
3064                         dev_warn(&pdev->dev,
3065                                  "Maximum of 7 VFs per PF, using max\n");
3066                         max_vfs = adapter->vfs_allocated_count = 7;
3067                 } else
3068                         adapter->vfs_allocated_count = max_vfs;
3069                 if (adapter->vfs_allocated_count)
3070                         dev_warn(&pdev->dev,
3071                                  "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3072                 break;
3073         default:
3074                 break;
3075         }
3076 #endif /* CONFIG_PCI_IOV */
3077
3078         /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3079         adapter->flags |= IGB_FLAG_HAS_MSIX;
3080
3081         igb_probe_vfs(adapter);
3082
3083         igb_init_queue_configuration(adapter);
3084
3085         /* Setup and initialize a copy of the hw vlan table array */
3086         adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3087                                        GFP_ATOMIC);
3088
3089         /* This call may decrease the number of queues */
3090         if (igb_init_interrupt_scheme(adapter, true)) {
3091                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3092                 return -ENOMEM;
3093         }
3094
3095         /* Explicitly disable IRQ since the NIC can be in any state. */
3096         igb_irq_disable(adapter);
3097
3098         if (hw->mac.type >= e1000_i350)
3099                 adapter->flags &= ~IGB_FLAG_DMAC;
3100
3101         set_bit(__IGB_DOWN, &adapter->state);
3102         return 0;
3103 }
3104
3105 /**
3106  *  igb_open - Called when a network interface is made active
3107  *  @netdev: network interface device structure
3108  *
3109  *  Returns 0 on success, negative value on failure
3110  *
3111  *  The open entry point is called when a network interface is made
3112  *  active by the system (IFF_UP).  At this point all resources needed
3113  *  for transmit and receive operations are allocated, the interrupt
3114  *  handler is registered with the OS, the watchdog timer is started,
3115  *  and the stack is notified that the interface is ready.
3116  **/
3117 static int __igb_open(struct net_device *netdev, bool resuming)
3118 {
3119         struct igb_adapter *adapter = netdev_priv(netdev);
3120         struct e1000_hw *hw = &adapter->hw;
3121         struct pci_dev *pdev = adapter->pdev;
3122         int err;
3123         int i;
3124
3125         /* disallow open during test */
3126         if (test_bit(__IGB_TESTING, &adapter->state)) {
3127                 WARN_ON(resuming);
3128                 return -EBUSY;
3129         }
3130
3131         if (!resuming)
3132                 pm_runtime_get_sync(&pdev->dev);
3133
3134         netif_carrier_off(netdev);
3135
3136         /* allocate transmit descriptors */
3137         err = igb_setup_all_tx_resources(adapter);
3138         if (err)
3139                 goto err_setup_tx;
3140
3141         /* allocate receive descriptors */
3142         err = igb_setup_all_rx_resources(adapter);
3143         if (err)
3144                 goto err_setup_rx;
3145
3146         igb_power_up_link(adapter);
3147
3148         /* before we allocate an interrupt, we must be ready to handle it.
3149          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3150          * as soon as we call pci_request_irq, so we have to setup our
3151          * clean_rx handler before we do so.
3152          */
3153         igb_configure(adapter);
3154
3155         err = igb_request_irq(adapter);
3156         if (err)
3157                 goto err_req_irq;
3158
3159         /* Notify the stack of the actual queue counts. */
3160         err = netif_set_real_num_tx_queues(adapter->netdev,
3161                                            adapter->num_tx_queues);
3162         if (err)
3163                 goto err_set_queues;
3164
3165         err = netif_set_real_num_rx_queues(adapter->netdev,
3166                                            adapter->num_rx_queues);
3167         if (err)
3168                 goto err_set_queues;
3169
3170         /* From here on the code is the same as igb_up() */
3171         clear_bit(__IGB_DOWN, &adapter->state);
3172
3173         for (i = 0; i < adapter->num_q_vectors; i++)
3174                 napi_enable(&(adapter->q_vector[i]->napi));
3175
3176         /* Clear any pending interrupts. */
3177         rd32(E1000_ICR);
3178
3179         igb_irq_enable(adapter);
3180
3181         /* notify VFs that reset has been completed */
3182         if (adapter->vfs_allocated_count) {
3183                 u32 reg_data = rd32(E1000_CTRL_EXT);
3184
3185                 reg_data |= E1000_CTRL_EXT_PFRSTD;
3186                 wr32(E1000_CTRL_EXT, reg_data);
3187         }
3188
3189         netif_tx_start_all_queues(netdev);
3190
3191         if (!resuming)
3192                 pm_runtime_put(&pdev->dev);
3193
3194         /* start the watchdog. */
3195         hw->mac.get_link_status = 1;
3196         schedule_work(&adapter->watchdog_task);
3197
3198         return 0;
3199
3200 err_set_queues:
3201         igb_free_irq(adapter);
3202 err_req_irq:
3203         igb_release_hw_control(adapter);
3204         igb_power_down_link(adapter);
3205         igb_free_all_rx_resources(adapter);
3206 err_setup_rx:
3207         igb_free_all_tx_resources(adapter);
3208 err_setup_tx:
3209         igb_reset(adapter);
3210         if (!resuming)
3211                 pm_runtime_put(&pdev->dev);
3212
3213         return err;
3214 }
3215
3216 int igb_open(struct net_device *netdev)
3217 {
3218         return __igb_open(netdev, false);
3219 }
3220
3221 /**
3222  *  igb_close - Disables a network interface
3223  *  @netdev: network interface device structure
3224  *
3225  *  Returns 0, this is not allowed to fail
3226  *
3227  *  The close entry point is called when an interface is de-activated
3228  *  by the OS.  The hardware is still under the driver's control, but
3229  *  needs to be disabled.  A global MAC reset is issued to stop the
3230  *  hardware, and all transmit and receive resources are freed.
3231  **/
3232 static int __igb_close(struct net_device *netdev, bool suspending)
3233 {
3234         struct igb_adapter *adapter = netdev_priv(netdev);
3235         struct pci_dev *pdev = adapter->pdev;
3236
3237         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3238
3239         if (!suspending)
3240                 pm_runtime_get_sync(&pdev->dev);
3241
3242         igb_down(adapter);
3243         igb_free_irq(adapter);
3244
3245         igb_free_all_tx_resources(adapter);
3246         igb_free_all_rx_resources(adapter);
3247
3248         if (!suspending)
3249                 pm_runtime_put_sync(&pdev->dev);
3250         return 0;
3251 }
3252
3253 int igb_close(struct net_device *netdev)
3254 {
3255         return __igb_close(netdev, false);
3256 }
3257
3258 /**
3259  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
3260  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
3261  *
3262  *  Return 0 on success, negative on failure
3263  **/
3264 int igb_setup_tx_resources(struct igb_ring *tx_ring)
3265 {
3266         struct device *dev = tx_ring->dev;
3267         int size;
3268
3269         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3270
3271         tx_ring->tx_buffer_info = vzalloc(size);
3272         if (!tx_ring->tx_buffer_info)
3273                 goto err;
3274
3275         /* round up to nearest 4K */
3276         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3277         tx_ring->size = ALIGN(tx_ring->size, 4096);
3278
3279         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3280                                            &tx_ring->dma, GFP_KERNEL);
3281         if (!tx_ring->desc)
3282                 goto err;
3283
3284         tx_ring->next_to_use = 0;
3285         tx_ring->next_to_clean = 0;
3286
3287         return 0;
3288
3289 err:
3290         vfree(tx_ring->tx_buffer_info);
3291         tx_ring->tx_buffer_info = NULL;
3292         dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3293         return -ENOMEM;
3294 }
3295
3296 /**
3297  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
3298  *                               (Descriptors) for all queues
3299  *  @adapter: board private structure
3300  *
3301  *  Return 0 on success, negative on failure
3302  **/
3303 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3304 {
3305         struct pci_dev *pdev = adapter->pdev;
3306         int i, err = 0;
3307
3308         for (i = 0; i < adapter->num_tx_queues; i++) {
3309                 err = igb_setup_tx_resources(adapter->tx_ring[i]);
3310                 if (err) {
3311                         dev_err(&pdev->dev,
3312                                 "Allocation for Tx Queue %u failed\n", i);
3313                         for (i--; i >= 0; i--)
3314                                 igb_free_tx_resources(adapter->tx_ring[i]);
3315                         break;
3316                 }
3317         }
3318
3319         return err;
3320 }
3321
3322 /**
3323  *  igb_setup_tctl - configure the transmit control registers
3324  *  @adapter: Board private structure
3325  **/
3326 void igb_setup_tctl(struct igb_adapter *adapter)
3327 {
3328         struct e1000_hw *hw = &adapter->hw;
3329         u32 tctl;
3330
3331         /* disable queue 0 which is enabled by default on 82575 and 82576 */
3332         wr32(E1000_TXDCTL(0), 0);
3333
3334         /* Program the Transmit Control Register */
3335         tctl = rd32(E1000_TCTL);
3336         tctl &= ~E1000_TCTL_CT;
3337         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3338                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3339
3340         igb_config_collision_dist(hw);
3341
3342         /* Enable transmits */
3343         tctl |= E1000_TCTL_EN;
3344
3345         wr32(E1000_TCTL, tctl);
3346 }
3347
3348 /**
3349  *  igb_configure_tx_ring - Configure transmit ring after Reset
3350  *  @adapter: board private structure
3351  *  @ring: tx ring to configure
3352  *
3353  *  Configure a transmit ring after a reset.
3354  **/
3355 void igb_configure_tx_ring(struct igb_adapter *adapter,
3356                            struct igb_ring *ring)
3357 {
3358         struct e1000_hw *hw = &adapter->hw;
3359         u32 txdctl = 0;
3360         u64 tdba = ring->dma;
3361         int reg_idx = ring->reg_idx;
3362
3363         /* disable the queue */
3364         wr32(E1000_TXDCTL(reg_idx), 0);
3365         wrfl();
3366         mdelay(10);
3367
3368         wr32(E1000_TDLEN(reg_idx),
3369              ring->count * sizeof(union e1000_adv_tx_desc));
3370         wr32(E1000_TDBAL(reg_idx),
3371              tdba & 0x00000000ffffffffULL);
3372         wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3373
3374         ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3375         wr32(E1000_TDH(reg_idx), 0);
3376         writel(0, ring->tail);
3377
3378         txdctl |= IGB_TX_PTHRESH;
3379         txdctl |= IGB_TX_HTHRESH << 8;
3380         txdctl |= IGB_TX_WTHRESH << 16;
3381
3382         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3383         wr32(E1000_TXDCTL(reg_idx), txdctl);
3384 }
3385
3386 /**
3387  *  igb_configure_tx - Configure transmit Unit after Reset
3388  *  @adapter: board private structure
3389  *
3390  *  Configure the Tx unit of the MAC after a reset.
3391  **/
3392 static void igb_configure_tx(struct igb_adapter *adapter)
3393 {
3394         int i;
3395
3396         for (i = 0; i < adapter->num_tx_queues; i++)
3397                 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3398 }
3399
3400 /**
3401  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3402  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3403  *
3404  *  Returns 0 on success, negative on failure
3405  **/
3406 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3407 {
3408         struct device *dev = rx_ring->dev;
3409         int size;
3410
3411         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3412
3413         rx_ring->rx_buffer_info = vzalloc(size);
3414         if (!rx_ring->rx_buffer_info)
3415                 goto err;
3416
3417         /* Round up to nearest 4K */
3418         rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3419         rx_ring->size = ALIGN(rx_ring->size, 4096);
3420
3421         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3422                                            &rx_ring->dma, GFP_KERNEL);
3423         if (!rx_ring->desc)
3424                 goto err;
3425
3426         rx_ring->next_to_alloc = 0;
3427         rx_ring->next_to_clean = 0;
3428         rx_ring->next_to_use = 0;
3429
3430         return 0;
3431
3432 err:
3433         vfree(rx_ring->rx_buffer_info);
3434         rx_ring->rx_buffer_info = NULL;
3435         dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3436         return -ENOMEM;
3437 }
3438
3439 /**
3440  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3441  *                               (Descriptors) for all queues
3442  *  @adapter: board private structure
3443  *
3444  *  Return 0 on success, negative on failure
3445  **/
3446 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3447 {
3448         struct pci_dev *pdev = adapter->pdev;
3449         int i, err = 0;
3450
3451         for (i = 0; i < adapter->num_rx_queues; i++) {
3452                 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3453                 if (err) {
3454                         dev_err(&pdev->dev,
3455                                 "Allocation for Rx Queue %u failed\n", i);
3456                         for (i--; i >= 0; i--)
3457                                 igb_free_rx_resources(adapter->rx_ring[i]);
3458                         break;
3459                 }
3460         }
3461
3462         return err;
3463 }
3464
3465 /**
3466  *  igb_setup_mrqc - configure the multiple receive queue control registers
3467  *  @adapter: Board private structure
3468  **/
3469 static void igb_setup_mrqc(struct igb_adapter *adapter)
3470 {
3471         struct e1000_hw *hw = &adapter->hw;
3472         u32 mrqc, rxcsum;
3473         u32 j, num_rx_queues;
3474         u32 rss_key[10];
3475
3476         netdev_rss_key_fill(rss_key, sizeof(rss_key));
3477         for (j = 0; j < 10; j++)
3478                 wr32(E1000_RSSRK(j), rss_key[j]);
3479
3480         num_rx_queues = adapter->rss_queues;
3481
3482         switch (hw->mac.type) {
3483         case e1000_82576:
3484                 /* 82576 supports 2 RSS queues for SR-IOV */
3485                 if (adapter->vfs_allocated_count)
3486                         num_rx_queues = 2;
3487                 break;
3488         default:
3489                 break;
3490         }
3491
3492         if (adapter->rss_indir_tbl_init != num_rx_queues) {
3493                 for (j = 0; j < IGB_RETA_SIZE; j++)
3494                         adapter->rss_indir_tbl[j] =
3495                         (j * num_rx_queues) / IGB_RETA_SIZE;
3496                 adapter->rss_indir_tbl_init = num_rx_queues;
3497         }
3498         igb_write_rss_indir_tbl(adapter);
3499
3500         /* Disable raw packet checksumming so that RSS hash is placed in
3501          * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3502          * offloads as they are enabled by default
3503          */
3504         rxcsum = rd32(E1000_RXCSUM);
3505         rxcsum |= E1000_RXCSUM_PCSD;
3506
3507         if (adapter->hw.mac.type >= e1000_82576)
3508                 /* Enable Receive Checksum Offload for SCTP */
3509                 rxcsum |= E1000_RXCSUM_CRCOFL;
3510
3511         /* Don't need to set TUOFL or IPOFL, they default to 1 */
3512         wr32(E1000_RXCSUM, rxcsum);
3513
3514         /* Generate RSS hash based on packet types, TCP/UDP
3515          * port numbers and/or IPv4/v6 src and dst addresses
3516          */
3517         mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3518                E1000_MRQC_RSS_FIELD_IPV4_TCP |
3519                E1000_MRQC_RSS_FIELD_IPV6 |
3520                E1000_MRQC_RSS_FIELD_IPV6_TCP |
3521                E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3522
3523         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3524                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3525         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3526                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3527
3528         /* If VMDq is enabled then we set the appropriate mode for that, else
3529          * we default to RSS so that an RSS hash is calculated per packet even
3530          * if we are only using one queue
3531          */
3532         if (adapter->vfs_allocated_count) {
3533                 if (hw->mac.type > e1000_82575) {
3534                         /* Set the default pool for the PF's first queue */
3535                         u32 vtctl = rd32(E1000_VT_CTL);
3536
3537                         vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3538                                    E1000_VT_CTL_DISABLE_DEF_POOL);
3539                         vtctl |= adapter->vfs_allocated_count <<
3540                                 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3541                         wr32(E1000_VT_CTL, vtctl);
3542                 }
3543                 if (adapter->rss_queues > 1)
3544                         mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
3545                 else
3546                         mrqc |= E1000_MRQC_ENABLE_VMDQ;
3547         } else {
3548                 if (hw->mac.type != e1000_i211)
3549                         mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
3550         }
3551         igb_vmm_control(adapter);
3552
3553         wr32(E1000_MRQC, mrqc);
3554 }
3555
3556 /**
3557  *  igb_setup_rctl - configure the receive control registers
3558  *  @adapter: Board private structure
3559  **/
3560 void igb_setup_rctl(struct igb_adapter *adapter)
3561 {
3562         struct e1000_hw *hw = &adapter->hw;
3563         u32 rctl;
3564
3565         rctl = rd32(E1000_RCTL);
3566
3567         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3568         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3569
3570         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3571                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3572
3573         /* enable stripping of CRC. It's unlikely this will break BMC
3574          * redirection as it did with e1000. Newer features require
3575          * that the HW strips the CRC.
3576          */
3577         rctl |= E1000_RCTL_SECRC;
3578
3579         /* disable store bad packets and clear size bits. */
3580         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3581
3582         /* enable LPE to allow for reception of jumbo frames */
3583         rctl |= E1000_RCTL_LPE;
3584
3585         /* disable queue 0 to prevent tail write w/o re-config */
3586         wr32(E1000_RXDCTL(0), 0);
3587
3588         /* Attention!!!  For SR-IOV PF driver operations you must enable
3589          * queue drop for all VF and PF queues to prevent head of line blocking
3590          * if an un-trusted VF does not provide descriptors to hardware.
3591          */
3592         if (adapter->vfs_allocated_count) {
3593                 /* set all queue drop enable bits */
3594                 wr32(E1000_QDE, ALL_QUEUES);
3595         }
3596
3597         /* This is useful for sniffing bad packets. */
3598         if (adapter->netdev->features & NETIF_F_RXALL) {
3599                 /* UPE and MPE will be handled by normal PROMISC logic
3600                  * in e1000e_set_rx_mode
3601                  */
3602                 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3603                          E1000_RCTL_BAM | /* RX All Bcast Pkts */
3604                          E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3605
3606                 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
3607                           E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3608                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3609                  * and that breaks VLANs.
3610                  */
3611         }
3612
3613         wr32(E1000_RCTL, rctl);
3614 }
3615
3616 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3617                                    int vfn)
3618 {
3619         struct e1000_hw *hw = &adapter->hw;
3620         u32 vmolr;
3621
3622         if (size > MAX_JUMBO_FRAME_SIZE)
3623                 size = MAX_JUMBO_FRAME_SIZE;
3624
3625         vmolr = rd32(E1000_VMOLR(vfn));
3626         vmolr &= ~E1000_VMOLR_RLPML_MASK;
3627         vmolr |= size | E1000_VMOLR_LPE;
3628         wr32(E1000_VMOLR(vfn), vmolr);
3629
3630         return 0;
3631 }
3632
3633 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
3634                                          int vfn, bool enable)
3635 {
3636         struct e1000_hw *hw = &adapter->hw;
3637         u32 val, reg;
3638
3639         if (hw->mac.type < e1000_82576)
3640                 return;
3641
3642         if (hw->mac.type == e1000_i350)
3643                 reg = E1000_DVMOLR(vfn);
3644         else
3645                 reg = E1000_VMOLR(vfn);
3646
3647         val = rd32(reg);
3648         if (enable)
3649                 val |= E1000_VMOLR_STRVLAN;
3650         else
3651                 val &= ~(E1000_VMOLR_STRVLAN);
3652         wr32(reg, val);
3653 }
3654
3655 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3656                                  int vfn, bool aupe)
3657 {
3658         struct e1000_hw *hw = &adapter->hw;
3659         u32 vmolr;
3660
3661         /* This register exists only on 82576 and newer so if we are older then
3662          * we should exit and do nothing
3663          */
3664         if (hw->mac.type < e1000_82576)
3665                 return;
3666
3667         vmolr = rd32(E1000_VMOLR(vfn));
3668         if (aupe)
3669                 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3670         else
3671                 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3672
3673         /* clear all bits that might not be set */
3674         vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3675
3676         if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3677                 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3678         /* for VMDq only allow the VFs and pool 0 to accept broadcast and
3679          * multicast packets
3680          */
3681         if (vfn <= adapter->vfs_allocated_count)
3682                 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3683
3684         wr32(E1000_VMOLR(vfn), vmolr);
3685 }
3686
3687 /**
3688  *  igb_configure_rx_ring - Configure a receive ring after Reset
3689  *  @adapter: board private structure
3690  *  @ring: receive ring to be configured
3691  *
3692  *  Configure the Rx unit of the MAC after a reset.
3693  **/
3694 void igb_configure_rx_ring(struct igb_adapter *adapter,
3695                            struct igb_ring *ring)
3696 {
3697         struct e1000_hw *hw = &adapter->hw;
3698         u64 rdba = ring->dma;
3699         int reg_idx = ring->reg_idx;
3700         u32 srrctl = 0, rxdctl = 0;
3701
3702         /* disable the queue */
3703         wr32(E1000_RXDCTL(reg_idx), 0);
3704
3705         /* Set DMA base address registers */
3706         wr32(E1000_RDBAL(reg_idx),
3707              rdba & 0x00000000ffffffffULL);
3708         wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3709         wr32(E1000_RDLEN(reg_idx),
3710              ring->count * sizeof(union e1000_adv_rx_desc));
3711
3712         /* initialize head and tail */
3713         ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3714         wr32(E1000_RDH(reg_idx), 0);
3715         writel(0, ring->tail);
3716
3717         /* set descriptor configuration */
3718         srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3719         srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3720         srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3721         if (hw->mac.type >= e1000_82580)
3722                 srrctl |= E1000_SRRCTL_TIMESTAMP;
3723         /* Only set Drop Enable if we are supporting multiple queues */
3724         if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3725                 srrctl |= E1000_SRRCTL_DROP_EN;
3726
3727         wr32(E1000_SRRCTL(reg_idx), srrctl);
3728
3729         /* set filtering for VMDQ pools */
3730         igb_set_vmolr(adapter, reg_idx & 0x7, true);
3731
3732         rxdctl |= IGB_RX_PTHRESH;
3733         rxdctl |= IGB_RX_HTHRESH << 8;
3734         rxdctl |= IGB_RX_WTHRESH << 16;
3735
3736         /* enable receive descriptor fetching */
3737         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3738         wr32(E1000_RXDCTL(reg_idx), rxdctl);
3739 }
3740
3741 /**
3742  *  igb_configure_rx - Configure receive Unit after Reset
3743  *  @adapter: board private structure
3744  *
3745  *  Configure the Rx unit of the MAC after a reset.
