Merge tag 'irq-core-2022-01-13' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / drivers / net / ethernet / intel / iavf / iavf_main.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4 #include "iavf.h"
5 #include "iavf_prototype.h"
6 #include "iavf_client.h"
7 /* All iavf tracepoints are defined by the include below, which must
8  * be included exactly once across the whole kernel with
9  * CREATE_TRACE_POINTS defined
10  */
11 #define CREATE_TRACE_POINTS
12 #include "iavf_trace.h"
13
14 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
15 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
16 static int iavf_close(struct net_device *netdev);
17 static void iavf_init_get_resources(struct iavf_adapter *adapter);
18 static int iavf_check_reset_complete(struct iavf_hw *hw);
19
20 char iavf_driver_name[] = "iavf";
21 static const char iavf_driver_string[] =
22         "Intel(R) Ethernet Adaptive Virtual Function Network Driver";
23
24 static const char iavf_copyright[] =
25         "Copyright (c) 2013 - 2018 Intel Corporation.";
26
27 /* iavf_pci_tbl - PCI Device ID Table
28  *
29  * Wildcard entries (PCI_ANY_ID) should come last
30  * Last entry must be all 0s
31  *
32  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
33  *   Class, Class Mask, private data (not used) }
34  */
35 static const struct pci_device_id iavf_pci_tbl[] = {
36         {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
37         {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
38         {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
39         {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
40         /* required last entry */
41         {0, }
42 };
43
44 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
45
46 MODULE_ALIAS("i40evf");
47 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
49 MODULE_LICENSE("GPL v2");
50
51 static const struct net_device_ops iavf_netdev_ops;
52 struct workqueue_struct *iavf_wq;
53
54 /**
55  * iavf_pdev_to_adapter - go from pci_dev to adapter
56  * @pdev: pci_dev pointer
57  */
58 static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev)
59 {
60         return netdev_priv(pci_get_drvdata(pdev));
61 }
62
63 /**
64  * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
65  * @hw:   pointer to the HW structure
66  * @mem:  ptr to mem struct to fill out
67  * @size: size of memory requested
68  * @alignment: what to align the allocation to
69  **/
70 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
71                                          struct iavf_dma_mem *mem,
72                                          u64 size, u32 alignment)
73 {
74         struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
75
76         if (!mem)
77                 return IAVF_ERR_PARAM;
78
79         mem->size = ALIGN(size, alignment);
80         mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
81                                      (dma_addr_t *)&mem->pa, GFP_KERNEL);
82         if (mem->va)
83                 return 0;
84         else
85                 return IAVF_ERR_NO_MEMORY;
86 }
87
88 /**
89  * iavf_free_dma_mem_d - OS specific memory free for shared code
90  * @hw:   pointer to the HW structure
91  * @mem:  ptr to mem struct to free
92  **/
93 enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw,
94                                      struct iavf_dma_mem *mem)
95 {
96         struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
97
98         if (!mem || !mem->va)
99                 return IAVF_ERR_PARAM;
100         dma_free_coherent(&adapter->pdev->dev, mem->size,
101                           mem->va, (dma_addr_t)mem->pa);
102         return 0;
103 }
104
105 /**
106  * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code
107  * @hw:   pointer to the HW structure
108  * @mem:  ptr to mem struct to fill out
109  * @size: size of memory requested
110  **/
111 enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw,
112                                           struct iavf_virt_mem *mem, u32 size)
113 {
114         if (!mem)
115                 return IAVF_ERR_PARAM;
116
117         mem->size = size;
118         mem->va = kzalloc(size, GFP_KERNEL);
119
120         if (mem->va)
121                 return 0;
122         else
123                 return IAVF_ERR_NO_MEMORY;
124 }
125
126 /**
127  * iavf_free_virt_mem_d - OS specific memory free for shared code
128  * @hw:   pointer to the HW structure
129  * @mem:  ptr to mem struct to free
130  **/
131 enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw,
132                                       struct iavf_virt_mem *mem)
133 {
134         if (!mem)
135                 return IAVF_ERR_PARAM;
136
137         /* it's ok to kfree a NULL pointer */
138         kfree(mem->va);
139
140         return 0;
141 }
142
143 /**
144  * iavf_lock_timeout - try to lock mutex but give up after timeout
145  * @lock: mutex that should be locked
146  * @msecs: timeout in msecs
147  *
148  * Returns 0 on success, negative on failure
149  **/
150 int iavf_lock_timeout(struct mutex *lock, unsigned int msecs)
151 {
152         unsigned int wait, delay = 10;
153
154         for (wait = 0; wait < msecs; wait += delay) {
155                 if (mutex_trylock(lock))
156                         return 0;
157
158                 msleep(delay);
159         }
160
161         return -1;
162 }
163
164 /**
165  * iavf_schedule_reset - Set the flags and schedule a reset event
166  * @adapter: board private structure
167  **/
168 void iavf_schedule_reset(struct iavf_adapter *adapter)
169 {
170         if (!(adapter->flags &
171               (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
172                 adapter->flags |= IAVF_FLAG_RESET_NEEDED;
173                 queue_work(iavf_wq, &adapter->reset_task);
174         }
175 }
176
177 /**
178  * iavf_schedule_request_stats - Set the flags and schedule statistics request
179  * @adapter: board private structure
180  *
181  * Sets IAVF_FLAG_AQ_REQUEST_STATS flag so iavf_watchdog_task() will explicitly
182  * request and refresh ethtool stats
183  **/
184 void iavf_schedule_request_stats(struct iavf_adapter *adapter)
185 {
186         adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_STATS;
187         mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
188 }
189
190 /**
191  * iavf_tx_timeout - Respond to a Tx Hang
192  * @netdev: network interface device structure
193  * @txqueue: queue number that is timing out
194  **/
195 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
196 {
197         struct iavf_adapter *adapter = netdev_priv(netdev);
198
199         adapter->tx_timeout_count++;
200         iavf_schedule_reset(adapter);
201 }
202
203 /**
204  * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
205  * @adapter: board private structure
206  **/
207 static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
208 {
209         struct iavf_hw *hw = &adapter->hw;
210
211         if (!adapter->msix_entries)
212                 return;
213
214         wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
215
216         iavf_flush(hw);
217
218         synchronize_irq(adapter->msix_entries[0].vector);
219 }
220
221 /**
222  * iavf_misc_irq_enable - Enable default interrupt generation settings
223  * @adapter: board private structure
224  **/
225 static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
226 {
227         struct iavf_hw *hw = &adapter->hw;
228
229         wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
230                                        IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
231         wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
232
233         iavf_flush(hw);
234 }
235
236 /**
237  * iavf_irq_disable - Mask off interrupt generation on the NIC
238  * @adapter: board private structure
239  **/
240 static void iavf_irq_disable(struct iavf_adapter *adapter)
241 {
242         int i;
243         struct iavf_hw *hw = &adapter->hw;
244
245         if (!adapter->msix_entries)
246                 return;
247
248         for (i = 1; i < adapter->num_msix_vectors; i++) {
249                 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
250                 synchronize_irq(adapter->msix_entries[i].vector);
251         }
252         iavf_flush(hw);
253 }
254
255 /**
256  * iavf_irq_enable_queues - Enable interrupt for specified queues
257  * @adapter: board private structure
258  * @mask: bitmap of queues to enable
259  **/
260 void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask)
261 {
262         struct iavf_hw *hw = &adapter->hw;
263         int i;
264
265         for (i = 1; i < adapter->num_msix_vectors; i++) {
266                 if (mask & BIT(i - 1)) {
267                         wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
268                              IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
269                              IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
270                 }
271         }
272 }
273
274 /**
275  * iavf_irq_enable - Enable default interrupt generation settings
276  * @adapter: board private structure
277  * @flush: boolean value whether to run rd32()
278  **/
279 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
280 {
281         struct iavf_hw *hw = &adapter->hw;
282
283         iavf_misc_irq_enable(adapter);
284         iavf_irq_enable_queues(adapter, ~0);
285
286         if (flush)
287                 iavf_flush(hw);
288 }
289
290 /**
291  * iavf_msix_aq - Interrupt handler for vector 0
292  * @irq: interrupt number
293  * @data: pointer to netdev
294  **/
295 static irqreturn_t iavf_msix_aq(int irq, void *data)
296 {
297         struct net_device *netdev = data;
298         struct iavf_adapter *adapter = netdev_priv(netdev);
299         struct iavf_hw *hw = &adapter->hw;
300
301         /* handle non-queue interrupts, these reads clear the registers */
302         rd32(hw, IAVF_VFINT_ICR01);
303         rd32(hw, IAVF_VFINT_ICR0_ENA1);
304
305         /* schedule work on the private workqueue */
306         queue_work(iavf_wq, &adapter->adminq_task);
307
308         return IRQ_HANDLED;
309 }
310
311 /**
312  * iavf_msix_clean_rings - MSIX mode Interrupt Handler
313  * @irq: interrupt number
314  * @data: pointer to a q_vector
315  **/
316 static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
317 {
318         struct iavf_q_vector *q_vector = data;
319
320         if (!q_vector->tx.ring && !q_vector->rx.ring)
321                 return IRQ_HANDLED;
322
323         napi_schedule_irqoff(&q_vector->napi);
324
325         return IRQ_HANDLED;
326 }
327
328 /**
329  * iavf_map_vector_to_rxq - associate irqs with rx queues
330  * @adapter: board private structure
331  * @v_idx: interrupt number
332  * @r_idx: queue number
333  **/
334 static void
335 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
336 {
337         struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
338         struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
339         struct iavf_hw *hw = &adapter->hw;
340
341         rx_ring->q_vector = q_vector;
342         rx_ring->next = q_vector->rx.ring;
343         rx_ring->vsi = &adapter->vsi;
344         q_vector->rx.ring = rx_ring;
345         q_vector->rx.count++;
346         q_vector->rx.next_update = jiffies + 1;
347         q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
348         q_vector->ring_mask |= BIT(r_idx);
349         wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
350              q_vector->rx.current_itr >> 1);
351         q_vector->rx.current_itr = q_vector->rx.target_itr;
352 }
353
354 /**
355  * iavf_map_vector_to_txq - associate irqs with tx queues
356  * @adapter: board private structure
357  * @v_idx: interrupt number
358  * @t_idx: queue number
359  **/
360 static void
361 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
362 {
363         struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
364         struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
365         struct iavf_hw *hw = &adapter->hw;
366
367         tx_ring->q_vector = q_vector;
368         tx_ring->next = q_vector->tx.ring;
369         tx_ring->vsi = &adapter->vsi;
370         q_vector->tx.ring = tx_ring;
371         q_vector->tx.count++;
372         q_vector->tx.next_update = jiffies + 1;
373         q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
374         q_vector->num_ringpairs++;
375         wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
376              q_vector->tx.target_itr >> 1);
377         q_vector->tx.current_itr = q_vector->tx.target_itr;
378 }
379
380 /**
381  * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
382  * @adapter: board private structure to initialize
383  *
384  * This function maps descriptor rings to the queue-specific vectors
385  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
386  * one vector per ring/queue, but on a constrained vector budget, we
387  * group the rings as "efficiently" as possible.  You would add new
388  * mapping configurations in here.
389  **/
390 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
391 {
392         int rings_remaining = adapter->num_active_queues;
393         int ridx = 0, vidx = 0;
394         int q_vectors;
395
396         q_vectors = adapter->num_msix_vectors - NONQ_VECS;
397
398         for (; ridx < rings_remaining; ridx++) {
399                 iavf_map_vector_to_rxq(adapter, vidx, ridx);
400                 iavf_map_vector_to_txq(adapter, vidx, ridx);
401
402                 /* In the case where we have more queues than vectors, continue
403                  * round-robin on vectors until all queues are mapped.
404                  */
405                 if (++vidx >= q_vectors)
406                         vidx = 0;
407         }
408
409         adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
410 }
411
412 /**
413  * iavf_irq_affinity_notify - Callback for affinity changes
414  * @notify: context as to what irq was changed
415  * @mask: the new affinity mask
416  *
417  * This is a callback function used by the irq_set_affinity_notifier function
418  * so that we may register to receive changes to the irq affinity masks.
419  **/
420 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
421                                      const cpumask_t *mask)
422 {
423         struct iavf_q_vector *q_vector =
424                 container_of(notify, struct iavf_q_vector, affinity_notify);
425
426         cpumask_copy(&q_vector->affinity_mask, mask);
427 }
428
429 /**
430  * iavf_irq_affinity_release - Callback for affinity notifier release
431  * @ref: internal core kernel usage
432  *
433  * This is a callback function used by the irq_set_affinity_notifier function
434  * to inform the current notification subscriber that they will no longer
435  * receive notifications.
436  **/
437 static void iavf_irq_affinity_release(struct kref *ref) {}
438
439 /**
440  * iavf_request_traffic_irqs - Initialize MSI-X interrupts
441  * @adapter: board private structure
442  * @basename: device basename
443  *
444  * Allocates MSI-X vectors for tx and rx handling, and requests
445  * interrupts from the kernel.
446  **/
447 static int
448 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
449 {
450         unsigned int vector, q_vectors;
451         unsigned int rx_int_idx = 0, tx_int_idx = 0;
452         int irq_num, err;
453         int cpu;
454
455         iavf_irq_disable(adapter);
456         /* Decrement for Other and TCP Timer vectors */
457         q_vectors = adapter->num_msix_vectors - NONQ_VECS;
458
459         for (vector = 0; vector < q_vectors; vector++) {
460                 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
461
462                 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
463
464                 if (q_vector->tx.ring && q_vector->rx.ring) {
465                         snprintf(q_vector->name, sizeof(q_vector->name),
466                                  "iavf-%s-TxRx-%u", basename, rx_int_idx++);
467                         tx_int_idx++;
468                 } else if (q_vector->rx.ring) {
469                         snprintf(q_vector->name, sizeof(q_vector->name),
470                                  "iavf-%s-rx-%u", basename, rx_int_idx++);
471                 } else if (q_vector->tx.ring) {
472                         snprintf(q_vector->name, sizeof(q_vector->name),
473                                  "iavf-%s-tx-%u", basename, tx_int_idx++);
474                 } else {
475                         /* skip this unused q_vector */
476                         continue;
477                 }
478                 err = request_irq(irq_num,
479                                   iavf_msix_clean_rings,
480                                   0,
481                                   q_vector->name,
482                                   q_vector);
483                 if (err) {
484                         dev_info(&adapter->pdev->dev,
485                                  "Request_irq failed, error: %d\n", err);
486                         goto free_queue_irqs;
487                 }
488                 /* register for affinity change notifications */
489                 q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
490                 q_vector->affinity_notify.release =
491                                                    iavf_irq_affinity_release;
492                 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
493                 /* Spread the IRQ affinity hints across online CPUs. Note that
494                  * get_cpu_mask returns a mask with a permanent lifetime so
495                  * it's safe to use as a hint for irq_update_affinity_hint.
496                  */
497                 cpu = cpumask_local_spread(q_vector->v_idx, -1);
498                 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu));
499         }
500
501         return 0;
502
503 free_queue_irqs:
504         while (vector) {
505                 vector--;
506                 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
507                 irq_set_affinity_notifier(irq_num, NULL);
508                 irq_update_affinity_hint(irq_num, NULL);
509                 free_irq(irq_num, &adapter->q_vectors[vector]);
510         }
511         return err;
512 }
513
514 /**
515  * iavf_request_misc_irq - Initialize MSI-X interrupts
516  * @adapter: board private structure
517  *
518  * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
519  * vector is only for the admin queue, and stays active even when the netdev
520  * is closed.
521  **/
522 static int iavf_request_misc_irq(struct iavf_adapter *adapter)
523 {
524         struct net_device *netdev = adapter->netdev;
525         int err;
526
527         snprintf(adapter->misc_vector_name,
528                  sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
529                  dev_name(&adapter->pdev->dev));
530         err = request_irq(adapter->msix_entries[0].vector,
531                           &iavf_msix_aq, 0,
532                           adapter->misc_vector_name, netdev);
533         if (err) {
534                 dev_err(&adapter->pdev->dev,
535                         "request_irq for %s failed: %d\n",
536                         adapter->misc_vector_name, err);
537                 free_irq(adapter->msix_entries[0].vector, netdev);
538         }
539         return err;
540 }
541
542 /**
543  * iavf_free_traffic_irqs - Free MSI-X interrupts
544  * @adapter: board private structure
545  *
546  * Frees all MSI-X vectors other than 0.
547  **/
548 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
549 {
550         int vector, irq_num, q_vectors;
551
552         if (!adapter->msix_entries)
553                 return;
554
555         q_vectors = adapter->num_msix_vectors - NONQ_VECS;
556
557         for (vector = 0; vector < q_vectors; vector++) {
558                 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
559                 irq_set_affinity_notifier(irq_num, NULL);
560                 irq_update_affinity_hint(irq_num, NULL);
561                 free_irq(irq_num, &adapter->q_vectors[vector]);
562         }
563 }
564
565 /**
566  * iavf_free_misc_irq - Free MSI-X miscellaneous vector
567  * @adapter: board private structure
568  *
569  * Frees MSI-X vector 0.
570  **/
571 static void iavf_free_misc_irq(struct iavf_adapter *adapter)
572 {
573         struct net_device *netdev = adapter->netdev;
574
575         if (!adapter->msix_entries)
576                 return;
577
578         free_irq(adapter->msix_entries[0].vector, netdev);
579 }
580
581 /**
582  * iavf_configure_tx - Configure Transmit Unit after Reset
583  * @adapter: board private structure
584  *
585  * Configure the Tx unit of the MAC after a reset.
586  **/
587 static void iavf_configure_tx(struct iavf_adapter *adapter)
588 {
589         struct iavf_hw *hw = &adapter->hw;
590         int i;
591
592         for (i = 0; i < adapter->num_active_queues; i++)
593                 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
594 }
595
596 /**
597  * iavf_configure_rx - Configure Receive Unit after Reset
598  * @adapter: board private structure
599  *
600  * Configure the Rx unit of the MAC after a reset.
601  **/
602 static void iavf_configure_rx(struct iavf_adapter *adapter)
603 {
604         unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
605         struct iavf_hw *hw = &adapter->hw;
606         int i;
607
608         /* Legacy Rx will always default to a 2048 buffer size. */
609 #if (PAGE_SIZE < 8192)
610         if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
611                 struct net_device *netdev = adapter->netdev;
612
613                 /* For jumbo frames on systems with 4K pages we have to use
614                  * an order 1 page, so we might as well increase the size
615                  * of our Rx buffer to make better use of the available space
616                  */
617                 rx_buf_len = IAVF_RXBUFFER_3072;
618
619                 /* We use a 1536 buffer size for configurations with
620                  * standard Ethernet mtu.  On x86 this gives us enough room
621                  * for shared info and 192 bytes of padding.
622                  */
623                 if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
624                     (netdev->mtu <= ETH_DATA_LEN))
625                         rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
626         }
627 #endif
628
629         for (i = 0; i < adapter->num_active_queues; i++) {
630                 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
631                 adapter->rx_rings[i].rx_buf_len = rx_buf_len;
632
633                 if (adapter->flags & IAVF_FLAG_LEGACY_RX)
634                         clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
635                 else
636                         set_ring_build_skb_enabled(&adapter->rx_rings[i]);
637         }
638 }
639
640 /**
641  * iavf_find_vlan - Search filter list for specific vlan filter
642  * @adapter: board private structure
643  * @vlan: vlan tag
644  *
645  * Returns ptr to the filter object or NULL. Must be called while holding the
646  * mac_vlan_list_lock.
