Merge tag 'pinctrl-v3.17-3' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[linux-2.6-block.git] / drivers / net / ethernet / intel / i40evf / i40e_txrx.c
1 /*******************************************************************************
2  *
3  * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
4  * Copyright(c) 2013 - 2014 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * The full GNU General Public License is included in this distribution in
19  * the file called "COPYING".
20  *
21  * Contact Information:
22  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  ******************************************************************************/
26
27 #include <linux/prefetch.h>
28
29 #include "i40evf.h"
30 #include "i40e_prototype.h"
31
32 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
33                                 u32 td_tag)
34 {
35         return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
36                            ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
37                            ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
38                            ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
39                            ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
40 }
41
42 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
43
44 /**
45  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
46  * @ring:      the ring that owns the buffer
47  * @tx_buffer: the buffer to free
48  **/
49 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
50                                             struct i40e_tx_buffer *tx_buffer)
51 {
52         if (tx_buffer->skb) {
53                 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
54                         kfree(tx_buffer->raw_buf);
55                 else
56                         dev_kfree_skb_any(tx_buffer->skb);
57
58                 if (dma_unmap_len(tx_buffer, len))
59                         dma_unmap_single(ring->dev,
60                                          dma_unmap_addr(tx_buffer, dma),
61                                          dma_unmap_len(tx_buffer, len),
62                                          DMA_TO_DEVICE);
63         } else if (dma_unmap_len(tx_buffer, len)) {
64                 dma_unmap_page(ring->dev,
65                                dma_unmap_addr(tx_buffer, dma),
66                                dma_unmap_len(tx_buffer, len),
67                                DMA_TO_DEVICE);
68         }
69         tx_buffer->next_to_watch = NULL;
70         tx_buffer->skb = NULL;
71         dma_unmap_len_set(tx_buffer, len, 0);
72         /* tx_buffer must be completely set up in the transmit path */
73 }
74
75 /**
76  * i40evf_clean_tx_ring - Free any empty Tx buffers
77  * @tx_ring: ring to be cleaned
78  **/
79 void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
80 {
81         unsigned long bi_size;
82         u16 i;
83
84         /* ring already cleared, nothing to do */
85         if (!tx_ring->tx_bi)
86                 return;
87
88         /* Free all the Tx ring sk_buffs */
89         for (i = 0; i < tx_ring->count; i++)
90                 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
91
92         bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
93         memset(tx_ring->tx_bi, 0, bi_size);
94
95         /* Zero out the descriptor ring */
96         memset(tx_ring->desc, 0, tx_ring->size);
97
98         tx_ring->next_to_use = 0;
99         tx_ring->next_to_clean = 0;
100
101         if (!tx_ring->netdev)
102                 return;
103
104         /* cleanup Tx queue statistics */
105         netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
106                                                   tx_ring->queue_index));
107 }
108
109 /**
110  * i40evf_free_tx_resources - Free Tx resources per queue
111  * @tx_ring: Tx descriptor ring for a specific queue
112  *
113  * Free all transmit software resources
114  **/
115 void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
116 {
117         i40evf_clean_tx_ring(tx_ring);
118         kfree(tx_ring->tx_bi);
119         tx_ring->tx_bi = NULL;
120
121         if (tx_ring->desc) {
122                 dma_free_coherent(tx_ring->dev, tx_ring->size,
123                                   tx_ring->desc, tx_ring->dma);
124                 tx_ring->desc = NULL;
125         }
126 }
127
128 /**
129  * i40e_get_tx_pending - how many tx descriptors not processed
130  * @tx_ring: the ring of descriptors
131  *
132  * Since there is no access to the ring head register
133  * in XL710, we need to use our local copies
134  **/
135 static u32 i40e_get_tx_pending(struct i40e_ring *ring)
136 {
137         u32 ntu = ((ring->next_to_clean <= ring->next_to_use)
138                         ? ring->next_to_use
139                         : ring->next_to_use + ring->count);
140         return ntu - ring->next_to_clean;
141 }
142
143 /**
144  * i40e_check_tx_hang - Is there a hang in the Tx queue
145  * @tx_ring: the ring of descriptors
146  **/
147 static bool i40e_check_tx_hang(struct i40e_ring *tx_ring)
148 {
149         u32 tx_pending = i40e_get_tx_pending(tx_ring);
150         bool ret = false;
151
152         clear_check_for_tx_hang(tx_ring);
153
154         /* Check for a hung queue, but be thorough. This verifies
155          * that a transmit has been completed since the previous
156          * check AND there is at least one packet pending. The
157          * ARMED bit is set to indicate a potential hang. The
158          * bit is cleared if a pause frame is received to remove
159          * false hang detection due to PFC or 802.3x frames. By
160          * requiring this to fail twice we avoid races with
161          * PFC clearing the ARMED bit and conditions where we
162          * run the check_tx_hang logic with a transmit completion
163          * pending but without time to complete it yet.
164          */
165         if ((tx_ring->tx_stats.tx_done_old == tx_ring->stats.packets) &&
166             tx_pending) {
167                 /* make sure it is true for two checks in a row */
168                 ret = test_and_set_bit(__I40E_HANG_CHECK_ARMED,
169                                        &tx_ring->state);
170         } else {
171                 /* update completed stats and disarm the hang check */
172                 tx_ring->tx_stats.tx_done_old = tx_ring->stats.packets;
173                 clear_bit(__I40E_HANG_CHECK_ARMED, &tx_ring->state);
174         }
175
176         return ret;
177 }
178
179 /**
180  * i40e_get_head - Retrieve head from head writeback
181  * @tx_ring:  tx ring to fetch head of
182  *
183  * Returns value of Tx ring head based on value stored
184  * in head write-back location
185  **/
186 static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
187 {
188         void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
189
190         return le32_to_cpu(*(volatile __le32 *)head);
191 }
192
193 /**
194  * i40e_clean_tx_irq - Reclaim resources after transmit completes
195  * @tx_ring:  tx ring to clean
196  * @budget:   how many cleans we're allowed
197  *
198  * Returns true if there's any budget left (e.g. the clean is finished)
199  **/
200 static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
201 {
202         u16 i = tx_ring->next_to_clean;
203         struct i40e_tx_buffer *tx_buf;
204         struct i40e_tx_desc *tx_head;
205         struct i40e_tx_desc *tx_desc;
206         unsigned int total_packets = 0;
207         unsigned int total_bytes = 0;
208
209         tx_buf = &tx_ring->tx_bi[i];
210         tx_desc = I40E_TX_DESC(tx_ring, i);
211         i -= tx_ring->count;
212
213         tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
214
215         do {
216                 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
217
218                 /* if next_to_watch is not set then there is no work pending */
219                 if (!eop_desc)
220                         break;
221
222                 /* prevent any other reads prior to eop_desc */
223                 read_barrier_depends();
224
225                 /* we have caught up to head, no work left to do */
226                 if (tx_head == tx_desc)
227                         break;
228
229                 /* clear next_to_watch to prevent false hangs */
230                 tx_buf->next_to_watch = NULL;
231
232                 /* update the statistics for this packet */
233                 total_bytes += tx_buf->bytecount;
234                 total_packets += tx_buf->gso_segs;
235
236                 /* free the skb */
237                 dev_kfree_skb_any(tx_buf->skb);
238
239                 /* unmap skb header data */
240                 dma_unmap_single(tx_ring->dev,
241                                  dma_unmap_addr(tx_buf, dma),
242                                  dma_unmap_len(tx_buf, len),