3746  **/
3747 static void igb_configure_rx(struct igb_adapter *adapter)
3748 {
3749         int i;
3750
3751         /* set the correct pool for the PF default MAC address in entry 0 */
3752         igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3753                          adapter->vfs_allocated_count);
3754
3755         /* Setup the HW Rx Head and Tail Descriptor Pointers and
3756          * the Base and Length of the Rx Descriptor Ring
3757          */
3758         for (i = 0; i < adapter->num_rx_queues; i++)
3759                 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3760 }
3761
3762 /**
3763  *  igb_free_tx_resources - Free Tx Resources per Queue
3764  *  @tx_ring: Tx descriptor ring for a specific queue
3765  *
3766  *  Free all transmit software resources
3767  **/
3768 void igb_free_tx_resources(struct igb_ring *tx_ring)
3769 {
3770         igb_clean_tx_ring(tx_ring);
3771
3772         vfree(tx_ring->tx_buffer_info);
3773         tx_ring->tx_buffer_info = NULL;
3774
3775         /* if not set, then don't free */
3776         if (!tx_ring->desc)
3777                 return;
3778
3779         dma_free_coherent(tx_ring->dev, tx_ring->size,
3780                           tx_ring->desc, tx_ring->dma);
3781
3782         tx_ring->desc = NULL;
3783 }
3784
3785 /**
3786  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3787  *  @adapter: board private structure
3788  *
3789  *  Free all transmit software resources
3790  **/
3791 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3792 {
3793         int i;
3794
3795         for (i = 0; i < adapter->num_tx_queues; i++)
3796                 if (adapter->tx_ring[i])
3797                         igb_free_tx_resources(adapter->tx_ring[i]);
3798 }
3799
3800 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3801                                     struct igb_tx_buffer *tx_buffer)
3802 {
3803         if (tx_buffer->skb) {
3804                 dev_kfree_skb_any(tx_buffer->skb);
3805                 if (dma_unmap_len(tx_buffer, len))
3806                         dma_unmap_single(ring->dev,
3807                                          dma_unmap_addr(tx_buffer, dma),
3808                                          dma_unmap_len(tx_buffer, len),
3809                                          DMA_TO_DEVICE);
3810         } else if (dma_unmap_len(tx_buffer, len)) {
3811                 dma_unmap_page(ring->dev,
3812                                dma_unmap_addr(tx_buffer, dma),
3813                                dma_unmap_len(tx_buffer, len),
3814                                DMA_TO_DEVICE);
3815         }
3816         tx_buffer->next_to_watch = NULL;
3817         tx_buffer->skb = NULL;
3818         dma_unmap_len_set(tx_buffer, len, 0);
3819         /* buffer_info must be completely set up in the transmit path */
3820 }
3821
3822 /**
3823  *  igb_clean_tx_ring - Free Tx Buffers
3824  *  @tx_ring: ring to be cleaned
3825  **/
3826 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3827 {
3828         struct igb_tx_buffer *buffer_info;
3829         unsigned long size;
3830         u16 i;
3831
3832         if (!tx_ring->tx_buffer_info)
3833                 return;
3834         /* Free all the Tx ring sk_buffs */
3835
3836         for (i = 0; i < tx_ring->count; i++) {
3837                 buffer_info = &tx_ring->tx_buffer_info[i];
3838                 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3839         }
3840
3841         netdev_tx_reset_queue(txring_txq(tx_ring));
3842
3843         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3844         memset(tx_ring->tx_buffer_info, 0, size);
3845
3846         /* Zero out the descriptor ring */
3847         memset(tx_ring->desc, 0, tx_ring->size);
3848
3849         tx_ring->next_to_use = 0;
3850         tx_ring->next_to_clean = 0;
3851 }
3852
3853 /**
3854  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3855  *  @adapter: board private structure
3856  **/
3857 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3858 {
3859         int i;
3860
3861         for (i = 0; i < adapter->num_tx_queues; i++)
3862                 if (adapter->tx_ring[i])
3863                         igb_clean_tx_ring(adapter->tx_ring[i]);
3864 }
3865
3866 /**
3867  *  igb_free_rx_resources - Free Rx Resources
3868  *  @rx_ring: ring to clean the resources from
3869  *
3870  *  Free all receive software resources
3871  **/
3872 void igb_free_rx_resources(struct igb_ring *rx_ring)
3873 {
3874         igb_clean_rx_ring(rx_ring);
3875
3876         vfree(rx_ring->rx_buffer_info);
3877         rx_ring->rx_buffer_info = NULL;
3878
3879         /* if not set, then don't free */
3880         if (!rx_ring->desc)
3881                 return;
3882
3883         dma_free_coherent(rx_ring->dev, rx_ring->size,
3884                           rx_ring->desc, rx_ring->dma);
3885
3886         rx_ring->desc = NULL;
3887 }
3888
3889 /**
3890  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3891  *  @adapter: board private structure
3892  *
3893  *  Free all receive software resources
3894  **/
3895 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3896 {
3897         int i;
3898
3899         for (i = 0; i < adapter->num_rx_queues; i++)
3900                 if (adapter->rx_ring[i])
3901                         igb_free_rx_resources(adapter->rx_ring[i]);
3902 }
3903
3904 /**
3905  *  igb_clean_rx_ring - Free Rx Buffers per Queue
3906  *  @rx_ring: ring to free buffers from
3907  **/
3908 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3909 {
3910         unsigned long size;
3911         u16 i;
3912
3913         if (rx_ring->skb)
3914                 dev_kfree_skb(rx_ring->skb);
3915         rx_ring->skb = NULL;
3916
3917         if (!rx_ring->rx_buffer_info)
3918                 return;
3919
3920         /* Free all the Rx ring sk_buffs */
3921         for (i = 0; i < rx_ring->count; i++) {
3922                 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3923
3924                 if (!buffer_info->page)
3925                         continue;
3926
3927                 dma_unmap_page(rx_ring->dev,
3928                                buffer_info->dma,
3929                                PAGE_SIZE,
3930                                DMA_FROM_DEVICE);
3931                 __free_page(buffer_info->page);
3932
3933                 buffer_info->page = NULL;
3934         }
3935
3936         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3937         memset(rx_ring->rx_buffer_info, 0, size);
3938
3939         /* Zero out the descriptor ring */
3940         memset(rx_ring->desc, 0, rx_ring->size);
3941
3942         rx_ring->next_to_alloc = 0;
3943         rx_ring->next_to_clean = 0;
3944         rx_ring->next_to_use = 0;
3945 }
3946
3947 /**
3948  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
3949  *  @adapter: board private structure
3950  **/
3951 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3952 {
3953         int i;
3954
3955         for (i = 0; i < adapter->num_rx_queues; i++)
3956                 if (adapter->rx_ring[i])
3957                         igb_clean_rx_ring(adapter->rx_ring[i]);
3958 }
3959
3960 /**
3961  *  igb_set_mac - Change the Ethernet Address of the NIC
3962  *  @netdev: network interface device structure
3963  *  @p: pointer to an address structure
3964  *
3965  *  Returns 0 on success, negative on failure
3966  **/
3967 static int igb_set_mac(struct net_device *netdev, void *p)
3968 {
3969         struct igb_adapter *adapter = netdev_priv(netdev);
3970         struct e1000_hw *hw = &adapter->hw;
3971         struct sockaddr *addr = p;
3972
3973         if (!is_valid_ether_addr(addr->sa_data))
3974                 return -EADDRNOTAVAIL;
3975
3976         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3977         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3978
3979         /* set the correct pool for the new PF MAC address in entry 0 */
3980         igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3981                          adapter->vfs_allocated_count);
3982
3983         return 0;
3984 }
3985
3986 /**
3987  *  igb_write_mc_addr_list - write multicast addresses to MTA
3988  *  @netdev: network interface device structure
3989  *
3990  *  Writes multicast address list to the MTA hash table.
3991  *  Returns: -ENOMEM on failure
3992  *           0 on no addresses written
3993  *           X on writing X addresses to MTA
3994  **/
3995 static int igb_write_mc_addr_list(struct net_device *netdev)
3996 {
3997         struct igb_adapter *adapter = netdev_priv(netdev);
3998         struct e1000_hw *hw = &adapter->hw;
3999         struct netdev_hw_addr *ha;
4000         u8  *mta_list;
4001         int i;
4002
4003         if (netdev_mc_empty(netdev)) {
4004                 /* nothing to program, so clear mc list */
4005                 igb_update_mc_addr_list(hw, NULL, 0);
4006                 igb_restore_vf_multicasts(adapter);
4007                 return 0;
4008         }
4009
4010         mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
4011         if (!mta_list)
4012                 return -ENOMEM;
4013
4014         /* The shared function expects a packed array of only addresses. */
4015         i = 0;
4016         netdev_for_each_mc_addr(ha, netdev)
4017                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
4018
4019         igb_update_mc_addr_list(hw, mta_list, i);
4020         kfree(mta_list);
4021
4022         return netdev_mc_count(netdev);
4023 }
4024
4025 /**
4026  *  igb_write_uc_addr_list - write unicast addresses to RAR table
4027  *  @netdev: network interface device structure
4028  *
4029  *  Writes unicast address list to the RAR table.
4030  *  Returns: -ENOMEM on failure/insufficient address space
4031  *           0 on no addresses written
4032  *           X on writing X addresses to the RAR table
4033  **/
4034 static int igb_write_uc_addr_list(struct net_device *netdev)
4035 {
4036         struct igb_adapter *adapter = netdev_priv(netdev);
4037         struct e1000_hw *hw = &adapter->hw;
4038         unsigned int vfn = adapter->vfs_allocated_count;
4039         unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
4040         int count = 0;
4041
4042         /* return ENOMEM indicating insufficient memory for addresses */
4043         if (netdev_uc_count(netdev) > rar_entries)
4044                 return -ENOMEM;
4045
4046         if (!netdev_uc_empty(netdev) && rar_entries) {
4047                 struct netdev_hw_addr *ha;
4048
4049                 netdev_for_each_uc_addr(ha, netdev) {
4050                         if (!rar_entries)
4051                                 break;
4052                         igb_rar_set_qsel(adapter, ha->addr,
4053                                          rar_entries--,
4054                                          vfn);
4055                         count++;
4056                 }
4057         }
4058         /* write the addresses in reverse order to avoid write combining */
4059         for (; rar_entries > 0 ; rar_entries--) {
4060                 wr32(E1000_RAH(rar_entries), 0);
4061                 wr32(E1000_RAL(rar_entries), 0);
4062         }
4063         wrfl();
4064
4065         return count;
4066 }
4067
4068 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
4069 {
4070         struct e1000_hw *hw = &adapter->hw;
4071         u32 i, pf_id;
4072
4073         switch (hw->mac.type) {
4074         case e1000_i210:
4075         case e1000_i211:
4076         case e1000_i350:
4077                 /* VLAN filtering needed for VLAN prio filter */
4078                 if (adapter->netdev->features & NETIF_F_NTUPLE)
4079                         break;
4080                 /* fall through */
4081         case e1000_82576:
4082         case e1000_82580:
4083         case e1000_i354:
4084                 /* VLAN filtering needed for pool filtering */
4085                 if (adapter->vfs_allocated_count)
4086                         break;
4087                 /* fall through */
4088         default:
4089                 return 1;
4090         }
4091
4092         /* We are already in VLAN promisc, nothing to do */
4093         if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4094                 return 0;
4095
4096         if (!adapter->vfs_allocated_count)
4097                 goto set_vfta;
4098
4099         /* Add PF to all active pools */
4100         pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4101
4102         for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4103                 u32 vlvf = rd32(E1000_VLVF(i));
4104
4105                 vlvf |= BIT(pf_id);
4106                 wr32(E1000_VLVF(i), vlvf);
4107         }
4108
4109 set_vfta:
4110         /* Set all bits in the VLAN filter table array */
4111         for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4112                 hw->mac.ops.write_vfta(hw, i, ~0U);
4113
4114         /* Set flag so we don't redo unnecessary work */
4115         adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4116
4117         return 0;
4118 }
4119
4120 #define VFTA_BLOCK_SIZE 8
4121 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4122 {
4123         struct e1000_hw *hw = &adapter->hw;
4124         u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4125         u32 vid_start = vfta_offset * 32;
4126         u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4127         u32 i, vid, word, bits, pf_id;
4128
4129         /* guarantee that we don't scrub out management VLAN */
4130         vid = adapter->mng_vlan_id;
4131         if (vid >= vid_start && vid < vid_end)
4132                 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4133
4134         if (!adapter->vfs_allocated_count)
4135                 goto set_vfta;
4136
4137         pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4138
4139         for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4140                 u32 vlvf = rd32(E1000_VLVF(i));
4141
4142                 /* pull VLAN ID from VLVF */
4143                 vid = vlvf & VLAN_VID_MASK;
4144
4145                 /* only concern ourselves with a certain range */
4146                 if (vid < vid_start || vid >= vid_end)
4147                         continue;
4148
4149                 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4150                         /* record VLAN ID in VFTA */
4151                         vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4152
4153                         /* if PF is part of this then continue */
4154                         if (test_bit(vid, adapter->active_vlans))
4155                                 continue;
4156                 }
4157
4158                 /* remove PF from the pool */
4159                 bits = ~BIT(pf_id);
4160                 bits &= rd32(E1000_VLVF(i));
4161                 wr32(E1000_VLVF(i), bits);
4162         }
4163
4164 set_vfta:
4165         /* extract values from active_vlans and write back to VFTA */
4166         for (i = VFTA_BLOCK_SIZE; i--;) {
4167                 vid = (vfta_offset + i) * 32;
4168                 word = vid / BITS_PER_LONG;
4169                 bits = vid % BITS_PER_LONG;
4170
4171                 vfta[i] |= adapter->active_vlans[word] >> bits;
4172
4173                 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4174         }
4175 }
4176
4177 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4178 {
4179         u32 i;
4180
4181         /* We are not in VLAN promisc, nothing to do */
4182         if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4183                 return;
4184
4185         /* Set flag so we don't redo unnecessary work */
4186         adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4187
4188         for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
4189                 igb_scrub_vfta(adapter, i);
4190 }
4191
4192 /**
4193  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4194  *  @netdev: network interface device structure
4195  *
4196  *  The set_rx_mode entry point is called whenever the unicast or multicast
4197  *  address lists or the network interface flags are updated.  This routine is
4198  *  responsible for configuring the hardware for proper unicast, multicast,
4199  *  promiscuous mode, and all-multi behavior.
4200  **/
4201 static void igb_set_rx_mode(struct net_device *netdev)
4202 {
4203         struct igb_adapter *adapter = netdev_priv(netdev);
4204         struct e1000_hw *hw = &adapter->hw;
4205         unsigned int vfn = adapter->vfs_allocated_count;
4206         u32 rctl = 0, vmolr = 0;
4207         int count;
4208
4209         /* Check for Promiscuous and All Multicast modes */
4210         if (netdev->flags & IFF_PROMISC) {
4211                 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
4212                 vmolr |= E1000_VMOLR_MPME;
4213
4214                 /* enable use of UTA filter to force packets to default pool */
4215                 if (hw->mac.type == e1000_82576)
4216                         vmolr |= E1000_VMOLR_ROPE;
4217         } else {
4218                 if (netdev->flags & IFF_ALLMULTI) {
4219                         rctl |= E1000_RCTL_MPE;
4220                         vmolr |= E1000_VMOLR_MPME;
4221                 } else {
4222                         /* Write addresses to the MTA, if the attempt fails
4223                          * then we should just turn on promiscuous mode so
4224                          * that we can at least receive multicast traffic
4225                          */
4226                         count = igb_write_mc_addr_list(netdev);
4227                         if (count < 0) {
4228                                 rctl |= E1000_RCTL_MPE;
4229                                 vmolr |= E1000_VMOLR_MPME;
4230                         } else if (count) {
4231                                 vmolr |= E1000_VMOLR_ROMPE;
4232                         }
4233                 }
4234         }
4235
4236         /* Write addresses to available RAR registers, if there is not
4237          * sufficient space to store all the addresses then enable
4238          * unicast promiscuous mode
4239          */
4240         count = igb_write_uc_addr_list(netdev);
4241         if (count < 0) {
4242                 rctl |= E1000_RCTL_UPE;
4243                 vmolr |= E1000_VMOLR_ROPE;
4244         }
4245
4246         /* enable VLAN filtering by default */
4247         rctl |= E1000_RCTL_VFE;
4248
4249         /* disable VLAN filtering for modes that require it */
4250         if ((netdev->flags & IFF_PROMISC) ||
4251             (netdev->features & NETIF_F_RXALL)) {
4252                 /* if we fail to set all rules then just clear VFE */
4253                 if (igb_vlan_promisc_enable(adapter))
4254                         rctl &= ~E1000_RCTL_VFE;
4255         } else {
4256                 igb_vlan_promisc_disable(adapter);
4257         }
4258
4259         /* update state of unicast, multicast, and VLAN filtering modes */
4260         rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
4261                                      E1000_RCTL_VFE);
4262         wr32(E1000_RCTL, rctl);
4263
4264         /* In order to support SR-IOV and eventually VMDq it is necessary to set
4265          * the VMOLR to enable the appropriate modes.  Without this workaround
4266          * we will have issues with VLAN tag stripping not being done for frames
4267          * that are only arriving because we are the default pool
4268          */
4269         if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4270                 return;
4271
4272         /* set UTA to appropriate mode */
4273         igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
4274
4275         vmolr |= rd32(E1000_VMOLR(vfn)) &
4276                  ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4277
4278         /* enable Rx jumbo frames, no need for restriction */
4279         vmolr &= ~E1000_VMOLR_RLPML_MASK;
4280         vmolr |= MAX_JUMBO_FRAME_SIZE | E1000_VMOLR_LPE;
4281
4282         wr32(E1000_VMOLR(vfn), vmolr);
4283         wr32(E1000_RLPML, MAX_JUMBO_FRAME_SIZE);
4284
4285         igb_restore_vf_multicasts(adapter);
4286 }
4287
4288 static void igb_check_wvbr(struct igb_adapter *adapter)
4289 {
4290         struct e1000_hw *hw = &adapter->hw;
4291         u32 wvbr = 0;
4292
4293         switch (hw->mac.type) {
4294         case e1000_82576:
4295         case e1000_i350:
4296                 wvbr = rd32(E1000_WVBR);
4297                 if (!wvbr)
4298                         return;
4299                 break;
4300         default:
4301                 break;
4302         }
4303
4304         adapter->wvbr |= wvbr;
4305 }
4306
4307 #define IGB_STAGGERED_QUEUE_OFFSET 8
4308
4309 static void igb_spoof_check(struct igb_adapter *adapter)
4310 {
4311         int j;
4312
4313         if (!adapter->wvbr)
4314                 return;
4315
4316         for (j = 0; j < adapter->vfs_allocated_count; j++) {
4317                 if (adapter->wvbr & BIT(j) ||
4318                     adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
4319                         dev_warn(&adapter->pdev->dev,
4320                                 "Spoof event(s) detected on VF %d\n", j);
4321                         adapter->wvbr &=
4322                                 ~(BIT(j) |
4323                                   BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
4324                 }
4325         }
4326 }
4327
4328 /* Need to wait a few seconds after link up to get diagnostic information from
4329  * the phy
4330  */
4331 static void igb_update_phy_info(unsigned long data)
4332 {
4333         struct igb_adapter *adapter = (struct igb_adapter *) data;
4334         igb_get_phy_info(&adapter->hw);
4335 }
4336
4337 /**
4338  *  igb_has_link - check shared code for link and determine up/down
4339  *  @adapter: pointer to driver private info
4340  **/
4341 bool igb_has_link(struct igb_adapter *adapter)
4342 {
4343         struct e1000_hw *hw = &adapter->hw;
4344         bool link_active = false;
4345
4346         /* get_link_status is set on LSC (link status) interrupt or
4347          * rx sequence error interrupt.  get_link_status will stay
4348          * false until the e1000_check_for_link establishes link
4349          * for copper adapters ONLY
4350          */
4351         switch (hw->phy.media_type) {
4352         case e1000_media_type_copper:
4353                 if (!hw->mac.get_link_status)
4354                         return true;
4355         case e1000_media_type_internal_serdes:
4356                 hw->mac.ops.check_for_link(hw);
4357                 link_active = !hw->mac.get_link_status;
4358                 break;
4359         default:
4360         case e1000_media_type_unknown:
4361                 break;
4362         }
4363
4364         if (((hw->mac.type == e1000_i210) ||
4365              (hw->mac.type == e1000_i211)) &&
4366              (hw->phy.id == I210_I_PHY_ID)) {
4367                 if (!netif_carrier_ok(adapter->netdev)) {
4368                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4369                 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4370                         adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4371                         adapter->link_check_timeout = jiffies;
4372                 }
4373         }
4374
4375         return link_active;
4376 }
4377
4378 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4379 {
4380         bool ret = false;
4381         u32 ctrl_ext, thstat;
4382
4383         /* check for thermal sensor event on i350 copper only */
4384         if (hw->mac.type == e1000_i350) {
4385                 thstat = rd32(E1000_THSTAT);
4386                 ctrl_ext = rd32(E1000_CTRL_EXT);
4387
4388                 if ((hw->phy.media_type == e1000_media_type_copper) &&
4389                     !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4390                         ret = !!(thstat & event);
4391         }
4392
4393         return ret;
4394 }
4395
4396 /**
4397  *  igb_check_lvmmc - check for malformed packets received
4398  *  and indicated in LVMMC register
4399  *  @adapter: pointer to adapter
4400  **/
4401 static void igb_check_lvmmc(struct igb_adapter *adapter)
4402 {
4403         struct e1000_hw *hw = &adapter->hw;
4404         u32 lvmmc;
4405
4406         lvmmc = rd32(E1000_LVMMC);
4407         if (lvmmc) {
4408                 if (unlikely(net_ratelimit())) {
4409                         netdev_warn(adapter->netdev,
4410                                     "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
4411                                     lvmmc);
4412                 }
4413         }
4414 }
4415
4416 /**
4417  *  igb_watchdog - Timer Call-back
4418  *  @data: pointer to adapter cast into an unsigned long
4419  **/
4420 static void igb_watchdog(unsigned long data)
4421 {
4422         struct igb_adapter *adapter = (struct igb_adapter *)data;
4423         /* Do the rest outside of interrupt context */
4424         schedule_work(&adapter->watchdog_task);
4425 }
4426
4427 static void igb_watchdog_task(struct work_struct *work)
4428 {
4429         struct igb_adapter *adapter = container_of(work,
4430                                                    struct igb_adapter,
4431                                                    watchdog_task);
4432         struct e1000_hw *hw = &adapter->hw;
4433         struct e1000_phy_info *phy = &hw->phy;
4434         struct net_device *netdev = adapter->netdev;
4435         u32 link;
4436         int i;
4437         u32 connsw;
4438         u16 phy_data, retry_count = 20;
4439
4440         link = igb_has_link(adapter);
4441
4442         if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4443                 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4444                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4445                 else
4446                         link = false;
4447         }
4448
4449         /* Force link down if we have fiber to swap to */
4450         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4451                 if (hw->phy.media_type == e1000_media_type_copper) {
4452                         connsw = rd32(E1000_CONNSW);
4453                         if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4454                                 link = 0;
4455                 }
4456         }
4457         if (link) {
4458                 /* Perform a reset if the media type changed. */
4459                 if (hw->dev_spec._82575.media_changed) {
4460                         hw->dev_spec._82575.media_changed = false;
4461                         adapter->flags |= IGB_FLAG_MEDIA_RESET;
4462                         igb_reset(adapter);
4463                 }
4464                 /* Cancel scheduled suspend requests. */
4465                 pm_runtime_resume(netdev->dev.parent);
4466
4467                 if (!netif_carrier_ok(netdev)) {
4468                         u32 ctrl;
4469
4470                         hw->mac.ops.get_speed_and_duplex(hw,
4471                                                          &adapter->link_speed,
4472                                                          &adapter->link_duplex);
4473
4474                         ctrl = rd32(E1000_CTRL);
4475                         /* Links status message must follow this format */
4476                         netdev_info(netdev,
4477                                "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4478                                netdev->name,
4479                                adapter->link_speed,
4480                                adapter->link_duplex == FULL_DUPLEX ?