647  **/
648 static struct
649 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter,
650                                  struct iavf_vlan vlan)
651 {
652         struct iavf_vlan_filter *f;
653
654         list_for_each_entry(f, &adapter->vlan_filter_list, list) {
655                 if (f->vlan.vid == vlan.vid &&
656                     f->vlan.tpid == vlan.tpid)
657                         return f;
658         }
659
660         return NULL;
661 }
662
663 /**
664  * iavf_add_vlan - Add a vlan filter to the list
665  * @adapter: board private structure
666  * @vlan: VLAN tag
667  *
668  * Returns ptr to the filter object or NULL when no memory available.
669  **/
670 static struct
671 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter,
672                                 struct iavf_vlan vlan)
673 {
674         struct iavf_vlan_filter *f = NULL;
675
676         spin_lock_bh(&adapter->mac_vlan_list_lock);
677
678         f = iavf_find_vlan(adapter, vlan);
679         if (!f) {
680                 f = kzalloc(sizeof(*f), GFP_ATOMIC);
681                 if (!f)
682                         goto clearout;
683
684                 f->vlan = vlan;
685
686                 list_add_tail(&f->list, &adapter->vlan_filter_list);
687                 f->add = true;
688                 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
689         }
690
691 clearout:
692         spin_unlock_bh(&adapter->mac_vlan_list_lock);
693         return f;
694 }
695
696 /**
697  * iavf_del_vlan - Remove a vlan filter from the list
698  * @adapter: board private structure
699  * @vlan: VLAN tag
700  **/
701 static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan)
702 {
703         struct iavf_vlan_filter *f;
704
705         spin_lock_bh(&adapter->mac_vlan_list_lock);
706
707         f = iavf_find_vlan(adapter, vlan);
708         if (f) {
709                 f->remove = true;
710                 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
711         }
712
713         spin_unlock_bh(&adapter->mac_vlan_list_lock);
714 }
715
716 /**
717  * iavf_restore_filters
718  * @adapter: board private structure
719  *
720  * Restore existing non MAC filters when VF netdev comes back up
721  **/
722 static void iavf_restore_filters(struct iavf_adapter *adapter)
723 {
724         u16 vid;
725
726         /* re-add all VLAN filters */
727         for_each_set_bit(vid, adapter->vsi.active_cvlans, VLAN_N_VID)
728                 iavf_add_vlan(adapter, IAVF_VLAN(vid, ETH_P_8021Q));
729
730         for_each_set_bit(vid, adapter->vsi.active_svlans, VLAN_N_VID)
731                 iavf_add_vlan(adapter, IAVF_VLAN(vid, ETH_P_8021AD));
732 }
733
734 /**
735  * iavf_get_num_vlans_added - get number of VLANs added
736  * @adapter: board private structure
737  */
738 static u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter)
739 {
740         return bitmap_weight(adapter->vsi.active_cvlans, VLAN_N_VID) +
741                 bitmap_weight(adapter->vsi.active_svlans, VLAN_N_VID);
742 }
743
744 /**
745  * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF
746  * @adapter: board private structure
747  *
748  * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN,
749  * do not impose a limit as that maintains current behavior and for
750  * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF.
751  **/
752 static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter)
753 {
754         /* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has
755          * never been a limit on the VF driver side
756          */
757         if (VLAN_ALLOWED(adapter))
758                 return VLAN_N_VID;
759         else if (VLAN_V2_ALLOWED(adapter))
760                 return adapter->vlan_v2_caps.filtering.max_filters;
761
762         return 0;
763 }
764
765 /**
766  * iavf_max_vlans_added - check if maximum VLANs allowed already exist
767  * @adapter: board private structure
768  **/
769 static bool iavf_max_vlans_added(struct iavf_adapter *adapter)
770 {
771         if (iavf_get_num_vlans_added(adapter) <
772             iavf_get_max_vlans_allowed(adapter))
773                 return false;
774
775         return true;
776 }
777
778 /**
779  * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
780  * @netdev: network device struct
781  * @proto: unused protocol data
782  * @vid: VLAN tag
783  **/
784 static int iavf_vlan_rx_add_vid(struct net_device *netdev,
785                                 __always_unused __be16 proto, u16 vid)
786 {
787         struct iavf_adapter *adapter = netdev_priv(netdev);
788
789         if (!VLAN_FILTERING_ALLOWED(adapter))
790                 return -EIO;
791
792         if (iavf_max_vlans_added(adapter)) {
793                 netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n",
794                            iavf_get_max_vlans_allowed(adapter));
795                 return -EIO;
796         }
797
798         if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))))
799                 return -ENOMEM;
800
801         if (proto == cpu_to_be16(ETH_P_8021Q))
802                 set_bit(vid, adapter->vsi.active_cvlans);
803         else
804                 set_bit(vid, adapter->vsi.active_svlans);
805
806         return 0;
807 }
808
809 /**
810  * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
811  * @netdev: network device struct
812  * @proto: unused protocol data
813  * @vid: VLAN tag
814  **/
815 static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
816                                  __always_unused __be16 proto, u16 vid)
817 {
818         struct iavf_adapter *adapter = netdev_priv(netdev);
819
820         iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)));
821         if (proto == cpu_to_be16(ETH_P_8021Q))
822                 clear_bit(vid, adapter->vsi.active_cvlans);
823         else
824                 clear_bit(vid, adapter->vsi.active_svlans);
825
826         return 0;
827 }
828
829 /**
830  * iavf_find_filter - Search filter list for specific mac filter
831  * @adapter: board private structure
832  * @macaddr: the MAC address
833  *
834  * Returns ptr to the filter object or NULL. Must be called while holding the
835  * mac_vlan_list_lock.
836  **/
837 static struct
838 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
839                                   const u8 *macaddr)
840 {
841         struct iavf_mac_filter *f;
842
843         if (!macaddr)
844                 return NULL;
845
846         list_for_each_entry(f, &adapter->mac_filter_list, list) {
847                 if (ether_addr_equal(macaddr, f->macaddr))
848                         return f;
849         }
850         return NULL;
851 }
852
853 /**
854  * iavf_add_filter - Add a mac filter to the filter list
855  * @adapter: board private structure
856  * @macaddr: the MAC address
857  *
858  * Returns ptr to the filter object or NULL when no memory available.
859  **/
860 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
861                                         const u8 *macaddr)
862 {
863         struct iavf_mac_filter *f;
864
865         if (!macaddr)
866                 return NULL;
867
868         f = iavf_find_filter(adapter, macaddr);
869         if (!f) {
870                 f = kzalloc(sizeof(*f), GFP_ATOMIC);
871                 if (!f)
872                         return f;
873
874                 ether_addr_copy(f->macaddr, macaddr);
875
876                 list_add_tail(&f->list, &adapter->mac_filter_list);
877                 f->add = true;
878                 f->is_new_mac = true;
879                 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
880         } else {
881                 f->remove = false;
882         }
883
884         return f;
885 }
886
887 /**
888  * iavf_set_mac - NDO callback to set port mac address
889  * @netdev: network interface device structure
890  * @p: pointer to an address structure
891  *
892  * Returns 0 on success, negative on failure
893  **/
894 static int iavf_set_mac(struct net_device *netdev, void *p)
895 {
896         struct iavf_adapter *adapter = netdev_priv(netdev);
897         struct iavf_hw *hw = &adapter->hw;
898         struct iavf_mac_filter *f;
899         struct sockaddr *addr = p;
900
901         if (!is_valid_ether_addr(addr->sa_data))
902                 return -EADDRNOTAVAIL;
903
904         if (ether_addr_equal(netdev->dev_addr, addr->sa_data))
905                 return 0;
906
907         spin_lock_bh(&adapter->mac_vlan_list_lock);
908
909         f = iavf_find_filter(adapter, hw->mac.addr);
910         if (f) {
911                 f->remove = true;
912                 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
913         }
914
915         f = iavf_add_filter(adapter, addr->sa_data);
916
917         spin_unlock_bh(&adapter->mac_vlan_list_lock);
918
919         if (f) {
920                 ether_addr_copy(hw->mac.addr, addr->sa_data);
921         }
922
923         return (f == NULL) ? -ENOMEM : 0;
924 }
925
926 /**
927  * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
928  * @netdev: the netdevice
929  * @addr: address to add
930  *
931  * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
932  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
933  */
934 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
935 {
936         struct iavf_adapter *adapter = netdev_priv(netdev);
937
938         if (iavf_add_filter(adapter, addr))
939                 return 0;
940         else
941                 return -ENOMEM;
942 }
943
944 /**
945  * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
946  * @netdev: the netdevice
947  * @addr: address to add
948  *
949  * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
950  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
951  */
952 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
953 {
954         struct iavf_adapter *adapter = netdev_priv(netdev);
955         struct iavf_mac_filter *f;
956
957         /* Under some circumstances, we might receive a request to delete
958          * our own device address from our uc list. Because we store the
959          * device address in the VSI's MAC/VLAN filter list, we need to ignore
960          * such requests and not delete our device address from this list.
961          */
962         if (ether_addr_equal(addr, netdev->dev_addr))
963                 return 0;
964
965         f = iavf_find_filter(adapter, addr);
966         if (f) {
967                 f->remove = true;
968                 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
969         }
970         return 0;
971 }
972
973 /**
974  * iavf_set_rx_mode - NDO callback to set the netdev filters
975  * @netdev: network interface device structure
976  **/
977 static void iavf_set_rx_mode(struct net_device *netdev)
978 {
979         struct iavf_adapter *adapter = netdev_priv(netdev);
980
981         spin_lock_bh(&adapter->mac_vlan_list_lock);
982         __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
983         __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
984         spin_unlock_bh(&adapter->mac_vlan_list_lock);
985
986         if (netdev->flags & IFF_PROMISC &&
987             !(adapter->flags & IAVF_FLAG_PROMISC_ON))
988                 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC;
989         else if (!(netdev->flags & IFF_PROMISC) &&
990                  adapter->flags & IAVF_FLAG_PROMISC_ON)
991                 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC;
992
993         if (netdev->flags & IFF_ALLMULTI &&
994             !(adapter->flags & IAVF_FLAG_ALLMULTI_ON))
995                 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI;
996         else if (!(netdev->flags & IFF_ALLMULTI) &&
997                  adapter->flags & IAVF_FLAG_ALLMULTI_ON)
998                 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI;
999 }
1000
1001 /**
1002  * iavf_napi_enable_all - enable NAPI on all queue vectors
1003  * @adapter: board private structure
1004  **/
1005 static void iavf_napi_enable_all(struct iavf_adapter *adapter)
1006 {
1007         int q_idx;
1008         struct iavf_q_vector *q_vector;
1009         int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1010
1011         for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1012                 struct napi_struct *napi;
1013
1014                 q_vector = &adapter->q_vectors[q_idx];
1015                 napi = &q_vector->napi;
1016                 napi_enable(napi);
1017         }
1018 }
1019
1020 /**
1021  * iavf_napi_disable_all - disable NAPI on all queue vectors
1022  * @adapter: board private structure
1023  **/
1024 static void iavf_napi_disable_all(struct iavf_adapter *adapter)
1025 {
1026         int q_idx;
1027         struct iavf_q_vector *q_vector;
1028         int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1029
1030         for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1031                 q_vector = &adapter->q_vectors[q_idx];
1032                 napi_disable(&q_vector->napi);
1033         }
1034 }
1035
1036 /**
1037  * iavf_configure - set up transmit and receive data structures
1038  * @adapter: board private structure
1039  **/
1040 static void iavf_configure(struct iavf_adapter *adapter)
1041 {
1042         struct net_device *netdev = adapter->netdev;
1043         int i;
1044
1045         iavf_set_rx_mode(netdev);
1046
1047         iavf_configure_tx(adapter);
1048         iavf_configure_rx(adapter);
1049         adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
1050
1051         for (i = 0; i < adapter->num_active_queues; i++) {
1052                 struct iavf_ring *ring = &adapter->rx_rings[i];
1053
1054                 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
1055         }
1056 }
1057
1058 /**
1059  * iavf_up_complete - Finish the last steps of bringing up a connection
1060  * @adapter: board private structure
1061  *
1062  * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
1063  **/
1064 static void iavf_up_complete(struct iavf_adapter *adapter)
1065 {
1066         iavf_change_state(adapter, __IAVF_RUNNING);
1067         clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1068
1069         iavf_napi_enable_all(adapter);
1070
1071         adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES;
1072         if (CLIENT_ENABLED(adapter))
1073                 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN;
1074         mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1075 }
1076
1077 /**
1078  * iavf_down - Shutdown the connection processing
1079  * @adapter: board private structure
1080  *
1081  * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
1082  **/
1083 void iavf_down(struct iavf_adapter *adapter)
1084 {
1085         struct net_device *netdev = adapter->netdev;
1086         struct iavf_vlan_filter *vlf;
1087         struct iavf_cloud_filter *cf;
1088         struct iavf_fdir_fltr *fdir;
1089         struct iavf_mac_filter *f;
1090         struct iavf_adv_rss *rss;
1091
1092         if (adapter->state <= __IAVF_DOWN_PENDING)
1093                 return;
1094
1095         netif_carrier_off(netdev);
1096         netif_tx_disable(netdev);
1097         adapter->link_up = false;
1098         iavf_napi_disable_all(adapter);
1099         iavf_irq_disable(adapter);
1100
1101         spin_lock_bh(&adapter->mac_vlan_list_lock);
1102
1103         /* clear the sync flag on all filters */
1104         __dev_uc_unsync(adapter->netdev, NULL);
1105         __dev_mc_unsync(adapter->netdev, NULL);
1106
1107         /* remove all MAC filters */
1108         list_for_each_entry(f, &adapter->mac_filter_list, list) {
1109                 f->remove = true;
1110         }
1111
1112         /* remove all VLAN filters */
1113         list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
1114                 vlf->remove = true;
1115         }
1116
1117         spin_unlock_bh(&adapter->mac_vlan_list_lock);
1118
1119         /* remove all cloud filters */
1120         spin_lock_bh(&adapter->cloud_filter_list_lock);
1121         list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
1122                 cf->del = true;
1123         }
1124         spin_unlock_bh(&adapter->cloud_filter_list_lock);
1125
1126         /* remove all Flow Director filters */
1127         spin_lock_bh(&adapter->fdir_fltr_lock);
1128         list_for_each_entry(fdir, &adapter->fdir_list_head, list) {
1129                 fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST;
1130         }
1131         spin_unlock_bh(&adapter->fdir_fltr_lock);
1132
1133         /* remove all advance RSS configuration */
1134         spin_lock_bh(&adapter->adv_rss_lock);
1135         list_for_each_entry(rss, &adapter->adv_rss_list_head, list)
1136                 rss->state = IAVF_ADV_RSS_DEL_REQUEST;
1137         spin_unlock_bh(&adapter->adv_rss_lock);
1138
1139         if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) &&
1140             adapter->state != __IAVF_RESETTING) {
1141                 /* cancel any current operation */
1142                 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1143                 /* Schedule operations to close down the HW. Don't wait
1144                  * here for this to complete. The watchdog is still running
1145                  * and it will take care of this.
1146                  */
1147                 adapter->aq_required = IAVF_FLAG_AQ_DEL_MAC_FILTER;
1148                 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1149                 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1150                 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
1151                 adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG;
1152                 adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES;
1153         }
1154
1155         mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1156 }
1157
1158 /**
1159  * iavf_acquire_msix_vectors - Setup the MSIX capability
1160  * @adapter: board private structure
1161  * @vectors: number of vectors to request
1162  *
1163  * Work with the OS to set up the MSIX vectors needed.
1164  *
1165  * Returns 0 on success, negative on failure
1166  **/
1167 static int
1168 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1169 {
1170         int err, vector_threshold;
1171
1172         /* We'll want at least 3 (vector_threshold):
1173          * 0) Other (Admin Queue and link, mostly)
1174          * 1) TxQ[0] Cleanup
1175          * 2) RxQ[0] Cleanup
1176          */
1177         vector_threshold = MIN_MSIX_COUNT;
1178
1179         /* The more we get, the more we will assign to Tx/Rx Cleanup
1180          * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1181          * Right now, we simply care about how many we'll get; we'll
1182          * set them up later while requesting irq's.
1183          */
1184         err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1185                                     vector_threshold, vectors);
1186         if (err < 0) {
1187                 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1188                 kfree(adapter->msix_entries);
1189                 adapter->msix_entries = NULL;
1190                 return err;
1191         }
1192
1193         /* Adjust for only the vectors we'll use, which is minimum
1194          * of max_msix_q_vectors + NONQ_VECS, or the number of
1195          * vectors we were allocated.
1196          */
1197         adapter->num_msix_vectors = err;
1198         return 0;
1199 }
1200
1201 /**
1202  * iavf_free_queues - Free memory for all rings
1203  * @adapter: board private structure to initialize
1204  *
1205  * Free all of the memory associated with queue pairs.
1206  **/
1207 static void iavf_free_queues(struct iavf_adapter *adapter)
1208 {
1209         if (!adapter->vsi_res)
1210                 return;
1211         adapter->num_active_queues = 0;
1212         kfree(adapter->tx_rings);
1213         adapter->tx_rings = NULL;
1214         kfree(adapter->rx_rings);
1215         adapter->rx_rings = NULL;
1216 }
1217
1218 /**
1219  * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload
1220  * @adapter: board private structure
1221  *
1222  * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or
1223  * stripped in certain descriptor fields. Instead of checking the offload
1224  * capability bits in the hot path, cache the location the ring specific
1225  * flags.
1226  */
1227 void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter)
1228 {
1229         int i;
1230
1231         for (i = 0; i < adapter->num_active_queues; i++) {
1232                 struct iavf_ring *tx_ring = &adapter->tx_rings[i];
1233                 struct iavf_ring *rx_ring = &adapter->rx_rings[i];
1234
1235                 /* prevent multiple L2TAG bits being set after VFR */
1236                 tx_ring->flags &=
1237                         ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1238                           IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2);
1239                 rx_ring->flags &=
1240                         ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1241                           IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2);
1242
1243                 if (VLAN_ALLOWED(adapter)) {
1244                         tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1245                         rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1246                 } else if (VLAN_V2_ALLOWED(adapter)) {
1247                         struct virtchnl_vlan_supported_caps *stripping_support;
1248                         struct virtchnl_vlan_supported_caps *insertion_support;
1249
1250                         stripping_support =
1251                                 &adapter->vlan_v2_caps.offloads.stripping_support;
1252                         insertion_support =
1253                                 &adapter->vlan_v2_caps.offloads.insertion_support;
1254
1255                         if (stripping_support->outer) {
1256                                 if (stripping_support->outer &
1257                                     VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1258                                         rx_ring->flags |=
1259                                                 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1260                                 else if (stripping_support->outer &
1261                                          VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1262                                         rx_ring->flags |=
1263                                                 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1264                         } else if (stripping_support->inner) {
1265                                 if (stripping_support->inner &
1266                                     VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1267                                         rx_ring->flags |=
1268                                                 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1269                                 else if (stripping_support->inner &
1270                                          VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1271                                         rx_ring->flags |=
1272                                                 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1273                         }
1274
1275                         if (insertion_support->outer) {
1276                                 if (insertion_support->outer &
1277                                     VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1278                                         tx_ring->flags |=
1279                                                 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1280                                 else if (insertion_support->outer &
1281                                          VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1282                                         tx_ring->flags |=
1283                                                 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1284                         } else if (insertion_support->inner) {
1285                                 if (insertion_support->inner &
1286                                     VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1287                                         tx_ring->flags |=
1288                                                 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1289                                 else if (insertion_support->inner &
1290                                          VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1291                                         tx_ring->flags |=
1292                                                 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1293                         }
1294                 }
1295         }
1296 }
1297
1298 /**
1299  * iavf_alloc_queues - Allocate memory for all rings
1300  * @adapter: board private structure to initialize
1301  *
1302  * We allocate one ring per queue at run-time since we don't know the
1303  * number of queues at compile-time.  The polling_netdev array is
1304  * intended for Multiqueue, but should work fine with a single queue.