243                                  DMA_TO_DEVICE);
244
245                 /* clear tx_buffer data */
246                 tx_buf->skb = NULL;
247                 dma_unmap_len_set(tx_buf, len, 0);
248
249                 /* unmap remaining buffers */
250                 while (tx_desc != eop_desc) {
251
252                         tx_buf++;
253                         tx_desc++;
254                         i++;
255                         if (unlikely(!i)) {
256                                 i -= tx_ring->count;
257                                 tx_buf = tx_ring->tx_bi;
258                                 tx_desc = I40E_TX_DESC(tx_ring, 0);
259                         }
260
261                         /* unmap any remaining paged data */
262                         if (dma_unmap_len(tx_buf, len)) {
263                                 dma_unmap_page(tx_ring->dev,
264                                                dma_unmap_addr(tx_buf, dma),
265                                                dma_unmap_len(tx_buf, len),
266                                                DMA_TO_DEVICE);
267                                 dma_unmap_len_set(tx_buf, len, 0);
268                         }
269                 }
270
271                 /* move us one more past the eop_desc for start of next pkt */
272                 tx_buf++;
273                 tx_desc++;
274                 i++;
275                 if (unlikely(!i)) {
276                         i -= tx_ring->count;
277                         tx_buf = tx_ring->tx_bi;
278                         tx_desc = I40E_TX_DESC(tx_ring, 0);
279                 }
280
281                 /* update budget accounting */
282                 budget--;
283         } while (likely(budget));
284
285         i += tx_ring->count;
286         tx_ring->next_to_clean = i;
287         u64_stats_update_begin(&tx_ring->syncp);
288         tx_ring->stats.bytes += total_bytes;
289         tx_ring->stats.packets += total_packets;
290         u64_stats_update_end(&tx_ring->syncp);
291         tx_ring->q_vector->tx.total_bytes += total_bytes;
292         tx_ring->q_vector->tx.total_packets += total_packets;
293
294         if (check_for_tx_hang(tx_ring) && i40e_check_tx_hang(tx_ring)) {
295                 /* schedule immediate reset if we believe we hung */
296                 dev_info(tx_ring->dev, "Detected Tx Unit Hang\n"
297                          "  VSI                  <%d>\n"
298                          "  Tx Queue             <%d>\n"
299                          "  next_to_use          <%x>\n"
300                          "  next_to_clean        <%x>\n",
301                          tx_ring->vsi->seid,
302                          tx_ring->queue_index,
303                          tx_ring->next_to_use, i);
304                 dev_info(tx_ring->dev, "tx_bi[next_to_clean]\n"
305                          "  time_stamp           <%lx>\n"
306                          "  jiffies              <%lx>\n",
307                          tx_ring->tx_bi[i].time_stamp, jiffies);
308
309                 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
310
311                 dev_info(tx_ring->dev,
312                          "tx hang detected on queue %d, resetting adapter\n",
313                          tx_ring->queue_index);
314
315                 tx_ring->netdev->netdev_ops->ndo_tx_timeout(tx_ring->netdev);
316
317                 /* the adapter is about to reset, no point in enabling stuff */
318                 return true;
319         }
320
321         netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
322                                                       tx_ring->queue_index),
323                                   total_packets, total_bytes);
324
325 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
326         if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
327                      (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
328                 /* Make sure that anybody stopping the queue after this
329                  * sees the new next_to_clean.
330                  */
331                 smp_mb();
332                 if (__netif_subqueue_stopped(tx_ring->netdev,
333                                              tx_ring->queue_index) &&
334                    !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
335                         netif_wake_subqueue(tx_ring->netdev,
336                                             tx_ring->queue_index);
337                         ++tx_ring->tx_stats.restart_queue;
338                 }
339         }
340
341         return budget > 0;
342 }
343
344 /**
345  * i40e_set_new_dynamic_itr - Find new ITR level
346  * @rc: structure containing ring performance data
347  *
348  * Stores a new ITR value based on packets and byte counts during
349  * the last interrupt.  The advantage of per interrupt computation
350  * is faster updates and more accurate ITR for the current traffic
351  * pattern.  Constants in this function were computed based on
352  * theoretical maximum wire speed and thresholds were set based on
353  * testing data as well as attempting to minimize response time
354  * while increasing bulk throughput.
355  **/
356 static void i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
357 {
358         enum i40e_latency_range new_latency_range = rc->latency_range;
359         u32 new_itr = rc->itr;
360         int bytes_per_int;
361
362         if (rc->total_packets == 0 || !rc->itr)
363                 return;
364
365         /* simple throttlerate management
366          *   0-10MB/s   lowest (100000 ints/s)
367          *  10-20MB/s   low    (20000 ints/s)
368          *  20-1249MB/s bulk   (8000 ints/s)
369          */
370         bytes_per_int = rc->total_bytes / rc->itr;
371         switch (rc->itr) {
372         case I40E_LOWEST_LATENCY:
373                 if (bytes_per_int > 10)
374                         new_latency_range = I40E_LOW_LATENCY;
375                 break;
376         case I40E_LOW_LATENCY:
377                 if (bytes_per_int > 20)
378                         new_latency_range = I40E_BULK_LATENCY;
379                 else if (bytes_per_int <= 10)
380                         new_latency_range = I40E_LOWEST_LATENCY;
381                 break;
382         case I40E_BULK_LATENCY:
383                 if (bytes_per_int <= 20)
384                         rc->latency_range = I40E_LOW_LATENCY;
385                 break;
386         }
387
388         switch (new_latency_range) {
389         case I40E_LOWEST_LATENCY:
390                 new_itr = I40E_ITR_100K;
391                 break;
392         case I40E_LOW_LATENCY:
393                 new_itr = I40E_ITR_20K;
394                 break;
395         case I40E_BULK_LATENCY:
396                 new_itr = I40E_ITR_8K;
397                 break;
398         default:
399                 break;
400         }
401
402         if (new_itr != rc->itr) {
403                 /* do an exponential smoothing */
404                 new_itr = (10 * new_itr * rc->itr) /
405                           ((9 * new_itr) + rc->itr);
406                 rc->itr = new_itr & I40E_MAX_ITR;
407         }
408
409         rc->total_bytes = 0;
410         rc->total_packets = 0;
411 }
412
413 /**
414  * i40e_update_dynamic_itr - Adjust ITR based on bytes per int
415  * @q_vector: the vector to adjust
416  **/
417 static void i40e_update_dynamic_itr(struct i40e_q_vector *q_vector)
418 {
419         u16 vector = q_vector->vsi->base_vector + q_vector->v_idx;
420         struct i40e_hw *hw = &q_vector->vsi->back->hw;
421         u32 reg_addr;
422         u16 old_itr;
423
424         reg_addr = I40E_VFINT_ITRN1(I40E_RX_ITR, vector - 1);
425         old_itr = q_vector->rx.itr;
426         i40e_set_new_dynamic_itr(&q_vector->rx);
427         if (old_itr != q_vector->rx.itr)
428                 wr32(hw, reg_addr, q_vector->rx.itr);
429
430         reg_addr = I40E_VFINT_ITRN1(I40E_TX_ITR, vector - 1);
431         old_itr = q_vector->tx.itr;
432         i40e_set_new_dynamic_itr(&q_vector->tx);
433         if (old_itr != q_vector->tx.itr)
434                 wr32(hw, reg_addr, q_vector->tx.itr);
435 }
436
437 /**
438  * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
439  * @tx_ring: the tx ring to set up
440  *
441  * Return 0 on success, negative on error
442  **/
443 int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
444 {
445         struct device *dev = tx_ring->dev;
446         int bi_size;
447
448         if (!dev)
449                 return -ENOMEM;
450
451         bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
452         tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
453         if (!tx_ring->tx_bi)
454                 goto err;
455
456         /* round up to nearest 4K */
457         tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
458         /* add u32 for head writeback, align after this takes care of