4481                                "Full" : "Half",
4482                                (ctrl & E1000_CTRL_TFCE) &&
4483                                (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4484                                (ctrl & E1000_CTRL_RFCE) ?  "RX" :
4485                                (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
4486
4487                         /* disable EEE if enabled */
4488                         if ((adapter->flags & IGB_FLAG_EEE) &&
4489                                 (adapter->link_duplex == HALF_DUPLEX)) {
4490                                 dev_info(&adapter->pdev->dev,
4491                                 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4492                                 adapter->hw.dev_spec._82575.eee_disable = true;
4493                                 adapter->flags &= ~IGB_FLAG_EEE;
4494                         }
4495
4496                         /* check if SmartSpeed worked */
4497                         igb_check_downshift(hw);
4498                         if (phy->speed_downgraded)
4499                                 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4500
4501                         /* check for thermal sensor event */
4502                         if (igb_thermal_sensor_event(hw,
4503                             E1000_THSTAT_LINK_THROTTLE))
4504                                 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4505
4506                         /* adjust timeout factor according to speed/duplex */
4507                         adapter->tx_timeout_factor = 1;
4508                         switch (adapter->link_speed) {
4509                         case SPEED_10:
4510                                 adapter->tx_timeout_factor = 14;
4511                                 break;
4512                         case SPEED_100:
4513                                 /* maybe add some timeout factor ? */
4514                                 break;
4515                         }
4516
4517                         if (adapter->link_speed != SPEED_1000)
4518                                 goto no_wait;
4519
4520                         /* wait for Remote receiver status OK */
4521 retry_read_status:
4522                         if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
4523                                               &phy_data)) {
4524                                 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
4525                                     retry_count) {
4526                                         msleep(100);
4527                                         retry_count--;
4528                                         goto retry_read_status;
4529                                 } else if (!retry_count) {
4530                                         dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
4531                                 }
4532                         } else {
4533                                 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
4534                         }
4535 no_wait:
4536                         netif_carrier_on(netdev);
4537
4538                         igb_ping_all_vfs(adapter);
4539                         igb_check_vf_rate_limit(adapter);
4540
4541                         /* link state has changed, schedule phy info update */
4542                         if (!test_bit(__IGB_DOWN, &adapter->state))
4543                                 mod_timer(&adapter->phy_info_timer,
4544                                           round_jiffies(jiffies + 2 * HZ));
4545                 }
4546         } else {
4547                 if (netif_carrier_ok(netdev)) {
4548                         adapter->link_speed = 0;
4549                         adapter->link_duplex = 0;
4550
4551                         /* check for thermal sensor event */
4552                         if (igb_thermal_sensor_event(hw,
4553                             E1000_THSTAT_PWR_DOWN)) {
4554                                 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4555                         }
4556
4557                         /* Links status message must follow this format */
4558                         netdev_info(netdev, "igb: %s NIC Link is Down\n",
4559                                netdev->name);
4560                         netif_carrier_off(netdev);
4561
4562                         igb_ping_all_vfs(adapter);
4563
4564                         /* link state has changed, schedule phy info update */
4565                         if (!test_bit(__IGB_DOWN, &adapter->state))
4566                                 mod_timer(&adapter->phy_info_timer,
4567                                           round_jiffies(jiffies + 2 * HZ));
4568
4569                         /* link is down, time to check for alternate media */
4570                         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4571                                 igb_check_swap_media(adapter);
4572                                 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4573                                         schedule_work(&adapter->reset_task);
4574                                         /* return immediately */
4575                                         return;
4576                                 }
4577                         }
4578                         pm_schedule_suspend(netdev->dev.parent,
4579                                             MSEC_PER_SEC * 5);
4580
4581                 /* also check for alternate media here */
4582                 } else if (!netif_carrier_ok(netdev) &&
4583                            (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4584                         igb_check_swap_media(adapter);
4585                         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4586                                 schedule_work(&adapter->reset_task);
4587                                 /* return immediately */
4588                                 return;
4589                         }
4590                 }
4591         }
4592
4593         spin_lock(&adapter->stats64_lock);
4594         igb_update_stats(adapter, &adapter->stats64);
4595         spin_unlock(&adapter->stats64_lock);
4596
4597         for (i = 0; i < adapter->num_tx_queues; i++) {
4598                 struct igb_ring *tx_ring = adapter->tx_ring[i];
4599                 if (!netif_carrier_ok(netdev)) {
4600                         /* We've lost link, so the controller stops DMA,
4601                          * but we've got queued Tx work that's never going
4602                          * to get done, so reset controller to flush Tx.
4603                          * (Do the reset outside of interrupt context).
4604                          */
4605                         if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4606                                 adapter->tx_timeout_count++;
4607                                 schedule_work(&adapter->reset_task);
4608                                 /* return immediately since reset is imminent */
4609                                 return;
4610                         }
4611                 }
4612
4613                 /* Force detection of hung controller every watchdog period */
4614                 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4615         }
4616
4617         /* Cause software interrupt to ensure Rx ring is cleaned */
4618         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4619                 u32 eics = 0;
4620
4621                 for (i = 0; i < adapter->num_q_vectors; i++)
4622                         eics |= adapter->q_vector[i]->eims_value;
4623                 wr32(E1000_EICS, eics);
4624         } else {
4625                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4626         }
4627
4628         igb_spoof_check(adapter);
4629         igb_ptp_rx_hang(adapter);
4630
4631         /* Check LVMMC register on i350/i354 only */
4632         if ((adapter->hw.mac.type == e1000_i350) ||
4633             (adapter->hw.mac.type == e1000_i354))
4634                 igb_check_lvmmc(adapter);
4635
4636         /* Reset the timer */
4637         if (!test_bit(__IGB_DOWN, &adapter->state)) {
4638                 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4639                         mod_timer(&adapter->watchdog_timer,
4640                                   round_jiffies(jiffies +  HZ));
4641                 else
4642                         mod_timer(&adapter->watchdog_timer,
4643                                   round_jiffies(jiffies + 2 * HZ));
4644         }
4645 }
4646
4647 enum latency_range {
4648         lowest_latency = 0,
4649         low_latency = 1,
4650         bulk_latency = 2,
4651         latency_invalid = 255
4652 };
4653
4654 /**
4655  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4656  *  @q_vector: pointer to q_vector
4657  *
4658  *  Stores a new ITR value based on strictly on packet size.  This
4659  *  algorithm is less sophisticated than that used in igb_update_itr,
4660  *  due to the difficulty of synchronizing statistics across multiple
4661  *  receive rings.  The divisors and thresholds used by this function
4662  *  were determined based on theoretical maximum wire speed and testing
4663  *  data, in order to minimize response time while increasing bulk
4664  *  throughput.
4665  *  This functionality is controlled by ethtool's coalescing settings.
4666  *  NOTE:  This function is called only when operating in a multiqueue
4667  *         receive environment.
4668  **/
4669 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4670 {
4671         int new_val = q_vector->itr_val;
4672         int avg_wire_size = 0;
4673         struct igb_adapter *adapter = q_vector->adapter;
4674         unsigned int packets;
4675
4676         /* For non-gigabit speeds, just fix the interrupt rate at 4000
4677          * ints/sec - ITR timer value of 120 ticks.
4678          */
4679         if (adapter->link_speed != SPEED_1000) {
4680                 new_val = IGB_4K_ITR;
4681                 goto set_itr_val;
4682         }
4683
4684         packets = q_vector->rx.total_packets;
4685         if (packets)
4686                 avg_wire_size = q_vector->rx.total_bytes / packets;
4687
4688         packets = q_vector->tx.total_packets;
4689         if (packets)
4690                 avg_wire_size = max_t(u32, avg_wire_size,
4691                                       q_vector->tx.total_bytes / packets);
4692
4693         /* if avg_wire_size isn't set no work was done */
4694         if (!avg_wire_size)
4695                 goto clear_counts;
4696
4697         /* Add 24 bytes to size to account for CRC, preamble, and gap */
4698         avg_wire_size += 24;
4699
4700         /* Don't starve jumbo frames */
4701         avg_wire_size = min(avg_wire_size, 3000);
4702
4703         /* Give a little boost to mid-size frames */
4704         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4705                 new_val = avg_wire_size / 3;
4706         else
4707                 new_val = avg_wire_size / 2;
4708
4709         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4710         if (new_val < IGB_20K_ITR &&
4711             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4712              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4713                 new_val = IGB_20K_ITR;
4714
4715 set_itr_val:
4716         if (new_val != q_vector->itr_val) {
4717                 q_vector->itr_val = new_val;
4718                 q_vector->set_itr = 1;
4719         }
4720 clear_counts:
4721         q_vector->rx.total_bytes = 0;
4722         q_vector->rx.total_packets = 0;
4723         q_vector->tx.total_bytes = 0;
4724         q_vector->tx.total_packets = 0;
4725 }
4726
4727 /**
4728  *  igb_update_itr - update the dynamic ITR value based on statistics
4729  *  @q_vector: pointer to q_vector
4730  *  @ring_container: ring info to update the itr for
4731  *
4732  *  Stores a new ITR value based on packets and byte
4733  *  counts during the last interrupt.  The advantage of per interrupt
4734  *  computation is faster updates and more accurate ITR for the current
4735  *  traffic pattern.  Constants in this function were computed
4736  *  based on theoretical maximum wire speed and thresholds were set based
4737  *  on testing data as well as attempting to minimize response time
4738  *  while increasing bulk throughput.
4739  *  This functionality is controlled by ethtool's coalescing settings.
4740  *  NOTE:  These calculations are only valid when operating in a single-
4741  *         queue environment.
4742  **/
4743 static void igb_update_itr(struct igb_q_vector *q_vector,
4744                            struct igb_ring_container *ring_container)
4745 {
4746         unsigned int packets = ring_container->total_packets;
4747         unsigned int bytes = ring_container->total_bytes;
4748         u8 itrval = ring_container->itr;
4749
4750         /* no packets, exit with status unchanged */
4751         if (packets == 0)
4752                 return;
4753
4754         switch (itrval) {
4755         case lowest_latency:
4756                 /* handle TSO and jumbo frames */
4757                 if (bytes/packets > 8000)
4758                         itrval = bulk_latency;
4759                 else if ((packets < 5) && (bytes > 512))
4760                         itrval = low_latency;
4761                 break;
4762         case low_latency:  /* 50 usec aka 20000 ints/s */
4763                 if (bytes > 10000) {
4764                         /* this if handles the TSO accounting */
4765                         if (bytes/packets > 8000)
4766                                 itrval = bulk_latency;
4767                         else if ((packets < 10) || ((bytes/packets) > 1200))
4768                                 itrval = bulk_latency;
4769                         else if ((packets > 35))
4770                                 itrval = lowest_latency;
4771                 } else if (bytes/packets > 2000) {
4772                         itrval = bulk_latency;
4773                 } else if (packets <= 2 && bytes < 512) {
4774                         itrval = lowest_latency;
4775                 }
4776                 break;
4777         case bulk_latency: /* 250 usec aka 4000 ints/s */
4778                 if (bytes > 25000) {
4779                         if (packets > 35)
4780                                 itrval = low_latency;
4781                 } else if (bytes < 1500) {
4782                         itrval = low_latency;
4783                 }
4784                 break;
4785         }
4786
4787         /* clear work counters since we have the values we need */
4788         ring_container->total_bytes = 0;
4789         ring_container->total_packets = 0;
4790
4791         /* write updated itr to ring container */
4792         ring_container->itr = itrval;
4793 }
4794
4795 static void igb_set_itr(struct igb_q_vector *q_vector)
4796 {
4797         struct igb_adapter *adapter = q_vector->adapter;
4798         u32 new_itr = q_vector->itr_val;
4799         u8 current_itr = 0;
4800
4801         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4802         if (adapter->link_speed != SPEED_1000) {
4803                 current_itr = 0;
4804                 new_itr = IGB_4K_ITR;
4805                 goto set_itr_now;
4806         }
4807
4808         igb_update_itr(q_vector, &q_vector->tx);
4809         igb_update_itr(q_vector, &q_vector->rx);
4810
4811         current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4812
4813         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4814         if (current_itr == lowest_latency &&
4815             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4816              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4817                 current_itr = low_latency;
4818
4819         switch (current_itr) {
4820         /* counts and packets in update_itr are dependent on these numbers */
4821         case lowest_latency:
4822                 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4823                 break;
4824         case low_latency:
4825                 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4826                 break;
4827         case bulk_latency:
4828                 new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4829                 break;
4830         default:
4831                 break;
4832         }
4833
4834 set_itr_now:
4835         if (new_itr != q_vector->itr_val) {
4836                 /* this attempts to bias the interrupt rate towards Bulk
4837                  * by adding intermediate steps when interrupt rate is
4838                  * increasing
4839                  */
4840                 new_itr = new_itr > q_vector->itr_val ?
4841                           max((new_itr * q_vector->itr_val) /
4842                           (new_itr + (q_vector->itr_val >> 2)),
4843                           new_itr) : new_itr;
4844                 /* Don't write the value here; it resets the adapter's
4845                  * internal timer, and causes us to delay far longer than
4846                  * we should between interrupts.  Instead, we write the ITR
4847                  * value at the beginning of the next interrupt so the timing
4848                  * ends up being correct.
4849                  */
4850                 q_vector->itr_val = new_itr;
4851                 q_vector->set_itr = 1;
4852         }
4853 }
4854
4855 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4856                             u32 type_tucmd, u32 mss_l4len_idx)
4857 {
4858         struct e1000_adv_tx_context_desc *context_desc;
4859         u16 i = tx_ring->next_to_use;
4860
4861         context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4862
4863         i++;
4864         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4865
4866         /* set bits to identify this as an advanced context descriptor */
4867         type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4868
4869         /* For 82575, context index must be unique per ring. */
4870         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4871                 mss_l4len_idx |= tx_ring->reg_idx << 4;
4872
4873         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
4874         context_desc->seqnum_seed       = 0;
4875         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
4876         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
4877 }
4878
4879 static int igb_tso(struct igb_ring *tx_ring,
4880                    struct igb_tx_buffer *first,
4881                    u8 *hdr_len)
4882 {
4883         u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
4884         struct sk_buff *skb = first->skb;
4885         union {
4886                 struct iphdr *v4;
4887                 struct ipv6hdr *v6;
4888                 unsigned char *hdr;
4889         } ip;
4890         union {
4891                 struct tcphdr *tcp;
4892                 unsigned char *hdr;
4893         } l4;
4894         u32 paylen, l4_offset;
4895         int err;
4896
4897         if (skb->ip_summed != CHECKSUM_PARTIAL)
4898                 return 0;
4899
4900         if (!skb_is_gso(skb))
4901                 return 0;
4902
4903         err = skb_cow_head(skb, 0);
4904         if (err < 0)
4905                 return err;
4906
4907         ip.hdr = skb_network_header(skb);
4908         l4.hdr = skb_checksum_start(skb);
4909
4910         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4911         type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4912
4913         /* initialize outer IP header fields */
4914         if (ip.v4->version == 4) {
4915                 /* IP header will have to cancel out any data that
4916                  * is not a part of the outer IP header
4917                  */
4918                 ip.v4->check = csum_fold(csum_add(lco_csum(skb),
4919                                                   csum_unfold(l4.tcp->check)));
4920                 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4921
4922                 ip.v4->tot_len = 0;
4923                 first->tx_flags |= IGB_TX_FLAGS_TSO |
4924                                    IGB_TX_FLAGS_CSUM |
4925                                    IGB_TX_FLAGS_IPV4;
4926         } else {
4927                 ip.v6->payload_len = 0;
4928                 first->tx_flags |= IGB_TX_FLAGS_TSO |
4929                                    IGB_TX_FLAGS_CSUM;
4930         }
4931
4932         /* determine offset of inner transport header */
4933         l4_offset = l4.hdr - skb->data;
4934
4935         /* compute length of segmentation header */
4936         *hdr_len = (l4.tcp->doff * 4) + l4_offset;
4937
4938         /* remove payload length from inner checksum */
4939         paylen = skb->len - l4_offset;
4940         csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
4941
4942         /* update gso size and bytecount with header size */
4943         first->gso_segs = skb_shinfo(skb)->gso_segs;
4944         first->bytecount += (first->gso_segs - 1) * *hdr_len;
4945
4946         /* MSS L4LEN IDX */
4947         mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
4948         mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4949
4950         /* VLAN MACLEN IPLEN */
4951         vlan_macip_lens = l4.hdr - ip.hdr;
4952         vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
4953         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4954
4955         igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4956
4957         return 1;
4958 }
4959
4960 static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
4961 {
4962         unsigned int offset = 0;
4963
4964         ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
4965
4966         return offset == skb_checksum_start_offset(skb);
4967 }
4968
4969 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4970 {
4971         struct sk_buff *skb = first->skb;
4972         u32 vlan_macip_lens = 0;
4973         u32 type_tucmd = 0;
4974
4975         if (skb->ip_summed != CHECKSUM_PARTIAL) {
4976 csum_failed:
4977                 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4978                         return;
4979                 goto no_csum;
4980         }
4981
4982         switch (skb->csum_offset) {
4983         case offsetof(struct tcphdr, check):
4984                 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4985                 /* fall through */
4986         case offsetof(struct udphdr, check):
4987                 break;
4988         case offsetof(struct sctphdr, checksum):
4989                 /* validate that this is actually an SCTP request */
4990                 if (((first->protocol == htons(ETH_P_IP)) &&
4991                      (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
4992                     ((first->protocol == htons(ETH_P_IPV6)) &&
4993                      igb_ipv6_csum_is_sctp(skb))) {
4994                         type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
4995                         break;
4996                 }
4997         default:
4998                 skb_checksum_help(skb);
4999                 goto csum_failed;
5000         }
5001
5002         /* update TX checksum flag */
5003         first->tx_flags |= IGB_TX_FLAGS_CSUM;
5004         vlan_macip_lens = skb_checksum_start_offset(skb) -
5005                           skb_network_offset(skb);
5006 no_csum:
5007         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
5008         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5009
5010         igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
5011 }
5012
5013 #define IGB_SET_FLAG(_input, _flag, _result) \
5014         ((_flag <= _result) ? \
5015          ((u32)(_input & _flag) * (_result / _flag)) : \
5016          ((u32)(_input & _flag) / (_flag / _result)))
5017
5018 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
5019 {
5020         /* set type for advanced descriptor with frame checksum insertion */
5021         u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
5022                        E1000_ADVTXD_DCMD_DEXT |
5023                        E1000_ADVTXD_DCMD_IFCS;
5024
5025         /* set HW vlan bit if vlan is present */
5026         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
5027                                  (E1000_ADVTXD_DCMD_VLE));
5028
5029         /* set segmentation bits for TSO */
5030         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
5031                                  (E1000_ADVTXD_DCMD_TSE));
5032
5033         /* set timestamp bit if present */
5034         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
5035                                  (E1000_ADVTXD_MAC_TSTAMP));
5036
5037         /* insert frame checksum */
5038         cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
5039
5040         return cmd_type;
5041 }
5042
5043 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
5044                                  union e1000_adv_tx_desc *tx_desc,
5045                                  u32 tx_flags, unsigned int paylen)
5046 {
5047         u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
5048
5049         /* 82575 requires a unique index per ring */
5050         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5051                 olinfo_status |= tx_ring->reg_idx << 4;
5052
5053         /* insert L4 checksum */
5054         olinfo_status |= IGB_SET_FLAG(tx_flags,
5055                                       IGB_TX_FLAGS_CSUM,
5056                                       (E1000_TXD_POPTS_TXSM << 8));
5057
5058         /* insert IPv4 checksum */
5059         olinfo_status |= IGB_SET_FLAG(tx_flags,
5060                                       IGB_TX_FLAGS_IPV4,
5061                                       (E1000_TXD_POPTS_IXSM << 8));
5062
5063         tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
5064 }
5065
5066 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5067 {
5068         struct net_device *netdev = tx_ring->netdev;
5069
5070         netif_stop_subqueue(netdev, tx_ring->queue_index);
5071
5072         /* Herbert's original patch had:
5073          *  smp_mb__after_netif_stop_queue();
5074          * but since that doesn't exist yet, just open code it.