1305  **/
1306 static int iavf_alloc_queues(struct iavf_adapter *adapter)
1307 {
1308         int i, num_active_queues;
1309
1310         /* If we're in reset reallocating queues we don't actually know yet for
1311          * certain the PF gave us the number of queues we asked for but we'll
1312          * assume it did.  Once basic reset is finished we'll confirm once we
1313          * start negotiating config with PF.
1314          */
1315         if (adapter->num_req_queues)
1316                 num_active_queues = adapter->num_req_queues;
1317         else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1318                  adapter->num_tc)
1319                 num_active_queues = adapter->ch_config.total_qps;
1320         else
1321                 num_active_queues = min_t(int,
1322                                           adapter->vsi_res->num_queue_pairs,
1323                                           (int)(num_online_cpus()));
1324
1325
1326         adapter->tx_rings = kcalloc(num_active_queues,
1327                                     sizeof(struct iavf_ring), GFP_KERNEL);
1328         if (!adapter->tx_rings)
1329                 goto err_out;
1330         adapter->rx_rings = kcalloc(num_active_queues,
1331                                     sizeof(struct iavf_ring), GFP_KERNEL);
1332         if (!adapter->rx_rings)
1333                 goto err_out;
1334
1335         for (i = 0; i < num_active_queues; i++) {
1336                 struct iavf_ring *tx_ring;
1337                 struct iavf_ring *rx_ring;
1338
1339                 tx_ring = &adapter->tx_rings[i];
1340
1341                 tx_ring->queue_index = i;
1342                 tx_ring->netdev = adapter->netdev;
1343                 tx_ring->dev = &adapter->pdev->dev;
1344                 tx_ring->count = adapter->tx_desc_count;
1345                 tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1346                 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1347                         tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1348
1349                 rx_ring = &adapter->rx_rings[i];
1350                 rx_ring->queue_index = i;
1351                 rx_ring->netdev = adapter->netdev;
1352                 rx_ring->dev = &adapter->pdev->dev;
1353                 rx_ring->count = adapter->rx_desc_count;
1354                 rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1355         }
1356
1357         adapter->num_active_queues = num_active_queues;
1358
1359         iavf_set_queue_vlan_tag_loc(adapter);
1360
1361         return 0;
1362
1363 err_out:
1364         iavf_free_queues(adapter);
1365         return -ENOMEM;
1366 }
1367
1368 /**
1369  * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1370  * @adapter: board private structure to initialize
1371  *
1372  * Attempt to configure the interrupts using the best available
1373  * capabilities of the hardware and the kernel.
1374  **/
1375 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1376 {
1377         int vector, v_budget;
1378         int pairs = 0;
1379         int err = 0;
1380
1381         if (!adapter->vsi_res) {
1382                 err = -EIO;
1383                 goto out;
1384         }
1385         pairs = adapter->num_active_queues;
1386
1387         /* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1388          * us much good if we have more vectors than CPUs. However, we already
1389          * limit the total number of queues by the number of CPUs so we do not
1390          * need any further limiting here.
1391          */
1392         v_budget = min_t(int, pairs + NONQ_VECS,
1393                          (int)adapter->vf_res->max_vectors);
1394
1395         adapter->msix_entries = kcalloc(v_budget,
1396                                         sizeof(struct msix_entry), GFP_KERNEL);
1397         if (!adapter->msix_entries) {
1398                 err = -ENOMEM;
1399                 goto out;
1400         }
1401
1402         for (vector = 0; vector < v_budget; vector++)
1403                 adapter->msix_entries[vector].entry = vector;
1404
1405         err = iavf_acquire_msix_vectors(adapter, v_budget);
1406
1407 out:
1408         netif_set_real_num_rx_queues(adapter->netdev, pairs);
1409         netif_set_real_num_tx_queues(adapter->netdev, pairs);
1410         return err;
1411 }
1412
1413 /**
1414  * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1415  * @adapter: board private structure
1416  *
1417  * Return 0 on success, negative on failure
1418  **/
1419 static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1420 {
1421         struct iavf_aqc_get_set_rss_key_data *rss_key =
1422                 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1423         struct iavf_hw *hw = &adapter->hw;
1424         int ret = 0;
1425
1426         if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1427                 /* bail because we already have a command pending */
1428                 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1429                         adapter->current_op);
1430                 return -EBUSY;
1431         }
1432
1433         ret = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1434         if (ret) {
1435                 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1436                         iavf_stat_str(hw, ret),
1437                         iavf_aq_str(hw, hw->aq.asq_last_status));
1438                 return ret;
1439
1440         }
1441
1442         ret = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1443                                   adapter->rss_lut, adapter->rss_lut_size);
1444         if (ret) {
1445                 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1446                         iavf_stat_str(hw, ret),
1447                         iavf_aq_str(hw, hw->aq.asq_last_status));
1448         }
1449
1450         return ret;
1451
1452 }
1453
1454 /**
1455  * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1456  * @adapter: board private structure
1457  *
1458  * Returns 0 on success, negative on failure
1459  **/
1460 static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1461 {
1462         struct iavf_hw *hw = &adapter->hw;
1463         u32 *dw;
1464         u16 i;
1465
1466         dw = (u32 *)adapter->rss_key;
1467         for (i = 0; i <= adapter->rss_key_size / 4; i++)
1468                 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1469
1470         dw = (u32 *)adapter->rss_lut;
1471         for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1472                 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1473
1474         iavf_flush(hw);
1475
1476         return 0;
1477 }
1478
1479 /**
1480  * iavf_config_rss - Configure RSS keys and lut
1481  * @adapter: board private structure
1482  *
1483  * Returns 0 on success, negative on failure
1484  **/
1485 int iavf_config_rss(struct iavf_adapter *adapter)
1486 {
1487
1488         if (RSS_PF(adapter)) {
1489                 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1490                                         IAVF_FLAG_AQ_SET_RSS_KEY;
1491                 return 0;
1492         } else if (RSS_AQ(adapter)) {
1493                 return iavf_config_rss_aq(adapter);
1494         } else {
1495                 return iavf_config_rss_reg(adapter);
1496         }
1497 }
1498
1499 /**
1500  * iavf_fill_rss_lut - Fill the lut with default values
1501  * @adapter: board private structure
1502  **/
1503 static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1504 {
1505         u16 i;
1506
1507         for (i = 0; i < adapter->rss_lut_size; i++)
1508                 adapter->rss_lut[i] = i % adapter->num_active_queues;
1509 }
1510
1511 /**
1512  * iavf_init_rss - Prepare for RSS
1513  * @adapter: board private structure
1514  *
1515  * Return 0 on success, negative on failure
1516  **/
1517 static int iavf_init_rss(struct iavf_adapter *adapter)
1518 {
1519         struct iavf_hw *hw = &adapter->hw;
1520         int ret;
1521
1522         if (!RSS_PF(adapter)) {
1523                 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1524                 if (adapter->vf_res->vf_cap_flags &
1525                     VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1526                         adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1527                 else
1528                         adapter->hena = IAVF_DEFAULT_RSS_HENA;
1529
1530                 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1531                 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1532         }
1533
1534         iavf_fill_rss_lut(adapter);
1535         netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1536         ret = iavf_config_rss(adapter);
1537
1538         return ret;
1539 }
1540
1541 /**
1542  * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1543  * @adapter: board private structure to initialize
1544  *
1545  * We allocate one q_vector per queue interrupt.  If allocation fails we
1546  * return -ENOMEM.
1547  **/
1548 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1549 {
1550         int q_idx = 0, num_q_vectors;
1551         struct iavf_q_vector *q_vector;
1552
1553         num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1554         adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1555                                      GFP_KERNEL);
1556         if (!adapter->q_vectors)
1557                 return -ENOMEM;
1558
1559         for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1560                 q_vector = &adapter->q_vectors[q_idx];
1561                 q_vector->adapter = adapter;
1562                 q_vector->vsi = &adapter->vsi;
1563                 q_vector->v_idx = q_idx;
1564                 q_vector->reg_idx = q_idx;
1565                 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1566                 netif_napi_add(adapter->netdev, &q_vector->napi,
1567                                iavf_napi_poll, NAPI_POLL_WEIGHT);
1568         }
1569
1570         return 0;
1571 }
1572
1573 /**
1574  * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1575  * @adapter: board private structure to initialize
1576  *
1577  * This function frees the memory allocated to the q_vectors.  In addition if
1578  * NAPI is enabled it will delete any references to the NAPI struct prior
1579  * to freeing the q_vector.
1580  **/
1581 static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1582 {
1583         int q_idx, num_q_vectors;
1584         int napi_vectors;
1585
1586         if (!adapter->q_vectors)
1587                 return;
1588
1589         num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1590         napi_vectors = adapter->num_active_queues;
1591
1592         for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1593                 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1594
1595                 if (q_idx < napi_vectors)
1596                         netif_napi_del(&q_vector->napi);
1597         }
1598         kfree(adapter->q_vectors);
1599         adapter->q_vectors = NULL;
1600 }
1601
1602 /**
1603  * iavf_reset_interrupt_capability - Reset MSIX setup
1604  * @adapter: board private structure
1605  *
1606  **/
1607 void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1608 {
1609         if (!adapter->msix_entries)
1610                 return;
1611
1612         pci_disable_msix(adapter->pdev);
1613         kfree(adapter->msix_entries);
1614         adapter->msix_entries = NULL;
1615 }
1616
1617 /**
1618  * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1619  * @adapter: board private structure to initialize
1620  *
1621  **/
1622 int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1623 {
1624         int err;
1625
1626         err = iavf_alloc_queues(adapter);
1627         if (err) {
1628                 dev_err(&adapter->pdev->dev,
1629                         "Unable to allocate memory for queues\n");
1630                 goto err_alloc_queues;
1631         }
1632
1633         rtnl_lock();
1634         err = iavf_set_interrupt_capability(adapter);
1635         rtnl_unlock();
1636         if (err) {
1637                 dev_err(&adapter->pdev->dev,
1638                         "Unable to setup interrupt capabilities\n");
1639                 goto err_set_interrupt;
1640         }
1641
1642         err = iavf_alloc_q_vectors(adapter);
1643         if (err) {
1644                 dev_err(&adapter->pdev->dev,
1645                         "Unable to allocate memory for queue vectors\n");
1646                 goto err_alloc_q_vectors;
1647         }
1648
1649         /* If we've made it so far while ADq flag being ON, then we haven't
1650          * bailed out anywhere in middle. And ADq isn't just enabled but actual
1651          * resources have been allocated in the reset path.
1652          * Now we can truly claim that ADq is enabled.
1653          */
1654         if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1655             adapter->num_tc)
1656                 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1657                          adapter->num_tc);
1658
1659         dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1660                  (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1661                  adapter->num_active_queues);
1662
1663         return 0;
1664 err_alloc_q_vectors:
1665         iavf_reset_interrupt_capability(adapter);
1666 err_set_interrupt:
1667         iavf_free_queues(adapter);
1668 err_alloc_queues:
1669         return err;
1670 }
1671
1672 /**
1673  * iavf_free_rss - Free memory used by RSS structs
1674  * @adapter: board private structure
1675  **/
1676 static void iavf_free_rss(struct iavf_adapter *adapter)
1677 {
1678         kfree(adapter->rss_key);
1679         adapter->rss_key = NULL;
1680
1681         kfree(adapter->rss_lut);
1682         adapter->rss_lut = NULL;
1683 }
1684
1685 /**
1686  * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1687  * @adapter: board private structure
1688  *
1689  * Returns 0 on success, negative on failure
1690  **/
1691 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter)
1692 {
1693         struct net_device *netdev = adapter->netdev;
1694         int err;
1695
1696         if (netif_running(netdev))
1697                 iavf_free_traffic_irqs(adapter);
1698         iavf_free_misc_irq(adapter);
1699         iavf_reset_interrupt_capability(adapter);
1700         iavf_free_q_vectors(adapter);
1701         iavf_free_queues(adapter);
1702
1703         err =  iavf_init_interrupt_scheme(adapter);
1704         if (err)
1705                 goto err;
1706
1707         netif_tx_stop_all_queues(netdev);
1708
1709         err = iavf_request_misc_irq(adapter);
1710         if (err)
1711                 goto err;
1712
1713         set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1714
1715         iavf_map_rings_to_vectors(adapter);
1716 err:
1717         return err;
1718 }
1719
1720 /**
1721  * iavf_process_aq_command - process aq_required flags
1722  * and sends aq command
1723  * @adapter: pointer to iavf adapter structure
1724  *
1725  * Returns 0 on success
1726  * Returns error code if no command was sent
1727  * or error code if the command failed.
1728  **/
1729 static int iavf_process_aq_command(struct iavf_adapter *adapter)
1730 {
1731         if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
1732                 return iavf_send_vf_config_msg(adapter);
1733         if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS)
1734                 return iavf_send_vf_offload_vlan_v2_msg(adapter);
1735         if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
1736                 iavf_disable_queues(adapter);
1737                 return 0;
1738         }
1739
1740         if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
1741                 iavf_map_queues(adapter);
1742                 return 0;
1743         }
1744
1745         if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
1746                 iavf_add_ether_addrs(adapter);
1747                 return 0;
1748         }
1749
1750         if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
1751                 iavf_add_vlans(adapter);
1752                 return 0;
1753         }
1754
1755         if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
1756                 iavf_del_ether_addrs(adapter);
1757                 return 0;
1758         }
1759
1760         if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
1761                 iavf_del_vlans(adapter);
1762                 return 0;
1763         }
1764
1765         if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
1766                 iavf_enable_vlan_stripping(adapter);
1767                 return 0;
1768         }
1769
1770         if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
1771                 iavf_disable_vlan_stripping(adapter);
1772                 return 0;
1773         }
1774
1775         if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
1776                 iavf_configure_queues(adapter);
1777                 return 0;
1778         }
1779
1780         if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
1781                 iavf_enable_queues(adapter);
1782                 return 0;
1783         }
1784
1785         if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
1786                 /* This message goes straight to the firmware, not the
1787                  * PF, so we don't have to set current_op as we will
1788                  * not get a response through the ARQ.
1789                  */
1790                 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
1791                 return 0;
1792         }
1793         if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
1794                 iavf_get_hena(adapter);
1795                 return 0;
1796         }
1797         if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
1798                 iavf_set_hena(adapter);
1799                 return 0;
1800         }
1801         if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
1802                 iavf_set_rss_key(adapter);
1803                 return 0;
1804         }
1805         if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
1806                 iavf_set_rss_lut(adapter);
1807                 return 0;
1808         }
1809
1810         if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) {
1811                 iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC |
1812                                        FLAG_VF_MULTICAST_PROMISC);
1813                 return 0;
1814         }
1815
1816         if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) {
1817                 iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC);
1818                 return 0;
1819         }
1820         if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) ||
1821             (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) {
1822                 iavf_set_promiscuous(adapter, 0);
1823                 return 0;
1824         }
1825
1826         if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
1827                 iavf_enable_channels(adapter);
1828                 return 0;
1829         }
1830
1831         if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
1832                 iavf_disable_channels(adapter);
1833                 return 0;
1834         }
1835         if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1836                 iavf_add_cloud_filter(adapter);
1837                 return 0;
1838         }
1839
1840         if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1841                 iavf_del_cloud_filter(adapter);
1842                 return 0;
1843         }
1844         if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1845                 iavf_del_cloud_filter(adapter);
1846                 return 0;
1847         }
1848         if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1849                 iavf_add_cloud_filter(adapter);
1850                 return 0;
1851         }
1852         if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) {
1853                 iavf_add_fdir_filter(adapter);
1854                 return IAVF_SUCCESS;
1855         }
1856         if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) {
1857                 iavf_del_fdir_filter(adapter);
1858                 return IAVF_SUCCESS;
1859         }
1860         if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) {
1861                 iavf_add_adv_rss_cfg(adapter);
1862                 return 0;
1863         }
1864         if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) {
1865                 iavf_del_adv_rss_cfg(adapter);
1866                 return 0;
1867         }
1868         if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) {
1869                 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q);
1870                 return 0;
1871         }
1872         if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) {
1873                 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD);
1874                 return 0;
1875         }
1876         if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) {
1877                 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q);
1878                 return 0;
1879         }
1880         if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) {
1881                 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD);
1882                 return 0;
1883         }
1884         if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) {
1885                 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q);
1886                 return 0;
1887         }
1888         if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) {
1889                 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD);
1890                 return 0;
1891         }
1892         if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) {
1893                 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q);
1894                 return 0;
1895         }
1896         if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) {
1897                 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD);
1898                 return 0;
1899         }
1900
1901         if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) {
1902                 iavf_request_stats(adapter);
1903                 return 0;
1904         }
1905
1906         return -EAGAIN;
1907 }
1908
1909 /**
1910  * iavf_set_vlan_offload_features - set VLAN offload configuration
1911  * @adapter: board private structure
1912  * @prev_features: previous features used for comparison
1913  * @features: updated features used for configuration
1914  *
1915  * Set the aq_required bit(s) based on the requested features passed in to
1916  * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule
1917  * the watchdog if any changes are requested to expedite the request via
1918  * virtchnl.
1919  **/
1920 void
1921 iavf_set_vlan_offload_features(struct iavf_adapter *adapter,
1922                                netdev_features_t prev_features,
1923                                netdev_features_t features)
1924 {
1925         bool enable_stripping = true, enable_insertion = true;
1926         u16 vlan_ethertype = 0;
1927         u64 aq_required = 0;
1928
1929         /* keep cases separate because one ethertype for offloads can be
1930          * disabled at the same time as another is disabled, so check for an
1931          * enabled ethertype first, then check for disabled. Default to
1932          * ETH_P_8021Q so an ethertype is specified if disabling insertion and
1933          * stripping.