459          * guaranteeing this is at least one cache line in size
460          */
461         tx_ring->size += sizeof(u32);
462         tx_ring->size = ALIGN(tx_ring->size, 4096);
463         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
464                                            &tx_ring->dma, GFP_KERNEL);
465         if (!tx_ring->desc) {
466                 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
467                          tx_ring->size);
468                 goto err;
469         }
470
471         tx_ring->next_to_use = 0;
472         tx_ring->next_to_clean = 0;
473         return 0;
474
475 err:
476         kfree(tx_ring->tx_bi);
477         tx_ring->tx_bi = NULL;
478         return -ENOMEM;
479 }
480
481 /**
482  * i40evf_clean_rx_ring - Free Rx buffers
483  * @rx_ring: ring to be cleaned
484  **/
485 void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
486 {
487         struct device *dev = rx_ring->dev;
488         struct i40e_rx_buffer *rx_bi;
489         unsigned long bi_size;
490         u16 i;
491
492         /* ring already cleared, nothing to do */
493         if (!rx_ring->rx_bi)
494                 return;
495
496         /* Free all the Rx ring sk_buffs */
497         for (i = 0; i < rx_ring->count; i++) {
498                 rx_bi = &rx_ring->rx_bi[i];
499                 if (rx_bi->dma) {
500                         dma_unmap_single(dev,
501                                          rx_bi->dma,
502                                          rx_ring->rx_buf_len,
503                                          DMA_FROM_DEVICE);
504                         rx_bi->dma = 0;
505                 }
506                 if (rx_bi->skb) {
507                         dev_kfree_skb(rx_bi->skb);
508                         rx_bi->skb = NULL;
509                 }
510                 if (rx_bi->page) {
511                         if (rx_bi->page_dma) {
512                                 dma_unmap_page(dev,
513                                                rx_bi->page_dma,
514                                                PAGE_SIZE / 2,
515                                                DMA_FROM_DEVICE);
516                                 rx_bi->page_dma = 0;
517                         }
518                         __free_page(rx_bi->page);
519                         rx_bi->page = NULL;
520                         rx_bi->page_offset = 0;
521                 }
522         }
523
524         bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
525         memset(rx_ring->rx_bi, 0, bi_size);
526
527         /* Zero out the descriptor ring */
528         memset(rx_ring->desc, 0, rx_ring->size);
529
530         rx_ring->next_to_clean = 0;
531         rx_ring->next_to_use = 0;
532 }
533
534 /**
535  * i40evf_free_rx_resources - Free Rx resources
536  * @rx_ring: ring to clean the resources from
537  *
538  * Free all receive software resources
539  **/
540 void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
541 {
542         i40evf_clean_rx_ring(rx_ring);
543         kfree(rx_ring->rx_bi);
544         rx_ring->rx_bi = NULL;
545
546         if (rx_ring->desc) {
547                 dma_free_coherent(rx_ring->dev, rx_ring->size,
548                                   rx_ring->desc, rx_ring->dma);
549                 rx_ring->desc = NULL;
550         }
551 }
552
553 /**
554  * i40evf_setup_rx_descriptors - Allocate Rx descriptors
555  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
556  *
557  * Returns 0 on success, negative on failure
558  **/
559 int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
560 {
561         struct device *dev = rx_ring->dev;
562         int bi_size;
563
564         bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
565         rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
566         if (!rx_ring->rx_bi)
567                 goto err;
568
569         /* Round up to nearest 4K */
570         rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
571                 ? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
572                 : rx_ring->count * sizeof(union i40e_32byte_rx_desc);
573         rx_ring->size = ALIGN(rx_ring->size, 4096);
574         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
575                                            &rx_ring->dma, GFP_KERNEL);
576
577         if (!rx_ring->desc) {
578                 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
579                          rx_ring->size);
580                 goto err;
581         }
582
583         rx_ring->next_to_clean = 0;
584         rx_ring->next_to_use = 0;
585
586         return 0;
587 err:
588         kfree(rx_ring->rx_bi);
589         rx_ring->rx_bi = NULL;
590         return -ENOMEM;
591 }
592
593 /**
594  * i40e_release_rx_desc - Store the new tail and head values
595  * @rx_ring: ring to bump
596  * @val: new head index
597  **/
598 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
599 {
600         rx_ring->next_to_use = val;
601         /* Force memory writes to complete before letting h/w
602          * know there are new descriptors to fetch.  (Only
603          * applicable for weak-ordered memory model archs,
604          * such as IA-64).
605          */
606         wmb();
607         writel(val, rx_ring->tail);
608 }
609
610 /**
611  * i40evf_alloc_rx_buffers - Replace used receive buffers; packet split
612  * @rx_ring: ring to place buffers on
613  * @cleaned_count: number of buffers to replace
614  **/
615 void i40evf_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
616 {
617         u16 i = rx_ring->next_to_use;
618         union i40e_rx_desc *rx_desc;
619         struct i40e_rx_buffer *bi;
620         struct sk_buff *skb;
621
622         /* do nothing if no valid netdev defined */
623         if (!rx_ring->netdev || !cleaned_count)
624                 return;
625
626         while (cleaned_count--) {
627                 rx_desc = I40E_RX_DESC(rx_ring, i);
628                 bi = &rx_ring->rx_bi[i];
629                 skb = bi->skb;
630
631                 if (!skb) {
632                         skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
633                                                         rx_ring->rx_buf_len);
634                         if (!skb) {
635                                 rx_ring->rx_stats.alloc_buff_failed++;
636                                 goto no_buffers;
637                         }
638                         /* initialize queue mapping */
639                         skb_record_rx_queue(skb, rx_ring->queue_index);
640                         bi->skb = skb;
641                 }
642
643                 if (!bi->dma) {
644                         bi->dma = dma_map_single(rx_ring->dev,
645                                                  skb->data,
646                                                  rx_ring->rx_buf_len,
647                                                  DMA_FROM_DEVICE);
648                         if (dma_mapping_error(rx_ring->dev, bi->dma)) {
649                                 rx_ring->rx_stats.alloc_buff_failed++;
650                                 bi->dma = 0;
651                                 goto no_buffers;
652                         }
653                 }
654
655                 if (ring_is_ps_enabled(rx_ring)) {
656                         if (!bi->page) {
657                                 bi->page = alloc_page(GFP_ATOMIC);
658                                 if (!bi->page) {
659                                         rx_ring->rx_stats.alloc_page_failed++;
660                                         goto no_buffers;
661                                 }
662                         }
663
664                         if (!bi->page_dma) {
665                                 /* use a half page if we're re-using */
666                                 bi->page_offset ^= PAGE_SIZE / 2;
667                                 bi->page_dma = dma_map_page(rx_ring->dev,
668                                                             bi->page,
669                                                             bi->page_offset,
670                                                             PAGE_SIZE / 2,
671                                                             DMA_FROM_DEVICE);
672                                 if (dma_mapping_error(rx_ring->dev,
673                                                       bi->page_dma)) {
674                                         rx_ring->rx_stats.alloc_page_failed++;
675                                         bi->page_dma = 0;
676                                         goto no_buffers;
677                                 }
678                         }
679
680                         /* Refresh the desc even if buffer_addrs didn't change
681                          * because each write-back erases this info.