5075          */
5076         smp_mb();
5077
5078         /* We need to check again in a case another CPU has just
5079          * made room available.
5080          */
5081         if (igb_desc_unused(tx_ring) < size)
5082                 return -EBUSY;
5083
5084         /* A reprieve! */
5085         netif_wake_subqueue(netdev, tx_ring->queue_index);
5086
5087         u64_stats_update_begin(&tx_ring->tx_syncp2);
5088         tx_ring->tx_stats.restart_queue2++;
5089         u64_stats_update_end(&tx_ring->tx_syncp2);
5090
5091         return 0;
5092 }
5093
5094 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5095 {
5096         if (igb_desc_unused(tx_ring) >= size)
5097                 return 0;
5098         return __igb_maybe_stop_tx(tx_ring, size);
5099 }
5100
5101 static void igb_tx_map(struct igb_ring *tx_ring,
5102                        struct igb_tx_buffer *first,
5103                        const u8 hdr_len)
5104 {
5105         struct sk_buff *skb = first->skb;
5106         struct igb_tx_buffer *tx_buffer;
5107         union e1000_adv_tx_desc *tx_desc;
5108         struct skb_frag_struct *frag;
5109         dma_addr_t dma;
5110         unsigned int data_len, size;
5111         u32 tx_flags = first->tx_flags;
5112         u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
5113         u16 i = tx_ring->next_to_use;
5114
5115         tx_desc = IGB_TX_DESC(tx_ring, i);
5116
5117         igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5118
5119         size = skb_headlen(skb);
5120         data_len = skb->data_len;
5121
5122         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
5123
5124         tx_buffer = first;
5125
5126         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5127                 if (dma_mapping_error(tx_ring->dev, dma))
5128                         goto dma_error;
5129
5130                 /* record length, and DMA address */
5131                 dma_unmap_len_set(tx_buffer, len, size);
5132                 dma_unmap_addr_set(tx_buffer, dma, dma);
5133
5134                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5135
5136                 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5137                         tx_desc->read.cmd_type_len =
5138                                 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
5139
5140                         i++;
5141                         tx_desc++;
5142                         if (i == tx_ring->count) {
5143                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
5144                                 i = 0;
5145                         }
5146                         tx_desc->read.olinfo_status = 0;
5147
5148                         dma += IGB_MAX_DATA_PER_TXD;
5149                         size -= IGB_MAX_DATA_PER_TXD;
5150
5151                         tx_desc->read.buffer_addr = cpu_to_le64(dma);
5152                 }
5153
5154                 if (likely(!data_len))
5155                         break;
5156
5157                 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
5158
5159                 i++;
5160                 tx_desc++;
5161                 if (i == tx_ring->count) {
5162                         tx_desc = IGB_TX_DESC(tx_ring, 0);
5163                         i = 0;
5164                 }
5165                 tx_desc->read.olinfo_status = 0;
5166
5167                 size = skb_frag_size(frag);
5168                 data_len -= size;
5169
5170                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
5171                                        size, DMA_TO_DEVICE);
5172
5173                 tx_buffer = &tx_ring->tx_buffer_info[i];
5174         }
5175
5176         /* write last descriptor with RS and EOP bits */
5177         cmd_type |= size | IGB_TXD_DCMD;
5178         tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
5179
5180         netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
5181
5182         /* set the timestamp */
5183         first->time_stamp = jiffies;
5184
5185         /* Force memory writes to complete before letting h/w know there
5186          * are new descriptors to fetch.  (Only applicable for weak-ordered
5187          * memory model archs, such as IA-64).
5188          *
5189          * We also need this memory barrier to make certain all of the
5190          * status bits have been updated before next_to_watch is written.
5191          */
5192         wmb();
5193
5194         /* set next_to_watch value indicating a packet is present */
5195         first->next_to_watch = tx_desc;
5196
5197         i++;
5198         if (i == tx_ring->count)
5199                 i = 0;
5200
5201         tx_ring->next_to_use = i;
5202
5203         /* Make sure there is space in the ring for the next send. */
5204         igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
5205
5206         if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
5207                 writel(i, tx_ring->tail);
5208
5209                 /* we need this if more than one processor can write to our tail
5210                  * at a time, it synchronizes IO on IA64/Altix systems
5211                  */
5212                 mmiowb();
5213         }
5214         return;
5215
5216 dma_error:
5217         dev_err(tx_ring->dev, "TX DMA map failed\n");
5218
5219         /* clear dma mappings for failed tx_buffer_info map */
5220         for (;;) {
5221                 tx_buffer = &tx_ring->tx_buffer_info[i];
5222                 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
5223                 if (tx_buffer == first)
5224                         break;
5225                 if (i == 0)
5226                         i = tx_ring->count;
5227                 i--;
5228         }
5229
5230         tx_ring->next_to_use = i;
5231 }
5232
5233 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
5234                                 struct igb_ring *tx_ring)
5235 {
5236         struct igb_tx_buffer *first;
5237         int tso;
5238         u32 tx_flags = 0;
5239         unsigned short f;
5240         u16 count = TXD_USE_COUNT(skb_headlen(skb));
5241         __be16 protocol = vlan_get_protocol(skb);
5242         u8 hdr_len = 0;
5243
5244         /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
5245          *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
5246          *       + 2 desc gap to keep tail from touching head,
5247          *       + 1 desc for context descriptor,
5248          * otherwise try next time
5249          */
5250         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
5251                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
5252
5253         if (igb_maybe_stop_tx(tx_ring, count + 3)) {
5254                 /* this is a hard error */
5255                 return NETDEV_TX_BUSY;
5256         }
5257
5258         /* record the location of the first descriptor for this packet */
5259         first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
5260         first->skb = skb;
5261         first->bytecount = skb->len;
5262         first->gso_segs = 1;
5263
5264         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
5265                 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5266
5267                 if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
5268                                            &adapter->state)) {
5269                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5270                         tx_flags |= IGB_TX_FLAGS_TSTAMP;
5271
5272                         adapter->ptp_tx_skb = skb_get(skb);
5273                         adapter->ptp_tx_start = jiffies;
5274                         if (adapter->hw.mac.type == e1000_82576)
5275                                 schedule_work(&adapter->ptp_tx_work);
5276                 }
5277         }
5278
5279         skb_tx_timestamp(skb);
5280
5281         if (skb_vlan_tag_present(skb)) {
5282                 tx_flags |= IGB_TX_FLAGS_VLAN;
5283                 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5284         }
5285
5286         /* record initial flags and protocol */
5287         first->tx_flags = tx_flags;
5288         first->protocol = protocol;
5289
5290         tso = igb_tso(tx_ring, first, &hdr_len);
5291         if (tso < 0)
5292                 goto out_drop;
5293         else if (!tso)
5294                 igb_tx_csum(tx_ring, first);
5295
5296         igb_tx_map(tx_ring, first, hdr_len);
5297
5298         return NETDEV_TX_OK;
5299
5300 out_drop:
5301         igb_unmap_and_free_tx_resource(tx_ring, first);
5302
5303         return NETDEV_TX_OK;
5304 }
5305
5306 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5307                                                     struct sk_buff *skb)
5308 {
5309         unsigned int r_idx = skb->queue_mapping;
5310
5311         if (r_idx >= adapter->num_tx_queues)
5312                 r_idx = r_idx % adapter->num_tx_queues;
5313
5314         return adapter->tx_ring[r_idx];
5315 }
5316
5317 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5318                                   struct net_device *netdev)
5319 {
5320         struct igb_adapter *adapter = netdev_priv(netdev);
5321
5322         /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5323          * in order to meet this minimum size requirement.
5324          */
5325         if (skb_put_padto(skb, 17))
5326                 return NETDEV_TX_OK;
5327
5328         return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5329 }
5330
5331 /**
5332  *  igb_tx_timeout - Respond to a Tx Hang
5333  *  @netdev: network interface device structure
5334  **/
5335 static void igb_tx_timeout(struct net_device *netdev)
5336 {
5337         struct igb_adapter *adapter = netdev_priv(netdev);
5338         struct e1000_hw *hw = &adapter->hw;
5339
5340         /* Do the reset outside of interrupt context */
5341         adapter->tx_timeout_count++;
5342
5343         if (hw->mac.type >= e1000_82580)
5344                 hw->dev_spec._82575.global_device_reset = true;
5345
5346         schedule_work(&adapter->reset_task);
5347         wr32(E1000_EICS,
5348              (adapter->eims_enable_mask & ~adapter->eims_other));
5349 }
5350
5351 static void igb_reset_task(struct work_struct *work)
5352 {
5353         struct igb_adapter *adapter;
5354         adapter = container_of(work, struct igb_adapter, reset_task);
5355
5356         igb_dump(adapter);
5357         netdev_err(adapter->netdev, "Reset adapter\n");
5358         igb_reinit_locked(adapter);
5359 }
5360
5361 /**
5362  *  igb_get_stats64 - Get System Network Statistics
5363  *  @netdev: network interface device structure
5364  *  @stats: rtnl_link_stats64 pointer
5365  **/
5366 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5367                                                 struct rtnl_link_stats64 *stats)
5368 {
5369         struct igb_adapter *adapter = netdev_priv(netdev);
5370
5371         spin_lock(&adapter->stats64_lock);
5372         igb_update_stats(adapter, &adapter->stats64);
5373         memcpy(stats, &adapter->stats64, sizeof(*stats));
5374         spin_unlock(&adapter->stats64_lock);
5375
5376         return stats;
5377 }
5378
5379 /**
5380  *  igb_change_mtu - Change the Maximum Transfer Unit
5381  *  @netdev: network interface device structure
5382  *  @new_mtu: new value for maximum frame size
5383  *
5384  *  Returns 0 on success, negative on failure
5385  **/
5386 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5387 {
5388         struct igb_adapter *adapter = netdev_priv(netdev);
5389         struct pci_dev *pdev = adapter->pdev;
5390         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5391
5392         if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5393                 dev_err(&pdev->dev, "Invalid MTU setting\n");
5394                 return -EINVAL;
5395         }
5396
5397 #define MAX_STD_JUMBO_FRAME_SIZE 9238
5398         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5399                 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5400                 return -EINVAL;
5401         }
5402
5403         /* adjust max frame to be at least the size of a standard frame */
5404         if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5405                 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5406
5407         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5408                 usleep_range(1000, 2000);
5409
5410         /* igb_down has a dependency on max_frame_size */
5411         adapter->max_frame_size = max_frame;
5412
5413         if (netif_running(netdev))
5414                 igb_down(adapter);
5415
5416         dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5417                  netdev->mtu, new_mtu);
5418         netdev->mtu = new_mtu;
5419
5420         if (netif_running(netdev))
5421                 igb_up(adapter);
5422         else
5423                 igb_reset(adapter);
5424
5425         clear_bit(__IGB_RESETTING, &adapter->state);
5426
5427         return 0;
5428 }
5429
5430 /**
5431  *  igb_update_stats - Update the board statistics counters
5432  *  @adapter: board private structure
5433  **/
5434 void igb_update_stats(struct igb_adapter *adapter,
5435                       struct rtnl_link_stats64 *net_stats)
5436 {
5437         struct e1000_hw *hw = &adapter->hw;
5438         struct pci_dev *pdev = adapter->pdev;
5439         u32 reg, mpc;
5440         int i;
5441         u64 bytes, packets;
5442         unsigned int start;
5443         u64 _bytes, _packets;
5444
5445         /* Prevent stats update while adapter is being reset, or if the pci
5446          * connection is down.
5447          */
5448         if (adapter->link_speed == 0)
5449                 return;
5450         if (pci_channel_offline(pdev))
5451                 return;
5452
5453         bytes = 0;
5454         packets = 0;
5455
5456         rcu_read_lock();
5457         for (i = 0; i < adapter->num_rx_queues; i++) {
5458                 struct igb_ring *ring = adapter->rx_ring[i];
5459                 u32 rqdpc = rd32(E1000_RQDPC(i));
5460                 if (hw->mac.type >= e1000_i210)
5461                         wr32(E1000_RQDPC(i), 0);
5462
5463                 if (rqdpc) {
5464                         ring->rx_stats.drops += rqdpc;
5465                         net_stats->rx_fifo_errors += rqdpc;
5466                 }
5467
5468                 do {
5469                         start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5470                         _bytes = ring->rx_stats.bytes;
5471                         _packets = ring->rx_stats.packets;
5472                 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5473                 bytes += _bytes;
5474                 packets += _packets;
5475         }
5476
5477         net_stats->rx_bytes = bytes;
5478         net_stats->rx_packets = packets;
5479
5480         bytes = 0;
5481         packets = 0;
5482         for (i = 0; i < adapter->num_tx_queues; i++) {
5483                 struct igb_ring *ring = adapter->tx_ring[i];
5484                 do {
5485                         start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5486                         _bytes = ring->tx_stats.bytes;
5487                         _packets = ring->tx_stats.packets;
5488                 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5489                 bytes += _bytes;
5490                 packets += _packets;
5491         }
5492         net_stats->tx_bytes = bytes;
5493         net_stats->tx_packets = packets;
5494         rcu_read_unlock();
5495
5496         /* read stats registers */
5497         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5498         adapter->stats.gprc += rd32(E1000_GPRC);
5499         adapter->stats.gorc += rd32(E1000_GORCL);
5500         rd32(E1000_GORCH); /* clear GORCL */
5501         adapter->stats.bprc += rd32(E1000_BPRC);
5502         adapter->stats.mprc += rd32(E1000_MPRC);
5503         adapter->stats.roc += rd32(E1000_ROC);
5504
5505         adapter->stats.prc64 += rd32(E1000_PRC64);
5506         adapter->stats.prc127 += rd32(E1000_PRC127);
5507         adapter->stats.prc255 += rd32(E1000_PRC255);
5508         adapter->stats.prc511 += rd32(E1000_PRC511);
5509         adapter->stats.prc1023 += rd32(E1000_PRC1023);
5510         adapter->stats.prc1522 += rd32(E1000_PRC1522);
5511         adapter->stats.symerrs += rd32(E1000_SYMERRS);
5512         adapter->stats.sec += rd32(E1000_SEC);
5513
5514         mpc = rd32(E1000_MPC);
5515         adapter->stats.mpc += mpc;
5516         net_stats->rx_fifo_errors += mpc;
5517         adapter->stats.scc += rd32(E1000_SCC);
5518         adapter->stats.ecol += rd32(E1000_ECOL);
5519         adapter->stats.mcc += rd32(E1000_MCC);
5520         adapter->stats.latecol += rd32(E1000_LATECOL);
5521         adapter->stats.dc += rd32(E1000_DC);
5522         adapter->stats.rlec += rd32(E1000_RLEC);
5523         adapter->stats.xonrxc += rd32(E1000_XONRXC);
5524         adapter->stats.xontxc += rd32(E1000_XONTXC);
5525         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5526         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5527         adapter->stats.fcruc += rd32(E1000_FCRUC);
5528         adapter->stats.gptc += rd32(E1000_GPTC);
5529         adapter->stats.gotc += rd32(E1000_GOTCL);
5530         rd32(E1000_GOTCH); /* clear GOTCL */
5531         adapter->stats.rnbc += rd32(E1000_RNBC);
5532         adapter->stats.ruc += rd32(E1000_RUC);
5533         adapter->stats.rfc += rd32(E1000_RFC);
5534         adapter->stats.rjc += rd32(E1000_RJC);
5535         adapter->stats.tor += rd32(E1000_TORH);
5536         adapter->stats.tot += rd32(E1000_TOTH);
5537         adapter->stats.tpr += rd32(E1000_TPR);
5538
5539         adapter->stats.ptc64 += rd32(E1000_PTC64);
5540         adapter->stats.ptc127 += rd32(E1000_PTC127);
5541         adapter->stats.ptc255 += rd32(E1000_PTC255);
5542         adapter->stats.ptc511 += rd32(E1000_PTC511);
5543         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5544         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5545
5546         adapter->stats.mptc += rd32(E1000_MPTC);
5547         adapter->stats.bptc += rd32(E1000_BPTC);
5548
5549         adapter->stats.tpt += rd32(E1000_TPT);
5550         adapter->stats.colc += rd32(E1000_COLC);
5551
5552         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5553         /* read internal phy specific stats */
5554         reg = rd32(E1000_CTRL_EXT);
5555         if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5556                 adapter->stats.rxerrc += rd32(E1000_RXERRC);
5557
5558                 /* this stat has invalid values on i210/i211 */
5559                 if ((hw->mac.type != e1000_i210) &&
5560                     (hw->mac.type != e1000_i211))
5561                         adapter->stats.tncrs += rd32(E1000_TNCRS);
5562         }
5563
5564         adapter->stats.tsctc += rd32(E1000_TSCTC);
5565         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5566
5567         adapter->stats.iac += rd32(E1000_IAC);
5568         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5569         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5570         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5571         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5572         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5573         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5574         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5575         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5576
5577         /* Fill out the OS statistics structure */
5578         net_stats->multicast = adapter->stats.mprc;
5579         net_stats->collisions = adapter->stats.colc;
5580
5581         /* Rx Errors */
5582
5583         /* RLEC on some newer hardware can be incorrect so build
5584          * our own version based on RUC and ROC
5585          */
5586         net_stats->rx_errors = adapter->stats.rxerrc +
5587                 adapter->stats.crcerrs + adapter->stats.algnerrc +
5588                 adapter->stats.ruc + adapter->stats.roc +
5589                 adapter->stats.cexterr;
5590         net_stats->rx_length_errors = adapter->stats.ruc +
5591                                       adapter->stats.roc;
5592         net_stats->rx_crc_errors = adapter->stats.crcerrs;
5593         net_stats->rx_frame_errors = adapter->stats.algnerrc;
5594         net_stats->rx_missed_errors = adapter->stats.mpc;
5595
5596         /* Tx Errors */
5597         net_stats->tx_errors = adapter->stats.ecol +
5598                                adapter->stats.latecol;
5599         net_stats->tx_aborted_errors = adapter->stats.ecol;
5600         net_stats->tx_window_errors = adapter->stats.latecol;
5601         net_stats->tx_carrier_errors = adapter->stats.tncrs;
5602
5603         /* Tx Dropped needs to be maintained elsewhere */
5604
5605         /* Management Stats */
5606         adapter->stats.mgptc += rd32(E1000_MGTPTC);
5607         adapter->stats.mgprc += rd32(E1000_MGTPRC);
5608         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5609
5610         /* OS2BMC Stats */
5611         reg = rd32(E1000_MANC);
5612         if (reg & E1000_MANC_EN_BMC2OS) {
5613                 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5614                 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5615                 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5616                 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5617         }
5618 }
5619
5620 static void igb_tsync_interrupt(struct igb_adapter *adapter)
5621 {
5622         struct e1000_hw *hw = &adapter->hw;
5623         struct ptp_clock_event event;
5624         struct timespec64 ts;
5625         u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
5626
5627         if (tsicr & TSINTR_SYS_WRAP) {
5628                 event.type = PTP_CLOCK_PPS;
5629                 if (adapter->ptp_caps.pps)
5630                         ptp_clock_event(adapter->ptp_clock, &event);
5631                 else
5632                         dev_err(&adapter->pdev->dev, "unexpected SYS WRAP");
5633                 ack |= TSINTR_SYS_WRAP;
5634         }
5635
5636         if (tsicr & E1000_TSICR_TXTS) {
5637                 /* retrieve hardware timestamp */
5638                 schedule_work(&adapter->ptp_tx_work);
5639                 ack |= E1000_TSICR_TXTS;
5640         }
5641
5642         if (tsicr & TSINTR_TT0) {
5643                 spin_lock(&adapter->tmreg_lock);
5644                 ts = timespec64_add(adapter->perout[0].start,
5645                                     adapter->perout[0].period);
5646                 /* u32 conversion of tv_sec is safe until y2106 */
5647                 wr32(E1000_TRGTTIML0, ts.tv_nsec);
5648                 wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
5649                 tsauxc = rd32(E1000_TSAUXC);
5650                 tsauxc |= TSAUXC_EN_TT0;
5651                 wr32(E1000_TSAUXC, tsauxc);
5652                 adapter->perout[0].start = ts;
5653                 spin_unlock(&adapter->tmreg_lock);
5654                 ack |= TSINTR_TT0;
5655         }
5656
5657         if (tsicr & TSINTR_TT1) {
5658                 spin_lock(&adapter->tmreg_lock);
5659                 ts = timespec64_add(adapter->perout[1].start,
5660                                     adapter->perout[1].period);
5661                 wr32(E1000_TRGTTIML1, ts.tv_nsec);
5662                 wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
5663                 tsauxc = rd32(E1000_TSAUXC);
5664                 tsauxc |= TSAUXC_EN_TT1;
5665                 wr32(E1000_TSAUXC, tsauxc);
5666                 adapter->perout[1].start = ts;
5667                 spin_unlock(&adapter->tmreg_lock);
5668                 ack |= TSINTR_TT1;
5669         }
5670
5671         if (tsicr & TSINTR_AUTT0) {
5672                 nsec = rd32(E1000_AUXSTMPL0);
5673                 sec  = rd32(E1000_AUXSTMPH0);
5674                 event.type = PTP_CLOCK_EXTTS;
5675                 event.index = 0;
5676                 event.timestamp = sec * 1000000000ULL + nsec;
5677                 ptp_clock_event(adapter->ptp_clock, &event);
5678                 ack |= TSINTR_AUTT0;
5679         }
5680
5681         if (tsicr & TSINTR_AUTT1) {
5682                 nsec = rd32(E1000_AUXSTMPL1);
5683                 sec  = rd32(E1000_AUXSTMPH1);
5684                 event.type = PTP_CLOCK_EXTTS;
5685                 event.index = 1;
5686                 event.timestamp = sec * 1000000000ULL + nsec;
5687                 ptp_clock_event(adapter->ptp_clock, &event);
5688                 ack |= TSINTR_AUTT1;
5689         }
5690
5691         /* acknowledge the interrupts */
5692         wr32(E1000_TSICR, ack);
5693 }
5694
5695 static irqreturn_t igb_msix_other(int irq, void *data)
5696 {
5697         struct igb_adapter *adapter = data;
5698         struct e1000_hw *hw = &adapter->hw;
5699         u32 icr = rd32(E1000_ICR);
5700         /* reading ICR causes bit 31 of EICR to be cleared */
5701
5702         if (icr & E1000_ICR_DRSTA)
5703                 schedule_work(&adapter->reset_task);
5704
5705         if (icr & E1000_ICR_DOUTSYNC) {
5706                 /* HW is reporting DMA is out of sync */
5707                 adapter->stats.doosync++;
5708                 /* The DMA Out of Sync is also indication of a spoof event
5709                  * in IOV mode. Check the Wrong VM Behavior register to
5710                  * see if it is really a spoof event.