1934          */
1935         if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
1936                 vlan_ethertype = ETH_P_8021AD;
1937         else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
1938                 vlan_ethertype = ETH_P_8021Q;
1939         else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
1940                 vlan_ethertype = ETH_P_8021AD;
1941         else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
1942                 vlan_ethertype = ETH_P_8021Q;
1943         else
1944                 vlan_ethertype = ETH_P_8021Q;
1945
1946         if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
1947                 enable_stripping = false;
1948         if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
1949                 enable_insertion = false;
1950
1951         if (VLAN_ALLOWED(adapter)) {
1952                 /* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN
1953                  * stripping via virtchnl. VLAN insertion can be toggled on the
1954                  * netdev, but it doesn't require a virtchnl message
1955                  */
1956                 if (enable_stripping)
1957                         aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
1958                 else
1959                         aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
1960
1961         } else if (VLAN_V2_ALLOWED(adapter)) {
1962                 switch (vlan_ethertype) {
1963                 case ETH_P_8021Q:
1964                         if (enable_stripping)
1965                                 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING;
1966                         else
1967                                 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING;
1968
1969                         if (enable_insertion)
1970                                 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION;
1971                         else
1972                                 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION;
1973                         break;
1974                 case ETH_P_8021AD:
1975                         if (enable_stripping)
1976                                 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING;
1977                         else
1978                                 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING;
1979
1980                         if (enable_insertion)
1981                                 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION;
1982                         else
1983                                 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION;
1984                         break;
1985                 }
1986         }
1987
1988         if (aq_required) {
1989                 adapter->aq_required |= aq_required;
1990                 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1991         }
1992 }
1993
1994 /**
1995  * iavf_startup - first step of driver startup
1996  * @adapter: board private structure
1997  *
1998  * Function process __IAVF_STARTUP driver state.
1999  * When success the state is changed to __IAVF_INIT_VERSION_CHECK
2000  * when fails the state is changed to __IAVF_INIT_FAILED
2001  **/
2002 static void iavf_startup(struct iavf_adapter *adapter)
2003 {
2004         struct pci_dev *pdev = adapter->pdev;
2005         struct iavf_hw *hw = &adapter->hw;
2006         int err;
2007
2008         WARN_ON(adapter->state != __IAVF_STARTUP);
2009
2010         /* driver loaded, probe complete */
2011         adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2012         adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2013         err = iavf_set_mac_type(hw);
2014         if (err) {
2015                 dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", err);
2016                 goto err;
2017         }
2018
2019         err = iavf_check_reset_complete(hw);
2020         if (err) {
2021                 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
2022                          err);
2023                 goto err;
2024         }
2025         hw->aq.num_arq_entries = IAVF_AQ_LEN;
2026         hw->aq.num_asq_entries = IAVF_AQ_LEN;
2027         hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2028         hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2029
2030         err = iavf_init_adminq(hw);
2031         if (err) {
2032                 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", err);
2033                 goto err;
2034         }
2035         err = iavf_send_api_ver(adapter);
2036         if (err) {
2037                 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", err);
2038                 iavf_shutdown_adminq(hw);
2039                 goto err;
2040         }
2041         iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK);
2042         return;
2043 err:
2044         iavf_change_state(adapter, __IAVF_INIT_FAILED);
2045 }
2046
2047 /**
2048  * iavf_init_version_check - second step of driver startup
2049  * @adapter: board private structure
2050  *
2051  * Function process __IAVF_INIT_VERSION_CHECK driver state.
2052  * When success the state is changed to __IAVF_INIT_GET_RESOURCES
2053  * when fails the state is changed to __IAVF_INIT_FAILED
2054  **/
2055 static void iavf_init_version_check(struct iavf_adapter *adapter)
2056 {
2057         struct pci_dev *pdev = adapter->pdev;
2058         struct iavf_hw *hw = &adapter->hw;
2059         int err = -EAGAIN;
2060
2061         WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
2062
2063         if (!iavf_asq_done(hw)) {
2064                 dev_err(&pdev->dev, "Admin queue command never completed\n");
2065                 iavf_shutdown_adminq(hw);
2066                 iavf_change_state(adapter, __IAVF_STARTUP);
2067                 goto err;
2068         }
2069
2070         /* aq msg sent, awaiting reply */
2071         err = iavf_verify_api_ver(adapter);
2072         if (err) {
2073                 if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK)
2074                         err = iavf_send_api_ver(adapter);
2075                 else
2076                         dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
2077                                 adapter->pf_version.major,
2078                                 adapter->pf_version.minor,
2079                                 VIRTCHNL_VERSION_MAJOR,
2080                                 VIRTCHNL_VERSION_MINOR);
2081                 goto err;
2082         }
2083         err = iavf_send_vf_config_msg(adapter);
2084         if (err) {
2085                 dev_err(&pdev->dev, "Unable to send config request (%d)\n",
2086                         err);
2087                 goto err;
2088         }
2089         iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES);
2090         return;
2091 err:
2092         iavf_change_state(adapter, __IAVF_INIT_FAILED);
2093 }
2094
2095 /**
2096  * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES
2097  * @adapter: board private structure
2098  */
2099 int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter)
2100 {
2101         int i, num_req_queues = adapter->num_req_queues;
2102         struct iavf_vsi *vsi = &adapter->vsi;
2103
2104         for (i = 0; i < adapter->vf_res->num_vsis; i++) {
2105                 if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
2106                         adapter->vsi_res = &adapter->vf_res->vsi_res[i];
2107         }
2108         if (!adapter->vsi_res) {
2109                 dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
2110                 return -ENODEV;
2111         }
2112
2113         if (num_req_queues &&
2114             num_req_queues > adapter->vsi_res->num_queue_pairs) {
2115                 /* Problem.  The PF gave us fewer queues than what we had
2116                  * negotiated in our request.  Need a reset to see if we can't
2117                  * get back to a working state.
2118                  */
2119                 dev_err(&adapter->pdev->dev,
2120                         "Requested %d queues, but PF only gave us %d.\n",
2121                         num_req_queues,
2122                         adapter->vsi_res->num_queue_pairs);
2123                 adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED;
2124                 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
2125                 iavf_schedule_reset(adapter);
2126
2127                 return -EAGAIN;
2128         }
2129         adapter->num_req_queues = 0;
2130         adapter->vsi.id = adapter->vsi_res->vsi_id;
2131
2132         adapter->vsi.back = adapter;
2133         adapter->vsi.base_vector = 1;
2134         adapter->vsi.work_limit = IAVF_DEFAULT_IRQ_WORK;
2135         vsi->netdev = adapter->netdev;
2136         vsi->qs_handle = adapter->vsi_res->qset_handle;
2137         if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2138                 adapter->rss_key_size = adapter->vf_res->rss_key_size;
2139                 adapter->rss_lut_size = adapter->vf_res->rss_lut_size;
2140         } else {
2141                 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
2142                 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
2143         }
2144
2145         return 0;
2146 }
2147
2148 /**
2149  * iavf_init_get_resources - third step of driver startup
2150  * @adapter: board private structure
2151  *
2152  * Function process __IAVF_INIT_GET_RESOURCES driver state and
2153  * finishes driver initialization procedure.
2154  * When success the state is changed to __IAVF_DOWN
2155  * when fails the state is changed to __IAVF_INIT_FAILED
2156  **/
2157 static void iavf_init_get_resources(struct iavf_adapter *adapter)
2158 {
2159         struct pci_dev *pdev = adapter->pdev;
2160         struct iavf_hw *hw = &adapter->hw;
2161         int err;
2162
2163         WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
2164         /* aq msg sent, awaiting reply */
2165         if (!adapter->vf_res) {
2166                 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
2167                                           GFP_KERNEL);
2168                 if (!adapter->vf_res) {
2169                         err = -ENOMEM;
2170                         goto err;
2171                 }
2172         }
2173         err = iavf_get_vf_config(adapter);
2174         if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK) {
2175                 err = iavf_send_vf_config_msg(adapter);
2176                 goto err_alloc;
2177         } else if (err == IAVF_ERR_PARAM) {
2178                 /* We only get ERR_PARAM if the device is in a very bad
2179                  * state or if we've been disabled for previous bad
2180                  * behavior. Either way, we're done now.
2181                  */
2182                 iavf_shutdown_adminq(hw);
2183                 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
2184                 return;
2185         }
2186         if (err) {
2187                 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
2188                 goto err_alloc;
2189         }
2190
2191         err = iavf_parse_vf_resource_msg(adapter);
2192         if (err)
2193                 goto err_alloc;
2194
2195         err = iavf_send_vf_offload_vlan_v2_msg(adapter);
2196         if (err == -EOPNOTSUPP) {
2197                 /* underlying PF doesn't support VIRTCHNL_VF_OFFLOAD_VLAN_V2, so
2198                  * go directly to finishing initialization
2199                  */
2200                 iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER);
2201                 return;
2202         } else if (err) {
2203                 dev_err(&pdev->dev, "Unable to send offload vlan v2 request (%d)\n",
2204                         err);
2205                 goto err_alloc;
2206         }
2207
2208         /* underlying PF supports VIRTCHNL_VF_OFFLOAD_VLAN_V2, so update the
2209          * state accordingly
2210          */
2211         iavf_change_state(adapter, __IAVF_INIT_GET_OFFLOAD_VLAN_V2_CAPS);
2212         return;
2213
2214 err_alloc:
2215         kfree(adapter->vf_res);
2216         adapter->vf_res = NULL;
2217 err:
2218         iavf_change_state(adapter, __IAVF_INIT_FAILED);
2219 }
2220
2221 /**
2222  * iavf_init_get_offload_vlan_v2_caps - part of driver startup
2223  * @adapter: board private structure
2224  *
2225  * Function processes __IAVF_INIT_GET_OFFLOAD_VLAN_V2_CAPS driver state if the
2226  * VF negotiates VIRTCHNL_VF_OFFLOAD_VLAN_V2. If VIRTCHNL_VF_OFFLOAD_VLAN_V2 is
2227  * not negotiated, then this state will never be entered.
2228  **/
2229 static void iavf_init_get_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2230 {
2231         int ret;
2232
2233         WARN_ON(adapter->state != __IAVF_INIT_GET_OFFLOAD_VLAN_V2_CAPS);
2234
2235         memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps));
2236
2237         ret = iavf_get_vf_vlan_v2_caps(adapter);
2238         if (ret) {
2239                 if (ret == IAVF_ERR_ADMIN_QUEUE_NO_WORK)
2240                         iavf_send_vf_offload_vlan_v2_msg(adapter);
2241                 goto err;
2242         }
2243
2244         iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER);
2245         return;
2246 err:
2247         iavf_change_state(adapter, __IAVF_INIT_FAILED);
2248 }
2249
2250 /**
2251  * iavf_init_config_adapter - last part of driver startup
2252  * @adapter: board private structure
2253  *
2254  * After all the supported capabilities are negotiated, then the
2255  * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization.
2256  */
2257 static void iavf_init_config_adapter(struct iavf_adapter *adapter)
2258 {
2259         struct net_device *netdev = adapter->netdev;
2260         struct pci_dev *pdev = adapter->pdev;
2261         int err;
2262
2263         WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER);
2264
2265         if (iavf_process_config(adapter))
2266                 goto err;
2267
2268         adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2269
2270         adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
2271
2272         netdev->netdev_ops = &iavf_netdev_ops;
2273         iavf_set_ethtool_ops(netdev);
2274         netdev->watchdog_timeo = 5 * HZ;
2275
2276         /* MTU range: 68 - 9710 */
2277         netdev->min_mtu = ETH_MIN_MTU;
2278         netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
2279
2280         if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
2281                 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
2282                          adapter->hw.mac.addr);
2283                 eth_hw_addr_random(netdev);
2284                 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
2285         } else {
2286                 eth_hw_addr_set(netdev, adapter->hw.mac.addr);
2287                 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2288         }
2289
2290         adapter->tx_desc_count = IAVF_DEFAULT_TXD;
2291         adapter->rx_desc_count = IAVF_DEFAULT_RXD;
2292         err = iavf_init_interrupt_scheme(adapter);
2293         if (err)
2294                 goto err_sw_init;
2295         iavf_map_rings_to_vectors(adapter);
2296         if (adapter->vf_res->vf_cap_flags &
2297                 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
2298                 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
2299
2300         err = iavf_request_misc_irq(adapter);
2301         if (err)
2302                 goto err_sw_init;
2303
2304         netif_carrier_off(netdev);
2305         adapter->link_up = false;
2306
2307         /* set the semaphore to prevent any callbacks after device registration
2308          * up to time when state of driver will be set to __IAVF_DOWN
2309          */
2310         rtnl_lock();
2311         if (!adapter->netdev_registered) {
2312                 err = register_netdevice(netdev);
2313                 if (err) {
2314                         rtnl_unlock();
2315                         goto err_register;
2316                 }
2317         }
2318
2319         adapter->netdev_registered = true;
2320
2321         netif_tx_stop_all_queues(netdev);
2322         if (CLIENT_ALLOWED(adapter)) {
2323                 err = iavf_lan_add_device(adapter);
2324                 if (err)
2325                         dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n",
2326                                  err);
2327         }
2328         dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
2329         if (netdev->features & NETIF_F_GRO)
2330                 dev_info(&pdev->dev, "GRO is enabled\n");
2331
2332         iavf_change_state(adapter, __IAVF_DOWN);
2333         set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2334         rtnl_unlock();
2335
2336         iavf_misc_irq_enable(adapter);
2337         wake_up(&adapter->down_waitqueue);
2338
2339         adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
2340         adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
2341         if (!adapter->rss_key || !adapter->rss_lut) {
2342                 err = -ENOMEM;
2343                 goto err_mem;
2344         }
2345         if (RSS_AQ(adapter))
2346                 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2347         else
2348                 iavf_init_rss(adapter);
2349
2350         if (VLAN_V2_ALLOWED(adapter))
2351                 /* request initial VLAN offload settings */
2352                 iavf_set_vlan_offload_features(adapter, 0, netdev->features);
2353
2354         return;
2355 err_mem:
2356         iavf_free_rss(adapter);
2357 err_register:
2358         iavf_free_misc_irq(adapter);
2359 err_sw_init:
2360         iavf_reset_interrupt_capability(adapter);
2361 err:
2362         iavf_change_state(adapter, __IAVF_INIT_FAILED);
2363 }
2364
2365 /**
2366  * iavf_watchdog_task - Periodic call-back task
2367  * @work: pointer to work_struct
2368  **/
2369 static void iavf_watchdog_task(struct work_struct *work)
2370 {
2371         struct iavf_adapter *adapter = container_of(work,
2372                                                     struct iavf_adapter,
2373                                                     watchdog_task.work);
2374         struct iavf_hw *hw = &adapter->hw;
2375         u32 reg_val;
2376
2377         if (!mutex_trylock(&adapter->crit_lock))
2378                 goto restart_watchdog;
2379
2380         if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2381                 iavf_change_state(adapter, __IAVF_COMM_FAILED);
2382
2383         if (adapter->flags & IAVF_FLAG_RESET_NEEDED &&
2384             adapter->state != __IAVF_RESETTING) {
2385                 iavf_change_state(adapter, __IAVF_RESETTING);
2386                 adapter->aq_required = 0;
2387                 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2388         }
2389
2390         switch (adapter->state) {
2391         case __IAVF_STARTUP:
2392                 iavf_startup(adapter);
2393                 mutex_unlock(&adapter->crit_lock);
2394                 queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2395                                    msecs_to_jiffies(30));
2396                 return;
2397         case __IAVF_INIT_VERSION_CHECK:
2398                 iavf_init_version_check(adapter);
2399                 mutex_unlock(&adapter->crit_lock);
2400                 queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2401                                    msecs_to_jiffies(30));
2402                 return;
2403         case __IAVF_INIT_GET_RESOURCES:
2404                 iavf_init_get_resources(adapter);
2405                 mutex_unlock(&adapter->crit_lock);
2406                 queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2407                                    msecs_to_jiffies(1));
2408                 return;
2409         case __IAVF_INIT_GET_OFFLOAD_VLAN_V2_CAPS:
2410                 iavf_init_get_offload_vlan_v2_caps(adapter);
2411                 mutex_unlock(&adapter->crit_lock);
2412                 queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2413                                    msecs_to_jiffies(1));
2414                 return;
2415         case __IAVF_INIT_CONFIG_ADAPTER:
2416                 iavf_init_config_adapter(adapter);
2417                 mutex_unlock(&adapter->crit_lock);
2418                 queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2419                                    msecs_to_jiffies(1));
2420                 return;
2421         case __IAVF_INIT_FAILED:
2422                 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
2423                         dev_err(&adapter->pdev->dev,
2424                                 "Failed to communicate with PF; waiting before retry\n");
2425                         adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2426                         iavf_shutdown_adminq(hw);
2427                         mutex_unlock(&adapter->crit_lock);
2428                         queue_delayed_work(iavf_wq,
2429                                            &adapter->watchdog_task, (5 * HZ));
2430                         return;
2431                 }
2432                 /* Try again from failed step*/
2433                 iavf_change_state(adapter, adapter->last_state);
2434                 mutex_unlock(&adapter->crit_lock);
2435                 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ);
2436                 return;
2437         case __IAVF_COMM_FAILED:
2438                 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2439                           IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2440                 if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
2441                     reg_val == VIRTCHNL_VFR_COMPLETED) {
2442                         /* A chance for redemption! */
2443                         dev_err(&adapter->pdev->dev,
2444                                 "Hardware came out of reset. Attempting reinit.\n");
2445                         /* When init task contacts the PF and
2446                          * gets everything set up again, it'll restart the
2447                          * watchdog for us. Down, boy. Sit. Stay. Woof.
2448                          */
2449                         iavf_change_state(adapter, __IAVF_STARTUP);
2450                         adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2451                 }
2452                 adapter->aq_required = 0;
2453                 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2454                 mutex_unlock(&adapter->crit_lock);
2455                 queue_delayed_work(iavf_wq,
2456                                    &adapter->watchdog_task,
2457                                    msecs_to_jiffies(10));
2458                 return;
2459         case __IAVF_RESETTING:
2460                 mutex_unlock(&adapter->crit_lock);
2461                 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
2462                 return;
2463         case __IAVF_DOWN:
2464         case __IAVF_DOWN_PENDING:
2465         case __IAVF_TESTING:
2466         case __IAVF_RUNNING:
2467                 if (adapter->current_op) {
2468                         if (!iavf_asq_done(hw)) {
2469                                 dev_dbg(&adapter->pdev->dev,
2470                                         "Admin queue timeout\n");
2471                                 iavf_send_api_ver(adapter);
2472                         }
2473                 } else {
2474                         int ret = iavf_process_aq_command(adapter);
2475
2476                         /* An error will be returned if no commands were
2477                          * processed; use this opportunity to update stats
2478                          * if the error isn't -ENOTSUPP
2479                          */
2480                         if (ret && ret != -EOPNOTSUPP &&
2481                             adapter->state == __IAVF_RUNNING)
2482                                 iavf_request_stats(adapter);
2483                 }
2484                 if (adapter->state == __IAVF_RUNNING)
2485                         iavf_detect_recover_hung(&adapter->vsi);
2486                 break;
2487         case __IAVF_REMOVE:
2488         default:
2489                 mutex_unlock(&adapter->crit_lock);
2490                 return;
2491         }
2492
2493         /* check for hw reset */
2494         reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2495         if (!reg_val) {
2496                 adapter->flags |= IAVF_FLAG_RESET_PENDING;
2497                 adapter->aq_required = 0;
2498                 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2499                 dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
2500                 queue_work(iavf_wq, &adapter->reset_task);
2501                 mutex_unlock(&adapter->crit_lock);
2502                 queue_delayed_work(iavf_wq,
2503                                    &adapter->watchdog_task, HZ * 2);
2504                 return;
2505         }
2506
2507         schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5));
2508         mutex_unlock(&adapter->crit_lock);
2509 restart_watchdog:
2510         queue_work(iavf_wq, &adapter->adminq_task);
2511         if (adapter->aq_required)
2512                 queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2513                                    msecs_to_jiffies(20));
2514         else
2515                 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
2516 }
2517
2518 static void iavf_disable_vf(struct iavf_adapter *adapter)
2519 {
2520         struct iavf_mac_filter *f, *ftmp;
2521         struct iavf_vlan_filter *fv, *fvtmp;
2522         struct iavf_cloud_filter *cf, *cftmp;
2523
2524         adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2525
2526         /* We don't use netif_running() because it may be true prior to
2527          * ndo_open() returning, so we can't assume it means all our open
2528          * tasks have finished, since we're not holding the rtnl_lock here.