682                          */
683                         rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
684                         rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
685                 } else {
686                         rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
687                         rx_desc->read.hdr_addr = 0;
688                 }
689                 i++;
690                 if (i == rx_ring->count)
691                         i = 0;
692         }
693
694 no_buffers:
695         if (rx_ring->next_to_use != i)
696                 i40e_release_rx_desc(rx_ring, i);
697 }
698
699 /**
700  * i40e_receive_skb - Send a completed packet up the stack
701  * @rx_ring:  rx ring in play
702  * @skb: packet to send up
703  * @vlan_tag: vlan tag for packet
704  **/
705 static void i40e_receive_skb(struct i40e_ring *rx_ring,
706                              struct sk_buff *skb, u16 vlan_tag)
707 {
708         struct i40e_q_vector *q_vector = rx_ring->q_vector;
709         struct i40e_vsi *vsi = rx_ring->vsi;
710         u64 flags = vsi->back->flags;
711
712         if (vlan_tag & VLAN_VID_MASK)
713                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
714
715         if (flags & I40E_FLAG_IN_NETPOLL)
716                 netif_rx(skb);
717         else
718                 napi_gro_receive(&q_vector->napi, skb);
719 }
720
721 /**
722  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
723  * @vsi: the VSI we care about
724  * @skb: skb currently being received and modified
725  * @rx_status: status value of last descriptor in packet
726  * @rx_error: error value of last descriptor in packet
727  * @rx_ptype: ptype value of last descriptor in packet
728  **/
729 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
730                                     struct sk_buff *skb,
731                                     u32 rx_status,
732                                     u32 rx_error,
733                                     u16 rx_ptype)
734 {
735         struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
736         bool ipv4 = false, ipv6 = false;
737         bool ipv4_tunnel, ipv6_tunnel;
738         __wsum rx_udp_csum;
739         struct iphdr *iph;
740         __sum16 csum;
741
742         ipv4_tunnel = (rx_ptype > I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
743                       (rx_ptype < I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
744         ipv6_tunnel = (rx_ptype > I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
745                       (rx_ptype < I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
746
747         skb->encapsulation = ipv4_tunnel || ipv6_tunnel;
748         skb->ip_summed = CHECKSUM_NONE;
749
750         /* Rx csum enabled and ip headers found? */
751         if (!(vsi->netdev->features & NETIF_F_RXCSUM))
752                 return;
753
754         /* did the hardware decode the packet and checksum? */
755         if (!(rx_status & (1 << I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
756                 return;
757
758         /* both known and outer_ip must be set for the below code to work */
759         if (!(decoded.known && decoded.outer_ip))
760                 return;
761
762         if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
763             decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4)
764                 ipv4 = true;
765         else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
766                  decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6)
767                 ipv6 = true;
768
769         if (ipv4 &&
770             (rx_error & ((1 << I40E_RX_DESC_ERROR_IPE_SHIFT) |
771                          (1 << I40E_RX_DESC_ERROR_EIPE_SHIFT))))
772                 goto checksum_fail;
773
774         /* likely incorrect csum if alternate IP extension headers found */
775         if (ipv6 &&
776             rx_status & (1 << I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
777                 /* don't increment checksum err here, non-fatal err */
778                 return;
779
780         /* there was some L4 error, count error and punt packet to the stack */
781         if (rx_error & (1 << I40E_RX_DESC_ERROR_L4E_SHIFT))
782                 goto checksum_fail;
783
784         /* handle packets that were not able to be checksummed due
785          * to arrival speed, in this case the stack can compute
786          * the csum.
787          */
788         if (rx_error & (1 << I40E_RX_DESC_ERROR_PPRS_SHIFT))
789                 return;
790
791         /* If VXLAN traffic has an outer UDPv4 checksum we need to check
792          * it in the driver, hardware does not do it for us.
793          * Since L3L4P bit was set we assume a valid IHL value (>=5)
794          * so the total length of IPv4 header is IHL*4 bytes
795          * The UDP_0 bit *may* bet set if the *inner* header is UDP
796          */
797         if (ipv4_tunnel &&
798             (decoded.inner_prot != I40E_RX_PTYPE_INNER_PROT_UDP) &&
799             !(rx_status & (1 << I40E_RX_DESC_STATUS_UDP_0_SHIFT))) {
800                 skb->transport_header = skb->mac_header +
801                                         sizeof(struct ethhdr) +
802                                         (ip_hdr(skb)->ihl * 4);
803
804                 /* Add 4 bytes for VLAN tagged packets */
805                 skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) ||
806                                           skb->protocol == htons(ETH_P_8021AD))
807                                           ? VLAN_HLEN : 0;
808
809                 rx_udp_csum = udp_csum(skb);
810                 iph = ip_hdr(skb);
811                 csum = csum_tcpudp_magic(
812                                 iph->saddr, iph->daddr,
813                                 (skb->len - skb_transport_offset(skb)),
814                                 IPPROTO_UDP, rx_udp_csum);
815
816                 if (udp_hdr(skb)->check != csum)
817                         goto checksum_fail;
818         }
819
820         skb->ip_summed = CHECKSUM_UNNECESSARY;
821
822         return;
823
824 checksum_fail:
825         vsi->back->hw_csum_rx_error++;
826 }
827
828 /**
829  * i40e_rx_hash - returns the hash value from the Rx descriptor
830  * @ring: descriptor ring
831  * @rx_desc: specific descriptor
832  **/
833 static inline u32 i40e_rx_hash(struct i40e_ring *ring,
834                                union i40e_rx_desc *rx_desc)
835 {
836         const __le64 rss_mask =
837                 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
838                             I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
839
840         if ((ring->netdev->features & NETIF_F_RXHASH) &&
841             (rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask)
842                 return le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
843         else
844                 return 0;
845 }
846
847 /**
848  * i40e_ptype_to_hash - get a hash type
849  * @ptype: the ptype value from the descriptor
850  *
851  * Returns a hash type to be used by skb_set_hash
852  **/
853 static inline enum pkt_hash_types i40e_ptype_to_hash(u8 ptype)
854 {
855         struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
856
857         if (!decoded.known)
858                 return PKT_HASH_TYPE_NONE;
859
860         if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
861             decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
862                 return PKT_HASH_TYPE_L4;
863         else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
864                  decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
865                 return PKT_HASH_TYPE_L3;
866         else
867                 return PKT_HASH_TYPE_L2;
868 }
869
870 /**
871  * i40e_clean_rx_irq - Reclaim resources after receive completes
872  * @rx_ring:  rx ring to clean
873  * @budget:   how many cleans we're allowed
874  *
875  * Returns true if there's any budget left (e.g. the clean is finished)
876  **/
877 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
878 {
879         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
880         u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
881         u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
882         const int current_node = numa_node_id();
883         struct i40e_vsi *vsi = rx_ring->vsi;
884         u16 i = rx_ring->next_to_clean;
885         union i40e_rx_desc *rx_desc;
886         u32 rx_error, rx_status;