5711                  */
5712                 igb_check_wvbr(adapter);
5713         }
5714
5715         /* Check for a mailbox event */
5716         if (icr & E1000_ICR_VMMB)
5717                 igb_msg_task(adapter);
5718
5719         if (icr & E1000_ICR_LSC) {
5720                 hw->mac.get_link_status = 1;
5721                 /* guard against interrupt when we're going down */
5722                 if (!test_bit(__IGB_DOWN, &adapter->state))
5723                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5724         }
5725
5726         if (icr & E1000_ICR_TS)
5727                 igb_tsync_interrupt(adapter);
5728
5729         wr32(E1000_EIMS, adapter->eims_other);
5730
5731         return IRQ_HANDLED;
5732 }
5733
5734 static void igb_write_itr(struct igb_q_vector *q_vector)
5735 {
5736         struct igb_adapter *adapter = q_vector->adapter;
5737         u32 itr_val = q_vector->itr_val & 0x7FFC;
5738
5739         if (!q_vector->set_itr)
5740                 return;
5741
5742         if (!itr_val)
5743                 itr_val = 0x4;
5744
5745         if (adapter->hw.mac.type == e1000_82575)
5746                 itr_val |= itr_val << 16;
5747         else
5748                 itr_val |= E1000_EITR_CNT_IGNR;
5749
5750         writel(itr_val, q_vector->itr_register);
5751         q_vector->set_itr = 0;
5752 }
5753
5754 static irqreturn_t igb_msix_ring(int irq, void *data)
5755 {
5756         struct igb_q_vector *q_vector = data;
5757
5758         /* Write the ITR value calculated from the previous interrupt. */
5759         igb_write_itr(q_vector);
5760
5761         napi_schedule(&q_vector->napi);
5762
5763         return IRQ_HANDLED;
5764 }
5765
5766 #ifdef CONFIG_IGB_DCA
5767 static void igb_update_tx_dca(struct igb_adapter *adapter,
5768                               struct igb_ring *tx_ring,
5769                               int cpu)
5770 {
5771         struct e1000_hw *hw = &adapter->hw;
5772         u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5773
5774         if (hw->mac.type != e1000_82575)
5775                 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5776
5777         /* We can enable relaxed ordering for reads, but not writes when
5778          * DCA is enabled.  This is due to a known issue in some chipsets
5779          * which will cause the DCA tag to be cleared.
5780          */
5781         txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5782                   E1000_DCA_TXCTRL_DATA_RRO_EN |
5783                   E1000_DCA_TXCTRL_DESC_DCA_EN;
5784
5785         wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5786 }
5787
5788 static void igb_update_rx_dca(struct igb_adapter *adapter,
5789                               struct igb_ring *rx_ring,
5790                               int cpu)
5791 {
5792         struct e1000_hw *hw = &adapter->hw;
5793         u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5794
5795         if (hw->mac.type != e1000_82575)
5796                 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5797
5798         /* We can enable relaxed ordering for reads, but not writes when
5799          * DCA is enabled.  This is due to a known issue in some chipsets
5800          * which will cause the DCA tag to be cleared.
5801          */
5802         rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5803                   E1000_DCA_RXCTRL_DESC_DCA_EN;
5804
5805         wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5806 }
5807
5808 static void igb_update_dca(struct igb_q_vector *q_vector)
5809 {
5810         struct igb_adapter *adapter = q_vector->adapter;
5811         int cpu = get_cpu();
5812
5813         if (q_vector->cpu == cpu)
5814                 goto out_no_update;
5815
5816         if (q_vector->tx.ring)
5817                 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5818
5819         if (q_vector->rx.ring)
5820                 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5821
5822         q_vector->cpu = cpu;
5823 out_no_update:
5824         put_cpu();
5825 }
5826
5827 static void igb_setup_dca(struct igb_adapter *adapter)
5828 {
5829         struct e1000_hw *hw = &adapter->hw;
5830         int i;
5831
5832         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5833                 return;
5834
5835         /* Always use CB2 mode, difference is masked in the CB driver. */
5836         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5837
5838         for (i = 0; i < adapter->num_q_vectors; i++) {
5839                 adapter->q_vector[i]->cpu = -1;
5840                 igb_update_dca(adapter->q_vector[i]);
5841         }
5842 }
5843
5844 static int __igb_notify_dca(struct device *dev, void *data)
5845 {
5846         struct net_device *netdev = dev_get_drvdata(dev);
5847         struct igb_adapter *adapter = netdev_priv(netdev);
5848         struct pci_dev *pdev = adapter->pdev;
5849         struct e1000_hw *hw = &adapter->hw;
5850         unsigned long event = *(unsigned long *)data;
5851
5852         switch (event) {
5853         case DCA_PROVIDER_ADD:
5854                 /* if already enabled, don't do it again */
5855                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5856                         break;
5857                 if (dca_add_requester(dev) == 0) {
5858                         adapter->flags |= IGB_FLAG_DCA_ENABLED;
5859                         dev_info(&pdev->dev, "DCA enabled\n");
5860                         igb_setup_dca(adapter);
5861                         break;
5862                 }
5863                 /* Fall Through since DCA is disabled. */
5864         case DCA_PROVIDER_REMOVE:
5865                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5866                         /* without this a class_device is left
5867                          * hanging around in the sysfs model
5868                          */
5869                         dca_remove_requester(dev);
5870                         dev_info(&pdev->dev, "DCA disabled\n");
5871                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5872                         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5873                 }
5874                 break;
5875         }
5876
5877         return 0;
5878 }
5879
5880 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5881                           void *p)
5882 {
5883         int ret_val;
5884
5885         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5886                                          __igb_notify_dca);
5887
5888         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5889 }
5890 #endif /* CONFIG_IGB_DCA */
5891
5892 #ifdef CONFIG_PCI_IOV
5893 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5894 {
5895         unsigned char mac_addr[ETH_ALEN];
5896
5897         eth_zero_addr(mac_addr);
5898         igb_set_vf_mac(adapter, vf, mac_addr);
5899
5900         /* By default spoof check is enabled for all VFs */
5901         adapter->vf_data[vf].spoofchk_enabled = true;
5902
5903         return 0;
5904 }
5905
5906 #endif
5907 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5908 {
5909         struct e1000_hw *hw = &adapter->hw;
5910         u32 ping;
5911         int i;
5912
5913         for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5914                 ping = E1000_PF_CONTROL_MSG;
5915                 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5916                         ping |= E1000_VT_MSGTYPE_CTS;
5917                 igb_write_mbx(hw, &ping, 1, i);
5918         }
5919 }
5920
5921 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5922 {
5923         struct e1000_hw *hw = &adapter->hw;
5924         u32 vmolr = rd32(E1000_VMOLR(vf));
5925         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5926
5927         vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5928                             IGB_VF_FLAG_MULTI_PROMISC);
5929         vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5930
5931         if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5932                 vmolr |= E1000_VMOLR_MPME;
5933                 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5934                 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5935         } else {
5936                 /* if we have hashes and we are clearing a multicast promisc
5937                  * flag we need to write the hashes to the MTA as this step
5938                  * was previously skipped
5939                  */
5940                 if (vf_data->num_vf_mc_hashes > 30) {
5941                         vmolr |= E1000_VMOLR_MPME;
5942                 } else if (vf_data->num_vf_mc_hashes) {
5943                         int j;
5944
5945                         vmolr |= E1000_VMOLR_ROMPE;
5946                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5947                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5948                 }
5949         }
5950
5951         wr32(E1000_VMOLR(vf), vmolr);
5952
5953         /* there are flags left unprocessed, likely not supported */
5954         if (*msgbuf & E1000_VT_MSGINFO_MASK)
5955                 return -EINVAL;
5956
5957         return 0;
5958 }
5959
5960 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5961                                   u32 *msgbuf, u32 vf)
5962 {
5963         int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5964         u16 *hash_list = (u16 *)&msgbuf[1];
5965         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5966         int i;
5967
5968         /* salt away the number of multicast addresses assigned
5969          * to this VF for later use to restore when the PF multi cast
5970          * list changes
5971          */
5972         vf_data->num_vf_mc_hashes = n;
5973
5974         /* only up to 30 hash values supported */
5975         if (n > 30)
5976                 n = 30;
5977
5978         /* store the hashes for later use */
5979         for (i = 0; i < n; i++)
5980                 vf_data->vf_mc_hashes[i] = hash_list[i];
5981
5982         /* Flush and reset the mta with the new values */
5983         igb_set_rx_mode(adapter->netdev);
5984
5985         return 0;
5986 }
5987
5988 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5989 {
5990         struct e1000_hw *hw = &adapter->hw;
5991         struct vf_data_storage *vf_data;
5992         int i, j;
5993
5994         for (i = 0; i < adapter->vfs_allocated_count; i++) {
5995                 u32 vmolr = rd32(E1000_VMOLR(i));
5996
5997                 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5998
5999                 vf_data = &adapter->vf_data[i];
6000
6001                 if ((vf_data->num_vf_mc_hashes > 30) ||
6002                     (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
6003                         vmolr |= E1000_VMOLR_MPME;
6004                 } else if (vf_data->num_vf_mc_hashes) {
6005                         vmolr |= E1000_VMOLR_ROMPE;
6006                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6007                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6008                 }
6009                 wr32(E1000_VMOLR(i), vmolr);
6010         }
6011 }
6012
6013 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
6014 {
6015         struct e1000_hw *hw = &adapter->hw;
6016         u32 pool_mask, vlvf_mask, i;
6017
6018         /* create mask for VF and other pools */
6019         pool_mask = E1000_VLVF_POOLSEL_MASK;
6020         vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
6021
6022         /* drop PF from pool bits */
6023         pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
6024                              adapter->vfs_allocated_count);
6025
6026         /* Find the vlan filter for this id */
6027         for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
6028                 u32 vlvf = rd32(E1000_VLVF(i));
6029                 u32 vfta_mask, vid, vfta;
6030
6031                 /* remove the vf from the pool */
6032                 if (!(vlvf & vlvf_mask))
6033                         continue;
6034
6035                 /* clear out bit from VLVF */
6036                 vlvf ^= vlvf_mask;
6037
6038                 /* if other pools are present, just remove ourselves */
6039                 if (vlvf & pool_mask)
6040                         goto update_vlvfb;
6041
6042                 /* if PF is present, leave VFTA */
6043                 if (vlvf & E1000_VLVF_POOLSEL_MASK)
6044                         goto update_vlvf;
6045
6046                 vid = vlvf & E1000_VLVF_VLANID_MASK;
6047                 vfta_mask = BIT(vid % 32);
6048
6049                 /* clear bit from VFTA */
6050                 vfta = adapter->shadow_vfta[vid / 32];
6051                 if (vfta & vfta_mask)
6052                         hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
6053 update_vlvf:
6054                 /* clear pool selection enable */
6055                 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6056                         vlvf &= E1000_VLVF_POOLSEL_MASK;
6057                 else
6058                         vlvf = 0;
6059 update_vlvfb:
6060                 /* clear pool bits */
6061                 wr32(E1000_VLVF(i), vlvf);
6062         }
6063 }
6064
6065 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6066 {
6067         u32 vlvf;
6068         int idx;
6069
6070         /* short cut the special case */
6071         if (vlan == 0)
6072                 return 0;
6073
6074         /* Search for the VLAN id in the VLVF entries */
6075         for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
6076                 vlvf = rd32(E1000_VLVF(idx));
6077                 if ((vlvf & VLAN_VID_MASK) == vlan)
6078                         break;
6079         }
6080
6081         return idx;
6082 }
6083
6084 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
6085 {
6086         struct e1000_hw *hw = &adapter->hw;
6087         u32 bits, pf_id;
6088         int idx;
6089
6090         idx = igb_find_vlvf_entry(hw, vid);
6091         if (!idx)
6092                 return;
6093
6094         /* See if any other pools are set for this VLAN filter
6095          * entry other than the PF.
6096          */
6097         pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
6098         bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
6099         bits &= rd32(E1000_VLVF(idx));
6100
6101         /* Disable the filter so this falls into the default pool. */
6102         if (!bits) {
6103                 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6104                         wr32(E1000_VLVF(idx), BIT(pf_id));
6105                 else
6106                         wr32(E1000_VLVF(idx), 0);
6107         }
6108 }
6109
6110 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6111                            bool add, u32 vf)
6112 {
6113         int pf_id = adapter->vfs_allocated_count;
6114         struct e1000_hw *hw = &adapter->hw;
6115         int err;
6116
6117         /* If VLAN overlaps with one the PF is currently monitoring make
6118          * sure that we are able to allocate a VLVF entry.  This may be
6119          * redundant but it guarantees PF will maintain visibility to
6120          * the VLAN.
6121          */
6122         if (add && test_bit(vid, adapter->active_vlans)) {
6123                 err = igb_vfta_set(hw, vid, pf_id, true, false);
6124                 if (err)
6125                         return err;
6126         }
6127
6128         err = igb_vfta_set(hw, vid, vf, add, false);
6129
6130         if (add && !err)
6131                 return err;
6132
6133         /* If we failed to add the VF VLAN or we are removing the VF VLAN
6134          * we may need to drop the PF pool bit in order to allow us to free
6135          * up the VLVF resources.
6136          */
6137         if (test_bit(vid, adapter->active_vlans) ||
6138             (adapter->flags & IGB_FLAG_VLAN_PROMISC))
6139                 igb_update_pf_vlvf(adapter, vid);
6140
6141         return err;
6142 }
6143
6144 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
6145 {
6146         struct e1000_hw *hw = &adapter->hw;
6147
6148         if (vid)
6149                 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
6150         else
6151                 wr32(E1000_VMVIR(vf), 0);
6152 }
6153
6154 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
6155                                 u16 vlan, u8 qos)
6156 {
6157         int err;
6158
6159         err = igb_set_vf_vlan(adapter, vlan, true, vf);
6160         if (err)
6161                 return err;
6162
6163         igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
6164         igb_set_vmolr(adapter, vf, !vlan);
6165
6166         /* revoke access to previous VLAN */
6167         if (vlan != adapter->vf_data[vf].pf_vlan)
6168                 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6169                                 false, vf);
6170
6171         adapter->vf_data[vf].pf_vlan = vlan;
6172         adapter->vf_data[vf].pf_qos = qos;
6173         igb_set_vf_vlan_strip(adapter, vf, true);
6174         dev_info(&adapter->pdev->dev,
6175                  "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
6176         if (test_bit(__IGB_DOWN, &adapter->state)) {
6177                 dev_warn(&adapter->pdev->dev,
6178                          "The VF VLAN has been set, but the PF device is not up.\n");
6179                 dev_warn(&adapter->pdev->dev,
6180                          "Bring the PF device up before attempting to use the VF device.\n");
6181         }
6182
6183         return err;
6184 }
6185
6186 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
6187 {
6188         /* Restore tagless access via VLAN 0 */
6189         igb_set_vf_vlan(adapter, 0, true, vf);
6190
6191         igb_set_vmvir(adapter, 0, vf);
6192         igb_set_vmolr(adapter, vf, true);
6193
6194         /* Remove any PF assigned VLAN */
6195         if (adapter->vf_data[vf].pf_vlan)
6196                 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6197                                 false, vf);
6198
6199         adapter->vf_data[vf].pf_vlan = 0;
6200         adapter->vf_data[vf].pf_qos = 0;
6201         igb_set_vf_vlan_strip(adapter, vf, false);
6202
6203         return 0;
6204 }
6205
6206 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
6207                                int vf, u16 vlan, u8 qos)
6208 {
6209         struct igb_adapter *adapter = netdev_priv(netdev);
6210
6211         if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
6212                 return -EINVAL;
6213
6214         return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
6215                                igb_disable_port_vlan(adapter, vf);
6216 }
6217
6218 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6219 {
6220         int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6221         int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
6222         int ret;
6223
6224         if (adapter->vf_data[vf].pf_vlan)
6225                 return -1;
6226
6227         /* VLAN 0 is a special case, don't allow it to be removed */
6228         if (!vid && !add)
6229                 return 0;
6230
6231         ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
6232         if (!ret)
6233                 igb_set_vf_vlan_strip(adapter, vf, !!vid);
6234         return ret;
6235 }
6236
6237 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
6238 {
6239         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6240
6241         /* clear flags - except flag that indicates PF has set the MAC */
6242         vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
6243         vf_data->last_nack = jiffies;
6244
6245         /* reset vlans for device */
6246         igb_clear_vf_vfta(adapter, vf);
6247         igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
6248         igb_set_vmvir(adapter, vf_data->pf_vlan |
6249                                (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
6250         igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
6251         igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
6252
6253         /* reset multicast table array for vf */
6254         adapter->vf_data[vf].num_vf_mc_hashes = 0;
6255
6256         /* Flush and reset the mta with the new values */
6257         igb_set_rx_mode(adapter->netdev);
6258 }
6259
6260 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
6261 {
6262         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6263
6264         /* clear mac address as we were hotplug removed/added */
6265         if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
6266                 eth_zero_addr(vf_mac);
6267
6268         /* process remaining reset events */
6269         igb_vf_reset(adapter, vf);
6270 }
6271
6272 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
6273 {
6274         struct e1000_hw *hw = &adapter->hw;
6275         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6276         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6277         u32 reg, msgbuf[3];
6278         u8 *addr = (u8 *)(&msgbuf[1]);
6279
6280         /* process all the same items cleared in a function level reset */
6281         igb_vf_reset(adapter, vf);
6282
6283         /* set vf mac address */
6284         igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
6285
6286         /* enable transmit and receive for vf */
6287         reg = rd32(E1000_VFTE);
6288         wr32(E1000_VFTE, reg | BIT(vf));
6289         reg = rd32(E1000_VFRE);
6290         wr32(E1000_VFRE, reg | BIT(vf));
6291
6292         adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
6293
6294         /* reply to reset with ack and vf mac address */
6295         if (!is_zero_ether_addr(vf_mac)) {
6296                 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6297                 memcpy(addr, vf_mac, ETH_ALEN);
6298         } else {
6299                 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
6300         }
6301         igb_write_mbx(hw, msgbuf, 3, vf);
6302 }
6303
6304 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
6305 {
6306         /* The VF MAC Address is stored in a packed array of bytes
6307          * starting at the second 32 bit word of the msg array
6308          */
6309         unsigned char *addr = (char *)&msg[1];
6310         int err = -1;
6311
6312         if (is_valid_ether_addr(addr))
6313                 err = igb_set_vf_mac(adapter, vf, addr);
6314
6315         return err;
6316 }
6317
6318 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6319 {
6320         struct e1000_hw *hw = &adapter->hw;
6321         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6322         u32 msg = E1000_VT_MSGTYPE_NACK;
6323
6324         /* if device isn't clear to send it shouldn't be reading either */
6325         if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6326             time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6327                 igb_write_mbx(hw, &msg, 1, vf);
6328                 vf_data->last_nack = jiffies;
6329         }
6330 }
6331
6332 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6333 {
6334         struct pci_dev *pdev = adapter->pdev;
6335         u32 msgbuf[E1000_VFMAILBOX_SIZE];
6336         struct e1000_hw *hw = &adapter->hw;
6337         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6338         s32 retval;
6339
6340         retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6341
6342         if (retval) {
6343                 /* if receive failed revoke VF CTS stats and restart init */
6344                 dev_err(&pdev->dev, "Error receiving message from VF\n");
6345                 vf_data->flags &= ~IGB_VF_FLAG_CTS;
6346                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6347                         return;
6348                 goto out;
6349         }
6350
6351         /* this is a message we already processed, do nothing */
6352         if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6353                 return;
6354
6355         /* until the vf completes a reset it should not be
6356          * allowed to start any configuration.