2529          */
2530         if (adapter->state == __IAVF_RUNNING) {
2531                 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2532                 netif_carrier_off(adapter->netdev);
2533                 netif_tx_disable(adapter->netdev);
2534                 adapter->link_up = false;
2535                 iavf_napi_disable_all(adapter);
2536                 iavf_irq_disable(adapter);
2537                 iavf_free_traffic_irqs(adapter);
2538                 iavf_free_all_tx_resources(adapter);
2539                 iavf_free_all_rx_resources(adapter);
2540         }
2541
2542         spin_lock_bh(&adapter->mac_vlan_list_lock);
2543
2544         /* Delete all of the filters */
2545         list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2546                 list_del(&f->list);
2547                 kfree(f);
2548         }
2549
2550         list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2551                 list_del(&fv->list);
2552                 kfree(fv);
2553         }
2554
2555         spin_unlock_bh(&adapter->mac_vlan_list_lock);
2556
2557         spin_lock_bh(&adapter->cloud_filter_list_lock);
2558         list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2559                 list_del(&cf->list);
2560                 kfree(cf);
2561                 adapter->num_cloud_filters--;
2562         }
2563         spin_unlock_bh(&adapter->cloud_filter_list_lock);
2564
2565         iavf_free_misc_irq(adapter);
2566         iavf_reset_interrupt_capability(adapter);
2567         iavf_free_q_vectors(adapter);
2568         iavf_free_queues(adapter);
2569         memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2570         iavf_shutdown_adminq(&adapter->hw);
2571         adapter->netdev->flags &= ~IFF_UP;
2572         mutex_unlock(&adapter->crit_lock);
2573         adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2574         iavf_change_state(adapter, __IAVF_DOWN);
2575         wake_up(&adapter->down_waitqueue);
2576         dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2577 }
2578
2579 /**
2580  * iavf_reset_task - Call-back task to handle hardware reset
2581  * @work: pointer to work_struct
2582  *
2583  * During reset we need to shut down and reinitialize the admin queue
2584  * before we can use it to communicate with the PF again. We also clear
2585  * and reinit the rings because that context is lost as well.
2586  **/
2587 static void iavf_reset_task(struct work_struct *work)
2588 {
2589         struct iavf_adapter *adapter = container_of(work,
2590                                                       struct iavf_adapter,
2591                                                       reset_task);
2592         struct virtchnl_vf_resource *vfres = adapter->vf_res;
2593         struct net_device *netdev = adapter->netdev;
2594         struct iavf_hw *hw = &adapter->hw;
2595         struct iavf_mac_filter *f, *ftmp;
2596         struct iavf_cloud_filter *cf;
2597         u32 reg_val;
2598         int i = 0, err;
2599         bool running;
2600
2601         /* When device is being removed it doesn't make sense to run the reset
2602          * task, just return in such a case.
2603          */
2604         if (mutex_is_locked(&adapter->remove_lock))
2605                 return;
2606
2607         if (iavf_lock_timeout(&adapter->crit_lock, 200)) {
2608                 schedule_work(&adapter->reset_task);
2609                 return;
2610         }
2611         while (!mutex_trylock(&adapter->client_lock))
2612                 usleep_range(500, 1000);
2613         if (CLIENT_ENABLED(adapter)) {
2614                 adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN |
2615                                     IAVF_FLAG_CLIENT_NEEDS_CLOSE |
2616                                     IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS |
2617                                     IAVF_FLAG_SERVICE_CLIENT_REQUESTED);
2618                 cancel_delayed_work_sync(&adapter->client_task);
2619                 iavf_notify_client_close(&adapter->vsi, true);
2620         }
2621         iavf_misc_irq_disable(adapter);
2622         if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2623                 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
2624                 /* Restart the AQ here. If we have been reset but didn't
2625                  * detect it, or if the PF had to reinit, our AQ will be hosed.
2626                  */
2627                 iavf_shutdown_adminq(hw);
2628                 iavf_init_adminq(hw);
2629                 iavf_request_reset(adapter);
2630         }
2631         adapter->flags |= IAVF_FLAG_RESET_PENDING;
2632
2633         /* poll until we see the reset actually happen */
2634         for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
2635                 reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
2636                           IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2637                 if (!reg_val)
2638                         break;
2639                 usleep_range(5000, 10000);
2640         }
2641         if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
2642                 dev_info(&adapter->pdev->dev, "Never saw reset\n");
2643                 goto continue_reset; /* act like the reset happened */
2644         }
2645
2646         /* wait until the reset is complete and the PF is responding to us */
2647         for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
2648                 /* sleep first to make sure a minimum wait time is met */
2649                 msleep(IAVF_RESET_WAIT_MS);
2650
2651                 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2652                           IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2653                 if (reg_val == VIRTCHNL_VFR_VFACTIVE)
2654                         break;
2655         }
2656
2657         pci_set_master(adapter->pdev);
2658         pci_restore_msi_state(adapter->pdev);
2659
2660         if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
2661                 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
2662                         reg_val);
2663                 iavf_disable_vf(adapter);
2664                 mutex_unlock(&adapter->client_lock);
2665                 return; /* Do not attempt to reinit. It's dead, Jim. */
2666         }
2667
2668 continue_reset:
2669         /* We don't use netif_running() because it may be true prior to
2670          * ndo_open() returning, so we can't assume it means all our open
2671          * tasks have finished, since we're not holding the rtnl_lock here.
2672          */
2673         running = ((adapter->state == __IAVF_RUNNING) ||
2674                    (adapter->state == __IAVF_RESETTING));
2675
2676         if (running) {
2677                 netdev->flags &= ~IFF_UP;
2678                 netif_carrier_off(netdev);
2679                 netif_tx_stop_all_queues(netdev);
2680                 adapter->link_up = false;
2681                 iavf_napi_disable_all(adapter);
2682         }
2683         iavf_irq_disable(adapter);
2684
2685         iavf_change_state(adapter, __IAVF_RESETTING);
2686         adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2687
2688         /* free the Tx/Rx rings and descriptors, might be better to just
2689          * re-use them sometime in the future
2690          */
2691         iavf_free_all_rx_resources(adapter);
2692         iavf_free_all_tx_resources(adapter);
2693
2694         adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
2695         /* kill and reinit the admin queue */
2696         iavf_shutdown_adminq(hw);
2697         adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2698         err = iavf_init_adminq(hw);
2699         if (err)
2700                 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
2701                          err);
2702         adapter->aq_required = 0;
2703
2704         if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2705                 err = iavf_reinit_interrupt_scheme(adapter);
2706                 if (err)
2707                         goto reset_err;
2708         }
2709
2710         if (RSS_AQ(adapter)) {
2711                 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2712         } else {
2713                 err = iavf_init_rss(adapter);
2714                 if (err)
2715                         goto reset_err;
2716         }
2717
2718         adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
2719         /* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been
2720          * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here,
2721          * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until
2722          * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have
2723          * been successfully sent and negotiated
2724          */
2725         adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS;
2726         adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
2727
2728         spin_lock_bh(&adapter->mac_vlan_list_lock);
2729
2730         /* Delete filter for the current MAC address, it could have
2731          * been changed by the PF via administratively set MAC.
2732          * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
2733          */
2734         list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2735                 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
2736                         list_del(&f->list);
2737                         kfree(f);
2738                 }
2739         }
2740         /* re-add all MAC filters */
2741         list_for_each_entry(f, &adapter->mac_filter_list, list) {
2742                 f->add = true;
2743         }
2744         spin_unlock_bh(&adapter->mac_vlan_list_lock);
2745
2746         /* check if TCs are running and re-add all cloud filters */
2747         spin_lock_bh(&adapter->cloud_filter_list_lock);
2748         if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
2749             adapter->num_tc) {
2750                 list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
2751                         cf->add = true;
2752                 }
2753         }
2754         spin_unlock_bh(&adapter->cloud_filter_list_lock);
2755
2756         adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
2757         adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
2758         iavf_misc_irq_enable(adapter);
2759
2760         mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2);
2761
2762         /* We were running when the reset started, so we need to restore some
2763          * state here.
2764          */
2765         if (running) {
2766                 /* allocate transmit descriptors */
2767                 err = iavf_setup_all_tx_resources(adapter);
2768                 if (err)
2769                         goto reset_err;
2770
2771                 /* allocate receive descriptors */
2772                 err = iavf_setup_all_rx_resources(adapter);
2773                 if (err)
2774                         goto reset_err;
2775
2776                 if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2777                         err = iavf_request_traffic_irqs(adapter, netdev->name);
2778                         if (err)
2779                                 goto reset_err;
2780
2781                         adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
2782                 }
2783
2784                 iavf_configure(adapter);
2785
2786                 /* iavf_up_complete() will switch device back
2787                  * to __IAVF_RUNNING
2788                  */
2789                 iavf_up_complete(adapter);
2790                 netdev->flags |= IFF_UP;
2791                 iavf_irq_enable(adapter, true);
2792         } else {
2793                 iavf_change_state(adapter, __IAVF_DOWN);
2794                 wake_up(&adapter->down_waitqueue);
2795         }
2796         mutex_unlock(&adapter->client_lock);
2797         mutex_unlock(&adapter->crit_lock);
2798
2799         return;
2800 reset_err:
2801         mutex_unlock(&adapter->client_lock);
2802         mutex_unlock(&adapter->crit_lock);
2803         if (running) {
2804                 iavf_change_state(adapter, __IAVF_RUNNING);
2805                 netdev->flags |= IFF_UP;
2806         }
2807         dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
2808         iavf_close(netdev);
2809 }
2810
2811 /**
2812  * iavf_adminq_task - worker thread to clean the admin queue
2813  * @work: pointer to work_struct containing our data
2814  **/
2815 static void iavf_adminq_task(struct work_struct *work)
2816 {
2817         struct iavf_adapter *adapter =
2818                 container_of(work, struct iavf_adapter, adminq_task);
2819         struct iavf_hw *hw = &adapter->hw;
2820         struct iavf_arq_event_info event;
2821         enum virtchnl_ops v_op;
2822         enum iavf_status ret, v_ret;
2823         u32 val, oldval;
2824         u16 pending;
2825
2826         if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2827                 goto out;
2828
2829         event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
2830         event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
2831         if (!event.msg_buf)
2832                 goto out;
2833
2834         if (iavf_lock_timeout(&adapter->crit_lock, 200))
2835                 goto freedom;
2836         do {
2837                 ret = iavf_clean_arq_element(hw, &event, &pending);
2838                 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
2839                 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
2840
2841                 if (ret || !v_op)
2842                         break; /* No event to process or error cleaning ARQ */
2843
2844                 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
2845                                          event.msg_len);
2846                 if (pending != 0)
2847                         memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
2848         } while (pending);
2849         mutex_unlock(&adapter->crit_lock);
2850
2851         if ((adapter->flags &
2852              (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) ||
2853             adapter->state == __IAVF_RESETTING)
2854                 goto freedom;
2855
2856         /* check for error indications */
2857         val = rd32(hw, hw->aq.arq.len);
2858         if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */
2859                 goto freedom;
2860         oldval = val;
2861         if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
2862                 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
2863                 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
2864         }
2865         if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
2866                 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
2867                 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
2868         }
2869         if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
2870                 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
2871                 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
2872         }
2873         if (oldval != val)
2874                 wr32(hw, hw->aq.arq.len, val);
2875
2876         val = rd32(hw, hw->aq.asq.len);
2877         oldval = val;
2878         if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
2879                 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
2880                 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
2881         }
2882         if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
2883                 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
2884                 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
2885         }
2886         if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
2887                 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
2888                 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
2889         }
2890         if (oldval != val)
2891                 wr32(hw, hw->aq.asq.len, val);
2892
2893 freedom:
2894         kfree(event.msg_buf);
2895 out:
2896         /* re-enable Admin queue interrupt cause */
2897         iavf_misc_irq_enable(adapter);
2898 }
2899
2900 /**
2901  * iavf_client_task - worker thread to perform client work
2902  * @work: pointer to work_struct containing our data
2903  *
2904  * This task handles client interactions. Because client calls can be
2905  * reentrant, we can't handle them in the watchdog.
2906  **/
2907 static void iavf_client_task(struct work_struct *work)
2908 {
2909         struct iavf_adapter *adapter =
2910                 container_of(work, struct iavf_adapter, client_task.work);
2911
2912         /* If we can't get the client bit, just give up. We'll be rescheduled
2913          * later.
2914          */
2915
2916         if (!mutex_trylock(&adapter->client_lock))
2917                 return;
2918
2919         if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) {
2920                 iavf_client_subtask(adapter);
2921                 adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
2922                 goto out;
2923         }
2924         if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) {
2925                 iavf_notify_client_l2_params(&adapter->vsi);
2926                 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS;
2927                 goto out;
2928         }
2929         if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) {
2930                 iavf_notify_client_close(&adapter->vsi, false);
2931                 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE;
2932                 goto out;
2933         }
2934         if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) {
2935                 iavf_notify_client_open(&adapter->vsi);
2936                 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN;
2937         }
2938 out:
2939         mutex_unlock(&adapter->client_lock);
2940 }
2941
2942 /**
2943  * iavf_free_all_tx_resources - Free Tx Resources for All Queues
2944  * @adapter: board private structure
2945  *
2946  * Free all transmit software resources
2947  **/
2948 void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
2949 {
2950         int i;
2951
2952         if (!adapter->tx_rings)
2953                 return;
2954
2955         for (i = 0; i < adapter->num_active_queues; i++)
2956                 if (adapter->tx_rings[i].desc)
2957                         iavf_free_tx_resources(&adapter->tx_rings[i]);
2958 }
2959
2960 /**
2961  * iavf_setup_all_tx_resources - allocate all queues Tx resources
2962  * @adapter: board private structure
2963  *
2964  * If this function returns with an error, then it's possible one or
2965  * more of the rings is populated (while the rest are not).  It is the
2966  * callers duty to clean those orphaned rings.
2967  *
2968  * Return 0 on success, negative on failure
2969  **/
2970 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
2971 {
2972         int i, err = 0;
2973
2974         for (i = 0; i < adapter->num_active_queues; i++) {
2975                 adapter->tx_rings[i].count = adapter->tx_desc_count;
2976                 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
2977                 if (!err)
2978                         continue;
2979                 dev_err(&adapter->pdev->dev,
2980                         "Allocation for Tx Queue %u failed\n", i);
2981                 break;
2982         }
2983
2984         return err;
2985 }
2986
2987 /**
2988  * iavf_setup_all_rx_resources - allocate all queues Rx resources
2989  * @adapter: board private structure
2990  *
2991  * If this function returns with an error, then it's possible one or
2992  * more of the rings is populated (while the rest are not).  It is the
2993  * callers duty to clean those orphaned rings.
2994  *
2995  * Return 0 on success, negative on failure
2996  **/
2997 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
2998 {
2999         int i, err = 0;
3000
3001         for (i = 0; i < adapter->num_active_queues; i++) {
3002                 adapter->rx_rings[i].count = adapter->rx_desc_count;
3003                 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
3004                 if (!err)
3005                         continue;
3006                 dev_err(&adapter->pdev->dev,
3007                         "Allocation for Rx Queue %u failed\n", i);
3008                 break;
3009         }
3010         return err;
3011 }
3012
3013 /**
3014  * iavf_free_all_rx_resources - Free Rx Resources for All Queues
3015  * @adapter: board private structure
3016  *
3017  * Free all receive software resources
3018  **/
3019 void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
3020 {
3021         int i;
3022
3023         if (!adapter->rx_rings)
3024                 return;
3025
3026         for (i = 0; i < adapter->num_active_queues; i++)
3027                 if (adapter->rx_rings[i].desc)
3028                         iavf_free_rx_resources(&adapter->rx_rings[i]);
3029 }
3030
3031 /**
3032  * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
3033  * @adapter: board private structure
3034  * @max_tx_rate: max Tx bw for a tc
3035  **/
3036 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
3037                                       u64 max_tx_rate)
3038 {
3039         int speed = 0, ret = 0;
3040
3041         if (ADV_LINK_SUPPORT(adapter)) {
3042                 if (adapter->link_speed_mbps < U32_MAX) {
3043                         speed = adapter->link_speed_mbps;
3044                         goto validate_bw;
3045                 } else {
3046                         dev_err(&adapter->pdev->dev, "Unknown link speed\n");
3047                         return -EINVAL;
3048                 }
3049         }
3050
3051         switch (adapter->link_speed) {
3052         case VIRTCHNL_LINK_SPEED_40GB:
3053                 speed = SPEED_40000;
3054                 break;
3055         case VIRTCHNL_LINK_SPEED_25GB:
3056                 speed = SPEED_25000;
3057                 break;
3058         case VIRTCHNL_LINK_SPEED_20GB:
3059                 speed = SPEED_20000;
3060                 break;
3061         case VIRTCHNL_LINK_SPEED_10GB:
3062                 speed = SPEED_10000;
3063                 break;
3064         case VIRTCHNL_LINK_SPEED_5GB:
3065                 speed = SPEED_5000;
3066                 break;
3067         case VIRTCHNL_LINK_SPEED_2_5GB:
3068                 speed = SPEED_2500;
3069                 break;
3070         case VIRTCHNL_LINK_SPEED_1GB:
3071                 speed = SPEED_1000;
3072                 break;
3073         case VIRTCHNL_LINK_SPEED_100MB:
3074                 speed = SPEED_100;
3075                 break;
3076         default:
3077                 break;
3078         }
3079
3080 validate_bw:
3081         if (max_tx_rate > speed) {
3082                 dev_err(&adapter->pdev->dev,
3083                         "Invalid tx rate specified\n");
3084                 ret = -EINVAL;
3085         }
3086
3087         return ret;
3088 }
3089
3090 /**
3091  * iavf_validate_ch_config - validate queue mapping info
3092  * @adapter: board private structure
3093  * @mqprio_qopt: queue parameters
3094  *
3095  * This function validates if the config provided by the user to
3096  * configure queue channels is valid or not. Returns 0 on a valid
3097  * config.