887         u8 rx_ptype;
888         u64 qword;
889
890         rx_desc = I40E_RX_DESC(rx_ring, i);
891         qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
892         rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
893                     I40E_RXD_QW1_STATUS_SHIFT;
894
895         while (rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)) {
896                 union i40e_rx_desc *next_rxd;
897                 struct i40e_rx_buffer *rx_bi;
898                 struct sk_buff *skb;
899                 u16 vlan_tag;
900                 rx_bi = &rx_ring->rx_bi[i];
901                 skb = rx_bi->skb;
902                 prefetch(skb->data);
903
904                 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
905                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
906                 rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
907                                 I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
908                 rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
909                          I40E_RXD_QW1_LENGTH_SPH_SHIFT;
910
911                 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
912                            I40E_RXD_QW1_ERROR_SHIFT;
913                 rx_hbo = rx_error & (1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
914                 rx_error &= ~(1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
915
916                 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
917                            I40E_RXD_QW1_PTYPE_SHIFT;
918                 rx_bi->skb = NULL;
919
920                 /* This memory barrier is needed to keep us from reading
921                  * any other fields out of the rx_desc until we know the
922                  * STATUS_DD bit is set
923                  */
924                 rmb();
925
926                 /* Get the header and possibly the whole packet
927                  * If this is an skb from previous receive dma will be 0
928                  */
929                 if (rx_bi->dma) {
930                         u16 len;
931
932                         if (rx_hbo)
933                                 len = I40E_RX_HDR_SIZE;
934                         else if (rx_sph)
935                                 len = rx_header_len;
936                         else if (rx_packet_len)
937                                 len = rx_packet_len;   /* 1buf/no split found */
938                         else
939                                 len = rx_header_len;   /* split always mode */
940
941                         skb_put(skb, len);
942                         dma_unmap_single(rx_ring->dev,
943                                          rx_bi->dma,
944                                          rx_ring->rx_buf_len,
945                                          DMA_FROM_DEVICE);
946                         rx_bi->dma = 0;
947                 }
948
949                 /* Get the rest of the data if this was a header split */
950                 if (ring_is_ps_enabled(rx_ring) && rx_packet_len) {
951
952                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
953                                            rx_bi->page,
954                                            rx_bi->page_offset,
955                                            rx_packet_len);
956
957                         skb->len += rx_packet_len;
958                         skb->data_len += rx_packet_len;
959                         skb->truesize += rx_packet_len;
960
961                         if ((page_count(rx_bi->page) == 1) &&
962                             (page_to_nid(rx_bi->page) == current_node))
963                                 get_page(rx_bi->page);
964                         else
965                                 rx_bi->page = NULL;
966
967                         dma_unmap_page(rx_ring->dev,
968                                        rx_bi->page_dma,
969                                        PAGE_SIZE / 2,
970                                        DMA_FROM_DEVICE);
971                         rx_bi->page_dma = 0;
972                 }
973                 I40E_RX_NEXT_DESC_PREFETCH(rx_ring, i, next_rxd);
974
975                 if (unlikely(
976                     !(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
977                         struct i40e_rx_buffer *next_buffer;
978
979                         next_buffer = &rx_ring->rx_bi[i];
980
981                         if (ring_is_ps_enabled(rx_ring)) {
982                                 rx_bi->skb = next_buffer->skb;
983                                 rx_bi->dma = next_buffer->dma;
984                                 next_buffer->skb = skb;
985                                 next_buffer->dma = 0;
986                         }
987                         rx_ring->rx_stats.non_eop_descs++;
988                         goto next_desc;
989                 }
990
991                 /* ERR_MASK will only have valid bits if EOP set */
992                 if (unlikely(rx_error & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) {
993                         dev_kfree_skb_any(skb);
994                         /* TODO: shouldn't we increment a counter indicating the
995                          * drop?
996                          */
997                         goto next_desc;
998                 }
999
1000                 skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1001                              i40e_ptype_to_hash(rx_ptype));
1002                 /* probably a little skewed due to removing CRC */
1003                 total_rx_bytes += skb->len;
1004                 total_rx_packets++;
1005
1006                 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1007
1008                 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1009
1010                 vlan_tag = rx_status & (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1011                          ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1012                          : 0;
1013                 i40e_receive_skb(rx_ring, skb, vlan_tag);
1014
1015                 rx_ring->netdev->last_rx = jiffies;
1016                 budget--;
1017 next_desc:
1018                 rx_desc->wb.qword1.status_error_len = 0;
1019                 if (!budget)
1020                         break;
1021
1022                 cleaned_count++;
1023                 /* return some buffers to hardware, one at a time is too slow */
1024                 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1025                         i40evf_alloc_rx_buffers(rx_ring, cleaned_count);
1026                         cleaned_count = 0;
1027                 }
1028
1029                 /* use prefetched values */
1030                 rx_desc = next_rxd;
1031                 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1032                 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1033                             I40E_RXD_QW1_STATUS_SHIFT;
1034         }
1035
1036         rx_ring->next_to_clean = i;
1037         u64_stats_update_begin(&rx_ring->syncp);
1038         rx_ring->stats.packets += total_rx_packets;
1039         rx_ring->stats.bytes += total_rx_bytes;
1040         u64_stats_update_end(&rx_ring->syncp);
1041         rx_ring->q_vector->rx.total_packets += total_rx_packets;
1042         rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1043
1044         if (cleaned_count)
1045                 i40evf_alloc_rx_buffers(rx_ring, cleaned_count);
1046
1047         return budget > 0;
1048 }
1049
1050 /**
1051  * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
1052  * @napi: napi struct with our devices info in it
1053  * @budget: amount of work driver is allowed to do this pass, in packets
1054  *
1055  * This function will clean all queues associated with a q_vector.
1056  *
1057  * Returns the amount of work done
1058  **/
1059 int i40evf_napi_poll(struct napi_struct *napi, int budget)
1060 {
1061         struct i40e_q_vector *q_vector =
1062                                container_of(napi, struct i40e_q_vector, napi);
1063         struct i40e_vsi *vsi = q_vector->vsi;
1064         struct i40e_ring *ring;
1065         bool clean_complete = true;
1066         int budget_per_ring;
1067
1068         if (test_bit(__I40E_DOWN, &vsi->state)) {
1069                 napi_complete(napi);
1070                 return 0;
1071         }
1072
1073         /* Since the actual Tx work is minimal, we can give the Tx a larger
1074          * budget and be more aggressive about cleaning up the Tx descriptors.