6357          */
6358         if (msgbuf[0] == E1000_VF_RESET) {
6359                 igb_vf_reset_msg(adapter, vf);
6360                 return;
6361         }
6362
6363         if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6364                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6365                         return;
6366                 retval = -1;
6367                 goto out;
6368         }
6369
6370         switch ((msgbuf[0] & 0xFFFF)) {
6371         case E1000_VF_SET_MAC_ADDR:
6372                 retval = -EINVAL;
6373                 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6374                         retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6375                 else
6376                         dev_warn(&pdev->dev,
6377                                  "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6378                                  vf);
6379                 break;
6380         case E1000_VF_SET_PROMISC:
6381                 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6382                 break;
6383         case E1000_VF_SET_MULTICAST:
6384                 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6385                 break;
6386         case E1000_VF_SET_LPE:
6387                 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6388                 break;
6389         case E1000_VF_SET_VLAN:
6390                 retval = -1;
6391                 if (vf_data->pf_vlan)
6392                         dev_warn(&pdev->dev,
6393                                  "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6394                                  vf);
6395                 else
6396                         retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
6397                 break;
6398         default:
6399                 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6400                 retval = -1;
6401                 break;
6402         }
6403
6404         msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6405 out:
6406         /* notify the VF of the results of what it sent us */
6407         if (retval)
6408                 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6409         else
6410                 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6411
6412         igb_write_mbx(hw, msgbuf, 1, vf);
6413 }
6414
6415 static void igb_msg_task(struct igb_adapter *adapter)
6416 {
6417         struct e1000_hw *hw = &adapter->hw;
6418         u32 vf;
6419
6420         for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6421                 /* process any reset requests */
6422                 if (!igb_check_for_rst(hw, vf))
6423                         igb_vf_reset_event(adapter, vf);
6424
6425                 /* process any messages pending */
6426                 if (!igb_check_for_msg(hw, vf))
6427                         igb_rcv_msg_from_vf(adapter, vf);
6428
6429                 /* process any acks */
6430                 if (!igb_check_for_ack(hw, vf))
6431                         igb_rcv_ack_from_vf(adapter, vf);
6432         }
6433 }
6434
6435 /**
6436  *  igb_set_uta - Set unicast filter table address
6437  *  @adapter: board private structure
6438  *  @set: boolean indicating if we are setting or clearing bits
6439  *
6440  *  The unicast table address is a register array of 32-bit registers.
6441  *  The table is meant to be used in a way similar to how the MTA is used
6442  *  however due to certain limitations in the hardware it is necessary to
6443  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6444  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
6445  **/
6446 static void igb_set_uta(struct igb_adapter *adapter, bool set)
6447 {
6448         struct e1000_hw *hw = &adapter->hw;
6449         u32 uta = set ? ~0 : 0;
6450         int i;
6451
6452         /* we only need to do this if VMDq is enabled */
6453         if (!adapter->vfs_allocated_count)
6454                 return;
6455
6456         for (i = hw->mac.uta_reg_count; i--;)
6457                 array_wr32(E1000_UTA, i, uta);
6458 }
6459
6460 /**
6461  *  igb_intr_msi - Interrupt Handler
6462  *  @irq: interrupt number
6463  *  @data: pointer to a network interface device structure
6464  **/
6465 static irqreturn_t igb_intr_msi(int irq, void *data)
6466 {
6467         struct igb_adapter *adapter = data;
6468         struct igb_q_vector *q_vector = adapter->q_vector[0];
6469         struct e1000_hw *hw = &adapter->hw;
6470         /* read ICR disables interrupts using IAM */
6471         u32 icr = rd32(E1000_ICR);
6472
6473         igb_write_itr(q_vector);
6474
6475         if (icr & E1000_ICR_DRSTA)
6476                 schedule_work(&adapter->reset_task);
6477
6478         if (icr & E1000_ICR_DOUTSYNC) {
6479                 /* HW is reporting DMA is out of sync */
6480                 adapter->stats.doosync++;
6481         }
6482
6483         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6484                 hw->mac.get_link_status = 1;
6485                 if (!test_bit(__IGB_DOWN, &adapter->state))
6486                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
6487         }
6488
6489         if (icr & E1000_ICR_TS)
6490                 igb_tsync_interrupt(adapter);
6491
6492         napi_schedule(&q_vector->napi);
6493
6494         return IRQ_HANDLED;
6495 }
6496
6497 /**
6498  *  igb_intr - Legacy Interrupt Handler
6499  *  @irq: interrupt number
6500  *  @data: pointer to a network interface device structure
6501  **/
6502 static irqreturn_t igb_intr(int irq, void *data)
6503 {
6504         struct igb_adapter *adapter = data;
6505         struct igb_q_vector *q_vector = adapter->q_vector[0];
6506         struct e1000_hw *hw = &adapter->hw;
6507         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
6508          * need for the IMC write
6509          */
6510         u32 icr = rd32(E1000_ICR);
6511
6512         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6513          * not set, then the adapter didn't send an interrupt
6514          */
6515         if (!(icr & E1000_ICR_INT_ASSERTED))
6516                 return IRQ_NONE;
6517
6518         igb_write_itr(q_vector);
6519
6520         if (icr & E1000_ICR_DRSTA)
6521                 schedule_work(&adapter->reset_task);
6522
6523         if (icr & E1000_ICR_DOUTSYNC) {
6524                 /* HW is reporting DMA is out of sync */
6525                 adapter->stats.doosync++;
6526         }
6527
6528         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6529                 hw->mac.get_link_status = 1;
6530                 /* guard against interrupt when we're going down */
6531                 if (!test_bit(__IGB_DOWN, &adapter->state))
6532                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
6533         }
6534
6535         if (icr & E1000_ICR_TS)
6536                 igb_tsync_interrupt(adapter);
6537
6538         napi_schedule(&q_vector->napi);
6539
6540         return IRQ_HANDLED;
6541 }
6542
6543 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6544 {
6545         struct igb_adapter *adapter = q_vector->adapter;
6546         struct e1000_hw *hw = &adapter->hw;
6547
6548         if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6549             (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6550                 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6551                         igb_set_itr(q_vector);
6552                 else
6553                         igb_update_ring_itr(q_vector);
6554         }
6555
6556         if (!test_bit(__IGB_DOWN, &adapter->state)) {
6557                 if (adapter->flags & IGB_FLAG_HAS_MSIX)
6558                         wr32(E1000_EIMS, q_vector->eims_value);
6559                 else
6560                         igb_irq_enable(adapter);
6561         }
6562 }
6563
6564 /**
6565  *  igb_poll - NAPI Rx polling callback
6566  *  @napi: napi polling structure
6567  *  @budget: count of how many packets we should handle
6568  **/
6569 static int igb_poll(struct napi_struct *napi, int budget)
6570 {
6571         struct igb_q_vector *q_vector = container_of(napi,
6572                                                      struct igb_q_vector,
6573                                                      napi);
6574         bool clean_complete = true;
6575         int work_done = 0;
6576
6577 #ifdef CONFIG_IGB_DCA
6578         if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6579                 igb_update_dca(q_vector);
6580 #endif
6581         if (q_vector->tx.ring)
6582                 clean_complete = igb_clean_tx_irq(q_vector, budget);
6583
6584         if (q_vector->rx.ring) {
6585                 int cleaned = igb_clean_rx_irq(q_vector, budget);
6586
6587                 work_done += cleaned;
6588                 if (cleaned >= budget)
6589                         clean_complete = false;
6590         }
6591
6592         /* If all work not completed, return budget and keep polling */
6593         if (!clean_complete)
6594                 return budget;
6595
6596         /* If not enough Rx work done, exit the polling mode */
6597         napi_complete_done(napi, work_done);
6598         igb_ring_irq_enable(q_vector);
6599
6600         return 0;
6601 }
6602
6603 /**
6604  *  igb_clean_tx_irq - Reclaim resources after transmit completes
6605  *  @q_vector: pointer to q_vector containing needed info
6606  *  @napi_budget: Used to determine if we are in netpoll
6607  *
6608  *  returns true if ring is completely cleaned
6609  **/
6610 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
6611 {
6612         struct igb_adapter *adapter = q_vector->adapter;
6613         struct igb_ring *tx_ring = q_vector->tx.ring;
6614         struct igb_tx_buffer *tx_buffer;
6615         union e1000_adv_tx_desc *tx_desc;
6616         unsigned int total_bytes = 0, total_packets = 0;
6617         unsigned int budget = q_vector->tx.work_limit;
6618         unsigned int i = tx_ring->next_to_clean;
6619
6620         if (test_bit(__IGB_DOWN, &adapter->state))
6621                 return true;
6622
6623         tx_buffer = &tx_ring->tx_buffer_info[i];
6624         tx_desc = IGB_TX_DESC(tx_ring, i);
6625         i -= tx_ring->count;
6626
6627         do {
6628                 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6629
6630                 /* if next_to_watch is not set then there is no work pending */
6631                 if (!eop_desc)
6632                         break;
6633
6634                 /* prevent any other reads prior to eop_desc */
6635                 read_barrier_depends();
6636
6637                 /* if DD is not set pending work has not been completed */
6638                 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6639                         break;
6640
6641                 /* clear next_to_watch to prevent false hangs */
6642                 tx_buffer->next_to_watch = NULL;
6643
6644                 /* update the statistics for this packet */
6645                 total_bytes += tx_buffer->bytecount;
6646                 total_packets += tx_buffer->gso_segs;
6647
6648                 /* free the skb */
6649                 napi_consume_skb(tx_buffer->skb, napi_budget);
6650
6651                 /* unmap skb header data */
6652                 dma_unmap_single(tx_ring->dev,
6653                                  dma_unmap_addr(tx_buffer, dma),
6654                                  dma_unmap_len(tx_buffer, len),
6655                                  DMA_TO_DEVICE);
6656
6657                 /* clear tx_buffer data */
6658                 tx_buffer->skb = NULL;
6659                 dma_unmap_len_set(tx_buffer, len, 0);
6660
6661                 /* clear last DMA location and unmap remaining buffers */
6662                 while (tx_desc != eop_desc) {
6663                         tx_buffer++;
6664                         tx_desc++;
6665                         i++;
6666                         if (unlikely(!i)) {
6667                                 i -= tx_ring->count;
6668                                 tx_buffer = tx_ring->tx_buffer_info;
6669                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
6670                         }
6671
6672                         /* unmap any remaining paged data */
6673                         if (dma_unmap_len(tx_buffer, len)) {
6674                                 dma_unmap_page(tx_ring->dev,
6675                                                dma_unmap_addr(tx_buffer, dma),
6676                                                dma_unmap_len(tx_buffer, len),
6677                                                DMA_TO_DEVICE);
6678                                 dma_unmap_len_set(tx_buffer, len, 0);
6679                         }
6680                 }
6681
6682                 /* move us one more past the eop_desc for start of next pkt */
6683                 tx_buffer++;
6684                 tx_desc++;
6685                 i++;
6686                 if (unlikely(!i)) {
6687                         i -= tx_ring->count;
6688                         tx_buffer = tx_ring->tx_buffer_info;
6689                         tx_desc = IGB_TX_DESC(tx_ring, 0);
6690                 }
6691
6692                 /* issue prefetch for next Tx descriptor */
6693                 prefetch(tx_desc);
6694
6695                 /* update budget accounting */
6696                 budget--;
6697         } while (likely(budget));
6698
6699         netdev_tx_completed_queue(txring_txq(tx_ring),
6700                                   total_packets, total_bytes);
6701         i += tx_ring->count;
6702         tx_ring->next_to_clean = i;
6703         u64_stats_update_begin(&tx_ring->tx_syncp);
6704         tx_ring->tx_stats.bytes += total_bytes;
6705         tx_ring->tx_stats.packets += total_packets;
6706         u64_stats_update_end(&tx_ring->tx_syncp);
6707         q_vector->tx.total_bytes += total_bytes;
6708         q_vector->tx.total_packets += total_packets;
6709
6710         if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6711                 struct e1000_hw *hw = &adapter->hw;
6712
6713                 /* Detect a transmit hang in hardware, this serializes the
6714                  * check with the clearing of time_stamp and movement of i
6715                  */
6716                 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6717                 if (tx_buffer->next_to_watch &&
6718                     time_after(jiffies, tx_buffer->time_stamp +
6719                                (adapter->tx_timeout_factor * HZ)) &&
6720                     !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6721
6722                         /* detected Tx unit hang */
6723                         dev_err(tx_ring->dev,
6724                                 "Detected Tx Unit Hang\n"
6725                                 "  Tx Queue             <%d>\n"
6726                                 "  TDH                  <%x>\n"
6727                                 "  TDT                  <%x>\n"
6728                                 "  next_to_use          <%x>\n"
6729                                 "  next_to_clean        <%x>\n"
6730                                 "buffer_info[next_to_clean]\n"
6731                                 "  time_stamp           <%lx>\n"
6732                                 "  next_to_watch        <%p>\n"
6733                                 "  jiffies              <%lx>\n"
6734                                 "  desc.status          <%x>\n",
6735                                 tx_ring->queue_index,
6736                                 rd32(E1000_TDH(tx_ring->reg_idx)),
6737                                 readl(tx_ring->tail),
6738                                 tx_ring->next_to_use,
6739                                 tx_ring->next_to_clean,
6740                                 tx_buffer->time_stamp,
6741                                 tx_buffer->next_to_watch,
6742                                 jiffies,
6743                                 tx_buffer->next_to_watch->wb.status);
6744                         netif_stop_subqueue(tx_ring->netdev,
6745                                             tx_ring->queue_index);
6746
6747                         /* we are about to reset, no point in enabling stuff */
6748                         return true;
6749                 }
6750         }
6751
6752 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6753         if (unlikely(total_packets &&
6754             netif_carrier_ok(tx_ring->netdev) &&
6755             igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6756                 /* Make sure that anybody stopping the queue after this
6757                  * sees the new next_to_clean.
6758                  */
6759                 smp_mb();
6760                 if (__netif_subqueue_stopped(tx_ring->netdev,
6761                                              tx_ring->queue_index) &&
6762                     !(test_bit(__IGB_DOWN, &adapter->state))) {
6763                         netif_wake_subqueue(tx_ring->netdev,
6764                                             tx_ring->queue_index);
6765
6766                         u64_stats_update_begin(&tx_ring->tx_syncp);
6767                         tx_ring->tx_stats.restart_queue++;
6768                         u64_stats_update_end(&tx_ring->tx_syncp);
6769                 }
6770         }
6771
6772         return !!budget;
6773 }
6774
6775 /**
6776  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6777  *  @rx_ring: rx descriptor ring to store buffers on
6778  *  @old_buff: donor buffer to have page reused
6779  *
6780  *  Synchronizes page for reuse by the adapter
6781  **/
6782 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6783                               struct igb_rx_buffer *old_buff)
6784 {
6785         struct igb_rx_buffer *new_buff;
6786         u16 nta = rx_ring->next_to_alloc;
6787
6788         new_buff = &rx_ring->rx_buffer_info[nta];
6789
6790         /* update, and store next to alloc */
6791         nta++;
6792         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6793
6794         /* transfer page from old buffer to new buffer */
6795         *new_buff = *old_buff;
6796
6797         /* sync the buffer for use by the device */
6798         dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6799                                          old_buff->page_offset,
6800                                          IGB_RX_BUFSZ,
6801                                          DMA_FROM_DEVICE);
6802 }
6803
6804 static inline bool igb_page_is_reserved(struct page *page)
6805 {
6806         return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
6807 }
6808
6809 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6810                                   struct page *page,
6811                                   unsigned int truesize)
6812 {
6813         /* avoid re-using remote pages */
6814         if (unlikely(igb_page_is_reserved(page)))
6815                 return false;
6816
6817 #if (PAGE_SIZE < 8192)
6818         /* if we are only owner of page we can reuse it */
6819         if (unlikely(page_count(page) != 1))
6820                 return false;
6821
6822         /* flip page offset to other buffer */
6823         rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6824 #else
6825         /* move offset up to the next cache line */
6826         rx_buffer->page_offset += truesize;
6827
6828         if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6829                 return false;
6830 #endif
6831
6832         /* Even if we own the page, we are not allowed to use atomic_set()
6833          * This would break get_page_unless_zero() users.
6834          */
6835         page_ref_inc(page);
6836
6837         return true;
6838 }
6839
6840 /**
6841  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6842  *  @rx_ring: rx descriptor ring to transact packets on
6843  *  @rx_buffer: buffer containing page to add
6844  *  @rx_desc: descriptor containing length of buffer written by hardware
6845  *  @skb: sk_buff to place the data into
6846  *
6847  *  This function will add the data contained in rx_buffer->page to the skb.
6848  *  This is done either through a direct copy if the data in the buffer is
6849  *  less than the skb header size, otherwise it will just attach the page as
6850  *  a frag to the skb.
6851  *
6852  *  The function will then update the page offset if necessary and return
6853  *  true if the buffer can be reused by the adapter.
6854  **/
6855 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6856                             struct igb_rx_buffer *rx_buffer,
6857                             union e1000_adv_rx_desc *rx_desc,
6858                             struct sk_buff *skb)
6859 {
6860         struct page *page = rx_buffer->page;
6861         unsigned char *va = page_address(page) + rx_buffer->page_offset;
6862         unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6863 #if (PAGE_SIZE < 8192)
6864         unsigned int truesize = IGB_RX_BUFSZ;
6865 #else
6866         unsigned int truesize = SKB_DATA_ALIGN(size);
6867 #endif
6868         unsigned int pull_len;
6869
6870         if (unlikely(skb_is_nonlinear(skb)))
6871                 goto add_tail_frag;
6872
6873         if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
6874                 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6875                 va += IGB_TS_HDR_LEN;
6876                 size -= IGB_TS_HDR_LEN;
6877         }
6878
6879         if (likely(size <= IGB_RX_HDR_LEN)) {
6880                 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6881
6882                 /* page is not reserved, we can reuse buffer as-is */
6883                 if (likely(!igb_page_is_reserved(page)))
6884                         return true;
6885
6886                 /* this page cannot be reused so discard it */
6887                 __free_page(page);
6888                 return false;
6889         }
6890
6891         /* we need the header to contain the greater of either ETH_HLEN or
6892          * 60 bytes if the skb->len is less than 60 for skb_pad.