3098  **/
3099 static int iavf_validate_ch_config(struct iavf_adapter *adapter,
3100                                    struct tc_mqprio_qopt_offload *mqprio_qopt)
3101 {
3102         u64 total_max_rate = 0;
3103         int i, num_qps = 0;
3104         u64 tx_rate = 0;
3105         int ret = 0;
3106
3107         if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
3108             mqprio_qopt->qopt.num_tc < 1)
3109                 return -EINVAL;
3110
3111         for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
3112                 if (!mqprio_qopt->qopt.count[i] ||
3113                     mqprio_qopt->qopt.offset[i] != num_qps)
3114                         return -EINVAL;
3115                 if (mqprio_qopt->min_rate[i]) {
3116                         dev_err(&adapter->pdev->dev,
3117                                 "Invalid min tx rate (greater than 0) specified\n");
3118                         return -EINVAL;
3119                 }
3120                 /*convert to Mbps */
3121                 tx_rate = div_u64(mqprio_qopt->max_rate[i],
3122                                   IAVF_MBPS_DIVISOR);
3123                 total_max_rate += tx_rate;
3124                 num_qps += mqprio_qopt->qopt.count[i];
3125         }
3126         if (num_qps > adapter->num_active_queues) {
3127                 dev_err(&adapter->pdev->dev,
3128                         "Cannot support requested number of queues\n");
3129                 return -EINVAL;
3130         }
3131
3132         ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
3133         return ret;
3134 }
3135
3136 /**
3137  * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
3138  * @adapter: board private structure
3139  **/
3140 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
3141 {
3142         struct iavf_cloud_filter *cf, *cftmp;
3143
3144         spin_lock_bh(&adapter->cloud_filter_list_lock);
3145         list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
3146                                  list) {
3147                 list_del(&cf->list);
3148                 kfree(cf);
3149                 adapter->num_cloud_filters--;
3150         }
3151         spin_unlock_bh(&adapter->cloud_filter_list_lock);
3152 }
3153
3154 /**
3155  * __iavf_setup_tc - configure multiple traffic classes
3156  * @netdev: network interface device structure
3157  * @type_data: tc offload data
3158  *
3159  * This function processes the config information provided by the
3160  * user to configure traffic classes/queue channels and packages the
3161  * information to request the PF to setup traffic classes.
3162  *
3163  * Returns 0 on success.
3164  **/
3165 static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
3166 {
3167         struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
3168         struct iavf_adapter *adapter = netdev_priv(netdev);
3169         struct virtchnl_vf_resource *vfres = adapter->vf_res;
3170         u8 num_tc = 0, total_qps = 0;
3171         int ret = 0, netdev_tc = 0;
3172         u64 max_tx_rate;
3173         u16 mode;
3174         int i;
3175
3176         num_tc = mqprio_qopt->qopt.num_tc;
3177         mode = mqprio_qopt->mode;
3178
3179         /* delete queue_channel */
3180         if (!mqprio_qopt->qopt.hw) {
3181                 if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
3182                         /* reset the tc configuration */
3183                         netdev_reset_tc(netdev);
3184                         adapter->num_tc = 0;
3185                         netif_tx_stop_all_queues(netdev);
3186                         netif_tx_disable(netdev);
3187                         iavf_del_all_cloud_filters(adapter);
3188                         adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
3189                         goto exit;
3190                 } else {
3191                         return -EINVAL;
3192                 }
3193         }
3194
3195         /* add queue channel */
3196         if (mode == TC_MQPRIO_MODE_CHANNEL) {
3197                 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
3198                         dev_err(&adapter->pdev->dev, "ADq not supported\n");
3199                         return -EOPNOTSUPP;
3200                 }
3201                 if (adapter->ch_config.state != __IAVF_TC_INVALID) {
3202                         dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
3203                         return -EINVAL;
3204                 }
3205
3206                 ret = iavf_validate_ch_config(adapter, mqprio_qopt);
3207                 if (ret)
3208                         return ret;
3209                 /* Return if same TC config is requested */
3210                 if (adapter->num_tc == num_tc)
3211                         return 0;
3212                 adapter->num_tc = num_tc;
3213
3214                 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3215                         if (i < num_tc) {
3216                                 adapter->ch_config.ch_info[i].count =
3217                                         mqprio_qopt->qopt.count[i];
3218                                 adapter->ch_config.ch_info[i].offset =
3219                                         mqprio_qopt->qopt.offset[i];
3220                                 total_qps += mqprio_qopt->qopt.count[i];
3221                                 max_tx_rate = mqprio_qopt->max_rate[i];
3222                                 /* convert to Mbps */
3223                                 max_tx_rate = div_u64(max_tx_rate,
3224                                                       IAVF_MBPS_DIVISOR);
3225                                 adapter->ch_config.ch_info[i].max_tx_rate =
3226                                         max_tx_rate;
3227                         } else {
3228                                 adapter->ch_config.ch_info[i].count = 1;
3229                                 adapter->ch_config.ch_info[i].offset = 0;
3230                         }
3231                 }
3232                 adapter->ch_config.total_qps = total_qps;
3233                 netif_tx_stop_all_queues(netdev);
3234                 netif_tx_disable(netdev);
3235                 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
3236                 netdev_reset_tc(netdev);
3237                 /* Report the tc mapping up the stack */
3238                 netdev_set_num_tc(adapter->netdev, num_tc);
3239                 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3240                         u16 qcount = mqprio_qopt->qopt.count[i];
3241                         u16 qoffset = mqprio_qopt->qopt.offset[i];
3242
3243                         if (i < num_tc)
3244                                 netdev_set_tc_queue(netdev, netdev_tc++, qcount,
3245                                                     qoffset);
3246                 }
3247         }
3248 exit:
3249         return ret;
3250 }
3251
3252 /**
3253  * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
3254  * @adapter: board private structure
3255  * @f: pointer to struct flow_cls_offload
3256  * @filter: pointer to cloud filter structure
3257  */
3258 static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
3259                                  struct flow_cls_offload *f,
3260                                  struct iavf_cloud_filter *filter)
3261 {
3262         struct flow_rule *rule = flow_cls_offload_flow_rule(f);
3263         struct flow_dissector *dissector = rule->match.dissector;
3264         u16 n_proto_mask = 0;
3265         u16 n_proto_key = 0;
3266         u8 field_flags = 0;
3267         u16 addr_type = 0;
3268         u16 n_proto = 0;
3269         int i = 0;
3270         struct virtchnl_filter *vf = &filter->f;
3271
3272         if (dissector->used_keys &
3273             ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
3274               BIT(FLOW_DISSECTOR_KEY_BASIC) |
3275               BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
3276               BIT(FLOW_DISSECTOR_KEY_VLAN) |
3277               BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
3278               BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
3279               BIT(FLOW_DISSECTOR_KEY_PORTS) |
3280               BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
3281                 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n",
3282                         dissector->used_keys);
3283                 return -EOPNOTSUPP;
3284         }
3285
3286         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
3287                 struct flow_match_enc_keyid match;
3288
3289                 flow_rule_match_enc_keyid(rule, &match);
3290                 if (match.mask->keyid != 0)
3291                         field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
3292         }
3293
3294         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
3295                 struct flow_match_basic match;
3296
3297                 flow_rule_match_basic(rule, &match);
3298                 n_proto_key = ntohs(match.key->n_proto);
3299                 n_proto_mask = ntohs(match.mask->n_proto);
3300
3301                 if (n_proto_key == ETH_P_ALL) {
3302                         n_proto_key = 0;
3303                         n_proto_mask = 0;
3304                 }
3305                 n_proto = n_proto_key & n_proto_mask;
3306                 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
3307                         return -EINVAL;
3308                 if (n_proto == ETH_P_IPV6) {
3309                         /* specify flow type as TCP IPv6 */
3310                         vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
3311                 }
3312
3313                 if (match.key->ip_proto != IPPROTO_TCP) {
3314                         dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
3315                         return -EINVAL;
3316                 }
3317         }
3318
3319         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
3320                 struct flow_match_eth_addrs match;
3321
3322                 flow_rule_match_eth_addrs(rule, &match);
3323
3324                 /* use is_broadcast and is_zero to check for all 0xf or 0 */
3325                 if (!is_zero_ether_addr(match.mask->dst)) {
3326                         if (is_broadcast_ether_addr(match.mask->dst)) {
3327                                 field_flags |= IAVF_CLOUD_FIELD_OMAC;
3328                         } else {
3329                                 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
3330                                         match.mask->dst);
3331                                 return -EINVAL;
3332                         }
3333                 }
3334
3335                 if (!is_zero_ether_addr(match.mask->src)) {
3336                         if (is_broadcast_ether_addr(match.mask->src)) {
3337                                 field_flags |= IAVF_CLOUD_FIELD_IMAC;
3338                         } else {
3339                                 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
3340                                         match.mask->src);
3341                                 return -EINVAL;
3342                         }
3343                 }
3344
3345                 if (!is_zero_ether_addr(match.key->dst))
3346                         if (is_valid_ether_addr(match.key->dst) ||
3347                             is_multicast_ether_addr(match.key->dst)) {
3348                                 /* set the mask if a valid dst_mac address */
3349                                 for (i = 0; i < ETH_ALEN; i++)
3350                                         vf->mask.tcp_spec.dst_mac[i] |= 0xff;
3351                                 ether_addr_copy(vf->data.tcp_spec.dst_mac,
3352                                                 match.key->dst);
3353                         }
3354
3355                 if (!is_zero_ether_addr(match.key->src))
3356                         if (is_valid_ether_addr(match.key->src) ||
3357                             is_multicast_ether_addr(match.key->src)) {
3358                                 /* set the mask if a valid dst_mac address */
3359                                 for (i = 0; i < ETH_ALEN; i++)
3360                                         vf->mask.tcp_spec.src_mac[i] |= 0xff;
3361                                 ether_addr_copy(vf->data.tcp_spec.src_mac,
3362                                                 match.key->src);
3363                 }
3364         }
3365
3366         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
3367                 struct flow_match_vlan match;
3368
3369                 flow_rule_match_vlan(rule, &match);
3370                 if (match.mask->vlan_id) {
3371                         if (match.mask->vlan_id == VLAN_VID_MASK) {
3372                                 field_flags |= IAVF_CLOUD_FIELD_IVLAN;
3373                         } else {
3374                                 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
3375                                         match.mask->vlan_id);
3376                                 return -EINVAL;
3377                         }
3378                 }
3379                 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
3380                 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
3381         }
3382
3383         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
3384                 struct flow_match_control match;
3385
3386                 flow_rule_match_control(rule, &match);
3387                 addr_type = match.key->addr_type;
3388         }
3389
3390         if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
3391                 struct flow_match_ipv4_addrs match;
3392
3393                 flow_rule_match_ipv4_addrs(rule, &match);
3394                 if (match.mask->dst) {
3395                         if (match.mask->dst == cpu_to_be32(0xffffffff)) {
3396                                 field_flags |= IAVF_CLOUD_FIELD_IIP;
3397                         } else {
3398                                 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
3399                                         be32_to_cpu(match.mask->dst));
3400                                 return -EINVAL;
3401                         }
3402                 }
3403
3404                 if (match.mask->src) {
3405                         if (match.mask->src == cpu_to_be32(0xffffffff)) {
3406                                 field_flags |= IAVF_CLOUD_FIELD_IIP;
3407                         } else {
3408                                 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
3409                                         be32_to_cpu(match.mask->dst));
3410                                 return -EINVAL;
3411                         }
3412                 }
3413
3414                 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
3415                         dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
3416                         return -EINVAL;
3417                 }
3418                 if (match.key->dst) {
3419                         vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
3420                         vf->data.tcp_spec.dst_ip[0] = match.key->dst;
3421                 }
3422                 if (match.key->src) {
3423                         vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
3424                         vf->data.tcp_spec.src_ip[0] = match.key->src;
3425                 }
3426         }
3427
3428         if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
3429                 struct flow_match_ipv6_addrs match;
3430
3431                 flow_rule_match_ipv6_addrs(rule, &match);
3432
3433                 /* validate mask, make sure it is not IPV6_ADDR_ANY */
3434                 if (ipv6_addr_any(&match.mask->dst)) {
3435                         dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
3436                                 IPV6_ADDR_ANY);
3437                         return -EINVAL;
3438                 }
3439
3440                 /* src and dest IPv6 address should not be LOOPBACK
3441                  * (0:0:0:0:0:0:0:1) which can be represented as ::1
3442                  */
3443                 if (ipv6_addr_loopback(&match.key->dst) ||
3444                     ipv6_addr_loopback(&match.key->src)) {
3445                         dev_err(&adapter->pdev->dev,
3446                                 "ipv6 addr should not be loopback\n");
3447                         return -EINVAL;
3448                 }
3449                 if (!ipv6_addr_any(&match.mask->dst) ||
3450                     !ipv6_addr_any(&match.mask->src))
3451                         field_flags |= IAVF_CLOUD_FIELD_IIP;
3452
3453                 for (i = 0; i < 4; i++)
3454                         vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
3455                 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
3456                        sizeof(vf->data.tcp_spec.dst_ip));
3457                 for (i = 0; i < 4; i++)
3458                         vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
3459                 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
3460                        sizeof(vf->data.tcp_spec.src_ip));
3461         }
3462         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
3463                 struct flow_match_ports match;
3464
3465                 flow_rule_match_ports(rule, &match);
3466                 if (match.mask->src) {
3467                         if (match.mask->src == cpu_to_be16(0xffff)) {
3468                                 field_flags |= IAVF_CLOUD_FIELD_IIP;
3469                         } else {
3470                                 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
3471                                         be16_to_cpu(match.mask->src));
3472                                 return -EINVAL;
3473                         }
3474                 }
3475
3476                 if (match.mask->dst) {
3477                         if (match.mask->dst == cpu_to_be16(0xffff)) {
3478                                 field_flags |= IAVF_CLOUD_FIELD_IIP;
3479                         } else {
3480                                 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
3481                                         be16_to_cpu(match.mask->dst));
3482                                 return -EINVAL;
3483                         }
3484                 }
3485                 if (match.key->dst) {
3486                         vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
3487                         vf->data.tcp_spec.dst_port = match.key->dst;
3488                 }
3489
3490                 if (match.key->src) {
3491                         vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
3492                         vf->data.tcp_spec.src_port = match.key->src;
3493                 }
3494         }
3495         vf->field_flags = field_flags;
3496
3497         return 0;
3498 }
3499
3500 /**
3501  * iavf_handle_tclass - Forward to a traffic class on the device
3502  * @adapter: board private structure
3503  * @tc: traffic class index on the device
3504  * @filter: pointer to cloud filter structure
3505  */
3506 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
3507                               struct iavf_cloud_filter *filter)
3508 {
3509         if (tc == 0)
3510                 return 0;
3511         if (tc < adapter->num_tc) {
3512                 if (!filter->f.data.tcp_spec.dst_port) {
3513                         dev_err(&adapter->pdev->dev,
3514                                 "Specify destination port to redirect to traffic class other than TC0\n");
3515                         return -EINVAL;
3516                 }
3517         }
3518         /* redirect to a traffic class on the same device */
3519         filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
3520         filter->f.action_meta = tc;
3521         return 0;
3522 }
3523
3524 /**
3525  * iavf_configure_clsflower - Add tc flower filters
3526  * @adapter: board private structure
3527  * @cls_flower: Pointer to struct flow_cls_offload
3528  */
3529 static int iavf_configure_clsflower(struct iavf_adapter *adapter,
3530                                     struct flow_cls_offload *cls_flower)
3531 {
3532         int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
3533         struct iavf_cloud_filter *filter = NULL;
3534         int err = -EINVAL, count = 50;
3535
3536         if (tc < 0) {
3537                 dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
3538                 return -EINVAL;
3539         }
3540
3541         filter = kzalloc(sizeof(*filter), GFP_KERNEL);
3542         if (!filter)
3543                 return -ENOMEM;
3544
3545         while (!mutex_trylock(&adapter->crit_lock)) {
3546                 if (--count == 0) {
3547                         kfree(filter);
3548                         return err;
3549                 }
3550                 udelay(1);
3551         }
3552
3553         filter->cookie = cls_flower->cookie;
3554
3555         /* set the mask to all zeroes to begin with */
3556         memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
3557         /* start out with flow type and eth type IPv4 to begin with */
3558         filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
3559         err = iavf_parse_cls_flower(adapter, cls_flower, filter);
3560         if (err)
3561                 goto err;
3562
3563         err = iavf_handle_tclass(adapter, tc, filter);
3564         if (err)
3565                 goto err;
3566
3567         /* add filter to the list */
3568         spin_lock_bh(&adapter->cloud_filter_list_lock);
3569         list_add_tail(&filter->list, &adapter->cloud_filter_list);
3570         adapter->num_cloud_filters++;
3571         filter->add = true;
3572         adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3573         spin_unlock_bh(&adapter->cloud_filter_list_lock);
3574 err:
3575         if (err)
3576                 kfree(filter);
3577
3578         mutex_unlock(&adapter->crit_lock);
3579         return err;
3580 }
3581
3582 /* iavf_find_cf - Find the cloud filter in the list
3583  * @adapter: Board private structure
3584  * @cookie: filter specific cookie
3585  *
3586  * Returns ptr to the filter object or NULL. Must be called while holding the
3587  * cloud_filter_list_lock.
3588  */
3589 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3590                                               unsigned long *cookie)
3591 {
3592         struct iavf_cloud_filter *filter = NULL;
3593
3594         if (!cookie)
3595                 return NULL;
3596
3597         list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3598                 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3599                         return filter;
3600         }
3601         return NULL;
3602 }
3603
3604 /**
3605  * iavf_delete_clsflower - Remove tc flower filters
3606  * @adapter: board private structure
3607  * @cls_flower: Pointer to struct flow_cls_offload
3608  */
3609 static int iavf_delete_clsflower(struct iavf_adapter *adapter,
3610                                  struct flow_cls_offload *cls_flower)
3611 {
3612         struct iavf_cloud_filter *filter = NULL;
3613         int err = 0;
3614
3615         spin_lock_bh(&adapter->cloud_filter_list_lock);
3616         filter = iavf_find_cf(adapter, &cls_flower->cookie);
3617         if (filter) {
3618                 filter->del = true;
3619                 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
3620         } else {
3621                 err = -EINVAL;
3622         }
3623         spin_unlock_bh(&adapter->cloud_filter_list_lock);
3624
3625         return err;
3626 }
3627
3628 /**
3629  * iavf_setup_tc_cls_flower - flower classifier offloads
3630  * @adapter: board private structure
3631  * @cls_flower: pointer to flow_cls_offload struct with flow info
3632  */
3633 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
3634                                     struct flow_cls_offload *cls_flower)
3635 {
3636         switch (cls_flower->command) {
3637         case FLOW_CLS_REPLACE:
3638                 return iavf_configure_clsflower(adapter, cls_flower);
3639         case FLOW_CLS_DESTROY:
3640                 return iavf_delete_clsflower(adapter, cls_flower);
3641         case FLOW_CLS_STATS:
3642                 return -EOPNOTSUPP;
3643         default:
3644                 return -EOPNOTSUPP;
3645         }
3646 }
3647
3648 /**
3649  * iavf_setup_tc_block_cb - block callback for tc
3650  * @type: type of offload
3651  * @type_data: offload data
3652  * @cb_priv:
3653  *
3654  * This function is the block callback for traffic classes
3655  **/
3656 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3657                                   void *cb_priv)
3658 {
3659         struct iavf_adapter *adapter = cb_priv;
3660
3661         if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
3662                 return -EOPNOTSUPP;
3663
3664         switch (type) {
3665         case TC_SETUP_CLSFLOWER:
3666                 return iavf_setup_tc_cls_flower(cb_priv, type_data);
3667         default:
3668                 return -EOPNOTSUPP;
3669         }
3670 }
3671
3672 static LIST_HEAD(iavf_block_cb_list);
3673
3674 /**
3675  * iavf_setup_tc - configure multiple traffic classes
3676  * @netdev: network interface device structure
3677  * @type: type of offload
3678  * @type_data: tc offload data
3679  *
3680  * This function is the callback to ndo_setup_tc in the
3681  * netdev_ops.