1075          */
1076         i40e_for_each_ring(ring, q_vector->tx)
1077                 clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit);
1078
1079         /* We attempt to distribute budget to each Rx queue fairly, but don't
1080          * allow the budget to go below 1 because that would exit polling early.
1081          */
1082         budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1083
1084         i40e_for_each_ring(ring, q_vector->rx)
1085                 clean_complete &= i40e_clean_rx_irq(ring, budget_per_ring);
1086
1087         /* If work not completed, return budget and polling will return */
1088         if (!clean_complete)
1089                 return budget;
1090
1091         /* Work is done so exit the polling mode and re-enable the interrupt */
1092         napi_complete(napi);
1093         if (ITR_IS_DYNAMIC(vsi->rx_itr_setting) ||
1094             ITR_IS_DYNAMIC(vsi->tx_itr_setting))
1095                 i40e_update_dynamic_itr(q_vector);
1096
1097         if (!test_bit(__I40E_DOWN, &vsi->state))
1098                 i40evf_irq_enable_queues(vsi->back, 1 << q_vector->v_idx);
1099
1100         return 0;
1101 }
1102
1103 /**
1104  * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1105  * @skb:     send buffer
1106  * @tx_ring: ring to send buffer on
1107  * @flags:   the tx flags to be set
1108  *
1109  * Checks the skb and set up correspondingly several generic transmit flags
1110  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1111  *
1112  * Returns error code indicate the frame should be dropped upon error and the
1113  * otherwise  returns 0 to indicate the flags has been set properly.
1114  **/
1115 static int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
1116                                       struct i40e_ring *tx_ring,
1117                                       u32 *flags)
1118 {
1119         __be16 protocol = skb->protocol;
1120         u32  tx_flags = 0;
1121
1122         /* if we have a HW VLAN tag being added, default to the HW one */
1123         if (vlan_tx_tag_present(skb)) {
1124                 tx_flags |= vlan_tx_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
1125                 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1126         /* else if it is a SW VLAN, check the next protocol and store the tag */
1127         } else if (protocol == htons(ETH_P_8021Q)) {
1128                 struct vlan_hdr *vhdr, _vhdr;
1129                 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1130                 if (!vhdr)
1131                         return -EINVAL;
1132
1133                 protocol = vhdr->h_vlan_encapsulated_proto;
1134                 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
1135                 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
1136         }
1137
1138         *flags = tx_flags;
1139         return 0;
1140 }
1141
1142 /**
1143  * i40e_tso - set up the tso context descriptor
1144  * @tx_ring:  ptr to the ring to send
1145  * @skb:      ptr to the skb we're sending
1146  * @tx_flags: the collected send information
1147  * @protocol: the send protocol
1148  * @hdr_len:  ptr to the size of the packet header
1149  * @cd_tunneling: ptr to context descriptor bits
1150  *
1151  * Returns 0 if no TSO can happen, 1 if tso is going, or error
1152  **/
1153 static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
1154                     u32 tx_flags, __be16 protocol, u8 *hdr_len,
1155                     u64 *cd_type_cmd_tso_mss, u32 *cd_tunneling)
1156 {
1157         u32 cd_cmd, cd_tso_len, cd_mss;
1158         struct ipv6hdr *ipv6h;
1159         struct tcphdr *tcph;
1160         struct iphdr *iph;
1161         u32 l4len;
1162         int err;
1163
1164         if (!skb_is_gso(skb))
1165                 return 0;
1166
1167         err = skb_cow_head(skb, 0);
1168         if (err < 0)
1169                 return err;
1170
1171         if (protocol == htons(ETH_P_IP)) {
1172                 iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
1173                 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1174                 iph->tot_len = 0;
1175                 iph->check = 0;
1176                 tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
1177                                                  0, IPPROTO_TCP, 0);
1178         } else if (skb_is_gso_v6(skb)) {
1179
1180                 ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb)
1181                                            : ipv6_hdr(skb);
1182                 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1183                 ipv6h->payload_len = 0;
1184                 tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
1185                                                0, IPPROTO_TCP, 0);
1186         }
1187
1188         l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
1189         *hdr_len = (skb->encapsulation
1190                     ? (skb_inner_transport_header(skb) - skb->data)
1191                     : skb_transport_offset(skb)) + l4len;
1192
1193         /* find the field values */
1194         cd_cmd = I40E_TX_CTX_DESC_TSO;
1195         cd_tso_len = skb->len - *hdr_len;
1196         cd_mss = skb_shinfo(skb)->gso_size;
1197         *cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1198                                 ((u64)cd_tso_len <<
1199                                  I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1200                                 ((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
1201         return 1;
1202 }
1203
1204 /**
1205  * i40e_tx_enable_csum - Enable Tx checksum offloads
1206  * @skb: send buffer
1207  * @tx_flags: Tx flags currently set
1208  * @td_cmd: Tx descriptor command bits to set
1209  * @td_offset: Tx descriptor header offsets to set
1210  * @cd_tunneling: ptr to context desc bits
1211  **/
1212 static void i40e_tx_enable_csum(struct sk_buff *skb, u32 tx_flags,
1213                                 u32 *td_cmd, u32 *td_offset,
1214                                 struct i40e_ring *tx_ring,
1215                                 u32 *cd_tunneling)
1216 {
1217         struct ipv6hdr *this_ipv6_hdr;
1218         unsigned int this_tcp_hdrlen;
1219         struct iphdr *this_ip_hdr;
1220         u32 network_hdr_len;
1221         u8 l4_hdr = 0;
1222
1223         if (skb->encapsulation) {
1224                 network_hdr_len = skb_inner_network_header_len(skb);
1225                 this_ip_hdr = inner_ip_hdr(skb);
1226                 this_ipv6_hdr = inner_ipv6_hdr(skb);
1227                 this_tcp_hdrlen = inner_tcp_hdrlen(skb);
1228
1229                 if (tx_flags & I40E_TX_FLAGS_IPV4) {
1230
1231                         if (tx_flags & I40E_TX_FLAGS_TSO) {
1232                                 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
1233                                 ip_hdr(skb)->check = 0;
1234                         } else {
1235                                 *cd_tunneling |=
1236                                          I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1237                         }
1238                 } else if (tx_flags & I40E_TX_FLAGS_IPV6) {
1239                         if (tx_flags & I40E_TX_FLAGS_TSO) {
1240                                 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
1241                                 ip_hdr(skb)->check = 0;
1242                         } else {
1243                                 *cd_tunneling |=
1244                                          I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1245                         }
1246                 }
1247
1248                 /* Now set the ctx descriptor fields */
1249                 *cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
1250                                         I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT |
1251                                    I40E_TXD_CTX_UDP_TUNNELING            |
1252                                    ((skb_inner_network_offset(skb) -
1253                                         skb_transport_offset(skb)) >> 1) <<
1254                                    I40E_TXD_CTX_QW0_NATLEN_SHIFT;
1255
1256         } else {
1257                 network_hdr_len = skb_network_header_len(skb);
1258                 this_ip_hdr = ip_hdr(skb);
1259                 this_ipv6_hdr = ipv6_hdr(skb);
1260                 this_tcp_hdrlen = tcp_hdrlen(skb);
1261         }
1262
1263         /* Enable IP checksum offloads */
1264         if (tx_flags & I40E_TX_FLAGS_IPV4) {
1265                 l4_hdr = this_ip_hdr->protocol;
1266                 /* the stack computes the IP header already, the only time we
1267                  * need the hardware to recompute it is in the case of TSO.