6893          */
6894         pull_len = eth_get_headlen(va, IGB_RX_HDR_LEN);
6895
6896         /* align pull length to size of long to optimize memcpy performance */
6897         memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
6898
6899         /* update all of the pointers */
6900         va += pull_len;
6901         size -= pull_len;
6902
6903 add_tail_frag:
6904         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6905                         (unsigned long)va & ~PAGE_MASK, size, truesize);
6906
6907         return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6908 }
6909
6910 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6911                                            union e1000_adv_rx_desc *rx_desc,
6912                                            struct sk_buff *skb)
6913 {
6914         struct igb_rx_buffer *rx_buffer;
6915         struct page *page;
6916
6917         rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6918         page = rx_buffer->page;
6919         prefetchw(page);
6920
6921         if (likely(!skb)) {
6922                 void *page_addr = page_address(page) +
6923                                   rx_buffer->page_offset;
6924
6925                 /* prefetch first cache line of first page */
6926                 prefetch(page_addr);
6927 #if L1_CACHE_BYTES < 128
6928                 prefetch(page_addr + L1_CACHE_BYTES);
6929 #endif
6930
6931                 /* allocate a skb to store the frags */
6932                 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
6933                 if (unlikely(!skb)) {
6934                         rx_ring->rx_stats.alloc_failed++;
6935                         return NULL;
6936                 }
6937
6938                 /* we will be copying header into skb->data in
6939                  * pskb_may_pull so it is in our interest to prefetch
6940                  * it now to avoid a possible cache miss
6941                  */
6942                 prefetchw(skb->data);
6943         }
6944
6945         /* we are reusing so sync this buffer for CPU use */
6946         dma_sync_single_range_for_cpu(rx_ring->dev,
6947                                       rx_buffer->dma,
6948                                       rx_buffer->page_offset,
6949                                       IGB_RX_BUFSZ,
6950                                       DMA_FROM_DEVICE);
6951
6952         /* pull page into skb */
6953         if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6954                 /* hand second half of page back to the ring */
6955                 igb_reuse_rx_page(rx_ring, rx_buffer);
6956         } else {
6957                 /* we are not reusing the buffer so unmap it */
6958                 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6959                                PAGE_SIZE, DMA_FROM_DEVICE);
6960         }
6961
6962         /* clear contents of rx_buffer */
6963         rx_buffer->page = NULL;
6964
6965         return skb;
6966 }
6967
6968 static inline void igb_rx_checksum(struct igb_ring *ring,
6969                                    union e1000_adv_rx_desc *rx_desc,
6970                                    struct sk_buff *skb)
6971 {
6972         skb_checksum_none_assert(skb);
6973
6974         /* Ignore Checksum bit is set */
6975         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6976                 return;
6977
6978         /* Rx checksum disabled via ethtool */
6979         if (!(ring->netdev->features & NETIF_F_RXCSUM))
6980                 return;
6981
6982         /* TCP/UDP checksum error bit is set */
6983         if (igb_test_staterr(rx_desc,
6984                              E1000_RXDEXT_STATERR_TCPE |
6985                              E1000_RXDEXT_STATERR_IPE)) {
6986                 /* work around errata with sctp packets where the TCPE aka
6987                  * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6988                  * packets, (aka let the stack check the crc32c)
6989                  */
6990                 if (!((skb->len == 60) &&
6991                       test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6992                         u64_stats_update_begin(&ring->rx_syncp);
6993                         ring->rx_stats.csum_err++;
6994                         u64_stats_update_end(&ring->rx_syncp);
6995                 }
6996                 /* let the stack verify checksum errors */
6997                 return;
6998         }
6999         /* It must be a TCP or UDP packet with a valid checksum */
7000         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
7001                                       E1000_RXD_STAT_UDPCS))
7002                 skb->ip_summed = CHECKSUM_UNNECESSARY;
7003
7004         dev_dbg(ring->dev, "cksum success: bits %08X\n",
7005                 le32_to_cpu(rx_desc->wb.upper.status_error));
7006 }
7007
7008 static inline void igb_rx_hash(struct igb_ring *ring,
7009                                union e1000_adv_rx_desc *rx_desc,
7010                                struct sk_buff *skb)
7011 {
7012         if (ring->netdev->features & NETIF_F_RXHASH)
7013                 skb_set_hash(skb,
7014                              le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
7015                              PKT_HASH_TYPE_L3);
7016 }
7017
7018 /**
7019  *  igb_is_non_eop - process handling of non-EOP buffers
7020  *  @rx_ring: Rx ring being processed
7021  *  @rx_desc: Rx descriptor for current buffer
7022  *  @skb: current socket buffer containing buffer in progress
7023  *
7024  *  This function updates next to clean.  If the buffer is an EOP buffer
7025  *  this function exits returning false, otherwise it will place the
7026  *  sk_buff in the next buffer to be chained and return true indicating
7027  *  that this is in fact a non-EOP buffer.
7028  **/
7029 static bool igb_is_non_eop(struct igb_ring *rx_ring,
7030                            union e1000_adv_rx_desc *rx_desc)
7031 {
7032         u32 ntc = rx_ring->next_to_clean + 1;
7033
7034         /* fetch, update, and store next to clean */
7035         ntc = (ntc < rx_ring->count) ? ntc : 0;
7036         rx_ring->next_to_clean = ntc;
7037
7038         prefetch(IGB_RX_DESC(rx_ring, ntc));
7039
7040         if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
7041                 return false;
7042
7043         return true;
7044 }
7045
7046 /**
7047  *  igb_cleanup_headers - Correct corrupted or empty headers
7048  *  @rx_ring: rx descriptor ring packet is being transacted on
7049  *  @rx_desc: pointer to the EOP Rx descriptor
7050  *  @skb: pointer to current skb being fixed
7051  *
7052  *  Address the case where we are pulling data in on pages only
7053  *  and as such no data is present in the skb header.
7054  *
7055  *  In addition if skb is not at least 60 bytes we need to pad it so that
7056  *  it is large enough to qualify as a valid Ethernet frame.
7057  *
7058  *  Returns true if an error was encountered and skb was freed.
7059  **/
7060 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
7061                                 union e1000_adv_rx_desc *rx_desc,
7062                                 struct sk_buff *skb)
7063 {
7064         if (unlikely((igb_test_staterr(rx_desc,
7065                                        E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
7066                 struct net_device *netdev = rx_ring->netdev;
7067                 if (!(netdev->features & NETIF_F_RXALL)) {
7068                         dev_kfree_skb_any(skb);
7069                         return true;
7070                 }
7071         }
7072
7073         /* if eth_skb_pad returns an error the skb was freed */
7074         if (eth_skb_pad(skb))
7075                 return true;
7076
7077         return false;
7078 }
7079
7080 /**
7081  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
7082  *  @rx_ring: rx descriptor ring packet is being transacted on
7083  *  @rx_desc: pointer to the EOP Rx descriptor
7084  *  @skb: pointer to current skb being populated
7085  *
7086  *  This function checks the ring, descriptor, and packet information in
7087  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
7088  *  other fields within the skb.
7089  **/
7090 static void igb_process_skb_fields(struct igb_ring *rx_ring,
7091                                    union e1000_adv_rx_desc *rx_desc,
7092                                    struct sk_buff *skb)
7093 {
7094         struct net_device *dev = rx_ring->netdev;
7095
7096         igb_rx_hash(rx_ring, rx_desc, skb);
7097
7098         igb_rx_checksum(rx_ring, rx_desc, skb);
7099
7100         if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
7101             !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
7102                 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
7103
7104         if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
7105             igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
7106                 u16 vid;
7107
7108                 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
7109                     test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
7110                         vid = be16_to_cpu(rx_desc->wb.upper.vlan);
7111                 else
7112                         vid = le16_to_cpu(rx_desc->wb.upper.vlan);
7113
7114                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
7115         }
7116
7117         skb_record_rx_queue(skb, rx_ring->queue_index);
7118
7119         skb->protocol = eth_type_trans(skb, rx_ring->netdev);
7120 }
7121
7122 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
7123 {
7124         struct igb_ring *rx_ring = q_vector->rx.ring;
7125         struct sk_buff *skb = rx_ring->skb;
7126         unsigned int total_bytes = 0, total_packets = 0;
7127         u16 cleaned_count = igb_desc_unused(rx_ring);
7128
7129         while (likely(total_packets < budget)) {
7130                 union e1000_adv_rx_desc *rx_desc;
7131
7132                 /* return some buffers to hardware, one at a time is too slow */
7133                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
7134                         igb_alloc_rx_buffers(rx_ring, cleaned_count);
7135                         cleaned_count = 0;
7136                 }
7137
7138                 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
7139
7140                 if (!rx_desc->wb.upper.status_error)
7141                         break;
7142
7143                 /* This memory barrier is needed to keep us from reading
7144                  * any other fields out of the rx_desc until we know the
7145                  * descriptor has been written back
7146                  */
7147                 dma_rmb();
7148
7149                 /* retrieve a buffer from the ring */
7150                 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
7151
7152                 /* exit if we failed to retrieve a buffer */
7153                 if (!skb)
7154                         break;
7155
7156                 cleaned_count++;
7157
7158                 /* fetch next buffer in frame if non-eop */
7159                 if (igb_is_non_eop(rx_ring, rx_desc))
7160                         continue;
7161
7162                 /* verify the packet layout is correct */
7163                 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
7164                         skb = NULL;
7165                         continue;
7166                 }
7167
7168                 /* probably a little skewed due to removing CRC */
7169                 total_bytes += skb->len;
7170
7171                 /* populate checksum, timestamp, VLAN, and protocol */
7172                 igb_process_skb_fields(rx_ring, rx_desc, skb);
7173
7174                 napi_gro_receive(&q_vector->napi, skb);
7175
7176                 /* reset skb pointer */
7177                 skb = NULL;
7178
7179                 /* update budget accounting */
7180                 total_packets++;
7181         }
7182
7183         /* place incomplete frames back on ring for completion */
7184         rx_ring->skb = skb;
7185
7186         u64_stats_update_begin(&rx_ring->rx_syncp);
7187         rx_ring->rx_stats.packets += total_packets;
7188         rx_ring->rx_stats.bytes += total_bytes;
7189         u64_stats_update_end(&rx_ring->rx_syncp);
7190         q_vector->rx.total_packets += total_packets;
7191         q_vector->rx.total_bytes += total_bytes;
7192
7193         if (cleaned_count)
7194                 igb_alloc_rx_buffers(rx_ring, cleaned_count);
7195
7196         return total_packets;
7197 }
7198
7199 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7200                                   struct igb_rx_buffer *bi)
7201 {
7202         struct page *page = bi->page;
7203         dma_addr_t dma;
7204
7205         /* since we are recycling buffers we should seldom need to alloc */
7206         if (likely(page))
7207                 return true;
7208
7209         /* alloc new page for storage */
7210         page = dev_alloc_page();
7211         if (unlikely(!page)) {
7212                 rx_ring->rx_stats.alloc_failed++;
7213                 return false;
7214         }
7215
7216         /* map page for use */
7217         dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
7218
7219         /* if mapping failed free memory back to system since
7220          * there isn't much point in holding memory we can't use
7221          */
7222         if (dma_mapping_error(rx_ring->dev, dma)) {
7223                 __free_page(page);
7224
7225                 rx_ring->rx_stats.alloc_failed++;
7226                 return false;
7227         }
7228
7229         bi->dma = dma;
7230         bi->page = page;
7231         bi->page_offset = 0;
7232
7233         return true;
7234 }
7235
7236 /**
7237  *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
7238  *  @adapter: address of board private structure
7239  **/
7240 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7241 {
7242         union e1000_adv_rx_desc *rx_desc;
7243         struct igb_rx_buffer *bi;
7244         u16 i = rx_ring->next_to_use;
7245
7246         /* nothing to do */
7247         if (!cleaned_count)
7248                 return;
7249
7250         rx_desc = IGB_RX_DESC(rx_ring, i);
7251         bi = &rx_ring->rx_buffer_info[i];
7252         i -= rx_ring->count;
7253
7254         do {
7255                 if (!igb_alloc_mapped_page(rx_ring, bi))
7256                         break;
7257
7258                 /* Refresh the desc even if buffer_addrs didn't change
7259                  * because each write-back erases this info.
7260                  */
7261                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7262
7263                 rx_desc++;
7264                 bi++;
7265                 i++;
7266                 if (unlikely(!i)) {
7267                         rx_desc = IGB_RX_DESC(rx_ring, 0);
7268                         bi = rx_ring->rx_buffer_info;
7269                         i -= rx_ring->count;
7270                 }
7271
7272                 /* clear the status bits for the next_to_use descriptor */
7273                 rx_desc->wb.upper.status_error = 0;
7274
7275                 cleaned_count--;
7276         } while (cleaned_count);
7277
7278         i += rx_ring->count;
7279
7280         if (rx_ring->next_to_use != i) {
7281                 /* record the next descriptor to use */
7282                 rx_ring->next_to_use = i;
7283
7284                 /* update next to alloc since we have filled the ring */
7285                 rx_ring->next_to_alloc = i;
7286
7287                 /* Force memory writes to complete before letting h/w
7288                  * know there are new descriptors to fetch.  (Only
7289                  * applicable for weak-ordered memory model archs,
7290                  * such as IA-64).
7291                  */
7292                 wmb();
7293                 writel(i, rx_ring->tail);
7294         }
7295 }
7296
7297 /**
7298  * igb_mii_ioctl -
7299  * @netdev:
7300  * @ifreq:
7301  * @cmd:
7302  **/
7303 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7304 {
7305         struct igb_adapter *adapter = netdev_priv(netdev);
7306         struct mii_ioctl_data *data = if_mii(ifr);
7307
7308         if (adapter->hw.phy.media_type != e1000_media_type_copper)
7309                 return -EOPNOTSUPP;
7310
7311         switch (cmd) {
7312         case SIOCGMIIPHY:
7313                 data->phy_id = adapter->hw.phy.addr;
7314                 break;
7315         case SIOCGMIIREG:
7316                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7317                                      &data->val_out))
7318                         return -EIO;
7319                 break;
7320         case SIOCSMIIREG:
7321         default:
7322                 return -EOPNOTSUPP;
7323         }
7324         return 0;
7325 }
7326
7327 /**
7328  * igb_ioctl -
7329  * @netdev:
7330  * @ifreq:
7331  * @cmd:
7332  **/
7333 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7334 {
7335         switch (cmd) {
7336         case SIOCGMIIPHY:
7337         case SIOCGMIIREG:
7338         case SIOCSMIIREG:
7339                 return igb_mii_ioctl(netdev, ifr, cmd);
7340         case SIOCGHWTSTAMP:
7341                 return igb_ptp_get_ts_config(netdev, ifr);
7342         case SIOCSHWTSTAMP:
7343                 return igb_ptp_set_ts_config(netdev, ifr);
7344         default:
7345                 return -EOPNOTSUPP;
7346         }
7347 }
7348
7349 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7350 {
7351         struct igb_adapter *adapter = hw->back;
7352
7353         pci_read_config_word(adapter->pdev, reg, value);
7354 }
7355
7356 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7357 {
7358         struct igb_adapter *adapter = hw->back;
7359
7360         pci_write_config_word(adapter->pdev, reg, *value);
7361 }
7362
7363 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7364 {
7365         struct igb_adapter *adapter = hw->back;
7366
7367         if (pcie_capability_read_word(adapter->pdev, reg, value))
7368                 return -E1000_ERR_CONFIG;
7369
7370         return 0;
7371 }
7372
7373 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7374 {
7375         struct igb_adapter *adapter = hw->back;
7376
7377         if (pcie_capability_write_word(adapter->pdev, reg, *value))
7378                 return -E1000_ERR_CONFIG;
7379
7380         return 0;
7381 }
7382
7383 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7384 {
7385         struct igb_adapter *adapter = netdev_priv(netdev);
7386         struct e1000_hw *hw = &adapter->hw;
7387         u32 ctrl, rctl;
7388         bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7389
7390         if (enable) {
7391                 /* enable VLAN tag insert/strip */
7392                 ctrl = rd32(E1000_CTRL);
7393                 ctrl |= E1000_CTRL_VME;
7394                 wr32(E1000_CTRL, ctrl);
7395
7396                 /* Disable CFI check */
7397                 rctl = rd32(E1000_RCTL);
7398                 rctl &= ~E1000_RCTL_CFIEN;
7399                 wr32(E1000_RCTL, rctl);
7400         } else {
7401                 /* disable VLAN tag insert/strip */
7402                 ctrl = rd32(E1000_CTRL);
7403                 ctrl &= ~E1000_CTRL_VME;
7404                 wr32(E1000_CTRL, ctrl);
7405         }
7406
7407         igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
7408 }
7409
7410 static int igb_vlan_rx_add_vid(struct net_device *netdev,
7411                                __be16 proto, u16 vid)
7412 {
7413         struct igb_adapter *adapter = netdev_priv(netdev);
7414         struct e1000_hw *hw = &adapter->hw;
7415         int pf_id = adapter->vfs_allocated_count;
7416
7417         /* add the filter since PF can receive vlans w/o entry in vlvf */
7418         if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
7419                 igb_vfta_set(hw, vid, pf_id, true, !!vid);
7420
7421         set_bit(vid, adapter->active_vlans);
7422
7423         return 0;
7424 }
7425
7426 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7427                                 __be16 proto, u16 vid)
7428 {
7429         struct igb_adapter *adapter = netdev_priv(netdev);
7430         int pf_id = adapter->vfs_allocated_count;
7431         struct e1000_hw *hw = &adapter->hw;
7432
7433         /* remove VID from filter table */
7434         if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
7435                 igb_vfta_set(hw, vid, pf_id, false, true);
7436
7437         clear_bit(vid, adapter->active_vlans);
7438
7439         return 0;
7440 }
7441
7442 static void igb_restore_vlan(struct igb_adapter *adapter)
7443 {
7444         u16 vid = 1;
7445
7446         igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7447         igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
7448
7449         for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
7450                 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7451 }
7452
7453 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7454 {
7455         struct pci_dev *pdev = adapter->pdev;
7456         struct e1000_mac_info *mac = &adapter->hw.mac;
7457
7458         mac->autoneg = 0;
7459
7460         /* Make sure dplx is at most 1 bit and lsb of speed is not set
7461          * for the switch() below to work
7462          */
7463         if ((spd & 1) || (dplx & ~1))
7464                 goto err_inval;
7465
7466         /* Fiber NIC's only allow 1000 gbps Full duplex
7467          * and 100Mbps Full duplex for 100baseFx sfp
7468          */
7469         if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7470                 switch (spd + dplx) {
7471                 case SPEED_10 + DUPLEX_HALF:
7472                 case SPEED_10 + DUPLEX_FULL:
7473                 case SPEED_100 + DUPLEX_HALF:
7474                         goto err_inval;
7475                 default:
7476                         break;
7477                 }
7478         }
7479
7480         switch (spd + dplx) {
7481         case SPEED_10 + DUPLEX_HALF:
7482                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
7483                 break;
7484         case SPEED_10 + DUPLEX_FULL:
7485                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
7486                 break;
7487         case SPEED_100 + DUPLEX_HALF:
7488                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
7489                 break;
7490         case SPEED_100 + DUPLEX_FULL:
7491                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
7492                 break;
7493         case SPEED_1000 + DUPLEX_FULL:
7494                 mac->autoneg = 1;
7495                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7496                 break;
7497         case SPEED_1000 + DUPLEX_HALF: /* not supported */
7498         default:
7499                 goto err_inval;
7500         }
7501
7502         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7503         adapter->hw.phy.mdix = AUTO_ALL_MODES;
7504
7505         return 0;
7506
7507 err_inval:
7508         dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7509         return -EINVAL;
7510 }
7511
7512 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7513                           bool runtime)
7514 {
7515         struct net_device *netdev = pci_get_drvdata(pdev);
7516         struct igb_adapter *adapter = netdev_priv(netdev);
7517         struct e1000_hw *hw = &adapter->hw;
7518         u32 ctrl, rctl, status;
7519         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7520 #ifdef CONFIG_PM
7521         int retval = 0;
7522 #endif
7523
7524         netif_device_detach(netdev);
7525
7526         if (netif_running(netdev))
7527                 __igb_close(netdev, true);
7528
7529         igb_clear_interrupt_scheme(adapter);
7530
7531 #ifdef CONFIG_PM
7532         retval = pci_save_state(pdev);
7533         if (retval)
7534                 return retval;
7535 #endif
7536
7537         status = rd32(E1000_STATUS);
7538         if (status & E1000_STATUS_LU)
7539                 wufc &= ~E1000_WUFC_LNKC;
7540
7541         if (wufc) {
7542                 igb_setup_rctl(adapter);
7543                 igb_set_rx_mode(netdev);
7544
7545                 /* turn on all-multi mode if wake on multicast is enabled */
7546                 if (wufc & E1000_WUFC_MC) {
7547                         rctl = rd32(E1000_RCTL);
7548                         rctl |= E1000_RCTL_MPE;
7549                         wr32(E1000_RCTL, rctl);
7550                 }
7551
7552                 ctrl = rd32(E1000_CTRL);
7553                 /* advertise wake from D3Cold */
7554                 #define E1000_CTRL_ADVD3WUC 0x00100000
7555                 /* phy power management enable */
7556                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7557                 ctrl |= E1000_CTRL_ADVD3WUC;
7558                 wr32(E1000_CTRL, ctrl);
7559
7560                 /* Allow time for pending master requests to run */
7561                 igb_disable_pcie_master(hw);
7562
7563                 wr32(E1000_WUC, E1000_WUC_PME_EN);
7564                 wr32(E1000_WUFC, wufc);
7565         } else {
7566                 wr32(E1000_WUC, 0);
7567                 wr32(E1000_WUFC, 0);
7568         }
7569
7570         *enable_wake = wufc || adapter->en_mng_pt;
7571         if (!*enable_wake)
7572                 igb_power_down_link(adapter);
7573         else
7574                 igb_power_up_link(adapter);
7575
7576         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
7577          * would have already happened in close and is redundant.
7578          */
7579         igb_release_hw_control(adapter);
7580
7581         pci_disable_device(pdev);
7582
7583         return 0;
7584 }
7585
7586 #ifdef CONFIG_PM
7587 #ifdef CONFIG_PM_SLEEP
7588 static int igb_suspend(struct device *dev)
7589 {
7590         int retval;
7591         bool wake;
7592         struct pci_dev *pdev = to_pci_dev(dev);
7593
7594         retval = __igb_shutdown(pdev, &wake, 0);
7595         if (retval)
7596                 return retval;
7597
7598         if (wake) {
7599                 pci_prepare_to_sleep(pdev);
7600         } else {
7601                 pci_wake_from_d3(pdev, false);
7602                 pci_set_power_state(pdev, PCI_D3hot);
7603         }
7604
7605         return 0;
7606 }
7607 #endif /* CONFIG_PM_SLEEP */
7608
7609 static int igb_resume(struct device *dev)
7610 {
7611         struct pci_dev *pdev = to_pci_dev(dev);
7612         struct net_device *netdev = pci_get_drvdata(pdev);
7613         struct igb_adapter *adapter = netdev_priv(netdev);
7614         struct e1000_hw *hw = &adapter->hw;
7615         u32 err;
7616
7617         pci_set_power_state(pdev, PCI_D0);
7618         pci_restore_state(pdev);
7619         pci_save_state(pdev);
7620
7621         if (!pci_device_is_present(pdev))
7622                 return -ENODEV;
7623         err = pci_enable_device_mem(pdev);
7624         if (err) {
7625                 dev_err(&pdev->dev,
7626                         "igb: Cannot enable PCI device from suspend\n");
7627                 return err;
7628         }
7629         pci_set_master(pdev);
7630
7631         pci_enable_wake(pdev, PCI_D3hot, 0);
7632         pci_enable_wake(pdev, PCI_D3cold, 0);
7633
7634         if (igb_init_interrupt_scheme(adapter, true)) {
7635                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7636                 return -ENOMEM;
7637         }
7638
7639         igb_reset(adapter);
7640
7641         /* let the f/w know that the h/w is now under the control of the
7642          * driver.