3682  *
3683  * Returns 0 on success
3684  **/
3685 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
3686                          void *type_data)
3687 {
3688         struct iavf_adapter *adapter = netdev_priv(netdev);
3689
3690         switch (type) {
3691         case TC_SETUP_QDISC_MQPRIO:
3692                 return __iavf_setup_tc(netdev, type_data);
3693         case TC_SETUP_BLOCK:
3694                 return flow_block_cb_setup_simple(type_data,
3695                                                   &iavf_block_cb_list,
3696                                                   iavf_setup_tc_block_cb,
3697                                                   adapter, adapter, true);
3698         default:
3699                 return -EOPNOTSUPP;
3700         }
3701 }
3702
3703 /**
3704  * iavf_open - Called when a network interface is made active
3705  * @netdev: network interface device structure
3706  *
3707  * Returns 0 on success, negative value on failure
3708  *
3709  * The open entry point is called when a network interface is made
3710  * active by the system (IFF_UP).  At this point all resources needed
3711  * for transmit and receive operations are allocated, the interrupt
3712  * handler is registered with the OS, the watchdog is started,
3713  * and the stack is notified that the interface is ready.
3714  **/
3715 static int iavf_open(struct net_device *netdev)
3716 {
3717         struct iavf_adapter *adapter = netdev_priv(netdev);
3718         int err;
3719
3720         if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
3721                 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
3722                 return -EIO;
3723         }
3724
3725         while (!mutex_trylock(&adapter->crit_lock))
3726                 usleep_range(500, 1000);
3727
3728         if (adapter->state != __IAVF_DOWN) {
3729                 err = -EBUSY;
3730                 goto err_unlock;
3731         }
3732
3733         if (adapter->state == __IAVF_RUNNING &&
3734             !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) {
3735                 dev_dbg(&adapter->pdev->dev, "VF is already open.\n");
3736                 err = 0;
3737                 goto err_unlock;
3738         }
3739
3740         /* allocate transmit descriptors */
3741         err = iavf_setup_all_tx_resources(adapter);
3742         if (err)
3743                 goto err_setup_tx;
3744
3745         /* allocate receive descriptors */
3746         err = iavf_setup_all_rx_resources(adapter);
3747         if (err)
3748                 goto err_setup_rx;
3749
3750         /* clear any pending interrupts, may auto mask */
3751         err = iavf_request_traffic_irqs(adapter, netdev->name);
3752         if (err)
3753                 goto err_req_irq;
3754
3755         spin_lock_bh(&adapter->mac_vlan_list_lock);
3756
3757         iavf_add_filter(adapter, adapter->hw.mac.addr);
3758
3759         spin_unlock_bh(&adapter->mac_vlan_list_lock);
3760
3761         /* Restore VLAN filters that were removed with IFF_DOWN */
3762         iavf_restore_filters(adapter);
3763
3764         iavf_configure(adapter);
3765
3766         iavf_up_complete(adapter);
3767
3768         iavf_irq_enable(adapter, true);
3769
3770         mutex_unlock(&adapter->crit_lock);
3771
3772         return 0;
3773
3774 err_req_irq:
3775         iavf_down(adapter);
3776         iavf_free_traffic_irqs(adapter);
3777 err_setup_rx:
3778         iavf_free_all_rx_resources(adapter);
3779 err_setup_tx:
3780         iavf_free_all_tx_resources(adapter);
3781 err_unlock:
3782         mutex_unlock(&adapter->crit_lock);
3783
3784         return err;
3785 }
3786
3787 /**
3788  * iavf_close - Disables a network interface
3789  * @netdev: network interface device structure
3790  *
3791  * Returns 0, this is not allowed to fail
3792  *
3793  * The close entry point is called when an interface is de-activated
3794  * by the OS.  The hardware is still under the drivers control, but
3795  * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
3796  * are freed, along with all transmit and receive resources.
3797  **/
3798 static int iavf_close(struct net_device *netdev)
3799 {
3800         struct iavf_adapter *adapter = netdev_priv(netdev);
3801         int status;
3802
3803         if (adapter->state <= __IAVF_DOWN_PENDING)
3804                 return 0;
3805
3806         while (!mutex_trylock(&adapter->crit_lock))
3807                 usleep_range(500, 1000);
3808
3809         set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3810         if (CLIENT_ENABLED(adapter))
3811                 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE;
3812
3813         iavf_down(adapter);
3814         iavf_change_state(adapter, __IAVF_DOWN_PENDING);
3815         iavf_free_traffic_irqs(adapter);
3816
3817         mutex_unlock(&adapter->crit_lock);
3818
3819         /* We explicitly don't free resources here because the hardware is
3820          * still active and can DMA into memory. Resources are cleared in
3821          * iavf_virtchnl_completion() after we get confirmation from the PF
3822          * driver that the rings have been stopped.
3823          *
3824          * Also, we wait for state to transition to __IAVF_DOWN before
3825          * returning. State change occurs in iavf_virtchnl_completion() after
3826          * VF resources are released (which occurs after PF driver processes and
3827          * responds to admin queue commands).
3828          */
3829
3830         status = wait_event_timeout(adapter->down_waitqueue,
3831                                     adapter->state == __IAVF_DOWN,
3832                                     msecs_to_jiffies(500));
3833         if (!status)
3834                 netdev_warn(netdev, "Device resources not yet released\n");
3835         return 0;
3836 }
3837
3838 /**
3839  * iavf_change_mtu - Change the Maximum Transfer Unit
3840  * @netdev: network interface device structure
3841  * @new_mtu: new value for maximum frame size
3842  *
3843  * Returns 0 on success, negative on failure
3844  **/
3845 static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
3846 {
3847         struct iavf_adapter *adapter = netdev_priv(netdev);
3848
3849         netdev_dbg(netdev, "changing MTU from %d to %d\n",
3850                    netdev->mtu, new_mtu);
3851         netdev->mtu = new_mtu;
3852         if (CLIENT_ENABLED(adapter)) {
3853                 iavf_notify_client_l2_params(&adapter->vsi);
3854                 adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
3855         }
3856         adapter->flags |= IAVF_FLAG_RESET_NEEDED;
3857         queue_work(iavf_wq, &adapter->reset_task);
3858
3859         return 0;
3860 }
3861
3862 #define NETIF_VLAN_OFFLOAD_FEATURES     (NETIF_F_HW_VLAN_CTAG_RX | \
3863                                          NETIF_F_HW_VLAN_CTAG_TX | \
3864                                          NETIF_F_HW_VLAN_STAG_RX | \
3865                                          NETIF_F_HW_VLAN_STAG_TX)
3866
3867 /**
3868  * iavf_set_features - set the netdev feature flags
3869  * @netdev: ptr to the netdev being adjusted
3870  * @features: the feature set that the stack is suggesting
3871  * Note: expects to be called while under rtnl_lock()
3872  **/
3873 static int iavf_set_features(struct net_device *netdev,
3874                              netdev_features_t features)
3875 {
3876         struct iavf_adapter *adapter = netdev_priv(netdev);
3877
3878         /* trigger update on any VLAN feature change */
3879         if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^
3880             (features & NETIF_VLAN_OFFLOAD_FEATURES))
3881                 iavf_set_vlan_offload_features(adapter, netdev->features,
3882                                                features);
3883
3884         return 0;
3885 }
3886
3887 /**
3888  * iavf_features_check - Validate encapsulated packet conforms to limits
3889  * @skb: skb buff
3890  * @dev: This physical port's netdev
3891  * @features: Offload features that the stack believes apply
3892  **/
3893 static netdev_features_t iavf_features_check(struct sk_buff *skb,
3894                                              struct net_device *dev,
3895                                              netdev_features_t features)
3896 {
3897         size_t len;
3898
3899         /* No point in doing any of this if neither checksum nor GSO are
3900          * being requested for this frame.  We can rule out both by just
3901          * checking for CHECKSUM_PARTIAL
3902          */
3903         if (skb->ip_summed != CHECKSUM_PARTIAL)
3904                 return features;
3905
3906         /* We cannot support GSO if the MSS is going to be less than
3907          * 64 bytes.  If it is then we need to drop support for GSO.
3908          */
3909         if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
3910                 features &= ~NETIF_F_GSO_MASK;
3911
3912         /* MACLEN can support at most 63 words */
3913         len = skb_network_header(skb) - skb->data;
3914         if (len & ~(63 * 2))
3915                 goto out_err;
3916
3917         /* IPLEN and EIPLEN can support at most 127 dwords */
3918         len = skb_transport_header(skb) - skb_network_header(skb);
3919         if (len & ~(127 * 4))
3920                 goto out_err;
3921
3922         if (skb->encapsulation) {
3923                 /* L4TUNLEN can support 127 words */
3924                 len = skb_inner_network_header(skb) - skb_transport_header(skb);
3925                 if (len & ~(127 * 2))
3926                         goto out_err;
3927
3928                 /* IPLEN can support at most 127 dwords */
3929                 len = skb_inner_transport_header(skb) -
3930                       skb_inner_network_header(skb);
3931                 if (len & ~(127 * 4))
3932                         goto out_err;
3933         }
3934
3935         /* No need to validate L4LEN as TCP is the only protocol with a
3936          * a flexible value and we support all possible values supported
3937          * by TCP, which is at most 15 dwords
3938          */
3939
3940         return features;
3941 out_err:
3942         return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3943 }
3944
3945 /**
3946  * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off
3947  * @adapter: board private structure
3948  *
3949  * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
3950  * were negotiated determine the VLAN features that can be toggled on and off.
3951  **/
3952 static netdev_features_t
3953 iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter)
3954 {
3955         netdev_features_t hw_features = 0;
3956
3957         if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
3958                 return hw_features;
3959
3960         /* Enable VLAN features if supported */
3961         if (VLAN_ALLOWED(adapter)) {
3962                 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
3963                                 NETIF_F_HW_VLAN_CTAG_RX);
3964         } else if (VLAN_V2_ALLOWED(adapter)) {
3965                 struct virtchnl_vlan_caps *vlan_v2_caps =
3966                         &adapter->vlan_v2_caps;
3967                 struct virtchnl_vlan_supported_caps *stripping_support =
3968                         &vlan_v2_caps->offloads.stripping_support;
3969                 struct virtchnl_vlan_supported_caps *insertion_support =
3970                         &vlan_v2_caps->offloads.insertion_support;
3971
3972                 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
3973                     stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) {
3974                         if (stripping_support->outer &
3975                             VIRTCHNL_VLAN_ETHERTYPE_8100)
3976                                 hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
3977                         if (stripping_support->outer &
3978                             VIRTCHNL_VLAN_ETHERTYPE_88A8)
3979                                 hw_features |= NETIF_F_HW_VLAN_STAG_RX;
3980                 } else if (stripping_support->inner !=
3981                            VIRTCHNL_VLAN_UNSUPPORTED &&
3982                            stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) {
3983                         if (stripping_support->inner &
3984                             VIRTCHNL_VLAN_ETHERTYPE_8100)
3985                                 hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
3986                 }
3987
3988                 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
3989                     insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) {
3990                         if (insertion_support->outer &
3991                             VIRTCHNL_VLAN_ETHERTYPE_8100)
3992                                 hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
3993                         if (insertion_support->outer &
3994                             VIRTCHNL_VLAN_ETHERTYPE_88A8)
3995                                 hw_features |= NETIF_F_HW_VLAN_STAG_TX;
3996                 } else if (insertion_support->inner &&
3997                            insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) {
3998                         if (insertion_support->inner &
3999                             VIRTCHNL_VLAN_ETHERTYPE_8100)
4000                                 hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4001                 }
4002         }
4003
4004         return hw_features;
4005 }
4006
4007 /**
4008  * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures
4009  * @adapter: board private structure
4010  *
4011  * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4012  * were negotiated determine the VLAN features that are enabled by default.
4013  **/
4014 static netdev_features_t
4015 iavf_get_netdev_vlan_features(struct iavf_adapter *adapter)
4016 {
4017         netdev_features_t features = 0;
4018
4019         if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4020                 return features;
4021
4022         if (VLAN_ALLOWED(adapter)) {
4023                 features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4024                         NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX;
4025         } else if (VLAN_V2_ALLOWED(adapter)) {
4026                 struct virtchnl_vlan_caps *vlan_v2_caps =
4027                         &adapter->vlan_v2_caps;
4028                 struct virtchnl_vlan_supported_caps *filtering_support =
4029                         &vlan_v2_caps->filtering.filtering_support;
4030                 struct virtchnl_vlan_supported_caps *stripping_support =
4031                         &vlan_v2_caps->offloads.stripping_support;
4032                 struct virtchnl_vlan_supported_caps *insertion_support =
4033                         &vlan_v2_caps->offloads.insertion_support;
4034                 u32 ethertype_init;
4035
4036                 /* give priority to outer stripping and don't support both outer
4037                  * and inner stripping
4038                  */
4039                 ethertype_init = vlan_v2_caps->offloads.ethertype_init;
4040                 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4041                         if (stripping_support->outer &
4042                             VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4043                             ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4044                                 features |= NETIF_F_HW_VLAN_CTAG_RX;
4045                         else if (stripping_support->outer &
4046                                  VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4047                                  ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4048                                 features |= NETIF_F_HW_VLAN_STAG_RX;
4049                 } else if (stripping_support->inner !=
4050                            VIRTCHNL_VLAN_UNSUPPORTED) {
4051                         if (stripping_support->inner &
4052                             VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4053                             ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4054                                 features |= NETIF_F_HW_VLAN_CTAG_RX;
4055                 }
4056
4057                 /* give priority to outer insertion and don't support both outer
4058                  * and inner insertion
4059                  */
4060                 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4061                         if (insertion_support->outer &
4062                             VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4063                             ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4064                                 features |= NETIF_F_HW_VLAN_CTAG_TX;
4065                         else if (insertion_support->outer &
4066                                  VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4067                                  ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4068                                 features |= NETIF_F_HW_VLAN_STAG_TX;
4069                 } else if (insertion_support->inner !=
4070                            VIRTCHNL_VLAN_UNSUPPORTED) {
4071                         if (insertion_support->inner &
4072                             VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4073                             ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4074                                 features |= NETIF_F_HW_VLAN_CTAG_TX;
4075                 }
4076
4077                 /* give priority to outer filtering and don't bother if both
4078                  * outer and inner filtering are enabled
4079                  */
4080                 ethertype_init = vlan_v2_caps->filtering.ethertype_init;
4081                 if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4082                         if (filtering_support->outer &
4083                             VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4084                             ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4085                                 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4086                         if (filtering_support->outer &
4087                             VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4088                             ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4089                                 features |= NETIF_F_HW_VLAN_STAG_FILTER;
4090                 } else if (filtering_support->inner !=
4091                            VIRTCHNL_VLAN_UNSUPPORTED) {
4092                         if (filtering_support->inner &
4093                             VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4094                             ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4095                                 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4096                         if (filtering_support->inner &
4097                             VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4098                             ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4099                                 features |= NETIF_F_HW_VLAN_STAG_FILTER;
4100                 }
4101         }
4102
4103         return features;
4104 }
4105
4106 #define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \
4107         (!(((requested) & (feature_bit)) && \
4108            !((allowed) & (feature_bit))))
4109
4110 /**
4111  * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support
4112  * @adapter: board private structure
4113  * @requested_features: stack requested NETDEV features
4114  **/
4115 static netdev_features_t
4116 iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter,
4117                               netdev_features_t requested_features)
4118 {
4119         netdev_features_t allowed_features;
4120
4121         allowed_features = iavf_get_netdev_vlan_hw_features(adapter) |
4122                 iavf_get_netdev_vlan_features(adapter);
4123
4124         if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4125                                               allowed_features,
4126                                               NETIF_F_HW_VLAN_CTAG_TX))
4127                 requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4128
4129         if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4130                                               allowed_features,
4131                                               NETIF_F_HW_VLAN_CTAG_RX))
4132                 requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX;
4133
4134         if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4135                                               allowed_features,
4136                                               NETIF_F_HW_VLAN_STAG_TX))
4137                 requested_features &= ~NETIF_F_HW_VLAN_STAG_TX;
4138         if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4139                                               allowed_features,
4140                                               NETIF_F_HW_VLAN_STAG_RX))
4141                 requested_features &= ~NETIF_F_HW_VLAN_STAG_RX;
4142
4143         if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4144                                               allowed_features,
4145                                               NETIF_F_HW_VLAN_CTAG_FILTER))
4146                 requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4147
4148         if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4149                                               allowed_features,
4150                                               NETIF_F_HW_VLAN_STAG_FILTER))
4151                 requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER;
4152
4153         if ((requested_features &
4154              (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
4155             (requested_features &
4156              (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) &&
4157             adapter->vlan_v2_caps.offloads.ethertype_match ==
4158             VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) {
4159                 netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
4160                 requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX |
4161                                         NETIF_F_HW_VLAN_STAG_TX);
4162         }
4163
4164         return requested_features;
4165 }
4166
4167 /**
4168  * iavf_fix_features - fix up the netdev feature bits
4169  * @netdev: our net device
4170  * @features: desired feature bits
4171  *
4172  * Returns fixed-up features bits
4173  **/
4174 static netdev_features_t iavf_fix_features(struct net_device *netdev,
4175                                            netdev_features_t features)
4176 {
4177         struct iavf_adapter *adapter = netdev_priv(netdev);
4178
4179         return iavf_fix_netdev_vlan_features(adapter, features);
4180 }
4181
4182 static const struct net_device_ops iavf_netdev_ops = {
4183         .ndo_open               = iavf_open,
4184         .ndo_stop               = iavf_close,
4185         .ndo_start_xmit         = iavf_xmit_frame,
4186         .ndo_set_rx_mode        = iavf_set_rx_mode,
4187         .ndo_validate_addr      = eth_validate_addr,
4188         .ndo_set_mac_address    = iavf_set_mac,
4189         .ndo_change_mtu         = iavf_change_mtu,
4190         .ndo_tx_timeout         = iavf_tx_timeout,
4191         .ndo_vlan_rx_add_vid    = iavf_vlan_rx_add_vid,
4192         .ndo_vlan_rx_kill_vid   = iavf_vlan_rx_kill_vid,
4193         .ndo_features_check     = iavf_features_check,
4194         .ndo_fix_features       = iavf_fix_features,
4195         .ndo_set_features       = iavf_set_features,
4196         .ndo_setup_tc           = iavf_setup_tc,
4197 };
4198
4199 /**
4200  * iavf_check_reset_complete - check that VF reset is complete
4201  * @hw: pointer to hw struct
4202  *
4203  * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
4204  **/
4205 static int iavf_check_reset_complete(struct iavf_hw *hw)
4206 {
4207         u32 rstat;
4208         int i;
4209
4210         for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
4211                 rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
4212                              IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
4213                 if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
4214                     (rstat == VIRTCHNL_VFR_COMPLETED))
4215                         return 0;
4216                 usleep_range(10, 20);
4217         }
4218         return -EBUSY;
4219 }
4220
4221 /**
4222  * iavf_process_config - Process the config information we got from the PF
4223  * @adapter: board private structure
4224  *
4225  * Verify that we have a valid config struct, and set up our netdev features
4226  * and our VSI struct.