1268                  */
1269                 if (tx_flags & I40E_TX_FLAGS_TSO) {
1270                         *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
1271                         this_ip_hdr->check = 0;
1272                 } else {
1273                         *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
1274                 }
1275                 /* Now set the td_offset for IP header length */
1276                 *td_offset = (network_hdr_len >> 2) <<
1277                               I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1278         } else if (tx_flags & I40E_TX_FLAGS_IPV6) {
1279                 l4_hdr = this_ipv6_hdr->nexthdr;
1280                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
1281                 /* Now set the td_offset for IP header length */
1282                 *td_offset = (network_hdr_len >> 2) <<
1283                               I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1284         }
1285         /* words in MACLEN + dwords in IPLEN + dwords in L4Len */
1286         *td_offset |= (skb_network_offset(skb) >> 1) <<
1287                        I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
1288
1289         /* Enable L4 checksum offloads */
1290         switch (l4_hdr) {
1291         case IPPROTO_TCP:
1292                 /* enable checksum offloads */
1293                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
1294                 *td_offset |= (this_tcp_hdrlen >> 2) <<
1295                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1296                 break;
1297         case IPPROTO_SCTP:
1298                 /* enable SCTP checksum offload */
1299                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
1300                 *td_offset |= (sizeof(struct sctphdr) >> 2) <<
1301                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1302                 break;
1303         case IPPROTO_UDP:
1304                 /* enable UDP checksum offload */
1305                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
1306                 *td_offset |= (sizeof(struct udphdr) >> 2) <<
1307                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1308                 break;
1309         default:
1310                 break;
1311         }
1312 }
1313
1314 /**
1315  * i40e_create_tx_ctx Build the Tx context descriptor
1316  * @tx_ring:  ring to create the descriptor on
1317  * @cd_type_cmd_tso_mss: Quad Word 1
1318  * @cd_tunneling: Quad Word 0 - bits 0-31
1319  * @cd_l2tag2: Quad Word 0 - bits 32-63
1320  **/
1321 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
1322                                const u64 cd_type_cmd_tso_mss,
1323                                const u32 cd_tunneling, const u32 cd_l2tag2)
1324 {
1325         struct i40e_tx_context_desc *context_desc;
1326         int i = tx_ring->next_to_use;
1327
1328         if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
1329             !cd_tunneling && !cd_l2tag2)
1330                 return;
1331
1332         /* grab the next descriptor */
1333         context_desc = I40E_TX_CTXTDESC(tx_ring, i);
1334
1335         i++;
1336         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1337
1338         /* cpu_to_le32 and assign to struct fields */
1339         context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
1340         context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
1341         context_desc->rsvd = cpu_to_le16(0);
1342         context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
1343 }
1344
1345 /**
1346  * i40e_tx_map - Build the Tx descriptor
1347  * @tx_ring:  ring to send buffer on
1348  * @skb:      send buffer
1349  * @first:    first buffer info buffer to use
1350  * @tx_flags: collected send information
1351  * @hdr_len:  size of the packet header
1352  * @td_cmd:   the command field in the descriptor
1353  * @td_offset: offset for checksum or crc
1354  **/
1355 static void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
1356                         struct i40e_tx_buffer *first, u32 tx_flags,
1357                         const u8 hdr_len, u32 td_cmd, u32 td_offset)
1358 {
1359         unsigned int data_len = skb->data_len;
1360         unsigned int size = skb_headlen(skb);
1361         struct skb_frag_struct *frag;
1362         struct i40e_tx_buffer *tx_bi;
1363         struct i40e_tx_desc *tx_desc;
1364         u16 i = tx_ring->next_to_use;
1365         u32 td_tag = 0;
1366         dma_addr_t dma;
1367         u16 gso_segs;
1368
1369         if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
1370                 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
1371                 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
1372                          I40E_TX_FLAGS_VLAN_SHIFT;
1373         }
1374
1375         if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
1376                 gso_segs = skb_shinfo(skb)->gso_segs;
1377         else
1378                 gso_segs = 1;
1379
1380         /* multiply data chunks by size of headers */
1381         first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
1382         first->gso_segs = gso_segs;
1383         first->skb = skb;
1384         first->tx_flags = tx_flags;
1385
1386         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1387
1388         tx_desc = I40E_TX_DESC(tx_ring, i);
1389         tx_bi = first;
1390
1391         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1392                 if (dma_mapping_error(tx_ring->dev, dma))
1393                         goto dma_error;
1394
1395                 /* record length, and DMA address */
1396                 dma_unmap_len_set(tx_bi, len, size);
1397                 dma_unmap_addr_set(tx_bi, dma, dma);
1398
1399                 tx_desc->buffer_addr = cpu_to_le64(dma);
1400
1401                 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
1402                         tx_desc->cmd_type_offset_bsz =
1403                                 build_ctob(td_cmd, td_offset,
1404                                            I40E_MAX_DATA_PER_TXD, td_tag);
1405
1406                         tx_desc++;
1407                         i++;
1408                         if (i == tx_ring->count) {
1409                                 tx_desc = I40E_TX_DESC(tx_ring, 0);
1410                                 i = 0;
1411                         }
1412
1413                         dma += I40E_MAX_DATA_PER_TXD;
1414                         size -= I40E_MAX_DATA_PER_TXD;
1415
1416                         tx_desc->buffer_addr = cpu_to_le64(dma);
1417                 }
1418
1419                 if (likely(!data_len))
1420                         break;
1421
1422                 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
1423                                                           size, td_tag);
1424
1425                 tx_desc++;
1426                 i++;
1427                 if (i == tx_ring->count) {
1428                         tx_desc = I40E_TX_DESC(tx_ring, 0);
1429                         i = 0;
1430                 }
1431
1432                 size = skb_frag_size(frag);
1433                 data_len -= size;
1434
1435                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1436                                        DMA_TO_DEVICE);
1437
1438                 tx_bi = &tx_ring->tx_bi[i];
1439         }
1440
1441         /* Place RS bit on last descriptor of any packet that spans across the
1442          * 4th descriptor (WB_STRIDE aka 0x3) in a 64B cacheline.
1443          */
1444 #define WB_STRIDE 0x3
1445         if (((i & WB_STRIDE) != WB_STRIDE) &&
1446             (first <= &tx_ring->tx_bi[i]) &&
1447             (first >= &tx_ring->tx_bi[i & ~WB_STRIDE])) {
1448                 tx_desc->cmd_type_offset_bsz =
1449                         build_ctob(td_cmd, td_offset, size, td_tag) |
1450                         cpu_to_le64((u64)I40E_TX_DESC_CMD_EOP <<
1451                                          I40E_TXD_QW1_CMD_SHIFT);
1452         } else {
1453                 tx_desc->cmd_type_offset_bsz =
1454                         build_ctob(td_cmd, td_offset, size, td_tag) |
1455                         cpu_to_le64((u64)I40E_TXD_CMD <<
1456                                          I40E_TXD_QW1_CMD_SHIFT);
1457         }
1458
1459         netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
1460                                                  tx_ring->queue_index),
1461                              first->bytecount);
1462
1463         /* set the timestamp */
1464         first->time_stamp = jiffies;
1465
1466         /* Force memory writes to complete before letting h/w
1467          * know there are new descriptors to fetch.  (Only
1468          * applicable for weak-ordered memory model archs,
1469          * such as IA-64).