7643          */
7644         igb_get_hw_control(adapter);
7645
7646         wr32(E1000_WUS, ~0);
7647
7648         if (netdev->flags & IFF_UP) {
7649                 rtnl_lock();
7650                 err = __igb_open(netdev, true);
7651                 rtnl_unlock();
7652                 if (err)
7653                         return err;
7654         }
7655
7656         netif_device_attach(netdev);
7657         return 0;
7658 }
7659
7660 static int igb_runtime_idle(struct device *dev)
7661 {
7662         struct pci_dev *pdev = to_pci_dev(dev);
7663         struct net_device *netdev = pci_get_drvdata(pdev);
7664         struct igb_adapter *adapter = netdev_priv(netdev);
7665
7666         if (!igb_has_link(adapter))
7667                 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7668
7669         return -EBUSY;
7670 }
7671
7672 static int igb_runtime_suspend(struct device *dev)
7673 {
7674         struct pci_dev *pdev = to_pci_dev(dev);
7675         int retval;
7676         bool wake;
7677
7678         retval = __igb_shutdown(pdev, &wake, 1);
7679         if (retval)
7680                 return retval;
7681
7682         if (wake) {
7683                 pci_prepare_to_sleep(pdev);
7684         } else {
7685                 pci_wake_from_d3(pdev, false);
7686                 pci_set_power_state(pdev, PCI_D3hot);
7687         }
7688
7689         return 0;
7690 }
7691
7692 static int igb_runtime_resume(struct device *dev)
7693 {
7694         return igb_resume(dev);
7695 }
7696 #endif /* CONFIG_PM */
7697
7698 static void igb_shutdown(struct pci_dev *pdev)
7699 {
7700         bool wake;
7701
7702         __igb_shutdown(pdev, &wake, 0);
7703
7704         if (system_state == SYSTEM_POWER_OFF) {
7705                 pci_wake_from_d3(pdev, wake);
7706                 pci_set_power_state(pdev, PCI_D3hot);
7707         }
7708 }
7709
7710 #ifdef CONFIG_PCI_IOV
7711 static int igb_sriov_reinit(struct pci_dev *dev)
7712 {
7713         struct net_device *netdev = pci_get_drvdata(dev);
7714         struct igb_adapter *adapter = netdev_priv(netdev);
7715         struct pci_dev *pdev = adapter->pdev;
7716
7717         rtnl_lock();
7718
7719         if (netif_running(netdev))
7720                 igb_close(netdev);
7721         else
7722                 igb_reset(adapter);
7723
7724         igb_clear_interrupt_scheme(adapter);
7725
7726         igb_init_queue_configuration(adapter);
7727
7728         if (igb_init_interrupt_scheme(adapter, true)) {
7729                 rtnl_unlock();
7730                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7731                 return -ENOMEM;
7732         }
7733
7734         if (netif_running(netdev))
7735                 igb_open(netdev);
7736
7737         rtnl_unlock();
7738
7739         return 0;
7740 }
7741
7742 static int igb_pci_disable_sriov(struct pci_dev *dev)
7743 {
7744         int err = igb_disable_sriov(dev);
7745
7746         if (!err)
7747                 err = igb_sriov_reinit(dev);
7748
7749         return err;
7750 }
7751
7752 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7753 {
7754         int err = igb_enable_sriov(dev, num_vfs);
7755
7756         if (err)
7757                 goto out;
7758
7759         err = igb_sriov_reinit(dev);
7760         if (!err)
7761                 return num_vfs;
7762
7763 out:
7764         return err;
7765 }
7766
7767 #endif
7768 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7769 {
7770 #ifdef CONFIG_PCI_IOV
7771         if (num_vfs == 0)
7772                 return igb_pci_disable_sriov(dev);
7773         else
7774                 return igb_pci_enable_sriov(dev, num_vfs);
7775 #endif
7776         return 0;
7777 }
7778
7779 #ifdef CONFIG_NET_POLL_CONTROLLER
7780 /* Polling 'interrupt' - used by things like netconsole to send skbs
7781  * without having to re-enable interrupts. It's not called while
7782  * the interrupt routine is executing.
7783  */
7784 static void igb_netpoll(struct net_device *netdev)
7785 {
7786         struct igb_adapter *adapter = netdev_priv(netdev);
7787         struct e1000_hw *hw = &adapter->hw;
7788         struct igb_q_vector *q_vector;
7789         int i;
7790
7791         for (i = 0; i < adapter->num_q_vectors; i++) {
7792                 q_vector = adapter->q_vector[i];
7793                 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7794                         wr32(E1000_EIMC, q_vector->eims_value);
7795                 else
7796                         igb_irq_disable(adapter);
7797                 napi_schedule(&q_vector->napi);
7798         }
7799 }
7800 #endif /* CONFIG_NET_POLL_CONTROLLER */
7801
7802 /**
7803  *  igb_io_error_detected - called when PCI error is detected
7804  *  @pdev: Pointer to PCI device
7805  *  @state: The current pci connection state
7806  *
7807  *  This function is called after a PCI bus error affecting
7808  *  this device has been detected.
7809  **/
7810 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7811                                               pci_channel_state_t state)
7812 {
7813         struct net_device *netdev = pci_get_drvdata(pdev);
7814         struct igb_adapter *adapter = netdev_priv(netdev);
7815
7816         netif_device_detach(netdev);
7817
7818         if (state == pci_channel_io_perm_failure)
7819                 return PCI_ERS_RESULT_DISCONNECT;
7820
7821         if (netif_running(netdev))
7822                 igb_down(adapter);
7823         pci_disable_device(pdev);
7824
7825         /* Request a slot slot reset. */
7826         return PCI_ERS_RESULT_NEED_RESET;
7827 }
7828
7829 /**
7830  *  igb_io_slot_reset - called after the pci bus has been reset.
7831  *  @pdev: Pointer to PCI device
7832  *
7833  *  Restart the card from scratch, as if from a cold-boot. Implementation
7834  *  resembles the first-half of the igb_resume routine.
7835  **/
7836 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7837 {
7838         struct net_device *netdev = pci_get_drvdata(pdev);
7839         struct igb_adapter *adapter = netdev_priv(netdev);
7840         struct e1000_hw *hw = &adapter->hw;
7841         pci_ers_result_t result;
7842         int err;
7843
7844         if (pci_enable_device_mem(pdev)) {
7845                 dev_err(&pdev->dev,
7846                         "Cannot re-enable PCI device after reset.\n");
7847                 result = PCI_ERS_RESULT_DISCONNECT;
7848         } else {
7849                 pci_set_master(pdev);
7850                 pci_restore_state(pdev);
7851                 pci_save_state(pdev);
7852
7853                 pci_enable_wake(pdev, PCI_D3hot, 0);
7854                 pci_enable_wake(pdev, PCI_D3cold, 0);
7855
7856                 igb_reset(adapter);
7857                 wr32(E1000_WUS, ~0);
7858                 result = PCI_ERS_RESULT_RECOVERED;
7859         }
7860
7861         err = pci_cleanup_aer_uncorrect_error_status(pdev);
7862         if (err) {
7863                 dev_err(&pdev->dev,
7864                         "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7865                         err);
7866                 /* non-fatal, continue */
7867         }
7868
7869         return result;
7870 }
7871
7872 /**
7873  *  igb_io_resume - called when traffic can start flowing again.
7874  *  @pdev: Pointer to PCI device
7875  *
7876  *  This callback is called when the error recovery driver tells us that
7877  *  its OK to resume normal operation. Implementation resembles the
7878  *  second-half of the igb_resume routine.
7879  */
7880 static void igb_io_resume(struct pci_dev *pdev)
7881 {
7882         struct net_device *netdev = pci_get_drvdata(pdev);
7883         struct igb_adapter *adapter = netdev_priv(netdev);
7884
7885         if (netif_running(netdev)) {
7886                 if (igb_up(adapter)) {
7887                         dev_err(&pdev->dev, "igb_up failed after reset\n");
7888                         return;
7889                 }
7890         }
7891
7892         netif_device_attach(netdev);
7893
7894         /* let the f/w know that the h/w is now under the control of the
7895          * driver.
7896          */
7897         igb_get_hw_control(adapter);
7898 }
7899
7900 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7901                              u8 qsel)
7902 {
7903         struct e1000_hw *hw = &adapter->hw;
7904         u32 rar_low, rar_high;
7905
7906         /* HW expects these to be in network order when they are plugged
7907          * into the registers which are little endian.  In order to guarantee
7908          * that ordering we need to do an leXX_to_cpup here in order to be
7909          * ready for the byteswap that occurs with writel
7910          */
7911         rar_low = le32_to_cpup((__le32 *)(addr));
7912         rar_high = le16_to_cpup((__le16 *)(addr + 4));
7913
7914         /* Indicate to hardware the Address is Valid. */
7915         rar_high |= E1000_RAH_AV;
7916
7917         if (hw->mac.type == e1000_82575)
7918                 rar_high |= E1000_RAH_POOL_1 * qsel;
7919         else
7920                 rar_high |= E1000_RAH_POOL_1 << qsel;
7921
7922         wr32(E1000_RAL(index), rar_low);
7923         wrfl();
7924         wr32(E1000_RAH(index), rar_high);
7925         wrfl();
7926 }
7927
7928 static int igb_set_vf_mac(struct igb_adapter *adapter,
7929                           int vf, unsigned char *mac_addr)
7930 {
7931         struct e1000_hw *hw = &adapter->hw;
7932         /* VF MAC addresses start at end of receive addresses and moves
7933          * towards the first, as a result a collision should not be possible
7934          */
7935         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7936
7937         memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7938
7939         igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7940
7941         return 0;
7942 }
7943
7944 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7945 {
7946         struct igb_adapter *adapter = netdev_priv(netdev);
7947         if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7948                 return -EINVAL;
7949         adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7950         dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7951         dev_info(&adapter->pdev->dev,
7952                  "Reload the VF driver to make this change effective.");
7953         if (test_bit(__IGB_DOWN, &adapter->state)) {
7954                 dev_warn(&adapter->pdev->dev,
7955                          "The VF MAC address has been set, but the PF device is not up.\n");
7956                 dev_warn(&adapter->pdev->dev,
7957                          "Bring the PF device up before attempting to use the VF device.\n");
7958         }
7959         return igb_set_vf_mac(adapter, vf, mac);
7960 }
7961
7962 static int igb_link_mbps(int internal_link_speed)
7963 {
7964         switch (internal_link_speed) {
7965         case SPEED_100:
7966                 return 100;
7967         case SPEED_1000:
7968                 return 1000;
7969         default:
7970                 return 0;
7971         }
7972 }
7973
7974 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7975                                   int link_speed)
7976 {
7977         int rf_dec, rf_int;
7978         u32 bcnrc_val;
7979
7980         if (tx_rate != 0) {
7981                 /* Calculate the rate factor values to set */
7982                 rf_int = link_speed / tx_rate;
7983                 rf_dec = (link_speed - (rf_int * tx_rate));
7984                 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
7985                          tx_rate;
7986
7987                 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7988                 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7989                               E1000_RTTBCNRC_RF_INT_MASK);
7990                 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7991         } else {
7992                 bcnrc_val = 0;
7993         }
7994
7995         wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7996         /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7997          * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7998          */
7999         wr32(E1000_RTTBCNRM, 0x14);
8000         wr32(E1000_RTTBCNRC, bcnrc_val);
8001 }
8002
8003 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
8004 {
8005         int actual_link_speed, i;
8006         bool reset_rate = false;
8007
8008         /* VF TX rate limit was not set or not supported */
8009         if ((adapter->vf_rate_link_speed == 0) ||
8010             (adapter->hw.mac.type != e1000_82576))
8011                 return;
8012
8013         actual_link_speed = igb_link_mbps(adapter->link_speed);
8014         if (actual_link_speed != adapter->vf_rate_link_speed) {
8015                 reset_rate = true;
8016                 adapter->vf_rate_link_speed = 0;
8017                 dev_info(&adapter->pdev->dev,
8018                          "Link speed has been changed. VF Transmit rate is disabled\n");
8019         }
8020
8021         for (i = 0; i < adapter->vfs_allocated_count; i++) {
8022                 if (reset_rate)
8023                         adapter->vf_data[i].tx_rate = 0;
8024
8025                 igb_set_vf_rate_limit(&adapter->hw, i,
8026                                       adapter->vf_data[i].tx_rate,
8027                                       actual_link_speed);
8028         }
8029 }
8030
8031 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
8032                              int min_tx_rate, int max_tx_rate)
8033 {
8034         struct igb_adapter *adapter = netdev_priv(netdev);
8035         struct e1000_hw *hw = &adapter->hw;
8036         int actual_link_speed;
8037
8038         if (hw->mac.type != e1000_82576)
8039                 return -EOPNOTSUPP;
8040
8041         if (min_tx_rate)
8042                 return -EINVAL;
8043
8044         actual_link_speed = igb_link_mbps(adapter->link_speed);
8045         if ((vf >= adapter->vfs_allocated_count) ||
8046             (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
8047             (max_tx_rate < 0) ||
8048             (max_tx_rate > actual_link_speed))
8049                 return -EINVAL;
8050
8051         adapter->vf_rate_link_speed = actual_link_speed;
8052         adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
8053         igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
8054
8055         return 0;
8056 }
8057
8058 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
8059                                    bool setting)
8060 {
8061         struct igb_adapter *adapter = netdev_priv(netdev);
8062         struct e1000_hw *hw = &adapter->hw;
8063         u32 reg_val, reg_offset;
8064
8065         if (!adapter->vfs_allocated_count)
8066                 return -EOPNOTSUPP;
8067
8068         if (vf >= adapter->vfs_allocated_count)
8069                 return -EINVAL;
8070
8071         reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
8072         reg_val = rd32(reg_offset);
8073         if (setting)
8074                 reg_val |= (BIT(vf) |
8075                             BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
8076         else
8077                 reg_val &= ~(BIT(vf) |
8078                              BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
8079         wr32(reg_offset, reg_val);
8080
8081         adapter->vf_data[vf].spoofchk_enabled = setting;
8082         return 0;
8083 }
8084
8085 static int igb_ndo_get_vf_config(struct net_device *netdev,
8086                                  int vf, struct ifla_vf_info *ivi)
8087 {
8088         struct igb_adapter *adapter = netdev_priv(netdev);
8089         if (vf >= adapter->vfs_allocated_count)
8090                 return -EINVAL;
8091         ivi->vf = vf;
8092         memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
8093         ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
8094         ivi->min_tx_rate = 0;
8095         ivi->vlan = adapter->vf_data[vf].pf_vlan;
8096         ivi->qos = adapter->vf_data[vf].pf_qos;
8097         ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
8098         return 0;
8099 }
8100
8101 static void igb_vmm_control(struct igb_adapter *adapter)
8102 {
8103         struct e1000_hw *hw = &adapter->hw;
8104         u32 reg;
8105
8106         switch (hw->mac.type) {
8107         case e1000_82575:
8108         case e1000_i210:
8109         case e1000_i211:
8110         case e1000_i354:
8111         default:
8112                 /* replication is not supported for 82575 */
8113                 return;
8114         case e1000_82576:
8115                 /* notify HW that the MAC is adding vlan tags */
8116                 reg = rd32(E1000_DTXCTL);
8117                 reg |= E1000_DTXCTL_VLAN_ADDED;
8118                 wr32(E1000_DTXCTL, reg);
8119                 /* Fall through */
8120         case e1000_82580:
8121                 /* enable replication vlan tag stripping */
8122                 reg = rd32(E1000_RPLOLR);
8123                 reg |= E1000_RPLOLR_STRVLAN;
8124                 wr32(E1000_RPLOLR, reg);
8125                 /* Fall through */
8126         case e1000_i350:
8127                 /* none of the above registers are supported by i350 */
8128                 break;
8129         }
8130
8131         if (adapter->vfs_allocated_count) {
8132                 igb_vmdq_set_loopback_pf(hw, true);
8133                 igb_vmdq_set_replication_pf(hw, true);
8134                 igb_vmdq_set_anti_spoofing_pf(hw, true,
8135                                               adapter->vfs_allocated_count);
8136         } else {
8137                 igb_vmdq_set_loopback_pf(hw, false);
8138                 igb_vmdq_set_replication_pf(hw, false);
8139         }
8140 }
8141
8142 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
8143 {
8144         struct e1000_hw *hw = &adapter->hw;
8145         u32 dmac_thr;
8146         u16 hwm;
8147
8148         if (hw->mac.type > e1000_82580) {
8149                 if (adapter->flags & IGB_FLAG_DMAC) {
8150                         u32 reg;
8151
8152                         /* force threshold to 0. */
8153                         wr32(E1000_DMCTXTH, 0);
8154
8155                         /* DMA Coalescing high water mark needs to be greater
8156                          * than the Rx threshold. Set hwm to PBA - max frame
8157                          * size in 16B units, capping it at PBA - 6KB.
8158                          */
8159                         hwm = 64 * (pba - 6);
8160                         reg = rd32(E1000_FCRTC);
8161                         reg &= ~E1000_FCRTC_RTH_COAL_MASK;
8162                         reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
8163                                 & E1000_FCRTC_RTH_COAL_MASK);
8164                         wr32(E1000_FCRTC, reg);
8165
8166                         /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
8167                          * frame size, capping it at PBA - 10KB.
8168                          */
8169                         dmac_thr = pba - 10;
8170                         reg = rd32(E1000_DMACR);
8171                         reg &= ~E1000_DMACR_DMACTHR_MASK;
8172                         reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
8173                                 & E1000_DMACR_DMACTHR_MASK);
8174
8175                         /* transition to L0x or L1 if available..*/
8176                         reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
8177
8178                         /* watchdog timer= +-1000 usec in 32usec intervals */
8179                         reg |= (1000 >> 5);
8180
8181                         /* Disable BMC-to-OS Watchdog Enable */
8182                         if (hw->mac.type != e1000_i354)
8183                                 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
8184
8185                         wr32(E1000_DMACR, reg);
8186
8187                         /* no lower threshold to disable
8188                          * coalescing(smart fifb)-UTRESH=0
8189                          */
8190                         wr32(E1000_DMCRTRH, 0);
8191
8192                         reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
8193
8194                         wr32(E1000_DMCTLX, reg);
8195
8196                         /* free space in tx packet buffer to wake from
8197                          * DMA coal
8198                          */
8199                         wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8200                              (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8201
8202                         /* make low power state decision controlled
8203                          * by DMA coal
8204                          */
8205                         reg = rd32(E1000_PCIEMISC);
8206                         reg &= ~E1000_PCIEMISC_LX_DECISION;
8207                         wr32(E1000_PCIEMISC, reg);
8208                 } /* endif adapter->dmac is not disabled */
8209         } else if (hw->mac.type == e1000_82580) {
8210                 u32 reg = rd32(E1000_PCIEMISC);
8211
8212                 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8213                 wr32(E1000_DMACR, 0);
8214         }
8215 }
8216
8217 /**
8218  *  igb_read_i2c_byte - Reads 8 bit word over I2C
8219  *  @hw: pointer to hardware structure
8220  *  @byte_offset: byte offset to read
8221  *  @dev_addr: device address
8222  *  @data: value read
8223  *
8224  *  Performs byte read operation over I2C interface at
8225  *  a specified device address.
8226  **/
8227 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8228                       u8 dev_addr, u8 *data)
8229 {
8230         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8231         struct i2c_client *this_client = adapter->i2c_client;
8232         s32 status;
8233         u16 swfw_mask = 0;
8234
8235         if (!this_client)
8236                 return E1000_ERR_I2C;
8237
8238         swfw_mask = E1000_SWFW_PHY0_SM;
8239
8240         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8241                 return E1000_ERR_SWFW_SYNC;
8242
8243         status = i2c_smbus_read_byte_data(this_client, byte_offset);
8244         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8245
8246         if (status < 0)
8247                 return E1000_ERR_I2C;
8248         else {
8249                 *data = status;
8250                 return 0;
8251         }
8252 }
8253
8254 /**
8255  *  igb_write_i2c_byte - Writes 8 bit word over I2C
8256  *  @hw: pointer to hardware structure
8257  *  @byte_offset: byte offset to write
8258  *  @dev_addr: device address
8259  *  @data: value to write
8260  *
8261  *  Performs byte write operation over I2C interface at
8262  *  a specified device address.
8263  **/
8264 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8265                        u8 dev_addr, u8 data)
8266 {
8267         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8268         struct i2c_client *this_client = adapter->i2c_client;
8269         s32 status;
8270         u16 swfw_mask = E1000_SWFW_PHY0_SM;
8271
8272         if (!this_client)
8273                 return E1000_ERR_I2C;
8274
8275         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8276                 return E1000_ERR_SWFW_SYNC;
8277         status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8278         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8279
8280         if (status)
8281                 return E1000_ERR_I2C;
8282         else
8283                 return 0;
8284
8285 }
8286
8287 int igb_reinit_queues(struct igb_adapter *adapter)
8288 {
8289         struct net_device *netdev = adapter->netdev;
8290         struct pci_dev *pdev = adapter->pdev;
8291         int err = 0;
8292
8293         if (netif_running(netdev))
8294                 igb_close(netdev);
8295
8296         igb_reset_interrupt_capability(adapter);
8297
8298         if (igb_init_interrupt_scheme(adapter, true)) {
8299                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8300                 return -ENOMEM;
8301         }
8302
8303         if (netif_running(netdev))
8304                 err = igb_open(netdev);
8305
8306         return err;
8307 }
8308 /* igb_main.c */