4227  **/
4228 int iavf_process_config(struct iavf_adapter *adapter)
4229 {
4230         struct virtchnl_vf_resource *vfres = adapter->vf_res;
4231         netdev_features_t hw_vlan_features, vlan_features;
4232         struct net_device *netdev = adapter->netdev;
4233         netdev_features_t hw_enc_features;
4234         netdev_features_t hw_features;
4235
4236         hw_enc_features = NETIF_F_SG                    |
4237                           NETIF_F_IP_CSUM               |
4238                           NETIF_F_IPV6_CSUM             |
4239                           NETIF_F_HIGHDMA               |
4240                           NETIF_F_SOFT_FEATURES |
4241                           NETIF_F_TSO                   |
4242                           NETIF_F_TSO_ECN               |
4243                           NETIF_F_TSO6                  |
4244                           NETIF_F_SCTP_CRC              |
4245                           NETIF_F_RXHASH                |
4246                           NETIF_F_RXCSUM                |
4247                           0;
4248
4249         /* advertise to stack only if offloads for encapsulated packets is
4250          * supported
4251          */
4252         if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
4253                 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL       |
4254                                    NETIF_F_GSO_GRE              |
4255                                    NETIF_F_GSO_GRE_CSUM         |
4256                                    NETIF_F_GSO_IPXIP4           |
4257                                    NETIF_F_GSO_IPXIP6           |
4258                                    NETIF_F_GSO_UDP_TUNNEL_CSUM  |
4259                                    NETIF_F_GSO_PARTIAL          |
4260                                    0;
4261
4262                 if (!(vfres->vf_cap_flags &
4263                       VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
4264                         netdev->gso_partial_features |=
4265                                 NETIF_F_GSO_UDP_TUNNEL_CSUM;
4266
4267                 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
4268                 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
4269                 netdev->hw_enc_features |= hw_enc_features;
4270         }
4271         /* record features VLANs can make use of */
4272         netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
4273
4274         /* Write features and hw_features separately to avoid polluting
4275          * with, or dropping, features that are set when we registered.
4276          */
4277         hw_features = hw_enc_features;
4278
4279         /* get HW VLAN features that can be toggled */
4280         hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter);
4281
4282         /* Enable cloud filter if ADQ is supported */
4283         if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
4284                 hw_features |= NETIF_F_HW_TC;
4285         if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO)
4286                 hw_features |= NETIF_F_GSO_UDP_L4;
4287
4288         netdev->hw_features |= hw_features | hw_vlan_features;
4289         vlan_features = iavf_get_netdev_vlan_features(adapter);
4290
4291         netdev->features |= hw_features | vlan_features;
4292
4293         if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
4294                 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4295
4296         netdev->priv_flags |= IFF_UNICAST_FLT;
4297
4298         /* Do not turn on offloads when they are requested to be turned off.
4299          * TSO needs minimum 576 bytes to work correctly.
4300          */
4301         if (netdev->wanted_features) {
4302                 if (!(netdev->wanted_features & NETIF_F_TSO) ||
4303                     netdev->mtu < 576)
4304                         netdev->features &= ~NETIF_F_TSO;
4305                 if (!(netdev->wanted_features & NETIF_F_TSO6) ||
4306                     netdev->mtu < 576)
4307                         netdev->features &= ~NETIF_F_TSO6;
4308                 if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
4309                         netdev->features &= ~NETIF_F_TSO_ECN;
4310                 if (!(netdev->wanted_features & NETIF_F_GRO))
4311                         netdev->features &= ~NETIF_F_GRO;
4312                 if (!(netdev->wanted_features & NETIF_F_GSO))
4313                         netdev->features &= ~NETIF_F_GSO;
4314         }
4315
4316         return 0;
4317 }
4318
4319 /**
4320  * iavf_shutdown - Shutdown the device in preparation for a reboot
4321  * @pdev: pci device structure
4322  **/
4323 static void iavf_shutdown(struct pci_dev *pdev)
4324 {
4325         struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev);
4326         struct net_device *netdev = adapter->netdev;
4327
4328         netif_device_detach(netdev);
4329
4330         if (netif_running(netdev))
4331                 iavf_close(netdev);
4332
4333         if (iavf_lock_timeout(&adapter->crit_lock, 5000))
4334                 dev_warn(&adapter->pdev->dev, "failed to acquire crit_lock in %s\n", __FUNCTION__);
4335         /* Prevent the watchdog from running. */
4336         iavf_change_state(adapter, __IAVF_REMOVE);
4337         adapter->aq_required = 0;
4338         mutex_unlock(&adapter->crit_lock);
4339
4340 #ifdef CONFIG_PM
4341         pci_save_state(pdev);
4342
4343 #endif
4344         pci_disable_device(pdev);
4345 }
4346
4347 /**
4348  * iavf_probe - Device Initialization Routine
4349  * @pdev: PCI device information struct
4350  * @ent: entry in iavf_pci_tbl
4351  *
4352  * Returns 0 on success, negative on failure
4353  *
4354  * iavf_probe initializes an adapter identified by a pci_dev structure.
4355  * The OS initialization, configuring of the adapter private structure,
4356  * and a hardware reset occur.
4357  **/
4358 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
4359 {
4360         struct net_device *netdev;
4361         struct iavf_adapter *adapter = NULL;
4362         struct iavf_hw *hw = NULL;
4363         int err;
4364
4365         err = pci_enable_device(pdev);
4366         if (err)
4367                 return err;
4368
4369         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4370         if (err) {
4371                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
4372                 if (err) {
4373                         dev_err(&pdev->dev,
4374                                 "DMA configuration failed: 0x%x\n", err);
4375                         goto err_dma;
4376                 }
4377         }
4378
4379         err = pci_request_regions(pdev, iavf_driver_name);
4380         if (err) {
4381                 dev_err(&pdev->dev,
4382                         "pci_request_regions failed 0x%x\n", err);
4383                 goto err_pci_reg;
4384         }
4385
4386         pci_enable_pcie_error_reporting(pdev);
4387
4388         pci_set_master(pdev);
4389
4390         netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
4391                                    IAVF_MAX_REQ_QUEUES);
4392         if (!netdev) {
4393                 err = -ENOMEM;
4394                 goto err_alloc_etherdev;
4395         }
4396
4397         SET_NETDEV_DEV(netdev, &pdev->dev);
4398
4399         pci_set_drvdata(pdev, netdev);
4400         adapter = netdev_priv(netdev);
4401
4402         adapter->netdev = netdev;
4403         adapter->pdev = pdev;
4404
4405         hw = &adapter->hw;
4406         hw->back = adapter;
4407
4408         adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
4409         iavf_change_state(adapter, __IAVF_STARTUP);
4410
4411         /* Call save state here because it relies on the adapter struct. */
4412         pci_save_state(pdev);
4413
4414         hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
4415                               pci_resource_len(pdev, 0));
4416         if (!hw->hw_addr) {
4417                 err = -EIO;
4418                 goto err_ioremap;
4419         }
4420         hw->vendor_id = pdev->vendor;
4421         hw->device_id = pdev->device;
4422         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4423         hw->subsystem_vendor_id = pdev->subsystem_vendor;
4424         hw->subsystem_device_id = pdev->subsystem_device;
4425         hw->bus.device = PCI_SLOT(pdev->devfn);
4426         hw->bus.func = PCI_FUNC(pdev->devfn);
4427         hw->bus.bus_id = pdev->bus->number;
4428
4429         /* set up the locks for the AQ, do this only once in probe
4430          * and destroy them only once in remove
4431          */
4432         mutex_init(&adapter->crit_lock);
4433         mutex_init(&adapter->client_lock);
4434         mutex_init(&adapter->remove_lock);
4435         mutex_init(&hw->aq.asq_mutex);
4436         mutex_init(&hw->aq.arq_mutex);
4437
4438         spin_lock_init(&adapter->mac_vlan_list_lock);
4439         spin_lock_init(&adapter->cloud_filter_list_lock);
4440         spin_lock_init(&adapter->fdir_fltr_lock);
4441         spin_lock_init(&adapter->adv_rss_lock);
4442
4443         INIT_LIST_HEAD(&adapter->mac_filter_list);
4444         INIT_LIST_HEAD(&adapter->vlan_filter_list);
4445         INIT_LIST_HEAD(&adapter->cloud_filter_list);
4446         INIT_LIST_HEAD(&adapter->fdir_list_head);
4447         INIT_LIST_HEAD(&adapter->adv_rss_list_head);
4448
4449         INIT_WORK(&adapter->reset_task, iavf_reset_task);
4450         INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
4451         INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
4452         INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task);
4453         queue_delayed_work(iavf_wq, &adapter->watchdog_task,
4454                            msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
4455
4456         /* Setup the wait queue for indicating transition to down status */
4457         init_waitqueue_head(&adapter->down_waitqueue);
4458
4459         return 0;
4460
4461 err_ioremap:
4462         free_netdev(netdev);
4463 err_alloc_etherdev:
4464         pci_disable_pcie_error_reporting(pdev);
4465         pci_release_regions(pdev);
4466 err_pci_reg:
4467 err_dma:
4468         pci_disable_device(pdev);
4469         return err;
4470 }
4471
4472 /**
4473  * iavf_suspend - Power management suspend routine
4474  * @dev_d: device info pointer
4475  *
4476  * Called when the system (VM) is entering sleep/suspend.
4477  **/
4478 static int __maybe_unused iavf_suspend(struct device *dev_d)
4479 {
4480         struct net_device *netdev = dev_get_drvdata(dev_d);
4481         struct iavf_adapter *adapter = netdev_priv(netdev);
4482
4483         netif_device_detach(netdev);
4484
4485         while (!mutex_trylock(&adapter->crit_lock))
4486                 usleep_range(500, 1000);
4487
4488         if (netif_running(netdev)) {
4489                 rtnl_lock();
4490                 iavf_down(adapter);
4491                 rtnl_unlock();
4492         }
4493         iavf_free_misc_irq(adapter);
4494         iavf_reset_interrupt_capability(adapter);
4495
4496         mutex_unlock(&adapter->crit_lock);
4497
4498         return 0;
4499 }
4500
4501 /**
4502  * iavf_resume - Power management resume routine
4503  * @dev_d: device info pointer
4504  *
4505  * Called when the system (VM) is resumed from sleep/suspend.
4506  **/
4507 static int __maybe_unused iavf_resume(struct device *dev_d)
4508 {
4509         struct pci_dev *pdev = to_pci_dev(dev_d);
4510         struct iavf_adapter *adapter;
4511         u32 err;
4512
4513         adapter = iavf_pdev_to_adapter(pdev);
4514
4515         pci_set_master(pdev);
4516
4517         rtnl_lock();
4518         err = iavf_set_interrupt_capability(adapter);
4519         if (err) {
4520                 rtnl_unlock();
4521                 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
4522                 return err;
4523         }
4524         err = iavf_request_misc_irq(adapter);
4525         rtnl_unlock();
4526         if (err) {
4527                 dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
4528                 return err;
4529         }
4530
4531         queue_work(iavf_wq, &adapter->reset_task);
4532
4533         netif_device_attach(adapter->netdev);
4534
4535         return err;
4536 }
4537
4538 /**
4539  * iavf_remove - Device Removal Routine
4540  * @pdev: PCI device information struct
4541  *
4542  * iavf_remove is called by the PCI subsystem to alert the driver
4543  * that it should release a PCI device.  The could be caused by a
4544  * Hot-Plug event, or because the driver is going to be removed from
4545  * memory.
4546  **/
4547 static void iavf_remove(struct pci_dev *pdev)
4548 {
4549         struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev);
4550         enum iavf_state_t prev_state = adapter->last_state;
4551         struct net_device *netdev = adapter->netdev;
4552         struct iavf_fdir_fltr *fdir, *fdirtmp;
4553         struct iavf_vlan_filter *vlf, *vlftmp;
4554         struct iavf_adv_rss *rss, *rsstmp;
4555         struct iavf_mac_filter *f, *ftmp;
4556         struct iavf_cloud_filter *cf, *cftmp;
4557         struct iavf_hw *hw = &adapter->hw;
4558         int err;
4559         /* Indicate we are in remove and not to run reset_task */
4560         mutex_lock(&adapter->remove_lock);
4561         cancel_work_sync(&adapter->reset_task);
4562         cancel_delayed_work_sync(&adapter->watchdog_task);
4563         cancel_delayed_work_sync(&adapter->client_task);
4564         if (adapter->netdev_registered) {
4565                 unregister_netdev(netdev);
4566                 adapter->netdev_registered = false;
4567         }
4568         if (CLIENT_ALLOWED(adapter)) {
4569                 err = iavf_lan_del_device(adapter);
4570                 if (err)
4571                         dev_warn(&pdev->dev, "Failed to delete client device: %d\n",
4572                                  err);
4573         }
4574
4575         iavf_request_reset(adapter);
4576         msleep(50);
4577         /* If the FW isn't responding, kick it once, but only once. */
4578         if (!iavf_asq_done(hw)) {
4579                 iavf_request_reset(adapter);
4580                 msleep(50);
4581         }
4582         if (iavf_lock_timeout(&adapter->crit_lock, 5000))
4583                 dev_warn(&adapter->pdev->dev, "failed to acquire crit_lock in %s\n", __FUNCTION__);
4584
4585         dev_info(&adapter->pdev->dev, "Removing device\n");
4586         /* Shut down all the garbage mashers on the detention level */
4587         iavf_change_state(adapter, __IAVF_REMOVE);
4588         adapter->aq_required = 0;
4589         adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
4590
4591         iavf_free_all_tx_resources(adapter);
4592         iavf_free_all_rx_resources(adapter);
4593         iavf_misc_irq_disable(adapter);
4594         iavf_free_misc_irq(adapter);
4595
4596         /* In case we enter iavf_remove from erroneous state, free traffic irqs
4597          * here, so as to not cause a kernel crash, when calling
4598          * iavf_reset_interrupt_capability.
4599          */
4600         if ((adapter->last_state == __IAVF_RESETTING &&
4601              prev_state != __IAVF_DOWN) ||
4602             (adapter->last_state == __IAVF_RUNNING &&
4603              !(netdev->flags & IFF_UP)))
4604                 iavf_free_traffic_irqs(adapter);
4605
4606         iavf_reset_interrupt_capability(adapter);
4607         iavf_free_q_vectors(adapter);
4608
4609         cancel_delayed_work_sync(&adapter->watchdog_task);
4610
4611         cancel_work_sync(&adapter->adminq_task);
4612
4613         iavf_free_rss(adapter);
4614
4615         if (hw->aq.asq.count)
4616                 iavf_shutdown_adminq(hw);
4617
4618         /* destroy the locks only once, here */
4619         mutex_destroy(&hw->aq.arq_mutex);
4620         mutex_destroy(&hw->aq.asq_mutex);
4621         mutex_destroy(&adapter->client_lock);
4622         mutex_unlock(&adapter->crit_lock);
4623         mutex_destroy(&adapter->crit_lock);
4624         mutex_unlock(&adapter->remove_lock);
4625         mutex_destroy(&adapter->remove_lock);
4626
4627         iounmap(hw->hw_addr);
4628         pci_release_regions(pdev);
4629         iavf_free_queues(adapter);
4630         kfree(adapter->vf_res);
4631         spin_lock_bh(&adapter->mac_vlan_list_lock);
4632         /* If we got removed before an up/down sequence, we've got a filter
4633          * hanging out there that we need to get rid of.
4634          */
4635         list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
4636                 list_del(&f->list);
4637                 kfree(f);
4638         }
4639         list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
4640                                  list) {
4641                 list_del(&vlf->list);
4642                 kfree(vlf);
4643         }
4644
4645         spin_unlock_bh(&adapter->mac_vlan_list_lock);
4646
4647         spin_lock_bh(&adapter->cloud_filter_list_lock);
4648         list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
4649                 list_del(&cf->list);
4650                 kfree(cf);
4651         }
4652         spin_unlock_bh(&adapter->cloud_filter_list_lock);
4653
4654         spin_lock_bh(&adapter->fdir_fltr_lock);
4655         list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) {
4656                 list_del(&fdir->list);
4657                 kfree(fdir);
4658         }
4659         spin_unlock_bh(&adapter->fdir_fltr_lock);
4660
4661         spin_lock_bh(&adapter->adv_rss_lock);
4662         list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
4663                                  list) {
4664                 list_del(&rss->list);
4665                 kfree(rss);
4666         }
4667         spin_unlock_bh(&adapter->adv_rss_lock);
4668
4669         free_netdev(netdev);
4670
4671         pci_disable_pcie_error_reporting(pdev);
4672
4673         pci_disable_device(pdev);
4674 }
4675
4676 static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
4677
4678 static struct pci_driver iavf_driver = {
4679         .name      = iavf_driver_name,
4680         .id_table  = iavf_pci_tbl,
4681         .probe     = iavf_probe,
4682         .remove    = iavf_remove,
4683         .driver.pm = &iavf_pm_ops,
4684         .shutdown  = iavf_shutdown,
4685 };
4686
4687 /**
4688  * iavf_init_module - Driver Registration Routine
4689  *
4690  * iavf_init_module is the first routine called when the driver is
4691  * loaded. All it does is register with the PCI subsystem.
4692  **/
4693 static int __init iavf_init_module(void)
4694 {
4695         int ret;
4696
4697         pr_info("iavf: %s\n", iavf_driver_string);
4698
4699         pr_info("%s\n", iavf_copyright);
4700
4701         iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1,
4702                                   iavf_driver_name);
4703         if (!iavf_wq) {
4704                 pr_err("%s: Failed to create workqueue\n", iavf_driver_name);
4705                 return -ENOMEM;
4706         }
4707         ret = pci_register_driver(&iavf_driver);
4708         return ret;
4709 }
4710
4711 module_init(iavf_init_module);
4712
4713 /**
4714  * iavf_exit_module - Driver Exit Cleanup Routine
4715  *
4716  * iavf_exit_module is called just before the driver is removed
4717  * from memory.
4718  **/
4719 static void __exit iavf_exit_module(void)
4720 {
4721         pci_unregister_driver(&iavf_driver);
4722         destroy_workqueue(iavf_wq);
4723 }
4724
4725 module_exit(iavf_exit_module);
4726
4727 /* iavf_main.c */