1470          */
1471         wmb();
1472
1473         /* set next_to_watch value indicating a packet is present */
1474         first->next_to_watch = tx_desc;
1475
1476         i++;
1477         if (i == tx_ring->count)
1478                 i = 0;
1479
1480         tx_ring->next_to_use = i;
1481
1482         /* notify HW of packet */
1483         writel(i, tx_ring->tail);
1484
1485         return;
1486
1487 dma_error:
1488         dev_info(tx_ring->dev, "TX DMA map failed\n");
1489
1490         /* clear dma mappings for failed tx_bi map */
1491         for (;;) {
1492                 tx_bi = &tx_ring->tx_bi[i];
1493                 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
1494                 if (tx_bi == first)
1495                         break;
1496                 if (i == 0)
1497                         i = tx_ring->count;
1498                 i--;
1499         }
1500
1501         tx_ring->next_to_use = i;
1502 }
1503
1504 /**
1505  * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
1506  * @tx_ring: the ring to be checked
1507  * @size:    the size buffer we want to assure is available
1508  *
1509  * Returns -EBUSY if a stop is needed, else 0
1510  **/
1511 static inline int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1512 {
1513         netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
1514         /* Memory barrier before checking head and tail */
1515         smp_mb();
1516
1517         /* Check again in a case another CPU has just made room available. */
1518         if (likely(I40E_DESC_UNUSED(tx_ring) < size))
1519                 return -EBUSY;
1520
1521         /* A reprieve! - use start_queue because it doesn't call schedule */
1522         netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
1523         ++tx_ring->tx_stats.restart_queue;
1524         return 0;
1525 }
1526
1527 /**
1528  * i40e_maybe_stop_tx - 1st level check for tx stop conditions
1529  * @tx_ring: the ring to be checked
1530  * @size:    the size buffer we want to assure is available
1531  *
1532  * Returns 0 if stop is not needed
1533  **/
1534 static int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1535 {
1536         if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
1537                 return 0;
1538         return __i40e_maybe_stop_tx(tx_ring, size);
1539 }
1540
1541 /**
1542  * i40e_xmit_descriptor_count - calculate number of tx descriptors needed
1543  * @skb:     send buffer
1544  * @tx_ring: ring to send buffer on
1545  *
1546  * Returns number of data descriptors needed for this skb. Returns 0 to indicate
1547  * there is not enough descriptors available in this ring since we need at least
1548  * one descriptor.
1549  **/
1550 static int i40e_xmit_descriptor_count(struct sk_buff *skb,
1551                                       struct i40e_ring *tx_ring)
1552 {
1553         unsigned int f;
1554         int count = 0;
1555
1556         /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
1557          *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
1558          *       + 4 desc gap to avoid the cache line where head is,
1559          *       + 1 desc for context descriptor,
1560          * otherwise try next time
1561          */
1562         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1563                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
1564
1565         count += TXD_USE_COUNT(skb_headlen(skb));
1566         if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
1567                 tx_ring->tx_stats.tx_busy++;
1568                 return 0;
1569         }
1570         return count;
1571 }
1572
1573 /**
1574  * i40e_xmit_frame_ring - Sends buffer on Tx ring
1575  * @skb:     send buffer
1576  * @tx_ring: ring to send buffer on
1577  *
1578  * Returns NETDEV_TX_OK if sent, else an error code
1579  **/
1580 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
1581                                         struct i40e_ring *tx_ring)
1582 {
1583         u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
1584         u32 cd_tunneling = 0, cd_l2tag2 = 0;
1585         struct i40e_tx_buffer *first;
1586         u32 td_offset = 0;
1587         u32 tx_flags = 0;
1588         __be16 protocol;
1589         u32 td_cmd = 0;
1590         u8 hdr_len = 0;
1591         int tso;
1592         if (0 == i40e_xmit_descriptor_count(skb, tx_ring))
1593                 return NETDEV_TX_BUSY;
1594
1595         /* prepare the xmit flags */
1596         if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
1597                 goto out_drop;
1598
1599         /* obtain protocol of skb */
1600         protocol = vlan_get_protocol(skb);
1601
1602         /* record the location of the first descriptor for this packet */
1603         first = &tx_ring->tx_bi[tx_ring->next_to_use];
1604
1605         /* setup IPv4/IPv6 offloads */
1606         if (protocol == htons(ETH_P_IP))
1607                 tx_flags |= I40E_TX_FLAGS_IPV4;
1608         else if (protocol == htons(ETH_P_IPV6))
1609                 tx_flags |= I40E_TX_FLAGS_IPV6;
1610
1611         tso = i40e_tso(tx_ring, skb, tx_flags, protocol, &hdr_len,
1612                        &cd_type_cmd_tso_mss, &cd_tunneling);
1613
1614         if (tso < 0)
1615                 goto out_drop;
1616         else if (tso)
1617                 tx_flags |= I40E_TX_FLAGS_TSO;
1618
1619         skb_tx_timestamp(skb);
1620
1621         /* always enable CRC insertion offload */
1622         td_cmd |= I40E_TX_DESC_CMD_ICRC;
1623
1624         /* Always offload the checksum, since it's in the data descriptor */
1625         if (skb->ip_summed == CHECKSUM_PARTIAL) {
1626                 tx_flags |= I40E_TX_FLAGS_CSUM;
1627
1628                 i40e_tx_enable_csum(skb, tx_flags, &td_cmd, &td_offset,
1629                                     tx_ring, &cd_tunneling);
1630         }
1631
1632         i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
1633                            cd_tunneling, cd_l2tag2);
1634
1635         i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
1636                     td_cmd, td_offset);
1637
1638         i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
1639
1640         return NETDEV_TX_OK;
1641
1642 out_drop:
1643         dev_kfree_skb_any(skb);
1644         return NETDEV_TX_OK;
1645 }
1646
1647 /**
1648  * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
1649  * @skb:    send buffer
1650  * @netdev: network interface device structure
1651  *
1652  * Returns NETDEV_TX_OK if sent, else an error code
1653  **/
1654 netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
1655 {
1656         struct i40evf_adapter *adapter = netdev_priv(netdev);
1657         struct i40e_ring *tx_ring = adapter->tx_rings[skb->queue_mapping];
1658
1659         /* hardware can't handle really short frames, hardware padding works
1660          * beyond this point
1661          */
1662         if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
1663                 if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
1664                         return NETDEV_TX_OK;
1665                 skb->len = I40E_MIN_TX_LEN;
1666                 skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
1667         }
1668
1669         return i40e_xmit_frame_ring(skb, tx_ring);
1670 }